KIT | KIT-Bibliothek | Impressum | Datenschutz

High‐Rate Polymeric Redox in MXene‐Based Superlattice‐Like Heterostructure for Ammonium Ion Storage

Chen, Chaofan; Quek, Glenn; Liu, Hongjun; Bannenberg, Lars; Li, Ruipeng; Choi, Jaehoon 1; Ren, Dingding; Vázquez, Ricardo Javier; Boshuizen, Bart; Fimland, Bjørn-Ove; Fleischmann, Simon 1; Wagemaker, Marnix; Jiang, De-en ; Bazan, Guillermo Carlos ; Wang, Xuehang
1 Karlsruher Institut für Technologie (KIT)

Abstract:

Achieving both high redox activity and rapid ion transport is a critical and pervasive challenge in electrochemical energy storage applications. This challenge is significantly magnified when using large-sized charge carriers, such as the sustainable ammonium ion (NH4+). A self-assembled MXene/n-type conjugated polyelectrolyte (CPE) superlattice-like heterostructure that enables redox-active, fast, and reversible ammonium storage is reported. The superlattice-like structure persists as the CPE:MXene ratio increases, accompanied by a linear increase in the interlayer spacing of MXene flakes and a greater overlap of CPEs. Concurrently, the redox activity per unit of CPE unexpectedly intensifies, a phenomenon that can be explained by the enhanced de-solvation of ammonium due to the increased volume of 3 & Aring;-sized pores, as indicated by molecular dynamic simulations. At the maximum CPE mass loading (MXene:CPE ratio = 2:1), the heterostructure demonstrates the strongest polymeric redox activity with a high ammonium storage capacity of 126.1 C g(-1) and a superior rate capability at 10 A g(-1). This work unveils an effective strategy for designing tunable superlattice-like heterostructures to enhance redox activity and achieve rapid charge transfer for ions beyond lithium.


Verlagsausgabe §
DOI: 10.5445/IR/1000174292
Veröffentlicht am 18.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Helmholtz-Institut Ulm (HIU)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 1614-6832, 1614-6840
KITopen-ID: 1000174292
Erschienen in Advanced Energy Materials
Verlag Wiley-VCH Verlag
Seiten Art.-Nr.: 2402715
Vorab online veröffentlicht am 03.09.2024
Nachgewiesen in Web of Science
Scopus
Dimensions
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page