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Abstract

Graphical models are important and widely used tools for visualising dependency structures in
various contexts. Despite their significance, graphical models for multivariate stationary stochastic
processes in continuous time have received little research attention. This thesis addresses the
gap by introducing three graphical models for multivariate stationary stochastic processes in
continuous time: the causality graph, the local causality graph, and the partial correlation graph.
The (local) causality graph is a mixed graph in which the edges represent appropriate concepts
of Granger causality and contemporaneous correlation. In contrast, the partial correlation graph
is an undirected graph, with edges representing partial correlations. The three graphical models
are introduced in the following steps. First, we define and analyse the key concepts mentioned
above, which form the basis of the edges in the graphical models. We then analyse the properties
of the resulting graphs, with particular emphasis on Markov properties, in order to demonstrate
the soundness of the models. We also derive various characterisations of the edges. Finally, we
apply the graphical models to output processes of state space models such as MCAR processes.
Here, our attention is directed towards the characterisations of the edges by model parameters,
which in turn offer insightful interpretations.
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CHAPTER 1

Introduction

Graphical models are a widely used tool for the visualisation of complex relationships in various
disciplines and are particularly well suited for visualising dependency structures in stochastic
processes. This thesis aims to introduce and analyse three powerful graphical models for stationary
multivariate processes in continuous time and the dependency structures they require, as there is
very little research on graphical models for continuous-time stochastic processes.

In this opening chapter, we provide an introduction to this thesis by first outlining the key
aspects of the current state of research on graphical models, leading up to the research gap. We
then explain our contributions by highlighting the research problems and objectives of this thesis,
as well as the significance of our research and its limitations. Finally, we provide an outline of
the thesis and a brief explanation of the notations used.

State of the art

The attempt to use graphical models to visualise and analyse dependency structures has been
around for over a decade. It has its origins in several scientific fields, such as statistical physics
(Gibbs, 1902) and genetics (Wright, 1921, 1934). Over the years, the theory and methodology of
graphical models have been developed and extended in many directions, and graphical models
have been applied in fields as diverse as biology, economics, engineering, finance, forensics,
neuroscience, and psychology, to name just a few. There are several books on the state of the
art of graphic models. However, the field is growing rapidly and is interdisciplinary by nature,
with important contributions from a range of disciplines, so that no single author can cover its
entire scope. We therefore refer to Whittaker (2008) and Edwards (2000) for the ideas behind
graphical modelling and many examples, and to the comprehensive overviews of Lauritzen (2004)
and Maathuis, Drton, Lauritzen, and Wainwright (2019) for the mathematical and statistical
aspects of graphical models. For more application-oriented literature, we refer to Sinoquet and
Mourad (2014) for graphical models from a biological perspective, and to the recent book by
Sucar (2020) for an engineering perspective.

One of the main reasons for the interest in graphical modelling is the increasing number of
complex multivariate datasets in a wide variety of fields. Extracting, analysing, and interpreting
the information contained in such massive datasets can hardly be done by experience alone. It is
becoming increasingly important to develop methods that present the key aspects in an easily
understandable and clear way. Graphical models, in which the vertices symbolise the variables of
interest and the edges illustrate hypothetical relationships between them, provide an appropriate,
intuitive, and therefore widely used tool. They reduce complex data to the aspects of interest,
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extract key information, visualise the essential dependency structures, and provide a simple and
clear illustration of the data structure. Such graphical models give an idea of how dependency
structures between different variables look like, can be analysed and interpreted by experts, and
can be easily communicated in a way that is not possible with the raw data. It should also be
noted that graphs are a natural data structure for modern digital computers and can be easily
implemented – another advantage of graphical models.

Looking specifically at graphical models suitable for stochastic processes, there has been a surge
of interest in the last 25 years, with many publications devoted to their theory and application.
Below, we review the key ideas relevant to this work, distinguishing between the discrete-time
and continuous-time contexts. While most of the literature is cited in the main body of this
thesis, where it can be discussed in detail, the most important literature is mentioned right away.

In the discrete-time setting, two graphical models are of particular interest for this thesis – the path
diagram of Eichler (2007) and the partial correlation graph of Dahlhaus (2000). Both authors define
and analyse graphical models in which the vertices represent the components Za = (Za(t))t∈Z,
a ∈ V = {1, . . . , k}, of a k-dimensional stationary process ZV = (Za)a∈V = (ZV (t))t∈Z in discrete
time. However, the definition of and motivation behind the edges is quite different.

The path diagram of Eichler (2007) is a mixed graph, that is, a graph with directed edges
represented by arrows ( ) and undirected edges represented by dashed lines ( ). Figure 1.1a
displays an example of a mixed graph.

The directed edges in the path diagram represent (linear) Granger causal relationships between
the components. Roughly speaking, the idea is that the component Za is not Granger causal
for the component Zb, i.e., there is no directed edge from a to b, if, for all t ∈ Z, the prediction
of Zb(t+ 1) given all the (linear) information provided by (ZV (s))s≤t is equal to the prediction
of Zb(t+ 1) given only the partial (linear) information provided by (ZV \{a}(s))s≤t. Note that a
mathematical definition of causality was already given in the seminal works of Granger (1969)
and Sims (1972). The definition has since been extended in numerous ways and enjoys popularity
in many disciplines. We go into this topic in more detail in the introduction to Part I.

Eichler (2007) further defines the undirected edges in the path diagram by (linear) contempora-
neous correlation. This concept addresses the problem that dependencies do not always have a
temporally ordered cause-effect structure, which raises the need for modelling dependencies that
occur contemporaneously. The idea is that two components Za and Zb are contemporaneously
uncorrelated, i.e., there is no undirected edge between a and b, if, for all t ∈ Z, the random
variables Za(t + 1) and Zb(t + 1) are uncorrelated given the (linear) information provided by
(ZV (s))s≤t.

2

1 3

(a) A mixed graph

2

1 3

(b) An undirected graph

Figure 1.1.: Two graphical models
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Unlike the path diagram, the partial correlation graph of Dahlhaus (2000) is an undirected graph,
as illustrated in Figure 1.1b. Here, the undirected edges are represented by lines ( ) and stand
for (linear) partial correlations. The idea is that Za and Zb are partially uncorrelated, i.e., there
is no undirected edge between a and b, if, for all t ∈ Z, the random variables Za(t) and Zb(t) are
uncorrelated given the (linear) information provided by ZV \{a,b} = (ZV \{a,b}(t))t∈Z.

Both the partial correlation graph and the causality graph have been analysed extensively and
used in various practical applications, such as for air pollution data and for human tremor data
(Dahlhaus, 2000; Dahlhaus & Eichler, 2003), to name just a few. These examples demonstrate in
practice that the given graphical representations facilitate the understanding of relationships in
multivariate time series.

Of course, the literature provides many other concepts for modelling dependency structures
in discrete-time processes. These concepts are often based on conditional independence (e.g.,
Chamberlain, 1982; Eichler, 2012; Florens & Mouchart, 1982), which is the independence of
processes given certain information, rather than on conditional uncorrelatedness. However, to our
knowledge, Eichler (2012) is the only one to visualise his dependency structures in a mixed graph.

Although data is observed in discrete time, in many situations it is more appropriate to specify
the underlying stochastic process in continuous time. This approach is especially necessary for
high-frequency data, data with irregular intervals, or data with missing observations, which is
often the case in finance, econometrics, and turbulence. In addition, many physical models are
formulated in continuous time (e.g., Deck, 2006; Mahnke, Kaupužs, & Lubaševskij, 2009), so the
use of continuous-time models is often more natural.

Given the above advantages of graphical models for visualising dependency structures in stochastic
processes and the relevance of continuous-time stochastic processes, it is of interest to develop
graphical representations for continuous-time multivariate stochastic processes as well. Suitable
dependency concepts, especially causality concepts based on conditional independence, can be
found, for instance, in the works of Comte and Renault (1996), Florens and Fougère (1996), and
Petrovic and Dimitrijevic (2012). However, to our knowledge, these concepts have not yet been
visualised in graphical models. An exception is the concept of local conditional independence, a
dependency model for capturing asymmetric causal structures. For marked point processes, local
conditional independence has been visualised in a directed graph, called the local independence
graph, by Didelez (2006, 2008). This model was recently revisited and adapted to Itô processes
by Mogensen and Hansen (2020, 2022).

Overall, however, there is very little research on graphical models for stationary continuous-time
stochastic processes, and the many possibilities of graphical models have not yet been fully
explored. On the one hand, the local independence graph proposed in the literature often makes
use of the semi-martingale property of Itô processes (Mogensen & Hansen, 2020, 2022), which
does not seem to be an appropriate tool for stationary stochastic processes. On the other hand,
we were not able to find any mixed graph like the discrete-time path diagram in Eichler (2007),
and thus, of course, none that visualises concepts of Granger causality and contemporaneous
correlation simultaneously in one graph. Additionally, we were not able to find any undirected
graphs in the literature that are as versatile and easy to use as the discrete-time partial correlation
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graph in Dahlhaus (2000). Furthermore, the concepts for modelling dependency structures in
continuous-time processes proposed so far are incomplete in the sense that they are based on
conditional independence rather than conditional uncorrelatedness. The concept of conditional
uncorrelatedness should also be investigated since even in discrete time the graphical models
using conditional independence require more technical and unwieldy assumptions (Eichler, 2012)
than those using conditional uncorrelatedness (Eichler, 2007). This is also to be expected in
continuous time, which may prevent broad applicability.

The research gap is thus the lack of availability of graphical models for stationary multivariate
processes in continuous time, especially graphical models based on conditional correlation.
Therefore, it is of utmost importance to establish linear dependency concepts suitable for
stationary continuous-time processes and corresponding powerful graphical models that represent
the essential dependency structure of the process in a clear and meaningful way.

Our contributions

In this thesis, we construct three graphical models for stationary multivariate stochastic processes
in continuous time. In each graphical model, the vertices represent the different components
Ya = (Ya(t))t∈R, a ∈ V = {1, . . . , k}, of the underlying process YV = (Ya)a∈V = (YV (t))t∈R.
However, the edges are defined differently and visualise different dynamic relationships between
the components. These relations, of course, must first be defined appropriately for stationary
multivariate continuous-time processes.

In the causality graph GCG = (V,ECG) and the local causality graph G0
CG = (V,E0

CG), which we
define and further analyse in Part I, the focus is on the graphical representation of appropriate
(local) Granger causal relations. Compared to Eichler (2007), we face the challenge of defining
what it means to take one step into the future in continuous time, and therefore propose two
different approaches.

In the causality graph, the directed edges are defined using (linear) Granger causality. This
means that there is no directed edge from a to b if, for all t ∈ R and 0 ≤ h ≤ 1, the prediction of
Yb(t+ h) given all the (linear) information provided by (YV (s))s≤t is equal to the prediction of
Yb(t+ h) given only the partial (linear) information provided by (YV \{a}(s))s≤t. In comparison,
in the local causality graph, the directed edges are defined by local (linear) Granger causality.
Roughly speaking, the idea is to consider the equality of predictions in the limit as the size of
the time step h tends to zero. In order to obtain non-trivial definitions, it is not the predictions
of the components of the process YV themselves that must be considered, but the predictions of
the difference quotients of their maximum derivatives.

The definition of the undirected edges follows the same idea. In the causality graph, two
components Ya and Yb are (linearly) contemporaneously uncorrelated, i.e., there is no undirected
edge between a and b if, for all t ∈ R and 0 ≤ h, h′ ≤ 1, the random variables Ya(t + h) and
Yb(t+ h′) are uncorrelated given the (linear) information provided by (YV (s))s≤t. In the local
causality graph, we use local (linear) contemporaneous uncorrelatedness, where we again consider
the limiting case and study the maximum derivatives of the components.
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In summary, both the causality graph and the local causality graph act as a continuous-time
counterpart to the path diagram of Eichler (2007).

In contrast to the (local) causality graph, the partial correlation graph GP C = (V,EP C), as
introduced in Part II, is an undirected graph. Here, the undirected edges are defined by partial
correlations between the components of the process. The idea is that Ya and Yb are partially
uncorrelated if, for all t ∈ R, the random variables Ya(t) and Yb(t) are uncorrelated given the
(linear) information provided by YV \{a,b} = (YV \{a,b}(t))t∈R. The result is a graphical model that
has the advantage of being simple and easy to use. This graphical model can then, of course, be
seen as a continuous-time counterpart to the partial correlation graph of Dahlhaus (2000).

Let us conclude by highlighting some of the key aspects of our graphical models that emphasise
the significance and usefulness of our approaches.

First of all, an advantage of all three graphical models is that they can be defined under fairly
general assumptions. In the partial correlation graph, we only require that YV is wide-sense
stationary, mean-square continuous, and has a positive definite spectral density function. In the
more complex (local) causality graph, we restrict the spectral density a bit more and assume
that the given process is purely non-deterministic. The general setting allows for the application
to a wide range of continuous-time processes, including most Gaussian or Lévy-driven Ornstein-
Uhlenbeck processes, multivariate continuous-time autoregressive (MCAR) processes, and even
output processes of general linear state space models.

In fact, the graphical models could be defined under even weaker assumptions. However, these
assumptions are sufficient for the validity of various Markov properties, so the models are
meaningfully defined in this sense. Indeed, the graphs themselves are defined only by pairwise
relationships between the components of the process. The various Markov properties then allow
relationships between multivariate subprocesses to be inferred. They even provide graphical
criteria for inferring relationships between multivariate subprocesses given only partial information,
i.e., the dependency structures in subprocesses – a desirable property of graphical models.

Furthermore, for most output processes of linear state space models, the edges in the graphs
can be characterised in terms of the model parameters of the process. This results in suitable
criteria that provide a user-friendly way of visualising the complex dependency structures in
graphical models and that can be easily implemented. Furthermore, the characterisations allow
for insightful interpretations and comparisons to the existing (discrete-time) literature, further
supporting the soundness of the definition of our graphs.

It should be noted, however, that the dependency concepts we propose are only able to capture
linear relationships correctly and are based on the relationship of conditional uncorrelatedness.
In particular, we do not study the widely used concept of conditional independence. Furthermore,
our dependency concepts are tailored to stationary processes and their properties. Finally, the
focus of this thesis is on the theoretical aspects of the graphical modelling approach. We neither
discuss statistical methods for estimating the edges in the graphs from discrete-time data nor
do we provide examples based on real data. Examples of specific processes are always on the
theoretical level.
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Outline of the thesis

This thesis is structured as follows. In Chapter 2, we lay the necessary foundations for the processes
used in the thesis. We establish wide-sense stationary, mean-square continuous multivariate
processes in continuous time that have a spectral density function, and state important properties
of these processes. Subsequently, we define state space models in general, which are used as
examples throughout the thesis, before moving on to the controller canonical state space model
and the multivariate continuous-time autoregressive moving average (MCARMA) model. Finally,
we discuss the invertibility of controller canonical state space models and establish invertible
controller canonical state space (ICCSS) processes.

In Part I, we then introduce the first two graphical models, the causality graph and the local
causality graph. To define these graphs, the necessary foundations on linear spaces, orthogonal
projections, and conditional orthogonality (conditional uncorrelatedness) are covered in Chapter 3.
Then, in Chapters 4 and 5, we introduce different concepts of Granger causality and contem-
poraneous correlation for stationary continuous-time processes to model different dependencies
between the components of multivariate processes. Several equivalent characterisations are given
for the different definitions, in particular by equality of orthogonal projections. Building on
these different concepts, we define the causality graph and the local causality graph in Chapter 6
and discuss various notions of Markov properties in Chapter 7. In Chapter 8 and 9, we derive
(local) causality graphs for continuous-time state space processes as an example. Chapter 8
is focused on multivariate continuous-time autoregressive (MCAR) processes, while Chapter 9
treats invertible controller canonical state space (ICCSS) processes. We show that most state
space processes satisfy the assumptions of the (local) causality graph, resulting in well-defined
graphical models that satisfy various notions of Markov properties. We compute the relevant
orthogonal projections, which lead to meaningful characterisations of the edges in the (local)
causality graph in terms of the model parameters. Throughout this part, we draw comparisons
to the current literature.

In Part II, we introduce the third graphical model, the partial correlation graph for multivariate
stationary stochastic processes in continuous time. To define this graph, we first establish the
concept of partial correlation for continuous-time processes and give some characterisations and
important properties in Chapter 10. Then, in Chapter 11, we define the partial correlation graph,
show that it satisfies the usual Markov properties, and provide simple edge characterisations.
We also give a comparison to the causality graph. As an example, we explicitly characterise
and interpret the edges in the partial correlation graph for the popular MCAR processes in
Chapter 12. Furthermore, we continue the comparison to the causality graph and provide an
additional comparison to the local causality graph.

Finally, in Chapter 13, we complete this thesis with a conclusion and an outlook on the research
questions arising from this thesis.



7

Notations

Throughout this thesis, we denote the space of all real or complex (k × k)-dimensional matrices
by Mk(R) and Mk(C). Similarly, Mk,d(R) and Mk,d(C) stand for the real or complex matrices
of dimension k × d. For a matrix M ∈ Mk,d(C), the matrix entries are denoted by [M ]ab for
a ∈ {1, . . . , k} and b ∈ {1, . . . , d}. Submatrices of M are denoted by [M ]AB for non-empty
A ⊆ {1, . . . , k} and B ⊆ {1, . . . , d}. Further, we write #A for the cardinality of the set A. Some
frequently used matrices are the identity matrix Ik ∈ Mk(R) and the zero matrix 0k×d ∈ Mk×d(R).
The expression 0k denotes either the (k × k)-dimensional zero matrix or the k-dimensional zero
vector, which should be clear from the context and is sometimes emphasised by 0k ∈ Mk(R) or
0k ∈ Rk. The vector ea ∈ Rk represents the a-th unit vector and, similarly, we write

Ej =


0k(j−1)×k

Ik

0k(p−j)×k

 ∈ Mkp×k(R), j = 1, . . . , p. (1.1)

For p > q, we also write

E =
(

Ikq

0k(p−q)×kq

)
∈ Mkp×kq(R) and E =

(
0k×k(q−1)

Ik

)
∈ Mkq×k(R). (1.2)

The two-line marker indicates the position of non-zero entries in the matrix. A double overline
represents entries at the top of the matrix, while a double underline represents entries at the
bottom of the matrix. Moreover, M⊤ is the transpose of M ∈ Mk,d(C) and ∥M∥ denotes some
matrix norm of M . σ(M) is the set of eigenvalues of M ∈ Mk(C) and det(M) is the determinant.
For Hermitian matrices M,N ∈ Mk(C), the notation M ≥ N represents the Loewner order
and means that M − N is positive semi-definite, for short, M − N ≥ 0. Similarly, M > 0
indicates that M is positive definite. For a polynomial matrix P (z) ∈ Mk(C), z ∈ C, we denote
by N (P ) = {z ∈ C : det(P (z)) = 0} the roots of the univariate polynomial det(P (z)), z ∈ C,
and deg(det(P (z))) denotes its degree. Finally, for a function f : R → Mk(C) with f(λ) > 0 for
λ ∈ R, we denote by g : R → Mk(C) the function with g(λ) = f(λ)−1, λ ∈ R.





CHAPTER 2

Fundamentals

This chapter deals with the basics of stochastic processes, which are crucial to all parts of this
thesis and which the reader should be familiar with before proceeding. For better readability,
the fundamentals that are only relevant for one of the graphical models considered in this thesis
are given in the preliminaries of the respective parts in Chapters 3 and 10.

In the chapter at hand, we first give a brief introduction to wide-sense stationary and mean-
square continuous multivariate stochastic processes in continuous time. Building on this, we
establish the spectral representation of such processes. We also provide well-known theory of
covariance functions, spectral density functions, and the differentiability of wide-sense stationary
and mean-square continuous multivariate processes. Most of these key results date back to
Khintchine (1934) and Cramér (1940), and have been summarised in comprehensive overviews
by Doob (1953), Rozanov (1967), and Yaglom (1987), among others.

As an important example of wide-sense stationary and mean-square continuous processes, we study
time-invariant linear state space models (A∗,B∗,C∗, L), which are characterised by matrices
A∗ ∈ Mkp(R), B∗ ∈ Mkp×k(R), and C∗ ∈ Mk×kp(R) as well as a driving Rk-valued Lévy
process L = (L(t))t∈R. The continuous-time linear state space model then consists of a state
equation dX(t) = A∗X(t)dt+ B∗dL(t) and an observation equation YV (t) = C∗X(t). The Rkp-
valued process X = (X(t))t∈R is the input process and the Rk-valued process YV = (YV (t))t∈R,
V = {1, . . . , k}, is the output process of (A∗,B∗,C∗, L).

State space models are important tools in many disciplines, we refer, for example, to Andresen,
Benth, Koekebakker, and Zakamulin (2014), Benth, Klüppelberg, Müller, and Vos (2014), and
Benth and Saltyte Benth (2009) for successful applications of state space models in economics and
mathematical finance. The strength and the reason for the great interest in state space models
lies, on one hand, in their applicability to irregularly spaced observations and high-frequency data.
On the other hand, the driving Lévy process and the matrices A∗, B∗, C∗ can be chosen quite
freely. Even the occurrence of jumps in the sample paths is possible, making state space models
a powerful and flexible tool for modelling phenomena from many different fields. The output
processes YV of multivariate state space models are therefore used as examples throughout this
thesis. In particular, we apply our graphical models to output processes of state space models to
provide graphical visualisations of dependency structures between the univariate components.

A subclass of state space models are multivariate continuous-time autoregressive moving average
(MCARMA) models, which are present if the matrices A∗, B∗, C∗ have a special structure.
MCARMA models are the continuous-time counterpart to the well-known discrete-time au-
toregressive moving average (ARMA) models (for a comprehensive introduction see Brockwell
& Davis, 1991). The term MCARMA process describes the output process of the respective
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state space model. Special cases of MCARMA processes include multivariate continuous-time
autoregressive (MCAR) processes, multivariate continuous-time Ornstein-Uhlenbeck processes, or
Gaussian MCARMA processes, where the driving Lévy process is a Brownian motion. MCARMA
processes were introduced by Marquardt and Stelzer (2007) to extend the concept of univariate
continuous-time autoregressive moving average (CARMA) processes to the multivariate setting
and to be able to model the joint behaviour of several possibly dependent univariate stochastic
processes in continuous time. However, early papers dealing with the properties and the statistical
analysis of univariate Gaussian CARMA processes already include those of Bartlett (1946), Doob
(1944, 1953), and Phillips (1959). Lévy-driven CARMA processes were popularised by Peter
Brockwell at the beginning of this century, see Brockwell (2014) for an overview. Very early Gaus-
sian MCAR processes have previously been studied in the economics literature, e.g., in Harvey
and Stock (1985a, 1985b, 1989), and were further explored in the well-known paper by Bergstrom
(1997). Since their introduction, MCARMA processes have enjoyed great popularity and have
stimulated a considerable amount of research in the last decade, see, e.g., Basse-O’Connor,
Nielsen, Pedersen, and Rohde (2019), Brockwell and Schlemm (2013), Fasen-Hartmann and
Mayer (2022), Schlemm and Stelzer (2012a, 2012b), and the references therein.

A second type of state space models of particular interest to this thesis are state space models
in controller canonical form. Similar to MCARMA models, these are state space models with
matrices A∗, B∗, C∗ of a special structure. Controller canonical state space models generalise
the definition of a univariate CARMA process in Brockwell (2014), and the matrix structure is
well suited for computing edge characterisations in our (local) causality graph.

For the output process YV of some state space model (A∗,B∗,C∗, L), there are numerous
equivalent state space models (A,B,C, L) with the same output process YV . Since our primary
interest is in this output process, we can transition between these models, and we call them
equivalent. In this introductory chapter, we focus on the existence of an equivalent controller
canonical state space model (A,B,C, L) for a given state space model (A∗,B∗,C∗, L), and we
demonstrate that if such a representation exists, it is unique. While the equivalence of controller
canonical state space models and MCARMA models is addressed in Brockwell and Schlemm
(2013), and the equivalence of MCARMA models and general state space models is addressed in
Schlemm and Stelzer (2012a), a question of existence remains open in both articles.

Finally, a special feature of the controller canonical state space model is that, under mild
assumptions, we can recover the kp-dimensional input process X from the k-dimensional output
process YV , even though the matrix C∗ in the observation equation YV (t) = C∗X(t) is usually
rectangular and not invertible. This recovery property was previously known only for univariate
CARMA processes (Brockwell & Lindner, 2015, Theorem 2.2) and is key to the calculation of
orthogonal projections and edge characterisations for the (local) causality graph. If the input
process can be recovered from the output process, the controller canonical state space model is
called an invertible controller canonical state space model. The output process YV is referred to
as an invertible controller canonical state space process, abbreviated as ICCSS process. Note that
the invertible controller canonical form of MCARMA models was already discussed by Brockwell
and Schlemm (2013).
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The chapter is structured as follows. In Section 2.1, we establish some theory and properties of
wide-sense stationary and mean-square continuous multivariate stochastic processes in continuous
time. We briefly introduce Lévy processes in Section 2.2, enabling us to define state space models
and discuss the properties established in Section 2.1. Following this introduction, in Section 2.3,
we present the controller canonical form of a state space model. In the case of its existence,
we prove its uniqueness. We also shortly introduce MCARMA models, along with the special
cases of MCAR models and Ornstein-Uhlenbeck models. We further discuss the relationship
between the controller canonical state space model and the MCARMA model. Concluding the
chapter, in Section 2.4, we introduce the invertible controller canonical state space model and its
corresponding output process, the ICCSS process. Finally, we establish that, for ICCSS processes,
we can recover the input process from the output process.

2.1. Wide-sense stationary and mean-square continuous
processes

We begin this section with an introduction to wide-sense stationary and mean-square continuous
multivariate stochastic processes in continuous time. We refer to the books by Doob (1953),
Rozanov (1967), and Yaglom (1987) for further insights and proofs of these well-known results.
From now on, we denote a k-dimensional stochastic process in continuous time by YV = (YV (t))t∈R
with index set V = {1, . . . , k}. The one-dimensional subprocesses Ya = (Ya(t))t∈R, a ∈ V ,
are called components of YV . Furthermore, we denote multivariate subprocesses of YV by
YA = (YA(t))t∈R for A ⊆ V , without always emphasising that A ̸= ∅.

Definition 2.1. Suppose that YV = (YV (t))t∈R satisfies E[|Ya(t)|2] < ∞ for all a ∈ V and t ∈ R.
Then YV is (centred and) wide-sense stationary if, for all a, b ∈ V and s, t ∈ R, E[Ya(t)] = 0 and
E[Ya(t)Yb(s)] is a function of the difference t− s. We denote

cYaYb
(t− s) := E

[
Ya(t)Yb(s)

]
.

The process YV is mean-square continuous if, for all a ∈ V ,

lim
t−s→0

E
[
|Ya(t) − Ya(s)|2

]
= 0.

We emphasise that when we discuss wide-sense stationary processes, we always include that the
process has zero expectation. We further refer to cYaYa(t), t ∈ R, as the covariance function of
the component Ya and to cYaYb

(t), t ∈ R, as the cross-covariance function of the components Ya

and Yb. Furthermore, for s, t ∈ R, the covariance function of YV is denoted by

cYV YV
(t− s) = (cYaYb

(t− s))a,b∈V =
(
E
[
Ya(t)Yb(s)

])
a,b∈V

= E
[
YV (t)YV (s)⊤]

.

We establish properties of the covariance function of YV , including an alternative characterisation
of continuity in the mean square, which is easily verifiable for the example processes considered
in this thesis (cf. Remark 2.13).
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Lemma 2.2. Suppose that YV is wide-sense stationary. Then, for all t ∈ R and a, b ∈ V , it
applies that

cYaYb
(t) = cYbYa(−t), |cYaYb

(t)| ≤
√
cYaYa(0)cYbYb

(0), and cYV YV
(t) ≥ 0.

Furthermore, YV is mean-square continuous if and only if, for all a ∈ V ,

lim
t→0

cYaYa(t) = cYaYa(0).

A key property of wide-sense stationary and mean-square continuous processes is their spectral
representation.

Proposition 2.3. Suppose that YV is wide-sense stationary and mean-square continuous. Then,
for t ∈ R, we have

YV (t) =
∫ ∞

−∞
eiλtΦV (dλ), (2.1)

with respect to a random orthogonal measure ΦV = (Φ1, . . . ,Φk)⊤, where

E
[
ΦV (dλ)ΦV (dµ)⊤] = δλ=µFYV YV

(dλ), E [ΦV (dλ)] = 0k ∈ Rk, (2.2)

and δλ=µ is the Kronecker Delta. The relation (2.1) is called spectral representation of YV and
FYV YV

(λ) = (FYaYb
(λ))a,b∈V , λ ∈ R, is called spectral distribution function of YV .

Stochastic integrals of deterministic Lebesgue-measurable functions with respect to a random
orthogonal measure ΦV are defined in the usual L2-sense. For details on the definition and
properties of such integrals, we refer to Rozanov (1967) and Doob (1953).

In this thesis, we discuss processes YV , for which there exist spectral density functions given by

fYaYa(λ) = dFYaYa(λ)
dλ

,

for λ ∈ R and a ∈ V . In particular, this implies the existence of cross-spectral density functions

fYaYb
(λ) = dFYaYb

(λ)
dλ

,

for λ ∈ R and a, b ∈ V with a ̸= b. The spectral density function of the process YV is denoted by
fYV YV

(λ) = (fYaYb
(λ))a,b∈V for λ ∈ R. The following lemma summarises some of its properties.

Lemma 2.4. Suppose that YV is wide-sense stationary and mean-square continuous with spectral
density function fYV YV

(λ), λ ∈ R. Then the following statements hold for all a, b ∈ V and
λ, t ∈ R.

(a)
∫∞

−∞ |fYaYb
(λ)| dλ < ∞,

(b) cYaYb
(t) =

∫∞
−∞ eiλtfYaYb

(λ)dλ,

(c) fYV YV
(λ) ≥ 0 and fYV YV

(λ) = fYV YV
(λ)⊤.
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Remark 2.5. The upper bound of the covariance function from Lemma 2.2 implies integrability
only over a finite interval. To obtain a one-to-one relationship between cYV YV

(t) and fYV YV
(λ)

by Fourier transformation, additional integrability assumptions on the covariance function are
required. For example, suppose that

∫∞
−∞ |cYaYb

(t)|dt < ∞ for all a, b ∈ V . Then YV has a
spectral density function given by

fYV YV
(λ) = 1

2π

∫ ∞

−∞
e−iλtcYV YV

(t)dt, λ ∈ R. (2.3)

In this thesis, we only require the existence of a spectral density function and not the relation
(2.3). Therefore, although our example processes always have integrable covariance functions, see
Remark 2.14, long memory processes are also covered in this thesis.

In addition to the spectral density function, we introduce the spectral coherence function of YA

and YB, which is obtained by rescaling the cross-spectral density function of YA and YB.

Definition 2.6. Suppose that YV is wide-sense stationary and mean-square continuous with
spectral density function fYV YV

(λ), λ ∈ R. The spectral coherence function of YA and YB is
defined as

RYAYB
(λ) :=

(
fYAYA

(λ)
)−1/2

fYAYB
(λ)
(
fYBYB

(λ)
)−1/2

, λ ∈ R,

where (fYAYA
(λ))−1/2 denotes the inverse of the positive square root of fYAYA

(λ). If fYAYA
(λ) or

fYBYB
(λ) is singular for some λ ∈ R, we set RYAYB

(λ) := 0α×β with α = #A and β = #B.

Remark 2.7. For A = B, we have RYAYA
(λ) = Iα if fYAYA

(λ) > 0 and RYAYA
(λ) = 0α if fYAYA

(λ)
is singular. Furthermore, fYA∪BYA∪B

(λ) > 0 is sufficient for fYAYA
(λ) > 0 and fYBYB

(λ) > 0.

Finally, the following multivariate version of Doob (1953), XI, §9, Example 1, is essential to
compute the mean-square derivative of a wide-sense stationary and mean-square continuous
process YV . The proof in that book is directly applicable.

Proposition 2.8. Suppose that YV is wide-sense stationary and mean-square continuous with
spectral density function fYV YV

(λ), λ ∈ R, and spectral representation (2.1). Then the mean-
square limit

l.i.m.
h→0

YV (t) − YV (t− h)
h

exists if and only if
∫∞

−∞ λ2∥fYV YV
(λ)∥dλ < ∞. In this case, YV is called mean-square differen-

tiable with derivative

D(1)YV (t) := l.i.m.
h→0

YV (t) − YV (t− h)
h

=
∫ ∞

−∞
iλeiλtΦV (dλ), t ∈ R.

Furthermore, the limit holds also P-a.s., i.e.,

D(1)YV (t) = lim
h→0

YV (t) − YV (t− h)
h

P-a.s.
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Remark 2.9. Suppose that Ya, a ∈ V , is mean-square differentiable. If we define the (mean-
square) closed linear space LYa(t) generated by (Ya(s))s≤t for t ∈ R by

LYa(t) :=
{

n∑
i=1

γa,iYa(ti) : γa,i ∈ C, −∞ < t1 ≤ . . . ≤ tn ≤ t, n ∈ N
}
,

then, we have

D(1)Ya(t) = l.i.m.
h↘0

Ya(t) − Ya(t− h)
h

∈ LYa(t).

Furthermore, by recursion, Proposition 2.8 also provides higher derivatives. One can show by
induction that, if Ya is ja-times mean-square differentiable, then∫ ∞

−∞
(iλ)j eiλtΦa(dλ) = D(j)Ya(t) ∈ LYa(t)

for j = 1, . . . , ja and t ∈ R, where D(j)Ya(t) denotes the j-th mean-square derivative.

2.2. General state space models

To define state space models, we first need to define multivariate Lévy processes, which are
the source of randomness in a state space model. Many common stochastic processes are Lévy
processes. Examples are the Brownian motion, the Poisson process, and the compound Poisson
process (Stelzer, 2011, p. 4). For more details on Lévy processes, we refer to Applebaum (2011),
Protter (2005), and Sato (2007), and we start with the definition of a one-sided Lévy process.

Definition 2.10. A one-sided Rk-valued Lévy process (L(t))t≥0 is a stochastic process with
stationary and independent increments, that is continuous in probability, and that satisfies
L(0) = 0k ∈ Rk P-a.s.

Throughout this thesis, we work with two-sided k-dimensional Lévy processes L = (L(t))t∈R.
These processes are obtained from two independent copies (L1(t))t≥0 and (L2(t))t≥0 of a one-sided
Lévy process via the construction

L(t) =

L1(t) if t ≥ 0,

− lims↗−t L2(s) if t < 0.

A common assumption for Lévy processes, often made in the analysis of state space models, is
the following.

Assumption 1. The two-sided Lévy process L = (L(t))t∈R satisfies EL(1) = 0k ∈ Rk and
E∥L(1)∥2 < ∞ with ΣL := E[L(1)L(1)⊤].

The assumption that L(1) has finite variance is non-trivial. However, it is essential for this thesis,
as it provides finite second moments and thus, covariance functions of the input and the output
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processes of state space models. Although some of the statements in the present chapter can be
made without Assumption 1 (cf. Fasen-Hartmann & Schenk, 2023a), for the sake of readability
and consistency of the thesis, we require that the assumption always holds, and no longer point
it out.

Based on the two-sided Lévy processes, we can now define linear time-invariant state space
models with equal dimensions of the driving Lévy process L and the output process YV . Note
that it is possible to extend this definition to state space models where the driving Lévy process
and the output process have different dimensions (Schlemm & Stelzer, 2012a, Definition 3.2).

Definition 2.11. An Rk-valued continuous-time state space model (A∗,B∗,C∗, L) of dimension
kp is characterised by an Rk-valued Lévy process L = (L(t))t∈R, a state transition matrix
A∗ ∈ Mkp(R), an input matrix B∗ ∈ Mkp×k(R), and an observation matrix C∗ ∈ Mk×kp(R). It
consists of a state equation

dX(t) = A∗X(t)dt+ B∗dL(t) (2.4)

and an observation equation

YV (t) = C∗X(t). (2.5)

The Rkp-valued process X = (X(t))t∈R is the input process, and the process YV = (YV (t))t∈R,
taking values in Rk, is the output process of the state space model, also called state space process.

It is well known that every solution of the state equation (2.4) satisfies

X(t) = eA∗(t−s)X(s) +
∫ t

s
eA∗(t−u)B∗dL(u), s, t ∈ R, s < t. (2.6)

A short introduction to such multivariate stochastic integrals with respect to Lévy processes is
given in Marquardt and Stelzer (2007). A comprehensive overview is provided in the textbooks
of Applebaum (2011) and Protter (2005).

In this thesis, we always work under the following standing assumption.

Assumption 2. The state transition matrix A∗ ∈ Mkp(R) satisfies σ(A∗) ⊆ (−∞, 0) + iR.

If Assumption 2 is satisfied, the state equation (2.4) has the unique causal, strictly stationary
solution X = (X(t))t∈R given by (Sato & Yamazato, 1983, Theorem 5.1)

X(t) =
∫ t

−∞
eA∗(t−u)B∗dL(u), t ∈ R.

A solution X is called causal if, for all t ∈ R, X(t) is independent of the σ-algebra generated by
(L(s) − L(t))s>t. Of course, there also exists a causal, strictly stationary version of the output
process YV = (YV (t))t∈R, which has the moving average representation (e.g., Schlemm & Stelzer,
2012a, equation (3.9))

YV (t) =
∫ ∞

−∞
g(t− u)dL(u) with g(t) = C∗eA∗tB∗1[0,∞)(t), t ∈ R. (2.7)
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Throughout this thesis, we assume that Assumption 2 is satisfied and work with these causal,
strictly stationary versions of X and YV , respectively. We now introduce well-known second-order
properties of X and YV .

Remark 2.12. Due to the finite second moments of L(1), both X and YV have finite second
moments (Brockwell & Schlemm, 2013, Lemma A.4). Since the input process X and the output
process YV are strictly stationary, X and YV are wide-sense stationary.

The covariance function of the input process X is (Schlemm & Stelzer, 2012a, Proposition 3.2)

cXX(t) = eA∗tcXX(0),

cXX(t) = cXX(−t)⊤ = cXX(0)e−(A∗)⊤t,

t ≥ 0,

t < 0,
(2.8)

where cXX(0) =
∫∞

0 eA∗uB∗ΣL(B∗)⊤e(A∗)⊤udu satisfies

A∗cXX(0) + cXX(0)(A∗)⊤ = −B∗ΣL(B∗)⊤. (2.9)

Due to the observation equation (2.5), the covariance function of the output process YV is

cYV YV
(t) = C∗cXX(t)(C∗)⊤, t ∈ R. (2.10)

Remark 2.13. Since the matrix exponential is continuous, we have limt→0 cXX(t) = cXX(0).
Lemma 2.2 then implies that the input process X is mean-square continuous. Due to relation
(2.10), the output process YV is also mean-square continuous.

Remark 2.14. The covariance function cYV YV
(t), t ∈ R, is integrable as an exponentially

decaying function. Thus, the one-to-one relation (2.3) between the spectral density function
fYV YV

(λ), λ ∈ R, and the covariance function cYV YV
(t), t ∈ R, applies. The spectral density

function of YV exists and is given by (Schlemm & Stelzer, 2012b, Proposition 3.4)

fYV YV
(λ) = 1

2πC∗ (iλIkp − A∗)−1 B∗ΣL (B∗)⊤
(
−iλIkp − (A∗)⊤

)−1
(C∗)⊤ , λ ∈ R. (2.11)

As a final important function for a state space model (A∗,B∗,C∗, L), we establish the rational
matrix function

H(z) = C∗ (zIkp − A∗)−1 B∗, z ∈ C\σ(A∗), (2.12)

which is called the transfer function. The importance of the transfer function H goes beyond
its role in the spectral density function. According to the spectral representation theorem (Lax,
2002, Theorem 17.5), we are able to recover the so-called kernel function C∗eA∗tB∗, t ∈ R, of
the output process YV via

C∗eA∗tB∗ = 1
2πi

∫
Γ

eztH(z)dz,

where Γ is a closed contour in the complex numbers that winds around each eigenvalue of A∗
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exactly once. The transfer function H even uniquely determines this kernel function (Schlemm
& Stelzer, 2012b, Lemma 3.2). Since the representation (2.7) shows that the behaviour of the
output process YV depends on the values of the matrices A∗, B∗, and C∗ only through the kernel
function, YV is also determined for a given Lévy process.

The triple (A∗,B∗,C∗) in the transfer function H is called an algebraic realisation of the latter.
The dimension kp of the matrix A∗ is the dimension of the algebraic realisation (A∗,B∗,C∗).
Every transfer function H has many algebraic realisations of various dimensions. A particularly
convenient class are those of minimal dimension. The algebraic realisation (A∗,B∗,C∗) of
dimension kp is said to be minimal if there is no other algebraic realisation of H with dimension
less than kp. Minimality can be defined not only through the dimension of A∗ but can also be
characterised by the rank of two special matrices (Rugh, 1996, Theorem 10.13).

Theorem 2.15. An algebraic realisation (A∗,B∗,C∗) is minimal if and only if it is controllable
and observable, which means that the controllability matrix and the observability matrix

C =
(
B∗ A∗B∗ (A∗)2 B∗ · · · (A∗)kp−1 B∗

)
and

O =
(

C∗⊤ (C∗A∗)⊤ · · ·
(
C∗ (A∗)kp−1

)⊤
)

have full rank.

We say that a state space model is minimal, controllable, or observable if the corresponding
algebraic realisation has this property. There is also the following connection between two
minimal algebraic realisations (Hannan & Deistler, 2012, Lemma 2.3.4).

Lemma 2.16. Two minimal algebraic realisations (A∗,B∗,C∗) and (A,B,C) are realisations
of the same transfer function H if and only if there exists a non-singular matrix T ∈ Mkp(R),
such that

A = TA∗T−1, B = TB∗, and C = C∗T−1.

Minimal realisations are therefore unique up to a transformation of the basis. Finally, the minimal
nature of the algebraic realisation provides a useful property of the covariance function.

Remark 2.17. If ΣL > 0 and the state space model (A∗,B∗,C∗, L) is controllable, then, for
h > 0, Schlemm and Stelzer (2012b) state in Corollary 3.9 that

∫ h

0
eA∗uB∗ΣL (B∗)⊤ e(A∗)⊤udu > 0.

Therefore, Theorem 12.6.18 of Bernstein (2009) provides

cXX(0) =
∫ ∞

0
eA∗uB∗ΣL (B∗)⊤ e(A∗)⊤udu > 0.
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2.3. Controller canonical state space models

When transitioning between two algebraic realisations (A∗,B∗,C∗) and (A,B,C) of a trans-
fer function H, we already know that the kernel function and the output process YV of the
corresponding state space models remain unchanged. Given our primary interest in YV , this
raises the question of whether there are algebraic realisations of a state space model that are
particularly well suited to a specific problem. One such algebraic realisation is the controller
canonical algebraic realisation, which results in the controller canonical state space model. This
model is not only simple but also suitable for predicting the output process YV . The existence of
the controller canonical state space model is the subject of this chapter.

To introduce the controller canonical state space model, it is necessary to revisit the transfer
function. For the transfer function H of a state space model (A∗,B∗,C∗, L) Kailath (1980) states
in Lemma 6.3-8 that there exist (k × k)-dimensional polynomial matrices P and Q, such that

H(z) = Q(z)P (z)−1, z ∈ C \ σ(A∗), (2.13)

is a coprime right polynomial fraction description, which in turn means that the matrix
[P (z)⊤Q(z)⊤]⊤ has full rank. In his Lemma 6.3-3, Kailath (1980) even gives a construction
method for such a decomposition.

However, without any additional assumption, the coprime polynomials P and Q in (2.13) are
not unique. For example, we can take any invertible matrix S ∈ Mk(R) to see that P (z)S and
Q(z)S also satisfy H(z) = Q(z)SS−1P (z)−1. Despite the many different coprime polynomials P
and Q that satisfy (2.13), to the best of our knowledge, it remains unclear whether there exists a
coprime right polynomial fraction description with

P (z) = Ikz
p +A1z

p−1 + . . .+Ap and Q(z) = C0 + C1z + . . .+ Cqz
q, (2.14)

A1, A2, . . . , Ap, C0, C1, . . . , Cq ∈ Mk(R), and p, q ∈ N0, p > q. The focus is on ensuring that
zp is the highest power of P with a coefficient matrix of Ik. Even if we additionally as-
sume that (A∗,B∗,C∗) is minimal, we just obtain the existence of coprime polynomials with
deg(det(P (z))) = kp (Rugh, 1996, Theorem 17.5). The construction method of Kailath (1980)
often gives a polynomial P with higher powers than p, which are eliminated in the calculation of
the determinant. Brockwell and Schlemm (2013), Theorem 3.2, and Schlemm and Stelzer (2012a),
Corollary 3.4, implicitly assume such a coprime right (or left) polynomial fraction description
with polynomials P and Q as in (2.14), without discussing its existence.

Since the existence of such a coprime right polynomial fraction description is essential for the
forthcoming results, we always assume it additionally. In Example 2.24, we present some cases
where this assumption is fulfilled.

For the purpose of this thesis, not only the existence but also the uniqueness of a coprime right
polynomial fraction description of the transfer function H with polynomials P and Q as in (2.14)
is important. In the next proposition, we derive that the uniqueness follows directly from the
existence, and we introduce the controller canonical state space model.
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Proposition 2.18. Let (A∗,B∗,C∗, L) be a state space model with transfer function H. Suppose
there exists a coprime right polynomial fraction description of H with polynomials P and Q as in
(2.14), such that

H(z) = C∗ (zIkp − A∗)−1 B∗ = Q(z)P (z)−1, z ∈ C \ σ(A∗).

Then P and Q are unique. Moreover, defining

A =



0k Ik 0k · · · 0k

0k 0k Ik
. . . ...

... . . . . . . 0k

0k · · · · · · 0k Ik

−Ap −Ap−1 · · · · · · −A1


∈ Mkp(R), B =


0k

...
0k

Ik

 ∈ Mkp×k(R),

C =
(
C0 C1 · · · Cq 0k · · · 0k

)
∈ Mk×kp(R),

(2.15)

then σ(A∗) = σ(A) and

H(z) = C (zIkp − A)−1 B, z ∈ C \ σ(A).

Finally, YV is a solution of the state space model (A∗,B∗,C∗, L) if and only if it is a solution
of the state space model (A,B,C, L). The state space model (A,B,C, L) is called controller
canonical state space model.

Proof. Suppose that there exist two coprime right polynomial fraction descriptions of the transfer
function H with polynomial matrices as in (2.14), so

Q1(z)P1(z)−1 = H(z) = Q2(z)P2(z)−1.

Then, due to the coprimeness, there exists a polynomial matrix U(z), z ∈ C, where det(U(z)) is
a non-zero real number (Rugh, 1996, Theorem 16.10), such that, for z ∈ C,

P1(z) = P2(z)U(z).

Both polynomials P1(z) and P2(z) have the highest power Ikz
p, so a comparison of the coefficients

gives U(z) = Ik. Hence, P1(z) = P2(z) and Q1(z) = Q2(z), which results in the uniqueness
of the decomposition. The fact that H(z) is equal to C (zIkp − A)−1 B follows from the proof
of Theorem 3.2 in Brockwell and Schlemm (2013). Furthermore, the algebraic realisations
(A∗,B∗,C∗) and (A,B,C) are minimal, because the polynomials P and Q are right coprime
and deg(det(P (z))) = kp obviously holds (Kailath, 1980, Theorem 6.5-1). Then a consequence of
Lemma 2.16 is the existence of a non-singular matrix T ∈ Mk(R), such that

A = TA∗T−1, B = TB∗, and C = C∗T−1.
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Together with Proposition 11.2.8.(v) of Bernstein (2009), for s, t ∈ R, s < t, we obtain

YV (t) = C∗eA∗(t−s)X(s) +
∫ t

s
C∗eA∗(t−u)B∗dL(u) = CeA(t−s)(TX(s)) +

∫ t

s
CeA(t−u)BdL(u).

Thus, YV is a solution of the state space model (A∗,B∗,C∗, L) if and only if it is a solution of
(A,B,C, L). Finally, σ(A) = σ(TA∗T−1) = σ(A∗) (Schlemm & Stelzer, 2012b, p. 2219). ■

Remark 2.19. The proof was done without Assumption 2 and the integral representation (2.7)
for generality. Requiring Assumption 2 simplifies the proof since YV depends on the matrices only
through the kernel function due to equation (2.7). Since C∗ (zIkp − A∗)−1 B∗ = C (zIkp − A)−1 B
for z ∈ C implies C∗eA∗tB∗ = CeAtB for t ∈ R (Schlemm & Stelzer, 2012b, Lemma 3.2), YV is
a solution of (A∗,B∗,C∗, L) if and only if it is a solution of (A,B,C, L).

In particular, Proposition 2.18 implies that there exists no other minimal state space representation
with matrices of the same structure as in (2.15), this representation is unique. Since the output
process YV of the state space models (A∗,B∗,C∗, L) and (A,B,C, L) is equal, we can henceforth
assume under the existence assumption that, without loss of generality, a state space model is
given as the unique controller canonical state space model (A,B,C, L) with matrices as in (2.15).

Another example of a state space model, characterised by matrices A∗, B∗, and C∗ of a special
structure, is the MCARMA model. The output process YV is called MCARMA process. The
definition of an MCARMA process is motivated by the idea that YV should solve the differential
equation (Marquardt & Stelzer, 2007, Remark 3.19)

P ∗(D)YV (t) = Q∗(D)DL(t), (2.16)

for t ∈ R, where D is the differential operator with respect to t,

P ∗(z) = Ikz
p∗ + P1z

p∗−1 + . . .+ Pp∗ , and Q∗(z) = Q0z
q∗ +Q1z

q∗−1 + . . .+Qq∗ (2.17)

with p∗, q∗ ∈ N0, p∗ > q∗, P1, P2, . . . , Pp∗ , Q0, Q1, . . . , Qq∗ ∈ Mk(R). P ∗ is the autoregressive
(AR) polynomial and Q∗ the moving average (MA) polynomial. This differential equation is the
continuous-time analogue of the discrete-time ARMA equation. However, a Lévy process is not
differentiable, so YV cannot be formally defined by (2.16). The proper definition as a state space
model is as follows (Marquardt & Stelzer, 2007, Theorem 3.12).

Definition 2.20. Define

A∗ =



0k Ik 0k · · · 0k

0k 0k Ik
. . . ...

... . . . . . . 0k

0k · · · · · · 0k Ik

−Pp∗ −Pp∗−1 · · · · · · −P1


∈ Mkp∗(R), B∗ =


β1

β2
...
βp∗

 ∈ Mkp∗×k(R),

C∗ =
(
Ik 0k · · · 0k

)
∈ Mk×kp∗(R),
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where β1 = . . . = βp∗−q∗−1 = 0k ∈ Mk(R), βp∗−j = −
∑p∗−j−1

i=1 Piβp∗−j−i+Qq∗−j for j = q∗, . . . , 0,
and p∗, q∗ ∈ N0, p∗ > q∗. Then the state space model (A∗,B∗,C∗, L) is called a multivariate
continuous-time autoregressive moving average model of order (p∗, q∗), or MCARMA(p∗, q∗)
model for short. The output process YV is called a multivariate continuous-time autoregressive
moving average process of order (p∗, q∗). In short, an MCARMA(p∗, q∗) process.

Remark 2.21. An important special case of the MCARMA(p∗, q∗) process (model) is the
MCARMA(p∗, 0) =MCAR(p∗) process (model), which we also call the multivariate continuous-
time autoregressive process (model). The input matrix B∗ is simplified to

(B∗)⊤ =
(
0k · · · 0k Ik

)
∈ Mk×kp∗(R)

and the trivial MA polynomial is Q∗(z) = Ik for z ∈ C. Another important special case is the
MCARMA(1, 0) process (model), also known as the Ornstein-Uhlenbeck process (model). Here,
the matrices and polynomials are simplified to A∗ = −P1, B∗ = Ik, and C∗ = Ik, as well as
P ∗(z) = Ikz + P1 and Q∗(z) = Ik for z ∈ C.

Due to the specific structure of the matrices A∗, B∗, and C∗, the MCARMA representation of a
state space model is in the discrete-time literature often referred to as the observer canonical
state space model (Kailath, 1980). In the following, we relate the MCARMA model and the
controller canonical state space model.

Remark 2.22. For the MCAR(p∗) model, a comparison of the algebraic realisations shows that
(A∗,B∗,C∗) is already in controller canonical form (A,B,C) with p = p∗. Of course, this fact
also applies to the Ornstein-Uhlenbeck model. For MCARMA(p∗, q∗) models, Schlemm and
Stelzer (2012a), Corollary 3.4, state the equivalence between the classes of state space models
and MCARMA models, and Brockwell and Schlemm (2013), Theorem 3.2, state the equivalence
between the classes of MCARMA models and controller canonical state space models. However,
as mentioned above, both implicitly assume the existence of a coprime left or right polynomial
fraction description (2.13) with polynomials as in (2.14), which does not seem obvious to us. For
univariate state space models (k = 1), the existence of a coprime right polynomial fractional
description is apparent (see the proof of Proposition 2.30), so that the classes of univariate state
space models and univariate CARMA models are equivalent. Particularly, any output process of
a univariate state space model has a representation in controller canonical form.

A peculiarity of MCARMA models is that the AR polynomial P ∗ and the MA polynomial Q∗

provide a left polynomial fraction description of the transfer functionH, i.e., H(z) = P ∗(z)−1Q∗(z)
(Marquardt & Stelzer, 2007; Brockwell & Schlemm, 2013, Lemma 3.1). Therefore, the spectral
density function of an MCARMA process is (Marquardt & Stelzer, 2007, (3.43))

fYV YV
(λ) = 1

2πP
∗(iλ)−1Q∗(iλ)ΣLQ

∗(−iλ)⊤
(
P ∗(−iλ)−1

)⊤
, λ ∈ R. (2.18)

Furthermore, if the MCARMA model is minimal, the left polynomial fraction description
H(z) = P ∗(z)−1Q∗(z) is coprime (Kailath, 1980, Theorem 6.5-1). The connection to the coprime
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right polynomial fraction description (2.13) with polynomials P and Q as in (2.14) is given in
the next lemma.

Lemma 2.23. Let (A∗,B∗,C∗, L) be an MCARMA(p∗, q∗) model with polynomials P ∗ and Q∗

as in (2.17). Suppose (A∗,B∗,C∗, L) is minimal and there exists a coprime right polynomial
fraction description (2.13) of the transfer function H with polynomials P and Q as in (2.14).
Then P and Q are unique, p∗ = p, q∗ = q, Q0 = Cq, N (P ∗) = N (P ), and N (Q∗) = N (Q).

Proof. The uniqueness follows from Proposition 2.18. Furthermore, p∗ = p holds by Lemma
6.5-6 of Kailath (1980), which provides that kp∗ = deg(det(P ∗(z))) = deg(det(P (z))) = kp.
Since P ∗(z)−1Q∗(z) = Q(z)P (z)−1, we have p∗ − q∗ = p− q and therefore q∗ = q. Comparing
the highest order coefficient on both sides of Q∗(z)P (z) = P ∗(z)Q(z) gives Q0 = Cq. Finally,
Rugh (1996) states in Theorem 16.19 that N (P ∗) = N (P ) and N (Q∗) = N (Q). ■

To conclude this chapter, we provide examples of coprime left and right polynomial fraction
descriptions.

Example 2.24.

(a) Consider an MCARMA(2, 1) model with coprime AR and MA polynomial given by

P ∗(z) =
(

(z + 2)2 0
0 (z + 2)2

)
, Q∗(z) =

(
z + 1 0

0 z + 1

)
,

z ∈ C. Since P ∗ and Q∗ are diagonal polynomial matrices and are right coprime, the
unique coprime right polynomial fraction description of the transfer function H is given by
P (z) = P ∗(z) and Q(z) = Q∗(z).

(b) Consider an MCARMA(3, 1) model with coprime AR and MA polynomial given by

P ∗(z) =
(1

4(2z + 3)(2z2 + 7z + 7) −1
4(z + 2)(3z + 5)

−(z + 1)2 (z + 1)2(z + 2)

)
, Q∗(z) = −

(
z + 1 1

4
0 z + 3

)
,

z ∈ C. Then the unique coprime right polynomial fractional description of the transfer
function H is given by

P (z) =
(

(z + 2)3 0
0 (z + 1)3

)
, Q(z) = −

(
z + 2 1

1 z + 2

)
.

(c) For MCAR(p) models, Q∗(z) = Ik holds for z ∈ C. Therefore, P (z) = P ∗(z) and Q(z) = Ik

always provide the unique coprime right polynomial fractional description of the transfer
function H.

In particular, these examples show the existence of coprime right polynomial fraction descriptions
(2.13) with polynomial matrices P and Q as in (2.14). Since the analysis of polynomial fraction
descriptions does not belong to the central topics of interest of this thesis, we do not investigate
this problem further and move on to the topic of the invertibility of a state model.
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2.4. Invertible controller canonical state space models

Suppose that YV is the output process of a state space model (A∗,B∗,C∗, L) with controller
canonical representation (A,B,C, L). Due to the observation equation YV (t) = CX(t), we obtain
the output process YV directly from the input process X . However, recovering the input process
from the output process is not as obvious because, in general, C is rectangular and not invertible.

One special case in which the input process is relatively easy to recover is the MCAR(p) process.
The state equation (2.4) and the specific structure of the matrices A and B yield

D(1)X(j)(t) = X(j+1)(t)

for j = 1, . . . , p− 1 and t ∈ R, where

X(j)(t) =
(
X(j−1)k+1(t) · · · Xjk(t)

)⊤
(2.19)

for j = 1, . . . , p is the j-th k-block of X(t), i.e., X(t) = (X(1)(t)⊤ · · · X(p)(t)⊤)⊤ for t ∈ R.
Together with the observation equation (2.5) and the simple structure of the matrix C, we obtain

D(j)YV (t) = D(j)X(1)(t) = X(j+1)(t) (2.20)

inductively for j = 1, . . . , p− 1 and t ∈ R. In this case, it is possible to recover X(t) from YV (t)
and the derivatives via

X(t) =
(
YV (t)⊤ D(1)YV (t)⊤ · · · D(p−1)YV (t)⊤

)⊤
,

for t ∈ R, which implies that the input process X can be recovered from the output process YV .

Remark 2.25.

(a) The relation (2.20) implies that the MCAR(p) process YV and its components Ya, a ∈ V ,
are (p − 1)-times mean-square differentiable. Since the Lévy process and therefore
X (p) = (X(p)(t))t∈R is not differentiable and the controller canonical state space repre-
sentation is unique, the p-th derivative of YV and its components Ya, a ∈ V , does not exist.
They are exactly (p− 1)-times mean-square differentiable. Proposition 2.8 further provides
that YV and its components are not only (p− 1)-times mean-square differentiable but the
limit holds P-a.s. as well.

(b) For a ∈ V and t ∈ R, it follows that D(j)Ya(t) ∈ LYa(t) for j = 1, . . . , p − 1 due to
Remark 2.9.

Although the MCAR model is a controller canonical state space model, we cannot use the same
approach to recover the input process from the output process for controller canonical state space
models with q > 0. In fact, the state equation (2.4) still yields

D(1)X(j)(t) = X(j+1)(t),

for j = 1, . . . , p− 1 and t ∈ R. However, due to the more complex structure of C, we have
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YV (t) = CX(t) =
q∑

i=0
CiX

(i+1)(t).

In addition, we obtain that, for j = 1, . . . , p− q − 1 and t ∈ R,

D(j)YV (t) =
q∑

i=0
CiX

(i+j+1)(t). (2.21)

Consequently, the p k-blocks can generally not be recovered from these (p− q) equations.

Remark 2.26.

(a) In particular, the relation (2.21) implies that YV and its components Ya, a ∈ V , are (p−q−1)-
times mean-square differentiable with the stated representations of the derivatives, that
also hold P-a.s. due to Proposition 2.8. In Lemma 9.5 and Remark 9.6, we discuss the
maximal differentiability of the components.

(b) For a ∈ V and t ∈ R, we have D(j)Ya(t) ∈ LYa(t) for j = 1, . . . , p− q− 1 due to Remark 2.9.

(c) For the reader’s convenience, we define

C := C =
(
C0 · · · Cq 0k · · · 0k

)
and

C :=
(
0k · · · 0k C0 · · · Cq

)
∈ Mk×kp(R).

(2.22)

From the observation equation (2.5) and equation (2.21), we then get, for t ∈ R, the
shorthand expressions

YV (t) = CX(t) and D(p−q−1)YV (t) = CX(t).

For controller canonical state space models with q > 0, we overcome the challenge of recovering
the input process from the output process under mild assumptions, which leads to the subclass
of invertible controller canonical state space models.

Definition 2.27. Let (A∗,B∗,C∗, L) be a state space model with controller canonical represen-
tation (A,B,C, L) as in (2.15) and polynomials P and Q as in (2.14) with p > q > 0. Suppose

rank(Cq) = k, N (Q) ⊆ (−∞, 0) + iR, and N (P ) ⊆ (−∞, 0) + iR. (2.23)

Then (A,B,C, L) is called a (causal) invertible controller canonical state space model of order
(p, q), an ICCSS(p, q) model for short. The output process YV = (YV (t))t∈R of the ICCSS(p, q)
model is called invertible controller canonical state space process of order (p, q). In short, an
ICCSS(p, q) process.

The assumption on P is the usual causal stationarity Assumption 2 because of N (P ) = σ(A)
(Marquardt & Stelzer, 2007, Corollary 3.8). The mild assumptions on Q are necessary to recover
the input process X from the output process YV and to motivate the name ICCSS model, as we
see in the remainder of this section. Of course, q > 0 excludes the class of MCAR(p) models.
The assumptions in (2.23) are, for example, satisfied in Example 2.24(a,b).
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Under the assumptions in (2.23), Brockwell and Schlemm (2013), Lemma 4.1, derive a stochastic
differential equation for the first kq components of X . This result follows simply from combining
the first q k-blocks of the state equation (2.4) with the observation equation (2.5), having the
special structure of A, B, and C in mind.

Lemma 2.28. Let YV be a ICCSS(p, q) process with p > q > 0. Define the (kq)-dimensional
upper truncated state vector X q = (Xq(t))t∈R of X via

Xq(t) =


X(1)(t)

...
X(q)(t)

 , t ∈ R, (2.24)

where X(1)(t), . . . , X(q)(t) are the k-dimensional random vectors defined in (2.19). Then X q

satisfies

dXq(t) = ΛXq(t)dt+ ΘYV (t)dt, (2.25)

where σ(Λ) ⊆ (−∞, 0) + iR,

Λ =



0k Ik 0k · · · 0k

0k 0k Ik
. . . ...

... . . . . . . 0k

0k · · · · · · 0k Ik

−C−1
q C0 −C−1

q C1 · · · · · · −C−1
q Cq−1


∈ Mkq(R), Θ =


0k

...
0k

C−1
q

 ∈ Mkq×k(R).

Remark 2.29.

(a) The assumptions in (2.23) correspond to the miniphase assumption in classical time series
analysis (Hannan & Deistler, 2012, (1.3.15)) and imply Assumption A2 in Brockwell and
Schlemm (2013), who even allow for rectangular matrices C0, . . . , Cq. To see this connection,
observe that the assumptions in (2.23) yield

N (C−1
q Q) = {z ∈ C : det(C−1

q Q(z)) = 0} = {z ∈ C : det(Q(z)) = 0} = N (Q)

⊆ (−∞, 0) + iR,

which is one of their assumptions. Furthermore, it applies that σ(Λ) = N (C−1
q Q) (Mar-

quardt & Stelzer, 2007, Lemma 3.8). Thus, Λ has full rank and, due to the structure of Λ,
we obtain that C−1

q C0 has full rank. It follows that C0 and (Cq)⊤C0 have full rank as well,
which is the second assumption in Brockwell and Schlemm (2013).

(b) If the AR polynomial P ∗ and the MA polynomial Q∗ of an MCARMA model are left
coprime, the assumptions in (2.23) can analogously be made for P ∗ and Q∗, respectively.
Indeed, N (Q∗) = N (Q) and N (P ∗) = N (P ) by Lemma 2.23. Further, comparing the
highest power coefficients on both sides of Q∗(z)P (z) = P ∗(z)Q(z) gives Q0Ik = IkCq.
Then Q0 has full rank if and only if Cq has full rank.
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The differential equation (2.25) is readily integrated to (Brockwell & Schlemm, 2013, (4.3))

Xq(t) = eΛ(t−s)Xq(s) +
∫ t

s
eΛ(t−u)ΘYV (u)du, s < t, s, t ∈ R. (2.26)

Hence, we can compute Xq(t) based on the knowledge of the initial value Xq(s) and (YV (u))s≤u≤t.
In Proposition 2.30 below, we show that Xq(t) is even uniquely determined by the entire past
(YV (s))s≤t, implying that the truncated state vector X q can be recovered from YV . This result is
the multivariate generalisation of Theorem 2.2 by Brockwell and Lindner (2015).

Proposition 2.30. Let YV be an ICCSS(p, q) process with p > q > 0. Then, for all t ∈ R,

Xq(t) =
∫ t

−∞
eΛ(t−u)ΘYV (u)du P-a.s.

Proof. The proof is divided into four steps. In the first three steps, we derive auxiliary results
that lead to the proof of the statement in the fourth step.

Step 1: First, we prove, for all ε > 0 and v ∈ V , the asymptotic behaviour

lim
|u|→∞

e−ε|u| |Yv(u)| = 0 P-a.s. (2.27)

Therefore, we relate (2.27) back to Proposition 2.6 of Brockwell and Lindner (2015), who prove
this convergence for stationary univariate CARMA processes that are driven by univariate Lévy
processes and whose AR polynomial has no zeros on the imaginary axis. For this purpose, let
ε > 0 and v ∈ V . Note that, for t ∈ R,

Yv(t) =
∫ t

−∞
e⊤

v CeA(t−u)BdL(u) =
k∑

ℓ=1

∫ t

−∞
e⊤

v CeA(t−u)BeℓdLℓ(u) =
k∑

ℓ=1
Y ℓ

v (t).

The process Yℓ
v = (Y ℓ

v (t))t∈R is the stationary solution of the state space model

dX(t) = AX(t)dt+ BeℓdLℓ(t) and Y ℓ
v (t) = e⊤

v CX(t),

and has the transfer function Hℓ
v given by

Hℓ
v(z) = e⊤

v C(zIkp − A)−1Beℓ, z ∈ C \ σ(A).

Then Kailath (1980) provides in Lemma 6.3-8 the existence of (right) coprime polynomials P ℓ
v (z)

and Qℓ
v(z) as in (2.14), so that Hℓ

v(z) = Qℓ
v(z)/P ℓ

v (z). Note that in the univariate setting the
problem of the existence of a coprime polynomial fraction description of the form (2.14) does not
arise. Indeed, 1 · p = deg(det(P ℓ

v (z))) = deg(P ℓ
v (z)) follows immediately, and the coefficient of

the p-th power can be included in Qℓ
v(z) without loss of generality, so that P ℓ

v (z) is a polynomial
of degree p with a 1 as the leading coefficient. The classes of univariate CARMA processes and
univariate causal continuous-time state space models are equivalent (Schlemm & Stelzer, 2012a,
Corollary 3.4) implying that Yℓ

v is a univariate CARMA process driven by a univariate Lévy
process. Now, Bernstein (2009), Definition 4.7.1, provides that the poles of Hℓ

v(z) are the roots



2.4. Invertible controller canonical state space models 27

of P ℓ
v (z) including multiplicity. In addition, Theorem 12.9.16 of Bernstein (2009) gives that the

poles of Hℓ
v(z) are a subset of σ(A), resulting in

N (P ℓ
v ) = {z ∈ C : P ℓ

v (z) = 0} ⊆ σ(A) ⊆ (−∞, 0) + iR,

which means that the AR polynomial P ℓ
v (z) has no zeros on the imaginary axis. Thus, Yℓ

v satisfies
the assumptions by Brockwell and Lindner (2015), Proposition 2.6, and we obtain

lim
|u|→∞

e−ε|u|Y ℓ
v (u) = 0 P-a.s.

for ℓ = 1, . . . , k. Finally, the claim (2.27) follows by

lim
|u|→∞

e−ε|u|Yv(u) =
k∑

ℓ=1
lim

|u|→∞
e−ε|u|Y ℓ

v (u) = 0 P-a.s.

Step 2: Next, we show that the limit

lim
s→−∞

∫ t

s
e−λ(t−u) |Yv(u)| du (2.28)

exists P-a.s. for t ∈ R and λ > 0. First, from relation (2.27), we obtain that there exists a set
Ω0 ∈ F with P(Ω0) = 1, such that, for all ω ∈ Ω0 and γ > 0, there exists some u0(ω) < 0 with

e
λ
2 u|Yv(ω, u)| = e− λ

2 |u| |Yv(ω, u)| ≤ γ ∀ u ≤ u0(ω).

Then we obtain, for s < u0(ω), that

∫ t

s
e−λ(t−u) |Yv(ω, u)| du =

∫ t

u0(ω)
e−λ(t−u) |Yv(ω, u)| du+

∫ u0(ω)

s
e−λ(t−u) |Yv(ω, u)| du

≤
∫ t

u0(ω)
e−λ(t−u) |Yv(ω, u)| du+

∫ u0(ω)

s
e−λ(t−u)e− λ

2 uγdu

=
∫ t

u0(ω)
e−λ(t−u) |Yv(ω, u)| du+ γe−λt 2

λ

(
e

λ
2 u0(ω) − e

λ
2 s
)

≤
∫ t

u0(ω)
e−λ(t−u) |Yv(ω, u)| du+ γe−λt 2

λ
.

Thus, by dominated convergence, the limit in (2.28) exists P-a.s. for t ∈ R and λ > 0.
Step 3: Eventually, we derive that not only the univariate integral (2.28) exists but also

lim
s→−∞

∫ t

s
eΛ(t−u)ΘYV (u)du (2.29)

exists P-a.s. for t ∈ R. First, the assumptions in (2.23) provide that σ(Λ) ⊆ (−∞, 0) + iR
and thus, spabs(Λ) := max{ℜ(λ) : λ ∈ σ(Λ)} < 0, where ℜ(λ) denotes the real part of λ.
Hence, there exists a −λ ∈ (spabs(Λ), 0). Then Bernstein (2009), Proposition 11.18.8, provides a
constant c1 > 0, such that
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∥∥∥eΛt
∥∥∥ ≤ c1e

−λt ∀ t ≥ 0. (2.30)

Now, we obtain∥∥∥∥∫ t

s
eΛ(t−u)ΘYV (u)du

∥∥∥∥ ≤
∑
v∈V

∥∥∥∥∫ t

s
eΛ(t−u)ΘevYv(u)du

∥∥∥∥ ≤ c1∥Θ∥
∑
v∈V

∫ t

s
e−λ(t−u)|Yv(u)|du.

Due to (2.28), the limit of each of those summands exists, so (2.29) exists P-a.s. for t ∈ R.
Step 4: Finally, we can prove the statement of the proposition. Recall that, due to equation
(2.26), for s, t ∈ R with s < t,

Xq(t) = eΛ(t−s)Xq(s) +
∫ t

s
eΛ(t−u)ΘYV (u)du.

Since we assume that X is the unique causal, strictly stationary solution of the stochastic
differential equation, X q is also strictly stationary and Xq(s) and Xq(0) have the same distribution
for all s ∈ R. Moreover, it follows from the assumptions in (2.23) that σ(Λ) ⊆ (−∞, 0) + iR.
These properties lead to

lim
s→−∞

eΛ(t−s)Xq(s) = 0kq ∈ Rkq

in distribution and probability by Slutsky’s lemma, since the limit is a degenerate random vector.
In combination with the limit result (2.29), we receive, for t ∈ R,

lim
s→−∞

(
eΛ(t−s)Xq(s) +

∫ t

s
eΛ(t−u)ΘYV (u)du

)
=
∫ t

−∞
eΛ(t−u)ΘYV (u)du P-a.s. ■

Note that in Proposition 9.4, we show that the integral representation in Proposition 2.30 also
holds in L2. Thus, Xq(t) ∈ LYV

(t), t ∈ R, and X q can also be recovered in the L2-sense. We are
going to provide the evidence there, where we can better emphasise its relevance.

The remaining k-blocks X (q+j) = (X(q+j)(t))t∈R, j = 1, . . . , p− q, are obtained from X q and YV

by differentiation, as in Lemma 4.2 of Brockwell and Schlemm (2013).

Lemma 2.31. Let YV be a ICCSS(p, q) process with p > q > 0. Then

X(q+j)(t) = E⊤

ΛjXq(t) +
j−1∑
m=0

Λj−1−mΘD(m)YV (t)

 , j = 1, . . . , p− q, t ∈ R.

Note that there is a duplication of notation in Brockwell and Schlemm (2013), which can be seen
by recalculating their base case

X(q+1)(t) = D(1)X(q)(t) = E⊤D(1)Xq(t) = E⊤ (ΛXq(t) + ΘYV (t)) , t ∈ R.

In summary, for t ∈ R, we can compute not only the truncated state vector Xq(t) but also the
full state vector X(t) based on the knowledge of (YV (s))s≤t. This fact justifies calling the ICCSS
process YV invertible if the assumptions in (2.23) are satisfied.
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Part I. (Local) Causality Graphs

The main goal of this part is to introduce two mixed graphical models for stationary multivariate
processes YV = (YV (t))t∈R in continuous time, called the causality graph and the local causality
graph. In these graphical models, the vertices represent the different components Ya = (Ya(t))t∈R,
a ∈ V = {1, . . . , k}, of the underlying process YV . Furthermore, the vertices are connected by
directed and undirected edges, which visualise dynamic relationships between the components. A
directed edge represents Granger causality and an undirected edge represents contemporaneous
correlation, respectively.

The mathematical notion of causality was popularised by Clive W. J. Granger and Christopher
A. Sims. In his original work, Granger (1969) uses a linear vector autoregressive (VAR) model,
while Sims (1972) uses a moving average (MA) model to understand the causal effects in a
bivariate model. Since then, their ideas have been extended in various ways and have been
applied in diversified fields, such as econometrics (Imbens, 2022), environmental science (Cox &
Popken, 2015), genomics (Heerah, Molinari, Guerrier, & Marshall-Colon, 2021), neuroscience
(Bergmann & Hartwigsen, 2021), and social systems (Kuzma, Cruickshank, & Carley, 2022).
The recent publication by Shojaie and Fox (2022) provides a comprehensive review of Granger
causality and its advances. A detailed discussion of the relationships between Granger and Sims
causality is given in Kuersteiner (2010), see also Dufour and Renault (1998) and Eichler (2013).

A fundamental aspect of Granger causality is that the cause precedes the effect. However, not
every interesting relationship between two component series is necessarily ordered in time and
therefore a causal relationship and directed. Well-known examples include the correlation between
aggressive behaviour and the amount of time spent playing computer games each day (Lemmens,
Valkenburg, & Peter, 2011), the correlation between the increase in the stork population and
the increase in out-of-hospital births (Höfer, Przyrembel, & Verleger, 2004), and the correlation
between the number of infants who sleep with the light on and the number of people who develop
myopia in later life (Zadnik et al., 2000). An example widely discussed in psychology without
a common underlying cause is presented by Jung (1969). It is hence also important to model
contemporaneous relationships of an undirected nature, e.g., by contemporaneous correlation.

To define the two mixed graphical models, we need concepts of Granger causality and contempo-
raneous correlation suitable for stationary multivariate stochastic processes in continuous time.
Thus, in this part, we first define Granger causality and contemporaneous correlation for such
processes by orthogonal projections onto linear spaces, resulting in conditional orthogonality
relations. For discrete-time processes, this approach was already studied in Dufour and Renault
(1998), Eichler (2007), and Florens and Mouchart (1985).

In contrast to the other papers, Eichler (2007) even represents conditional orthogonality relations
of a discrete-time VAR process in a graph, the so-called path diagram. In this graphical model, an
appropriate concept of Granger causality based on conditional orthogonality models the directed
influences. In addition, a concept of contemporaneous correlation, also based on conditional
orthogonality, models the undirected influences. The path diagram of Eichler (2007) is used in
many applications, such as for human tremor data, for air pollution data (Dahlhaus & Eichler,
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2003), for neuronal spike train data, and to study of relationships between the alpha rhythm in
EEG data and blood oxygenation level dependent responses in fMRI data (Eichler, 2006). These
applications highlight the importance of the path diagram.

An alternative approach is to consider conditional independence relations using conditional
expectations given σ-fields generated by subprocesses, rather than concepts based on conditional
orthogonality. We refer to the approaches of Chamberlain (1982), Eichler (2012), and Florens
and Mouchart (1982) for discrete-time processes, and to Comte and Renault (1996), Florens
and Fougère (1996), and Petrovic and Dimitrijevic (2012) for continuous-time processes and
especially for semi-martingales. Eichler (2012) even defines a graphical model for time series in
discrete time, representing certain conditional independence relations. He uses strong Granger
causality for the directed edges and contemporaneous conditional dependence for the undirected
edges. Of particular interest to this thesis is also the work of Comte and Renault (1996), who
propose to model directed influences by global Granger causality and local Granger causality,
and undirected influences by global instantaneous causality and local instantaneous causality in
continuous time, but their results are not related to graphical models.

For Gaussian random vectors, conditional independence and conditional orthogonality are
equivalent, and the standard literature on graphical models for random vectors is based on
conditional independence (Lauritzen, 2004). In non-Gaussian time series models, however,
conditional expectations are much more difficult to compute than orthogonal projections. This is
also reflected in the fact that the assumptions in Eichler (2012) are much more technical and
difficult to verify than those in Eichler (2007).

Note that an extension of conditional independence is the concept of local independence for
Markov processes going back to Schweder (1970), which has been extended to stochastic processes
that admit a Doob-Meyer decomposition by Aalen (1987). It is a widespread dependence model
to capture asymmetric causal structures in a graph, particularly in the context of composable
finite Markov processes (Didelez, 2007), of point processes (Didelez, 2006, 2008; Eichler, Dahlhaus,
& Dueck, 2017), and in physical systems (Commenges & Gégout-Petit, 2009). The definitions
by Didelez (2006) were recently revisited and adapted by Mogensen and Hansen (2020, 2022),
who study local independence graphs for Itô processes. The semi-martingale property of an Itô
process is important to the results of these papers, but semi-martingales do not seem to be the
right tool for stationary time series models, especially for non-Gaussian models.

For the above reasons, in this part, we restrict ourselves to linear influences between the
components of a multivariate process and use conditional orthogonality relations to define
Granger causality and contemporaneous correlation for continuous-time processes. We also
give several equivalent characterisations of the concepts and relate them to other definitions in
the literature. In addition, we define local versions of Granger causality and contemporaneous
correlation that are less strong and are not necessary in discrete time. Based on the different
definitions, we then introduce two mixed graphs, the causality graph and the local causality graph.

The (local) causality graph encodes (local) Granger causality and (local) contemporaneous
correlation between the components of the process YV . Conversely, a mixed graph can be
associated with a set of conditional orthogonality constraints imposed on the stochastic process
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YV . Such a set of conditional orthogonality relations encoded by a graph is commonly known as
a Markov property for the graph (cf. Lauritzen, 2004; Whittaker, 2008). Eichler (2007, 2012)
discusses Markov properties for his mixed graphical models, namely the pairwise, the local, the
block-recursive, and two global Markov properties. For the global Markov properties, he uses the
graph theoretic concepts of m-separation (Richardson, 2003) and p-separation (Levitz, Perlman,
& Madigan, 2001), respectively. For the local independence graph, Didelez (2006) develops and
investigates an asymmetric notion of separation, called δ-separation, and discusses different levels
of Markov properties. In addition, Mogensen and Hansen (2022) show that the multivariate
Ornstein-Uhlenbeck process driven by a Brownian motion is the only process that satisfies their
global Markov property. As the above literature shows, the derivation of global Markov properties
can be quite challenging and is often only valid under additional or even restrictive assumptions.

In our (local) causality graph, we show the pairwise, local, and block-recursive Markov property,
and then discuss the global Markov properties for both graphs. Importantly, we find that
the causality graph satisfies the global AMP Markov property, which combines the purely
graph-theoretic concept of m-separation with conditional orthogonality. Since the notion of
m-separation is strong, we present less restrictive alternatives in the global Granger-causal
Markov property, that imply Granger non-causality and contemporaneous uncorrelatedness. Note
that the assumptions we make, in particular for the validity of the Markov properties, are quite
general. We require only a wide-sense stationary, mean-square continuous stochastic process
in continuous time, which is purely non-deterministic, and has a spectral density function that
satisfies a mild additional restriction. Although the local causality graph satisfies the pairwise,
local, and block-recursive Markov properties, not surprisingly, stronger assumptions are required
for global Markov properties.

Finally, for a comprehensive understanding of the (local) causality graph and the dependency
structures it contains, we derive the graphical structure for the popular state space processes, as
introduced in Chapter 2. We start with the causal multivariate continuous-time autoregressive
(MCAR) process, where we show that the (local) causality graph is well defined and satisfies
the desired Markov properties. We compute orthogonal projections that allow us to explicitly
characterise the different edge types by the model parameters of the process. However, for general
output processes of state space models, the methods suitable for MCAR processes to compute
the orthogonal projections are no longer applicable. Therefore, we consider invertible controller
canonical state space (ICCSS) processes, for which the orthogonal projections can be computed
relying on the invertibility assumption. Despite this distinction, we derive interpretatively
meaningful characterisations of the edge types for both MCAR and ICCSS processes, which can
be compared with each other and with the literature. At the same time, we obtain clear and
easily communicable representations of the intrinsic dependency structure for these important
process classes.
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Structure of the part

In Chapter 3, we lay the foundation by introducing the conditional orthogonality relation and
the corresponding linear spaces generated by multivariate stochastic processes in continuous
time. In Chapters 4 and 5, we then define, discuss, and relate various directed and undirected
relationships between the components of stationary continuous-time processes. This work results
in the definition of the causality graph and the local causality graph in Chapter 6. For these
graphical models, we discuss several Markov properties in Chapter 7. The application to causal
MCAR processes and ICCSS processes is given in Chapters 8 and 9, respectively, where the edges
are characterised by the model parameters.



CHAPTER 3

Preliminaries

In this chapter, we treat the following topics. In Section 3.1, we introduce basic notions, well-
known results for orthogonal projections onto linear spaces, and, most importantly, the conditional
orthogonality relation with its graphoid property. In Section 3.2, we then define linear spaces
generated by multivariate stochastic processes. Via the conditional orthogonality of such linear
spaces, the directed and undirected linear relations between subprocesses can be defined in
Chapters 4 and 5. Furthermore, keeping in mind the graphoid property, in Section 3.2, we also
discuss properties of these linear spaces, such as additivity, separability, and conditional linear
separation under certain assumptions on YV . Finally, we introduce the assumption that a process
is purely non-deterministic. These considerations are crucial for the Markov properties for (local)
causality graphs in Chapter 7.

3.1. Conditional orthogonality relation

Let L2 = L2(Ω,F ,P) be the Hilbert space of square-integrable real- or complex-valued random
variables on a common probability space (Ω,F ,P). As usual, the inner product is denoted by
⟨X,Y ⟩L2 = E[XY ] for X,Y ∈ L2. Orthogonality with respect to this inner product is denoted
by X ⊥ Y . We set ∥X∥L2 =

√
⟨X,X⟩L2 for X ∈ L2 and identify random variables that are equal

P-a.s. Note that if l.i.m.
n→∞

Xn = X and l.i.m.
n→∞

Yn = Y , where Xn, Yn, X, Y ∈ L2, n ∈ N, and l.i.m.
n→∞

denotes the limit in the mean square, then

lim
n→∞

E [XnY ] = E [XY ] and lim
n→∞

E [XnYn] = E [XY ] , (3.1)

which can be shown by Cauchy-Schwarz inequality. Furthermore, suppose that L1 and L2 are
closed linear subspaces of L2, where the closure is formed in the mean-square sense. Then

L⊥
1 = {X ∈ L2 : ⟨X,Y ⟩L2 = 0 for all Y ∈ L1}

is the orthogonal complement of L1. The sum of L1 and L2 is the linear vector space denoted by

L1 + L2 = {X + Y : X ∈ L1, Y ∈ L2} .

Even when L1 and L2 are closed subspaces, this sum may fail to be closed if both are infinite
dimensional. A classic example of this can be found in Halmos (1957), p. 28. Hence, the closed
sum is denoted by

L1 ∨ L2 = {X + Y : X ∈ L1, Y ∈ L2}.
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We further denote the orthogonal projection of X ∈ L2 on the closed linear subspace L1 ⊆ L2

by PL1(X) = PL1X. Reviews of the properties of orthogonal projections can be found, e.g., in
Brockwell and Davis (1991), Lindquist and Picci (2015), and Weidmann (1980). Some of the
common properties, which we frequently need in this thesis and therefore list below, are the
following.

Lemma 3.1. Let L1 ⊆ L2 be closed linear subspaces of L2. Then the subsequent properties apply:

(a) PL1X = PL1PL2X = PL2PL1X for X ∈ L2.

(b) PL1 (αX + βY ) = αPL1X + βPL1Y for X,Y ∈ L2, α, β ∈ C.

(c) If l.i.m.
n→∞

Xn = X then l.i.m.
n→∞

PL1Xn = PL1X for Xn, X ∈ L2, n ∈ N.

With those notations and properties in mind, we define the conditional orthogonality relation as
in Eichler (2007), p. 347.

Definition 3.2. Let Li, i = 1, . . . , 3, be closed linear subspaces of L2. Then L1 and L2 are
conditionally orthogonal given L3 if and only if

X − PL3X ⊥ Y − PL3Y ∀X ∈ L1, Y ∈ L2.

The conditional orthogonality relation is denoted by L1 ⊥ L2 | L3.

Note that Definition 3.2 reduces to the usual orthogonality when L3 = {0}. For a more de-
tailed discussion of the conditional orthogonality relation, we refer to Florens and Mouchart
(1985), who study conditional orthogonality in terms of general Hilbert spaces. We only sum-
marise the graphoid property of the conditional orthogonality relation as given in Eichler (2007),
Proposition A.1.

Lemma 3.3. Let Li, i = 1, . . . , 4, be closed linear subspaces of L2. Then the conditional
orthogonality relation defines a semi-graphoid, i.e., it satisfies the following properties:

(C1) Symmetry: L1 ⊥ L2 | L3 ⇒ L2 ⊥ L1 | L3.

(C2) (De-) Composition: L1 ⊥ L2 | L4 and L1 ⊥ L3 | L4 ⇔ L1 ⊥ L2 ∨ L3 | L4.

(C3) Weak union: L1 ⊥ L2 ∨ L3 | L4 ⇒ L1 ⊥ L2 | L3 ∨ L4.

(C4) Contraction: L1 ⊥ L2 | L4 and L1 ⊥ L3 | L2 ∨ L4 ⇒ L1 ⊥ L2 ∨ L3 | L4.

If (L2 ∨ L4) ∩ (L3 ∨ L4) = L4 holds and L2 ∨ L3 is separable, then the conditional orthogonality
relation defines a graphoid, i.e., additionally, we have:

(C5) Intersection: L1 ⊥ L2 | L3 ∨ L4 and L1 ⊥ L3 | L2 ∨ L4 ⇒ L1 ⊥ L2 ∨ L3 | L4.

Remark 3.4. If (L2 ∨ L4) ∩ (L3 ∨ L4) = L4 holds, we say that L2 are L3 conditionally linearly
separated by L4 (cf. Eichler, 2007, p. 348).
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3.2. Generated linear subspaces

The conditional orthogonality relation is predestined for the analysis of linear relations between
two subprocesses YA and YB given another subprocess YC . For this purpose, however, we must
first define suitable closed linear spaces generated by subprocesses YA. For an in-depth analysis of
such linear spaces, we refer to the numerous publications of Cramér (e.g., Cramér, 1961; Cramér
& Leadbetter, 1967) as well as to the comprehensive works by Gladyshev (1958), Matveev (1961),
and Robertson (1968).

Definition 3.5. Let YV be wide-sense stationary and let A ⊆ V , s, t ∈ R, s < t. Then define

ℓYA
(s, t) :=

{
n∑

i=1

∑
a∈A

γa,iYa(ti) : γa,i ∈ C, s ≤ t1 ≤ . . . ≤ tn ≤ t, n ∈ N
}
,

LYA
(s, t) := ℓYA

(s, t),

which is the closed linear subspace generated by (YA(r))s≤r≤t. Furthermore,

ℓYA
(t) :=

{
n∑

i=1

∑
a∈A

γa,iYa(ti) : γa,i ∈ C, −∞ < t1 ≤ . . . ≤ tn ≤ t, n ∈ N
}
,

LYA
(t) := ℓYA

(t),

which is the closed linear subspace generated by (YA(s))s≤t, as well as

ℓYA
(t,∞) :=

{
n∑

i=1

∑
a∈A

γa,iYa(ti) : γa,i ∈ C, t ≤ t1 ≤ . . . ≤ tn < ∞, n ∈ N
}
,

LYA
(t,∞) := ℓYA

(t,∞),

which is the closed linear subspace generated by (YA(s))s≥t. In addition,

ℓYA
:=
{

n∑
i=1

∑
a∈A

γa,iYa(ti) : γa,i ∈ C, −∞ < t1 ≤ . . . ≤ tn < ∞, n ∈ N
}
,

LYA
:= ℓYA

,

which is the closed linear space generated by the entire process YA, and

LYA
(−∞) :=

⋂
t∈R

LYA
(t),

called the remote past of the process YA. Finally, the closed linear subspace generated by YA(t)
for fixed t ∈ R is denoted by

LYA
(t) :=

{∑
a∈A

γaYa(t) : γa ∈ C
}
.
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Remark 3.6. If A = ∅, the linear spaces are taken as {0}. Further, for the definition of the
linear spaces, wide-sense stationarity is obviously not necessary. As we rely on this assumption
throughout the analysis of (local) causality graphs, we already require it throughout this section
for the sake of simplicity.

Below we discuss properties of the linear spaces from Definition 3.5, noting that these properties
are trivially valid if A = ∅ or B = ∅. First of all, the linear spaces increase both in the time
domain and in the index set by definition. For example,

LYA
(−∞) ⊆ LYA

(s) ⊆ LYA
(t) ⊆ LYA

, LYA
(t) ⊆ LYB

(t),

whenever s, t ∈ R, s ≤ t, A ⊆ B ⊆ V . Furthermore, we give an auxiliary result, which we use
throughout this thesis and which shows that the linear spaces are additive both in the time
domain and in the index set, increasing in time towards a linear limit space.

Lemma 3.7. Let YV be wide-sense stationary and let A,B ⊆ V , s, t ∈ R, s < t. Then the
following statements apply:

(a) LYA
(s) ∨ LYA

(s, t) = LYA
(t) P-a.s.

(b) LYA
(s, t) ∨ LYB

(s, t) = LYA∪B
(s, t) P-a.s.

(c) LYA
(t) ∨ LYB

(t) = LYA∪B
(t) P-a.s.

(d)
⋃

n∈N LYA
(n) = LYA

P-a.s.

Proof. Let A,B ⊆ V and s, t ∈ R, s < t.

(a) First of all, LYA
(s) ⊆ LYA

(t) and LYA
(s, t) ⊆ LYA

(t) hold by definition of the linear spaces.
Hence, we have LYA

(s) + LYA
(s, t) ⊆ LYA

(t), since LYA
(t) is a linear space. As LYA

(t) is closed,
the first direction LYA

(s) ∨ LYA
(s, t) ⊆ LYA

(t) follows. For the opposite subset relation, let
Y A ∈ ℓYA

(t). Then there are coefficients γa,i ∈ C and time points −∞ < t1 ≤ . . . ≤ tn ≤ t,
n ∈ N, such that P-a.s.

Y A =
n∑

i=1

∑
a∈A

γa,iYa(ti) =
∑
ti≤s

∑
a∈A

γa,iYa(ti) +
∑
ti>s

∑
a∈A

γa,iYa(ti)

∈ ℓYA
(s) + ℓYA

(s, t) ⊆ LYA
(s) ∨ LYA

(s, t).

Therefore, ℓYA
(t) ⊆ LYA

(s) ∨ LYA
(s, t) is valid. As LYA

(s) ∨ LYA
(s, t) is closed, the relation

LYA
(t) ⊆ LYA

(s) ∨ LYA
(s, t) follows.

(b,c) If one decomposes the elements of ℓYA∪B
(s, t) and ℓYA∪B

(t), respectively, in the index set
instead of in the time domain, the proof is very similar to the proof of (a) and is therefore
skipped.

(d) First, LYA
(n) ⊆ LYA

, n ∈ N, applies by definition. Hence, we have
⋃

n∈N LYA
(n) ⊆ LYA

, as
LYA

is closed. For the opposite subset relation, let YA ∈ ℓYA
. Then there are again coefficients

γa,i ∈ C and time points −∞ < t1 ≤ . . . ≤ tm < ∞, m ∈ N, such that

YA =
m∑

i=1

∑
a∈A

γa,iYa(ti) P-a.s.
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Therefore, for some n0 ≥ tm, n0 ∈ N, we have Y A ∈ LYA
(tm) ⊆ LYA

(n0) ⊆
⋃

n∈N LYA
(n). Hence,

ℓYA
⊆
⋃

n∈N LYA
(n) and LYA

⊆
⋃

n∈N LYA
(n), as

⋃
n∈N LYA

(n) is closed. ■

Now, given the intersection property (C5) in Lemma 3.3, we prove that all linear spaces used
in this thesis are separable for a wide-sense stationary and mean-square continuous process YV .
Note that instead of the continuity in the mean square, it is sufficient to assume that the right
and left limits in the mean square exist (cf. Cramér, 1961, Lemma 1).

Lemma 3.8. Let YV be wide-sense stationary and mean-square continuous. Further, let A ⊆ V ,
s, t ∈ R, s < t. Then LYA

, LYA
(t), and LYA

(s, t) are separable.

Proof. Let A ⊆ V and s, t ∈ R, s < t. We refer to Cramér (1961), Lemma 1, for the proof of ℓYA

being separable. If MA is a countable dense subset of ℓYA
, it is also a countable dense subset of

LYA
, which can be explained as follows. Let Y ∈ LYA

be the limit in the mean square of a sequence
Yn ∈ ℓYA

, n ∈ N, and let ε > 0. Then there exists some n0 ∈ N such that ∥Y − Yn∥L2 < ε/2 for
n ≥ n0. Furthermore, we can chose mA ∈ MA such that ∥Yn0 −mA∥L2 < ε/2, since MA is dense
in ℓYA

. Then

∥Y −mA∥L2 ≤ ∥Y − Yn0∥L2 + ∥Yn0 −mA∥L2 < ε.

Thus, MA is a countable dense subset of LYA
and LYA

is separable. Similarly, we obtain that
LYA

(t) and LYA
(s, t) are separable using, e.g., PLYA

(t)MA and PLYA
(s,t)MA as countable dense

subsets of LYA
(t) and LYA

(s, t), respectively. ■

Furthermore, in view of the intersection property (C5) again, we require that LYA
(t) and LYB

(t)
are conditionally linearly separated by LYC

(t) for t ∈ R and disjoint subsets A,B,C ⊆ V . This
assumption is a lot more intricate because it is very abstract and difficult to verify. In order to
understand conditional linear separation more clearly, we introduce a first sufficient criterion.

Lemma 3.9. Let YV be wide-sense stationary and let t ∈ R. Suppose that, for all A,B ⊆ V

with A ∩B = ∅, we have

LYA
(t) ∩ LYB

(t) = {0} and LYA
(t) + LYB

(t) = LYA
(t) ∨ LYB

(t) P-a.s. (3.2)

Then, for all disjoint subsets A,B,C ⊆ V , we get

LYA∪C
(t) ∩ LYB∪C

(t) = LYC
(t) P-a.s.

Proof. Let t ∈ R and A,B,C ⊆ V be disjoint subsets. Then LYC
(t) ⊆ LYA∪C

(t) ∩ LYB∪C
(t) is

immediately true. For the second subset relation LYA∪C
(t) ∩ LYB∪C

(t) ⊆ LYC
(t), suppose that

Y ∈ LYA∪C
(t) ∩ LYB∪C

(t). Then assumption (3.2) provides

Y ∈ LYA∪C
(t) = LYA

(t) + LYC
(t) and Y ∈ LYB∪C

(t) = LYB
(t) + LYC

(t).

Therefore, there exist Y A ∈ LYA
(t), ZB ∈ LYB

(t), and Y C , ZC ∈ LYC
(t), such that we have

Y = Y A + Y C = ZB + ZC P-a.s. This equality yields
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Y A − ZB = ZC − Y C ∈ LYA∪B
(t) ∩ LYC

(t),

where LYA∪B
(t) ∩ LYC

(t) = {0} P-a.s. by assumption (3.2). Finally,

Y A = ZB ∈ LYA
(t) ∩ LYB

(t) = {0} P-a.s.,

where we apply assumption (3.2) again. As claimed, Y = Y C ∈ LYC
(t) P-a.s. ■

The first assumption in (3.2) is the linear independence of the two linear spaces. The second
assumption is the closedness of the sum. It makes little sense to formulate these two properties
as assumptions on YV , as they are still too abstract and difficult to verify. Therefore, we aim to
provide an easy-to-use criterion.

The problem of the linear independence and closedness of the sum of a pair of subspaces is the
subject of numerous publications, see, e.g., Feshchenko (2012), Hongke (2008), Schochetman,
Smith, and Tsui (2001), and the literature therein. According to Proposition 2.3 by Feshchenko
(2012), an equivalent characterisation of (3.2) is the existence of an ε > 0, such that

∥∥∥Y A + Y B
∥∥∥2

L2
≥ ε

(∥∥∥Y A
∥∥∥2

L2
+
∥∥∥Y B

∥∥∥2

L2

)

for all Y A ∈ LYA
(t), Y B ∈ LYB

(t), t ∈ R, and disjoint subsets A,B ⊆ V . Replacing Y A and
Y B with their spectral representations (2.1) leads to a sufficient and manageable condition
constraining the spectral density function fYV YV

(λ), λ ∈ R, of processes YV .

Assumption 3. Suppose that YV has a spectral density function fYV YV
(λ) > 0, λ ∈ R, and that

there exists an 0 < ε < 1, such that

dAB(λ) := fYAYA
(λ)−1/2fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ)fYAYA
(λ)−1/2 ≤ (1 − ε)Iα

for almost all λ ∈ R and for all non-empty disjoint subsets A,B ⊆ V , #A = α.

For A = {a}, the function dAB(λ), λ ∈ R, is called multiple coherence and we refer to Koopmans
(1964a, 1964b) and Goodman (1963) for further reading. Assumption 3 is satisfied, e.g., for
most Ornstein-Uhlenbeck processes, MCAR processes, and even most state space processes (for
details see Chapters 8 and 9). Assumption 3 seems to be a reasonable assumption and is indeed
sufficient for conditional linear separation.

Proposition 3.10. Let YV be wide-sense stationary, mean-square continuous, and satisfy
Assumption 3. Then, for all t ∈ R and disjoint subsets A,B,C ⊆ V , we have

LYA
(t) ∩ LYB

(t) = {0}, LYA
(t) + LYB

(t) = LYA
(t) ∨ LYB

(t),

and

LYA∪C
(t) ∩ LYB∪C

(t) = LYC
(t) P-a.s.
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Proof. Let A,B ⊆ V be disjoint with #A = α and #B = β. First, according to Assumption 3,
there exists an 0 < ε < 1, such that

fYAYA
(λ)−1/2fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ)fYAYA
(λ)−1/2 ≤ (1 − ε)Iα

for almost all λ ∈ R and hence,

(1 − ε)fYAYA
(λ) − fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ) ≥ 0

for almost all λ ∈ R. If we choose 0 < ε̃ < 1, such that (1 − ε̃)2 = (1 − ε), we obtain

(1 − ε̃)fYAYA
(λ) − fYAYB

(λ) ((1 − ε̃)fYBYB
(λ))−1 fYBYA

(λ) ≥ 0

for almost all λ ∈ R. Since (1 − ε̃)fYBYB
(λ) > 0, Bernstein (2009), Proposition 8.2.4, provides

(
(1 − ε̃)fYAYA

(λ) fYAYB
(λ)

fYBYA
(λ) (1 − ε̃)fYBYB

(λ)

)
≥ 0,

respectively, (
fYAYA

(λ) fYAYB
(λ)

fYBYA
(λ) fYBYB

(λ)

)
≥ ε̃

(
fYAYA

(λ) 0α×β

0β×α fYBYB
(λ)

)
(3.3)

for almost all λ ∈ R. With this preliminary work, we can now provide the actual proof of the
assertion. So let Y A ∈ LYA

(t) and Y B ∈ LYB
(t), t ∈ R. Then, we have Y A ∈ LYA

and Y B ∈ LYB
.

Due to Rozanov (1967), I, (7.2), the spectral representations

Y A =
∫ ∞

−∞
φ(λ)ΦA(dλ) and Y B =

∫ ∞

−∞
ψ(λ)ΦB(dλ) P-a.s.

hold, where ΦA and ΦB are the random spectral measures form the spectral representation
(2.1) of the subprocesses YA and YB. Furthermore, φ(λ) ∈ C1×α and ψ(λ) ∈ C1×β, λ ∈ R, are
measurable vector functions that satisfy∫ ∞

−∞
φ(λ)fYAYA

(λ)φ(λ)⊤
dλ < ∞ and

∫ ∞

−∞
ψ(λ)fYBYB

(λ)ψ(λ)⊤
dλ < ∞.

Using relation (3.3) and the monotonicity of the integral, we obtain

∥∥∥Y A + Y B
∥∥∥2

L2
=
∫ ∞

−∞
(φ(λ) ψ(λ))

(
fYAYA

(λ) fYAYB
(λ)

fYBYA
(λ) fYBYB

(λ)

)
(φ(λ) ψ(λ))⊤

dλ

≥ ε̃

∫ ∞

−∞
(φ(λ) ψ(λ))

(
fYAYA

(λ) 0α×β

0β×α fYBYB
(λ)

)
(φ(λ) ψ(λ))⊤

dλ

= ε̃

(∥∥∥Y A
∥∥∥2

+
∥∥∥Y B

∥∥∥2

L2

)
.
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Then Feshchenko (2012), Proposition 2.3, provides that, for t ∈ R,

LYA
(t) ∩ LYB

(t) = {0} and LYA
(t) + LYB

(t) = LYA
(t) ∨ LYB

(t) P-a.s.

Thus, Lemma 3.9 yields the final statement LYA∪C
(t) ∩ LYB∪C

(t) = LYC
(t) P-a.s. ■

The wide-sense stationarity, mean-square continuity, and Assumption 3 now ensure, as desired,
that the conditional orthogonality relation satisfies the property of intersection (C5) in Lemma 3.3
for suitable linear subspaces. We comment on Assumption 3 and its interpretation below.

Remark 3.11. Assumption 3 is not necessary for (C5) to hold, the conditional linear separation
is sufficient. Furthermore, the proof of Proposition 3.10 remains the same for Y A ∈ LYA

(s) and
Y B ∈ LYB

(t) for s, t ∈ R and disjoint subsets A,B ⊆ V . Thus, Assumption 3 even provides

LYA
(s) ∩ LYB

(t) = {0} and LYA
(s) + LYB

(t) = LYA
(s) ∨ LYB

(t) P-a.s.

Interpretation 3.12. The boundedness dAB(λ) ≤ Iα is valid without Assumption 3. Indeed,
suppose ΦB is the random spectral measure from the spectral representation of YB in (2.1), then
the spectral density function of

εA|B(t) = YA(t) −
∫ ∞

−∞
eiλtfYAYB

(λ)fYBYB
(λ)−1ΦB(dλ)

is (cf. Lemma 10.6)

fεA|BεA|B (λ) = fYAYA
(λ) − fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ),

and it is non-negative definite according to Lemma 2.4(c). Furthermore, Assumption 3 especially
forbids certain purely linear relationships between the components, which can be seen as follows.
Assume that dAB(λ) = Iα for almost all λ ∈ R. Then fεA|BεA|B (λ) = 0α ∈ Mk(R) for almost
all λ ∈ R and thus, cεA|BεA|B (t) = 0α for all t ∈ R. Therefore, εA|B(t) = 0α P-a.s. and YA(t) is
already a linear transformation of YB. Somewhat loosely, one could say that Assumption 3 not
only forbids a purely linear relationship between YA and YB but already requires some kind of
distance between the subprocesses due to the uniform boundedness. This also fits with Brillinger
(2001), equation (8.3.10), who calls the matrix function dAB(λ), λ ∈ [−π, π], in discrete-time a
measure of the linear association of YA and YB at frequency λ.

Remark 3.13. Eichler (2007) proposes a comparable assumption on the spectral density function,
also with the aim that the property of intersection (C5) is valid for the conditional orthogonality
relation, but for discrete-time processes ZV = (ZV (t))t∈Z. Eichler (2007), equation (2.1), requires
the existence of a constant c > 1, such that the spectral density function satisfies

1
c
Ik ≤ fZV ZV

(λ) ≤ cIk (3.4)

for all λ ∈ [−π, π]. If this assumption is satisfied, matrix algebra calculations as in the proof of
Lemma 8.6 yield that for any disjoint subsets A,B ⊆ V
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fZAZA
(λ) − fZAZB

(λ)fZBZB
(λ)−1fZBZA

(λ) ≥ 1
c
Iα ≥ 1

c2 fZAZA
(λ).

Thus, for λ ∈ [−π, π], Assumption 3 is satisfied with ε = 1/c2. However, we point out that
we cannot generalise his assumption directly to continuous-time processes by assuming (3.4) in
continuous-time for almost all λ ∈ R. This requirement is too strict and is not even met for
simple Ornstein-Uhlenbeck processes, as we can see in the following example.

Example 3.14. Let YV be a two-dimensional causal Ornstein-Uhlenbeck process (cf. Re-
mark 2.21), such that the driving two-dimensional Lévy process satisfies Assumption 1 and that
is specified by

A =
(

−3 1
1 −3

)
and ΣL =

(
1 1/2

1/2 1

)
.

The eigenvalues of fYV YV
(λ) are

λ1(λ) = 1
4π (λ2 + 16) and λ2(λ) = 3

4π (λ2 + 4) .

Both eigenvalue functions tend to zero for λ → ±∞. Furthermore, due to Bernstein (2009),
Lemma 8.4.1, we have

1
4π (λ2 + 16)I2 = λmin(λ)I2 ≤ fYV YV

(λ) ≤ λmax(λ)I2 = 3
4π (λ2 + 4)I2.

Therefore, we can not find a positive uniform lower bound 1/c I2 for all λ ∈ R. Nevertheless,
straightforward calculations provide that

fY1Y2(λ)fY2Y1(λ)
fY1Y1(λ)fY2Y2(λ) = (λ2 + 22)2

4(λ2 + 13)2 ≤ (0 + 22)2

4(0 + 13)2 ≤ 1 − 1
5 .

Since this expression is symmetric under the interchange of the index sets, we have examined
all the functions required to be bounded. Thus, Assumption 3 is satisfied with the explicit
bound ε = 1/5. In Section 8.2, we show more generally that Assumption 3 is satisfied for
Ornstein-Uhlenbeck processes with σ(A) ⊆ (−∞, 0) + iR and ΣL > 0.

For the proof of the global AMP Markov property for our causality graph, we need another as-
sumption about the linear space of the remote past of the process, which we introduce at this point.
Any process that is wide-sense stationary can be uniquely decomposed in a deterministic and a
purely non-deterministic process, that are mutually orthogonal (Gladyshev, 1958, Theorem 1).
From the point of view of applications, deterministic processes are not important. Therefore, it
is reasonable to assume that the given process is purely non-deterministic.

Assumption 4. Let YV be purely non-deterministic, that is LYV
(−∞) = {0} P-a.s.

Loosely speaking, we may say that any information present in the process must have entered
as a new impulse at some instant in the past (Cramér, 1971, p. 7). From another viewpoint, a
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process being purely non-deterministic means that the prediction of the infinitely removed future
only consists of the knowledge of the mean, i.e.,

l.i.m.
h→∞

PLYV
(t)Ya(t+ h) = 0 P-a.s. (3.5)

for all a ∈ V and t ∈ R (Rozanov, 1967, III, Theorem 2.1). Further necessary and sufficient
conditions for processes being purely non-deterministic can be found, e.g., in Gladyshev (1958),
Theorem 3, Rozanov (1967), III, Theorem 2.4, and Matveev (1961), Theorem 1.

Finally, we can deduce the following property from Assumptions 3 and 4, that stands in analogy
to assumption (M) on σ-fields in Eichler (2012) and equation (2.4) in Eichler (2001). This is the
property we require for the proof of the global AMP Markov property for the causality graph.

Lemma 3.15. Let YV be wide-sense stationary, mean-square continuous, and satisfy Assumptions
3 and 4. Further, let A ⊆ V and t ∈ R. Then

⋂
k∈N

(
LYA

(t− k) ∨ LYV \A
(t)
)

= LYV \A
(t) P-a.s. (3.6)

Proof. Let t ∈ R and A ⊆ V . Obviously, the subset relation ⊇ is valid. For the subset relation
⊆, suppose that

Y ∈
⋂

k∈N

(
LYA

(t− k) ∨ LYV \A
(t)
)
.

Then Y ∈ LYA
(t − k) ∨ LYV \A

(t) = LYA
(t − k) + LYV \A

(t) for k ∈ N due to Assumption 3 and
Proposition 3.10, respectively. Hence, there exist Y A

t−k ∈ LYA
(t− k) and Y

V \A
t−k ∈ LYV \A

(t), such
that Y = Y A

t−k + Y
V \A

t−k P-a.s. for k ∈ N. Furthermore,

Y A
t−1 − Y A

t−k = Y
V \A

t−k − Y
V \A

t−1 ∈ LYA
(t− 1) ∩ LYV \A

(t− 1) = {0} P-a.s.

due to Proposition 3.10 again. Therefore,

Y A
t−1 = Y A

t−k ∈ LYA
(t− 1) ∩ LYA

(t− k) = LYA
(t− k) ⊆ LYV

(t− k) P-a.s.

Since k ∈ N is arbitrary and due to Assumption 4

Y A
t−1 ∈

⋂
k∈N

LYV
(t− k) = LYV

(−∞) = {0} P-a.s.

But then, as claimed, Y = Y
V \A

t−1 ∈ LYV \A
(t) P-a.s. ■

Remark 3.16. Assumptions 3 and 4 are not necessary assumptions for the global AMP Markov
properties for the causality graph to hold, but are easier to verify. Sufficient and weaker
assumptions are the conditional linear separation and relation (3.6).



CHAPTER 4

Directed influences: Granger causality concepts

In this chapter, we study Granger-causal influences between components of multivariate processes
YV = (YV (t))t∈R in continuous time. In discrete time, it is common to say that a component
Za = (Za(t))t∈Z is Granger non-causal for another component Zb = (Zb(t))t∈Z if the prediction of
Zb(t+ 1) based on the (linear) information available at time t provided by (ZV (s))s≤t is equal to
the prediction of Zb(t+ 1) based on the reduced (linear) information provided by (ZV \{a}(s))s≤t.
We transfer this approach to the continuous-time setting. For this purpose, we need to specify
the objects that are the continuous-time counterpart of the random variable Zb(t+ 1), since there
are no fixed time steps in continuous time. We further restrict ourselves to linear Granger-causal
influences and introduce different concepts of Granger causality. We emphasise that Granger
causality has a temporal order, the cause always precedes the effect. The concepts are therefore
directed and we are going to apply them to define the directed edges in the (local) causality
graph in Chapter 6.

We structure the chapter at hand as follows. In Section 4.1, we define Granger causality by
considering the prediction of Yb(t+h) on the entire time interval 0 ≤ h ≤ 1. Then, in Section 4.2,
we discuss the limiting case h → 0. In Section 4.3, we study global Granger causality, i.e., the
prediction of Yb(t+ h) for the entire future h ≥ 0. Finally, in Section 4.4, we examine relations
between the different concepts.

4.1. Granger causality

A first approach to Granger causality is the direct continuous-time counterpart to Definition 2.2
by Eichler (2007), considering a conditional orthogonality relation of linear spaces on the time
interval 0 ≤ h ≤ 1.

Definition 4.1. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A∩B = ∅. Then YA is
Granger non-causal for YB with respect to YS if and only if, for all t ∈ R,

LYB
(t, t+ 1) ⊥ LYA

(t) | LYS\A
(t).

We write YA YB | YS .

Note that we are studying Granger causal relations between subprocesses of YV , so A and B are
taken to be non-empty. We present equivalent characterisations of Granger non-causality.
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Lemma 4.2. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩ B = ∅. Then the
following statements are equivalent:

(a) YA YB | YS,

(b) LYB
(t+ 1) ⊥ LYA

(t) | LYS\A
(t) for all t ∈ R,

(c) ℓYB
(t, t+ 1) ⊥ ℓYA

(t) | LYS\A
(t) for all t ∈ R,

(d) LYb
(s) ⊥ LYa(s′) | LYS\A

(t) for all a ∈ A, b ∈ B, t ≤ s ≤ t+ 1, s′ ≤ t, and t ∈ R.

Proof. Let A,B ⊆ S ⊆ V with A ∩B = ∅.

(a) ⇒ (b): Suppose that YA YB | YS . That is, LYB
(t, t+ 1) ⊥ LYA

(t) | LYS\A
(t) for all t ∈ R.

Step 1: Let Y B ∈ LYB
(t, t+ 1). Then, we obtain on assumption that, for Y A ∈ LYA

(t),

E
[(
Y B − PLYS\A

(t)Y
B
)(

Y A − PLYS\A
(t)Y A

)]
= 0.

Step 2: Let Y B ∈ LYB
(t). Then Y B ∈ LYS\A

(t) and we obtain that PLYS\A
(t)Y

B = Y B, such
that, for Y A ∈ LYA

(t),

E
[(
Y B − PLYS\A

(t)Y
B
)(

Y A − PLYS\A
(t)Y A

)]
= 0.

Step 3: Let Y B ∈ LYB
(t+1). We receive LYB

(t+1) = LYB
(t)∨LYB

(t, t+1) due to Lemma 3.7(a).
Therefore, there exists a sequence Y B

n ∈ LYB
(t) + LYB

(t, t + 1), n ∈ N, such that we have
limn→∞ ∥Y B − Y B

n ∥L2 = 0. Lemma 3.1(c) provides

lim
n→∞

∥∥∥∥PLYS\A
(t)Y

B − PLYS\A
(t)Y

B
n

∥∥∥∥
L2

= 0.

Together with relation (3.1), we obtain, for Y A ∈ LYA
(t),

E
[(
Y B − PLYS\A

(t)Y
B
)(

Y A − PLYS\A
(t)Y A

)]

= lim
n→∞

E
[(
Y B

n − PLYS\A
(t)Y

B
n

)(
Y A − PLYS\A

(t)Y A

)]
.

Since Y B
n ∈ LYB

(t) + LYB
(t, t+ 1), n ∈ N, and by Step 1 and Step 2, the right-hand side is zero.

So the left-hand side is also zero. Finally, LYB
(t+ 1) ⊥ LYA

(t) | LYS\A
(t) is valid for all t ∈ R.

(b) ⇒ (a): Suppose that LYB
(t + 1) ⊥ LYA

(t) | LYS\A
(t) for all t ∈ R. Because of the subset

relation LYB
(t, t+ 1) ⊆ LYB

(t+ 1), it follows that LYB
(t, t+ 1) ⊥ LYA

(t) | LYS\A
(t) for all t ∈ R.

Similarly, we can conclude by subset arguments that (a) ⇒ (c) and (c) ⇒ (d).

(c) ⇒ (a): Suppose that ℓYB
(t, t+ 1) ⊥ ℓYA

(t) | LYS\A
(t) for all t ∈ R. Let Y B ∈ LYB

(t, t+ 1).
Then there exists a sequence Y B

n ∈ ℓYB
(t, t + 1), n ∈ N, such that limn→∞ ∥Y B − Y B

n ∥L2 = 0.
For Y A ∈ ℓYA

(t), Lemma 3.1(c) and relation (3.1) yield



4.1. Granger causality 47

E
[(
Y B − PLYS\A

(t)Y
B
)(

Y A − PLYS\A
(t)Y A

)]

= lim
n→∞

E
[(
Y B

n − PLYS\A
(t)Y

B
n

)(
Y A − PLYS\A

(t)Y A

)]
.

We apply the assumption (c) to obtain that the expression on the right-hand side is zero. In
conclusion, LYB

(t, t + 1) ⊥ ℓYA
(t) | LYS\A

(t) for all t ∈ R. In a second step, one can show
analogously that LYB

(t, t+ 1) ⊥ LYA
(t) | LYS\A

(t) for all t ∈ R.

(d) ⇒ (c): Suppose that LYb
(s) ⊥ LYa(s′) | LYS\A

(t) for all a ∈ A, b ∈ B, t ≤ s ≤ t + 1,
s′ ≤ t, and t ∈ R. Let Y B ∈ ℓYB

(t, t+ 1). Then there are coefficients γb,i ∈ C and time points
t ≤ t1 ≤ . . . ≤ tn ≤ t+ 1, n ∈ N, such that

Y B =
n∑

i=1

∑
b∈B

γb,iYb(ti) P-a.s.

For Y a ∈ LYa(s′), we obtain by Lemma 3.1(b) and by linearity of the expectation that

E
[(
Y B − PLYS\A

(t)Y
B
)(

Y a − PLYS\A
(t)Y a

)]

=
n∑

i=1

∑
b∈B

γb,i E
[(
Yb(ti) − PLYS\A

(t)Yb(ti)
)(

Y a − PLYS\A
(t)Y a

)]
.

Finally, we apply assumption (d) to obtain that the expectation on the right-hand side is zero.
Thus, ℓYB

(t, t+ 1) ⊥ LYa(s′) | LYS\A
(t) for all a ∈ A, s′ ≤ t, and t ∈ R. In a second step, one can

show analogously that ℓYB
(t, t+ 1) ⊥ ℓYA

(t) | LYS\A
(t) for all t ∈ R. ■

Remark 4.3. The characterisation in Lemma 4.2(b) is similar to Definition 2.2 by Eichler
(2012), which uses conditional independence instead of conditional orthogonality. The other
characterisations are useful for verifying Granger non-causality. Furthermore, it is obviously
always possible to just rewrite one of the linear spaces, that is, for example,

YA YB | YS ⇔ LYb
(t+ h) ⊥ LYA

(t) | LYS\A
(t) ∀ b ∈ B, 0 ≤ h ≤ 1, t ∈ R,

⇔ LYB
(t+ h) ⊥ LYA

(t) | LYS\A
(t) ∀ 0 ≤ h ≤ 1, t ∈ R.

The former relation provides another natural way to define Granger non-causality as a direct
counterpart to Eichler (2012).

From the characterisations derived so far, the idea of Granger non-causality as an equality of
two predictions, as given, for example, in the introduction and Dufour and Renault (1998) for
discrete-time processes, is not yet clear. Therefore, we provide another characterisation.

Theorem 4.4. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩ B = ∅. Then
YA YB | YS if and only if, for all b ∈ B, 0 ≤ h ≤ 1, and t ∈ R,

PLYS
(t)Yb(t+ h) = PLYS\A

(t)Yb(t+ h) P-a.s.
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Proof. Due to Proposition 2.4.2 by Lindquist and Picci (2015), LYB
(t, t+ 1) ⊥ LYA

(t) | LYS\A
(t)

is equivalent to PLYS
(t)Y

B = PLYS\A
(t)Y

B P-a.s. for all Y B ∈ LYB
(t, t+ 1). Due to the linearity

and continuity of orthogonal projections, see Lemma 3.1(b,c), this statement is in turn equivalent
to PLYS

(t)Yb(t+ h) = PLYS\A
(t)Yb(t+ h) P-a.s. for all b ∈ B, 0 ≤ h ≤ 1, and t ∈ R. ■

In other words, the linear information provided by (YA(s))s≤t can be forgotten without any
consequences for the linear prediction of YB(t + h) on the time interval 0 ≤ h ≤ 1. The
characterisations in Lemma 4.2 and Theorem 4.4, furthermore, provide important properties of
Granger non-causality. First, in Lemma 4.2(d), we implicitly show that

YA YB | YS ⇔ YA Yb | YS ∀ b ∈ B. (4.1)

We now discuss the transition from the subset A to the individual elements a ∈ A.

Proposition 4.5. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩B = ∅. Then

YA YB | YS ⇒ Ya Yb | YS ∀ a ∈ A, b ∈ B. (4.2)

If YV is additionally mean-square continuous and satisfies Assumption 3, then

YA YB | YS ⇔ Ya Yb | YS ∀ a ∈ A, b ∈ B. (4.3)

Proof. For relation (4.2), assume that YA YB | YS . Because of Theorem 4.4, we obtain that
PLYS

(t)Yb(t+ h) = PLYS\A
(t)Yb(t+ h) P-a.s. for all b ∈ B, 0 ≤ h ≤ 1, and t ∈ R. Together with

Lemma 3.1(a), it follows that, for all a ∈ A, b ∈ B, 0 ≤ h ≤ 1, and t ∈ R,

PLYS\{a} (t)Yb(t+ h) = PLYS\{a} (t)PLYS
(t)Yb(t+ h) = PLYS\{a} (t)PLYS\A

(t)Yb(t+ h)

= PLYS\A
(t)Yb(t+ h) = PLYS

(t)Yb(t+ h) P-a.s.

Due to Theorem 4.4, that is Ya Yb | YS for all a ∈ A and b ∈ B.

For relation (4.3), assume that Ya Yb | YS for all a ∈ A, b ∈ B. Then, we receive, due to
Theorem 4.4, that PLYS

(t)Yb(t+ h) = PLYS\{a} (t)Yb(t+ h) P-a.s. for all a ∈ A, b ∈ B, 0 ≤ h ≤ 1,
and t ∈ R. This equality implies that

PLYS
(t)Yb(t+ h) ∈ LYS\{a}(t) ∀ a ∈ A.

Now, from Proposition 3.10, we conclude that

PLYS
(t)Yb(t+ h) ∈

⋂
a∈A

LYS\{a}(t) = LYS\A
(t),

implying, due to Lemma 3.1(a), that

PLYS
(t)Yb(t+ h) = PLYS\A

(t)PLYS
(t)Yb(t+ h) = PLYS\A

(t)Yb(t+ h) P-a.s.

for all b ∈ B, t ∈ R, and 0 ≤ h ≤ 1. We apply Theorem 4.4 and obtain YA YB | YS . ■
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Remark 4.6. The assumption of wide-sense stationarity is, of course, not necessary for the
definition and characterisation of Granger causality. However, it is relevant for relation (4.3),
which requires Proposition 3.10, hence Assumption 3, and in turn wide-sense stationarity.

4.2. Local Granger causality

Florens and Fougère (1996), Definition 2.1, and Comte and Renault (1996), Definition 1, take a
different approach to defining Granger causality in continuous time, using conditional expectations
instead of orthogonal projections and generated σ-fields instead of generated linear spaces as
information sets. Comte and Renault (1996), Definition 2, further define a local version of
Granger causality in the context of semi-martingales. In their Proposition 1, the authors relate
this concept to the definition of Renault and Szafarz (1991), who study first-order stochastic
differential equations. Instead of considering the whole time interval 0 ≤ h ≤ 1, Comte and
Renault (1996) examine the transition h → 0 and, to get non-trivial limits, they use difference
quotients. The authors also note that the highest existing derivative of the process must always be
examined in order to obtain a non-trivial criterion. Therefore, in the style of their characterisation
of local Granger causality and our Theorem 4.4, we define the following linear version of local
Granger causality.

Definition 4.7. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist for v ∈ V . The jv-derivative is denoted
by D(jv)Yv, where, for jv = 0, we define D(0)Yv = Yv. Further, let A,B ⊆ S ⊆ V , A ∩ B = ∅.
Then YA is locally Granger non-causal for YB with respect to YS if and only if, for all b ∈ B and
t ∈ R,

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\A
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
P-a.s.

We write YA 0 YB | YS .

Remark 4.8. Since Yb is by assumption not (jb + 1)-times differentiable, the L2-limit of
(D(jb)Yb(t+ h) −D(jb)Yb(t))/h does not exist. However, it is still possible that the L2-limits of

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
and PLYS\A

(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

exist, and only then local Granger non-causality is possible. In Chapters 8 and 9, we develop
that for causal MCAR processes and ICCSS processes these limits indeed exist.

In the following lemma, we relate local Granger non-causality to a kind of local conditional
orthogonality relation, in analogy to Definition 4.1 of Granger non-causality.
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Proposition 4.9. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist for v ∈ V . Further, let A,B ⊆ S ⊆ V ,
A ∩B = ∅. Then YA 0 YB | YS implies that, for all b ∈ B, t ∈ R, and Y A ∈ LYA

(t),

lim
h→0

1
h
E
[(
D(jb)Yb(t+ h) − PLYS\A

(t)D
(jb)Yb(t+ h)

)(
Y A − PLYS\A

(t)Y A

)]
= 0.

Proof. The assumption YA 0 YB | YS states that, for all b ∈ B and t ∈ R,

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\A
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
P-a.s. (4.4)

Let b ∈ B, t ∈ R, and Y A ∈ LYA
(t). Then D(jb)Yb(t+ h) − PLYS

(t)D
(jb)Yb(t+ h) ∈ LYS

(t)⊥ and
Y A ∈ LYS

(t), so

1
h
E
[(
D(jb)Yb(t+ h) − PLYS

(t)D
(jb)Yb(t+ h)

)
Y A
]

= 0.

Adding and subtracting PLYS\A
(t)D

(jb)Yb(t+ h) in the first factor and forming the limit gives

lim
h→0

(1
h
E
[(
D(jb)Yb(t+ h) − PLYS\A

(t)D
(jb)Yb(t+ h)

)
Y A

]
(4.5)

+ 1
h
E
[(
PLYS\A

(t)D
(jb)Yb(t+ h) − PLYS

(t)D
(jb)Yb(t+ h)

)
Y A

])
= 0.

In the second summand, we apply Remark 2.9, i.e., D(jb)Yb(t) ∈ LYS\A
(t) ⊆ LYS

(t) to get the
difference of the two orthogonal projections from relation (4.4). Then the relations (4.4) and
(3.1) imply that the second summand in (4.5) is zero in the limit. So the first summand is zero,
i.e.,

lim
h→0

1
h
E
[(
D(jb)Yb(t+ h) − PLYS\A

(t)D
(jb)Yb(t+ h)

)
Y A

]
= 0.

Further, D(jb)Yb(t+ h) − PLYS\A
(t)D

(jb)Yb(t+ h) ∈ LYS\A
(t)⊥ and PLYS\A

(t)Y
A ∈ LYS\A

(t) give

1
h
E
[(
D(jb)Yb(t+ h) − PLYS\A

(t)D
(jb)Yb(t+ h)

)
PLYS\A

(t)Y A

]
= 0.

Adding the limit, the last two equations yield, as claimed,

lim
h→0

1
h
E
[(
D(jb)Yb(t+ h) − PLYS\A

(t)D
(jb)Yb(t+ h)

)(
Y A − PLYS\A

(t)Y A

)]
= 0. ■

Remark 4.10.

(a) The converse direction requires additional assumptions about linear spaces that go beyond
the scope of this thesis. While the relation in Proposition 4.9 could also define a local
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concept of Granger non-causality, Definition 4.7 better captures the idea of Granger non-
causality as the equality of two projections. Moreover, this definition is consistent with the
literature.

(b) To see the similarity of Proposition 4.9 to Definition 4.1, we recall that YA YB | YS if
and only if, for all b ∈ B, 0 ≤ h ≤ 1, t ∈ R, and Y A ∈ LYA

(t),

E
[(
Yb(t+ h) − PLYS\A

(t)Yb(t+ h)
)(

Y A − PLYS\A
(t)Y A

)]
= 0.

Below, we study properties of local Granger non-causality. First of all, by definition, we receive

YA 0 YB | YS ⇔ YA 0 Yb | YS ∀ b ∈ B.

However, as for Granger non-causality, the transition from a subset A to individual elements
a ∈ A is not immediately clear and is covered in the next proposition, requiring Assumption 3.

Proposition 4.11. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist for v ∈ V . Let A,B ⊆ S ⊆ V , A ∩B = ∅.
Then

YA 0 YB | YS ⇒ Ya 0 Yb | YS ∀ a ∈ A, b ∈ B. (4.6)

Assume additionally that YV is mean-square continuous and Assumption 3 is satisfied. Then

YA 0 YB | YS ⇔ Ya 0 Yb | YS ∀ a ∈ A, b ∈ B. (4.7)

Proof. For relation (4.6), we assume that YA 0 YB | YS , i.e.,

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
= l.i.m.

h→0
PLYS\A

(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

P-a.s. for all b ∈ B and t ∈ R. Together with Lemma 3.1(a,c), this equality yields

l.i.m.
h→0

PLYS\{a} (t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\{a} (t)PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\{a} (t)PLYS\A
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\A
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
P-a.s.

for all a ∈ A, b ∈ B, and t ∈ R. That is, Ya 0 Yb | YS for all a ∈ A, b ∈ B.
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For relation (4.7), we assume that Ya 0 Yb | YS for all a ∈ A, b ∈ B, i.e.,

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\{a} (t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
P-a.s.

for all a ∈ A, b ∈ B, and t ∈ R. Since LYS\{a}(t) is closed in the mean-square, we obtain

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
∈ LYS\{a}(t) ∀ a ∈ A.

Proposition 3.10, which requires Assumption 3, yields

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
∈
⋂

a∈A

LYS\{a}(t) = LYS\A
(t).

Together with Lemma 3.1(a,c), it follows that

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= PLYS\A
(t)l.i.m.

h→0
PLYS

(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\A
(t)PLYS

(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)

= l.i.m.
h→0

PLYS\A
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
P-a.s.

for all b ∈ B and t ∈ R. That is, YA 0 YB | YS . ■

Finally, we show the left decomposition property of local Granger non-causality, which is important
for the discussion of global Markov properties for the local causality graph in Section 7.3.

Lemma 4.12. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist for v ∈ V . Let A,B,C,D ⊆ V be disjoint
subsets. Then, we have

YA∪B 0 YC | YA∪B∪C∪D ⇒ YA 0 YC | YA∪C∪D.

Proof. The assumption YA∪B 0 YC | YA∪B∪C∪D states that, for all c ∈ C and t ∈ R,

l.i.m.
h→0

PLYA∪B∪C∪D
(t)

(
D(jc)Yc(t+ h) −D(jc)Yc(t)

h

)

= l.i.m.
h→0

PLYC∪D
(t)

(
D(jc)Yc(t+ h) −D(jc)Yc(t)

h

)
P-a.s.

Together with Lemma 3.1(a,c), it follows that
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l.i.m.
h→0

PLYA∪C∪D
(t)

(
D(jc)Yc(t+ h) −D(jc)Yc(t)

h

)

= l.i.m.
h→0

PLYA∪C∪D
(t)PLYA∪B∪C∪D

(t)

(
D(jc)Yc(t+ h) −D(jc)Yc(t)

h

)

= l.i.m.
h→0

PLYA∪C∪D
(t)PLYC∪D

(t)

(
D(jc)Yc(t+ h) −D(jc)Yc(t)

h

)

= l.i.m.
h→0

PLYC∪D
(t)

(
D(jc)Yc(t+ h) −D(jc)Yc(t)

h

)
P-a.s.

That is, YA 0 YC | YA∪C∪D. ■

Remark 4.13.

(a) For Granger non-causality, the left decomposition property applies without elaborate proof,
since YA∪B YC | YA∪B∪C∪D if and only if, for all t ∈ R,

LYC
(t, t+ 1) ⊥ LYA∪B

(t) | LYC∪D
(t).

The property of decomposition (C2) from Lemma 3.3 and LYA∪B
(t) = LYA

(t) ∨ LYB
(t)

imply, for all t ∈ R,

LYC
(t, t+ 1) ⊥ LYA

(t) | LYC∪D
(t),

which is YA YC | YA∪C∪D.

(b) The right decomposition property of local Granger non-causality, i.e.,

“YA 0 YB∪C | YA∪B∪C∪D ⇒ YA 0 YB | YA∪B∪D”,

is not to be expected. It also applies to Granger non-causality only under additional
conditions, for example, using the graphoid properties (C4) and (C5) from Lemma 3.3.
The lack of right decomposability can be explained as follows: YA may be (local) Granger
non-causal for YB∪C given YA∪B∪C∪D, since the corresponding information of YA is already
present in YC . However, if YC is omitted, there may be a (local) Granger causal influence
of YA on YB. This topic has been addressed, for example, by Didelez (2006) in the context
of directed local independence graphs.

4.3. Global Granger causality

A third concept of directed influence is to consider Granger causality up to an arbitrary, possibly
infinite, horizon. In discrete time, the concept of global Granger causality goes back to the seminal
work of Sims (1972) and is also called Sims causality. We introduce the following definition
of Granger causality up to a fixed horizon and the definition of global Granger causality as a
counterpart to the discrete-time Definition 4.4 of Eichler (2007), using conditional orthogonality
relations. As usual, we restrict ourselves to linear causal influences between the components.
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Definition 4.14. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩B = ∅. Then YA

is Granger non-causal for YB with respect to YS up to horizon h, h ∈ R, if and only if, for all
t ∈ R,

LYB
(t, t+ h) ⊥ LYA

(t) | LYS\A
(t).

We write YA h YB | YS . Furthermore, YA is global Granger non-causal for YB with respect to
YS if and only if, for all h ≥ 0 and t ∈ R,

LYB
(t, t+ h) ⊥ LYA

(t) | LYS\A
(t).

We write YA ∞ YB | YS .

The analysis of such long-run Granger non-causality relations is a useful complement to under-
standing the relationships between the components of YV . For example, by comparing global
Granger non-causality and Granger non-causality, it is possible to distinguish between long-run
and short-run effects.

Remark 4.15. The characterisations of Granger causality up to a fixed horizon and global
Granger causality are similar to those for Granger causality in Lemma 4.2 and Theorem 4.4,
with analogous proof. Furthermore, analogue relationships as in (4.1) and Proposition 4.5 are
valid. In particular, for h ≥ 0,

YA h YB | YS ⇔ LYb
(s) ⊥ LYa(s′) | LYS\A

(t)

∀ a ∈ A, b ∈ B, t ≤ s ≤ t+ h, s′ ≤ t, t ∈ R,

⇔ PLYS
(t)Yb(t+ h′) = PLYS\A

(t)Yb(t+ h′) P-a.s.

∀ b ∈ B, 0 ≤ h′ ≤ h, t ∈ R,

YA ∞ YB | YS ⇔ LYb
(s) ⊥ LYa(s′) | LYS\A

(t)

∀ a ∈ A, b ∈ B, t ≤ s ≤ t+ h, h ≥ 0, s′ ≤ t, t ∈ R,

⇔ PLYS
(t)Yb(t+ h′) = PLYS\A

(t)Yb(t+ h′) P-a.s.

∀ b ∈ B, 0 ≤ h′ ≤ h, h ≥ 0, t ∈ R.

These characterisations allow, as usual, for an interpretation of the Granger non-causality concepts
as an equality of linear predictions.

For global Granger causality, there is one more natural characterisation that emphasises the
global perspective and provides another natural way to define the concept.

Lemma 4.16. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩ B = ∅. Then
YA ∞ YB | YS if and only if, for all t ∈ R,

LYB
(t,∞) ⊥ LYA

(t) | LYS\A
(t).
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Proof. Suppose that YA ∞ YB |YS . That is, due to Remark 4.15, equivalent to the conditional
orthogonality relation LYb

(s) ⊥ LYa(s′) | LYS\A
(t) for all a ∈ A, b ∈ B, t ≤ s ≤ t + h, h ≥ 0,

s′ ≤ t, and t ∈ R. This statement is the same as LYb
(s) ⊥ LYa(s′) | LYS\A

(t) for all a ∈ A,
b ∈ B, s ≥ t, s′ ≤ t, and t ∈ R. The latter conditional orthogonality relation is equivalent to
LYB

(t,∞) ⊥ LYA
(t) | LYS\A

(t) for all t ∈ R, as in the proof of Lemma 4.2. ■

4.4. Relations between the Granger causality concepts

Given the similarity of the different definitions of Granger causality, we expect relations between
the different concepts. Above all, we expect that from global Granger non-causality follows
Granger non-causality, and from Granger non-causality follows local Granger non-causality. In
the following lemma, we address such relationships. We refer to Dufour and Renault (1998),
Eichler (2013), and Kuersteiner (2010) for relations between the different definitions for discrete-
time processes.

Proposition 4.17. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist. Let A,B ⊆ S ⊆ V , A ∩B = ∅. Then the
following implications hold:

(a) YA ∞ YB | YS ⇒ YA YB | YS .

(b) YA ∞ YS\A | YS ⇔ YA YS\A | YS .

(c) YA YS\A | YS ⇒ YA ∞ YB | YS .

(d) YA YB | YS ⇒ YA 0 YB | YS .

Proof.
(a) This implication is obvious by definition.

(b) The implication ⇒ follows instantly. For the proof of the implication ⇐, we use mathematical
induction to show that

LYS\A
(t+ k) ⊥ LYA

(t) | LYS\A
(t) ∀ t ∈ R, k ∈ N. (4.8)

First, we note that the assumption YA YS\A | YS and Lemma 4.2(b) yield the base case

LYS\A
(t+ 1) ⊥ LYA

(t) | LYS\A
(t) ∀ t ∈ R. (4.9)

Now, replacing t by t+ 1 in the induction hypothesis (4.8) gives

LYS\A
(t+ k + 1) ⊥ LYA

(t+ 1) | LYS\A
(t+ 1) ∀ t ∈ R.

Since we have LYA
(t + 1) = LYA

(t) ∨ LYA
(t, t + 1) by Lemma 3.7, the property (C2) from

Lemma 3.3 implies

LYS\A
(t+ k + 1) ⊥ LYA

(t) | LYS\A
(t+ 1) ∀ t ∈ R,
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which is, by Lemma 3.7 again,

LYS\A
(t+ k + 1) ⊥ LYA

(t) | LYS\A
(t) ∨ LYS\A

(t, t+ 1) ∀ t ∈ R.

This result, the base case (4.9), and the property (C4) yield

LYS\A
(t+ k + 1) ∨ LYS\A

(t, t+ 1) ⊥ LYA
(t) | LYS\A

(t) ∀ t ∈ R.

Finally, LYS\A
(t+ k + 1) ∨ LYS\A

(t, t+ 1) = LYS\A
(t+ k + 1) gives the induction step

LYS\A
(t+ k + 1) ⊥ LYA

(t) | LYS\A
(t) ∀ t ∈ R.

To bring the proof to an end, let h ≥ 0 and denote by ⌈h⌉ the upper Gaussian bracket. Then we
have LYS\A

(t+ h) ⊆ LYS\A
(t+ ⌈h⌉). Relation (4.8), Lemma 3.7, and the property (C2) imply

LYS\A
(t+ h) ⊥ LYA

(t) | LYS\A
(t) ∀ t ∈ R, h ≥ 0,

which is YA YS\A | YS by definition.

(c) This statement follows directly due to (b), B ⊆ S \A, Lemma 3.7, and the property (C2).

(d) Let YA YB | YS . That is LYB
(t+ 1) ⊥ LYA

(t) | LYS\A
(t) for all t ∈ R due to Lemma 4.2(b).

Then, as in the proof of Theorem 4.4 (cf. Proposition 2.4.2 by Lindquist & Picci, 2015), we have

PLYS
(t)Y

B = PLYS\A
(t)Y

B P-a.s.

for all Y B ∈ LYB
(t + 1) and t ∈ R. Furthermore, Remark 2.9 provides that, for b ∈ B and

0 ≤ h ≤ 1, we have D(jb)Yb(t+ h) ∈ LYB
(t+ h) ⊆ LYB

(t+ 1). All together yield

PLYS
(t)D

(jb)Yb(t+ h) = PLYS\A
(t)D

(jb)Yb(t+ h) P-a.s.

Since, in addition, D(jb)Yb(t) ∈ LYS\A
(t) ⊆ LYS

(t) by Remark 2.9 again, we have

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
= PLYS\A

(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)

h

)
.

Letting h → 0, we receive the statement. ■

Remark 4.18. Dufour and Renault (1998), p. 1106, explain the lack of equivalence between
Granger causality and global Granger causality as follows: If there are auxiliary components,
YA might not help to predict YB given YS one step ahead, but YA might help to predict YB

given YS several periods ahead. For example, the values of YA up to time t help to predict
LYB

(t + 1, t + 2), even though the values are useless to predict LYB
(t, t + 1), as YA helps to

predict the environment one period ahead, which in turn influences YA at a subsequent period.
Thus, it is also not surprising that we have equivalence in the case without environment in
Proposition 4.17(b), which applies in particular to bivariate processes, i.e., Ya Yb | Y{a,b} if
and only if Ya ∞ Yb | Y{a,b}.
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The similarities and differences between the various definitions of Granger causality can also be
observed in Example 4.19, where we study Ornstein-Uhlenbeck processes. In particular, we find
that, generally, the opposite direction of Proposition 4.17(d) does not apply.

Example 4.19. Let YV be a k-dimensional Ornstein-Uhlenbeck process (cf. Remark 2.21), such
that the driving k-dimensional Lévy process satisfies Assumption 1, σ(A) ⊆ (−∞, 0) + iR, and
ΣL > 0. For this process, we derive in Corollaries 8.15(b) and 8.24(a) that

Ya ∞ Yb | YV ⇔ Ya Yb | YV ⇔ [Aα]ba = 0 ∀ α = 1, . . . , k − 1,

Ya 0 Yb | YV ⇔ [A]ba = 0.

Of course,

Ya Yb | YV ⇒ [Aα]ba = 0 ∀ α = 1, . . . , k − 1 ⇒ [A]ba = 0

⇒ Ya 0 Yb | YV ,

but, generally, the opposite direction does not hold only if, for example, A is a diagonal matrix. It
is clear from the example that the definition of Granger non-causality is much stronger than the
definition of local Granger non-causality. In general, there is no equivalence. However, Granger
non-causality and global Granger non-causality are equivalent for Ornstein-Uhlenbeck processes,
and the case in Remark 4.18 does not occur.





CHAPTER 5

Undirected influences: Contemporaneous
correlation concepts

Although the main interest is usually in Granger causality, it is also fruitful to think about
undirected relations between components of multivariate processes YV = (YV (t))t∈R in continuous
time. One such approach is the concept of contemporaneous correlation. In discrete time, two
components Za = (Za(t))t∈Z and Zb = (Zb(t))t∈Z are contemporaneously uncorrelated if and only
if, given the amount of information provided by (ZV (s))s≤t, the random variables Za(t+ 1) and
Zb(t+ 1) are uncorrelated. To adapt this approach to the continuous-time setting, we restrict
ourselves to linear influences, and we have to specify the objects corresponding to Za(t+ 1) and
Zb(t+ 1) in continuous time. In doing so, we introduce various concepts of contemporaneous
correlation. We also give characterisations of our definitions both via the conditional orthogonality
relation and via the equality of orthogonal projections. Note that the term undirected means
that there is no temporal order, as opposed to Granger causality. We will therefore use these
concepts to define the undirected edges in our (local) causality graph in Chapter 6.

The chapter at hand is structured as follows. First, in Section 5.1, we introduce a definition of
contemporaneous correlation by considering the correlation of the random variables Ya(t+ h)
and Yb(t + h′) on the entire time interval 0 ≤ h, h′ ≤ 1. In Section 5.2, we then discuss the
limiting case, where the size of the time step tends to zero. In Section 5.3, we study global
contemporaneous correlation, i.e., consider the correlation of the random variables on the entire
future h, h′ ≥ 0. Finally, in Section 5.4, we examine relations between the different concepts.

5.1. Contemporaneous correlation

Let us start with the first concept of an undirected influence, motivated in discrete time by
Eichler (2007) in Definition 2.2, by considering the entire time interval 0 ≤ h ≤ 1.

Definition 5.1. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩B = ∅. Then YA

and YB are contemporaneously uncorrelated with respect to YS if and only if, for all t ∈ R,

LYA
(t, t+ 1) ⊥ LYB

(t, t+ 1) | LYS
(t).

We write YA ≁ YB | YS .

Note that again we are studying relations between subprocesses of YV , so A and B are taken to
be non-empty. By analogy with Lemma 4.2, we obtain the following equivalent characterisations.
Since the proof is very similar, it is omitted.
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Lemma 5.2. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩ B = ∅. Then the
following statements are equivalent:

(a) YA ≁ YB | YS,

(b) LYA
(t+ 1) ⊥ LYB

(t+ 1) | LYS
(t) for all t ∈ R,

(c) ℓYA
(t, t+ 1) ⊥ ℓYB

(t, t+ 1) | LYS
(t) for all t ∈ R,

(d) LYa(s) ⊥ LYb
(s′) | LYS

(t) for all a ∈ A, b ∈ B, t ≤ s, s′ ≤ t+ 1, and t ∈ R.

Remark 5.3. .

(a) In Lemma 5.2(d), we implicitly show that

YA ≁ YB | YS ⇔ Ya ≁ Yb | YS ∀ a ∈ A, b ∈ B, (5.1)

which is useful for verifying if two subprocesses are contemporaneously uncorrelated. Unlike
for Granger non-causality in relation (4.3), no additional assumption has to be made.

(b) Rewriting Lemma 5.2(d), we obtain that

YA ≁ YB | YS ⇔ LYa(t+ h) ⊥ LYb
(t+ h′) | LYS

(t)

∀ a ∈ A, b ∈ B, 0 ≤ h, h′ ≤ 1, t ∈ R,

⇔ LYA
(t+ h) ⊥ LYB

(t+ h′) | LYS
(t)

∀ 0 ≤ h, h′ ≤ 1, t ∈ R.

The former relation provides another natural way to define contemporaneous correlation as
a continuous-time counterpart to Eichler (2007), Definition 2.2.

(c) In view of Eichler (2007), Definition 2.2, it is further plausible to define that YA and YB

are contemporaneously uncorrelated with respect to YS by

LYA
(t+ h) ⊥ LYB

(t+ h) | LYS
(t) ∀ 0 ≤ h ≤ 1, t ∈ R.

In this case, however, no global Markov property (cf. Chapter 7) can be shown in the
associated causality graph. The proofs rely heavily on Definition 5.1 and Lemma 3.3.

Similar to Granger causality, a characterisation of contemporaneous correlation can be given as
the equality of two orthogonal projections. The proof is similar to that of Theorem 4.4 and we
skip the details.

Proposition 5.4. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩ B = ∅. Then
YA ≁ YB | YS if and only if, for all b ∈ B, 0 ≤ h ≤ 1, and t ∈ R,

PLYS
(t)∨LYA

(t,t+1)Yb(t+ h) = PLYS
(t)Yb(t+ h) P-a.s.

Analogously, YA ≁ YB | YS if and only if, for all a ∈ A, 0 ≤ h ≤ 1, and t ∈ R,

PLYS
(t)∨LYB

(t,t+1)Ya(t+ h) = PLYS
(t)Ya(t+ h) P-a.s.
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In other words, the linear prediction of YB (YA) in the near future based on LYS
(t) cannot

be improved by adding additional linear information about YA (YB) in the near future. Note
again that the stationarity assumption is not necessary for the definition of contemporaneous
correlation and its characterisations. But it is essential for the relation (4.3), so we always include
the assumption for simplicity.

5.2. Local contemporaneous correlation

So far, contemporaneous correlation is defined by considering the entire time interval 0 ≤ h ≤ 1.
To define a local version of this concept, note that the characterisation of subprocesses being
contemporaneously uncorrelated in Lemma 5.2(b) means that, for any Y A ∈ LYA

(t + 1) and
Y B ∈ LYB

(t+ 1), t ∈ R, we have

E
[(
Y A − PLYS

(t)Y
A
) (
Y B − PLYS

(t)Y B
)]

= 0. (5.2)

The motivation for the local version is that instead of taking the whole linear spaces LYA
(t+ 1),

we use only the highest derivative D(ja)Ya(t+ h) for each a ∈ A and consider the limiting case
h → 0, similarly for LYB

(t+ 1). For non-trivial limits, we also have to divide by h. Then, we get
the following definition.

Definition 5.5. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist for v ∈ V . Let A,B ⊆ S ⊆ V , A∩B = ∅.
Then YA and YB are locally contemporaneously uncorrelated with respect to YS if and only if,
for all a ∈ A, b ∈ B, and t ∈ R,

lim
h→0

1
h
E
[ (
D(ja)Ya(t+ h) − PLYS

(t)D
(ja)Ya(t+ h)

)
·
(
D(jb)Yb(t+ h) − PLYS

(t)D(jb)Yb(t+ h)
)]

= 0.

We write YA ≁0 YB | YS .

Remark 5.6.

(a) By definition, without any additional assumptions, we get

YA ≁0 YB | YS ⇔ Ya ≁0 Yb | YS ∀ a ∈ A, b ∈ B, (5.3)

which is useful for verifying local contemporaneous correlation.

(b) Definition 5.5 is similar to the characterisation of local instantaneous non-causality for semi-
martingales in Proposition 3 by Comte and Renault (1996), using orthogonal projections
instead of conditional expectations and linear spaces instead of σ-fields.
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(c) Due to Remark 2.9, we have YA ≁0 YB | YS if and only if, for all a ∈ A, b ∈ B, and t ∈ R,

lim
h→0

E

(D(ja)Ya(t+ h) −D(ja)Ya(t)√
h

− PLYS
(t)

(
D(ja)Ya(t+ h) −D(ja)Ya(t)√

h

))

·
(
D(jb)Yb(t+ h) −D(jb)Yb(t)√

h
− PLYS

(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)√

h

)) = 0.

A sufficient condition in analogy to Definition 4.7 of local Granger non-causality and to the
characterisation of contemporaneous correlation in Proposition 5.4 is therefore

l.i.m.
h→0

PLYS
(t)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)√

h

)

= l.i.m.
h→0

PLYS
(t)∨La(t,t+h)

(
D(jb)Yb(t+ h) −D(jb)Yb(t)√

h

)
P-a.s

for all a ∈ A, b ∈ B, and t ∈ R. This statement is shown analogously to Proposition 4.9.

5.3. Global contemporaneous correlation

Finally, we introduce the concept of contemporaneous correlation up to a fixed horizon and the
concept of global contemporaneous correlation, analogous to Granger causality up to a fixed
horizon and global Granger causality. These concepts make it again possible to distinguish
between short-term and long-term effects.

Definition 5.7. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩B = ∅. Then YA

and YB are contemporaneously uncorrelated with respect to YS up to horizon h, h ≥ 0, if and
only if, for all t ∈ R,

LYA
(t, t+ h) ⊥ LYB

(t, t+ h) | LYS
(t).

We write YA ≁h YB | YS . Furthermore, YA and YB are globally contemporaneously uncorrelated
with respect to YS if and only if, for all h ≥ 0 and t ∈ R,

LYA
(t, t+ h) ⊥ LYB

(t, t+ h) | LYS
(t).

We write YA ≁∞ YB | YS .

The usual characterisations of contemporaneous correlation analogous to Lemma 5.2 and Propo-
sition 5.4 apply. Since the proofs are in turn similar to those of Lemma 4.2 and Theorem 4.4,
respectively, they are omitted. In particular, we have
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YA ≁h YB | YS ⇔ LYa(s) ⊥ LYb
(s′) | LYS

(t) (5.4)

∀ a ∈ A, b ∈ B, t ≤ s, s′ ≤ t+ h, t ∈ R,

⇔ PLYS
(t)∨LYA

(t,t+h)Yb(t+ h′) = PLYS
(t)Yb(t+ h′) P-a.s.

∀ b ∈ B, 0 ≤ h′ ≤ h, t ∈ R.

YA ≁∞ YB | YS ⇔ LYa(s) ⊥ LYb
(s′) | LYS

(t) (5.5)

∀ a ∈ A, b ∈ B, t ≤ s, s′ ≤ t+ h, h ≥ 0, t ∈ R,

⇔ PLYS
(t)∨LYA

(t,t+h)Yb(t+ h′) = PLYS
(t)Yb(t+ h′) P-a.s.

∀ b ∈ B, 0 ≤ h′ ≤ h, h ≥ 0, t ∈ R.

Remark 5.8. Because of the relations (5.4) and (5.5), without any further assumptions, we
obtain that, for h ≥ 0,

YA ≁h YB | YS ⇔ Ya ≁h Yb | YS ∀ a ∈ A, b ∈ B,

YA ≁∞ YB | YS ⇔ Ya ≁∞ Yb | YS ∀ a ∈ A, b ∈ B.

For global contemporaneous correlation, there is one more important characterisation that
emphasises the global perspective and provides another natural way to define this concept. The
proof is similar to that of Lemma 4.16, using relation (5.5), so we skip the details.

Lemma 5.9. Let YV be wide-sense stationary and let A,B ⊆ S ⊆ V , A ∩ B = ∅. Then
YA ≁∞ YB | YS if and only if, for all t ∈ R,

LYA
(t,∞) ⊥ LYB

(t,∞) | LYS
(t).

5.4. Relations between the contemporaneous correlation
concepts

Given the similarity of the different definitions of contemporaneous correlation, relationships
between the concepts are expected. Two subprocesses YA and YB being globally contemporaneously
uncorrelated given YS should also be contemporaneously uncorrelated, and two subprocesses YA

and YB being contemporaneously uncorrelated given YS should also be locally contemporaneously
uncorrelated.

Proposition 5.10. Let YV be wide-sense stationary. Suppose that Yv is jv-times mean-square
differentiable, but the (jv + 1)-derivative does not exist for v ∈ V . Let A,B ⊆ S ⊆ V , A ∩B = ∅.
Then the following implications hold:

(a) YA ≁∞ YB | YS ⇒ YA ≁ YB | YS.

(b) YA ≁ YB | YS ⇒ YA ≁0 YB | YS .

These relations follow by definition, because of Remark 2.9, and the relation (5.2). The similar-
ities and differences between the various definitions also become apparent when we study the
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example of an Ornstein-Uhlenbeck process. In particular, we find that the opposite direction in
Proposition 5.10(b) does not hold in general.

Example 5.11. Suppose that YV is the Ornstein-Uhlenbeck process from Example 4.19. Then
we derive in Corollaries 8.17(b) and 8.24(b) that

Ya ≁∞ Yb | YV ⇔ Ya ≁ Yb | YV ⇔
[
AαΣL(A⊤)β

]
ab

= 0 ∀ α, β = 0, . . . , k − 1,

Ya ≁0 Yb | YV ⇔ [ΣL]ab = 0.

Of course, we obtain that

Ya ≁ Yb | YV ⇒
[
AαΣL(A⊤)β

]
ab

= 0 ∀ α, β = 0, . . . , k − 1 ⇒ [ΣL]ab = 0

⇒ Ya ≁0 Yb | YV ,

but, generally, the opposite does not hold only if, for example, A is a diagonal matrix. It is clear
from the example that it is much more restrictive for subprocesses to be contemporaneously
uncorrelated than for them to be locally contemporaneously uncorrelated. However, contempora-
neous correlation and global contemporaneous correlation are equivalent for Ornstein-Uhlenbeck
processes.
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Definition of (local) causality graphs

In this section, we finally introduce our first two graphical models for stationary multivariate
processes YV = (YV (t))t∈R in continuous time. In these graphs, the vertices represent the
different components Ya = (Ya(t))t∈R, a ∈ V = {1, . . . , k}, of the underlying multivariate process.
Furthermore, the vertices are connected by directed and undirected edges, representing concepts
of Granger causality and contemporaneous correlation. Both graphs allow us to visualise and
communicate the corresponding complex dependency structures between the components of the
process YV simply and clearly, which is an important goal of the definition of the graphs.

In principle, it is possible to define a graph with any of the concepts of Granger causality
and contemporaneous correlation. However, our goal is to define graphs with concepts that
are as strong as necessary, but as weak as possible, so that the usual Markov properties for
mixed graphs are satisfied. In addition, for Ornstein-Uhlenbeck processes and even for MCAR
processes and ICCSS processes, global Granger causality and Granger causality as well as global
contemporaneous correlation and contemporaneous correlation coincide (see Chapters 8 and 9).
For these reasons, we do not discuss a global graph and define the causality graph and the local
causality graph as follows.

Definition 6.1. Let YV be wide-sense stationary, mean-square continuous, and satisfy Assump-
tions 3 and 4.

(a) If we define V = {1, . . . , k} as the vertices and the edges ECG via

(i) a b /∈ ECG ⇔ Ya Yb | YV ,

(ii) a b /∈ ECG ⇔ Ya ≁ Yb | YV ,

for a, b ∈ V , a ̸= b, then GCG = (V,ECG) is called (mixed) causality graph for YV .

(b) If we define V = {1, . . . , k} as the vertices and the edges E0
CG via

(i) a b /∈ E0
CG ⇔ Ya 0 Yb | YV ,

(ii) a b /∈ E0
CG ⇔ Ya ≁0 Yb | YV ,

for a, b ∈ V , a ̸= b, then G0
CG = (V,E0

CG) is called local (mixed) causality graph for YV .

In words, in both graphs, each vertex a ∈ V represents one component Ya. Two vertices a and b
are joined by a directed edge a b, whenever Ya is (locally) Granger causal for Yb with respect
to YV , and by an undirected edge a b, whenever Ya and Yb are (locally) contemporaneously
correlated given YV .
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Remark 6.2.

(a) The motivation for the name causality graph comes, of course, from the Granger causality
relations in the directed edges, and also from the fact that the concept of contemporaneous
correlation used for the undirected edges is sometimes called local causality. They are
further named mixed causality graphs because (local) causality graphs can contain two
types of edges. The orientation of the directed edge makes a difference and multiple edges of
the same type and orientation are not allowed. Thus, two vertices a and b can be connected
by up to three edges, namely a b, a b, and a b. Since, usually, we do not consider
purely directed or undirected graphs in the present part of this thesis, we omit the prefix
mixed for ease of notation.

(b) The assumptions are not necessary for the definition of the graphs but are essential for
the usual Markov properties for the graphical models to hold (cf. Chapter 7). Wide-sense
stationarity and continuity in the mean-square are basic requirements, otherwise, for
example, Assumption 3 is not well defined, which is in turn a sufficient assumption for
conditional linear separation and relation (4.3). The relation (4.3) is already used for the
first time in the proof of the local Markov property. Assumption 4 is only required in the
proof of the global AMP Markov property for the causality graph. Since we show global
Markov properties for the local causality graph only in special cases, Assumption 4 is not
necessary there.

(c) From Proposition 4.17 and 5.10, we already know that a b /∈ ECG implies a b /∈ E0
CG

and, similarly, a b /∈ ECG gives a b /∈ E0
CG. In summary, E0

CG ⊆ ECG. The graph
defined by the local versions of Granger causality and contemporaneous correlation has fewer
edges than the graph GCG based on the classical Granger causality and contemporaneous
correlation and, in general, the graphs are not equal. An advantage of the local causality
graph G0

CG is that it allows the modelling of more general graphs than the causality graph
GCG, see Remark 8.30.
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Markov properties for (local) causality graphs

The (local) causality graph encodes (local) Granger causality and (local) contemporaneous
correlation between the different components of the process YV . Conversely, the resulting
graphs can be associated with a set of conditional orthogonality relations imposed on YV ,
commonly known as Markov properties (cf. Lauritzen, 2004; Whittaker, 2008). These Markov
properties allow, for instance, to infer (local) Granger non-causality and (local) contemporaneous
uncorrelatedness between multivariate subprocesses by analysing certain paths in the graphical
models. They even provide graphical criteria for inferring such relationships between multivariate
subprocesses given only partial information. In this way, the graphical models provide additional
information about dependency structures in subprocesses, which is a desirable property of
graphical models.

In this chapter, we introduce various levels of Markov properties, structured in the following way.
We start with the motivation and validity of the pairwise, local, and block-recursive causal Markov
property for the (local) causality graph in Section 7.1. We then move on to two global Markov
properties, namely the global AMP Markov property and the global Granger-causal Markov
property for the causality graph in Section 7.2. Finally, we discuss global Markov properties for
the local causality graph in Section 7.3.

7.1. Pairwise, local, and block-recursive Markov property

Let us start with simple Markov properties that we would intuitively expect to be satisfied in
any reasonably defined graphical model. First of all, the (local) causality graph visualises the
pairwise relationships between the components of a process YV by definition. This is the pairwise
causal Markov property.

Proposition 7.1.

(a) Let GCG = (V,ECG) be the causality graph for YV . Then YV satisfies the pairwise causal
Markov property with respect to GCG, i.e., for all a, b ∈ V , a ̸= b,

(i) a b /∈ ECG ⇒ Ya Yb | YV ,

(ii) a b /∈ ECG ⇒ Ya ≁ Yb | YV .

(b) Let G0
CG = (V,E0

CG) be the local causality graph for YV . Then YV satisfies the pairwise
causal Markov property with respect to G0

CG.
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Further, in a mixed graph G = (V,E), we denote by

pa(a) = {v ∈ V | v a ∈ E} and ne(a) = {v ∈ V | v a ∈ E}

the set of parents and the set of neighbours of a ∈ V , respectively. If we then consider a vertex
a ∈ V in the causality graph, all vertices b ∈ V \ (pa(a) ∪ {a}) are Granger non-causal for
a due to b a /∈ ECG, i.e., Yb Ya | YV . A direct consequence of relation (4.3) is that
YV \(pa(a)∪{a}) Ya | YV . Similarly, for a vertex a ∈ V , all vertices b ∈ V \ (ne(a) ∪ {a}) are
contemporaneously uncorrelated to a due to b a /∈ ECG, i.e., Yb ≁ Ya | YV . Relation (5.1)
yields YV \(ne(a)∪{a}) ≁ Ya | YV . These two properties are called the local causal Markov property
for the causality graph. The same reasoning works for the local causality graph, using relations
(4.7) and (5.3) respectively, resulting in the following statement.

Proposition 7.2.

(a) Let GCG = (V,ECG) be the causality graph for YV . Then YV satisfies the local causal
Markov property with respect to GCG, i.e., for all a ∈ V ,

(i) YV \(pa(a)∪{a}) Ya | YV ,

(ii) YV \(ne(a)∪{a}) ≁ Ya | YV .

(b) Let G0
CG = (V,E0

CG) be the local causality graph for YV . Then YV satisfies the local causal
Markov property with respect to G0

CG.

Remark 7.3. We emphasise that we already use wide-sense stationarity, mean-square continuity,
and Assumption 3 in the application of the relations (4.3) and (4.7), which justifies that we
include the assumptions in the definition of the graph.

Furthermore, in a mixed graph G = (V,E), we denote by

pa(A) =
⋃

a∈A

pa(a) and ne(A) =
⋃

a∈A

ne(a)

the set of parents and neighbours, respectively, of vertices in A ⊆ V . Again, we expect components
that are not parents of A to be Granger non-causal for A. Components that are not neighbours of
A should be contemporaneously uncorrelated to A. These two properties are the block-recursive
causal Markov property. The above reasoning for the local causal Markov property carries over,
using again the relations (4.3), (4.7), (5.1), and (5.3).

Proposition 7.4.

(a) Let GCG = (V,ECG) be the causality graph for YV . Then YV satisfies the block-recursive
causal Markov property with respect to GCG, i.e., for all A ⊆ V ,

(i) YV \(pa(A)∪A) YA | YV ,

(ii) YV \(ne(A)∪A) ≁ YA | YV .

(b) Let G0
CG = (V,E0

CG) be the local causality graph for YV . Then YV satisfies the block-
recursive causal Markov property with respect to G0

CG.
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Remark 7.5. In the (local) causality graph, the three Markov properties are satisfied because of
the assumptions we make. Although we expect these Markov properties to hold in any reasonable
graphical model, this is not self-evident. Eichler (2012) therefore proposes to specify mixed
graphs that satisfy the block-recursive causal Markov property as graphical time series models in
his Theorem 2.1 and Definition 2.3.

Finally, to illustrate the various Granger-causal Markov properties for a (local) causality graph,
we present Example 2.1 of Eichler (2012), which is constructed from a 5-dimensional VAR(1)
process in discrete time. This example can easily be obtained as the local causality graph of an
appropriate 5-dimensional Ornstein-Uhlenbeck process (cf. Proposition 8.28). However, likely, it
cannot be reproduced as a causality graph (cf. Remark 8.30), so this example must be taken as
hypothetical. Since similar causality graphs can be constructed, and because of the illustrative
nature of this example, we include it anyway.

Example 7.6. Let YV be a 5-dimensional process in continuous time, whose associated (local)
causality graph is given in Figure 7.1.

2

1 3

4

5

Figure 7.1.: (Local) causality graph for Example 7.6

Since 1 2 /∈ ECG (1 2 /∈ E0
CG) and 2 4 /∈ ECG (2 4 /∈ E0

CG), the pairwise causal Markov
property implies Y1 Y2 |YV (Y1 0 Y2 |YV ) and Y2 ≁ Y4 |YV (Y2 ≁0 Y4 |YV ). Moreover, using
the local causal Markov property, it follows that Y{1,3,5} Y2 | YV (Y{1,3,5} 0 Y2 | YV ), since
the vertex 2 has only vertex 4 as a parent. Similarly, Y{4,5} ≁ Y2 | YV (Y{4,5} ≁0 Y2 | YV ), since
the vertex 2 has both vertices 1 and 3 as neighbours. Finally, the block-recursive causal Markov
property provides Y1 Y{2,4} | YV (Y1 0 Y{2,4} | YV ), since only vertex 1 is neither in the set
{2, 4} nor a parent of vertex 2 or 4. Analogously, Y{4,5} ≁ Y{1,2} | YV (Y{4,5} ≁0 Y{1,2} | YV ),
since the vertices 4 and 5 are neither in the set {1, 2} nor a neighbour of vertex 1 or 2.

7.2. Global Markov properties for causality graphs

The three Markov properties we discussed so far only encode Granger non-causality and contem-
poraneous uncorrelatedness with respect to YV . For a better understanding of the dependency
structure of YV , we are also interested in relations with respect to partial information, i.e., the
dependency structure of subprocesses YC , C ⊆ V . To obtain such relations from the graphical
models, the following approaches are available.

The first approach is based on the notion of m-separation, a path-oriented separation concept in
mixed graphs. Based on this concept, we discuss the global AMP Markov property, which relates
m-separation to conditional orthogonality of linear subspaces generated by subprocesses over
the entire time span. The second approach is based on the concept of augmentation separation,
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which constructs an undirected graph from the mixed graph by augmentation and then considers
classical separation in the resulting undirected graph. This concept leads to the alternative
augmentation separation criterion for the global AMP Markov property. Finally, we introduce the
global Granger-causal Markov property, which provides sufficient criteria for Granger non-causality
and contemporaneous uncorrelatedness with respect to partial information. The graphical criteria
used are less restrictive than the separation requirements in the global AMP Markov property.
Since global Markov properties for the local causality graph require additional assumptions, the
results for the local model are presented in the separate Section 7.3.

7.2.1. Global AMP Markov property

We start with the concept of m-separation since the augmentation separation approach is not
straightforward in the sense that the graph is modified during the test. To define m-separation,
we give definitions from graph theory, which can be found in Eichler (2007, 2009, 2012).

Definition 7.7. Let G = (V,E) be a mixed graph and a, b ∈ V . A path π between two vertices
a and b is a sequence π = ⟨e1, . . . , en⟩ of edges ei ∈ E, such that ei is an edge between vi−1 and
vi for some sequence of vertices v0 = a, v1, . . . , vn−1, vn = b in V . We say that a and b are the
endpoints of the path π, while v1, . . . , vn−1 are intermediate vertices. We call n the length of π.
An intermediate vertex vi on π is said to be a collider on the path if the edges preceding and
succeeding vi on π both have an arrowhead or a dashed tail at vi, i.e., vi , vi ,

vi , or vi . Otherwise, the vertex vi is said to be a non-collider on the path. A
path π between a and b is said to be m-connecting given a set C ⊆ V if

(a) every non-collider on π is not in C, and

(b) every collider on π is in C.

Otherwise, we say π is m-blocked given C. If all paths between a and b are m-blocked given
C, then a and b are said to be m-separated given C. Similarly, sets A,B ⊆ V are said to be
m-separated in G given C, denoted by A ▷◁m B |C [G] if, for every pair a ∈ A and b ∈ B, a and
b are m-separated given C.

The concept of m-separation is the natural extension of d-separation for directed graphs (Pearl,
1994) and the classical separation for undirected graphs (cf. Definition 7.17) to mixed graphs
(Richardson, 2003). It was earlier also called d-separation by Spirtes, Richardson, Meek, Scheines,
and Glymour (1998) and Koster (1999). Since we are considering mixed graphs, which are generally
not directed, we prefer the notion of m-separation. Note that condition (a) in Definition 7.7
differs from the original definition of m-connecting paths by Richardson (2003), and takes into
account that we are considering paths that may intersect themselves, as in Eichler (2007, 2011).
Nevertheless, the concept of m-separation in Definition 7.7 is equivalent to the definition of
Richardson (2003). In contrast, Eichler (2012) uses another natural extension of d-separation,
called p-separation. This concept was introduced by Levitz et al. (2001) for chain graphs and, in
contrast to m-separation, vi is considered to be a non-collider.
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Now we present the main result, the so-called global AMP Markov property.

Theorem 7.8. Let GCG = (V,ECG) be the causality graph for YV . Then YV satisfies the global
AMP Markov property with respect to GCG, i.e., for all disjoint subsets A,B,C ⊆ V , we have

A ▷◁m B | C [GCG] ⇒ LYA
⊥ LYB

| LYC
.

In other words, Theorem 7.8 states that if the sets A and B are m-separated given C, the
random variables Y A ∈ LYA

and Y B ∈ LYB
are uncorrelated after removing all of the information

provided by LYC
.

Remark 7.9. Similar statements can be found, e.g., in Eichler (2001), Theorem 4.8, Eichler
(2007), Theorem 3.1, and Eichler (2012), Theorem 4.1. However, the graphs defined in these
references are based on discrete-time edge definitions. The definition of the undirected edges
in Eichler (2012) further differs from our definition. The linear continuous-time analogue of his
definition is LYa(t, t+ 1) ⊥ LYb

(t, t+ 1) | LYV
(t) ∨ LV \{a,b}(t, t+ 1). However, most of the proof

steps from the aforementioned literature apply and we give the references where appropriate.

We divide the proof of the global AMP Markov property into four auxiliary lemmata that build
on each other and culminate in the proof of Theorem 7.8. We begin with a purely graph-theoretic
lemma, for which we introduce the following notations. In a mixed graph G = (V,E),

ch(a) = {v ∈ V | a v ∈ E} and dis(a) = {v ∈ V | v · · · a or v = a}

denote the set of children and the district of a ∈ V . Furthermore, for A ⊆ V ,

ch(A) =
⋃

a∈A

ch(a) and dis(A) =
⋃

a∈A

dis(a)

denote the set of children and the district of A ⊆ V , respectively. We further note that the proof
of the first lemma does not depend on the specific edge definition in a mixed graph. The proof of
Lemma B.1 of Eichler (2007) thus carries over without changes and we get the following result.

Lemma 7.10. Let G = (V,E) be a mixed graph and A,B ⊆ V be disjoint subsets. Then

A ▷◁m B | V \ (A ∪B) [G] ⇒ dis (A ∪ ch (A)) ∩ dis (B ∪ ch(B)) = ∅.

The second lemma establishes a first relation between m-separation and conditional orthogonality.

Lemma 7.11. Let GCG = (V,ECG) be the causality graph for YV . Suppose that A,B ⊆ V are
disjoint subsets, let t ∈ R, and k ∈ N. Then

A ▷◁m B | V \ (A ∪B) [GCG] ⇒ LYA
(t) ⊥ LYB

(t) | LYV \(A∪B)(t) ∨ LYA∪B
(t− k).

The proof of Lemma 7.11 is a step-by-step adaptation of the proof of Lemma 4.1 by Eichler
(2012). It is an induction over k, using Lemma 7.10 and the properties of a semi-graphoid given
in Lemma 3.3. For the reader’s convenience, we provide the details.
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Proof. For the base case, we note that, for a ∈ dis(A) and b ∈ V \ dis(A), a b /∈ ECG. So
Ya ≁ Yb | YV and relation (5.1) gives Ydis(A) ≁ YV \dis(A) | YV . Then, by Lemma 5.2(b),

LYdis(A)(t) ⊥ LYV \dis(A)(t) | LYV
(t− 1)

for t ∈ R. In addition, A ⊆ dis(A) by definition of the district and B ⊆ V \dis(A) by Lemma 7.10.
Hence, using the properties (C3) and (C1) from Lemma 3.3, we obtain

LYA
(t) ⊥ LYB

(t) | LYV
(t− 1) ∨ LYV \(A∪B)(t).

A suitable combination of linear spaces yields, as claimed,

LYA
(t) ⊥ LYB

(t) | LYV \(A∪B)(t) ∨ LYA∪B
(t− 1)

for t ∈ R. Now let us assume the induction hypothesis

LYA
(t) ⊥ LYB

(t) | LYV \(A∪B)(t) ∨ LYA∪B
(t− k) (7.1)

for t ∈ R and k ∈ N. To obtain the induction step, we find that, for vertices b ∈ B and
a ∈ V \ (B ∪ ch(B)), we have b a /∈ ECG. Therefore, Yb Ya | YV and the relation (4.3)
yields YB YV \(B∪ch(B)) | YV . Then, by Lemma 4.2(b),

LYV \(B∪ch(B))(t+ 1) ⊥ LYB
(t) | LYV \B

(t)

for t ∈ R. The property (C3) with LYB
(t) = LYB

(t) ∨ LYB
(t− k) and a suitable combination of

linear spaces yield

LYV \(B∪ch(B))(t+ 1) ⊥ LYB
(t) | LYA

(t) ∨ LYV \(A∪B)(t) ∨ LYA∪B
(t− k)

for t ∈ R and k ∈ N. The induction hypothesis (7.1), the previous conditional orthogonality, and
properties (C4) and (C1) imply

LYA
(t) ∨ LYV \(B∪ch(B))(t+ 1) ⊥ LYB

(t) | LYV \(A∪B)(t) ∨ LYA∪B
(t− k)

for t ∈ R and k ∈ N. Property (C3) yields the first auxiliary statement

LYA
(t) ∨ LYV \dis(B∪ch(B))(t+ 1) ⊥ LYB

(t) |

LYV \(A∪B)(t) ∨ LYA∪B
(t− k) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1).

(7.2)

In addition, Lemma 7.10 states that ch(A) ∩ dis(B ∪ ch(B)) = ∅. Therefore, for a ∈ A and
b ∈ dis(B ∪ ch(B)), we have a b /∈ ECG. Hence, Ya Yb | YV and relation (4.3) yields
YA Ydis(B∪ch(B)) | YV . Then, by Lemma 4.2(b),

LYdis(B∪ch(B))(t+ 1) ⊥ LYA
(t) | LYV \A

(t)



7.2. Global Markov properties for causality graphs 73

for t ∈ R. Consequently, property (C3) yields the second auxiliary statement

LYB∪ch(B)(t+ 1) ⊥ LYA
(t) | LYV \A

(t) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1). (7.3)

Moreover, the definition of the district provides a b /∈ ECG for a ∈ dis(B ∪ ch(B)) and
b ∈ V \ dis(B ∪ ch(B)). Therefore, Ya ≁ Yb | YV and Ydis(B∪ch(B)) ≁ YV \dis(B∪ch(B)) | YV due to
relation (5.1). Then, by Lemma 5.2(b),

LYdis(B∪ch(B))(t+ 1) ⊥ LYV \dis(B∪ch(B))(t+ 1) | LYV
(t)

for t ∈ R. Property (C3) and appropriate decomposition of linear spaces yield

LYB∪ch(B)(t+ 1) ⊥ LYV \dis(B∪ch(B))(t+ 1) | LYV \A
(t) ∨ LYA

(t) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1).

In conjunction with relation (7.3), this conditional orthogonality and property (C4) provide

LYB∪ch(B)(t+ 1) ⊥ LYV \dis(B∪ch(B))(t+ 1) ∨ LYA
(t) | LYV \A

(t) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1).

By suitable decomposition of linear spaces and property (C3), we obtain

LYB∪ch(B)(t+ 1) ⊥ LYV \dis(B∪ch(B))(t+ 1) ∨ LYA
(t) |

LYV \(A∪B)(t) ∨ LYB
(t) ∨ LYA∪B

(t− k) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1).

Together with relation (7.2), this conditional orthogonality and property (C4) imply

LYB∪ch(B)(t+ 1) ∨ LYB
(t) ⊥ LYV \dis(B∪ch(B))(t+ 1) ∨ LYA

(t) |

LYV \(A∪B)(t) ∨ LYA∪B
(t− k) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1).

Since B ⊆ B ∪ ch(B) and A ⊆ V \ dis(B ∪ ch(B)), we have

LYB∪ch(B)(t+ 1) ⊥ LYV \dis(B∪ch(B))(t+ 1) |

LYV \(A∪B)(t) ∨ LYA∪B
(t− k) ∨ LYdis(B∪ch(B))\(B∪ch(B))(t+ 1).

The property (C3), together with B ⊆ B ∪ ch(B) and A ⊆ V \ dis(B ∪ ch(B)) again, provides

LYB
(t+ 1) ⊥ LYA

(t+ 1) | LYV \(A∪B)(t) ∨ LYA∪B
(t− k) ∨ LYV \(A∪B)(t+ 1).

If we finally summarise the linear spaces in the condition, we obtain

LYB
(t+ 1) ⊥ LYA

(t+ 1) | LYV \(A∪B)(t+ 1) ∨ LYA∪B
(t− k).

Since this relation is valid for all t ∈ R, we can substitute t by t− 1 to obtain the induction step

LYB
(t) ⊥ LYA

(t) | LYV \(A∪B)(t) ∨ LYA∪B
(t− k − 1)

for t ∈ R and k ∈ N. ■
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In the third lemma, we eliminate the linear space LYA∪B
(t− k) in the condition by considering

the transition k → ∞.

Lemma 7.12. Let GCG = (V,ECG) be the causality graph for YV . Suppose that A,B ⊆ V are
disjoint subsets and let t ∈ R. Then

A ▷◁m B | V \ (A ∪B) [GCG] ⇒ LYA
(t) ⊥ LYB

(t) | LYV \(A∪B)(t).

Proof. First, note that LYA∪B
(t− k) ∨ LYV \(A∪B)(t) ⊇ LYA∪B

(t− k − 1) ∨ LYV \(A∪B)(t) for t ∈ R
and k ∈ N, and

⋂
k∈N

(
LYA∪B

(t− k) ∨ LYV \(A∪B)(t)
)

= LYV \(A∪B)(t),

due to Lemma 3.15. Additionally, Theorems 4.31(b) and 4.32(c) of Weidmann (1980) yield

l.i.m.
k→∞

PLYA∪B
(t−k)∨LYV \(A∪B) (t)Y = PLYV \(A∪B) (t)Y for Y ∈ L2. (7.4)

Let Y A ∈ LYA
(t) ⊆ L2 and Y B ∈ LYB

(t) ⊆ L2. Then, using the relations (3.1) and (7.4), we
obtain

E
[(
Y A − PLYV \(A∪B) (t)Y

A
)(

Y B − PLYV \(A∪B) (t)Y B

)]

= lim
k→∞

E
[(
Y A − PLYA∪B

(t−k)∨LYV \(A∪B) (t)Y
A
)(

Y B − PLYA∪B
(t−k)∨LYV \(A∪B) (t)Y B

)]
.

The expression on the right-hand side is zero, since LYA
(t) ⊥ LYB

(t) | LYV \(A∪B)(t) ∨ LYA∪B
(t− k)

for t ∈ R and k ∈ N, due to Lemma 7.11. Thus, the expression on the left-hand side is zero as
well and LYA

(t) ⊥ LYB
(t) | LYV \(A∪B)(t). ■

Remark 7.13. In the proof of Lemma 7.12, we apply Assumption 4, respectively Lemma 3.15,
for the first time.

In the last of the four lemmata, we consider the transition t → ∞.

Lemma 7.14. Let GCG = (V,ECG) be the causality graph for YV . Suppose that A,B ⊆ V are
disjoint subsets. Then

A ▷◁m B | V \ (A ∪B) [GCG] ⇒ LYA
⊥ LYB

| LYV \(A∪B) .

Proof. Note that LYS
(n) ⊆ LYS

(n+1) for n ∈ N, and Lemma 3.7(d) provides
⋃

n∈N LYS
(n) = LYS

P-a.s. for any S ⊆ V . Then Theorems 4.31(b) and 4.32(b) of Weidmann (1980) imply that, for
Y A ∈ LYA

and Y B ∈ LYB
, we have

l.i.m.
n→∞

PLYA
(n)Y

A = PLYA
Y A = Y A, l.i.m.

n→∞
PLYB

(n)Y
B = PLYB

Y B = Y B,

l.i.m.
n→∞

PLV \(A∪B)(n)Y
A = PLV \(A∪B)Y

A, l.i.m.
n→∞

PLV \(A∪B)(n)Y
B = PLV \(A∪B)Y

B.
(7.5)
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Furthermore, triangle inequality, Pythagorean theorem, and the relations (7.5) imply∥∥∥∥PLYV \(A∪B) (n)PLYA
(n)Y

A − PLYV \(A∪B)
Y A

∥∥∥∥
L2

≤
∥∥∥∥PLYV \(A∪B) (n)

(
PLYA

(n)Y
A − Y A

)∥∥∥∥
L2

+
∥∥∥∥PLYV \(A∪B) (n)Y

A − PLYV \(A∪B)
Y A

∥∥∥∥
L2

≤
∥∥∥PLYA

(n)Y
A − Y A

∥∥∥
L2

+
∥∥∥∥PLYV \(A∪B) (n)Y

A − PLYV \(A∪B)
Y A

∥∥∥∥
L2

→ 0

as n → ∞. The analogous result holds if A is replaced by B. In other words,

Y A − PLYV \(A∪B)
Y A = l.i.m.

n→∞

(
PLYA

(n)Y
A − PLYV \(A∪B) (n)PLYA

(n)Y
A
)

and

Y B − PLYV \(A∪B)
Y B = l.i.m.

n→∞

(
PLYB

(n)Y
B − PLYV \(A∪B) (n)PLYB

(n)Y
B
)
.

Finally, relation (3.1) yields

E
[(
Y A − PLYV \(A∪B)

Y A
) (
Y B − PLYV \(A∪B)

Y B
)]

= lim
n→∞

E
[(

PLYA
(n)Y

A − PLYV \(A∪B) (n)PLYA
(n)Y

A
)

·
(
PLYB

(n)Y B − PLYV \(A∪B) (n)PLYB
(n)Y B

)]
.

The expression on the right-hand side is zero, since LYA
(t) ⊥ LYB

(t) | LYV \(A∪B)(t) for t ∈ R, due
to Lemma 7.12. Thus, the left-hand side is zero as well and LYA

⊥ LYB
| LYV \(A∪B) . ■

For the final proof of Theorem 7.8, we establish additional notations. In a mixed graphG = (V,E),

an(a) = {v ∈ V |v · · · a or v = a} and an(A) =
⋃

a∈A

an(a)

denote the set of ancestors of a ∈ V and A ⊆ V , respectively. Further, for A ⊆ V , GA = (A,EA)
denotes the induced subgraph of the mixed graph, where EA contains all edges e ∈ E that have
both endpoints in A. Then the proof of Theorem 3.1 of Eichler (2007) carries over to continuous
time, we include the details so that the proof of the global AMP Markov property is complete.

Proof of Theorem 7.8. By Corollary 1 and Proposition 2 of Koster (1999), we have

A ▷◁m B | C [GCG] ⇔ A ▷◁m B | C [GCG,an(A∪B∪C)] ⇔ A′ ▷◁m B′ | C [GCG,an(A∪B∪C)]

for disjoint subsets A′ and B′ with A ⊆ A′, B ⊆ B′, and A′ ∪B′ ∪C = an(A∪B∪C). Lemma 7.14
yields LYA′ ⊥ LYB′ | LYC

and an application of the properties (C1) and (C2) from Lemma 3.3
implies LYA

⊥ LYB
| LYC

. ■

We include a visualisation of the m-separation criterion and the global AMP Markov property,
continuing with our Example 7.6 and Example 3.2 by Eichler (2007), respectively.
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Example 7.15. First, consider the path 1 3 2 4 3 5 in the causality graph. This
path is m-blocked given {3, 4} since, for example, 2 is a collider but not in {3, 4}. Alternatively,
4 is a non-collider but in {3, 4}. In fact, every path between 1 and 5 is m-blocked given {3, 4},
which we explain as follows. Every path between 1 and 5 contains either 3 5, 3 4 5,
or 2 4 5. The first two paths are m-blocked by vertex 3, which is a non-collider but
in {3, 4}. The last path is blocked by vertex 4, which is also a non-collider but in {3, 4}. So
{1} ▷◁m {5} | {3, 4} applies and the global AMP Markov property provides LY1 ⊥ LY5 | LY{3,4} .

To establish that two sets A and B are m-separated given C, one must show that there is no
m-connecting path between A and B given C. Since paths may be self-intersecting, the number
of paths between A and B may be infinite. Although the search for m-connecting paths can
be restricted to paths where no edges occur twice with the same orientation, an algorithmic
implementation of such a search does not seem to be straightforward (cf. Eichler, 2011). This is
one reason to study the augmentation separation approach. Additionally, this approach has the
advantage of allowing us to establish connections to the (undirected) partial correlation graph in
Section 11.2. In the following, we apply the concept of augmentation separation to the causality
graph. For further applications of the augmentation separation approach, see Eichler (2007, 2011)
and Richardson (2003), where the following definitions are provided.

Definition 7.16. Let G = (V,E) be a mixed graph and a, b ∈ V . Two vertices a and b are said
to be collider connected if they are connected by a pure collider path, which is a path on which
every intermediate vertex is a collider. Then the undirected augmented graph Ga = (V,Ea) is
derived from a mixed graph G = (V,E) via

a b /∈ Ea ⇔ a and b are not collider connected in G.

Note that every single edge is trivially considered to be a collider path. Thus, every directed
and undirected edge in the causality graph corresponds to an undirected edge in the augmented
causality graph, and the augmented causality graph generally has more edges than the causality
graph. We further define the concept of separation in undirected graphs as follows.

Definition 7.17. Let G = (V,E) be an undirected graph. For A,B,C ⊆ V , we say that C
separates A and B if every path from a vertex a ∈ A to a vertex b ∈ B contains at least one
vertex from the separating set C. We write A ▷◁ B | C for short.

Based on these definitions, we obtain an alternative form of the global AMP Markov property.
This result follows from Theorem 7.8 and Eichler (2011), who, in Theorem 3.1, states in general
mixed graphs the equivalence

A ▷◁m B | C [G] ⇔ A ▷◁ B | C [(Gan(A∪B∪C))a].

Proposition 7.18. Let GCG = (V,ECG) be the causality graph for YV . Then, for all disjoint
subsets A,B,C ⊆ V , we have

A ▷◁ B | C [(GCG,an(A∪B∪C))a] ⇒ LYA
⊥ LYB

| LYC
.
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As usual, we give an example for visualisation purposes and continue with our Example 7.6
analogous to Example 3.5 provided by Eichler (2007).

Example 7.19. In Figure 7.1, we find that the vertices 1 and 4 are connected by the pure
collider path 1 2 4. Hence, the vertices 1 and 4 are connected by an additional edge in the
augmented causality graph (GCG)a. There are no other edges that need to be added, so (GCG)a

is given in Figure 7.2.

2

1 3

4

5

Figure 7.2.: Augmented causality graph for Example 7.19

Since an({1, 3, 4, 5}) = {1, 2, 3, 4, 5} = V in the original mixed graph and 1 ▷◁ 5 | {3, 4} [(GCG)a]
in the undirected augmented graph, we obtain that LY1 ⊥ LY5 | LY{3,4} due to Proposition 7.18.
This relation is, of course, the same conditional orthogonality relation as in Example 7.15.

7.2.2. Global Granger-causal Markov property

In this section, we derive sufficient graphical conditions for Granger non-causality and for
subprocesses to be contemporaneously uncorrelated. An obvious idea is to start again with
m-separation as in the global AMP Markov property. However, this condition is much stronger
than necessary. In fact, it is sufficient to require that only those paths are m-blocked, that point
in the “right” direction. A motivating example to justify this demand is given by Eichler (2007)
on p. 341. Below, we introduce graph-theoretic notions and then present the so-called global
Granger-causal Markov property.

Definition 7.20. Let G = (V,E) be a mixed graph and a, b ∈ V . A path π between vertices
a and b is called b-pointing if it has an arrowhead at the endpoint b. More generally, a path π

between subsets A and B, A,B ⊆ V , is said to be B-pointing if it is b-pointing for some b ∈ B.
Furthermore, a path π between vertices a and b is said to be bi-pointing if it has an arrowhead
at both endpoints a and b.

Theorem 7.21. Let GCG = (V,ECG) be the causality graph for YV . Then YV satisfies the global
Granger-causal Markov property with respect to GCG, i.e., for all disjoint subsets A,B,C ⊆ V ,
the following conditions hold.

(a) If every B-pointing path in GCG between A and B is m-blocked given B ∪ C, then

YA YB | YA∪B∪C .

(b) If a b /∈ ECG for all a ∈ A and b ∈ B, and if every bi-pointing path in GCG between A

and B is m-blocked given A ∪B ∪ C, then

YA ≁ YB | YA∪B∪C .
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A similar result in discrete time can be found in Eichler (2007), Theorems 4.1 and 4.2, and Eichler
(2012), Theorem 4.2. The proof of Theorem 7.21 is, as expected, similar to the discrete-time proof
in Eichler (2007, 2012). It is based on the properties of a semi-graphoid (cf. Lemma 3.3), the
block-recursive causal Markov property (cf. Proposition 7.4), and on the auxiliary Lemma 7.12.
As usual, we include the details for completeness.

Proof. As a preliminary consideration, we note that by Lemma 7.12, analogously to the proof of
Theorem 7.8 (cf. Eichler, 2007, Theorem 3.1), it follows that, for disjoint subsets A,B,C ⊆ V ,

A ▷◁m B | C [GCG] ⇒ LYA
(t) ⊥ LYB

(t) | LYC
(t) (7.6)

for t ∈ R. The proof of statement (a) is divided into two steps.

Step 1: We show by contradiction that if every B-pointing path in GCG between A and B is
m-blocked given B ∪ C, then it follows that A ▷◁m pa(B) \ (B ∪ C) |B ∪ C [GCG]. So suppose
A ̸▷◁m pa(B) \ (B ∪ C) |B ∪ C [GCG]. Then there are vertices a ∈ A and u ∈ pa(B) \ (B ∪ C),
as well as an m-connecting path π given B ∪ C between a and u. Since u ∈ pa(B), there is a
vertex b ∈ B, such that u b ∈ ECG. We connect the path π and the edge u b to a new
path π̃ from a to b. The path π̃ is m-connecting given B ∪ C, because, on the one hand, π is
m-connecting given B ∪C. On the other hand, the path π̃ has only one new intermediate vertex
u, which is a non-collider since the succeeding edge is of the form u b. In addition, u /∈ B ∪C.
In summary, π̃ is a B-pointing path between A and B and m-connecting given B ∪ C, which
contradicts the premise in statement (a).

Step 2: Based on the preliminary consideration (7.6) and Step 1, we prove statement (a). First,
A ∩ (pa(B) \ (B ∪ C)) = ∅ respectively A ∩ pa(B) = ∅, else there are vertices a ∈ A and b ∈ B

such that a b ∈ ECG is a B-pointing path between A and B and m-connecting given B ∪ C.
Then, since by Step 1 A ▷◁m pa(B) \ (B ∪C) |B ∪C [GCG], and the subsets A, pa(B) \ (B ∪C),
and B ∪ C are disjoint, the relation (7.6) provides

LYA
(t) ⊥ LYpa(B)\(B∪C)(t) | LYB∪C

(t) (7.7)

for t ∈ R. Further, Proposition 7.4 states YV \(pa(B)∪B) YB | YV . By Lemma 4.2(b), that is

LYB
(t+ 1) ⊥ LYV \(pa(B)∪B)(t) | LYpa(B)∪B

(t).

Using the property (C3) from Lemma 3.3, we obtain

LYB
(t+ 1) ⊥ LYV \(pa(B)∪B∪C)(t) | LYpa(B)∪B∪C

(t).

Then the property (C2), A ∩ (pa(B) ∪B ∪ C) = ∅, and a suitable combination of linear spaces
yield

LYB
(t+ 1) ⊥ LYA

(t) | LYB∪C
(t) ∨ LYpa(B)\(B∪C)(t). (7.8)
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We bring the relations (7.7) and (7.8) together with the property (C4), to obtain

LYpa(B)\(B∪C)(t) ∨ LYB
(t+ 1) ⊥ LYA

(t) | LYB∪C
(t).

Finally, the property (C2) yields

LYB
(t+ 1) ⊥ LYA

(t) | LYB∪C
(t)

for t ∈ R. By Lemma 4.2(b), this is YA YB | YA∪B∪C .

The proof of statement (b) is divided into three steps and, for better readability, we abbreviate
S = A ∪B ∪ C.

Step 1: We prove that pa(B)\S ⊆ V \(pa(A)∪S) and by symmetry pa(A)\S ⊆ V \(pa(B)∪S),
i.e., we show by contradiction that

(pa(B) \ S) ∩ (pa(A) ∪ S) = (pa(B) ∩ pa(A)) \ S = ∅.

So suppose this intersection is not empty. Then there is a vertex u ∈ (pa(B) ∩ pa(A)) \ S and we
find vertices a ∈ A and b ∈ B together with a path a u b. This path is m-connecting given
S since u is a non-collider and u /∈ S. At the same time, this path is bi-pointing. Thus, the path
contradicts the premise in statement (b).

Step 2: We prove that pa(A) \ S ▷◁m pa(B) \ S | S [GCG] by contradiction. Therefore, suppose
that pa(A) \S ̸▷◁m pa(B) \S |S [GCG]. Then there are vertices u ∈ pa(A) \S and v ∈ pa(B) \S,
as well as an m-connecting path π given S between u and v. Since u ∈ pa(A), there is a vertex
a ∈ A and an edge a u. Analogously, there is a vertex b ∈ B and an edge v b, since
v ∈ pa(B). We complete the path π to a new path π̃ from a to b with these two edges. Obviously,
π̃ is bi-pointing. Furthermore, π̃ is m-connecting given S, since π is m-connecting given S, u
and v are non-colliders, and u, v /∈ S. This result contradicts the premise in statement (b).

Step 3: Based on Steps 1 and 2, as well as the preliminary consideration (7.6), we prove
statement (b). On assumption, a b /∈ ECG, i.e., we have Ya ≁ Yb | YV for a ∈ A and b ∈ B.
Relation (5.1) yields YA ≁ YB | YV and Lemma 5.2(b) implies

LYA
(t+ 1) ⊥ LYB

(t+ 1) | LYV
(t)

for t ∈ R. Furthermore, Proposition 7.4 states that YV \(pa(A)∪A) YA | YV . By Lemma 4.2(b),
that is

LYA
(t+ 1) ⊥ LYV \(pa(A)∪A)(t) | LYpa(A)∪A

(t)

for t ∈ R. The two previous conditional orthogonality relations, the property (C4), and a suitable
combination of linear spaces give

LYA
(t+ 1) ⊥ LYB

(t+ 1) ∨ LYV \(pa(A)∪A)(t) | LYpa(A)∪A
(t).
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Then the property (C3) yields

LYA
(t+ 1) ⊥ LYB

(t+ 1) ∨ LYV \(pa(A)∪S)(t) | LYpa(A)∪S
(t).

Since by Step 1 pa(B) \ S ⊆ V \ (pa(A) ∪ S), the property (C2) implies

LYA
(t+ 1) ⊥ LYB

(t+ 1) ∨ LYpa(B)\S
(t) | LYpa(A)∪S

(t). (7.9)

In addition, Step 2 yields pa(A) \ S ▷◁m pa(B) \ S | S [GCG], where pa(A) \ S, pa(B) \ S, and S
are disjoint. Thus, the relation (7.6) provides

LYpa(A)\S
(t) ⊥ LYpa(B)\S

(t) | LYS
(t) (7.10)

for t ∈ R. Again, Proposition 7.4 states that YV \(pa(B)∪B) YB |YV . That is, by Lemma 4.2(b),

LYB
(t+ 1) ⊥ LYV \(pa(B)∪B)(t) | LYpa(B)∪B

(t)

for t ∈ R. The property (C3) gives

LYB
(t+ 1) ⊥ LYV \(pa(B)∪S)(t) | LYpa(B)∪S

(t).

Step 1, i.e., pa(A) \ S ⊆ V \ (pa(B) ∪ S) and the property (C2) yield

LYB
(t+ 1) ⊥ LYpa(A)\S

(t) | LYpa(B)∪S
(t).

In conjunction with relation (7.10), property (C4) gives

LYpa(A)\S
(t) ⊥ LYB

(t+ 1) ∨ LYpa(B)\S
(t) | LYS

(t).

Then, together with relation (7.9), the property (C3) yields

LYA
(t+ 1) ∨ LYpa(A)\S

(t) ⊥ LYB
(t+ 1) ∨ LYpa(B)\S

(t) | LYS
(t).

Finally, the property (C2) gives

LYA
(t+ 1) ⊥ LYB

(t+ 1) | LYS
(t)

for t ∈ R. By Lemma 5.2(b), this statement is YA ≁ YB | YA∪B∪C . ■

As a consequence of the global Granger-causal Markov property, we find that the m-separation
A ▷◁m B |C [GCG] is indeed quite strong, implying Granger non-causality between YA and YB in
both directions, as well as YA and YB being contemporaneously uncorrelated given YA∪B∪C .
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Corollary 7.22. Let GCG = (V,ECG) be the causality graph for YV and let A,B,C ⊆ V be
disjoint subsets. Then

A ▷◁m B | C [GCG] ⇒ YA YB | YA∪B∪C , YB YA | YA∪B∪C , YA ≁ YB | YA∪B∪C .

Proof. We refer to Eichler (2012), Corollary 4.1, and Eichler (2007), Corrolary 4.3, for the
proof of YA YB | YA∪B∪C and by symmetry YB YA | YA∪B∪C . We include the proof of
YA ≁ YB | YA∪B∪C , which is not carried out in these references but is based on the same ideas.

Suppose that A ▷◁m B | C, i.e., every path between A and B is m-blocked given C. First,
a b /∈ ECG for a ∈ A and b ∈ B, otherwise a b is an m-connecting path given C between
A and B. Second, in particular, every bi-pointing path π between A and B is m-blocked given
C. If π contains no intermediate vertices in A ∪B, then π is also m-blocked given A ∪B ∪ C. If
π contains intermediate vertices in A ∪B, then it can be partitioned as π = ⟨π1, π2⟩, where π1 is
a path between A and some b ∈ B with no intermediate points in B, i.e., b is the first vertex
on the path π that is in B. Further, π1 can be decomposed as π1 = ⟨π11, π12⟩, where π12 is a
path between some a ∈ A and b with no intermediate points in A, i.e., a is the last vertex on π1

that is in A. Because of the assumption, π12 is m-blocked given C. Since it has no intermediate
vertices in A ∪B, it is also m-blocked given A ∪B ∪ C. Then π is m-blocked given A ∪B ∪ C

and Theorem 7.21 implies YA ≁ YB | YA∪B∪C . ■

To visualise the global Granger-causal Markov property, we continue with Example 7.6, see also
Example 4.2 by Eichler (2012).

Example 7.23. In Example 7.15, we find that {1} ▷◁m {5} | {3, 4}. Therefore, in the causality
graph, Corollary 7.22 gives Y1 Y5 | Y{1,3,4,5}, Y5 Y1 | Y{1,3,4,5}, and Y1 ≁ Y5 | Y{1,3,4,5}.

We further analyse the relations between Y1 and Y4 with respect to Y{1,3,4}. We first notice that
{1} and {4} are not m-separated given {3}, since the path 1 3 2 4 is m-connecting
given {3}. Therefore, we cannot use Corollary 7.22. We have to apply the global Granger-causal
Markov property from Theorem 7.21. If we look at the 1-pointing paths between the vertices 4
and 1, we find that a path of this form always ends with a directed edge 3 1. Since in this
case 3 is a non-collider, such a path is always m-blocked given {1, 3}. Hence, Y4 Y1 | Y{1,3,4}.
Similarly, we can analyse all bi-pointing paths between vertices 1 and 4. Again, a path of this form
always ends with a directed edge 3 1 at vertex 1. Since vertex 3 is a non-collider, such a path is
always m-blocked given {1, 3, 4}. Furthermore, we have 1 4 /∈ ECG. Hence, Y1 ≁ Y4 | Y{1,3,4}.
Finally, all 4-pointing paths end with either 3 4, 3 5 4, or 2 4 5 4. These
paths are m-blocked given {3, 4}, since the first two are m-blocked by the non-collider 3 and the
last one is m-blocked by the non-collider 4. Hence, Y1 Y4 | Y{1,3,4}.

Remark 7.24. We note that the concept of m-separation is connected to Granger non-causality
up to horizon h and global Granger non-causality, which shows that causality graphs also provide
a natural framework for discussing indirect effects. Replacing the definitions of Eichler (2007)
with our definitions, the proof is analogous to that of his Theorem 4.5, so we skip the details. It
applies that, for disjoint A,B,C ⊆ V and κ ∈ N,
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A ∩ anκ(B) = ∅, A ▷◁m anκ(B) \ (B ∪ C) |B ∪ C [GCG] ⇒ YA κ YB | YA∪B∪C ,

A ∩ an(B) = ∅, A ▷◁m an(B) \ (B ∪ C) |B ∪ C [GCG] ⇒ YA ∞ YB | YA∪B∪C .

In these relations, anκ(A) denotes the set of ancestors of degree κ ∈ N of A, which are given
by vertices v ∈ V such that v ∈ A or v is connected to some a ∈ A by a path v · · · a of
length less than or equal to κ. We set an0(A) = A.

As a summary of this section, we highlight the main message: We define the causality graph to
illustrate pairwise relationships between variables. However, the associated causality graph can
be analysed using various levels of Markov properties. These properties allow us to infer new
Granger non-causality relations and knowledge about subprocesses being contemporaneously
uncorrelated, even with respect to partial information.

7.3. Global Markov properties for local causality graphs

For the local causality graph, global Markov properties are, as expected, much more difficult to
derive due to the weaker definition of the edges. However, at least under additional assumptions,
the property of m-separation implies local Granger non-causality in both directions and local
contemporaneous uncorrelatedness. We start with the first special case, where C = V \ (A ∪B).

Proposition 7.25. Let G0
CG = (V,E0

CG) be the local causality graph for YV and let A,B ⊆ V be
disjoint subsets. Then

A ▷◁m B | V \ (A ∪B) [G0
CG] ⇒ YA 0 YB | YV , YB 0 YA | YV , YA ≁0 YB | YV .

Proof. Due to Lemma 7.10, the m-separation implies that ch(A) ∩B = ∅, A ∩ ch(B) = ∅, and
ne(A)∩B = ∅. Using the relations (4.7) and (5.3), it follows that YA 0 YB |YV , YB 0 YA |YV ,
and YA ≁0 YB | YV . ■

In the second special case, we assume that pa(A) ∪ pa(B) ⊆ A∪B ∪C. Then, the block-recursive
Markov property and the left decomposition property result in the desired relations.

Proposition 7.26. Let G0
CG = (V,E0

CG) be the local causality graph for YV and let A,B,C ⊆ V

be disjoint subsets. Suppose that pa(A) ∪ pa(B) ⊆ A ∪B ∪ C. Then

A ▷◁m B | C [G0
CG] ⇒ YA 0 YB | YA∪B∪C , YB 0 YA | YA∪B∪C , YA ≁0 YB | YA∪B∪C .

Proof. First of all, Proposition 7.4 states that YV \(B∪pa(B)) 0 YB | YV . By assumption, we
have B ∪ pa(B) ⊆ A ∪ B ∪ C. Furthermore, A ∩ pa(B) = ∅. Otherwise, there are vertices
a ∈ A and b ∈ B such that a b ∈ E0

CG is an m-connecting path between A and B given
C. This path is a contradiction to A ▷◁m B | C [G0

CG]. Thus, B ∪ pa(B) ⊆ B ∪ C and relation
(4.7) yields YV \(B∪C) 0 YB | YV . Then the left decomposition property (cf. Lemma 4.12) gives
YA 0 YB | YA∪B∪C . By symmetry of m-separation, YB 0 YA | YA∪B∪C also follows.
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It remains to show that YA ≁0 YB | YA∪B∪C . Proposition 7.4 provides YV \(B∪ne(B)) ≁0 YB | YV .

Note that A ∩ ne(B) = ∅. Else there are vertices a ∈ A and b ∈ B such that a b ∈ E0
CG

is an m-connecting path between A and B given C. This path is again a contradiction to
A ▷◁m B | C [G0

CG]. So relation (5.3) yields YA ≁0 YB | YV . By Definition 5.5 and due to
Remark 2.9, we get

0 = lim
h→0

1
h
E
[ (
D(ja)Ya(t+ h) − PLYV

(t)D
(ja)Ya(t+ h)

)
·
(
D(jb)Yb(t+ h) − PLYV

(t)D(jb)Yb(t+ h)
)]

= lim
h→0

E
[(

D(ja)Ya(t+ h) −D(ja)Ya(t)
h

− PLYV
(t)

(
D(ja)Ya(t+ h) −D(ja)Ya(t)

h

))

·
(
D(jb)Yb(t+ h) − PLYV

(t)D(jb)Yb(t+ h)
)]

(7.11)

for t ∈ R, a ∈ A, and b ∈ B. Due to Proposition 7.4 and A ∪ pa(A) ⊆ A ∪B ∪ C, we receive, as
in the first part of this proof, YV \(A∪B∪C) 0 YA | YV , which means that

l.i.m.
h→0

PLYV
(t)

(
D(ja)Ya(t+ h) −D(ja)Ya(t)

h

)

= l.i.m.
h→0

PLYA∪B∪C
(t)

(
D(ja)Ya(t+ h) −D(ja)Ya(t)

h

)
P-a.s.,

for t ∈ R and a ∈ A. Relation (7.11) and similar arguments as in the proof of Proposition 4.9 imply

0 = lim
h→0

E
[(

D(ja)Ya(t+ h) −D(ja)Ya(t)
h

− PLYA∪B∪C
(t)

(
D(ja)Ya(t+ h) −D(ja)Ya(t)

h

))

·
(
D(jb)Yb(t+ h) − PLYV

(t)D(jb)Yb(t+ h)
)]

= lim
h→0

1
h
E
[ (
D(ja)Ya(t+ h) − PLYA∪B∪C

(t)D
(ja)Ya(t+ h)

)
·
(
D(jb)Yb(t+ h) − PLYV

(t)D(jb)Yb(t+ h)
)]

for t ∈ R, a ∈ A, and b ∈ B. In a second step, Proposition 7.4 and B ∪ pa(B) ⊆ A∪B ∪C imply
YV \(A∪B∪C) 0 YB | YV , which analogously yields

0 = lim
h→0

1
h
E
[ (
D(ja)Ya(t+ h) − PLYA∪B∪C

(t)D
(ja)Ya(t+ h)

)
·
(
D(jb)Yb(t+ h) − PLYA∪B∪C

(t)D(jb)Yb(t+ h)
)]

for t ∈ R, a ∈ A, and b ∈ B. That is, YA ≁0 YB | YA∪B∪C . ■
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Remark 7.27. The assumption pa(B) ⊆ A∪B∪C is sufficient for YA 0 YB |YA∪B∪C . Further,
an(A ∪B ∪C) = A ∪B ∪C implies pa(A) ∪ pa(B) ⊆ A ∪B ∪C, so we also have a condition for
local Granger non-causality and local contemporaneous uncorrelatedness for ancestral subsets.

Remark 7.28. The lack of the right decomposability of local Granger non-causality (cf. Re-
mark 4.13) is the key issue when trying to derive a global Markov property without additional
assumptions. In the case A ∪B ∪ C ⊂ V , Corollary 1 and Proposition 2 of Koster (1999) yield

A ▷◁m B | C [G0
CG] ⇔ A′ ▷◁m B′ | C [G0

CG,an(A∪B∪C)]

for disjoint subsets A′ and B′ with A ⊆ A′, B ⊆ B′, and A′ ∪B′ ∪C = an(A ∪B ∪C), as in the
proof of Theorem 7.8. According to Proposition 7.25, we can conclude that

YA′ 0 YB′ | YA′∪B′∪C , YB′ 0 YA′ | YA′∪B′∪C , and YA′ ≁0 YB′ | YA′∪B′∪C

in [G0
CG,an(A∪B∪C)]. These statements also hold in [G0

CG], since the definitions of local Granger
non-causality and local contemporaneous uncorrelatedness do not depend on whether we choose
the subgraph with vertices in A′ ∪B′ ∪ C or the whole graph with vertices in V . To get, e.g.,
YA 0 YB | YA∪B∪C , we not only need left decomposability but also right decomposability.

In the causality graph, we solve this problem by conducting a (discrete) induction into the past
using the conditional orthogonality relation, which satisfies properties (C1) to (C5) and thus
provides much flexibility in the proofs. Didelez (2006) was able to give sufficient and satisfiable
criteria for right decomposability in the local conditional independence graph in her Proposition
4.9. In our local causality graph, her result corresponds to the implication

“YA 0 YB∪C∪D1 | YA∪B∪C∪D and YB∪C 0 YA∪D2 | YA∪B∪C∪D

⇒ YA 0 YB | YA∪B∪D”,

where D = D1 ∪D2. However, this statement does not seem to be valid in our model. Further
research on sufficient and satisfiable assumptions for the right decomposition property and for
the global Markov properties is required beyond the scope of this thesis.

To visualise the above results for the local causality graph, we continue with Example 7.6.

Example 7.29. In Example 7.15, we establish that {1} ▷◁m {5} | {3, 4}, which does not
depend on whether we consider the causality graph or the local causality graph. Moreover,
pa({1}) = {3} and pa({5}) = {4}, so pa({1}) ∪ pa({5}) ⊆ {1, 3, 4, 5}. Therefore, in the local
causality graph, Proposition 7.26 implies the relations Y1 0 Y5 | Y{1,3,4,5}, Y5 0 Y1 | Y{1,3,4,5},
and Y1 ≁0 Y5 | Y{1,3,4,5}, analogous to the relations in the causality graph in Example 7.23.
However, since {1} ▷̸◁m {4}|{3}, and we do not have a global Granger-causal Markov property, we
cannot derive the same relations between Y1 and Y4 with respect to Y{1,3,4} from Example 7.23.

In summary, even if we cannot derive global Markov properties for the local causality graph with
the desired generality, we can still make statements about local Granger non-causality relations
and subprocesses being locally contemporaneously uncorrelated given partial information.



CHAPTER 8

(Local) Causality graphs for MCAR processes

In this chapter, we gain a deeper understanding of the causality graph and the local causality
graph. We find that the graph definitions are not only reasonable in terms of Markov properties
but even interpretatively meaningful in examples. For this purpose, we apply the graphical
models to causal multivariate continuous-time autoregressive processes YV = (YV (t))t∈R of order
p ≥ 1 (MCAR(p) processes) and to their special case of Ornstein-Uhlenbeck processes. In this
way, we also provide a simple visual representation of the corresponding dependency structures
for this important class of processes.

MCAR(p) processes were introduced in Remark 2.21 as state space models with matrices of
a certain simple structure. MCAR models are thus already state space models in controller
canonical form and are therefore denoted by (A,B,C, L) throughout the present chapter. As in
Chapter 2, we simply assume that the k-dimensional driving Lévy process satisfies Assumption 1
and that σ(A) ⊆ (−∞, 0) + iR applies. We do not explicitly restate these assumptions.

We open this chapter with the derivation of alternative representations of MCAR processes and
their highest derivative processes. These representations are important for computing orthogonal
projections on linear spaces, which in turn are essential for characterising the edges in the
(local) causality graph. To the best of our knowledge, such orthogonal projections have not
yet been treated in the existing literature. Rozanov (1967), III, 5, is devoted to the topic of
prediction of general stationary processes. He touches briefly on univariate processes with a
spectral density function that is a rational function, but the representations in that book are
based on a specific maximal decomposition of the spectral density function. This decomposition
is generally not expressible as a simple formula, so he only considers univariate examples. His
methods are therefore not suitable for our purposes. Furthermore, as elaborated on in Chapter 9,
Brockwell and Lindner (2015) only consider the prediction of univariate CARMA processes and
the multivariate generalisation in Basse-O’Connor et al. (2019) is inconsistent with the univariate
result.

For MCAR processes, not only do we compute the necessary orthogonal projections, but MCAR
processes with ΣL > 0 also satisfy the assumptions of the (local) causality graph. Thus, the
graphical models are well defined and satisfy the preferred Markov properties. The representations
of the orthogonal projections then lead to the main result, the characterisation of the edge types in
the (local) causality graph by the model parameters of the MCAR process. These characterisations
are interpretatively meaningful and comparable to the discrete-time analogue of VAR models in
Eichler (2007). They are even clear enough to discuss the existence of (local) causality graphs.

It is noteworthy that the Gaussian MCAR process and the Gaussian Ornstein-Uhlenbeck process
considered in Comte and Renault (1996) and Mogensen and Hansen (2022) are special cases of
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Lévy-driven MCAR processes. The characterisations of the directed and undirected influences of
Comte and Renault (1996) in a bivariate Gaussian CAR model align with our characterisations
in the local causality graph. Furthermore, the characterisations of the directed and undirected
edges in the canonical local independence graph for Gaussian Ornstein-Uhlenbeck processes in
Mogensen and Hansen (2022) are also consistent with our characterisations in the local causality
graph. However, the Graph Ornstein-Uhlenbeck process in Courgeau and Veraart (2022) is a
network without defining the direction of the edges and is therefore not comparable to our model.

We structure the chapter as follows. In Section 8.1, we derive alternative representations and
orthogonal projections of MCAR processes. In Section 8.2, we show that MCAR processes satisfy
the assumptions of the (local) causality graph, so that both graphical models are well defined and
the desired Markov properties are satisfied. Then, in Section 8.3, we come to the main results
of the chapter, the characterisations of the directed and undirected edges by model parameters
of MCAR processes. For Ornstein-Uhlenbeck processes, the characterisations are included as a
special case. In this section, we also give a detailed interpretation of the obtained characterisations
and draw parallels to the literature. Note that in Chapter 9, we consider the application to
invertible controller canonical state space (ICCSS) processes, so we examine the relationships
between the results for MCAR processes and those for ICCSS processes in that chapter.

8.1. Orthogonal projections of MCAR processes

The orthogonal projections of MCAR processes are of great importance throughout this chapter.
We need them primarily to characterise the directed and undirected edges for MCAR processes
in the (local) causality graph, but also to check that the graphical models are well defined.
Therefore, in this section, we compute the required orthogonal projections of MCAR processes
and their (p− 1)-th derivatives on different subspaces. To do this, we first give an alternative
representation of Ya(t+ h) and D(p−1)Ya(t+ h), a ∈ V , some step h ≥ 0 into the future, that is
suitable for the prediction purpose. Note that we consider D(p−1)Ya(t+ h) because, according to
Remark 2.25, it is the highest existing derivative of the MCAR process, which we require for the
definition of local Granger causality and local contemporaneous correlation, respectively.

Lemma 8.1. Let YV be an MCAR(p) process. Further, let t ∈ R, h ≥ 0, and a ∈ V . Then

Ya(t+ h) = e⊤
a CeAh

p∑
j=1

EjD
(j−1)YV (t) + e⊤

a C
∫ t+h

t
eA(t+h−u)BdL(u) P-a.s. and

D(p−1)Ya(t+ h) = e⊤
a E⊤

p e
Ah

p∑
j=1

EjD
(j−1)YV (t) + e⊤

a E⊤
p

∫ t+h

t
eA(t+h−u)BdL(u) P-a.s.,

where Ej, j = 1, . . . , p, are defined in equation (1.1), and A,B,C in Remark 2.21.

Proof. Let t ∈ R, h ≥ 0, and a ∈ V . First of all, because of relation (2.6),

Ya(t+ h) = e⊤
a YV (t+ h) = e⊤

a CX(t+ h) = e⊤
a C

(
eAhX(t) +

∫ t+h

t
eA(t+h−u)BdL(u)

)
.
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We define the j-th k-block X (j) = (X(j)(t))t∈R of X = (X(t))t∈R as in equation (2.19). Then,
together with relation (2.20), it follows that

Ya(t+ h) = e⊤
a CeAh

p∑
j=1

EjX
(j)(t) + e⊤

a C
∫ t+h

t
eA(t+h−u)BdL(u)

= e⊤
a CeAh

p∑
j=1

EjD
(j−1)YV (t) + e⊤

a C
∫ t+h

t
eA(t+h−u)BdL(u).

For the proof of the representation of D(p−1)Ya(t+ h), we note that the MCAR(p) process YV is
(p− 1)-times differentiable with D(p−1)YV (t+ h) = X(p)(t+ h) = E⊤

p X(t+ h) by relation (2.20).
Replacing C with E⊤

p in the previous calculation gives the assertion. ■

From the alternative representations of Ya(t+h) and D(p−1)Ya(t+h) in Lemma 8.1, we conclude
that, on the one hand, the past (YV (s))s≤t of all components and, on the other hand, the future
of the Lévy process (L(s) −L(t))t≤s≤t+h is relevant for Ya(t+ h) and D(p−1)Ya(t+ h). With this
knowledge, we can specify the orthogonal projections.

Proposition 8.2. Let YV be an MCAR(p) process. Further, let t ∈ R, h ≥ 0, S ⊆ V , and a ∈ V .
Then

PLYS
(t)Ya(t+ h) = e⊤

a CeAh
∑
v∈S

p∑
j=1

EjevD
(j−1)Yv(t)

+ e⊤
a CeAh

∑
v∈V \S

p∑
j=1

EjevPLYS
(t)D

(j−1)Yv(t) P-a.s. and

PLYS
(t)D

(p−1)Ya(t+ h) = e⊤
a E⊤

p e
Ah
∑
v∈S

p∑
j=1

EjevD
(j−1)Yv(t)

+ e⊤
a E⊤

p e
Ah

∑
v∈V \S

p∑
j=1

EjevPLYS
(t)D

(j−1)Yv(t) P-a.s.

Proof. Let h ≥ 0, t ∈ R, S ⊆ V , and a ∈ V . First, for v ∈ S, Yv(t), D(1)Yv(t), . . . , D(p−1)Yv(t)
are already in LYS

(t) by Remark 2.9 and are therefore projected onto themselves. Thus,

PLYS
(t)

e⊤
a CeAh

p∑
j=1

EjD
(j−1)YV (t)

 = PLYS
(t)

e⊤
a CeAh

∑
v∈V

p∑
j=1

EjevD
(j−1)Yv(t)


= e⊤

a CeAh
∑
v∈S

p∑
j=1

EjevD
(j−1)Yv(t)

+ e⊤
a CeAh

∑
v∈V \S

p∑
j=1

EjevPLYS
(t)D

(j−1)Yv(t) P-a.s.

In addition, (YS(s))s≤t and (L(s) − L(t))t≤s≤t+h are independent (Marquardt & Stelzer, 2007,
Theorem 3.12), so e⊤

a C
∫ t+h

t eA(t+h−u)BdL(u) is projected to zero. Together with Lemma 8.1,
the representation of PLYS

(t)Ya(t+h) follows. The representation of PLYS
(t)D

(p−1)Ya(t+h) again
follows by replacing C with E⊤

p in the previous calculation. ■
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To apply local Granger causality and local contemporaneous correlation to MCAR processes, we
also need the orthogonal projections in the following theorem. Note that, indeed, the limits exist,
which is essential for the well-definedness of local Granger causality in Definition 4.7.

Theorem 8.3. Let YV be an MCAR(p) process. Further, let t ∈ R, S ⊆ V , and a ∈ V . Then

l.i.m.
h→0

PLYS
(t)

(
D(p−1)Ya(t+ h) −D(p−1)Ya(t)

h

)

= e⊤
a E⊤

p A
∑
v∈S

p∑
j=1

EjevD
(j−1)Yv(t) + e⊤

a E⊤
p A

∑
v∈V \S

p∑
j=1

EjevPLYS
(t)D

(j−1)Yv(t) P-a.s.

and, for h ≥ 0,

D(p−1)Ya(t+ h) − PLYV
(t)D

(p−1)Ya(t+ h) = e⊤
a E⊤

p

∫ t+h

t
eA(t+h−u)BdL(u) P-a.s.

Proof. Let t ∈ R, h ≥ 0, S ⊆ V , and a ∈ V . From Proposition 8.2, we already know that

PLYS
(t)

(
D(p−1)Ya(t+ h) −D(p−1)Ya(t)

h

)

= e⊤
a E⊤

p

(
eAh − Ikp

)
h

∑
v∈S

p∑
j=1

EjevD
(j−1)Yv(t)

+ e⊤
a E⊤

p

(
eAh − Ikp

)
h

∑
v∈V \S

p∑
j=1

EjevPLYS
(t)D

(j−1)Yv(t) P-a.s.

Now limh→0(eAh − Ikp)/h = A implies the first assertion

l.i.m.
h→0

PLYS
(t)

(
D(p−1)Ya(t+ h) −D(p−1)Ya(t)

h

)

= e⊤
a E⊤

p A
∑
v∈S

p∑
j=1

EjevD
(j−1)Yv(t) + e⊤

a E⊤
p A

∑
v∈V \S

p∑
j=1

EjevPLYS
(t)D

(j−1)Yv(t) P-a.s.

The second assertion follows directly from Lemma 8.1 and Proposition 8.2 with S = V . ■

Remark 8.4. For S = V , the orthogonal projections in the previous statements are simplified.
For t ∈ R, h ≥ 0, and a ∈ V , we obtain the explicit representation

PLYV
(t)Ya(t+ h) = e⊤

a CeAh
∑
v∈V

p∑
j=1

EjevD
(j−1)Yv(t) = e⊤

a CeAhX(t) P-a.s.

This result is the multivariate generalisation of Theorem 2.8 by Brockwell and Lindner (2015) for
univariate CARMA processes. It also applies that
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PLYV
(t)D

(p−1)Ya(t+ h) = e⊤
a E⊤

p e
AhX(t) P-a.s. and

l.i.m.
h→0

PLYV
(t)

(
D(p−1)Ya(t+ h) −D(p−1)Ya(t)

h

)
= e⊤

a E⊤
p AX(t) P-a.s.

If S ⊂ V , the representations of the orthogonal projections in Proposition 8.2 and Theorem 8.3 are
only partially determined. For a more explicit representation in this case, we refer, as previously
mentioned, to Rozanov (1967), III, 5. Since more explicit representations are not relevant for the
derivation of the (local) causality graph, we do not explore this topic further.

8.2. Establishment of (local) causality graphs for MCAR
processes

In the following, we establish that the (local) causality graph for the MCAR process YV is well
defined. To achieve this, we verify that YV is wide-sense stationary, mean-square continuous, and
satisfies Assumptions 3 and 4. This preliminary work then results in the establishment of the
(local) causality graph for MCAR processes and the validity of the desired Markov properties.
Of the aforementioned assumptions, the validity of both wide-sense stationarity and continuity
in the mean square is immediately clear from Remarks 2.12 and 2.13. Therefore, we focus our
discussion on the remaining two assumptions.

The proof of Assumption 3 on the spectral density function of the MCAR process (see equations
(2.11) and (2.18) for its representation) is elaborate, but the basic idea is simple. First, we
observe that ΣL > 0 implies fYV YV

(λ) > 0 for λ ∈ R. Then, on the one hand, we prove that, for
disjoint (and non-empty) subsets A,B ⊆ V , an epsilon bound for

dAB(λ) := fYAYA
(λ)−1/2fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ)fYAYA
(λ)−1/2

can always be found on compact intervals. On the other hand, the matrix function dAB(λ),
λ ∈ R, converges to a boundary matrix as |λ| → ∞, which can also be bounded. Together, these
auxiliary results then give Assumption 3. We start with the simple part of Assumption 3, namely
that fYV YV

(λ) > 0 for λ ∈ R.

Lemma 8.5. Let YV be an MCAR(p) process with ΣL > 0. Then fYV YV
(λ) > 0 for λ ∈ R.

Proof. The transfer function P (iλ)−1, λ ∈ R, has full rank and we have ΣL > 0 by assumption.
Therefore, the positive definiteness of fYV YV

(λ) = 1/(2π)P (iλ)−1ΣL(P (−iλ)−1)⊤ follows for
λ ∈ R. ■

Now to the second part of Assumption 3, where we claim that there exists an 0 < ε < 1, such that
dAB(λ) ≤ (1 − ε)Iα for (almost) all λ ∈ R and for all disjoint subsets A,B ⊆ V with #A = α.
To prove this statement, we require several auxiliary lemmata. First, we show that there exists
an epsilon bound on compact intervals.
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Lemma 8.6. Let YV be an MCAR(p) process with ΣL > 0. Further, let A,B ⊆ V , A ∩B = ∅,
and denote #A = α. Then, for each compact interval K ⊂ R, there exists an 0 < εK < 1, such
that

dAB(λ) ≤ (1 − εK)Iα ∀ λ ∈ K.

Proof. Since det(P (iλ)) has no zeros due to N (P ) = σ(A) ⊆ (−∞, 0) + iR, the spectral density
function fYV YV

(λ) = 1/(2π)P (iλ)−1ΣL(P (−iλ)−1)⊤, λ ∈ R, is continuous. Then Bhatia (1997)
states in Corollary VI.1.6 that there exist continuous functions σ1(λ), . . . , σk(λ), λ ∈ R, which
are the eigenvalues of fYV YV

(λ). Since fYV YV
(λ) is Hermitian and positive definite (cf. Lemma 2.4

and Lemma 8.5), these eigenvalues are in (0,∞) and, in particular, the functions can be taken as
ordered by 0 < σ1(λ) ≤ . . . ≤ σk(λ) for λ ∈ R, see Bhatia (1997), p. 154. Furthermore, Bernstein
(2009) provides in Lemma 8.4.1 that σ1(λ)Ik ≤ fYV YV

(λ) ≤ σk(λ)Ik and by Bernstein (2009),
Proposition 8.1.2, we obtain

σ1(λ)Iα+β ≤ fYA∪BYA∪B
(λ) and fYAYA

(λ) ≤ σk(λ)Iα ∀ λ ∈ R,

denoting #B = β. Let λ ∈ R. Using Proposition 8.1.2 by Bernstein (2009) gives

(fYA∪BYA∪B
(λ))−1 ≤ 1

σ1(λ)Iα+β

and, together with Bernstein (2009), Proposition 8.2.5, we receive

(
fYAYA

(λ) − fYAYB
(λ)fYBYB

(λ)−1fYBYA
(λ)
)−1

≤ 1
σ1(λ)Iα.

Now Bernstein (2009), Proposition 8.1.2, yields

σ1(λ)Iα ≤ fYAYA
(λ) − fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ).

If we combine this result with fYAYA
(λ) ≤ σk(λ)Iα from above, we obtain

σ1(λ)
σk(λ)fYAYA

(λ) ≤ σ1(λ)Iα ≤ fYAYA
(λ) − fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ).

Thus,

fYAYB
(λ)fYBYB

(λ)−1fYBYA
(λ) ≤

(
1 − σ1(λ)

σk(λ)

)
fYAYA

(λ)

and Bernstein (2009), Proposition 8.1.2, finally provides

dAB(λ) = fYAYA
(λ)−1/2fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ)fYAYA
(λ)−1/2 ≤

(
1 − σ1(λ)

σk(λ)

)
Iα.

We now distinguish two cases to prove the assertion. In the first case, let σ1(λ)/σk(λ) = 1 for all
λ ∈ K. Then
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dAB(λ) ≤ 0α ∈ Mα(R) ∀ λ ∈ K

and the assertion holds for any 0 < εK < 1. Without loss of generality, we set εK = 1/2. In the sec-
ond case, let σ1(λ)/σk(λ) < 1 for at least one λ ∈ K. Since the continuous function σ1(λ)/σk(λ),
λ ∈ R, achieves its minimum on the compact set K, we define εK = minλ∈K σ1(λ)/σk(λ). Thus,
we obtain that 0 < εK < 1 and

dAB(λ) ≤ (1 − εK)Iα ∀ λ ∈ K.

Since σ1(λ)/σk(λ) ≤ 1 for all λ ∈ K, these are all cases that occur and the assertion holds. ■

Second, we establish a relationship between the convergence of matrices in norm and the Loewner
order, that we could not find in the literature. The result is similar to the epsilon definition of
the convergence of sequences.

Lemma 8.7. Let F (λ) ∈ Mα(R), λ ∈ R, α ∈ N, and M ∈ Mα(R) be Hermitian matrices, such
that lim|λ|→∞ ∥F (λ) −M∥ = 0. Then, for any ε∗ > 0, there exists a λ∗ ∈ R, such that

F (λ) ≤ M + ε∗Iα ∀ |λ| ≥ λ∗.

Proof. Let ε∗ > 0. Due to lim|λ|→∞ ∥F (λ) −M∥ = 0, it obviously holds that

lim
|λ|→∞

∣∣∣[F (λ) −M ]ij
∣∣∣ = 0

for i, j = 1, . . . , α. It follows that, for ε∗ > 0 and k ≥ α, there exists a λ∗ ∈ R, such that

∣∣∣[F (λ) −M ]ij
∣∣∣ ≤ ε∗

k

for all |λ| ≥ λ∗ and i, j = 1, . . . , α. Now, for any x ∈ Rα and |λ| ≥ λ∗, we obtain

x⊤ (F (λ) −M)x =
α∑

i=1

α∑
j=1

xi [F (λ) −M ]ij xj

= 1
4

α∑
i=1

α∑
j=1

(
(xi + xj)2 [F (λ) −M ]ij − (xi − xj)2 [F (λ) −M ]ij

)

≤ 1
4

α∑
i=1

α∑
j=1

(
(xi + xj)2 ε

∗

k
+ (xi − xj)2 ε

∗

k

)

= ε∗

2k

α∑
i=1

α∑
j=1

(
x2

i + x2
j

)

= ε∗

2k

α∑
i=1

(
αx2

i + x⊤x
)

= ε∗α

k
x⊤x.

Thus, since k ≥ α, we obtain F (λ) −M ≤ ε∗Iα and F (λ) ≤ M + ε∗Iα for |λ| ≥ λ∗. ■
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Based on Lemma 8.7, we prove that dAB(λ) converges to a boundary matrix M as |λ| → ∞.

Lemma 8.8. Let YV be an MCAR(p) process with ΣL > 0. Further, let A,B ⊆ V , A ∩B = ∅,
and denote #A = α. Define

M := H
−1/2
AA HABH

−1
BBHBAH

−1/2
AA ,

where, for S, S1, S2 ⊆ V , we denote

HS1S2 = E⊤
S1CBΣLB⊤C⊤ES2 and [ES ]ij =

1, if i = j ∈ S,

0, else.
.

Then, for ε∗ > 0, there exists a λ∗ > 0, such that

dAB(λ) ≤ M + ε∗Iα ∀ |λ| ≥ λ∗.

Proof. Bernstein (2009) states in equation (4.4.23) that

(iλIkp − A)−1 =
kp−1∑
n=0

(iλ)n

χA(iλ)∆n,

where ∆n ∈ Mkp(R), ∆kp−1 = Ikp, and χA(z) = zkp + γkp−1z
kp−1 + · · · + γ1z + γ0, z ∈ C, is the

characteristic polynomial of A with γ1, . . . , γkp−1 ∈ R, see also Bernstein (2009), equation (4.4.3).
Inserting this result into representation (2.11) of the spectral density function yields

fYV YV
(λ) = 1

2π

kp−1∑
m=0

kp−1∑
n=0

(iλ)m

χA(iλ)
(−iλ)n

χA(−iλ)C∆mBΣLB⊤∆⊤
n C⊤.

In particular, we have

fYaYb
(λ) = 1

2πχA(iλ)χA(−iλ)

kp−1∑
m=0

kp−1∑
n=0

(iλ)m+n (−1)n e⊤
a C∆mBΣLB⊤∆⊤

n C⊤eb

for a, b ∈ V . From this rational function, we can specify the asymptotic behaviour. The numerator
contains a complex polynomial of maximum degree 2kp− 2 with leading coefficient

e⊤
a C∆kp−1BΣLB⊤∆⊤

kp−1C⊤eb = e⊤
a CBΣLB⊤C⊤eb,

which can be zero. The denominator is a complex polynomial of degree 2kp with leading coefficient
2π. Differentiating between e⊤

a CBΣLB⊤C⊤eb = 0 and e⊤
a CBΣLB⊤C⊤eb ̸= 0 results in

lim
|λ|→∞

∣∣∣2πλ2fYaYb
(λ) − e⊤

a CBΣLB⊤C⊤eb

∣∣∣ = 0.

Finally, for S1, S2 ⊆ V , we receive

lim
|λ|→∞

∥∥∥2πλ2fYS1 YS2
(λ) −HS1S2

∥∥∥ = 0. (8.1)
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Since 2πλ2fYBYB
(λ) > 0 for λ ̸= 0 as well as HBB = E⊤

BCBΣLB⊤C⊤EB > 0, Bühler and
Salamon (2018) provide in Corollary 1.5.7(ii) the continuity of the formation of the inverse. It
follows that

lim
|λ|→∞

∥∥∥∥ 1
2πλ2 fYBYB

(λ)−1 −H−1
BB

∥∥∥∥ = 0. (8.2)

In addition, Bhatia (1997), Theorem X.1.1 and relation (X.2), respectively, provide the following
inequality for induced matrix norms and λ ̸= 0,

∥∥∥√2π|λ|fYAYA
(λ)1/2 −H

1/2
AA

∥∥∥
ind

≤
∥∥∥2πλ2fYAYA

(λ) −HAA

∥∥∥1/2

ind
.

Because of the equivalence of matrix norms and because the right-hand side of the inequality
converges to zero, we get

lim
|λ|→∞

∥∥∥√2π|λ|fYAYA
(λ)1/2 −H

1/2
AA

∥∥∥ = 0.

Using the positive definiteness of the positive square root and Bühler and Salamon (2018),
Corollary 1.5.7(ii), again, it follows that

lim
|λ|→∞

∥∥∥∥∥ 1√
2π|λ|

fYAYA
(λ)−1/2 −H

−1/2
AA

∥∥∥∥∥ = 0. (8.3)

An application of the limit results (8.1), (8.2), and (8.3), as well as the submultiplicativity of the
induced matrix norm, result in

lim
|λ|→∞

∥∥∥fYAYA
(λ)−1/2fYAYB

(λ)fYBYB
(λ)−1fYBYA

(λ)fYAYA
(λ)−1/2

−H−1/2
AA HABH

−1
BBHBAH

−1/2
AA

∥∥∥
ind

= 0.

Therefore, lim|λ|→∞ ∥dAB(λ) −M∥ = 0. Finally, Lemma 8.7 provides that, for each ε∗ > 0, there
exists a λ∗ ∈ R, such that

dAB(λ) ≤ M + ε∗Iα ∀ |λ| ≥ λ∗. ■

As a final auxiliary result, we show that the matrix M can also be bounded.

Lemma 8.9. Let YV be an MCAR(p) process with ΣL > 0. Further, let A,B ⊆ V , A ∩B = ∅,
and denote #A = α. Then there exists an 0 < εM < 1, such that

M ≤ (1 − εM )Iα,

where M is defined as in Lemma 8.8.

Proof. First of all, analogous to the proof of Lemma 8.6, we obtain

M = H
−1/2
AA HABH

−1
BBHBAH

−1/2
AA ≤

(
1 − σ1

σk

)
Iα,
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where σ1 is the smallest eigenvalue and σk is the largest eigenvalue of CBΣLB⊤C⊤. Note that
the matrix CBΣLB⊤C⊤ is positive definite due to ΣL > 0, as well as C and B being of full rank.
Thus, the eigenvalues σ1 and σk are positive. Again, we distinguish between two cases. In the
first case, let σ1/σk = 1. Then M ≤ 0α ∈ Mα(R) and the assertion holds for any 0 < εM < 1,
we set εM = 1/2. In the second case, let σ1/σk < 1. Then, we set εM = σ1/σk and obtain that
0 < εM < 1 as well as M ≤ (1 − εM )Iα. Since σ1/σk ≤ 1, these are already all cases that can
occur and the assertion follows. ■

Based on the previous lemmata, we are finally in a position to prove Assumption 3.

Proposition 8.10. Let YV be an MCAR(p) process with ΣL > 0. Then YV satisfies Assumption 3.

Proof. First of all, Lemma 8.5 provides fYV YV
(λ) > 0 for λ ∈ R. Furthermore, with the notation

of Lemma 8.8 and Lemma 8.9, we choose 0 < ε∗ < εM . Lemma 8.8 provides that there exists a
λ∗ ∈ R, such that

dAB(λ) ≤ M + ε∗Iα ∀ |λ| ≥ λ∗.

Furthermore, Lemma 8.9 yields

dAB(λ) ≤ M + ε∗Iα ≤ (1 − εM )Iα + ε∗Iα = (1 − (εM − ε∗))Iα.

For |λ| ≥ λ∗, we thus find the boundary matrix (1 − (εM − ε∗))Iα, where 0 < εM − ε∗ < 1,
due to the choice of ε∗. On the compact interval K = [−λ∗, λ∗], Lemma 8.6 states that there
exists an 0 < εK < 1, such that dAB(λ) ≤ (1 − εK)Iα. We set εAB = min{εK , εM − ε∗}. Then
dAB(λ) ≤ (1−εAB)Iα for all λ ∈ R. However, εAB still depends on A and B. Since there are only
finitely many of such index sets, we set ε = min{εAB : A,B ⊆ V,A ∩ B = ∅}. We obtain that
0 < ε < 1 and dAB(λ) ≤ (1 − ε)Iα is satisfied for all λ ∈ R and disjoint subsets A,B ⊆ V . ■

For the (local) causality graph to be well defined, all that is missing is that YV satisfies
Assumption 4. It is expected that the MCAR process satisfies this assumption, as in our case the
driving Lévy process has no drift term. We show Assumption 4 based on the characterisation
(3.5) of purely non-deterministic processes.

Proposition 8.11. Let YV be an MCAR(p) process. Then YV satisfies Assumption 4.

Proof. For Assumption 4, we first apply representation (2.6), the independence of (X(s))s≤t

and (L(s) − L(t))t≤s≤t+h (Marquardt & Stelzer, 2007, Theorem 3.12), to obtain

l.i.m.
h→∞

PLX(t)X(t+ h) = l.i.m.
h→∞

PLX(t)

(
eAhX(t) +

∫ t+h

t
eA(t+h−u)BdL(u)

)
= l.i.m.

h→∞
eAhX(t).

The limit on the right side of the equation is the zero vector due to σ(A) ⊆ (−∞, 0) + iR,
resulting in the input process X being purely non-deterministic. By relation (3.5), this limit
result is equivalent to

⋂
t∈R LX(t) = {0}. Since

⋂
t∈R LYV

(t) ⊆
⋂

t∈R LX(t), the process YV is
purely non-deterministic as well. ■
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Given that both Assumptions 3 and 4 are satisfied, a direct consequence of the results in Chapters
6 and 7 is the following.

Proposition 8.12. Let YV be an MCAR(p) process with ΣL > 0. If we define V = {1, . . . , k}
as the vertices and the edges ECG via

(a) a b /∈ ECG ⇔ Ya Yb | YV ,

(b) a b /∈ ECG ⇔ Ya ≁ Yb | YV ,

for a, b ∈ V with a ≠ b, then the causality graph GCG = (V,ECG) for the MCAR process YV is well
defined and satisfies the pairwise, local, block-recursive, global AMP, and global Granger-causal
Markov property.

Proposition 8.13. Let YV be an MCAR(p) process with ΣL > 0. If we define V = {1, . . . , k}
as the vertices and the edges E0

CG via

(a) a b /∈ E0
CG ⇔ Ya 0 Yb | YV ,

(b) a b /∈ E0
CG ⇔ Ya ≁0 Yb | YV ,

for a, b ∈ V with a ̸= b, then the local causality graph G0
CG = (V,E0

CG) for the MCAR process YV

is well defined and satisfies the pairwise, local, and block-recursive Markov property. Furthermore,
the statements of Propositions 7.25 and 7.26 apply.

8.3. Edge characterisations for MCAR processes

In this section, we come to the main part of the chapter, the characterisation of the directed and
undirected edges in the (local) causality graph based on the model parameters A,B,C, and ΣL

of the causal MCAR process. We present several characterisations, provide interpretations of
the results, and draw parallels to the existing literature. We start by characterising the directed
edges in the (local) causality graph.

Proposition 8.14. Let YV be an MCAR(p) process with ΣL > 0. Further, let a, b ∈ V with
a ̸= b. Then, we have

(a) Ya Yb | YV ⇔
[
CeAhEj

]
ba

=
[
eAh

]
b k(j−1)+a

= 0 ∀ 0 ≤ h ≤ 1, j = 1, . . . , p,

(b) Ya 0 Yb | YV ⇔
[
E⊤

p AEj

]
ba

= [−Ap−j+1]ba = 0 ∀ j = 1, . . . , p.

Proof.
(a) Due to Theorem 4.4, Ya Yb | YV if and only if

PLYV
(t)Yb(t+ h) = PLYV \{a} (t)Yb(t+ h) P-a.s.

for 0 ≤ h ≤ 1 and t ∈ R. From Proposition 8.2, we also know that

PLYV
(t)Yb(t+ h) =

p∑
j=1

∑
v∈V

e⊤
b CeAhEjevD

(j−1)Yv(t) P-a.s.,



96 Chapter 8. (Local) Causality graphs for MCAR processes

PLYV \{a} (t)Yb(t+ h) =
p∑

j=1

∑
v∈V \{a}

e⊤
b CeAhEjevD

(j−1)Yv(t)

+
p∑

j=1
e⊤

b CeAhEjeaPLYV \{a} (t)D
(j−1)Ya(t) P-a.s.

for 0 ≤ h ≤ 1 and t ∈ R. We equate the two orthogonal projections and remove the coinciding
terms. Then, we receive Ya Yb | YV if and only if, for 0 ≤ h ≤ 1 and t ∈ R,

p∑
j=1

e⊤
b CeAhEjeaD

(j−1)Ya(t) =
p∑

j=1
e⊤

b CeAhEjeaPLYV \{a} (t)D
(j−1)Ya(t) P-a.s.

The expression on the left side of the equation is in LYa(t) due to Remark 2.9. The expression
on the right side is in LYV \{a}(t). Because of the equality, both are in LYV \{a}(t) ∩ LYa(t) = {0},
making use of Proposition 3.10. Thus, Ya Yb | YV if and only if

p∑
j=1

e⊤
b CeAhEjeaD

(j−1)Ya(t) = 0 P-a.s. (8.4)

for 0 ≤ h ≤ 1 and t ∈ R. In the following, we show that equation (8.4) is equivalent to

e⊤
b CeAhEjea = 0 ∀ 0 ≤ h ≤ 1, j = 1, . . . , p. (8.5)

Clearly, (8.5) implies (8.4). For the opposite direction, suppose that equation (8.4) is satisfied.
Define the kp-dimensional vector y = (y1, . . . , ykp) with entries

yi =

e
⊤
b CeAhEjea, if i = (j − 1)k + a, j = 1, . . . , p,

0, else.

Then, the equations (8.4) and (2.20) imply

0 =
p∑

j=1
e⊤

b CeAhEjeaD
(j−1)Ya(t) =

p∑
j=1

e⊤
b CeAhEjeaX(j−1)k+a(t) = y⊤X(t) P-a.s.

In particular,

0 = E
[(
y⊤X(t)

)2
]

= y⊤cXX(0)y.

However, in the case of an MCAR process, the matrix

(
B,AB, . . . ,Ak−1B

)
=


0k · · · 0k Ik

... ... ... ⋆

0k
... ... ...

Ik ⋆ · · · ⋆


is already of full rank kp. Therefore, the controllability matrix C (cf. Theorem 2.15) is also of



8.3. Edge characterisations for MCAR processes 97

full rank. Since ΣL > 0, Remark 2.17 provides that cXX(0) > 0. Therefore, y is the zero vector
and relation (8.5) is valid.

(b) Note that all components of YV are (p− 1)-times mean-square differentiable, but the p-th
derivative does not exist, see Remark 2.25. Thus, we have jv = p− 1 for any v ∈ V . Then, based
on Definition 4.7 and Theorem 8.3, the proof is analogous to the proof of (a). ■

For Ornstein-Uhlenbeck processes, setting p = 1 in Proposition 8.14 gives the following simplified
characterisations.

Corollary 8.15. Let YV be an Ornstein-Uhlenbeck process with ΣL > 0. Further, let a, b ∈ V

with a ̸= b. Then, we have

(a) Ya Yb | YV ⇔
[
eAh

]
ba

= 0 ∀ 0 ≤ h ≤ 1,

(b) Ya 0 Yb | YV ⇔ [A]ba = 0.

The characterisations of (local) Granger causality in Proposition 8.14 and Corollary 8.15 are
convenient, since we no longer need to elaborately compute and compare orthogonal projections
as in Theorem 4.4 and Definition 4.7. Moreover, the deterministic criteria depend only on
the state transition matrix A and not on the driving Lévy process. Below, we also provide a
characterisation of the undirected edges in the (local) causality graph by model parameters of the
MCAR process.

Proposition 8.16. Let YV be an MCAR(p) process. Further, let a, b ∈ V with a ̸= b. Then, we
have

(a) Ya ≁ Yb | YV ⇔
[∫min(h,̃h)

0 CeA(h−u)BΣLB⊤eA⊤ (̃h−u)C⊤du

]
ab

= 0 ∀ 0 ≤ h, h̃ ≤ 1,

(b) Ya ≁0 Yb | YV ⇔ [ΣL]ab = 0.

Proof.
(a) Let a, b, v ∈ V , t ∈ R, and 0 ≤ h, h̃ ≤ 1. Remark 8.4 and equation (2.6) result in

Yv(t+ h) − PLYV
(t)Yv(t+ h) = e⊤

v C
∫ t+h

t
eA(t+h−u)BdL(u).

Thus, Ya ≁ Yb | YV if and only if, for all 0 ≤ h, h̃ ≤ 1,

0 = E
[(
Ya(t+ h) − PLYV

(t)Ya(t+ h)
) (
Yb(t+ h̃) − PLYV

(t)Yb(t+ h̃)
)]

= E
[(
e⊤

a C
∫ t+h

t
eA(t+h−u)BdL(u)

)(
e⊤

b C
∫ t+h̃

t
eA(t+h̃−u)BdL(u)

)]

= e⊤
a

∫ min(t+h,t+h̃)

t
CeA(t+h−s)BΣLB⊤eA⊤(t+h̃−s)C⊤ds eb

= e⊤
a

∫ min(h,̃h)

0
CeA(h−u)BΣLB⊤eA⊤ (̃h−u)C⊤du eb.
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(b) Let a, b, v ∈ V , t ∈ R, and h ≥ 0. An application of Theorem 8.3 yields

D(p−1)Yv(t+ h) − PLYV
(t)D

(p−1)Yv(t+ h) = e⊤
v E⊤

p

∫ t+h

t
eA(t+h−u)BdL(u) P-a.s.

So, similar to (a), we obtain

E
[(
D(p−1)Ya(t+ h) − PLYV

(t)D
(p−1)Ya(t+ h)

) (
D(p−1)Yb(t+ h) − PLYV

(t)D
(p−1)Yb(t+ h)

)]
= e⊤

a

∫ h

0
E⊤

p e
AuBΣLB⊤eA⊤uEpdu eb.

If we set f(u) = E⊤
p e

AuBΣLB⊤e−A⊤uEp, 0 ≤ u ≤ 1, and F as its primitive function, we get

lim
h→0

1
h
E
[ (
D(p−1)Ya(t+ h) − PLYV

(t)D
(p−1)Ya(t+ h)

)
·
(
D(p−1)Yb(t+ h) − PLYV

(t)D
(p−1)Yb(t+ h)

) ]
= e⊤

a

[
lim
h→0

F (h) − F (0)
h

]
eb

= e⊤
a E⊤

p BΣLB⊤Epeb

= e⊤
a ΣLeb. ■

For Ornstein-Uhlenbeck processes, these results are simplified to the following.

Corollary 8.17. Let YV be an Ornstein-Uhlenbeck process. Further, let a, b ∈ V with a ̸= b.
Then, we have

(a) Ya ≁ Yb | YV ⇔
[∫min(h,̃h)

0 eA(h−u)ΣLe
A⊤ (̃h−u)du

]
ab

= 0 ∀ 0 ≤ h, h̃ ≤ 1,

(b) Ya ≁0 Yb | YV ⇔ [ΣL]ab = 0.

The characterisations of components being (locally) contemporaneously uncorrelated in Proposi-
tion 8.16 and Corollary 8.17 are again convenient, as they depend only on the model parameters
A, B, C, and ΣL. We also emphasise that the local concept depends only on ΣL. Below, we
relate the characterisations from Propositions 8.14 and 8.16 to the current literature. We start
with results from Comte and Renault (1996) in continuous time.

Remark 8.18. Comte and Renault (1996) investigate non-stationary MCAR processes driven by
Brownian motions on local Granger causality and local instantaneous causality. Their definitions
are set in the context of semi-martingales, use conditional expectations instead of orthogonal
projections, and thus differ from ours. However, Comte and Renault (1996) also obtain in
Proposition 20 that Ya does not locally Granger cause Yb if and only if [Aj ]ba = 0 for j = 1, . . . , p.
Further, there is no local instantaneous causality between Ya and Yb if and only if [ΣL]ab = 0.

We further compare our results for the continuous-time MCAR(p) process with those for the
discrete-time vector AR(p) (VAR(p)) process by Eichler (2007), whose article provided the basis
for our considerations. We start with the local causality graph, as the comparison is obvious for
this graphical model.
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Remark 8.19. The k-dimensional VAR(p) process ZV = (ZV (t))t∈Z is defined by

ZV (t) =
p∑

n=1
ΦnZV (t− n) + ε(t), t ∈ Z,

where Φn ∈ Mk(R), n = 1, . . . , p, are the VAR(p) coefficients and (ε(t))t∈Z is a k-dimensional
white noise process with covariance matrix 0 < Σε ∈ Mk(R). Further, define the AR polynomial
Φ(λ) = Ik − Φ1λ− . . .− Φpλ

p, λ ∈ C, and denote the back-shift operator by B. Then

Φ(B)ZV (t) = ε(t),

which corresponds to the idea for an MCAR(p) process to be the solution of

P (D)YV (t) = DL(t),

where P (λ) = Ikλ
p +A1λ

p−1 + . . .+Ap, λ ∈ C. Let G = (V,E) be the path diagram of ZV , as
in Definition 2.1 by Eichler (2007).

(a) Directed edges: Lemma 2.3 and Definition 2.1 in Eichler (2007) state that the directed
edges in the path diagram G for the discrete-time VAR(p) process ZV satisfy

Za Zb | ZV ⇔ a b /∈ E ⇔ [Φj ]ba = 0 ∀ j = 1, . . . , p.

This characterisation is directly analogous to the characterisation of the directed edges in
the local causality graph G0

CG for an MCAR(p) process, where

Ya 0 Yb | YV ⇔ a b /∈ E0
CG ⇔ [Aj ]ba = 0 ∀ j = 1, . . . , p.

The continuous-time and discrete-time models have in common that there is no directed
edge from vertex a to b if and only if the ba-th components of the autoregressive coefficients
are zero.

(b) Undirected edges: For the undirected edges in the path diagram G for the VAR(p) process
ZV , Lemma 2.3 and Definition 2.1 in Eichler (2007) state

Za ≁ Zb | ZV ⇔ a b /∈ E ⇔ [Σε]ab = 0.

This characterisation is again in analogy to the condition for the undirected edges in the
local causality graph G0

CG for an MCAR(p) process, where

Ya ≁0 Yb | YV ⇔ a b /∈ E0
CG ⇔ [ΣL]ab = 0.

Thus, a common feature of the continuous-time and discrete-time model is that there is no
undirected edge between the vertices a and b if and only if the a-th and b-th components
of the driving process are uncorrelated.
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Next, we compare the path diagram for the VAR process with the causality graph for the
MCAR process. To do this, we first give an additional interpretation for the causality graph in
Interpretation 8.20. Then, we compare the two graphical models in Remark 8.21.

Interpretation 8.20. For the purpose of interpretation of the directed and undirected edges in
the causality graph GCG, we recall the representation of the component Yb(t+ h) of the MCAR
process YV from Lemma 8.1 as

Yb(t+ h) =
p∑

j=1
e⊤

b Mj(h)D(j−1)YV (t) + e⊤
b ε(t, h), (8.6)

where

Mj(h) := CeAhEj ∈ Mk(R) and ε(t, h) :=
∫ t+h

t
CeA(t+h−u)BdL(u) ∈ Rk.

(a) Directed edges: For the directed edges in the causality graph GCG, an application of
Proposition 8.14 gives the characterisation

Ya Yb | YV ⇔ [Mj(h)]ba = 0 ∀ 0 ≤ h ≤ 1, j = 1, . . . , p. (8.7)

This statement means that the components Ya(t), DYa(t),. . . , D(p−1)Ya(t) in the represen-
tation (8.6) vanish, because the corresponding prefactors are zero. Ya(t) and its derivatives
do not matter to calculate Yb(t+ h) some time step h into the future.

(b) Undirected edges: A consequence of Proposition 8.16 is the following characterisation for
the undirected edges in the causality graph GCG

Ya ≁ Yb | YV ⇔
[
E
[
ε(t, h)ε(t, h̃)⊤

]]
ab

=
[
E
[
ε(0, h)ε(0, h̃)⊤

]]
ab

= 0 ∀ 0 ≤ h, h̃ ≤ 1.

(8.8)

This statement means that the noise terms e⊤
a ε(t, h) and e⊤

b ε(t, h̃) of Ya(t+h) and Yb(t+ h̃)
are uncorrelated for any t ≥ 0 and 0 ≤ h, h̃ ≤ 1.

Remark 8.21. The characterisations of the directed and undirected edges in the causality graph
in Interpretation 8.20 are well suited for comparison to the path diagram for VAR processes by
Eichler (2007). The challenge is that in the representation of the continuous-time process in (8.6)
derivatives appear, that have to be related to appropriate differences in the discrete-time process

ZV (t+ 1) =
p∑

n=1
ΦnZV (t+ 1 − n) + ε(t+ 1), t ∈ Z. (8.9)

Thus, our first goal is to replace the back-shifts ZV (t+ 1 − n), n = 1, . . . , p, in equation (8.9) by
differences. To do this, we define a discrete-time difference operator iteratively by

D(1)ZV (t) = ZV (t) − ZV (t− 1), D(j)ZV (t) = D(j−1) (ZV (t) − ZV (t− 1)) ,

j = 1, . . . , p− 1, where we set D(0)ZV (t) = ZV (t). By induction (cf. Lemma A.1), one can show
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ZV (t+ 1 − n) =
n∑

j=1

(
n− 1
j − 1

)
(−1)j−1D(j−1)ZV (t)

for n = 1, . . . , p and t ∈ Z. Then, we obtain the representation of the VAR(p) process

ZV (t+ 1) =
p∑

n=1

n∑
j=1

(
n− 1
j − 1

)
(−1)j−1ΦnD(j−1)ZV (t) + ε(t+ 1)

=
p∑

j=1

p∑
n=j

(
n− 1
j − 1

)
(−1)j−1ΦnD(j−1)ZV (t) + ε(t+ 1).

Now define

Mj :=
p∑

n=j

(
n− 1
j − 1

)
(−1)j−1Φn, j = 1, . . . , p.

This gives the representation of the b-th component

Zb(t+ 1) =
p∑

j=1
e⊤

b MjD(j−1)ZV (t) + e⊤
b ε(t+ 1),

which is in analogy to representation (8.6) of the b-th component of an MCAR(p) processes.

(a) Directed edges: In Remark 8.19, we find that for the discrete-time VAR(p) process ZV , the
directed edges in the path diagram G satisfy

Za Zb | ZV ⇔ a b /∈ E ⇔ [Φj ]ba = 0 ∀ j = 1, . . . , p.

But,

[Φj ]ba = 0 ∀ j = 1, . . . , p ⇔ [Mj ]ba =
p∑

n=j

(
n− 1
j − 1

)
(−1)j−1 [Φn]ba = 0 ∀ j = 1, . . . , p.

This characterisation is again analogous to the characterisation of the directed edges in the
causality graph GCG for the MCAR(p) process in relation (8.7), where

Ya Yb | YV ⇔ a b /∈ ECG ⇔ [Mj(h)]ba = 0 ∀ j = 1, . . . , p, 0 ≤ h ≤ 1.

(b) Undirected edges: For the path diagram G for the VAR(p) process ZV , Remark 8.19 yields

Za ≁ Zb | ZV ⇔ a b /∈ E ⇔
[
E
[
ε(0)ε(0)⊤

]]
ab

= 0.

In this case, we have the similarity to the condition (8.8) for the undirected edges for the
MCAR(p) process in the causality graph GCG

Ya ≁ Yb | YV ⇔ a b /∈ ECG ⇔
[
E
[
ε(0, h)ε(0, h̃)⊤

]]
ab

= 0 ∀ 0 ≤ h, h̃ ≤ 1.
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As a final comparison of the causality graph for MCAR processes and the path diagram for VAR
processes, consider the special case of the Ornstein-Uhlenbeck process. The essential feature is
that a continuous-time Ornstein-Uhlenbeck process sampled at discrete and equidistant points in
time is a discrete-time VAR(1) process. We can therefore establish relationships between the
graphical models for the Ornstein-Uhlenbeck process and its sampled process.

Remark 8.22. Let YV be an Ornstein-Uhlenbeck process. Then YV sampled at time points of
distance 0 ≤ h ≤ 1 is a discrete-time VAR(1) process with representation

YV ((k + 1)h) = eAhYV (kh) +
∫ (k+1)h

kh
eA((k+1)h−u)dL(u) = eAhYV (kh) + ε(kh, h), k ∈ Z.

We denote this process by Y(h)
V = (YV ((k + 1)h))k∈Z and the corresponding discrete-time path

diagram by G(h) = (V,E(h)). Then, a direct consequence of Remark 8.19, Interpretation 8.20,
Corollary 8.15, and Corollary 8.17, is that, for a, b ∈ V , a ̸= b, and fixed 0 ≤ h ≤ 1,

(a) Ya Yb | YV ⇒
[
eAh

]
ba

= 0 ⇒ Y(h)
a Y(h)

b | Y(h)
V ,

(b) Ya ≁ Yb | YV ⇒
[
E[ε(0, h)ε(0, h)⊤]

]
ab

= 0 ⇒ Y(h)
a ≁ Y(h)

b | Y(h)
V .

These implications state that a directed (undirected) edge a b ∈ E(h) (a b ∈ E(h)) in the
discrete-time model implies as well a directed (undirected) edge a b ∈ ECG (a b ∈ ECG)
in the continuous-time model. In general, however, the opposite is not true. In summary,
E(h) ⊆ ECG for every 0 ≤ h ≤ 1. We believe that this result applies to general MCAR(p)
processes.

This phenomenon is an advantage of the causality graph over the local causality graph, since, in
the local causality graph, there is generally no relationship between the edges E(0)

CG and E(h).

The characterisations of the edges in Propositions 8.14 and 8.16 for the causality graph are nice
for interpretation and comparison to the literature but cumbersome, because they depend on the
lags h, h̃. Below, we provide simpler characterisations of the directed and undirected edges in
the causality graph, where the lags h, h̃ no longer play a role. These characterisations allow us to
obtain further relations between the causality graph and the local causality graph, as well as to
discuss the existence of given mixed graphs as a (local) causality graph.

Theorem 8.23. Let YV be an MCAR(p) process with ΣL > 0. Further, let a, b ∈ V with a ̸= b.
Then, we have

(a) Ya Yb | YV ⇔ [CAαEj ]ba = [Aα]b,k(j−1)+a = 0 ∀ α = 1, . . . , kp− 1, j = 1, . . . , p,

(b) Ya ≁ Yb | YV ⇔
[
CAαBΣLB⊤(A⊤)βC⊤

]
ab

= 0 ∀ α, β = 0, . . . , kp− 1.

Proof.
(a) ⇐: Suppose that e⊤

b CAαEjea = 0 for all α = 1, . . . , kp − 1 and j = 1, . . . , p. Bernstein
(2009) provides in equation (11.2.1) that, for h ∈ R,

eAh =
kp−1∑
α=0

ψα(h)Aα, where ψα(h) = 1
2πi

∮
C

χ
[α+1]
A (z)
χA(z) etzdz, (8.10)
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χ
[1]
A , . . . , χ

[kp]
A are polynomials defined by recursion, and C is a simple, closed contour in the

complex plane enclosing σ(A). With e⊤
b CAαEjea = 0, we can then conclude that

e⊤
b CeAhEjea =

kp−1∑
α=0

ψα(h)e⊤
b CAαEjea = 0

for 0 ≤ h ≤ 1, such that Proposition 8.14(a) results in Ya Yb | YV .

⇒: Assume that Ya Yb | YV . Thus, e⊤
b CeAhEjea = 0 for all 0 ≤ h ≤ 1 and j = 1, . . . , p by

Proposition 8.14(a). Further, for h ∈ R, define the function f by

f(h) = e⊤
b CeAhEjea.

We differentiate f using Bernstein (2009), Proposition 11.1.4. Then

f (α)(h) = e⊤
b CAαeAhEjea ∀ h ∈ R, α = 1, . . . , kp− 1,

where f (α) denotes the α-th derivative. Since f(h) = 0 for 0 ≤ h ≤ 1 and f (α) is continuous, we
obtain f (α)(h) = 0 for 0 ≤ h ≤ 1. Putting h = 0, we get, as claimed,

0 = e⊤
b CAαEjea ∀ α = 1, . . . , kp− 1, j = 1, . . . , p.

(b) ⇐: Assume that e⊤
a CAαBΣLB⊤(A⊤)βC⊤eb = 0 for all α, β = 0, . . . , kp− 1. We apply the

representation of the matrix exponential (8.10) and obtain

e⊤
a C

∫ min(h,̃h)

0
eA(h−s)BΣLB⊤eA⊤ (̃h−s)dsC⊤eb

=
kp−1∑
α=0

kp−1∑
β=0

∫ min(h,̃h)

0
ψα(h− s)φβ(h̃− s)e⊤

a CAαBΣLB⊤
(
A⊤

)β
C⊤eb ds = 0

for 0 ≤ h, h̃ ≤ 1, t ∈ R, by assumption. Proposition 8.16(a) then gives Ya ≁ Yb | YV .

⇒: Suppose that Ya ≁ Yb | YV . Due to Proposition 5.4, we have, for 0 ≤ h ≤ 1 and t ∈ R,

PLYV
(t)∨LYb

(t,t+1)Ya(t+ h) = PLYV
(t)Ya(t+ h) P-a.s.

In addition, Remark 8.4 provides that PLYV
(t)Ya(t+ h) = e⊤

a CeAhX(t). Both together yield

PLYV
(t)∨LYb

(t,t+1)Ya(t+ h) = e⊤
a CeAhX(t) P-a.s. (8.11)

for 0 ≤ h ≤ 1 and t ∈ R. Furthermore, since Yb(t+ h̃) ∈ LYV
(t) ∨ LYb

(t, t+ 1) for 0 ≤ h̃ ≤ 1, as
well as Ya(t+ h) − PLYV

(t)∨LYb
(t,t+1)Ya(t+ h) ∈ (LYV

(t) ∨ LYb
(t, t+ 1))⊥, we obtain

0 = E
[(
Ya(t+ h) − PLYV

(t)∨LYb
(t,t+1)Ya(t+ h)

)
Yb(t+ h̃)

]
.
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Plugging in equations (8.11) and (2.5), it follows that

0 = E
[(
Ya(t+ h) − e⊤

a CeAhX(t)
)
Yb(t+ h̃)

]
= e⊤

a C E
[(
X(t+ h) − eAhX(t)

)
X(t+ h̃)

]
C⊤eb

= e⊤
a C

(
cXX(h− h̃) − eAhcXX(−h̃)

)
C⊤eb

for 0 ≤ h, h̃ ≤ 1. If we consider only the case 0 ≤ h̃ ≤ h ≤ 1, equation (2.8) provides

0 = e⊤
a C

(
eA(h−h̃)cXX(0) − eAhcXX(0)eA⊤h̃

)
C⊤eb

= e⊤
a CeAh

(
e−Ah̃cXX(0) − cXX(0)eA⊤h̃

)
C⊤eb,

using Bernstein (2009), Corollary 11.1.6. Now, for h, h̃ ∈ R, we define the function γ by

γ(h, h̃) = e⊤
a CeAh

(
e−Ah̃cXX(0) − cXX(0)eA⊤h̃

)
C⊤eb.

Differentiating γ several times according to Bernstein (2009), Proposition 11.1.4, provides

∂m

∂hm

∂n

∂h̃n
γ(h, h̃) = e⊤

a CAmeAh
(

(−A)n e−Ah̃cXX(0) − cXX(0)
(
A⊤

)n
eA⊤h̃

)
C⊤eb, m, n ∈ N0.

Since γ(h, h̃) = 0 for 0 ≤ h̃ ≤ h ≤ 1, and due to the continuity of the functions under consideration,
we obtain that the derivatives are zero for 0 ≤ h̃ ≤ h ≤ 1. Plugging in h = h̃ = 0 yields

e⊤
a CAmcXX(0)

(
A⊤

)n
C⊤eb = e⊤

a CAm (−A)n cXX(0)C⊤eb, m, n ∈ N0. (8.12)

Finally, equations (2.9) and (8.12) lead to

e⊤
a CAαBΣLB⊤

(
A⊤

)β
C⊤eb

= e⊤
a CAα

(
−AcXX(0) − cXX(0)A⊤

) (
A⊤

)β
C⊤eb

= −e⊤
a CAα+1cXX(0)

(
A⊤

)β
C⊤eb − e⊤

a CAαcXX(0)
(
A⊤

)β+1
C⊤eb

= −e⊤
a C(−1)βAα+β+1cXX(0)C⊤eb − e⊤

a C(−1)β+1Aα+β+1cXX(0)C⊤eb = 0

for all α, β = 0, . . . , kp− 1, the desired statement. ■

In the case of an Ornstein-Uhlenbeck process, the characterisation of the edges in the causality
graph can be reduced to the following.

Corollary 8.24. Let YV be an Ornstein-Uhlenbeck process with ΣL > 0. Further, let a, b ∈ V

with a ̸= b. Then, we have

(a) Ya Yb | YV ⇔ [Aα]ba = 0 ∀ α = 1, . . . , k − 1,

(b) Ya ≁ Yb | YV ⇔
[
AαΣL(A⊤)β

]
ab

= 0 ∀ α, β = 0, . . . , k − 1.
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Building on the characterisations in Theorem 8.23 and Corollary 8.24, we make some addi-
tional remarks. We start with the relationships between global Granger causality, Granger
causality, and local Granger causality. Analogously, we consider the relationships between
global contemporaneous correlation, contemporaneous correlation, and local contemporaneous
correlation.

Remark 8.25. The characterisations in Theorem 8.23 no longer depend on h, h̃. Hence, Granger
non-causality and global Granger non-causality, as well as contemporaneous uncorrelatedness
and global contemporaneous uncorrelatedness are equivalent for MCAR processes.

Remark 8.26. In Proposition 4.17 and 5.10, we establish in a general setting that Granger
non-causality implies local Granger non-causality and contemporaneous uncorrelatedness implies
local contemporaneous uncorrelatedness. These relationships are now also evident in the charac-
terisations for MCAR processes. To recognise this fact, observe that, due to the structure of A,
multiplying A by itself means deleting the first row of matrices in A, moving all the other rows
up one and adding a new row at the bottom. Inductively, it thus follows that

CAp−1 =
(
0k · · · 0k Ik

)
and CAp =

(
−Ap · · · −A1

)
. (8.13)

If we now choose α = p, then relation (8.13), Proposition 8.14, and Theorem 8.23 yield

Ya Yb | YV ⇒ 0 = [CApEj ]ba = − [Ap−j+1]ba ∀ j = 1, . . . , p ⇔ Ya 0 Yb | YV .

Similarly, choosing α = β = p− 1, relation (8.13), Proposition 8.16, and Theorem 8.23 give

Ya ≁ Yb | YV ⇒ 0 =
[
CAp−1BΣLB⊤(Ap−1)⊤C⊤

]
ab

= [ΣL]ab ⇔ Ya ≁0 Yb | YV .

The desired relationships between the edges in the causality graph and the local causality graph
are valid and in line with the theory. We have E(0)

CG ⊆ ECG and, in general, the sets are not
equal, because the opposite implications are usually not true.

We emphasise that if there is no directed (undirected) edge in the causality graph, not only is
there no directed (undirected) edge in the local causality graph, but also the paths in the local
causality graph are restricted. Such relations are the subject of the next remark, where we focus
on Ornstein-Uhlenbeck processes.

Remark 8.27. Let a, b ∈ V with a ̸= b.

(a) Directed edges: Suppose a b /∈ ECG. For α = 1, Corollary 8.24(a) states, as expected,
that a b /∈ E0

CG. For α = 2, Corollary 8.24(a) gives

0 =
[
A2
]

ba
=

∑
c1∈{1,...,k}

(
[A]bc1

[A]c1a

)
.

That is, in the local causality graph, the indirect influence of component a on b via one
intermediate component c1 is cancelled out. The purely directed paths a c1 b in the
local causality graph compensate each other. More generally, Corollary 8.24(a) states that
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0 = [Aα]ba =
∑

c1,...,cα−1
∈{1,...,k}

(
[A]bc1

· · · [A]cα−1a

)
.

That is, in the local causality graph, the indirect influence of component a on b via paths
a c1 · · · cα−1 b is cancelled out. The purely directed paths a · · · b of
equal length offset each other.

Note that paths containing intermediate vertices a or b can be omitted because they contain
shorter sub-paths that have already been considered. Formally, a simple calculation shows

0 =
∑

c1,...,cα−1
∈{1,...,k}

(
[A]bc1

· · · [A]cα−1a

)
for α = 1, . . . , k

⇔ 0 =
∑

c1,...,cα−1
∈{1,...,k}\{a,b}

(
[A]bc1

· · · [A]cα−1a

)
for α = 1, . . . , k.

Further, observe that if we replace one of the edges (except a c1) with a directed edge in
the other direction or an undirected edge, the resulting path contains a collider ·
or · . So it is not surprising that such paths do not need to be considered.

(b) Undirected edges: Suppose a b /∈ ECG. Then Corollary 8.24(b) states that

0 =
[
AαΣL(A⊤)β

]
ab

=
k∑

i=1

k∑
j=1

[Aα]ai [ΣL]ij
[
Aβ
]

bj

for α, β = 0, . . . , k− 1, which means that paths of the form a · · · i j · · · b

in the local causality graph compensate each other, i.e., paths with α directed edges in
direction a, β directed edges in direction b, and an undirected edge in between. The case
α = β = 0 provides a b /∈ E0

CG. Furthermore, replacing one of the directed edges leads
to a path with a collider · , · , · or · on that path. Again,
not surprisingly, such paths do not need to be considered.

Finally, we make some remarks about the existence of a given mixed graph as a (local) causality
graph. We start with the local causality graph since its existence is obvious.

Proposition 8.28. Suppose that G = (V,E) is a mixed graph. Then, there exists a k-dimensional
Ornstein-Uhlenbeck process and a local causality graph G0

CG = (V,E0
CG), such that, for a, b ∈ V

with a ̸= b,

a b /∈ E ⇔ [A]ba = 0 ⇔ a b /∈ E0
CG,

a b /∈ E ⇔ [ΣL]ab = 0 ⇔ a b /∈ E0
CG.

Proof. We define the matrices A and ΣL as follows.

[A]ab =


−k, if a = b,

1, if a ̸= b and b a ∈ E,

0, if a ̸= b and b a /∈ E,

[ΣL]ab =


k, if a = b,

1, if a ̸= b and a b ∈ E,

0, if a ̸= b and a b /∈ E.
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The deleted absolute row sums of A satisfy by definition

ra(A) :=
k∑

b=1
b̸=a

|[A]ab| ≤ k − 1.

Then the Gershgorin discs satisfy

{z ∈ C : |z − [A]aa | ≤ ra(A)} = {z ∈ C : |z + k| ≤ ra(A)} ⊆ {z ∈ C : |z + k| ≤ k − 1}

⊆ (−∞, 0) + iR.

Since, according to the Gershgorin circle theorem (Horn & Johnson, 2013, Theorem 6.1.1),
all eigenvalues of A lie in the union of the Gershgorin discs, σ(A) ⊆ (−∞, 0) + iR follows.
Additionally, the symmetric matrix ΣL is strictly diagonally dominant, i.e., ΣL > 0 (Horn &
Johnson, 2013, Theorem 6.1.10). Furthermore, take L(t) = Σ1/2

L B(t), where (B(t))t∈R is a
k-dimensional Brownian motion and Σ1/2

L is the positive square root. Then L = (L(t))t∈R is a
Levy process with covariance matrix ΣL (Cont & Tankov, 2003, Theorem 4.1). The resulting
k-dimensional Ornstein-Uhlenbeck process YV generates a local causality graph G0

CG = (V,E0
CG)

based on Corollaries 8.15 and 8.17, which is identical to the undirected graph G = (V,E). ■

For the causality graph, as expected, the existence question is much more difficult, because of
the additional conditions on the powers of A. We cannot expect every graph to exist. In fact,
not even every 2-dimensional mixed graph can be constructed as a causality graph for an MCAR
process. To justify this claim, we give an auxiliary lemma.

Lemma 8.29. Let YV be an MCAR(p) process with V = {1, 2} and ΣL > 0. Then

1 2 /∈ ECG ⇒ 1 2 /∈ ECG and 2 1 /∈ ECG.

Proof. Suppose that 1 2 /∈ ECG. We perform the proof in three steps. First, we show that
ΣL is diagonal. Then, we prove that Aj is diagonal for j = 1, . . . , p. Finally, we conclude the
assertion.

Step 1: The relation 1 2 /∈ ECG implies 1 2 /∈ E0
CG (cf. Remark 8.26), i.e., [ΣL]12 = 0

and, for symmetry reasons, [ΣL]21 = 0 also applies. So ΣL is diagonal.

Step 2: Let α = p+ j for j = 0, . . . , p− 1 and β = p− 1, and vice versa. Then the assumption
1 2 /∈ ECG, Theorem 8.23(b), and equation (8.13) imply

0 =
[
CAp+jBΣLB⊤

(
A⊤

)p−1
C⊤

]
12

=
[
CAp+jBΣL

]
12

and

0 =
[
CAp−1BΣLB⊤

(
A⊤

)p+j
C⊤

]
12

=
[
ΣLB⊤

(
A⊤

)p+j
C⊤

]
12
.

Step 1 together with ΣL > 0 gives[
CAp+jB

]
12

= 0 and
[
CAp+jB

]
21

= 0 (8.14)
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for j = 0, . . . , p− 1. We now show that [Aj ]12 = [Aj ]21 = 0 holds for j = 1, . . . , p by induction
over j. The base case holds immediately if we set j = 0 in (8.14) and apply (8.13) to obtain

0 = [CApB]12 = [−A1]12 and 0 = [CApB]21 = [−A1]21 = 0.

Now fix some j0 ∈ N with 1 ≤ j0 ≤ p − 1 and assume that [Aj ]12 = [Aj ]21 = 0 holds for all
1 ≤ j ≤ j0. For the induction step, we set j = j0 in (8.14) to obtain, by Lemma A.2 and (8.13),

0 =
[
CAp+j0B

]
12

=

−
j0∑

i=0
Aj0−i+1CAp+i−1B


12

=

−Aj0+1 −
j0∑

i=1
Aj0−i+1CAp+i−1B


12

.

However, [Aj0−i+1]12 = [Aj0−i+1]21 = 0 and [CAp+i−1B]12 = [CAp+i−1B]21 = 0 for i = 1, . . . , j0
according to the induction hypothesis and equations (8.14). This only leaves 0 = [−Aj0+1]12.
Similarly, we get 0 = [−Aj0+1]21.

Step 3: Due to Step 2, the matrix CAαEj is a sum of products of diagonal matrices. So CAαEj

itself is diagonal and [CAαEj ]21 = [CAαEj ]12 = 0 holds for α = 1, . . . , kp− 1 and j = 1, . . . , p.
Then Theorem 8.23(a) gives 1 2 /∈ ECG and 1 2 /∈ ECG. ■

Remark 8.30. The previous Lemma 8.29 shows that we cannot generate the graph G = (V,E)
with V = {1, 2}, 1 2 ∈ E, but 1 2 /∈ E, as a causality graph for an MCAR process. A
directed edge in a 2-dimensional causality graph always implies an undirected edge. We suspect
that similar statements hold in higher dimensions. Therefore, the local causality graph G0

CG

allows the modelling of more general graphs than the causality graph GCG, which is an advantage
of the local causality graph.



CHAPTER 9

(Local) Causality graphs for ICCSS processes

In this chapter, we construct (local) causality graphs for the popular multivariate continuous-time
state space models, more specifically for their output processes YV = (YV (t))t∈R, V = {1, . . . , k}
(cf. Chapter 2), in order to visualise the essential dependency structures of such processes. We
further derive analytic representations of the edges in both graphs by model parameters.

In the context of MCAR processes, the topic of (local) causality graphs is discussed in Chapter 8.
Although MCAR processes are state space processes, the techniques do not apply to, for example,
MCARMA(p, q) processes with q > 0. The much simpler structure of an MCAR process allows
the direct recovery of the input process X from the output process YV . For most state space
processes this is not possible. The present chapter can thus be seen as an extension of Chapter 8
to a broader class of models and, of course, we compare our results with those of that chapter.

To the best of our knowledge, the (local) causality graph is the first (mixed) graphical model
for this broad class of stochastic processes. Even for discrete-time stochastic processes, the
literature on mixed graphical models is limited to AR processes (Eichler, 2007, 2012). Not much
is known about mixed graphical models that satisfy certain types of Markov properties for the
discrete-time ARMA processes.

Even the orthogonal projections of multivariate state space processes and their derivatives required
in this chapter have not yet been addressed in the existing literature. Although, as already
mentioned, Rozanov (1967), III, 5, is devoted to the topic of prediction for general stationary
processes, the representations in that book are based on specific maximal decompositions of
the spectral density function, which are generally not expressible as a simple formula. The
orthogonal projections of univariate CARMA processes were discussed in the previous paper by
Brockwell and Lindner (2015). The authors provide representations for the orthogonal projection
of a CARMA process at time t onto the linear space generated by the CARMA process up to
time 0, and for the conditional expectation on the σ-algebra generated by the CARMA process
up to time 0. A multivariate generalisation of the conditional expectation result using the
σ-algebra generated by the MCARMA process up to time 0 can be found in Basse-O’Connor
et al. (2019), Corollary 4.11. However, the statement is not consistent with the comprehensible
univariate result of Brockwell and Lindner (2015). In any case, in this thesis, we require not only
orthogonal projections of the components Ya(t+ h), a ∈ V , h ≥ 0, on the linear space of the past
of the process YV up to time t but also on linear spaces generated by subprocesses YS , S ⊂ V .
Additionally, we require orthogonal projections of the highest derivatives of the components on
these linear spaces.

To calculate the orthogonal projections, we have to overcome the challenge of recovering the
input process X from the output process YV , as highlighted in Basse-O’Connor et al. (2019) and
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Section 2.4. Therefore, we have to make rather weak assumptions that result in ICCSS processes.
We briefly summarise these assumptions: First, we assume that the driving Lévy process of a
given state space model (A∗,B∗,C∗, L) satisfies the common Assumption 1. Furthermore, we
require that the transfer function H of (A∗,B∗,C∗, L) has a coprime right polynomial matrix
fraction description H(z) = Q(z)P (z)−1 with

P (z) = Ikz
p +A1z

p−1 + . . .+Ap and Q(z) = C0 + C1z + . . .+ Cqz
q.

Then, without loss of generality, we can assume that the state space model is given in the
unique controller canonical form (A,B,C, L) due to Proposition 2.18. Finally, for the controller
canonical state space model, we require that p > q > 0,

rank(Cq) = k, N (Q) ⊆ (−∞, 0) + iR, and N (P ) ⊆ (−∞, 0) + iR.

In this case, we call the strictly stationary version of the output process YV an ICCSS(p, q)
process (cf. Definition 2.27) and summarise the assumptions under this acronym. Of course, due
to q > 0, the class of MCAR(p) models are excluded in the following considerations. However,
q > 0 is not an essential limitation, because (local) causality graphs for MCAR processes are
treated in Chapter 8.

For ICCSS processes, we are then able to derive alternative representations of Ya(t+ h) and its
highest derivative. We use these representations to compute the necessary orthogonal projections,
resulting in the characterisations of the edges in the (local) causality graph. We find that these
characterisations are interpretatively meaningful and are given by the model parameters of the
controller canonical form and the covariance matrix of the driving Lévy process.

It should be noted that (local) causality graphs can be defined for all wide-sense stationary and
mean-square continuous state space models (A∗,B∗,C∗, L) that satisfy Assumptions 3 and 4, as
we discuss in Remark 9.16. However, in this general context, we are not able to compute the
orthogonal projections necessary for the edge characterisations. Since the edge characterisations
are the ultimate goal of the present chapter, we restrict our focus to ICCSS processes.

The structure of this chapter is similar to that of Chapter 8 as follows. In Section 9.1, we derive
alternative representations of ICCSS processes and their (p− q − 1)-th derivatives. Second, we
establish orthogonal projections of these processes onto linear spaces. In particular, we discuss the
difference quotient of the (p− q− 1)-th derivative, its orthogonal projection, and its mean-square
limit. We then show that ICCSS processes satisfy the assumptions of the (local) causality graph
in Section 9.2, ensuring that both graphical models are well defined and satisfy the preferred
Markov properties. Finally, in Section 9.3, we present the main results of the chapter. We
characterise the directed and undirected edges using only the model parameters of the ICCSS
process. We also provide detailed interpretations of the characterisations and, throughout the
chapter, we draw connections to the results for MCAR processes.
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9.1. Orthogonal projections of ICCSS processes

In this section, we derive orthogonal projections of ICCSS processes YV and their (p− q − 1)-th
derivative. These projections are not only essential to characterise the directed and undirected
edges in the (local) causality graph for ICCSS processes but also to check that the graphical models
are well defined. To compute these orthogonal projections, we need alternative representations
for both Ya(t+ h) and D(p−q−1)Ya(t+ h), a ∈ V . Due to the well-defined integral representation
of the truncated state vector in Proposition 2.30, it is obvious that the following alternative
representations of Ya(t + h) and its (p − q − 1)-th derivative D(p−q−1)Ya(t + h) are also well
defined. Note that we consider D(p−q−1)Ya(t+ h) since, by Remark 9.6 below, it is the highest
existing derivative of the ICCSS process, which we require for the definition of local Granger
causality and local contemporaneous correlation, respectively.

Theorem 9.1. Let YV be an ICCSS(p, q) process with p > q > 0. Then, for h ≥ 0, t ∈ R, and
a ∈ V , it applies that

Ya(t+ h) =
∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du

+
p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t) + e⊤

a ε(t, h) P-a.s. and

D(p−q−1)Ya(t+ h) =
∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du

+
p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t) + e⊤

a ε(t, h) P-a.s.

We abbreviate

M(h) = CeAh

(
E +

p−q∑
j=1

Eq+jE⊤Λj

)
, M(h) = CeAh

(
E +

p−q∑
j=1

Eq+jE⊤Λj

)
,

Mm(h) = CeAh
p−q∑

j=m+1
Eq+jE⊤Λj−1−m, Mm(h) = CeAh

p−q∑
j=m+1

Eq+jE⊤Λj−1−m,

ε(t, h) = C
∫ t+h

t
eA(t+h−u)BdL(u), ε(t, h) = C

∫ t+h

t
eA(t+h−u)BdL(u).

The matrices C and C are defined in (2.22), Ej, j = 1, . . . , p, in (1.1), E and E in (1.2).

Proof. Let t ∈ R, h ≥ 0, and a ∈ V . First of all, due to Remark 2.26(c), we receive

Ya(t+ h) = e⊤
a CX(t+ h) and D(p−q−1)Ya(t+ h) = e⊤

a CX(t+ h).

From now on, the proofs of the two representations differ only in the choice of C and C,
respectively. Thus, we only continue with the representation of Ya(t+ h). Due to (2.6), we have

Ya(t+ h) = e⊤
a C

(
eAhX(t) +

∫ t+h

t
eA(t+h−u)BdL(u)

)
= e⊤

a CeAhX(t) + e⊤
a ε(t, h).
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Furthermore,

e⊤
a CeAhX(t) = e⊤

a CeAh
(
Xq(t) X(q+1)(t) · · · X(p)(t)

)⊤

= e⊤
a CeAhEXq(t) +

p−q∑
j=1

e⊤
a CeAhEq+jX

(q+j)(t).

Lemma 2.31 and interchanging the summation order yield

e⊤
a CeAhX(t) = e⊤

a CeAhEXq(t) +
p−q∑
j=1

e⊤
a CeAhEq+jE⊤

ΛjXq(t) +
j−1∑
m=0

Λj−1−mΘD(m)YV (t)


= e⊤

a CeAh

E +
p−q∑
j=1

Eq+jE⊤Λj

Xq(t)

+
p−q−1∑
m=0

p−q∑
j=m+1

e⊤
a CeAhEq+jE⊤Λj−1−mΘD(m)YV (t)

= e⊤
a M(h)Xq(t) +

p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t).

Finally, Proposition 2.30 implies

e⊤
a CeAhX(t) =

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t) P-a.s. ■

Remark 9.2. All abbreviations of deterministic functions and stochastic processes in Theorem 9.1
are marked with two lines at the bottom or top, depending on whether they contain C or C.
Furthermore, ε(t, 0) = ε(t, 0) = 0k ∈ Rk.

Remark 9.3. Let us compare the representations in Theorem 9.1 to those for MCAR processes.
For an MCAR process, we establish in Lemma 8.1 that

Ya(t+ h) = e⊤
a CeAh

p−1∑
m=0

Em+1D
(m)YV (t) + e⊤

a C
∫ t+h

t
eA(t+h−u)BdL(u) P-a.s. and

D(p−1)Ya(t+ h) = e⊤
a E⊤

p e
Ah

p−1∑
m=0

Em+1D
(m)YV (t) + e⊤

a E⊤
p

∫ t+h

t
eA(t+h−u)BdL(u) P-a.s.

To be able to compare Theorem 9.1 to Lemma 8.1, we have to interpret

Mm(h)Θ =̂ CeAhEm+1, m = 0, . . . , p− 1, and M(h)eΛ(t−u)Θ =̂ 0k ∈ Mk(R),

Mm(h)Θ =̂ E⊤
p e

AhEm+1, m = 0, . . . , p− 1, and M(h)eΛ(t−u)Θ =̂ 0k ∈ Mk(R),

in the case q = 0. Then the result for MCAR processes can be seen as a special case of the result
for ICCSS processes. We heuristically justify that this interpretation is reasonable. First of all,
in Mm(h)Θ the summand j = m+ 1 is mainly relevant. For this summand, Λ0 = Ikq yields

CeAhEq+m+1E⊤Θ = CeAhEq+m+1C
−1
q . (9.1)
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If q = 0 is inserted into Mm(h)Θ, all summands disappear due to the zero dimensionality of
Λj−1−m, j = m + 2, . . . , p − q, except for (9.1). With Cq = Ik, it remains as claimed that
Mm(h)Θ =̂ CeAhEm+1 for m = 0, . . . , p− 1. The second matrix function M(h)eΛ(t−u)Θ, u < t,
can be interpreted as a zero matrix for q = 0, again due to the zero dimensionality of Λ. Although
we get a non-zero matrix for t = u, this event is a Lebesgue null set. An analogous reasoning is
possible for Mm(h)Θ and M(h)eΛ(t−u)Θ, which we do not repeat.

The representations in Theorem 9.1 suggest that for the orthogonal projection of Ya(t+ h) and
D(p−q−1)Ya(t + h), on the one hand, the past (YV (s))s≤t of all components and, on the other
hand, the future of the Lévy process (L(s)−L(t))t≤s≤t+h is relevant. However, for a formal proof,
we need that all integrals are defined in L2. Therefore, we show that the integral representation
of X q in Proposition 2.30 holds in L2. The proof is based on the ideas of the proof of Theorem
2.8 by Brockwell and Lindner (2015) in the univariate setting.

Proposition 9.4. Let YV be an ICCSS(p, q) process with p > q > 0. Then, for a, v ∈ V and
t ∈ R, the integral ∫ t

−∞
e⊤

a e
Λ(t−u)ΘevYv(u)du ∈ LYv (t)

exists as an L2-limit. In particular,

Xq(t) =
∫ t

−∞
eΛ(t−u)ΘYV (u)du

exists as an L2-limit.

Proof. Let a, v ∈ V and define F (t) = e⊤
a e

ΛtΘev for t ≥ 0. First, for s, t ∈ R, s < t,

lim
n→∞

t− s

n

n∑
ℓ=1

F

(
t− s− ℓ

t− s

n

)
Yv

(
s+ ℓ

t− s

n

)
=
∫ t

s
F (t− u)Yv(u)du P-a.s.

due to the definition of the integral. Using the theorem of dominated convergence, we show that
this convergence also holds in L2. Indeed, from the triangle inequality∣∣∣∣∣

∫ t

s
F (t− u)Yv(u)du− t− s

n

n∑
ℓ=1

F

(
t− s− ℓ

t− s

n

)
Yv

(
s+ ℓ

t− s

n

)∣∣∣∣∣
≤
∫ t

s
|F (t− u)| |Yv(u)| du+ t− s

n

n∑
ℓ=1

∣∣∣∣F (t− s− ℓ
t− s

n

)∣∣∣∣ ∣∣∣∣Yv

(
s+ ℓ

t− s

n

)∣∣∣∣
≤ (t− s)

(
sup

u∈[0,t−s]
|F (u)|

)(
sup

u∈[s,t]
|Yv(u)|

)
+ (t− s)

(
sup

u∈[0,t−s]
|F (u)|

)(
sup

u∈[s,t]
|Yv(u)|

)

follows. This majorant is integrable because

sup
u∈[0,t−s]

|Yv(u)| = sup
u∈[0,t−s]

∣∣∣e⊤
v CX(u)

∣∣∣ ≤ sup
u∈[0,t−s]

∥∥∥e⊤
v C

∥∥∥ ∥X(u)∥ ≤ c sup
u∈[0,t−s]

∥X(u)∥

is valid for a constant c ≥ 0. Thus,
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E

( sup
u∈[s,t]

|Yv(u)|
)2
 = E

( sup
u∈[0,t−s]

|Yv(u)|
)2
 ≤ c2 E

( sup
u∈[0,t−s]

∥X(u)∥
)2
 < ∞ (9.2)

due to the stationarity of YV , Assumption 1, and Lemma A.4 of Brockwell and Schlemm (2013).
Furthermore, F is a continuous function, so supu∈[0,t−s] |F (u)| < ∞. In summary,

∫ t

s
F (t− u)Yv(u)du = l.i.m.

n→∞
t− s

n

n∑
ℓ=1

F

(
t− s− ℓ

t− s

n

)
Yv

(
s+ ℓ

t− s

n

)

and the integral is in LYv (t). For the second step of this proof, we recall that, for t ∈ R,
∫ t

−∞
F (t− u)Yv(u)du = lim

s→−∞

∫ t

s
F (t− u)Yv(u)du P-a.s.

due to Proposition 2.30. Using the dominated convergence theorem again, we show that the
convergence holds in L2. For s < t, substituting t− u for u, and using the triangle inequality, we
get ∣∣∣∣∫ t

−∞
F (t− u)Yv(u)du−

∫ t

s
F (t− u)Yv(u)du

∣∣∣∣ ≤
∫ ∞

t−s
|F (u)| |Yv(t− u)| du

≤
∞∑

n=0
sup

u∈[n,n+1]
|F (u)| sup

u∈[n,n+1]
|Yv(t− u)| .

To see that this majorant is integrable, we use Fubini, Cauchy-Schwarz inequality, and the
stationarity of YV , to receive

E

( ∞∑
n=0

sup
u∈[n,n+1]

|F (u)| sup
u∈[n,n+1]

|Yv(t− u)|
)2


=
∞∑

n=0

∞∑
m=0

sup
u∈[n,n+1]

|F (u)| sup
u∈[m,m+1]

|F (u)| E
[

sup
u∈[n,n+1]

|Yv(t− u)| sup
u∈[m,m+1]

|Yv(t− u)|
]

≤
∞∑

n=0

∞∑
m=0

sup
u∈[n,n+1]

|F (u)| sup
u∈[m,m+1]

|F (u)|

·

E
( sup

u∈[n,n+1]
|Yv(t− u)|

)2
E

( sup
u∈[n,n+1]

|Yv(t− u)|
)2
1/2

=
( ∞∑

n=0
sup

u∈[n,n+1]
|F (u)|

)2

E

( sup
u∈[0,1]

|Yv(t− u)|
)2
 < ∞.

To obtain this finiteness, we finally use relation (9.2) and that
∑∞

n=0 supu∈[n,n+1] |F (u)| < ∞ by
definition of F and relation (2.30). In summary, we obtain

∫ t

−∞
e⊤

a e
Λ(t−u)ΘevYv(u)du =

∫ t

−∞
F (t− u)Yv(u)du = l.i.m.

s→−∞

∫ t

s
F (t− u)Yv(u)du

and the integral is in LYv (t). The existence of Xq(t) as a L2-limit follows immediately. ■
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Before moving on to orthogonal projections, we introduce one last alternative representation,
this time for the difference quotient (D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t))/h.

Lemma 9.5. Let YV be an ICCSS(p, q) process with p > q > 0. Then, for h ≥ 0, t ∈ R, and
a ∈ V , we have

D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)
h

=
∫ t

−∞
e⊤

a M′(0)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
a M′

m(0)ΘD(m)YV (t)

+ e⊤
a O(h)R1 + e⊤

a O(h)R2 + e⊤
a

ε(t, h)
h

,

where M′(0) and M′
m(0) denote the first derivatives of M(h) and Mm(h) in zero, and R1, R2 are

random vectors in LYV
(t) ⊆ L2. The random variable e⊤

a ε(t, h)/h is independent of the former
addends and

lim
h↘0

1
h
E
[(
e⊤

a ε(t, h)
)2
]

= e⊤
a CBΣLB⊤Cea ̸= 0 but lim

h↘0

1
h2E

[(
e⊤

a ε(t, h)
)2
]

= ∞.

Proof. Recall that due to Theorem 9.1 and ε(t, 0) = 0k ∈ Rk, we have

D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)
h

=
∫ t

−∞
e⊤

a

M(h) − M(0)
h

eΛ(t−u)ΘYV (u)du

+
p−q−1∑
m=0

e⊤
a

Mm(h) − Mm(0)
h

ΘD(m)YV (t) + e⊤
a

ε(t, h)
h

P-a.s. (9.3)

Replacing the matrix exponential with its power series, we obtain

M(h) − M(0)
h

= C eAh − Ikp

h

(
E +

p−q∑
j=1

Eq+jE⊤Λj

)

= M′(0) +O(h)
(

E +
p−q∑
j=1

Eq+jE⊤Λj

)
,

Mm(h) − Mm(0)
h

= C eAh − Ikp

h

p−q∑
j=m+1

Eq+jE⊤Λj−1−m

= M′
m(0) +O(h)

p−q∑
j=m+1

Eq+jE⊤Λj−1−m.

(9.4)

Furthermore, we define the random variables

R1 =
∫ t

−∞

(
E +

p−q∑
j=1

Eq+jE⊤Λj

)
eΛ(t−u)ΘYV (u)du,

R2 =
p−q−1∑
m=0

p−q∑
j=m+1

Eq+jE⊤Λj−1−mΘD(m)YV (t).
(9.5)
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If we plug equations (9.4) and (9.5) in (9.3), we obtain the stated representation. Moreover, we
know from Proposition 9.4 that R1 is in LYV

(t) ⊆ L2 and from Remark 2.26(b) that R2 is in
LYV

(t) ⊆ L2. Since LYV (t) and (L(s) −L(t))t≤s≤t+h are independent (Marquardt & Stelzer, 2007,
Theorem 3.12), we receive that R1 and R2 are independent of ε(t, h). Finally,

1
h
E
[(
e⊤

a ε(t, h)
)2
]

= 1
h

∫ h

0
e⊤

a CeAuBΣLB⊤eA⊤uCeadu
h↘0−→ e⊤

a CBΣLB⊤Cea.

CBΣLB⊤C is positive definite due to ΣL > 0, B being of full rank by definition, and C being
of full rank due to the assumptions in (2.23). Therefore, e⊤

a CBΣLB⊤Cea > 0 and, of course,
E[(e⊤

a ε(t, h))2]/h2 converges to infinity. ■

Remark 9.6. An important consequence of Lemma 9.5 and Remark 2.26 is that the mean-
square limit of the difference quotient does not exist. Thus, for all components of the ICCSS
process, there are no mean-square derivatives greater than (p − q − 1). We must analyse the
(p− q − 1)-derivative for local Granger causality and local contemporaneous correlation. It also
becomes clear why we divide by h and not by h2 in the Definition 5.5 of local contemporaneous
correlation.

Finally, we establish the orthogonal projections of the two random variables Ya(t + h) and
D(p−q−1)Ya(t+ h) onto the linear spaces LYS

(t).

Theorem 9.7. Let YV be an ICCSS(p, q) process with p > q > 0. Suppose S ⊆ V and a ∈ V .
Then, for h ≥ 0 and t ∈ R, we have

PLYS
(t)Ya(t+ h) =

∑
v∈S

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘevYv(u)du

+
∑
v∈S

p−q−1∑
m=0

e⊤
a Mm(h)ΘevD

(m)Yv(t)

+ PLYS
(t)

( ∑
v∈V \S

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘevYv(u)du
)

+ PLYS
(t)

( ∑
v∈V \S

p−q−1∑
m=0

e⊤
a Mm(h)ΘevD

(m)Yv(t)
)

P-a.s.

and

PLYS
(t)D

(p−q−1)Ya(t+ h) =
∑
v∈S

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘevYv(u)du

+
∑
v∈S

p−q−1∑
m=0

e⊤
a Mm(h)ΘevD

(m)Yv(t)

+ PLYS
(t)

( ∑
v∈V \S

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘevYv(u)du
)

+ PLYS
(t)

( ∑
v∈V \S

p−q−1∑
m=0

e⊤
a Mm(h)ΘevD

(m)Yv(t)
)

P-a.s.
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Proof. Based on Theorem 9.1, the proofs of the two orthogonal projections differ only in the
choice of M(h) or M(h), Mm(h) or Mm(h), and ε(t, h) or ε(t, h). Thus, we only prove the
representation of PLYS

(t)Ya(t+ h). Let h ≥ 0, t ∈ R, S ⊆ V , and a ∈ V . From Theorem 9.1, we
recall that

Ya(t+ h) =
∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t) + e⊤

a ε(t, h) P-a.s.

We calculate the projections of the three summands separately. For the first summand, we get

PLYS
(t)

(∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du
)

=
∑
v∈S

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘevYv(u)du

+ PLYS
(t)

 ∑
v∈V \S

∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘevYv(u)du

 ,
since, because of Proposition 9.4, the integrals are in LYS

(t) for v ∈ S. For the second summand,
we obtain

PLYS
(t)

p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t)


=
∑
v∈S

p−q−1∑
m=0

e⊤
a Mm(h)ΘevD

(m)Yv(t) + PLYS
(t)

 ∑
v∈V \S

p−q−1∑
m=0

e⊤
a Mm(h)ΘevD

(m)Yv(t)

 ,
because, due to Remark 2.26(b), the derivatives of Yv(t) are in LYS

(t) for v ∈ S. For the
third summand e⊤

a ε(t, h), we note that (YS(s))s≤t and (L(s) − L(t))t≤s≤t+h are independent
(Marquardt & Stelzer, 2007, Theorem 3.12). Thus, e⊤

a ε(t, h) is independent of LYS
(t) and we

obtain immediately that PLYS
(t)e

⊤
a ε(t, h) = 0. If we put all three summands together, we get the

assertion. ■

Remark 9.8. When calculating the orthogonal projections, it becomes clear why we require the
assumptions in (2.23), which are sufficient assumptions to recover X(t) from (YV (s))s≤t. Only
then are we able to project the input process X(t) onto the linear space of the output process
LYS

(t).

To apply local Granger causality and local contemporaneous correlation to ICCSS processes, we
also need to establish the limit of the orthogonal projections of the difference quotients.

Theorem 9.9. Let YV be an ICCSS(p, q) process with p > q > 0. Suppose S ⊆ V , a ∈ V , and
t ∈ R. Then, for h ≥ 0,

D(p−q−1)Ya(t+ h) − PLYV
(t)D

(p−q−1)Ya(t+ h) = e⊤
a ε(t, h) P-a.s.

and
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l.i.m.
h→0

PLYS
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)

=
∑
v∈S

∫ t

−∞
e⊤

a M′(0)eΛ(t−u)ΘevYv(u)du+
∑
v∈S

p−q−1∑
m=0

e⊤
a M′

m(0)ΘevD
(m)Yv(t)

+ PLYS
(t)

( ∑
v∈V \S

∫ t

−∞
e⊤

a M′(0)eΛ(t−u)ΘevYv(u)du
)

+ PLYS
(t)

( ∑
v∈V \S

p−q−1∑
m=0

e⊤
a M′

m(0)ΘevD
(m)Yv(t)

)
P-a.s.

Proof. Let S ⊆ V , a ∈ V , h ≥ 0, and t ∈ R. The first assertion follows directly from Theorems
9.1 and 9.7, giving

D(p−q−1)Ya(t+ h) − PLYV
(t)D

(p−q−1)Ya(t+ h)

=
∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
a Mm(h)⊤ΘD(m)YV (t) + e⊤

a ε(t, h)

−
∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du−
p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t)

= e⊤
a ε(t, h).

The second assertion is also initially based on Theorem 9.7. We obtain

PLYV
(t)D

(p−q−1)Ya(t+ h) =
∫ t

−∞
e⊤

a M(h)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
a Mm(h)ΘD(m)YV (t)

= e⊤
a CeAhX(t).

It follows that

lim
h→0

E

(PLYV
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)
− e⊤

a CAX(t)
)2


= lim
h→0

E

(e⊤
a C eAh − Ikp

h
X(t) − e⊤

a CAX(t)
)2


= lim
h→0

e⊤
a C

(
eAh − Ikp

h
− A

)
cXX(0)

(
eAh − Ikp

h
− A

)⊤

C⊤ea = 0.

That is,

l.i.m.
h→0

PLYV
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)
= e⊤

a CAX(t) P-a.s.

But then, together with Lemma 3.1(a,c), we can conclude that
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l.i.m.
h→0

PLYS
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)

= l.i.m.
h→0

PLYS
(t)PLYV

(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)
= PLYS

(t)
(
e⊤

a CAX(t)
)

P-a.s.

Again, similar to the proof of Theorem 9.1,

e⊤
a CAX(t) =

∫ t

−∞
e⊤

a M′(0)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
a M′

m(0)ΘD(m)YV (t) P-a.s.

We obtain, replacing M(h) by M′(0) and Mm(h) by M′
m(0) in the proof of Theorem 9.7,

l.i.m.
h→0

PLYS
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)

=
∑
v∈S

∫ t

−∞
e⊤

a M′(0)eΛ(t−u)ΘevYv(u)du+
∑
v∈S

p−q−1∑
m=0

e⊤
a M′

m(0)ΘevD
(m)Yv(t)

+ PLYS
(t)

 ∑
v∈V \S

∫ t

−∞
e⊤

a M′(0)eΛ(t−u)ΘevYv(u)du


+ PLYS

(t)

 ∑
v∈V \S

p−q−1∑
m=0

e⊤
a M′

m(0)ΘevD
(m)Yv(t)

 P-a.s. ■

Remark 9.10. Although the derivation of orthogonal projections of MCAR(p) processes differs
from that of ICCSS(p, q) processes with q > 0, the results in Theorem 9.7 are consistent with
those in Proposition 8.2 if we interpret Mm(h)Θ =̂ CeAhEm+1 and M(h)eΛ(t−u)Θ =̂ 0k ∈ Mk(R)
as in Remark 9.3. Furthermore, Theorem 9.9 is consistent with Theorem 8.3 if we interpret
M′

m(0)Θ =̂ E⊤
p AEm+1 and M′(0)eΛ(t−u)Θ =̂ 0k.

A very important special case of the orthogonal projections in Theorems 9.7 and 9.9 is the case
S = V , for which certain terms are simplified.

Corollary 9.11. Let YV be an ICCSS(p, q) process with p > q > 0. Then, for t ∈ R, h ≥ 0, and
a ∈ V , we have

(a) PLYV
(t)Ya(t+ h) = e⊤

a CeAhX(t) P-a.s.,

(b) PLYV
(t)D

(p−q−1)Ya(t+ h) = e⊤
a CeAhX(t) P-a.s.,

(c) l.i.m.
h→0

PLYV
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)
= e⊤

a CAX(t) P-a.s.

To conclude the chapter on orthogonal projections, we comment on this result, with particular
reference to the literature.
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Remark 9.12.

(a) The representations in Corollary 9.11 are, of course, projection-free and analogous to the
representations for MCAR processes in Remark 8.4. For S ⊂ V , we again refer to Rozanov
(1967), III, 5. Since such explicit representations are not relevant for the derivation of the
(local) causality graph, we do explore this topic further.

(b) The orthogonal projections in Corollary 9.11(a) match the orthogonal projections of
univariate CARMA processes in Brockwell and Lindner (2015), Theorem 2.8. Basse-
O’Connor et al. (2019) derives as well predictions of MCARMA processes, but their results
differ from Brockwell and Lindner (2015).

(c) From Corollary 9.11(c), not only the existence of the L2-limit becomes clear but also

l.i.m.
h→0

PLYS
(t)

(
D(p−q−1)Ya(t+ h) −D(p−q−1)Ya(t)

h

)
= PLYS

(t)
(
e⊤

a CAX(t)
)
.

The existence of these limits is essential for the well-definedness of local Granger causal-
ity and local contemporaneous correlation for ICCSS processes. Furthermore, due to
Corollary 9.11(c) and the Definition 4.7 of local Granger non-causality, we realise that
Ya 0 Yb | YS if and only if

PLYS
(t)
(
e⊤

b CAX(t)
)

= PLYS\{a} (t)
(
e⊤

b CAX(t)
)

P-a.s.

for t ∈ R. That is, if and only if e⊤
b CAX(t) ⊥ LYa(t) |LYS\{a}(t) for all t ∈ R by Proposition

2.4.2 of Lindquist and Picci (2015). In this particular case, we can express local Granger
non-causality as a conditional orthogonality relation.

9.2. Establishment of (local) causality graphs for ICCSS
processes

In this section, we establish (local) causality graphs for ICCSS processes. To define these
graphical models according to Definition 6.1 and for various Markov properties to hold, certain
well-definedness requirements must be met by the ICCSS process. The validity of both wide-sense
stationarity and continuity in the mean square is immediately clear from Remarks 2.12 and 2.13.
Therefore, we only need to ensure that the ICCSS process satisfies the Assumptions 3 and 4.

Theorem 9.13. Let YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Then YV satisfies
Assumptions 3 and 4.

Proof. The proof of Assumption 3 is elaborate and has already been given in Section 8.2 for
MCAR(p) processes. It can be directly generalised to ICCSS(p, q) processes, so we do not give
the full proof. We simply note that we only require that Q(iλ)P (iλ)−1 has full rank and ΣL > 0
to obtain that fYV YV

(λ) > 0 for λ ∈ R. Indeed, the assumptions in (2.23) provide that Q(iλ) is of
full rank and N (P ) ⊆ (−∞, 0) + iR, so we directly receive that Q(iλ)P (iλ)−1 is also of full rank.
Furthermore, we require that σ(A) ⊆ (−∞, 0) + iR, which is also true due to the assumptions
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in (2.23). Finally, it is a necessity that CBΣLB⊤C⊤ > 0. Again, ΣL > 0, B is of full rank by
definition, and C is of full rank due to the assumptions in (2.23), so CBΣLB⊤C⊤ > 0 is satisfied.

For the Assumption 4, the proof of Proposition 8.11 applies, requiring σ(A) ⊆ (−∞, 0) + iR. ■

A direct consequence of the results in Chapters 6 and 7 is then the following.

Proposition 9.14. Let YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. If we define
V = {1, . . . , k} as the vertices and the edges ECG via

(a) a b /∈ ECG ⇔ Ya Yb | YV ,

(b) a b /∈ ECG ⇔ Ya ≁ Yb | YV ,

for a, b ∈ V with a ̸= b, then the causality graph GCG = (V,ECG) for the ICCSS process YV is well
defined and satisfies the pairwise, local, block-recursive, global AMP, and global Granger-causal
Markov property.

Proposition 9.15. Let YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. If we define
V = {1, . . . , k} as the vertices and the edges E0

CG via

(a) a b /∈ E0
CG ⇔ Ya 0 Yb | YV ,

(b) a b /∈ E0
CG ⇔ Ya ≁0 Yb | YV ,

for a, b ∈ V with a ̸= b, then the local causality graph G0
CG = (V,E0

CG) for the ICCSS process YV

is well defined and satisfies the pairwise, local, and block-recursive Markov property. Furthermore,
the statements of Propositions 7.25 and 7.26 apply.

Remark 9.16. In principle, more general state space models (A∗,B∗,C∗, L) also satisfy the
Assumptions 3 and 4. The proof of Theorem 9.13 shows that sufficient assumptions are that the
driving Lévy process satisfies Assumption 1, σ(A∗) ⊆ (−∞, 0) + iR, fYV YV

(λ) > 0 for λ ∈ R,
and C∗B∗ΣLB∗⊤C∗⊤ > 0. Then the (local) causality graph is also well defined and the various
Markov properties are satisfied. However, in this general context, we are not able to calculate
the orthogonal projections needed to characterise the edges, which is our main interest.

9.3. Edge characterisations for ICCSS processes

In this section, we finally come to the main part of the chapter, the characterisation of the
edges in the (local) causality graph based on the model parameters of the ICCSS process.
We present several characterisations, provide interpretations, and draw parallels to the results
for MCAR processes. The first characterisation of the directed edges in the (local) causality
graph is developed from the characterisations of (local) Granger non-causality in Theorem 4.4
and Definition 4.7. We further apply the orthogonal projections of ICCSS processes and their
derivatives from Theorems 9.7 and 9.9.
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Proposition 9.17. Let YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Let a, b ∈ V

with a ̸= b. Then, we have

(a) Ya Yb | YV ⇔ e⊤
b M(h)eΛtΘea = 0 and e⊤

b Mm(h)Θea = 0
for all m = 0, . . . , p− q − 1, 0 ≤ h ≤ 1, t ≥ 0,

(b) Ya 0 Yb | YV ⇔ e⊤
b M′(0)eΛtΘea = 0 and e⊤

b M′
m(0)Θea = 0

for all m = 0, . . . , p− q − 1, t ≥ 0.

Proof.
(a) Recall that due to Theorem 4.4, we have Ya Yb | YV if and only if, for 0 ≤ h ≤ 1 and
t ∈ R,

PLYV
(t)Yb(t+ h) = PLYV \{a} (t)Yb(t+ h) P-a.s.

From Theorem 9.7, we further obtain

PLYV
(t)Yb(t+ h) =

∑
v∈V

∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘevYv(u)du

+
∑
v∈V

p−q−1∑
m=0

e⊤
b Mm(h)ΘevD

(m)Yv(t),

PLYV \{a} (t)Yb(t+ h) =
∑

v∈V \{a}

∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘevYv(u)du

+
∑

v∈V \{a}

p−q−1∑
m=0

e⊤
b Mm(h)ΘevD

(m)Yv(t)

+ PLYV \{a} (t)

(∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘeaYa(u)du
)

+ PLYV \{a} (t)

p−q−1∑
m=0

e⊤
b Mm(h)ΘeaD

(m)Ya(t)

 P-a.s.

for 0 ≤ h ≤ 1 and t ∈ R. We equate the two orthogonal projections and remove the coinciding
terms. Then, we receive that Ya Yb | YV if and only if

∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘeaYa(u)du+
p−q−1∑
m=0

e⊤
b Mm(h)ΘeaD

(m)Ya(t)

= PLYV \{a} (t)

(∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘeaYa(u)du
)

+ PLYV \{a} (t)

p−q−1∑
m=0

e⊤
b Mm(h)ΘeaD

(m)Ya(t)

 P-a.s.

for 0 ≤ h ≤ 1 and t ∈ R. The expression on the left side of the equation is in LYa(t) and the
expression on the right side is in LYV \{a}(t). Since LYV \{a}(t)∩LYa(t) = {0} due to Proposition 3.10,
we obtain Ya Yb | YV if and only if
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∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘeaYa(u)du+
p−q−1∑
m=0

e⊤
b Mm(h)ΘeaD

(m)Ya(t) = 0 P-a.s. (9.6)

for 0 ≤ h ≤ 1 and t ∈ R. In the following, we show that this characterisation is equivalent to

e⊤
b M(h)eΛtΘea = 0 and e⊤

b Mm(h)Θea = 0 (9.7)

for m = 0, . . . , p− q − 1, 0 ≤ h ≤ 1, and t ≥ 0.

If equations (9.7) are satisfied, we immediately obtain that equation (9.6) is valid. Now, suppose
equation (9.6) applies. We convert the two summands in (9.6) into their spectral representation.
Therefore, note that due Bernstein (2009), Proposition 11.2.2, and σ(Λ) ⊆ (−∞, 0) + iR the
equality ∫ ∞

−∞
e−iλs1{s ≥ 0}e⊤

b M(h)eΛsΘeads = e⊤
b M(h)(iλIkq − Λ)−1Θea, λ ∈ R,

holds. The integrator is integrable, since, using Proposition 11.2.2 of Bernstein (2009) again,∫ ∞

−∞

∣∣∣e−iλs1{s ≥ 0}e⊤
b M(h)eΛsΘea

∣∣∣ ds
≤
∫ ∞

0

1
2
(
e⊤

b M(h)eΛsM(h)eb + e⊤
a Θ⊤eΛsΘea

)
ds

= 1
2
(
e⊤

b M(h)(−Λ)−1M(h)eb + e⊤
a Θ⊤(−Λ)−1Θea

)
< ∞. (9.8)

Now Rozanov (1967), I, Example 8.3, provides the spectral representation of the first summand
∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘeaYa(u)du =
∫ ∞

−∞
eiλte⊤

b M(h)(iλIkq − Λ)−1ΘeaΦa(dλ),

where Φa is the random spectral measure from the spectral representation (2.1) of Ya. For the
second summand, we substitute Ya(t) as well as its derivatives by their spectral representation
(cf. Proposition 2.8, Remark 2.9). In summary, we obtain

0 =
∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘeaYa(u)du+
p−q−1∑
m=0

e⊤
b Mm(h)ΘeaD

(m)Ya(t)

=
∫ ∞

−∞
eiλte⊤

b M(h)(iλIkq − Λ)−1ΘeaΦa(dλ) +
p−q−1∑
m=0

e⊤
b Mm(h)Θea

∫ ∞

−∞
(iλ)meiλtΦa(dλ).

Denoting ψ(λ, h) = e⊤
b M(h)(iλIkq − Λ)−1Θea +

∑p−q−1
m=0 e⊤

b Mm(h)Θea(iλ)m for λ ∈ R and
0 ≤ h ≤ 1, it follows that

0 = E
[∣∣∣∣∫ ∞

−∞
eiλtψ(λ, h)Φa(dλ)

∣∣∣∣2
]

=
∫ ∞

−∞
|ψ(λ, h)|2 fYaYa(λ)dλ.

Hence, |ψ(λ, h)|2fYaYa(λ) = 0 for (almost) all λ ∈ R. But fYaYa(λ) > 0 for λ ∈ R by Theorem 9.13,
which yields ψ(λ, h) = 0 for 0 ≤ h ≤ 1 and (almost) all λ ∈ R. Bernstein (2009) provides in
equations (4.4.3) and (4.4.23) that, due to iλ ∈ C \ σ(A),
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(iλIkq − Λ)−1 = 1
χΛ(iλ)

kq−1∑
j=0

(iλ)j∆j ,

where ∆j ∈ Mkq(R), ∆kq−1 = Ikq, and χΛ(z) = γkqz
kq + γkq−1z

kq−1 + · · · + γ1z + γ0, z ∈ C, is
the characteristic polynomial of Λ with γ1, . . . , γkq−1 ∈ R, γkq = 1. Thus,

0 = ψ(λ, h) = 1
χΛ(iλ)

kq−1∑
j=0

(iλ)je⊤
b M(h)∆jΘea +

p−q−1∑
m=0

e⊤
b Mm(h)Θea(iλ)m

and multiplication by the characteristic polynomial yields

0 =
kq−1∑
j=0

(iλ)je⊤
b M(h)∆jΘea +

p−q−1∑
m=0

kq∑
ℓ=0

e⊤
b Mm(h)Θeaγℓ(iλ)ℓ+m.

In the first sum there are powers up to kq − 1, while in the second sum there are powers up to
kq − 1 + p− q. For ℓ = kq and m = 0, . . . , p− q − 1 we receive powers higher than kq − 1 in the
second summand and their prefactors must be zero. Due to γkq = 1, we receive

e⊤
b Mm(h)Θea = 0

for m = 0, . . . , p− q − 1. Inserting this result into ψ(λ, h) = 0 yields

0 = e⊤
b M(h)(iλIkq − Λ)−1Θea =

∫ ∞

−∞
e−iλs1{s ≥ 0}e⊤

b M(h)eΛsΘeads.

Together with the already known integrability (9.8), Pinsky (2009), Corollary 2.2.23, provides

e⊤
b M(h)eΛtΘea = 0

for t ≥ 0, which finally concludes the proof of (a).

(b) Due to the similarity of the results in Theorems 9.7 and 9.9, we just have to replace M(h)
by M′(0) and Mm(h) by M′

m(0) in the proof of (a). ■

We introduce a second characterisation of the directed edges in the (local) causality graph, the
proof of which is based on Proposition 9.17 and is similar to the proof of Theorem 8.23(a) for
MCAR processes.

Theorem 9.18. Let YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Let a, b ∈ V

with a ̸= b. Then, we have

(a) Ya Yb | YV ⇔ e⊤
b CAα

(
E +

∑p−q
j=1 Eq+jE⊤Λj

)
ΛβΘea = 0 and

e⊤
b CAα

(∑p−q
j=m+1 Eq+jE⊤Λj−1−m

)
Θea = 0

for all α = 0, . . . , kp− 1, β = 0, . . . , kq − 1, and m = 0, . . . , p− q − 1,

(b) Ya 0 Yb | YV ⇔ e⊤
b CA

(
E +

∑p−q
j=1 Eq+jE⊤Λj

)
ΛβΘea = 0 and

e⊤
b CA

(∑p−q
j=m+1 Eq+jE⊤Λj−1−m

)
Θea = 0

for all β = 0, . . . , kq − 1 and m = 0, . . . , p− q − 1.
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Proof.
(a) Based on the characterisation in Proposition 9.17(a), the same steps as in the proof of Theo-
rem 8.23(a) can be carried out. First, we replace the matrix exponential eAh in Proposition 9.17(a)
by powers of the matrix A and second, we replace eΛh by powers of Λ.

(b) Follows in analogy to (a), using Proposition 9.17(b). ■

Remark 9.19. The characterisations and thus the directed edges in the (local) causality graph do
not depend on the chosen Lévy process. Furthermore, the characterisation in Proposition 9.17(a)
seems to depend on h. However, this is not the case, as can be seen from Theorem 9.18(a). So it
does not matter whether we define directed edges by considering the time span 0 ≤ h ≤ 1 or by
considering the entire future h ≥ 0. There is no difference between Granger causality and global
Granger causality for ICCSS processes.

Next, we present characterisations of the undirected edges in the (local) causality graph. The
proofs are again based on orthogonal projections of ICCSS processes and their derivatives. They
are similar to the proofs of Proposition 8.16 and Theorem 8.23(b) for MCAR processes. Note
that the assumption ΣL > 0 is only used for the second characterisation in Proposition 9.20(a).

Proposition 9.20. Let YV be an ICCSS(p, q) process with p > q > 0 and ΣL > 0. Let a, b ∈ V

with a ̸= b. Then, we have

(a) Ya ≁ Yb | YV ⇔ e⊤
a

∫min(h,̃h)
0 CeA(h−s)BΣLB⊤eA⊤ (̃h−s)C⊤ds eb = 0

for all 0 ≤ h, h̃ ≤ 1,
⇔ e⊤

a CAαBΣLB⊤(A⊤)βC⊤eb = 0
for all α, β = 0, . . . , kp− 1,

(b) Ya ≁0 Yb | YV ⇔ e⊤
a CBΣLB⊤C⊤eb = e⊤

a CqΣLC
⊤
q eb = 0.

Proof.
(a) Based on Corollary 9.11(a), the proof of the first characterisation can be carried out in the
same way as the proof of Proposition 8.16(a). The second characterisation follows along the lines
of the proof of Theorem 8.23(b).

(b) Based on Theorem 9.1 and Corollary 9.11(b), this statement can be proven analogously to
Proposition 8.16(b). ■

Remark 9.21. The characterisations and thus the undirected edges in the (local) causality
graph depend on the chosen Lévy process only by ΣL. Furthermore, the second characterisation
in Proposition 9.20(a) shows that there is indeed no dependence on the lag h again. It does
not matter whether we define undirected edges in the causality graph by considering the time
span 0 ≤ h, h̃ ≤ 1 or by considering the entire future h, h̃ ≥ 0. There is no difference between
contemporaneous correlation and global contemporaneous correlation for ICCSS processes.

We conclude this section with further comments on the characterisations in Propositions 9.17
and 9.20. In particular, we compare the characterisations with each other and with the charac-
terisations for MCAR processes. Additionally, we give interpretations.
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Remark 9.22.

(a) The uniqueness of the polynomial matrices P (z) and Q(z) in the decomposition (2.13)
of the transfer function (see Proposition 2.18) leads to the uniqueness of the controller
canonical state space representation, which in turn leads to the uniqueness of the edges in
the (local) causality graph. However, the characterisations of the edges are so complex that
it is not reasonable to discuss the existence of a given mixed graph as a causality graph for
an ICCSS process.

(b) It can be shown by a simple calculation, which is similar to that in Remark 8.26, that
CAp−q = CA. If we set α = p − q in Theorem 9.18(a) and compare the result to Theo-
rem 9.18(b), we find that Granger non-causality implies local Granger non-causality, which
we know as well from the theory in Proposition 4.17. Similarly, we have CAp−q−1 = C.
If we set α = β = p − q − 1 in Proposition 9.20(a) and compare the result to Proposi-
tion 9.20(b), we get that contemporaneous uncorrelatedness implies local contemporaneous
uncorrelatedness. This result is again consistent with the theory in Proposition 5.10.
In summary, E(0)

CG ⊆ ECG and, in general, the sets are not equal, because the opposite
implications are usually not true.

Remark 9.23. Once more, we establish relationships between the results for ICCSS processes
and the results for MCAR processes.

(a) The undirected edges are characterised only by the noise terms ε(t, h) and ε(t, h), so
they do not require the inversion of the process. It is therefore not surprising that the
characterisations of the undirected edges for ICCSS(p, q) processes (cf. Proposition 9.20) and
the characterisations of the undirected edges for MCAR(p) processes (cf. Proposition 8.16
and Theorem 8.23(b)) are analogous.

(b) Of course, we cannot simply insert q = 0 in the characterisations of the directed edges of
the ICCSS(p, q) process, since several matrices become zero-dimensional. However, if we
interpret

Mm(h)Θ =̂ CeAhEm+1, m = 0, . . . , p− 1, and M(h)eΛ(t−u)Θ =̂ 0k ∈ Mk(R),

M′
m(0)Θ =̂ E⊤

p AEm+1, m = 0, . . . , p− 1, and M′(0)eΛ(t−u)Θ =̂ 0k ∈ Mk(R),

as argued in Remark 9.3, the characterisations of the directed edges for MCAR(p) pro-
cesses (cf. Proposition 8.14 and Theorem 8.23(a)) can be seen as a special case of the
characterisations of the directed edges for ICCSS(p, q) processes (cf. Proposition 9.17 and
Theorem 9.18).

Interpretation 9.24 (Causality graph). To interpret the directed and undirected edges in the
causality graph GCG, we recall the representation of the b-th component

Yb(t+ h) =
∫ t

−∞
e⊤

b M(h)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
b Mm(h)ΘD(m)YV (t) + e⊤

b ε(t, h)

from Theorem 9.1.
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(a) Directed edges: A direct application of Proposition 9.17 gives that a b /∈ ECG if and
only if neither Ya(t), D(1)Ya(t),. . . , D(p−q−1)Ya(t) nor the integral over the past of the a-th
component have any influence on Yb(t + h). In the representation of Yb(t + h), the a-th
component always vanishes, because its coefficient functions are zero.

(b) Undirected edges: Proposition 9.20 yields

a b /∈ ECG ⇔ E
[
e⊤

a ε(t, h)e⊤
b ε(t, h̃)

]
= E

[
e⊤

a ε(0, h)e⊤
b ε(0, h̃)

]
= 0, 0 ≤ h, h̃ ≤ 1.

This means that the noise terms e⊤
a ε(t, h) and e⊤

b ε(t, h̃) of Ya(t+h) and Yb(t+h̃), respectively,
are uncorrelated for any t ≥ 0 and 0 ≤ h, h̃ ≤ 1.

Interpretation 9.25 (Local causality graph). The interpretation of the directed and undirected
edges in the local causality graph G0

CG is a lot more intricate. The reason for this is that the
limit in the mean square of the difference quotient does not exist by definition and Remark 9.6,
respectively, but the limit of the projections does. To give an interpretation, we use the following
representation of the difference quotient of the b-th component

D(p−q−1)
h Yb(t, h) := D(p−q−1)Yb(t+ h) −D(p−q−1)Yb(t)

h

=
∫ t

−∞
e⊤

b M′(0)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
b M′

m(0)ΘD(m)YV (t)

+ e⊤
b O(h)R1 + e⊤

b O(h)R2 +
e⊤

b ε(t, h)
h

from Lemma 9.5. Then it follows that

PLYV
(t)D

(p−q−1)
h Yb(t, h) =

∫ t

−∞
e⊤

b M′(0)eΛ(t−u)ΘYV (u)du+
p−q−1∑
m=0

e⊤
b M′

m(0)ΘD(m)YV (t)

+ e⊤
b O(h)R1 + e⊤

b O(h)R2.

Although the L2-limit of D(p−q−1)
h Yb(t, h) does not exist, the L2-limit of

√
hD(p−q−1)

h Yb(t, h) does
by Lemma 9.5. The L2-limits of PLYV

(t)D
(p−q−1)
h Yb(t, h) also exists.

(a) Directed edges: By Proposition 9.17(b), we receive that a b /∈ E0
CG if and only if neither

Ya(t), D(1)Ya(t),. . . , D(p−q−1)Ya(t) nor the integral over the past have any influence on
D(p−q−1)

h Yb(t, h) if h is small. The same holds for PLYV
(t)D

(p−q−1)
h Yb(t, h). Given LYV

(t),
the a-th component does not influence the b-th component in the limit, because the
corresponding coefficients are zero.

(b) Undirected edges: By Proposition 9.20(b), we receive that a b /∈ E0
CG if and only if the

limit

h E
[(

D(p−q−1)
h Ya(t, h) − PLV (t)D

(p−q−1)
h Ya(t, h)

) (
D(p−q−1)

h Yb(t, h) − PLV (t)D
(p−q−1)
h Yb(t, h)

)]
= 1
h
E
[
e⊤

a ε(t, h)e⊤
b ε(t, h)

]
h↓0−→ e⊤

a CBΣLB⊤Ceb
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is zero. Hence, given LYV
(t),

√
hD(p−q−1)

h Ya(t, h) and
√
hD(p−q−1)

h Yb(t, h) are uncorrelated
in the limit. Equivalently, the noise terms e⊤

a ε(t, h)/
√
h and e⊤

b ε(t, h)/
√
h are uncorrelated

in the limit.

To summarise the chapter: We can construct well-defined (local) causality graphs for ICCSS pro-
cesses. We are also able to derive analytic and interpretatively meaningful edge characterisations
through the model parameters of the ICCSS process.



Part II.

Partial correlation graphs





Part II. Partial Correlation Graphs

As has been pointed out repeatedly, graphical models for multivariate stochastic processes in
continuous time are of great importance and have been little studied. Consequently, in this part
of the thesis, we are interested in a third graphical model. In contrast to the previous models,
the emphasis is on presenting a graph that is both simple and user-friendly, yet powerful. This
graphical model is the undirected partial correlation graph for multivariate stochastic processes
YV = (YV (t))t∈R in continuous time.

The concept of partial correlation is an important and well-studied measure of dependence in
statistics. For an Rk-valued random vector YV = (Y1, . . . , Yk)⊤ with positive definite covariance
matrix ΣV , the partial correlation of Ya and Yb given YV \{a,b} measures the correlation of the
real-valued random variables Ya and Yb after removing the linear effects of the remaining random
variables YV \{a,b}. The partial correlation can be determined as follows: Consider the linear
regression problems

βℓ = argminβ∈Rk−2E
[(
Yℓ − β⊤YV \{a,b}

)2
]

for ℓ ∈ {a, b}. (9.9)

These problems have the well-known solution (e.g., Anderson, 1984; Brillinger, 2001; Fujikoshi,
Ulyanov, & Shimizu, 2010)

βℓ =
(
ΣV \{a,b}V \{a,b}

)−1
ΣV \{a,b}ℓ. (9.10)

Furthermore, the residuals εℓ|V \{a,b} := Yℓ − β⊤
ℓ YV \{a,b} satisfy

cεa|V \{a,b}εb|V \{a,b} := E
[
εa|V \{a,b}εb|V \{a,b}

]
= Σab − ΣaV \{a,b}

(
ΣV \{a,b}V \{a,b}

)−1
ΣV \{a,b}b,

(9.11)

which is the partial covariance of Ya and Yb given YV \{a,b}. Similarly, the correlation of the
residuals is called partial correlation of Ya and Yb given YV \{a,b}, also known as coherence, and is
given by

Rεa|V \{a,b}εb|V \{a,b} :=
cεa|V \{a,b}εb|V \{a,b}

√cεa|V \{a,b}εa|V \{a,b}cεb|V \{a,b}εb|V \{a,b}

= −

[
Σ−1

V

]
ab√[

Σ−1
V

]
aa

[
Σ−1

V

]
bb

. (9.12)

Note that from representation (9.12), we see that the partial correlation is completely determined
by the concentration (precision) matrix Σ−1

V . Note also that for a Gaussian random vector, zero
partial correlation is even equivalent to Ya and Yb being independent given YV \{a,b}. Finally, it is
important to note that in the linear regression problem (9.9), the random variable β⊤

ℓ YV \{a,b} is
the linear projection of Yl on the linear space generated by the components of YV \{a,b}.

An extension of partial correlation to stationary time series ZV = (ZV (t))t∈Z in discrete time has
been around for quite some time (Tick, 1963) and is ubiquitous in the analysis of multivariate
time series (Brillinger, 2001; Gardner, 1988; Priestley, 1981). For these stationary time series
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models, the partial covariance function of Za and Zb given ZV \{a,b} is zero if and only if the
partial spectral density function is zero. Thus, in the frequency domain, the role of the partial
correlation function is taken over by the partial spectral coherence function, which measures the
linear dependence between two components Za and Zb after removing the linear effects of the
remaining components ZV \{a,b} in the frequency domain. Furthermore, the role of the covariance
matrix ΣV in the partial correlation (9.11) is taken over by the matrix-valued spectral density
function fZV ZV

(λ), λ ∈ [−π, π], in the partial spectral coherence function. This representation
gives a very simple characterisation of zero partial correlation. The applications of the partial
spectral coherence function are very broad, especially in signal processing, but the word coherence
may have a slightly different meaning in different fields (Gardner, 1992).

However, to the best of our knowledge, a mathematically rigorous theory for the concept of partial
correlation for continuous-time processes YV is missing in the literature, so we include the theory
in the first chapter of this part. We formally introduce this concept by orthogonal projections on
linear space generated by the process YV \{a,b}, similar to the concept of partial correlation for
random vectors in (9.11) and similar to our concept of contemporaneous correlation in Section 5.1.
We also relate the partial correlation relation to an optimisation problem resembling the linear
regression problem (9.9). This optimisation problem is further the multivariate continuous-time
counterpart to the discrete-time optimisation problem of Brillinger (2001) and the continuous-time
counterpart to Dahlhaus (2000).

After this introduction to the concept of partial correlation, the main subject of this part is partial
correlation graphs. The partial correlation graph has its discrete-time origins in Brillinger (1996)
and Dahlhaus (2000) and is a widely used frequency domain approach for constructing graphs.
Dahlhaus (2000) establishes the partial correlation graph for multivariate time series as follows:
Each component Za, a ∈ V = {1, . . . , k}, is represented by a vertex. The undirected edges
represent a partial spectral coherence function that is not the zero function, meaning that the
component processes are partially correlated given the remaining component process. Dahlhaus
(2000) also gives various edge characterisations, in particular, a very simple one using the inverse
spectral density function of ZV , similar to (9.12). He also applies the partial correlation graph
to vector autoregressive (VAR) processes.

The partial correlation graph of Dahlhaus (2000) has since been used in a wide variety of
applications, including air pollution data (Dahlhaus, 2000), vital signs of intensive care patients
(Gather, Imhoff, & Fried, 2002), human tremor data (Dahlhaus & Eichler, 2003), financial data
(Abdelwahab, Amor, & Abdelwahed, 2008), and neuro-physical signals (Dahlhaus, Eichler, &
Sandkühler, 1997; Eichler, Dahlhaus, & Sandkühler, 2003; Medkour, Walden, & Burgess, 2009).
The usefulness of partial correlation graphs as a visualisation and analysis tool has thus already
been demonstrated in discrete time.

In the second chapter of this part, we rigorously define partial correlation graphs for multivariate
stochastic processes YV = (YV (t))t∈R in continuous time as follows: As usual, each component
Ya = (Ya(t))t∈R, a ∈ V = {1, . . . , k}, is represented by a vertex. Furthermore, we draw an
undirected edge between two vertices a and b if and only if, for all t ∈ R, Ya(t) and Yb(t) are
uncorrelated given the linear information provided by the environment YV \{a,b}. That is, if and
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only if Ya and Yb are partially correlated given YV \{a,b}.

The proposed partial correlation graph is simple in the sense that there are neither loops from
a vertex to itself nor any multiple edges between vertices. We further find that the partial
correlation graph satisfies the Markov properties desired for undirected graphs, so the graphical
model is reasonably defined in this sense. Of course, we also provide edge characterisations,
in particular using the partial spectral coherence function, and the key edge characterisation
using the inverse of the spectral density function of YV , similar to (9.12). This important
characterisation is very simple and user-friendly, computationally inexpensive, and allows the
partial correlation graph to be easily applied to example processes. This is an advantage of the
partial correlation graph over the (local) causality graph, where the computation of edges can
be quite challenging in certain examples, e.g., for ICCSS processes (cf. Chapter 9). The edge
characterisations also allow for a comparison to the (local) causality graph.

Finally, as an example, we apply the partial correlation graph to multivariate continuous-time
autoregressive (MCAR) processes to provide another graphical representation of dependency
structures between the components of this important class of processes. We also give edge
characterisations by the model parameters of the process and discuss relations to the causality
graph and the local causality graph for MCAR processes.

Throughout the discussion of partial correlation graphs, we consider only wide-sense stationary
and mean-square continuous multivariate stochastic processes YV = (YV (t))t∈R, which have
a spectral density function fYV YV

(λ) for λ ∈ R. For a definition and the main properties of
such processes, we refer to Section 2.1. We also emphasise that most of the results for the
partial correlation graph were developed before the (local) causality graph, but in this order, the
relations between the three graphical models can be better highlighted and the thesis remains
more transparent.

Structure of the part

The structure of this part is as follows. In Chapter 10, we establish and interpret the concept
of partial correlation. We further provide characterisations of this relation and compare it
to its discrete-time counterpart. This preliminary work then leads to the definition of the
partial correlation graph in Chapter 11. In this chapter, we also discuss edge characterisations
and Markov properties, and provide a comparison to the causality graph. As an example,
in Chapter 12, we apply the partial correlation graph to MCAR processes and provide edge
characterisation by model parameters. We also address the relationship to the causality graph
and the local causality graph in this special case.





CHAPTER 10

Preliminaries

In this chapter, we define and elaborate on the concept of partial correlation for continuous-
time processes YV = (YV (t))t∈R. Roughly speaking, two subprocesses YA and YB are partially
uncorrelated given YC if and only if, for all t ∈ R, YA(t) and YB(t) are uncorrelated after removing
the linear information provided by YC . Here and throughout this chapter, A,B,C are non-empty
subsets of V with cardinality #A = α, #B = β, and #C = γ.

We proceed as follows. In Section 10.1, we define and interpret the partial correlation relation and
compute the orthogonal projections therein. Additionally, we study properties of YA(t) given the
linear information provided by YC , i.e., the noise process resulting from the partial correlation
relation. Section 10.2 is then devoted to characterisations of the partial correlation relation. We
provide characterisations in terms of the spectral density function and the spectral coherence
function of the noise processes. Importantly, we present the main characterisation involving
the inverse of the spectral density function of the underlying process YA∪B∪C . We conclude the
section with the key result that the partial correlation relation satisfies the graphoid properties.

10.1. Partial correlation relation

Let us introduce the concept of partial correlation and comment on this definition.

Definition 10.1. Two subprocesses YA and YB of YV are partially uncorrelated given another
subprocess YC if and only if

E
[(
Ya(t) − PLYC

Ya(t)
) (
Yb(t) − PLYC

Yb(t)
)]

= 0 ∀ a ∈ A, b ∈ B, t ∈ R.

In short, we write YA ⊥⊥ YB | YC .

Remark 10.2.

(a) In Definition 10.1, it is important to recall that PLYC
denotes the orthogonal projection on

LYC
:=
{

ℓ∑
i=1

∑
c∈C

γc,iYc(ti) : γc,i ∈ C, −∞ < t1 ≤ . . . ≤ tℓ < ∞, ℓ ∈ N
}
.

This closed linear space describes the linear information provided by the process YC over the
entire time span. The relation YA ⊥⊥ YB |YC thus states, as desired, that, for all t ∈ R, YA(t) and
YB(t) are uncorrelated given the linear information provided by YC . Since for random vectors,
as noted above, β⊤

a YV \{a,b} and β⊤
b YV \{a,b} are the projections of Ya and Yb, respectively, onto
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the linear space generated by YV \{a,b}, Definition 10.1 can be seen as an extension of zero partial
covariance (9.11) and zero partial correlation (9.12) for random vectors to stochastic processes.

(b) In terms of the conditional orthogonality relation ⊥ (cf. Definition 3.2), we obtain

YA ⊥⊥ YB | YC ⇔ E
[(
Y A − PLYC

Y A
) (
Y B − PLYC

Y B
)]

= 0

∀ Y A ∈ LYA
(t), Y B ∈ LYB

(t), t ∈ R,

⇔ LYA
(t) ⊥ LYB

(t) | LYC
∀ t ∈ R.

(c) Certainly, the partial correlation relation is symmetric and we have

YA ⊥⊥ YB | YC ⇔ Ya ⊥⊥ Yb | YC ∀ a ∈ A, b ∈ B,

which is useful for verifying zero partial correlation. Furthermore, statements can be made for
A = {a} and B = {b}, and the corresponding multivariate results follow immediately.

To work with the partial correlation relation and to give characterisations, it is crucial to have a
frequency representation of the linear space LYC

.

Lemma 10.3. Suppose that

L∗
YC

:=
{∫ ∞

−∞
eiλtφ(λ)ΦC(dλ) : φ ∈ L2 (fYCYC

) , t ∈ R
}
,

where ΦC is the random spectral measure from the spectral representation (2.1) of YC and

L2 (fYCYC
) :=

{
φ⊤ : R → Cγ : φ measurable,

∫ ∞

−∞

∣∣∣φ(λ)fYCYC
(λ)φ(λ)⊤∣∣∣ dλ < ∞

}
.

Then the equality LYC
= L∗

YC
applies.

Proof. The relation LYC
⊆ L∗

YC
is obvious, since Yc(t) =

∫∞
−∞ eiλtΦc(dλ) ∈ L∗

YC
for all c ∈ C

and t ∈ R, and L∗
YC

is closed. The relation ⊇ is established by Rozanov (1967) on p. 34. ■

We also compute the orthogonal projections contained in Definition 10.1 in the next proposition
and obtain, as might be expected, the frequency domain analogue of β⊤

ℓ YV \{a,b} with βℓ as in
(9.10). We also give an optimisation problem in the frequency domain, resembling the linear
regression problem (9.9) for random vectors. Note that the requirement for the existence of
a partially positive definite spectral density function allows an explicit representation of the
orthogonal projections.

Proposition 10.4. Suppose that fYCYC
(λ) > 0 for λ ∈ R. Then, for t ∈ R and a ∈ A,

PLC
Ya(t) =

∫ ∞

−∞
eiλtfYaYC

(λ)fYCYC
(λ)−1ΦC(dλ),
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where ΦC is the random spectral measure from the spectral representation (2.1) of YC . Further-
more, PLC

Ya(t) is the solution to the optimisation problem

min
φa|C∈L2(fYC YC )

E
[∣∣∣∣Ya(t) −

∫ ∞

−∞
eiλtφa|C(λ)ΦC(dλ)

∣∣∣∣2
]
. (10.1)

Finally, PLC
YA(t) = (PLC

Ya(t))a∈A can be calculated component-wise.

Proof. Let t ∈ R, a ∈ A, and assume that {a} ∩ C = ∅, since the statements apply trivially for
a ∈ C. To simplify the notation, we abbreviate

Ŷa|C(t) =
∫ ∞

−∞
eiλtfYaYC

(λ)fYCYC
(λ)−1ΦC(dλ).

The proof is divided into three steps. In the first step, we derive that Ŷa|C(t) ∈ LYC
. In

the second step, we show that Ya(t) − Ŷa|C(t) ∈ L⊥
YC

. Both together then give the assertion
Ŷa|C(t) = PLC

Ya(t). Then, in a third step, we conclude that fYaYC
(λ)fYCYC

(λ)−1, λ ∈ R, is the
solution function to the optimisation problem (10.1).

Step 1: Given that LYC
= L∗

YC
due to Lemma 10.3, we can establish the measurability and

integrability of the function fYaYC
(λ)fYCYC

(λ)−1, λ ∈ R. For the measurability, we first find that
the functions fYaYC

and fYCYC
are measurable as derivatives. Furthermore, sums and products

of measurable functions are measurable. If we set λ/0 := 0 for λ ∈ R, then their quotients
are also measurable (Klenke, 2020, Theorem 1.91). Now we compute fYCYC

(λ)−1 by Gaussian
elimination and find that fYCYC

(λ)−1, λ ∈ R, is measurable. Thus, fYaYC
(λ)fYCYC

(λ)−1, λ ∈ R,
is also measurable.

For the integrability, we first note that fY{a}∪CY{a}∪C
(λ) ≥ 0 due to Lemma 2.4(c). Furthermore,

fYCYC
(λ) > 0 by assumption, so Proposition 8.2.4 of Bernstein (2009) gives

fYaYC
(λ)fYCYC

(λ)−1fYCYa(λ) ≤ fYaYa(λ).

Since further fYaYC
(λ)fYCYC

(λ)−1fYCYa(λ) ≥ 0 and the integral is monotonous, we obtain∫ ∞

−∞

∣∣∣fYaYC
(λ)fYCYC

(λ)−1fYCYC
(λ)fYaYC

(λ)fYCYC
(λ)−1⊤∣∣∣ dλ

=
∫ ∞

−∞
fYaYC

(λ)fYCYC
(λ)−1fYCYa(λ)dλ

≤
∫ ∞

−∞
fYaYa(λ)dλ < ∞,

where the finiteness follows from Lemma 2.4(a). In summary, Ŷa|C(t) ∈ LYC
.

Step 2: Due to Rozanov (1967), I, (7.2), any Y C ∈ LYC
has a spectral representation

Y C =
∫ ∞

−∞
φ(λ)ΦC(dλ) P-a.s.,
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where φ ∈ L2 (fYCYC
). Now, writing Ya(t) in its spectral representation (2.1), it applies that

E
[(
Ya(t) − Ŷa|C(t)

)
Y C

]
= E

[(∫ ∞

−∞
eiλtΦa(dλ) −

∫ ∞

−∞
eiλtfYaYC

(λ)fYCYC
(λ)−1ΦC(dλ)

)∫ ∞

−∞
φ(λ)ΦC(dλ)

]

=
∫ ∞

−∞
eiλtfYaYC

(λ)φ(λ)⊤
dλ−

∫ ∞

−∞
eiλtfYaYC

(λ)fYCYC
(λ)−1fYCYC

(λ)φ(λ)⊤
dλ = 0.

Thus, Ya(t) − Ŷa|C(t) ∈ L⊥
YC

for t ∈ R.

Step 3: Since LYC
= L∗

YC
due to Lemma 10.3, the optimisation problem (10.1) is equivalent to

min
Y C∈LYC

E
[∣∣∣Ya(t) − Y C

∣∣∣2] .
From the minimality property of the orthogonal projection, we obtain that Y C = PLC

Ya(t) is
the optimal solution to this optimisation problem. Due to Step 1 and Step 2, the function
φa|C(λ) = fYaYC

(λ)fYCYC
(λ)−1, λ ∈ R, is then the optimal function in (10.1). ■

Remark 10.5. For time series in discrete time, the partial correlation relation is also motivated
by an optimisation problem (Brillinger, 2001, Theorem 8.3.1; Dahlhaus, 2000, relation (2.1) and
Definition 2.1) similar to (9.9) for random vectors. However, this optimisation problem is in the
time domain instead of the frequency domain. To see the correspondence to (10.1), suppose that
the function φa|C(λ), λ ∈ R, in the optimisation problem (10.1) is the Fourier transform of an
integrable function da|C(t), t ∈ R. Then, for t ∈ R, Rozanov (1967), I, Example 8.3, provides

∫ ∞

−∞
eiλtφa|C(λ)ΦC(dλ) =

∫ ∞

−∞
da|C(t− s)YC(s)ds.

With this integral representation, we have the similarity of our optimisation problem (10.1) to
the discrete-time optimisation problem

min
da|C

E

∣∣∣∣∣Za(t) −
∞∑

u=−∞
da|C(t− u)ZC(u)

∣∣∣∣∣
2
 .

Given this parallelism, similarities with Dahlhaus (2000) are to be expected in various sections of
this part. However, the advantage of our frequency domain approach is that we require weaker
assumptions.

Finally, for t ∈ R, we define the multivariate noise process of the partial correlation relation

εA|C(t) := YA(t) − PLC
YA(t) = YA(t) −

∫ ∞

−∞
eiλtfYAYC

(λ)fYCYC
(λ)−1ΦC(dλ).

Below, we present properties of these noise processes, which are crucial for the characterisations
of the partial correlation relation.
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Lemma 10.6. Suppose that fYCYC
(λ) > 0 for λ ∈ R. Then the noise processes (εA|C(t))t∈R and

(εB|C(t))t∈R are wide-sense stationary and stationary correlated with (cross-) spectral density
function

fεA|CεB|C (λ) = fYAYB
(λ) − fYAYC

(λ)fYCYC
(λ)−1fYCYB

(λ) for almost all λ ∈ R,

and (cross-) covariance function

cεA|CεB|C (t) =
∫ ∞

−∞
eiλt

(
fYAYB

(λ) − fYAYC
(λ)fYCYC

(λ)−1fYCYB
(λ)
)
dλ ∀ t ∈ R.

Proof. First of all, we can write

εA|C(t) =
∫ ∞

−∞
eiλtΦA(dλ) −

∫ ∞

−∞
eiλtfYAYC

(λ)fYCYC
(λ)−1ΦC(dλ)

=
∫ ∞

−∞
eiλt

(
E⊤

A − fYAYC
(λ)fYCYC

(λ)−1E⊤
C

)
ΦV (dλ),

where EA ∈ Mk×α(R) (and analogously EC ∈ Mk×γ(R)) is the matrix defined by its entries

[EA]ij =

1, i = j, i, j ∈ A,

0, else.

Therefore, (εA|C(t))t∈R is a linear transformation of the wide-sense stationary process YV with
spectral characteristic E⊤

A − fYAYC
(λ)fYCYC

(λ)−1E⊤
C , λ ∈ R. Due to Rozanov (1967), I, (8.2), the

noise process (εA|C(t))t∈R is also wide-sense stationary. Furthermore, Rozanov (1967), I, (8.13),
provides that this linear transformation has a spectral density function, which is, for λ ∈ R,

fεA|CεA|C (λ) =
(
E⊤

A − fYAYC
(λ)fYCYC

(λ)−1E⊤
C

)
fYV YV

(λ)
(
E⊤

A − fYAYC
(λ)fYCYC

(λ)−1E⊤
C

)⊤
= fYAYA

(λ) − fYAYC
(λ)fYCYC

(λ)−1fYCYA
(λ).

Then, Lemma 2.4(b) yields

cεA|CεA|C (t) =
∫ ∞

−∞
eiλt

(
fYAYA

(λ) − fYAYC
(λ)fYCYC

(λ)−1fYCYA
(λ)
)
dλ

for t ∈ R. In particular, the spectral density function of (εA∪B|C(t))t∈R is given by

fεA∪B|CεA∪B|C (λ) = fYA∪BYA∪B
(λ) − fYA∪BYC

(λ)fYCYC
(λ)−1fYCYA∪B

(λ)

for almost all λ ∈ R. Thus, the cross-spectral density function is

fεA|CεB|C (λ) = E⊤
A

(
fYA∪BYA∪B

(λ) − fYA∪BYC
(λ)fYCYC

(λ)−1fYCYA∪B
(λ)
)
EB

= fYAYB
(λ) − fYAYC

(λ)fYCYC
(λ)−1fYCYB

(λ)

for almost all λ ∈ R. Finally (εA|C(t))t∈R and (εB|C(t))t∈R are stationary correlated with
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cεA|CεB|C (t) =
∫ ∞

−∞
eiλt

(
fYAYB

(λ) − fYAYC
(λ)fYCYC

(λ)−1fYCYB
(λ)
)
dλ

for all t ∈ R. ■

Remark 10.7. For the function fεA|CεB|C (λ) we use the terms (cross-) spectral density function
of (εA|C(t))t∈R and (εB|C(t))t∈R as well as partial spectral density function of YA and YB given
YC interchangeably. The terms (cross-) covariance function of (εA|C(t))t∈R and (εB|C(t))t∈R as
well as partial covariance function of YA and YB given YC are also interchangeable.

10.2. Characterisations and properties of partial correlation

In this section, we study several characterisations of the partial correlation relation. We start
with simple characterisations in terms of the (cross-) covariance function, the (cross-) spectral
density function, and the spectral coherence function of the noise processes (εA|C(t))t∈R and
(εB|C(t))t∈R, analogous to the discrete-time results in Remark 2.3 of Dahlhaus (2000). The
spectral coherence function of the noise processes is also called partial spectral coherence function
of YA and YB given YC in analogy to the partial correlation for random vectors (9.12).

Proposition 10.8. Suppose that fYCYC
(λ) > 0 for λ ∈ R. Then, we have

YA ⊥⊥ YB | YC ⇔ cεA|CεB|C (t) = 0α×β for all t ∈ R,

⇔ fεA|CεB|C (λ) = 0α×β for almost all λ ∈ R.

In particular, these conditions imply that, for almost all λ ∈ R, the spectral coherence function
satisfies RεA|CεB|C (λ) = 0α×β. If fεA|CεA|C (λ) > 0 and fεB|CεB|C (λ) > 0 for almost all λ ∈ R,
then the converse holds as well.

Proof. Suppose that YA ⊥⊥ YB |YC . By definition of the partial correlation relation, we obtain the
first characterisation cεA|CεB|C (t) = 0α×β for all t ∈ R. Second, suppose that cεA|CεB|C (t) = 0α×β

for all t ∈ R. Then the Fourier inversion formula (Pinsky, 2009, Proposition 2.2.37) yields
fεA|CεB|C (λ) = 0α×β for almost all λ ∈ R. The converse implication applies by Lemma 2.4(b).
For the third characterisation, suppose that fεA|CεB|C (λ) = 0α×β for almost all λ ∈ R. Then
Definition 2.6 implies that RεA|CεB|C (λ) = 0α×β for almost all λ ∈ R. If we additionally assume
that fεA|CεA|C (λ) > 0 and fεB|CεB|C (λ) > 0 for almost all λ ∈ R, then Definition 2.6 gives the
converse implication. ■

Remark 10.9.

(a) The assumption that fεA|CεA|C (λ) > 0 for almost all λ ∈ R excludes the case where
εA|C(t) = 0α P-a.s. for t ∈ R, i.e., the case where Ya(t) ∈ LYC

for a ∈ A. This can be
explained as follows. If εA|C(t) = 0α ∈ Rα P-a.s. for t ∈ R, then cεA|CεA|C (t) = 0α ∈ Mα(R)
for t ∈ R. As a consequence, fεA|CεA|C (λ) = 0α for almost all λ ∈ R. This matrix is
certainly not positive definite. From now on, we assume that A ∩ C = ∅.
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(b) If A ∩ C = ∅, Bernstein (2009) provides in Proposition 8.2.4 that fYA∪CYA∪C
(λ) > 0 if and

only if fYCYC
(λ) > 0 and fεA|CεA|C (λ) > 0. Furthermore, fYA∪B∪CYA∪B∪C

(λ) > 0 is sufficient
for fYA∪CYA∪C

(λ) > 0 and fYB∪CYB∪C
(λ) > 0.

(c) If A ∩ C = ∅ and fYA∪CYA∪C
(λ) > 0 for λ ∈ R, then fεA|CεA|C (λ) > 0 and Proposition 10.8

results in YA ̸⊥⊥ YA | YC . In the following, we always assume a sufficient condition for
fYA∪CYA∪C

(λ) > 0, so we can also exclude the case A∩B ≠ ∅ from our analysis and assume
throughout the remaining chapter that A,B,C ⊆ V are disjoint.

We further present a very simple characterisation of the partial correlation relation in terms of
an inverse spectral density function, which we denote, for A ⊆ V and λ ∈ R, by

gYAYA
(λ) := fYAYA

(λ)−1.

The corresponding discrete-time result is given in Theorem 2.4 of Dahlhaus (2000). The proof
is not immediately obvious due to the use of the representation of the inverse of a matrix by
block matrices twice. Additionally, we could not find an elaborated proof in the literature, so we
provide it for the sake of completeness.

Proposition 10.10. Suppose that A,B,C ⊆ V are disjoint and fYA∪B∪CYA∪B∪C
(λ) > 0 for λ ∈ R.

Then we have

YA ⊥⊥ YB | YC ⇔ [gYA∪B∪CYA∪B∪C
(λ)]AB = 0α×β for almost all λ ∈ R.

Proof. Let λ ∈ R. For notational convenience, we assume without loss of generality that
A := {1, 2, . . . , α}, B := {α+ 1, . . . , α+ β}, and C := {α+ β + 1, . . . , α+ β + γ}. Then, we can
decompose

fYA∪B∪CYA∪B∪C
(λ) =

(
fYA∪BYA∪B

(λ) fYA∪BYC
(λ)

fYCYA∪B
(λ) fYCYC

(λ)

)
.

As fYA∪B∪CYA∪B∪C
(λ) > 0 and fYCYC

(λ) > 0 by assumption, e.g., Theorem 2.1 of Lu and Shiou
(2002) gives

[gYA∪B∪CYA∪B∪C
(λ)]A∪BA∪B =

(
fYA∪BYA∪B

(λ) − fYA∪BYC
(λ)fYCYC

(λ)−1fYCYA∪B
(λ)
)−1

= fεA∪B|CεA∪B|C (λ)−1.

The matrix fεA∪B|CεA∪B|C (λ) itself has the decomposition

fεA∪B|CεA∪B|C (λ) =
(
fεA|CεA|C (λ) fεA|CεB|C (λ)
fεB|CεA|C (λ) fεB|CεB|C (λ)

)
.

Note that fεA∪B|CεA∪B|C (λ) > 0 and fεB|CεB|C (λ) > 0 due to fYA∪B∪CYA∪B∪C
(λ) > 0 and Re-

mark 10.9(b). Thus, we can make use of the matrix inversion formula again and Theorem 2.1 of
Lu and Shiou (2002) yields
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[gYA∪B∪CYA∪B∪C
(λ)]AB =

[
fεA∪B|CεA∪B|C (λ)−1

]
AB

= −
(
fεA|CεA|C (λ) − fεA|CεB|C (λ)fεB|CεB|C (λ)−1fεB|CεA|C (λ)

)−1

· fεA|CεB|C (λ)fεB|CεB|C (λ)−1.

This representation shows that [gYA∪B∪CYA∪B∪C
(λ)]AB = 0α×β for almost all λ ∈ R if and only if

fεA|CεB|C (λ) = 0α×β for almost all λ ∈ R. Proposition 10.8 concludes the proof. ■

The following lemma applies Proposition 10.10 to introduce a relationship between the inverse
of the spectral density function of a full process YV and the inverse of the spectral density
function of a process YV reduced by a confounder process YC . This result is the continuous-time
counterpart to Dahlhaus (2000), Remark 2.5. Again, since we could not find an elaborate proof
in the literature, we include it for completeness.

Lemma 10.11. Suppose that A,B,C ⊆ V are disjoint and fYV YV
(λ) > 0 for λ ∈ R. Then, for

λ ∈ R, it applies that

[
gYV \CYV \C

(λ)
]
AB

= [gYV YV
(λ)]AB − [gYV YV

(λ)]AC

(
[gYV YV

(λ)]CC

)−1 [gYV YV
(λ)]CB .

Proof. Without loss of generality, we assume that C = {k− γ + 1, k− γ + 2, . . . , k}. We further
note that fYV \CYV \C

(λ) > 0 and [gYV YV
(λ)]CC > 0 for λ ∈ R. Then, for a, b ∈ V \ C and λ ∈ R,

we first show the identity[
hYV \CYV \C

(λ)
]

ab
:= [gYV YV

(λ)]ab − [gYV YV
(λ)]aC

(
[gYV YV

(λ)]CC

)−1 [gYV YV
(λ)]Cb

=
[
gYV \CYV \C

(λ)
]

ab
.

The main idea of the proof is to show that hYV \CYV \C
(λ) is the inverse of fYV \CYV \C

(λ) and thus
hYV \CYV \C

(λ) = gYV \CYV \C
(λ). In doing so, we make use of the fact that gYV YV

(λ) is the inverse
of fYV YV

(λ) and hence,

k∑
j=1

[gYV YV
(λ)]aj [fYV YV

(λ)]jb = δa=b, (10.2)

where δa=b is the Kronecker Delta. For a, b ∈ V \ C and λ ∈ R, it applies that[
hYV \CYV \C

(λ)fYV \CYV \C
(λ)
]

ab

=
k−γ∑
j=1

(
[gYV YV

(λ)]aj − [gYV YV
(λ)]aC

(
[gYV YV

(λ)]CC

)−1 [gYV YV
(λ)]Cj

)
[fYV YV

(λ)]jb

=
k−γ∑
j=1

[gYV YV
(λ)]aj [fYV YV

(λ)]jb

− [gYV YV
(λ)]aC

(
[gYV YV

(λ)]CC

)−1


∑k−γ

j=1 [gYV YV
(λ)]k−γ+1j [fYV YV

(λ)]jb
...∑k−γ

j=1 [gYV YV
(λ)]kj [fYV YV

(λ)]jb

 .
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Multiple use of equation (10.2) and δk−γ+1=b = . . . = δk=b = 0 yields[
hYV \CYV \C

(λ)fYV \CYV \C
(λ)
]

ab

= δa=b −
k∑

j=k−γ+1
[gYV YV

(λ)]aj [fYV YV
(λ)]jb

− [gYV YV
(λ)]aC

(
[gYV YV

(λ)]CC

)−1


−
∑k

j=k−γ+1 [gYV YV
(λ)]k−γ+1j [fYV YV

(λ)]jb
...

−
∑k

j=k−γ+1 [gYV YV
(λ)]kj [fYV YV

(λ)]jb


= δa=b − [gYV YV

(λ)]aC [fYV YV
(λ)]Cb

+ [gYV YV
(λ)]aC

(
[gYV YV

(λ)]CC

)−1 [gYV YV
(λ)]CC [fYV YV

(λ)]Cb

= δa=b.

The function hYV \CYV \C
(λ) is thus the left inverse of fYV \CYV \C

(λ). The right inverse property
can be shown analogously. Finally, let A,B ⊆ V . Then, for λ ∈ R,[

gYV \CYV \C
(λ)
]

AB
=
([
gYV \CYV \C

(λ)
]

ab

)
a∈A,b∈B

=
(
[gYV YV

(λ)]ab − [gYV YV
(λ)]aC

(
[gYV YV

(λ)]CC

)−1 [gYV YV
(λ)]Cb

)
a∈A,b∈B

= [gYV YV
(λ)]AB − [gYV YV

(λ)]AC

(
[gYV YV

(λ)]CC

)−1 [gYV YV
(λ)]CB . ■

Interpretation 10.12. For an interpretation of Lemma 10.11 (cf. Remark 2.5 of Dahlhaus,
2000), we analyse the case

[
gYV \cYV \c

(λ)
]
ab

= [gYV YV
(λ)]ab − [gYV YV

(λ)]ac

(
[gYV YV

(λ)]cc

)−1 [gYV YV
(λ)]cb ,

λ ∈ R, as an example. This equation explains the relation between the partial correlation of the
full process YV and the partial correlation of the reduced process YV \{c}: Suppose Ya and Yb

are partially uncorrelated given YV \{a,b} ([gYV YV
(λ)]ab = 0 for almost all λ ∈ R), but there is a

partial correlation between Ya and Yc given YV \{a,c} and between Yb and Yc given YV \{b,c} with
[gYV YV

(λ)]ac ̸= 0 and [gYV YV
(λ)]cb ̸= 0 on some non-zero set. This causes a partial correlation

between Ya and Yb given YV \{a,b,c} ([gYV \cYV \c
(λ)]ab ̸= 0) in the reduced process YV \{c}.

Finally, we establish that the partial correlation relation satisfies the graphoid properties – the
main result of this section.

Theorem 10.13. Suppose that A,B,C,D ⊆ V are disjoint and fYV YV
(λ) > 0 for λ ∈ R. Then

the partial correlation relation defines a graphoid, i.e., it satisfies the following properties:

(P1) Symmetry: YA ⊥⊥ YB | YC ⇒ YB ⊥⊥ YA | YC .

(P2) Decomposition: YA ⊥⊥ YB∪C | YD ⇒ YA ⊥⊥ YB | YD.

(P3) Weak union: YA ⊥⊥ YB∪C | YD ⇒ YA ⊥⊥ YB | YC∪D.

(P4) Contraction: YA ⊥⊥ YB | YD and YA ⊥⊥ YC | YB∪D ⇒ YA ⊥⊥ YB∪C | YD.

(P5) Intersection: YA ⊥⊥ YB | YC∪D and YA ⊥⊥ YC | YB∪D ⇒ YA ⊥⊥ YB∪C | YD.
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Proof.
(P1) is immediately clear, since the partial correlation relation is symmetric by definition.

(P2, P3, P5) were established by Dahlhaus (2000) in discrete time in his Lemma 3.1. Since the
proof is based only on zero functions in inverse spectral density functions and therefore does not
depend on the setting of discrete or continuous time, it is directly applicable.

(P4) follows from Proposition 10.10 and Lemma 10.11. First, the relations YA ⊥⊥ YB | YD,
YA ⊥⊥ YC | YB∪D, and Proposition 10.10 result in

[gYA∪B∪DYA∪B∪D
(λ)]AB = 0α×β and [gYA∪B∪C∪DYA∪B∪C∪D

(λ)]AC = 0α×γ (10.3)

for almost all λ ∈ R. Along with Lemma 10.11, we obtain

0α×β = [gYA∪B∪DYA∪B∪D
(λ)]AB

= [gYA∪B∪C∪DYA∪B∪C∪D
(λ)]AB − [gYA∪B∪C∪DYA∪B∪C∪D

(λ)]AC(
[gYA∪B∪C∪DYA∪B∪C∪D

(λ)]CC

)−1 [gYA∪B∪C∪DYA∪B∪C∪D
(λ)]CB

= [gYA∪B∪C∪DYA∪B∪C∪D
(λ)]AB (10.4)

for almost all λ ∈ R. In summary, equations (10.3) and (10.4) imply

[gYA∪B∪C∪DYA∪B∪C∪D
(λ)]A(B∪C) = 0α×(β+γ)

for almost all λ ∈ R, and Proposition 10.10 yields YA ⊥⊥ YB∪C | YD. ■

Remark 10.14. The partial correlation relation can be characterised by a conditional orthog-
onality relation (cf. Remark 10.2), which satisfies the graphoid property (cf. Lemma 3.3).
However, this result does not directly prove the graphoid property of the partial correla-
tion relation. The reason is as follows: The relation YA ⊥⊥ YB∪C | YD is equivalent to
LYA

(t) ⊥ LYB∪C
(t) | LYD

, t ∈ R. Thus, the weak union property of the conditional orthogonality
relation gives LYA

(t) ⊥ LYB
(t) | LYD

+ LYC
(t) for all t ∈ R. This relation is not the same as

LYA
(t) ⊥ LYB

(t)|LYC∪D
, t ∈ R, i.e., YA ⊥⊥ YB |YC∪D. Similar problems arise for (P4) and (P5).

The peculiarity of the partial correlation relation in continuous time is that it defines a graphoid
under minimal assumptions. We only require wide-sense stationarity, mean-square continuity,
and a positive definite spectral density function. For many graphoids, the intersection property
(P5) is quite difficult to verify and, unlike for the proofs of (P1)–(P4), additional, possibly
strict, assumptions are required. For example, the conditional orthogonality relation for linear
spaces satisfies the intersection property only under the additional assumption of conditional
linear separation of underlying linear spaces (Eichler, 2007, Proposition A.1). Thus, graphical
models for stochastic processes using conditional orthogonality have additional assumptions on
the spectral density, see Eichler (2007), equation (2.1), for processes in discrete time and our
Assumption 3 for processes in continuous time, which guarantee that conditional linear separation
holds. Similarly, graphical models based on conditional independence also require additional
assumptions (cf. Lauritzen, 2004, Proposition 3.1; Eichler, 2011, Assumption S).
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Partial correlation graphs

In this chapter, we visualise the partial correlation structure between the components of a
multivariate continuous-time process YV = (YV (t))t∈R in a graphical model, called the partial
correlation graph GP C = (V,EP C), as follows: Each component Ya, a ∈ V = {1, . . . , k}, is
represented by a vertex. Furthermore, a b /∈ EP C if and only if the components Ya and Yb

are partially uncorrelated given the environment YV \{a,b}. As the relation Ya ⊥⊥ Yb | YV \{a,b} is
symmetric, we use undirected edges in GP C .

We proceed as follows. In Section 11.1, we define the partial correlation graph and provide
edge characterisations based on the preliminary work of Section 10.2. In particular, the key
characterisation by the inverse spectral density function of YV is given. We also show that the
partial correlation graph satisfies several Markov properties. Then, in Section 11.2, we study
similarities and differences between the partial correlation graph and the causality graph. We
find that, in general, there are no direct relationships between the edges of the two graphical
models. However, if we construct the undirected augmented causality graph, the edges of the
partial correlation graph are a subset of the edges of the augmented causality graph. Note that
the comparison to the local causality graph is discussed in Section 12.2.

11.1. Definition, edge characterisations, and Markov
properties

The motivation from the previous introduction leads to the following definition.

Definition 11.1. Suppose that YV is wide-sense stationary, mean-square continuous, and has
a spectral density function with fYV YV

(λ) > 0 for λ ∈ R. If we define V = {1, . . . , k} as the
vertices and the edges EP C via

a b /∈ EP C ⇔ Ya ⊥⊥ Yb | YV \{a,b},

for a, b ∈ V with a ̸= b, then GP C = (V,EP C) is called partial correlation graph for YV .

Remark 11.2.

(a) The name partial correlation graph is clearly based on the partial correlation relation.

(b) For the definition of GP C it is not necessary to require that fYV YV
(λ) > 0, but sufficient

that fYV \{a,b}YV \{a,b}(λ) > 0 for all a, b ∈ V with a ̸= b. However, fYV YV
(λ) > 0 is essential

for the graphoid properties and thus for the Markov properties for the graph. Observe that
fYV YV

(λ) ≥ 0 applies generally (cf. Lemma 2.4), so fYV YV
(λ) > 0 is only a mild assumption.
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(c) A direct consequence of Remark 10.9(c) is that we would always have a a ∈ EP C for
a ∈ V . Since such self-loops do not help to visualise the partial correlation structure and
do not change the properties of the graph, we omit them for the sake of simplicity.

Below, we provide edge characterisations for the partial correlation graph. First, Proposition 10.8
directly gives the following characterisations.

Lemma 11.3. Suppose that GP C = (V,EP C) is the partial correlation graph for YV . Then, for
a, b ∈ V with a ̸= b, the following equivalences apply.

a b /∈ EP C ⇔ cεa|V \{a,b}εb|V \{a,b}(t) = 0 for all t ∈ R,

⇔ fεa|V \{a,b}εb|V \{a,b}(λ) = 0 for almost all λ ∈ R,

⇔ Rεa|V \{a,b}εb|V \{a,b}(λ) = 0 for almost all λ ∈ R.

Note that the characterisation by the partial spectral coherence function Rεa|V \{a,b}εb|V \{a,b}(λ),
λ ∈ R, is valid, since fYV YV

(λ) > 0 by assumption and thus fεa|V \{a,b}εa|V \{a,b}(λ) > 0 and
fεb|V \{a,b}εb|V \{a,b}(λ) > 0 (cf. Remark 10.9), which results in a non-vanishing denominator. Note
also that the partial spectral coherence function provides a measure of the strength of the
dependence between Ya and Yb given YV \{a,b}, an extension of the partial correlation (coherence)
(9.12) for random vectors to stochastic processes.

In addition, Proposition 10.10 gives the key representation using the inverse of the spectral density
function, which is also in analogy to the alternative representation of the partial correlation
(coherence) in (9.12). The corresponding edge characterisation for time series in discrete time is
established by Dahlhaus (2000) in Theorem 2. We include the proof for completeness.

Proposition 11.4. Suppose that GP C = (V,EP C) is the partial correlation graph for YV . Then,
for a, b ∈ V with a ̸= b, it applies that

Rεa|V \{a,b}εb|V \{a,b}(λ) = −
[gYV YV

(λ)]ab(
[gYV YV

(λ)]aa [gYV YV
(λ)]bb

)1/2 ∀ λ ∈ R. (11.1)

Furthermore,

a b /∈ EP C ⇔ [gYV YV
(λ)]ab = 0 for almost all λ ∈ R.

Proof. Let λ ∈ R and, without loss of generality, set a = 1 and b = 2. On the one hand,

fε{a,b}|V \{a,b}ε{a,b}|V \{a,b}(λ) =
(
fεa|V \{a,b}εa|V \{a,b}(λ) fεa|V \{a,b}εb|V \{a,b}(λ)
fεb|V \{a,b}εa|V \{a,b}(λ) fεb|V \{a,b}εb|V \{a,b}(λ)

)
,

fε{a,b}|V \{a,b}ε{a,b}|V \{a,b}(λ)−1 = 1
D(λ)

(
fεb|V \{a,b}εb|V \{a,b}(λ) −fεa|V \{a,b}εb|V \{a,b}(λ)

−fεb|V \{a,b}εa|V \{a,b}(λ) fεa|V \{a,b}εa|V \{a,b}(λ)

)
,

where D(λ) := det(fε{a,b}|V \{a,b}ε{a,b}|V \{a,b}(λ)). On the other hand, fε{a,b}|V \{a,b}ε{a,b}|V \{a,b}(λ)−1

corresponds to the upper left (2 × 2)-dimensional block of gYV YV
(λ), as in the proof of Proposi-
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tion 10.10. Comparing fε{a,b}|V \{a,b}ε{a,b}|V \{a,b}(λ)−1 and [gYV YV
(λ)]{a,b}{a,b} therefore yields

[gYV YV
(λ)]ab(

[gYV YV
(λ)]aa [gYV YV

(λ)]bb

)1/2 = −
fεa|V \{a,b}εb|V \{a,b}(λ)(

fεa|V \{a,b}εa|V \{a,b}(λ)fεb|V \{a,b}εb|V \{a,b}(λ)
)1/2

= −Rεa|V \{a,b}εb|V \{a,b}(λ).

The second part of the assertion follows from Proposition 10.10. ■

Remark 11.5. A significant advantage of Proposition 11.4 over other edge characterisations is
that the criterion is computationally inexpensive. One only needs to know the spectral density
function and then perform a singular matrix inversion to obtain all the edges in the graph
simultaneously. Furthermore, relation (11.1) even equips us with a simple measure of the strength
of the connection between the components.

Remark 11.6. Dahlhaus (2000) states that the partial correlation graph can be compared to the
concentration graph for random vectors. The concentration graph for a random vector Z ∈ Rk

with E∥Z∥2 < ∞, E(Z) = 0k, and ΣZ := E[ZZ⊤] > 0 is defined as follows. Let the vertices be
defined as V = {1, . . . , k} and the edges ECO via

a b /∈ ECO ⇔
[
Σ−1

Z

]
ab

= 0

⇔ [ΣZ ]ab − [ΣZ ]aV \{a,b}

(
[ΣZ ]V \{a,b}V \{a,b}

)−1
[ΣZ ]V \{a,b}b = 0,

for a, b ∈ V with a ̸= b. Then GCO = (V,ECO) is called concentration graph for Z.

The concentration graph GCO visualises the sparsity pattern of the inverse covariance matrix of
Z, also called the concentration matrix, hence the name concentration graph. However, because
of equations (9.11) and (9.12), the name partial correlation graph would also be appropriate.

The definition of the concentration graph illustrates why the partial correlation graph GP C

for continuous-time stochastic processes is the counterpart to the concentration graph GCO for
random vectors: A missing edge a b /∈ ECO in the concentration graph for Z reflects that
Za and Zb are partially uncorrelated given ZV \{a,b}. Similarly, a b /∈ EP C in the partial
correlation graph for YV means that the stochastic processes Ya and Yb are partially uncorrelated
given YV \{a,b}. Finally, the edges in the partial correlation graph are characterised by the inverse
of a spectral density function, which is the frequency domain counterpart to the inverse of a
covariance matrix. For an independent and identically distributed sequence of random vectors
with distribution Z, the spectral density is even equal to (2π)−1ΣZ .

Note that the concentration graph is usually defined only for multivariate Gaussian random
vectors (Maathuis et al., 2019, p. 218), but this definition is a natural generalisation. For Gaussian
random vectors, however, missing edges even correspond to conditional independence relations
(Maathuis et al., 2019, Corollary 9.1.2).

To conclude this section, we establish Markov properties for GP C . To do this, we first recall some
crucial terminology from Part I for the reader’s convenience.
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In an undirected graph G = (V,E), we denote by ne(a) = {v ∈ V |a v ∈ E} the set of neighbours
of a ∈ V . A path of length n from a vertex a to a vertex b is a sequence α0 = a, . . . , αn = b of
vertices, such that αi−1 αi ∈ E for i = 1, . . . , n. For A,B,C ⊆ V , we say that C separates A
and B if every path from a vertex in A to a vertex in B contains at least one vertex from the
separating set C, and we write A ▷◁ B | C for short.

Proposition 11.7. Suppose that GP C = (V,EP C) is the partial correlation graph for YV . Then
YV satisfies

(P) the pairwise Markov property with respect to GP C , i.e., for a, b ∈ V ,

a — b /∈ EP C ⇒ Ya ⊥⊥ Yb | YV \{a,b},

(L) the local Markov property with respect to GP C , i.e., for a ∈ V ,

YV \(ne(a)∪{a}) ⊥⊥ Ya | Yne(a),

(G) the global Markov property with respect to GP C , i.e., for disjoint A,B,C ⊆ V ,

A ▷◁ B | C ⇒ YA ⊥⊥ YB | YC .

Proof. The pairwise Markov property is satisfied by definition. Furthermore, the partial
correlation relation defines a graphoid by Theorem 10.13. Thus, Lauritzen (2004) states in
Theorem 3.7 that the pairwise, local, and global Markov properties are equivalent, so the local
and global Markov properties are also valid. ■

As in the (local) causality graph, the pairwise and local Markov properties are properties that
are intuitively expected to apply in any reasonably defined graphical model. The global Markov
property is especially important, because it provides a graphical criterion for deciding whether
two subprocesses YA and YB are partially uncorrelated given a third subprocess YC . Although the
graph itself is defined only by pairwise partial correlation relations, we obtain partial correlation
relations between multivariate subprocesses given any subprocesses through path analysis. For
visualisation purposes, we provide an example whose existence is guaranteed by Remark 12.4.

Example 11.8. Let YV be a 5-dimensional continuous-time process, with an associated partial
correlation graph given in Figure 11.1.

2

1 3

4

5

Figure 11.1.: Partial correlation graph for Example 11.8

Since 1 5 /∈ EP C , the pairwise Markov property implies Y1 ⊥⊥ Y5 | Y{2,3,4}. Moreover, using
the local Markov property, it follows that Y{4,5} ⊥⊥ Y1 | Y{2,3}, since the vertex 1 has the vertices
2 and 3 as neighbours. Finally, the global Markov property even provides that Y{4,5} ⊥⊥ Y1 | Y3,
since {4, 5} ▷◁ {1}|{3}.
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11.2. Comparison of partial correlation graphs and causality
graphs

In this section, we study relations between the partial correlation graph and the causality graph.
For the reader’s convenience, we restate a possible definition of the causality graph, using
specifically the edge characterisations from Remark 4.3 and Lemma 5.2.

Proposition 11.9. Suppose that YV is wide-sense stationary, mean-square continuous, and
satisfies Assumptions 3 and 4. If we define V = {1, . . . , k} as the vertices and the edges ECG via

(a) a b /∈ ECG ⇔ LYb
(t+ h) ⊥ LYa(t) | LYV \{a}(t) ∀ 0 ≤ h ≤ 1, t ∈ R,

(b) a b /∈ ECG ⇔ LYa(t+ h) ⊥ LYb
(t+ h′) | LYV

(t) ∀ 0 ≤ h, h′ ≤ 1, t ∈ R,

for a, b ∈ V with a ̸= b, then GCG = (V,ECG) is the causality graph for YV .

Note that Assumption 3 includes the positive definiteness of the spectral density function, so the
partial correlation graph is well defined given this assumption.

Remark 11.10. To highlight the differences between the undirected edges in the causality graph
and the undirected edges in the partial correlation graph, we recall from Remark 10.2 that in the
partial correlation graph, we have

a b /∈ EP C ⇔ LYa(t) ⊥ LYb
(t) | LYV \{a,b} ∀ t ∈ R,

for a, b ∈ V with a ̸= b. The concept of contemporaneous uncorrelatedness in Proposition 11.9(b)
thus differs from zero partial correlation in two ways. First, for zero partial correlation, we
always project on the linear space of the whole process YV \{a,b} = (YV \{a,b}(t))t∈R, whereas, for
contemporaneous uncorrelatedness, we project on the past (YV (s))s≤t. Second, in the case of
contemporaneous uncorrelatedness, the correlation has to be considered not only at identical
time points but also at mixed time points one time step into the future.

Despite the differences between the two concepts (which is also confirmed by the analysis of
MCAR processes in Example 12.8), there are relationships between edges in the partial correlation
graph and paths in the mixed causality graph. To show such a relation, we apply the concept of
m-separation and the global AMP Markov property for the causality graph.

Lemma 11.11. Suppose GP C = (V,EP C) is the partial correlation graph and GCG = (V,ECG)
is the causality graph for YV . Then, for a, b ∈ V with a ̸= b, we have

{a} ▷◁m {b} | V \ {a, b} [GCG] ⇒ a b /∈ EP C .

Proof. The global AMP Markov property, Theorem 7.8, provides that

{a} ▷◁m {b} | V \ {a, b} [GCG] ⇒ LYa ⊥ LYb
| LYV \{a,b} .

This conditional orthogonality relation immediately implies LYa(t) ⊥ LYb
(t) |LYV \{a,b} for all t ∈ R

by subset arguments. This relation in turn implies a b /∈ EP C due to Remark 10.2(b). ■
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The advantage of this result is that the concept of m-separation has several different characteri-
sations in the literature, leading to more sufficient criteria for a b /∈ EP C . One approach is, as
in Section 7.2, to construct the undirected augmented causality graph (cf. Definition 7.16) and
to relate it to the undirected partial correlation graph.

Lemma 11.12. Suppose that GP C = (V,EP C) is the partial correlation graph, GCG = (V,ECG)
is the causality graph, and Ga

CG = (V,Ea
CG) is the augmented causality graph for YV . Then, for

a, b ∈ V with a ̸= b, we have

a b /∈ Ea
CG ⇔ dis (a ∪ ch(a)) ∩ dis (b ∪ ch(b)) = ∅ in GCG, (11.2)

⇔ {a} ▷◁ {b} | V \ {a, b} [Ga
CG]. (11.3)

In particular, each of these conditions implies that a b /∈ EP C . Furthermore, EP C ⊆ Ea
CG.

Proof. By definition, we have

a b /∈ Ea
CG ⇔ a and b are not collider connected in GCG.

Furthermore, Eichler (2011) provides in Lemma 3.2 that

a and b are not collider connected in GCG ⇔ dis (a ∪ ch(a)) ∩ dis (b ∪ ch(b)) = ∅ in GCG,

⇔ {a} ▷◁m {b} | V \ {a, b} [GCG].

In addition, Eichler (2011) states in Theorem 3.1 that

{a} ▷◁m {b} | V \ {a, b} [GCG] ⇔ {a} ▷◁ {b} | V \ {a, b} [Ga
CG].

These statements are then, of course, all sufficient for a b /∈ EP C due to the previous
Lemma 11.11. In particular, EP C ⊆ Ea

CG is valid. ■

Remark 11.13.

(a) This result gives several possibilities to make inferences about the partial correlation graph
from the causality graph. On the one hand, the criterion (11.2) is particularly useful, since
we can work with the original mixed graph and it is easy to implement algorithmically.
On the other hand, the characterisation (11.3) is of particular interest, as it uses the
classical separation in an undirected graph, which is a common way to define global Markov
properties for mixed graphs. Finally, the inclusion property EP C ⊆ Ea

CG gives a simple
connection between the edges in both graphs.

(b) The causality graph GCG = (V,ECG) and the local causality graph G0
CG = (V,E0

CG) satisfy
the relation E0

CG ⊆ ECG (cf. Proposition 4.17 and 5.10). Thus, in the augmented (local)
causality graph, Ea,0

CG ⊆ Ea
CG is satisfied. We expect that EP C ⊆ Ea,0

CG ⊆ Ea
CG applies. In

general, however, we cannot prove the statement EP C ⊆ Ea,0
CG, since we do not have a

global AMP Markov property for the local causality graph. We derive this subset relation
in Section 12.2, where we restrict ourselves to MCAR(p) processes.



CHAPTER 12

Partial correlation graphs for MCAR processes

In this chapter, we apply the partial correlation graph to causal multivariate continuous-time
autoregressive processes of order p, or MCAR(p) processes for short, to illustrate the partial
correlation structure between the components of this important and versatile class of processes. In
addition to the (local) causality graph, the partial correlation graph provides another visualisation
of dependency structures within MCAR processes. We emphasise that partial correlation graphs
for Ornstein-Uhlenbeck processes can be obtained as a special case of this chapter. Furthermore,
Gaussian MCAR processes and Gaussian Ornstein-Uhlenbeck processes, where the driving Lévy
process is a Brownian motion, are also valid special cases.

Throughout this chapter, we use the following matrix notation. Let A1, A2, . . . , Ap ∈ Mk(R),
p ≥ 1, and denote

A =



0k Ik 0k · · · 0k

0k 0k Ik
. . . ...

... . . . . . . 0k

0k · · · · · · 0k Ik

−Ap −Ap−1 · · · · · · −A1


∈ Mkp(R), B =


0k

...
0k

Ik

 ∈ Mkp×k(R),

C =
(
Ik 0k · · · 0k

)
∈ Mk×kp(R).

Finally, suppose σ(A) ⊆ (−∞, 0) + iR. The unique causal, strictly stationary output processes
YV = (YV (t))t∈R of the corresponding state space models (A,B,C, L) are the causal MCAR(p)
processes. For a more detailed introduction to state space models, we refer to Section 2.2.

The structure of the chapter is as follows. In Section 12.1, we ensure that the partial correlation
graph for causal MCAR processes is well defined and we establish this graphical model. We also
provide edge characterisations by model parameters, along with comparisons to the literature.
Moving on to Section 12.2, we study relations between the partial correlation graph and the (local)
causality graph. We confirm that, in general, there are no simple direct relations between the
edges in the causality graph and the edges in the partial correlation graph, which is a continuation
of Section 11.2. We do the same for the local causality graph and the partial correlation graph.
For MCAR processes, we additionally show that the edges of the partial correlation graph are a
subset of the edges of the augmented local causality graph.
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12.1. Establishment and edge characterisations

To define the partial correlation graph for causal MCAR processes, we must first ensure that
the graphical model is well defined. However, the assumptions of the partial correlation graph
were already studied in Section 2.2, so we only give a brief summary: The MCAR process YV is
wide-sense stationary and mean-square continuous, see Remarks 2.12 and 2.13. Furthermore, in
equation (2.18), we state that its spectral density function is

fYV YV
(λ) = 1

2πP (iλ)−1ΣL(P (−iλ)−1)⊤, λ ∈ R,

where, in the notation of the present chapter, the AR polynomial P is

P (z) = Ikz
p +A1z

p−1 + · · · +Ap, z ∈ C. (12.1)

Finally, we need to ensure that fYV YV
(λ) > 0 for λ ∈ R. But this condition is already met when

ΣL > 0 and σ(A) ⊆ (−∞, 0) + iR (cf. Lemma 8.5). In particular, we obtain the representation
of the inverse spectral density function

gYV YV
(λ) = 2πP (−iλ)⊤Σ−1

L P (iλ), λ ∈ R.

By Definition 11.1, Proposition 11.4, and Proposition 11.7, we then obtain the following result.

Proposition 12.1. Suppose that YV is a causal MCAR(p) process with ΣL > 0. If we define
V = {1, . . . , k} as the vertices and the edges EP C via

a b /∈ EP C ⇔ Ya ⊥⊥ Yb | YV \{a,b} ⇔
[
P (−iλ)⊤Σ−1

L P (iλ)
]

ab
= 0 ∀ λ ∈ R,

for a, b ∈ V with a ̸= b, then the partial correlation graph GP C = (V,EP C) for the MCAR process
YV is well defined and satisfies the pairwise, local, and global Markov property.

Note that partial correlation graphs can, of course, be defined for more general state space models,
but we find that MCAR processes are sufficient for our illustrative purposes. Note also that for
MCAR processes, gYV YV

(λ), λ ∈ R, has a very simple representation, it is a polynomial matrix.
As a result, we can give the following edge characterisations based on the coefficient matrices
A1, A2, . . . , Ap of the AR polynomial, and the covariance matrix ΣL of the driving Lévy process.

Proposition 12.2. Suppose that GP C = (V,EP C) is the partial correlation graph for the causal
MCAR(p) process YV with AR polynomial P given by (12.1), where we define A0 := Ik. Then,
for a, b ∈ V with a ̸= b, we obtain the edge characterisation

a b /∈ EP C ⇔

 n∧p∑
m=0∨n−p

(−1)mA⊤
p−mΣ−1

L Ap−n+m


ab

= 0 for n = 0, . . . , 2p.

This characterisation is reduced in the following cases.
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(a) Suppose ΣL = σ2Ik > 0. Then

a b /∈ EP C ⇔

 n∧p∑
m=0∨n−p

(−1)mA⊤
p−mAp−n+m


ab

= 0 for n = 0, . . . , 2p.

(b) Suppose Am is a diagonal matrix for all m = 1, . . . , p. Then

a b /∈ EP C ⇔
[
Σ−1

L

]
ab

= 0.

Proof. First of all, we insert the AR polynomial P in gYV YV
(λ), λ ∈ R, to get

gYV YV
(λ) = 2π

( p∑
m=0

A⊤
p−m(−iλ)m

)
Σ−1

L

( p∑
ℓ=0

Ap−ℓ(iλ)ℓ

)

= 2π
2p∑

n=0

n∧p∑
m=0∨n−p

(−1)mA⊤
p−mΣ−1

L Ap−n+m(iλ)n,

where we rearrange the addends according to the degree of λ and substitute n = ℓ + m,
where n = 0, . . . , 2p. Since 0 ≤ ℓ = n − m ≤ p and 0 ≤ m ≤ p, we obtain the boundary
0 ∨ n− p ≤ m ≤ n ∧ p. Since the components of gYV YV

(λ) are polynomials, the components are
the zero function if and only if the corresponding coefficients are zero. Then, by Proposition 12.1,

a b /∈ EP C ⇔

 n∧p∑
m=0∨n−p

(−1)mA⊤
p−mΣ−1

L Ap−n+m


ab

= 0 for n = 0, . . . , 2p. (12.2)

(a) Assume that ΣL = σ2Ik. Then σ2 > 0 and Σ−1
L = 1/σ2Ik provides that the relation (12.2) is

equivalent to Proposition 12.2(a).

(b) Assume that Am, m = 1, . . . , p, are diagonal matrices. Then the AR polynomial P is a
diagonal polynomial matrix and a b /∈ EP C is equivalent to

0 =
[
P (−iλ)Σ−1

L P (iλ)
]

ab
= [P (−iλ)]aa

[
Σ−1

L

]
ab

[P (iλ)]bb ,

for all λ ∈ R. Due to N (P ) = σ(A) ⊆ (−∞, 0) + iR and because P is diagonal, the diagonal
elements of P (iλ) are not zero and a b /∈ EP C is equivalent to [Σ−1

L ]ab = 0. ■

Remark 12.3. The edge characterisations in Proposition 12.2 for MCAR(p) processes are, as
might be expected, similar to those for VAR(p) processes in Example 2.2 of Dahlhaus and Eichler
(2003). The authors state that in the discrete-time partial correlation graph Gd

P C = (V,Ed
P C),

a b /∈ Ed
P C ⇔

 n∧p∑
m=0∨n−p

Φ⊤
mΣ−1

ε Φm−n+p


ab

= 0 for n = 0, . . . , 2p,

with the AR coefficient matrices Φm ∈ Mk(R), m = 1, . . . , p, Φ0 = −Ik, and the covariance matrix
0 < Σε ∈ Mk(R) of the white noise process. The two characterisations of the continuous-time
and the discrete-time multivariate AR process match exactly if we neglect the factor (−1)m.
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This small difference is due to the fact that in the continuous-time model, the spectral density
function is defined by an AR polynomial at ±iλ, whereas in the discrete-time setting the spectral
density function is defined by an AR polynomial at e±iλ. The similarity of the characterisations
again supports that our partial correlation graph is the continuous-time counterpart to the
discrete-time partial correlation graph.

Remark 12.4. A consequence of Proposition 12.2(b) is that for any undirected graph G = (V,E)
and any p ∈ N, there exists an MCAR(p) process with GP C = G. Indeed, we can define

Am =
(
p

m

)
Ik for m = 0, . . . , p, and

[
Σ−1

L

]
ab

=


k, if a = b,

1, if a ̸= b and a b ∈ E,

0, if a ̸= b and a b /∈ E.

Consequently, Marquardt and Stelzer (2007), Corollary 3.8, and the binomial identity provide

σ(A) = N (P ) = {z ∈ C : det(P (z)) = 0}

=

z ∈ C : 0 = det
( p∑

m=0

(
p

m

)
Ikz

p−m

)
=
( p∑

m=0

(
p

m

)
zp−m

)k

= (1 + z)kp


= {−1} ⊆ (−∞, 0) + iR.

Furthermore, Σ−1
L is strictly diagonally dominant, i.e., positive definite (Horn & Johnson,

2013, Theorem 6.1.10). ΣL is also positive definite and there exists a Lévy process with this
covariance matrix (Cont & Tankov, 2003, Theorem 4.1). Due to Proposition 12.2(b), the resulting
k-dimensional MCAR(p) process YV generates a partial correlation graph GP C = (V,EP C) which
is identical to the undirected graph G = (V,E). This fact is a major advantage of the partial
correlation graph over the causality graph, where it is not clear if a given mixed graph can be
constructed as a causality graph of a continuous-time process.

Furthermore, the following sufficient condition for an edge between a and b in the partial
correlation graph can be obtained by setting n = 2p in Proposition 12.2.

Lemma 12.5. Suppose that GP C = (V,EP C) is the partial correlation graph for the causal
MCAR(p) process YV . Then, for a, b ∈ V with a ̸= b, we have

a b /∈ EP C ⇒
[
Σ−1

L

]
ab

= 0.

Remark 12.6. The matrix Σ−1
L is the concentration matrix of the random vector L(1), so it

defines the concentration graph GCO = (V,ECO) of L(1). Lemma 12.5 thus gives the relation
ECO ⊆ EP C . In other words, the partial correlation of the random variables La(1) and Lb(1) given
LV \{a,b}(1) implies an edge in the partial correlation graph for the continuous-time process YV ,
i.e., the stochastic processes Ya and Yb are partially correlated given YV \{a,b}. If we additionally
assume that Am, m = 1, . . . , p, are diagonal, then Proposition 12.2(b) yields ECO = EP C .
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Finally, for a visualisation of the previous edge characterisations in Propositions 12.1 and 12.2,
we give an example.

Example 12.7. Suppose that YV is a 4-dimensional Ornstein-Uhlenbeck process with ΣL = I4

and

A =


−2 0 1 1
0 −2 −1 −1

−1 −1 −2 −1
1 −1 −1 −2

 .

Then a straightforward calculation yields σ(A) = {−1,−1,−2,−4} ⊆ (−∞, 0)+iR. Furthermore,
for an Ornstein-Uhlenbeck process YV , the inverse spectral density function is simplified to
gYV YV

(λ) = 2π(−iλIk − A⊤)Σ−1
L (iλIk − A) for λ ∈ R. We obtain

gYV YV
(λ) = 2π


λ2 + 6 0 2iλ− 1 −3

0 λ2 + 6 5 5
−2iλ− 1 5 λ2 + 7 6

−3 5 6 λ2 + 7

 .

The corresponding partial correlation graph GP C = (V,EP C) is then given in Figure 12.1.

2

1 3

4

Figure 12.1.: Partial correlation graph for Example 12.7

Furthermore, for an Ornstein-Uhlenbeck process with ΣL = Ik, the edge characterisation in
Proposition 12.2(a) is simplified to

a b /∈ EP C ⇔ [A]ba − [A]ab = 0,
[
A⊤A

]
ab

= 0. (12.3)

Of course, relation (12.3) also provides the edges in Figure 12.1. For example, 1 3 ∈ EP C , as

[A]31 − [A]13 = −1 − 1 ̸= 0.

Furthermore, 1 2 /∈ EP C , since

[A]21 − [A]12 = 0 − 0 = 0 and[
A⊤A

]
12

= (−2) · 0 + 0 · (−2) + (−1) · (−1) + 1 · (−1) = 0.

In summary, Example 12.7 once again highlights the advantage of edge characterisation in
Proposition 12.1, which is the ability to obtain all edges simultaneously through the inverse of
the spectral density function.
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12.2. Comparison of partial correlation graphs and (local)
causality graphs

In this section, we relate the partial correlation graph to the causality graph and the local
causality graph of Chapter 6, in the special case of MCAR processes. This discussion can be
seen as a continuation of Section 11.2.

We start with relations between the partial correlation graph and the causality graph. In the
comparison in Section 11.2, we suspected that, in general, there is no direct relation between the
edges in the causality graph and the partial correlation graph, although EP C ⊆ Ea

CG. We now
confirm this presumption with two counterexamples.

Example 12.8. Recall that for the Ornstein-Uhlenbeck process with ΣL = Ik, due to Proposi-
tion 12.2 with p = 1, it applies that

a b /∈ EP C ⇔ [A]ba − [A]ab = 0,
[
A⊤A

]
ab

= 0,

in the partial correlation graph. In addition, by Corollary 8.24, we obtain the edge characterisa-
tions

a b /∈ ECG ⇔ [Aα]ba = 0, α = 1, . . . , k − 1,

a b /∈ ECG ⇔
[
Aα

(
A⊤

)β
]

ab
= 0, α, β = 0, . . . , k − 1,

for the causality graph.

(a) Suppose that YV is a 3-dimensional Ornstein-Uhlenbeck process with ΣL = I3 and

A =


−3 1 1
1 −3 1
6 1 −8

 ,
σ(A) = {−1,−4,−9} ⊆ (−∞, 0) + iR. Then [A]21 − [A]12 = 0 and [A⊤A]12 = 0, so
1 2 /∈ EP C . However, 1 2 ∈ ECG, 2 1 ∈ ECG, and 1 2 ∈ ECG, since [A]21 ̸= 0
and [A]12 ̸= 0. While there exist all three edges between 1 and 2 in the causality graph,
there is no edge between 1 and 2 in the partial correlation graph. The corresponding
graphical models are given in Figure 12.2.

2

1 3

(a) Causality graph

2

1 3

(b) Partial correlation graph

Figure 12.2.: Graphical models for Example 12.8(a)
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(b) Suppose that YV is a 3-dimensional Ornstein-Uhlenbeck process with ΣL = I3 and

A =


−1 0 0
0 −1 0
1 1 −2

 ,
σ(A) = {−1,−1,−2} ⊆ (−∞, 0) + iR. Then a simple calculation shows that

[Aα]21 = [Aα]12 = 0, α = 1, 2,
[
Aα

(
A⊤

)β
]

12
= 0, α, β = 0, 1, 2.

Therefore, 1 2 /∈ ECG, 2 1 /∈ ECG, and 1 2 /∈ ECG. However, 1 2 ∈ EP C ,
since [A⊤A]12 = 1. While there is no edge between the vertices 1 and 2 in the causality
graph, there is an edge between 1 and 2 in the partial correlation graph. The corresponding
graphical models are given in Figure 12.3.

2

1 3

(a) Causality graph

2

1 3

(b) Partial correlation graph

Figure 12.3.: Graphical models for Example 12.8(b)

In summary, even in the special case ΣL = Ik, there are no direct relations between the edges. In
the partial correlation graph, the orthogonality of the columns in A is characteristic, whereas
in the causality graph, the orthogonality of the rows is relevant for the undirected edges, and
the orthogonality of the rows and columns is relevant for the directed edges. Of course, in some
special cases, there are simple relations between the edges in the partial correlation graph and the
edges in the causality graph. Because of the reasoning about orthogonality, an obvious special
case is a symmetric matrix A.

Lemma 12.9. Suppose that GP C = (V,EP C) is the partial correlation graph and GCG = (V,ECG)
is the causality graph for the causal Ornstein-Uhlenbeck process YV , where A = A⊤ and ΣL = Ik.
Then, for a, b ∈ V with a ̸= b, it applies that

a b /∈ ECG ⇒ a b /∈ EP C .

Proof. The assumptions that ΣL = Ik, A is symmetric, and Corollary 8.24 imply

[A]ba − [A]ab = 0,
[
A⊤A

]
ab

=
[
AA⊤

]
ab

= 0.

Thus, Proposition 12.2 yields a b /∈ EP C . ■
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Next, we provide a comparison of the partial correlation graph to the local causality graph. To
avoid going too deep into the intricate definition of the local causality graph in its generality, but
to improve readability, we restate the local causality graph only for MCAR processes via the
characterisations from Propositions 8.14 and 8.16.

Proposition 12.10. Suppose that YV is a causal MCAR(p) process with ΣL > 0. If we define
V = {1, . . . , k} as the vertices and the edges E0

CG via

(a) a b /∈ E0
CG ⇔ [Aj ]ba = 0 for j = 1, . . . , p,

(b) a b /∈ E0
CG ⇔ [ΣL]ab = 0,

for a, b ∈ V with a ̸= b, then G0
CG = (V,E0

CG) is the local causality graph for YV .

Remark 12.11. We emphasise that the undirected edges in the local causality graph are
characterised by ΣL and not Σ−1

L as in the partial correlation graph, and these matrices generally
do not match. The local causality graph considers the direct correlation of La(1) and Lb(1), while
the partial correlation graph considers the correlation of La(1) and Lb(1) given the environment
LV \{a,b}(1). Of course, in the case of no environment k = 2, we obtain that [ΣL]ab = 0 if and
only if [Σ−1

L ]ab = 0, and a b /∈ EP C implies a b /∈ E0
CG.

Again, because of the different definitions, there are generally no direct relations between the
edges in the partial correlation graph and the edges in the local causality graph, not even in the
special case of ΣL = Ik. To illustrate this, we continue with Example 12.8.

Example 12.12. First, we observe that in Example 12.8(a,b), we assume that ΣL = Ik. Thus,
a b /∈ E0

CG is always true. Continuing Example 12.8(a), we still get 1 2 /∈ EP C , but
1 2 ∈ E0

CG and 2 1 ∈ E0
CG, since [A]21 = [A]12 ̸= 0. While there are both directed edges

between the vertices 1 and 2 in the local causality graph, there is no edge between 1 and 2 in
the partial correlation graph. Furthermore, in Example 12.8(b), we still get 1 2 ∈ EP C , but
1 2 /∈ E0

CG and 2 1 /∈ E0
CG, since [A]21 = [A]12 = 0. While there are no edges between

the vertices 1 and 2 in the local causality graph, there is an edge between 1 and 2 in the partial
correlation graph. The corresponding local causality graphs are given in Figure 12.4.

2

1 3

(a) Local causality graph for Example 12.8(a)

2

1 3

(b) Local causality graph for Example 12.8(b)

Figure 12.4.: Graphical models for Example 12.8 and Example 12.12

However, as for the causality graph, we can establish relations between edges in the partial
correlation graph and paths in the local causality graph via the concept of m-separation and
augmentation separation, although no global AMP Markov property could be shown for the local
causality graph.



12.2. Partial correlation graphs and (local) causality graphs 159

Lemma 12.13. Suppose that GP C = (V,EP C) is the partial correlation graph, G0
CG = (V,E0

CG)
is the local causality graph, and G0,a

CG = (V,E0,a
CG) is the augmented local causality graph for the

causal MCAR(p) process YV . Then, for a, b ∈ V with a ̸= b, we have

a b /∈ E0,a
CG ⇔ {a} ▷◁m {b} | V \ {a, b} [G0

CG],

⇔ dis (a ∪ ch(a)) ∩ dis (b ∪ ch(b)) = ∅ in G0
CG,

⇔ {a} ▷◁ {b} | V \ {a, b} [G0,a
CG].

In particular, each of these conditions implies that a b /∈ EP C . Furthermore, EP C ⊆ E0,a
CG.

Proof. In Lemma 11.12, we already established the equivalences

a b /∈ E0,a
CG ⇔ a and b are not collider connected in G0

CG,

⇔ dis (a ∪ ch(a)) ∩ dis (b ∪ ch(b)) = ∅ in G0
CG,

⇔ {a} ▷◁ {b} | V \ {a, b} [G0,a
CG],

⇔ {a} ▷◁m {b} | V \ {a, b} [G0
CG],

regardless of the specific definition of the graph. Thus, we only need to prove a b /∈ EP C , which
we do by contradiction. So suppose that a b ∈ EP C . Then there exists a λ ∈ R, such that

0 ̸=
[
P (−iλ)⊤Σ−1

L P (iλ)
]

ab
=
∑
c∈V

∑
d∈V

[P (−iλ)]ca

[
Σ−1

L

]
cd

[P (iλ)]db .

Consequently, there exist vertices c, d ∈ V , such that

[P (−iλ)]ca ̸= 0,
[
Σ−1

L

]
cd

̸= 0, [P (iλ)]db ̸= 0.

The statements about the AR polynomial yield that there exist directed edges a c and b d

in G0
CG. The statement [Σ−1

L ]cd ≠ 0 yields that there exists a path π between c and d of only
undirected edges in the local causality graph G0

CG (Eichler, 2007, p. 341).

Indeed, consider an Ornstein-Uhlenbeck process ỸV with A = −Ik, that is driven by the
same Lévy process as the MCAR process YV . Then ỸV generates a partial correlation graph
G̃P C = (V, ẼP C) and a causality graph G̃CG = (V, ẼCG). For these graphical models, we have
c d /∈ ẼP C if and only if [Σ−1

L ]cd = 0 and c d /∈ ẼCG if and only if [ΣL]cd = 0. Additionally,
there are no directed edges in the causality graph. Then, a consequence of Lemma 11.12 is that
c d ∈ ẼP C ([Σ−1

L ]cd ̸= 0) implies c d ∈ Ẽa
CG and dis(c) ∩ dis(d) ̸= ∅ in ẼCG. Thus, there

exists a path π̃ of only undirected edges between c and d in the causality graph G̃CG, i.e., for
some c = α1, . . . , αℓ = d ∈ V , we have [ΣL]αiαi+1 ̸= 0 for i = 1, . . . , ℓ− 1. This result implies a
path π̃ of only undirected edges between c and d in the local causality graph G0

CG.

Finally, if π̃ does not already provide a path between a and b, we complete π̃ with one or both
directed edges from above, to get a path π between a and b on which every intermediate vertex
is a collider. This path contradicts the premise and the statement a b /∈ EP C is valid. In
particular, EP C ⊆ E0,a

CG is satisfied. ■
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As discussed in Remark 11.13, Lemma 12.13 provides several ways to make statements about the
partial correlation graph from the local causality graph. Again, we support the result with an
example and continue with Examples 12.8 and 12.12.

Example 12.14. In both Example 12.8(a) and (b), we obtain the augmented local causality graph
given in Figure 12.5, emphasising the relation EP C ⊆ E0,a

CG. In particular, in Example 12.8(a) we
have the true subset relation EP C ⊂ E0,a

CG, whereas in Example 12.8(b) the equality EP C = E0,a
CG

applies.

2

1 3

Figure 12.5.: Augmented local causality graph for Example 12.8(a,b) and Example 12.14



CHAPTER 13

Conclusion and outlook

In this thesis, we establish three graphical models that visualise different types of dependencies
between the components of stationary multivariate stochastic processes in continuous time. In
the following, we summarise the main results of this work and give an outlook on resulting
research questions.

The first two graphical models, established in Part I, are the causality graph and the local causality
graph. In both graphical models, the vertices stand for the respective components Y1, . . . ,Yk of an
underlying multivariate process YV . The directed edges represent (local) Granger causality, while
the undirected edges represent (local) contemporaneous correlation between the components. We
now highlight some important aspects of both mixed graphs.

First, the edge definitions in the (local) causality graph are inspired by approaches from the
literature on dependency structures in discrete-time and continuous-time processes. We take
these concepts and adapt them to stationary multivariate processes in continuous time, to obtain
appropriate and meaningful definitions of dependency structures between the components of YV .

Second, the (local) causality graph satisfies various levels of Markov properties. Although the
graphical models are defined only by pairwise relationships between the components, these
properties can be used together with path analysis to identify multivariate Granger non-causality
relations and information about multivariate subprocesses being contemporaneously uncorrelated,
even with respect to partial information. In doing so, only few assumptions about the underlying
process are required. That is, wide-sense stationarity, mean-square continuity, purely non-
determinism, and the existence of a spectral density function that must satisfy a mild regularity
assumption. However, there is an important difference between the two types of graphical models.
The advantage of the causality graph is that it satisfies the global AMP and the global Granger-
causal Markov property. The local causality graph probably does not satisfy global Markov
properties with the same generality, so we provide additional but easily verifiable assumptions.

Finally, due to the universal applicability of both graphical models, the (local) causality graph
applies to very general output processes of state space models. For MCAR processes and ICCSS
processes, we are even able to establish edge characterisations by the model parameters. For
this purpose, we first prove essential properties of the processes and, in particular, determine
orthogonal projections of these processes on linear spaces. The resulting edge characterisations
by model parameters are meaningful in terms of interpretation and comparison to the literature,
emphasising once again that the edges, respectively dependency structures, are sensibly defined.
Furthermore, as expected, the characterisations for the edges in the local causality graph are less
restrictive than those for the edges in the causality graph. The local causality graph has fewer
edges than the causality graph and, in general, the graphs are not identical. The advantage of



162 Chapter 13. Conclusion and outlook

the local causality graph over the causality graph is that it allows more general graphs to be
generated. In fact, it is guaranteed that any mixed graph can be obtained as a local causality
graph, e.g., the one in Figure 13.1a.

2

1 3

(a) A mixed graph

2

1 3

(b) An undirected graph

Figure 13.1.: Two graphical models

In Part II, we establish a third graphical model, the partial correlation graph, which is an
undirected graph. As in the (local) causality graph, the vertices stand for the respective
components Y1, . . . ,Yk of the underlying multivariate process YV . However, the undirected edges
in the graph represent partial correlation relations. Again, we highlight some key aspects of this
graphical model.

First, in defining this graph, we take the concept of partial correlation for random vectors and
time series in discrete time and adapt it to continuous-time processes. In this way, we again obtain
a sensible definition of dependency structures between the components of the process. However,
unlike the discrete-time partial correlation relation, our continuous-time concept is based on the
insights that have already been gained from Part I, i.e., on orthogonal projections, rather than
on an optimisation problem. Nevertheless, an alternative approach via an optimisation problem
is available, which emphasises the similarity of the discrete-time and continuous-time partial
correlation relation.

Second, an advantage of the partial correlation graph is that the assumptions about the process
can be relaxed compared to the (local) causality graph. We only require that the underlying
process is wide-sense stationary, mean-square continuous, and has a positive definite spectral
density function. Still, the partial correlation graph satisfies the usual Markov properties for
undirected graphs, in particular the global Markov property. Again, this means that even if the
edges are defined by pairwise partial correlation relations, multivariate relations can be derived
by path analysis, including those with respect to partial information.

However, the advantage of the partial correlation graph is not only its generality but also its
simplicity. The edges have a very simple characterisation in terms of zero entry functions in the
inverse of the spectral density function. This characterisation allows all edges in the graph to be
determined simultaneously in a very simple and computationally inexpensive manner. At the
same time, the inverse of the spectral density function determines the partial spectral coherence
function, allowing for statements about the strength of the dependence.

Due to its generality, the partial correlation graph can, of course, also be applied to state space
processes, such as MCAR processes, for which the inverse of the spectral density function can be
used to derive edge characterisations in terms of the model parameters of the process. The edge
characterisations for MCAR processes are interpretatively meaningful and allow to ensure the
existence of all undirected graphs as a partial correlation graph, e.g., the one in Figure 13.1b.
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Finally, we note that the partial correlation graph can be related to the (local) causality graph.
Although there are no simple direct relations between the edges, the partial correlation graph
is related to the augmented (local) causality graph. More specifically, the edges in the partial
correlation graph are a subset of the edges in the augmented causality graph. At least for
MCAR processes, the edges in the partial correlation graph are even a subset of the edges in the
augmented local causality graph.

Despite the comprehensive answers provided in this thesis, there arise some research questions
worthy of further investigation. Addressing these questions could lead to further developments
and applications of the models presented and to new models that go beyond them. We divide the
research questions into the following areas: open questions for the (local) causality graph, open
questions for the partial correlation graph, and suggestions for alternative graphical models.

First, we present important open questions for the (local) causality graph, both for the general
model and the application to MCAR and ICCSS processes.

(1) In Section 7.3, we address global Markov properties for the local causality graph, making
additional assumptions. Thus, we do not derive global Markov properties for the local
causality graph with the same generality as for the causality graph. This motivates the
question of whether the assumptions can be relaxed.

(2) In the case of MCAR and ICCSS processes, it is sufficient for our purposes to specify the
orthogonal projections onto linear subspaces only semi-explicitly, as commented, e.g., in
Remark 8.4. The question arises to what extent these projections can be specified. This,
in turn, leads to the study of whether and how the maximal decomposition of a spectral
density function can be explicitly specified.

(3) For the causality graph, we cannot generate every mixed graph as a causality graph using
MCAR processes, see Remark 8.30. Thus, we wonder which graphs can be generated and
which cannot.

(4) One of the assumptions for our state space processes, contained in the acronym ICCSS
processes, is the existence of a coprime right polynomial matrix fraction description (2.13)
of the transfer function with polynomials as in (2.14). The existence of this decomposition
is claimed in the literature without proof in the context of state space models and thus
remains an open question.

(5) From a statistical point of view, a natural question is how to test for the presence of edges
in our (local) causality graph. Based on our edge characterisations by model parameters, it
seems feasible to derive tests for the directed and undirected edges in the (local) causality
graph, e.g., for MCAR processes. For the model parameters, which are unknown in practice,
estimators from the literature can be used. These are the quasi-maximum likelihood
estimator (Schlemm & Stelzer, 2012b) or the Whittle estimator (Fasen-Hartmann & Mayer,
2022) for state space models.
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Secondly, we present open questions for the partial correlation graph, where, based on our
Proposition 11.4, the edges are characterised by zero entry functions in the inverse of the spectral
density function. Again, it is of interest to test for edges in the partial correlation graph,
respectively for zero entry functions in the the inverse spectral density function. To do this, it is
natural to apply estimators for the spectral density function from the literature.

(6) In the low-frequency sampling scheme, we can use the aforementioned parametric approach,
e.g., for MCAR processes. The model parameters can be estimated by quasi-maximum
likelihood estimation (Schlemm & Stelzer, 2012b) or Whittle estimation (Fasen-Hartmann
& Mayer, 2022). From these estimators, an estimator for the inverse spectral density
function can be constructed.

(7) In the high-frequency sampling scheme, it seems straightforward to generalise the smoothed
normalised periodogram for CARMA processes (Fasen & Fuchs, 2013a, 2013b) to the
multivariate setting. Alternatively, the lag-window spectral density estimator for stationary
processes in a Hilbert space (Kartsioukas, Stoev, & Hsing, 2023) has potential. Due to
the generality of the statements made in this paper, a common but unwieldy cumulant
condition is required for non-Gaussian processes. However, by exploiting the structure of
state space processes, it should be possible to provide alternative proofs that do not rely
on this assumption.

Finally, we present ideas for alternative graphical models that could further help to understand,
visualise, and communicate dependency structures in stochastic processes.

(8) In our graphical models, we restrict ourselves to linear relationships between components
of multivariate processes. Relationships between components that are non-linear in nature
cannot be fully captured. An obvious approach would therefore be to define a mixed graph
using the conditional expected values given sigma fields instead of orthogonal projections
onto linear spaces. The properties of such models can then be explored further, where the
proof of the Markov properties should be transferable from Chapter 7 and Eichler (2012).
However, we expect more technical assumptions than in our (local) causality graph.

(9) Another conceivable modification would be to adapt the definition of contemporaneous
correlation by adding conditioning on the future of the environment, analogous to Eichler
(2012), as commented in Remark 7.9. The Markov properties of the resulting graphical model
should again carry over. Of particular interest, however, are the edge characterisations. We
wonder whether the characterisations of the undirected edges, e.g., for Ornstein-Uhlenbeck
processes, now contain the inverse of the covariance matrix of the driving Lévy process
rather than the covariance matrix itself. This outcome would be expected given the results
of Eichler (2012) and the edge characterisations in our partial correlation graph.

With this summary of the key findings of this thesis and the initiation of further research, we
conclude our exploration.
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APPENDIX A

Auxiliary technical results

In this chapter, we present two results that have been moved from the main body of the thesis
to improve readability. The corresponding proofs are simple mathematical inductions.

A.1. Discrete time difference operator

Lemma A.1. Let f : R → Rk and define the discrete-time difference operator D(j) iteratively by

D(1)f(t) = f(t) − f(t− 1), D(j)f(t) = D(j−1) (f(t) − f(t− 1)) , j ∈ N, j ≥ 2,

for t ∈ R, where we set D(0)f(t) = f(t). Further, define
(0

0
)

:= 1. Then

f(t− n) =
n+1∑
j=1

(
n

j − 1

)
(−1)j−1D(j−1)f(t), n ∈ N0, t ∈ R.

Proof. Let t ∈ R. We show the statement by induction over n. The base case n = 0 holds
immediately because of

f(t) =
1∑

j=1

(
0

j − 1

)
(−1)j−1D(j−1)f(t).

Now assume the induction hypothesis

f(t− (n− 1)) =
n∑

j=1

(
n− 1
j − 1

)
(−1)j−1D(j−1)f(t) (A.1)

for some n ∈ N0. For the induction step, the operator definition and (A.1) yield

f(t− n) = f(t− (n− 1)) − D(1)f(t− (n− 1))

=
n∑

j=1

(
n− 1
j − 1

)
(−1)j−1D(j−1)f(t) −

n∑
j=1

(
n− 1
j − 1

)
(−1)j−1D(j)f(t).

An index shift and Pascal’s rule for binomial coefficients (e.g., Bernstein, 2009, Fact 1.7.1) give

f(t− n)

= f(t) +
n∑

j=2

(
n− 1
j − 1

)
(−1)j−1D(j−1)f(t) −

n−1∑
j=1

(
n− 1
j − 1

)
(−1)j−1D(j)f(t) − (−1)n−1D(n)f(t)
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= f(t) +
n∑

j=2

((
n− 1
j − 1

)
+
(
n− 1
j − 2

))
(−1)j−1D(j−1)f(t) + (−1)nD(n)f(t)

= f(t) +
n∑

j=2

(
n

j − 1

)
(−1)j−1D(j−1)f(t) + (−1)nD(n)f(t)

=
n+1∑
j=1

(
n

j − 1

)
(−1)j−1D(j−1)f(t). ■

A.2. Properties of matrices defining MCAR processes

Lemma A.2. Define

A =



0k Ik 0k · · · 0k

0k 0k Ik
. . . ...

... . . . . . . 0k

0k · · · · · · 0k Ik

−Ap −Ap−1 · · · · · · −A1


∈ Mkp(R), B =


0k

...
0k

Ik

 ∈ Mkp×k(R),

C =
(
Ik 0k · · · 0k

)
∈ Mk×kp(R),

where k, p ∈ N. Then, for j = 0, . . . , p− 1, it applies that

AjB =


0k(p−j−1)×k

CAp−1B
...

CAp+j−1B

 and CAp+jB = −
j∑

i=0
Aj−i+1CAp+i−1B.

Proof. We first derive the representation of AjB by induction over j. The base case j = 0 holds
immediately due to the relation (8.13). We obtain

A0B = B =
(

0k(p−1)×k

Ik

)
=
(

0k(p−1)×k

CAp−1B

)
.

Let us now assume the induction hypothesis

AjB =


0k(p−j−1)×k

CAp−1B
...

CAp+j−1B

 (A.2)

for some j ∈ N0 with 0 ≤ j < p− 1. Furthermore, note that, for 0 ≤ j < p− 1, the induction
hypothesis (A.2) and the relation (8.13) yield
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CAp+jB = CApAjB =
(
−Ap · · · −A1

)


0k(p−j−1)×k

CAp−1B
...

CAp+j−1B

 = −
j∑

i=0
Aj−i+1CAp+i−1B. (A.3)

Now, because of the induction hypothesis (A.2) and equation (A.3), it follows the induction step

Aj+1B = AAjB =



0k Ik 0k · · · 0k

0k 0k Ik
. . . ...

... . . . . . . 0k

0k · · · · · · 0k Ik

−Ap −Ap−1 · · · · · · −A1




0k(p−j−1)×k

CAp−1B
...

CAp+j−1B



=



0k(p−j−2)×k

CAp−1B
...

CAp+j−1B
−
∑j

i=0Aj−i+1CAp+i−1B


=



0k(p−j−2)×k

CAp−1B
...

CAp+j−1B
CAp+jB


.

Finally, the representation of CAp+jB for all j = 0, . . . , p−1 follows analogously to the calculation
(A.3) from the previous induction result. ■
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