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A B S T R A C T

Extremal elastic materials here refer to a specific class of elastic materials whose elastic matrices
exhibit one or more zero eigenvalues, resulting in soft deformation modes that, in principle, cost
no energy. They can be approximated through artificially designed solid microstructures.
Extremal elastic materials have exotic bulk wave properties unavailable with conventional solids
due to the soft modes, offering unprecedented opportunities for manipulating bulk waves, e.g.,
acting as phonon polarizers for elastic waves or invisibility cloaks for underwater acoustic waves.
Despite their potential, Rayleigh surface waves, crucially linked to bulk wave behaviors of such
extremal elastic materials, have largely remained unexplored so far. In this paper, we theoreti-
cally investigate the propagation of Rayleigh waves in extremal elastic materials based on con-
tinuum theory and verify our findings with designed microstructure metamaterials based on
pantographic structures. Dispersion relations and polarizations of Rayleigh waves in extremal
elastic materials are derived, and the impact of higher order gradient effects is also investigated
by using strain gradient theory. This study provides a continuum model for exploring surface
waves in extremal elastic materials and may stimulate applications of extremal elastic materials
for controlling surface waves.

1. Introduction

Elastic solids generally support three bulk waves or body waves, with one being longitudinally polarized and the other two
transversely polarized (Graff, 2012; Achenbach, 2012). The superposition of different bulk waves can lead to surface waves that
propagate along a free surface while decaying exponentially away from the surface. Rayleigh waves, first predicted by Lord Rayleigh in
1885, is a typical example (Rayleigh, 1896; Vinh and Ogden, 2004). Rayleigh waves are widely used in engineering fields, e.g.,
non-destructive evaluation, structural health monitoring or earthquake early warning. For nowadays very popular elastic topological
insulators, their topological edge states can also be treated as Rayleigh waves as well (Pal and Ruzzene, 2017; Chen et al., 2018, 2019a;
Zhang et al., 2019, 2020; Chen et al., 2021; Zhao et al., 2020). Yet, such Rayleigh waves occur on free surfaces of artificial phononic
crystals with geometry or material inhomogeneity rather than on free surface of homogenous solids, and they are robust to disorders as
well as fabrication imperfections (Asbóth et al., 2016).

Rayleigh waves of isotopic solids are non-dispersive and propagate slower than both the bulk longitudinal waves and the bulk shear
waves (Vinh and Ogden, 2004). The ratio between the Rayleigh wave speed and the bulk wave speed is determined by the Poisson’s
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ratio of the solids. In fact, a Rayleigh wave can be mathematically decomposed as the summation of a bulk longitudinal wave and a
bulk transversal wave (Achenbach, 2012). These two bulk waves share the same real wavenumber along the surface, while exhibit
different purely imaginary wavenumbers along the surface normal direction. The free surface boundary conditions are satisfied by an
appropriate relative amplitude of the two bulk waves. Due to the superposition of these two bulk waves, displacements on the free
surface manifest as elliptically polarized in the plane formed by the wave vector direction and the surface normal. Interestingly, the
wave’s propagation direction and the displacement polarization are closely linked (Long et al., 2018; Bliokh, 2022). Material particles
on the free surface rotate counter-clockwise for a right-propagating Rayleigh wave, while the rotation is reversed for a left-propagating
Rayleigh wave, as required by the principle of time-reversal symmetry. This behavior has been interpreted as spin-momentum locking
(Yuan et al., 2021), offering an opportunity to stimulate unidirectional surface waves by using circularly polarized excitations (Yuan
et al., 2021; Zhao et al., 2022).

Rayleigh waves of ordinary elastic solids have been thoroughly investigated, while the counterpart for extremal elastic materials
has largely remained unexplored. Extremal elastic materials can exhibit highly different bulk wave properties than common materials
(Norris, 2008; Martin et al., 2012; Wei and Hu, 2022), and have attracted considerable attention, recently (Bückmann et al., 2014; Cai
et al., 2015; Chen et al., 2016; Sun et al., 2018, 2019; Chen et al., 2019b; Chen and Hu, 2019). Mathematically, they are defined as
elastic materials whose elasticity tensor may be represented as a 6 × 6 matrix using Voigt or Kelvin notation with N ≥ 1 zero ei-
genvalues (Milton and Cherkaev, 1995). Depending on N, we refer them as unimode materials (N = 1), bimode materials (N = 2),
trimode materials (N = 3), quadramode materials (N = 4), or pentamode materials (N = 5), following the nomenclature of a previous
paper (Milton and Cherkaev, 1995). It’s noteworthy that unimode materials, bimode materials, and quadramode materials are also
referenced as monomode materials, dimode materials, or tetramode materials, respectively, in literatures following the Greek number
(Groß et al., 2023a). These materials can be constructed based on squares or beams connected by extremely thin parts (Kadic et al.,
2012, 2014; Zheng et al., 2019; Dong et al., 2021; Groß et al., 2023b). Although the eigenvalues are typically not precisely zero, they
can be engineered to be orders of magnitude smaller than others (Kadic et al., 2012). Each of the zero eigenvalue is attributed to a soft
deformation mode of the material in the sense that the deformation requires conceptually zero energy. Ordinary solids correspond toN
= 0 with no soft modes. The presence of soft modes in extremal elastic materials can drastically change their bulk wave properties. For
example, pentamode materials exclusively support longitudinal waves, resembling the acoustic property of usual fluids (Norris, 2009).
For quadramode materials, only one shear mode can propagate while the other shear mode with orthogonal polarization and the
longitudinal mode have zero velocities (Wei et al., 2021). Extremal elastic materials have been adopted for numerous interesting
applications for controlling bulk wave propagating, including phonon polarizer, acoustic cloak, and metasurface (Chen et al., 2015,
2017; Su et al., 2017; Groß et al., 2023a). However, investigations into Rayleigh surface waves, closely linked to bulk wave properties,
in extremal elastic materials have been relatively scarce.

In this paper, we focus on the study of Rayleigh surface waves of two-dimensional (2D) extremal elastic materials, whose elasticity
tensor may be represented as a 3 × 3 matrix using Voigt or Kelvin notation. In such case, we have two types of extremal elastic
materials, i.e., the unimode material (N = 1) and the bimode material (N = 2). For extremal elastic materials, the usual strain energy
resulting from the first order gradient of the displacement field can become very small due to the presence of soft modes (Alibert and
Della Corte, 2015). However, the contribution of higher-order deformations can become dominate. Cauchy elasticity, which essentially
ignores elastic energy from higher-order strain (Milton, 2002), can be insufficient to completely characterize wave property of
extremal elastic materials. For instance, pantographic structures primarily derive their elastic energy from the second order gradient of
the displacement field (Alibert and Della Corte, 2015). Therefore, we aim to explore the impact of higher-order gradient effects on
Rayleigh waves of extremal elastic materials. Among various elastic continuum theories that accounts for high-order effects (Eringen,
1966; Milton et al., 2006; Auffray et al., 2009; Chen et al., 2014, 2020), we adopt strain gradient theory since it is a natural gener-
alization of the Cauchy elastic theory through introducing the high-order displacement gradients. Moreover, Rayleigh waves in high
order continuum media have also been studied, such as in micropolar or microstretch materials (Eringen, 2012), or in strain-gradient
materials (Georgiadis et al., 2004; Yang et al., 2020; Zisis et al., 2023). All these studies focus on ordinary materials without easy
deformation modes, however here we aim at surface waves in extremal elastic materials. Apart from the unimode materials and
bimode materials, the wave properties of 2D trimode material (N = 3), whose Cauchy elastic matrix is entirely zero, are examined
within the framework of the strain gradient theory. Finally, we design metamaterial structures exhibiting pronounced gradient effects
and validate our findings based on continuum theory with the metamaterial model.

The paper is organized as follows. In Section 2, we investigate surface waves on the free surface of extremal elastic metamaterial
within the framework of Cauchy continuum theory. We aim to analytically derive their dispersion relations and displacement po-
larizations, comparing them with those of ordinary solids. In Section 3, we consider the influence of higher-order deformation gra-
dients to the propagation of surface waves for extremal elastic materials based on strain gradient theory. The impact of higher-order
elastic parameters will be analyzed. Section 4 is dedicated to validating the mentioned results obtained from the continuum elasticity
theory. For this purpose, a metamaterial toy model based on springs and masses is proposed to realize extremal elastic metamaterials
with prominent strain gradient effects. The metamaterial is then homogenized as an effective strain-gradient medium. The surface
wave properties are studied with the continuum model and are compared with direct numerical simulations with microstructures.
Finally, the concluding section summarizes the findings presented in the paper.

2. 2D extremal materials: continuum model

Thematerial we consider here is a homogeneous elastic material with a free surface, as shown in Fig. 1. In a 2D Cartesian coordinate
system {x1, x2}, the equations of motion in the absence of body force and the constitutive law of a Cauchy elastic material are
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σij,j = ρ ∂2ui

∂t2 , σij = Cijkluk,l, (1)

in which, σij is the symmetric stress tensor, ui denotes the displacement, t is time, ρ and Cijkl represent the mass density and the fourth-
order elasticity tensor, respectively. Repeated indices should be understood as Einstein summation. The comma denotes spatial de-
rivative. The fourth-order elasticity tensor, Cijkl, for an elastic material with N zero eigenvalues can be expressed as (Milton and
Cherkaev, 1995)

Cijkl =
∑3− N

r=1
KrS(r)

ij S(r)
kl , (2)

with Kr being the non-zero eigenvalues of the elasticity tensor and S(r) being a second order symmetric tensor (hard mode). In the
following derivation, Eq. (2) is written as a compact form Cijkl =

∑3− N
r=1 S(r)ij S(r)kl for convenience, where Kr is absorbed in S(r).

Now, we study Rayleigh surface waves propagating along a flat surface of the semi-infinite elastic material in Fig. 1. Since a
Rayleigh surface mode can be regarded as the supposition of multiple evanescent modes (Achenbach, 2012), we first study possible
evanescent modes in the material. We assume the following displacement form

u =

(
û1
û2

)

exp(− bx2)exp(i(kx1 − ωt)) = ûexp(ik(m ⋅ x − ct)), û =

(
û1
û2

)

, (3)

where ω denotes the angular frequency, k the wavenumber, i the imaginary unit. For simplicity, we introduce the phase velocity c = ω
/k and m = (1, +iξ)T, with ξ = b/k. In the following analysis, we consider right-propagating waves, i.e., k > 0. Therefore, we need
Re(ξ) > 0 to ensure that the wave decays exponentially along the +x2 direction. Substituting Eqs. (3) and (2) into Eq. (1) yields two
homogeneous equations

Q ⋅ û = 0,Qik =
∑3− N

r=1
S(r)
ij S(r)

kl mlmj − ρc2δik, (4)

where δik is the Kronecker delta and Q is the acoustic tensor. To obtain a nontrivial solution, we need

det(Q) = 0. (5)

Then, the solution of ξ can be obtained by solving Eq. (5), and the corresponding eigenmode û can be computed by substituting ξ
back into Eq. (4). For unimode and nullmode materials, there are generally two solutions of ξ with Re{ξ} > 0. The displacement for a
surface wave can be written as

u = (A1 û1exp(− kξ1x2)+A2 û2exp(− kξ2x2))exp(ik(x1 − ct)). (6)

In which, A1 and A2 are two unknown constants. For bimode materials, there is only one solution of ξ with Re{ξ} > 0. This will be
analyzed case by case in the following example.

Next, we will examine the traction-free conditions at the surface x2 = 0, which reads

fi = Cijkluk,lnj = 0, at x2 = 0, (7)

where n = (0, 1)T is the normal vector of the free plane surface. Substituting Eq. (6) into Eq. (7) yields two homogeneous linear
equations for the unknown constants A1 and A2

Fig. 1. Scheme of Rayleigh surface waves propagating on the free surface of a semi-infinite elastic material.
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PikAk = 0,Pik = ∂fi/∂Ak. (8)

Non-trivial solution for surface wave is obtained if the following condition is satisfied

det(P) = 0. (9)

The Rayleigh wave velocity c can be obtained by solving Eq. (9). Then, substituting c back into Eq. (8) yields the constants A1 and A2

for the surface wave.
We note here that although Stroh formalism (Stroh, 1958) is a powerful and elegant method to study Rayleigh waves, however it

cannot be applied to extremal materials, whose elasticity tensors are not positive definite. Therefore, instead of relying on Stroh
formalism, we derive the Rayleigh wave using the method described above. As we pursue closed-form formula, only the case where the
principal axis of the materials is parallel to n is considered in this paper. In such case, either the material supports Rayleigh surface
waves with zero phase velocity or there is no Rayleigh surface mode. We provide detail analysis for 2D bimode extremal materials and
unimode extremal materials next.

2.1. 2D bimode materials

According to the given definition in Eq. (2), we assume the elastic tensor of a general 2D bimode material as following

Cijkl = SijSkl, S =

(
S11 S12
S12 S22

)

∕= 0. (10)

Since the principal axis of the bimode material is parallel to n, we have the following constraint

S11S12 = S22S12 = 0. (11)

The equation has two non-trivial solutions, i.e., S12 = 0, S211 + S222 ∕= 0, or S11 = S22 = 0, S12 ∕= 0. We discuss the two cases below.

S12 = 0 and S211 + S222 ∕= 0

Assuming a displacement field of the form in Eq. (3), then substitution of the displacement field into Eq. (4) yields
(

S211 − ρc2 iξS11S22
iξS11S22 − ξ2S222 − ρc2

)(
û1
û2

)

= 0. (12)

We obtain the following two bulk wave modes

u1 =
(

iξS22
− S11

)

exp(ik(x1+ iξx2)), c = 0, (13)

u2 =
(

iS11
− S22ξ

)

exp(ik(x1+ iξx2 − ct)), ρc2 = S211 − S222ξ2. (14)

It can be verified that the displacement field in Eq. (13) results in zero stress. Therefore, the displacement field in Eq. (13) for any
Re{ξ} > 0 represents a surface mode but with zero phase velocity. Now, we check whether Eq. (14) can become a surface mode.
Substituting the displacement field into the traction-free boundary condition yields

f =

⎛

⎝
0

kS22
(
S211 − ξ2S222

)

⎞

⎠exp(ik(x1 + iξx2 − ct)) = 0, at x2 = 0. (15)

We need either S211 − ξ2S222 = 0 or S22 = 0 for the traction-free condition. The first condition gives a displacement field as a special
case of Eq. (13). The second condition leads to the following surface wave for any Re{ξ} > 0,

u =

(
iS11
0

)

exp(ik(x1 + iξx2 − ct)), ρc2 = S211. (16)

This is a rather special situation as the elastic tensor only has a nonzero component C1111 = S211 and the material behaves like a one-
dimensional material. So, we discard this case.

S11 = S22 = 0 and S12 ∕= 0

Likewise, we obtain the following equation
(
− ξ2S212 − ρc2 iξS212

iξS212 S212 − ρc2

)(
û1
û2

)

= 0. (17)

We have following two bulk wave modes

Y. Wei et al.
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u1 =
(

i
ξ

)

exp(ik(x1+ iξx2)), c = 0, (18)

u2 =
(

iξ
1

)

exp(ik(x1 + iξx2 − ct)), ρc2 =
(
1 − ξ2

)
S212. (19)

It can be verified that the displacement field in Eq. (18) naturally satisfies the traction-free condition and therefore represents a
surface mode with zero phase velocity for any Re{ξ} > 0. The secondmode Eq. (19) satisfies the traction-free condition only if 1 − ξ2 =

0. For this case, the displacement field is just a special example of Eq. (18).
We summarize in Table 1 the conditions that allow for surface Rayleigh waves in bimode elastic materials and the corresponding

Rayleigh waves modes are given. In short, 2D bimode extremal materials with principal axis parallel to the surface only support
Rayleigh surface waves with zero phase velocity. In fact, acoustic fluids can be treated as isotropic bimode materials in 2D space or
isotropic pentamode materials in 3D space, which can only resist hydrostatic stress (Norris, 2008). It is known that acoustic fluids, such
as water or air, cannot support propagating surface waves. This is consistent with the results in Table 1.

2.2. 2D unimode materials

We assume the following elastic tensor for general 2D unimode materials

Cijkl = S(1)
ij S(1)

kl + S(2)
ij S(2)

kl , S
(1) =

⎛

⎝
S(1)
11 S(1)

12

S(1)
12 S(1)

22

⎞

⎠ ∕= 0, S(2) =

⎛

⎝
S(2)
11 S(2)

12

S(2)
12 S(2)

22

⎞

⎠ ∕= 0. (20)

In this case, the following three constraints will hold

S(1)
11 S

(1)
12 + S(2)

11 S
(2)
12= 0,

S(1)
22 S

(1)
12 + S(2)

22 S
(2)
12= 0,

S(1) : S(2) = S(1)
11 S

(2)
11 + S(1)

22 S
(2)
22 + 2S(1)

12 S
(2)
12= 0,

(21)

in which, the first two come from the fact that principal axis of the unimode material is parallel to n. More specifically, C1112 and C2212
obtained from the elastic tensor must be zero. The last one follows from the major symmetry of the elasticity tensor, which leads to
orthogonal eigenvectors. It’s worth noting that the elasticity tensor of unimode materials in Eq. (20) has six unknown parameters in
total, while Eq. (21) provides three constraints on them. In other words, S(1) and S(2) are not independent and we can solve S(2) in terms
of S(1). Substite the solved S(2) into Eq. (20) and perform some math simplification, we obtain the following two types of elasticity
matrix

C =

⎛

⎜
⎜
⎝

S211 αS11S22 0
αS11S22 S222 0
0 0 0

⎞

⎟
⎟
⎠, |α| < 1, S11 > 0, S22 > 0. (22)

C =

⎛

⎜
⎜
⎝

S211 S11S22 0
S11S22 S222 0
0 0 S212

⎞

⎟
⎟
⎠, S12 ∕= 0, S211 + S222 > 0. (23)

Here, S11, S22 and S12 depend on S(1) and their lengthy expressions are omitted here for simplicity.

Table 1
Rayleigh modes in 2D extremal materials with principal axis parallel to surface.

Type Cases Rayleigh modes

Bimode

C =

⎛

⎜
⎜
⎝

S211 S11S22 0
S11S22 S222 0
0 0 0

⎞

⎟
⎟
⎠

u =

(
iξS22
− S11

)

exp(ik(x1 + iξx2 − ct)), c = 0,Re{kξ} > 0

C =

⎛

⎜
⎜
⎝

0 0 0
0 0 0
0 0 S212

⎞

⎟
⎟
⎠

u =

(
i
ξ

)

exp(ik(x1 + iξx2 − ct)), c = 0,Re{kξ} > 0

Unimode

C =

⎛

⎜
⎜
⎝

S211 S11S22 0
S11S22 S222 0
0 0 S212

⎞

⎟
⎟
⎠S11S22 < 0,S12 ∕= 0

u =

(
i̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− S11/S22
√

)

exp
(
ik
(
x1 + i

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
− S11/S22

√
x2 − ct

))
, c = 0

Other No Rayleigh modes

Y. Wei et al.
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We first consider the elastic matrix of Eq. (22). Substituting Eq. (22) into Eq. (4) yields
(

S211 − ρc2 iξαS11S22
iξαS11S22 − ξ2S222 − ρc2

)(
û1
û2

)

= 0. (24)

To obtain nontrivial wave modes, the determinant of the coefficient matrix in Eq. (24) must be zero

S222
(
α2S211+ ρc2 − S211

)
ξ2 + ρc2

(
ρc2 − S211

)
= 0. (25)

This equation only allows for solution of ξ with Re{ξ} > 0 if (1 − α)S211 < ρc2 < S211 holds. The corresponding wave mode is

ξ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
ρc2
(
ρc2 − S211

)

S222
(
ρc2 + (α2 − 1)S211

)

√

,u1 =

(
iξ1αS11S22
ρc2 − S211

)

exp(ik(x1 + iξ1x2 − ct)). (26)

The traction-free condition leads to the following equation

S22(S11αu11 + iS22ξ1u12) = 0, at x2 = 0. (27)

In which, u11 is the component of the vector u1 in Eq. (26). This equation is further simplified as
(
ρc2 +

(
α2 − 1

)
S211
)
ξ1 = 0. (28)

Together with ξ1 in Eq. (26), we obtain following solutions of c

c = 0, or c =

̅̅̅̅̅̅̅

S211
ρ

√

, or c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(1 − α2
) S211

ρ

√

. (29)

Considering the requirement of (1 − α)S211 < ρc2 < S211, only c = 0 is reasonable. However, c = 0 results in ξ1 = 0. Therefore, for the
given elastic matrix in Eq. (22), there is no surface wave mode.

We then consider an elasticity matrix of the form in Eq. (23). Substituting Eq. (23) into Eq. (4) leads
⎛

⎝
S211 − ξ2S212 − ρc2 iξ

(
S212 + S11S22

)

iξ
(
S212 + S11S22

)
S212 − ξ2S222 − ρc2

⎞

⎠

(
û1
û2

)

= 0. (30)

To obtain nontrivial bulk mode, the determinant of the coefficient matrix in Eq. (30) must be zero

a0ξ4 + b0ξ2 + c0 = 0, (31)

where

a0 = S212S
2
22,

b0 = 2S11S22S212 + ρc2
(
S212 + S222

)
,

c0 = S211S
2
12 − ρc2

(
S211 + S212

)
+ ρ2c4.

(32)

If S22 = 0, there is one solution of ξwith Re{ξ} > 0 under the condition of b0c0 < 0. From the traction-free boundary condition, we

can solve c =

̅̅̅̅̅̅̅̅̅̅̅̅̅

S211/ρ
√

. The mode becomes a bulk wave mode and should be discarded.

We only need to consider S22 ∕= 0. Here, the solutions of Eq. (31) depend on b20 − 4a0c0. There are two pairs of degenerate solutions
of ξ if b20 − 4a0c0 = 0. Otherwise, there are two pairs of complex conjugated solution of ξ if b20 − 4a0c0 ∕= 0. We discuss the two cases
separately.

For b20 − 4a0c0 = 0, we need to consider S212 − S222 = 0 or S212 − S222 ∕= 0. If S212 − S222 = 0, then the condition together with b20 − 4a0c0
= 0 leads to S11+ S22 = 0. Then, we obtain the following wave mode from Eq. (30)

ξ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S222 − ρc2

S222

√

,u1 =

(
1

0

)

exp(ik(x1 + iξ1x2 − ct)),

ξ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S222 − ρc2

S222

√

,u2 =

(
0

1

)

exp(ik(x1 + iξ1x2 − ct)).

(33)

It can be verified that, the above solution satisfies the traction-free boundary condition only if S22 = 0, which contradicts the
prerequisite condition of S22 ∕= 0. This means there is no surface mode when S212 − S222 = 0 and S11+ S22 = 0, which represents a special
case of unimode material.

If b20 − 4a0c0 = 0 and S212 − S222 ∕= 0, we obtain the solution of c

Y. Wei et al.
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c = 0, or c =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− 4
S212
ρ

(
S11S22 + S222

)(
S11S22 + S212

)

(
S212 − S222

)2

√
√
√
√ . (34)

Substitution of c = 0 into Eq. (30) leads to the following mode

ξ =

̅̅̅̅̅̅̅̅̅̅̅

−
S11
S22

√

,u =

(
iξ1S22
− S11

)

exp(ik(x1 + iξx2 − ct)), c = 0. (35)

The above mode satisfies the traction-free boundary condition automatically, and thus represents a non-propagating Rayleigh
surface modes when S11S22 < 0.

For the second solution of c in Eq. (34), we have the following wave mode

ξ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
S212 + 2S11S22 + S222

)(
2S212S22 + S11S212 + S11S222

)

S22
(
S212 − S222

)2

√
√
√
√ ,

u =

⎛

⎝
iξ1
(
S212 + S11S22

)

ξ21S
2
12 + ρc2 − S211

⎞

⎠exp(ik(x1 + iξ1x2 − ct)).

(36)

From the traction-free condition, we need

iS11u11 − S22u12ξ1 = u12 + iu11ξ1 = 0, at x2 = 0, (37)

in which, u11 is the component of the vector u1 in Eq. (36). Eliminating u12 from the two equation leads to iu11
(
S11 + S22ξ21

)
= 0. For

nontrivial solution, we require S11+ S22ξ21 = 0. Together with ξ1 in Eq. (36), we obtain S212 + S11S22 = 0 or S11+ S22 = 0, with the
prerequisite condition S212 − S222 ∕= 0. One can verify that S212 + S11S22 = 0 leads to ξ1 = −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S11/S22

√
and c = 0, which results in trivial

displacement field in Eq. (37). Therefore, we only have the following nontrivial mode with S11+ S22 = 0, which is basically an
example of Eq. (35)

S11 = − S22,u =

(
i
1

)

exp(ik(x1 + ix2 − ct)), c = 0. (38)

In the above analysis, we have discussed the case of b20 − 4a0c0 = 0. Now, if a0 > 0 and b20 − 4a0c0 ∕= 0, we have four solutions of ξ,
two with Re{ξ} > 0 and two with Re{ξ} < 0. We are only interested in the modes with Re{ξ} > 0, i.e.,

ξ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− b0 +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

b20 − 4a0c0
√

2a0

√
√
√
√

,u1 =

⎛

⎝
iξ1
(
S212 + S11S22

)

ξ21S
2
12 + ρc2 − S211

⎞

⎠exp(ik(x1 + iξ1x2 − ct)),

ξ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

− b0 −
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

b20 − 4a0c0
√

2a0

√
√
√
√

,u2 =

⎛

⎝
iξ2
(
S212 + S11S22

)

ξ22S
2
12 + ρc2 − S211

⎞

⎠exp(ik(x1 + iξ2x2 − ct)).

(39)

Assume a surface mode is composed of the above two mode, i.e., u = A1u1 + A2u2, and substitute the displacement field into the
traction-free conditions in Eqs. (6)–(9), we obtain the following equation

(
S22(S11u11 + iS22ξ1u12) S22(S11u21 + iS22ξ2u22)

S212(u12 + iξ1u11) S212(u22 + iξ2u21)

)(A1

A2

)

= 0, at x2 = 0, (40)

in which, u11 is component of the vector u1. Likewise, u21 is component of the vector u2. In order to obtain a nontrivial solution of A1
and A2. The following condition must be satisfied

(S11 û11+ iS22ξ1 û12)(û22+ iξ2 û21) − (û12+ iξ1 û11)(S11 û21+ iS22ξ2 û22) = 0. (41)

This equation together with the expression of ξ1 and ξ2 in Eq. (39) leads to an equation of c. The equation is too lengthy and is
omitted here. Four solutions of c can be obtained

c1 = 0, c2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−
S212
ρ
4S22(S11 + S22)

(
S11S22 + S212

)

(
S212 − S222

)2

√
√
√
√ , c3 =

̅̅̅̅̅̅̅

S211
ρ

√

, c4 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
S212
ρ

S211 − S222
S212 − S222

√

. (42)

Solutions c1 and c2 are exactly the same as in Eq. (34). Only a surface mode as in Eq. (35) with c = 0 is allowed when S11S22 < 0. The
solution c3 corresponds to traveling longitudinal wave along the interface. c4 is physical only if 1< S11/S22 < S12/S22 or 0 < S12 /S22
< S11/S22 < 1. However, this results in pure imaginary solutions of ξ1 and ξ2.

Through the above analysis, we have discussed all the possibility of Rayleigh surface modes in unimodematerials. The condition for
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Rayleigh surface modes in unimode material is summarized in Table 1. In 2D unimode extremal materials with material axis parallel to
the free surface, Rayleigh modes with zero phase velocity can exist only when S11S22 < 0. The polarization could be circularly
polarized or elliptically polarized depending on the material parameters. All other cases do not support surface waves.

We verify the above findings by using one example of microstructure unimode material. Here, we consider a twisted kagome lattice
as shown in Fig. 2. The model is composed of masses (dots) connected by linear Hooke’s springs (lines). The lattice can be understood
as an extremal elastic material with the effective Lamé constants λeff = − μeff (Hutchinson and Fleck, 2006; Sun et al., 2012; Nassar
et al., 2020). According to Table 1, a surface state with zero phase velocity exists in this extreme material, u =

(i, 1)Texp(− kx2)exp (ikx1) for k > 0. Fig. 2(a) shows the unit cell and a strip geometry of the twisted kagome lattice. The band
structure for a strip geometry with 50 unit cells along the a1 direction is shown in Fig. 2(b). We obtain the dispersion band for the
kagome lattice by using numerical Floquet-Bloch analysis, following similar procedures in previous publications (Chen et al., 2019a;
Nassar et al., 2020). The flat band (blue dots) with zero frequency is in perfect agreement with the dispersion relation of the surface
state (red line) in a continuum model with homogenized material parameters. We further show in Fig. 2(c) the calculated Bloch
eigenmode corresponds to the lowest branch at ka/π = 0.1 (cf. arrow in Fig. 2(b)). The real part of the displacement vector (red arrow)
and the imaginary part of the displacement vector (blue arrow) are perpendicular to each other and have nearly the same length, which
indicates nearly circularly polarization.

Notice that there are three independent nodes (n1, n2 and n3, see Fig. 2(a)) in a unit cell. We define the effective displacement of the
lattice as the averaged displacement of the three nodes, which can be understood as the displacement of the geometry center of the
three nodes (see Fig. 2(c)). Fig. 2(d) shows the normalized displacement amplitude with respect to the depth. We obtain a good
agreement between the microstructure model and the effective-medium calculation. Furthermore, in panels (e1) and (e2), we compare
the displacement trajectory of surface particles between the homogenized model and the microstructure calculation. Again, we obtain
a nice consistency between the two results. In particular, the displacement trajectory of the lattice model is nearly circular even for
larger wavenumbers (see panel (e2)). The calculation justifies our above findings.

In next section, we will show that extremal materials can support propagating Rayleigh waves if second gradient effects are
included.

3. Second gradient materials: continuum model

3.1. Preliminary

Second gradient elasticity is a kinetically enhanced continuum model, which can more finely characterize the influence of
microstructure on the properties of materials. Different generalizations of such enhanced continuum models can be constructed
(Mindlin, 1965). Here, we adopt the so-called type I formulation, in which the extra degree of freedom is defined as the second gradient
of displacement (Mindlin, 1965).

In the absence of body force and body double-force, the constitutive law and the equation of motion of a homogeneous second
gradient material are

(
σij − Mijk,k

)

,j = ρ ∂2ui

∂t2 + Hijk

(
∂2uj

∂t2

)

,k
− Hkij

(
∂2uk

∂t2

)

,j
− Jijkl

(
∂2uk

∂t2

)

,lj
,

σij = Cijkluk,l + Eijklpuk,lp,

Mijk = Elpijkul,p + Dijklpqul,pq,

(43)

where Mijk is the hyperstress tensor, Cijkl is the fourth-order Cauchy elasticity tensor, Dijklpq and Eijklp denote the sixth-order elasticity
tensor and the fifth-order coupling elasticity tensor, respectively. They satisfy the following symmetry, Cijkl = Cjikl = Cklij, Eijklp = Ejiklp

= Eijkpl, and Dijklpq = Dikjlpq = Dijklqp = Dlpqijk (Mindlin, 1965). Hijk = Hjik is the third-order tensor that couples linear momentum and
hypermomentum, while Jijkl = Jjikl is the fourth-rank tensor accounting for the second-order inertia effects (Rosi et al., 2018; Rosi and
Auffray, 2019). In 2D case, Eijklp and Hijk vanish for any medium with even order rotational invariance (Auffray et al., 2009). We only
consider this type of medium in the paper. In a usual homogenization process based on strain energy density, the second-order inertia
terms cannot be explicitly obtained. These terms can be obtained if an appropriate wave operator is introduced into the equation of
motion to generate mixed derivatives in time and space (Metrikine and Askes, 2002). Therefore, in what follows, we also compare the
results without the second-order inertia term and with the second-order inertia term. In general, discrepancy between the two cases is
negligible at low frequency range, while the one with second-order inertia term is closer to microstructure calculations for higher
frequencies.

Assuming the displacement field as in Eqs. (3), (43) could be simplified as

Q(S)
ik uk = 0, σij = Cijkluk,l,Mijk = Dijklpqul,pq, (44)

where the superscript S in parentheses represents the quantity for second gradient elasticity, and the generalized acoustic tensor is now
written as

Q(S)
ik =

(
Cijkl − ω2Jijkl

)
mjml + k2Diqpkljmjmlmpmq − ρc2δik. (45)
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Fig. 2. Verification of circularly polarized surface waves in a twisted kagome lattice. (a) Sketches of the unit cell and the supercell; The dots represent masses and the blue lines stand for linear axial
Hooke’s springs. The twisted angle ϑ = 40◦ is chosen as an example. The lattice can be effectively treated as an unimode extremal elastic material with λeff = − μeff . Other choices of the angle parameter
lead to a similar unimode property. (b) Band structure for a strip geometry with 50 unit cells along the a1 direction (see panel (a)). The dashed blue line represents the surface states for microstructure
model while the red line is for continuum model with homogenized material parameters. (c) Illustration of surface states with ka/π = 0.1 for the microstructure model. The red arrow and the blue arrow
represent the real part and the imaginary part of the displacement, respectively. (d) Normalized displacement amplitude |u|/|u0| versus the normalized depth kd/(2π) for different ka. |u0| is the
amplitude of the surface particle. (e) Comparison between trajectories of surface particles in the homogenized model and the kagome lattice with (e1) ka/π = 0.1 and (e2) ka/π = 0.2. Three nodes close
to the free surface are chosen for the lattice (also see panel (c)). Trajectory of the geometry center of the three nodes are also plotted (dashed black line). For small wavenumber ka /π = 0.1, the three
nodes for the kagome lattice exhibit nearly circular trajectories, similarly to the homogenized model. The geometry center shows a nearly ideal circular trajectory even for larger wavenumbers.
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in which,mi is the component of the vectorm = (1, +iξ)T. Then, the two bulk wave phase velocities and polarization can be obtained
by solving the eigenvalue problem of Eqs. (44) and (45).

Naturally, the method of analyzing Rayleigh waves in the Section 2 for Cauchy elasticity can be extended to the second gradient
elasticity. A non-trivial solution exists if

det
(
Q(S)) = 0. (46)

If the principal axis of the material is parallel to the surface n, there are usually four pairs of solutions, which can be further divided
into two groups based on the sign of Re{ξ}. The general displacement solution for a free surface wave has the following form

u =
∑4

i=1
Ai û iexp(ik(x1 + iξix2 − ct)). (47)

For deriving surface Rayleigh waves, the following boundary conditions at the free surface x2 = 0 (Mindlin, 1964) must be satisfied

f (S)i =
[(

Cijkl − ω2Jijkl
)
uk,l −

(
2δpr − npnr

)
Dijpklquk,lqr

]
nj = 0,

R(S)
i = Dijpklqnjnpuk,lq = 0.

(48)

Then, substituting Eq. (47) into Eq. (48) yields four homogeneous equations for the unknown constants A1, A2, A3 and A4

⎛

⎝
f (S)i

R(S)
i

⎞

⎠ = P(S)
ik Ak = 0, P(S)

ik =

⎛

⎝
∂f (S)i

/
∂Ak

∂R(S)
i
/

∂Ak

⎞

⎠. (49)

A non-trivial free surface wave requires

det
(
P(S)) = 0. (50)

The Rayleigh wave velocity and the displacement fields for a semi-infinite second gradient elasticity material can be obtained by
solving Eq. (50).

3.2. Isotropic Cauchy continuum with second gradient effect

We consider a general isotropic Cauchy continuumwith isotropic second gradient elasticity. The fourth-order Cauchy elastic tensor
can be expressed as

Cijkl = λδijδkl + μ
(
δikδjl + δilδjk

)
, (51)

where λ and μ are the Lamé constants. For the sixth-order elasticity tensor (Auffray et al. (2015)), there are four independent pa-
rameters (g1, g2, g3 and g4)

Dijklpq = g1
(
δijδklδpq + δikδjlδpq + δipδjkδlq + δiqδjkδlp

)

+g2
(
δijδkpδlq + δijδkqδlp + δikδjpδlq + δikδjqδlp

)

+g3δilδjkδpq + g4
(
δilδjpδkq + δilδjqδkp

)
.

(52)

Aiming for analytical expressions, the second-order inertia terms are ignored here. Substituting Eqs. (51) and (52) into Eq. (46)
yields the solution of ξ and the corresponding mode û

ξ1 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
1
2

c2L
c2LS

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
4

c4L
c4LS

+
c2

c2LS

√√
√
√
√

, û1 =

(
1

iξ1

)

, ξ2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
1
2

c2T
c2TS

−

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
4

c4T
c4TS

+
c2

c2TS

√√
√
√
√

, û2 =

(
ξ2
i

)

,

ξ3 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
1
2

c2L
c2LS

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
4

c4L
c4LS

+
c2

c2LS

√√
√
√
√

, û3 =

(
1

iξ3

)

, ξ4 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
1
2

c2T
c2TS

+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
4

c4T
c4TS

+
c2

c2TS

√√
√
√
√

, û4 =

(
ξ4
i

)

,

(53)

in which,

cL =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
λ + 2μ

ρ

√

, cT =

̅̅̅μ
ρ

√

, cLS = k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4g1 + 4g2 + g3 + 2g4

ρ

√

, cTS = k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g3 + 2g4

ρ

√

. (54)

Then, we have the matrix P with following components
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P(S)
11 =

(
4g1 + 4g2 + g3 + 2g4

)
ξ31 −

(
4g1 + 4g2 + g3 + 4g4 + 2μ

/
k2
)
ξ1,

P(S)
21 =

(
4g1 + 4g2 + g3 + 2g4

)
ξ41 + 2g1 + 4g2 + λ

/
k2

−
(
6g1 + 8g2 + g3 + 4g4 + (λ + 2μ)

/
k2
)
ξ21

P(S)
31 =

(
2g1 + g3 + 2g4

)
ξ21 − 2g1 − g3,

P(S)
41 =

(
4g1 + 4g2 + g3 + 2g4

)
ξ31 −

(
4g1 + 4g2 + g3

)
ξ1,

P(S)
12 =

( (
g3 + 2g4

)
ξ42 +

(
2g1 − g3 − 4g4

)
ξ22 −

(
ξ22 + 1

)
μ
/
k2 − 2g1

)/
ξ2,

P(S)
22 =

(
g3 + 2g4

)
ξ22 − g3 − 4g4 − (2μ)

/
k2,

P(S)
32 =

(
g3 + 2g4

)
ξ22 − g3,

P(S)
42 =

( (
2g1 + g3 + 2g4

)
ξ22 − 2g1 − g3

)/
ξ2,

P(S)
13 =

(
4g1 + 4g2 + g3 + 2g4

)
ξ33 −

(
4g1 + 4g2 + g3 + 4g4 + 2μ

/
k2
)
ξ3,

P(S)
23 =

(
4g1 + 4g2 + g3 + 2g4

)
ξ43 + 2g1 + 4g2 + λ

/
k2

−
(
6g1 + 8g2 + g3 + 4g4 + (λ + 2μ)

/
k2
)
ξ23

P(S)
33 =

(
2g1 + g3 + 2g4

)
ξ23 − 2g1 − g3,

P(S)
43 =

(
4g1 + 4g2 + g3 + 2g4

)
ξ33 −

(
4g1 + 4g2 + g3

)
ξ3,

P(S)
14 =

( (
g3 + 2g4

)
ξ44 +

(
2g1 − g3 − 4g4

)
ξ24 −

(
ξ24 + 1

)
μ
/
k2 − 2g1

)/
ξ4,

P(S)
24 =

(
g3 + 2g4

)
ξ24 − g3 − 4g4 − (2μ)

/
k2,

P(S)
34 =

(
g3 + 2g4

)
ξ24 − g3,

P(S)
44 =

( (
2g1 + g3 + 2g4

)
ξ24 − 2g1 − g3

)/
ξ4.

(55)

The Rayleigh wave velocity as well as the displacement fields can be obtained by solving det
(
P(S)) = 0. Closed formula cannot be

obtained and numerical algorithm is needed to derive the solution.
We show two examples of extremal elastic materials with second gradient effect and analyze their surface wave property. The first

example is

λ = 100, μ = 0,
{
g1, g2, g3, g4

}
= {0.0674,0, 1.7977,1.9326}, (56)

i.e., a bimode extremal material with second gradient effect. The second gradient parameters are chosen based on the proposed
microstructure in Section 4 with the parameters θ = 44∘ and Mrs = 1.0768. The choice of μ = 0 corresponds to incompressible ma-
terials. The material constants in Eq. (56) could be obtained by combining a discrete honeycomb model (Chen et al., 2016) and the
discrete microstructure proposed in Section 4. In this case, as shown in Fig. 3(a)-(b), Rayleigh waves propagate at a velocity close to
that of transverse wave and increases with the increase of the wavenumber. Besides, the ellipticity of the polarization trajectories of the
surface particles remains essentially small.

The second example is

λ = − 100, μ = 100,
{
g1, g2, g3, g4

}
= {0.0674,0, 1.7977,1.9326}, (57)

i.e., a unimode extremal material with second gradient effect. The second gradient parameters are the same as in previous sample. The
choice of λ < 0 corresponds to an auxetic material. The material constants in Eq. (57) could be obtained by combining the twisted
kagome lattice in Section 2.2 and the microstructure proposed in Section 4. As shown in Fig. 3(c)-(d), the normalized Rayleigh wave
velocity gradually increases from zero with the increase of the wavenumber. In similar to the bimode material in Section 2, the po-
larization of surface particles exhibits nearly circular behavior.

3.3. Isotropic pure second gradient continuum

In the following, we consider isotropic pure second gradient continuum, i.e., the lame constant λ and μ are both zeros. More
specifically, we focus on the case of g2 = 0, which can be realized by our proposed microstructure model in next section. In general,
Rayleigh waves with different polarizations can be realized by appropriate choice for the four independent material constants.

We consider two examples with drastically different Rayleigh wave properties. First, g2 = g3 = 0 and g1/g4 = 0.5, the following
surface mode is obtained

û = (0.2503, − 0.9682i)T , at x2 = 0, c
/
cTS ≈ 0.9852. (58)

which indicates that the particles at the surface are elliptically polarized. This will be further demonstrated in the Section 4.2 by
proposing a suitable microstructure.

Y. Wei et al.



Journal of the Mechanics and Physics of Solids 193 (2024) 105842

12

Another example is g1 = g2 = 0, g3/g4 = 1. In this case, analytical solution of the Rayleighmode can be derived. The transverse and
longitudinal waves are degenerate, i.e., cTS = cLS, as given by Eq. (53). Two degenerate Rayleigh surface modes can be obtained

u =

(
1

0

)⎛

⎝exp

⎛

⎝ − k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
2
̅̅̅
54

√

3

√

x2

⎞

⎠ −
1 −

̅̅̅
54

√

1+
̅̅̅
54

√ exp

⎛

⎝ − k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
2
̅̅̅
54

√

3

√

x2

⎞

⎠

⎞

⎠exp(ik(x1 − ct)),

u =

(
0

1

)⎛

⎝exp

⎛

⎝ − k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 −
2
̅̅̅
54

√

3

√

x2

⎞

⎠ −
1 −

̅̅̅
54

√

1+
̅̅̅
54

√ exp

⎛

⎝ − k

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1+
2
̅̅̅
54

√

3

√

x2

⎞

⎠

⎞

⎠exp(ik(x1 − ct)),

c =
ω
k
= 2

̅̅̅
54

√
̅̅̅̅̅̅
g4
3ρ

√

k,

(59)

which indicate there exist two propagating Rayleigh waves. This is rather different from one Rayleigh surface waves in Cauchy elastic
material. The two surface waves are both linearly polarized, one with displacement vector parallel to the free surface and the other
perpendicular to the free surface. This will be evidenced in later calculations with the proposed microstructure model.

For general parameters of g1, g2, g3 and g4, we summarize in Fig. 4(a)–(c) the numerically obtained Rayleigh wave velocity and the

Fig. 3. The normalized Rayleigh wave velocity and the ellipticity (H/V) of surface particle polarization as function of the normalized wavenumber
for a bimode extremal material with isotropic second gradient effect,

{
λ, μ, g1, g2, g3, g4

}
= {100, 0, 0.0674, 0, 1.7977,1.9326}. (b) Illustration

of Rayleigh surface wave with ka/ π = 0.2. (c)-(d): Same as (a)-(b) but for an unimode extremal material with isotropic second gradient effect
{

λ, μ,
g1, g2, g3, g4

}
= { − 100, 100, 0.0674, 0, 1.7977, 1.9326}.
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so-called ellipticity (Malischewsky and Scherbaum, 2004), respectively. The ellipticity is defined as the ratio between the surface
particle’s displacement component (H) along the surface and the displacement component (V) perpendicular to the surface. It can be
seen that with the decrease of g1/g4 and the increase of g3/g4, the normalized Rayleigh wave velocity increases and the ellipticity
decreases. As shown in Eq. (54), when g2 = 0 and g1/g4 decreases, the difference between the transverse and longitudinal wave ve-
locity gradually decreases. In other words, a medium with comparable transverse and longitudinal wave velocities allows larger
normalized Rayleigh wave velocity and smaller ellipticity. Fig. 4(d) also illustrate the comparison between the continuum theory and a
microstructure model, which will be detailed in the next section. The red dashed line in Fig. 4(a)–(c) corresponds to available pa-
rameters of our proposed microstructure model, which will be detailed in Section 4.

We remark that in the above second gradient model, a second-order inertia (SOI) term is omitted as we are concern with the low
frequency range. While for higher frequencies, the second-order inertia tensor Jijkl (Rosi et al., 2018; Rosi and Auffray, 2019) should be
included. In our following results, we also compare the results without the second-order inertia term and with the second-order inertia
term. In general, discrepancy between the two cases is negligible at low frequency range, while the one with second-order inertia term
is closer to microstructure calculations for higher frequencies.

4. Second gradient materials: microstructure model

4.1. Isotropic second gradient elasticity model

We employ the pantographic microstructures (Seppecher et al., 2011; Alibert and Della Corte, 2015) to build a microstructure
model of 2D isotropic pure second gradient elastic material. The pantographic structure is consisted of rigid rods (thick blue and red

Fig. 4. (a)–(c) The normalized Rayleigh wave velocity and the ellipticity ratio (H/V) of surface particle polarization of pure isotropic second
gradient elasticity continuum media. (d) Comparison between the continuum model and the microstructure model proposed in Section 4 with the
effective parameters along the red dashed lines in (a)–(c). Here, all the results correspond to the long-wavelength limit.
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lines) connected by torsion springs and ideal joints, as shown in Fig. 5(a). Black dots and hollow gray dots represent explicit degrees of
freedom (DOFs) and hidden DOFs, respectively. The torsion springs with spring constant Mrs and relaxation angle αrs = π serve to
couple rods of the same color.

Now, we construct an isotropic pure second gradient model based on the 1D pantographic strip in Fig. 5(a). We first define two

group of substructures (Fig. 5(b)), substructure group 1 with lattice vector
{
a(1)1 , a(1)2

}
and substructure group 2 with lattice vector

Fig. 5. An isotropic second gradient model with pantographic structures. (a) 1D pantographic structure consisted of rigid rods (thick blue and red
lines) coupled by torsion springs, with spring constantMrs, and ideal joints (hollow gray dots). Elastic energy of the system can be written in terms of

the displacement
(
u(i)1 , u(i)2

)
of the explicit nodes (black dots). Geometric parameters are as indicated. (b) Illustration of structure composition for a

2D isotropic second gradient model. The substructure group 1 is obtained by arrange the 1D pantographic structure in a honeycomb lattice. The
structure shown in the blue hexagon represents a unit cell of the substructure group 1. The substructure group 2 is similar to group 1 but rotated by π
/6 and scaled up by a factor of 2/

̅̅̅
3

√
. A composite lattice is obtained combing the two groups of substructures at their common explicit nodes (black

and red dots). A unit cell of the composite lattice is schematically represented as the figure on the right. (c) A different choice of unit cell for the
composite lattice. The unit cell is composed from 4 unit cells from substructure group 1 and 3 unit cells from substructure group 2. A 2 by 2 array of
the composite unit cell is also shown.
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{
a(2)1 ,a(2)2

}
, respectively. Substructure group 1 contains 1D pantographic strips with an angle of π/3 between them. Their explicit nodes

form a honeycomb lattice. The substructure group 2 is obtained by rotating the substructure group 1 counterclockwise by π /6 and then
scaled up by a factor of 2/

̅̅̅
3

√
. A unit cell of the substructure group 1 and the substructure group 1 is shown in the light blue and red

hexagon, respectively. Notice that the stiffness of the torsion springs is not scaled. Consequently, a relationship between the trans-
lational bases of the two groups is established

a(2)1 =
2
3

(
a(1)
1 +a(1)

2

)
, a(2)

2 =
2
3

(
2a(1)

2 − a(1)
1

)
. (60)

For convenience, hexagons (areas occupied by a unit cell) and solid dots (explicit nodes) are used to represent the two groups. We
obtain a composite model, with lattice vectors a1 = 2a(1)

1 and a2 = 2a(1)
2 by combining the two groups of substructures. The two

substructures are bonded together at their common explicit nodes. The composite lattice represented by explicit nodes alone is shown
in the right of Fig. 5(b). For clarity, we show in Fig. 5(c) a different representation of the unit cell for the isotropic pure second gradient
model, which is consisted of 4 unit cells from group 1 and three unit cells from group 2. A 3D model of the unit cell is rendered in
Appendix A. A unit cell has in total 6 explicit nodes, four of which are from the group 1 (black dots) and the rest from the group 2 (red
dots). Similarly, a unit cell contains 42 implicit nodes.

We derive the effective strain gradient parameters of the microstructure model based on strain energy density. We first analyze the

elastic energy in the 1D pantographic strip geometry (see Fig. 5(a)). The displacement of the explicated nodes is denoted as u(i) =
(
u(i)1 ,

u(i)2
)
. The strain energy stored in the two torsion springs at node (i) can be expressed as

E =
Mrs

4
1
h2

(
( (
u(i− 1) + u(i+1) − 2u(i)) ⋅ e1

)2
+

h2

a2
( (
u(i− 1) + u(i+1) − 2u(i)) ⋅ e2

)2
)

, (61)

in which, e1 and e2 are unit vectors along the two axes of the coordinate system, respectively. The substructure group 1 (see Fig. 5(b)) is
constructed from the 1D pantographic strip geometry. Their explicit nodes form a triangular lattice with the lattice vectors a(1)1 and a(1)2 .
We denote the explicit nodes by two numbers {i, j}. Now, the elastic energy in the unit cell at the node {i, j} is stored in torsion springs
that connects those rods between nodes {i, j} and its six nearest-neighboring nodes. Therefore, we can write the strain energy density as

W1 =
Mrs

4h2Acell

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

( (
u(i− 1,j) + u(i+1,j) − 2u(i,j)) ⋅ e1

)2
+

h2

a2
( (
u(i− 1,j) + u(i+1,j) − 2u(i,j)) ⋅ e2

)2

+
( (
u(i,j− 1) + u(i,j+1) − 2u(i,j)) ⋅ e3

)2
+

h2

a2
( (
u(i,j− 1) + u(i,j+1) − 2u(i,j)) ⋅ e4

)

+
( (
u(i+1,j− 1) + u(i− 1,j+1) − 2u(i,j)) ⋅ e5

)2
+

h2

a2
( (
u(i+1,j− 1) + u(i− 1,j+1) − 2u(i,j)) ⋅ e6

)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (62)

where, e3 = {cos(π /3),sin(π /3)}, e4 = {cos( − π /6),sin( − π /6)}, e5 = {cos(2π /3),sin(2π /3)}, e6 = {cos(π /6),sin(π /6)}, and Acell
= 2

̅̅̅
3

√
a2. We consider the long-wavelength limit condition, then the displacement field can be approximated by Taylor series (Chen

et al., 2014)

u(i+m,j+n) = u(i,j) + (u∇) ⋅ dx+
1
2!

(u∇∇) ⋅ (dx)2 + o
(
(dx)2

)
, dx = ma(1)

1 + na(1)2 . (63)

Substitution of the above expansion into Eq. (62) gives the strain energy density in the substructure group 1

W1 =

̅̅̅
3

√
Mrs

8

⎛

⎜
⎜
⎝

a2

h2
(
4u21,11 + 4u22,22 +

(
2u1,12 + u2,11 + u2,22

)2
+
(
2u2,12 + u1,11 + u1,22

)2
)

+4u21,22 + 4u22,11 +
(
u1,11 + u1,22 − 2u2,12

)2
+
(
u2,11 + u2,22 − 2u1,12

)2

⎞

⎟
⎟
⎠. (64)

Likewise, strain energy density W2 for the substructure group 2 can be obtained. Here, we assume the same displacement field
expansion as in Eq. (63) for explicit nodes of the substructure group 2, though only part of explicit nodes in substructure group 2
overlap with those of substructure group 1. The total energy density is the summation of the two Wtot = W1 + W2. The effective
material parameters are obtained by comparing the energy density with that of strain gradient elasticity

Wtot =
1
2
Cijklui,juk,l + Eijklpui,juk,lp +

1
2
Dijklpqui,jkul,pq. (65)

The strain energy density results in Cijkl = 0, Eijklp = 0 and an isotropic six order elasticity tensor Dijklpq with the following
parameters

g1 =
̅̅̅
3

√
Mrs

2

(
1

tan2θ
− 1
)

, g2 = 0, g3 =
̅̅̅
3

√
Mrs

2

(

3 −
1

tan2θ

)

, g4 =
̅̅̅
3

√
Mrs

2

(

1+
1

tan2θ

)

. (66)
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Fig. 6. Bulk wave properties in second gradient materials. (a1) Band structure obtained from the microstructure model (blue and green dots) and the
continuum model without second-order inertia term (solid red line and dashed red line) and the continuum model with the second-order inertia
term (solid black line and dashed black line). The angle parameter is θ = π/6. The generalized “Lamé” parameters, κ = − 0.0383 and η = 0.0683, for
the second-order inertia term are obtained by fitting the dispersion relation of the continuum model to the microstructure calculations. (b1) Equi-
frequency curves with ω = 0.02 and the displacement polarization. The displacement of the microstructure model is calculated as the averaged
displacement of all 6 explicit nodes in a unit cell. (a2), (b2) Same as (a1), (b2) but for θ = π/4. The generalized “Lamé” parameters are κ = − 0.0771
and η = 0.0771. We remark that the longitudinal waves and the transverse waves are degenerate.

Y. Wei et al.



Journal of the Mechanics and Physics of Solids 193 (2024) 105842

17

We obtain the effective density ρeff from mass average, ρeff = 6m0/Acell =
̅̅̅
3

√
m0/(4a2), where m0 is the mass of each explicit node,

since we consider a frequency range far below the resonance frequency.

4.2. Comparison between discrete model and continuum model

We first study bulk wave properties of the proposed microstructure material. We compare in Fig. 6(a1) the obtained band structures
from the microstructure model (blue and green dots), with angle θ = π/6, and the strain-gradient continuum model (red and black
lines). Because of the six-fold rotation symmetry of the proposed microstructure model, we have adopted an isotropic tensor Jijkl =

κδijδkl + η
(
δikδjl + δilδjk

)
, with κ and η being two generalized “Lamé” parameters, to account for the second-order inertial effects. The

generalized “Lamé” parameters are obtained by fitting the dispersion relations (Boutin and Auriault, 1993; Rosi et al., 2018; Rosi and
Auffray, 2019). As can be seen, at low frequency range, or with wavenumbers up to 0.4π/a, the second-order inertia term is negligible.
For larger wavenumbers, even approaching the edge of the Brillouin zone boundary, the second-order inertia offers a nice agreement to
the microstructure (compare black lines and dots). As in Cauchy media, the displacement vectors for the longitudinal waves and the
transverse waves are parallel and perpendicular to the wave vector, respectively (see Fig. 6(b1)). The results for the angle parameter θ
= π/4 are shown in Fig. 6(a2) and 6(b2). Here, the agreement between the continuummodel and the microstructure calculation is again
excellent.

In the following, we study the surface wave property in the two strain-gradient materials. The same second-order inertia pa-
rameters are used. Firstly, we consider the case of θ = π/6. The resulting homogenized parameters g2 = g3 = 0, g1 = 0.5g4 = 0.005

̅̅̅
3

√

corresponds to the first case in Section 3.3. Therefore, this isotropic pantographic structure could have an elliptically polarized
Rayleigh wave, as suggested in the form of Eq. (58) and Fig. 4(d). In Fig. 7(a), we compare the calculated band structures (See
Appendix B for method) for a strip geometry by using microstructures and the strain-gradient model with the above effective material
parameters. For the surface state, we obtain a perfect agreement between the continuum model (red line) and the microstructure
calculation (blue line) for wavenumbers up to 0.4π/a. By including the second-order inertia term in the continuum model, the
discrepancy between the continuum model (black line) and the microstructure calculation is further decreased. Furthermore, the
displacement field and the particle trajectory of the surface states obtained from the three calculations are in excellent agreement with
each other (see panels (b), (d)) too. As predicted in previous section, here we obtain elliptically polarized displacement trajectory, with
the longer axis perpendicular to the surface. The obtained displacement decay profiles (see panel (c)) are also in good consistency.

We remark that the physics near free surfaces of architectural materials are generally challenging to describe by using a continuum
strain-gradient model (Cakoni et al., 2019; Cornaggia and Guzina, 2020), especially for frequencies away from zero. In literatures,
additional boundary layers or boundary correction terms are considered to capture the intricate surface effects or interface effects
(Cornaggia and Guzina, 2020; Fergoug et al., 2022; Fliss, 2019). In our study, we focus solely on the long-wavelength limit or the low
frequency range. The classical boundary conditions for strain-gradient elasticity derived by Mindlin (1964) provide a quantitatively
good description, as seen from the comparison in Fig. 7.

Secondly, we consider the case of θ = π/4. The resulting homogenized parameters g1 = g2 = 0, g3 = g4 = 0.005
̅̅̅
3

√
correspond to

the second example in Section 3.3. Therefore, this isotropic pantographic structure could have two linearly polarized Rayleigh waves,
as suggested in the form of Eq. (59). To verify our analysis, we compare in Fig. 8 the dispersion relations and the surface states obtained
from the microstructure model and the continuum strain-gradient model. We indeed obtain two degenerate surface modes (see the
degenerate blue, red and black line in Fig. 8(a)). The two surface modes have linearly polarized displacement field, in consistent with
our previous theory analysis. Again, we obtain quantitatively nice agreement between the continuum strain-gradient model and the
microstructure model. Generally, the agreement between continuum model and the microstructure calculations is better for larger
angle θ (see Fig. 4(d)). The larger discrepancy for smaller θ may due to slight anisotropy of the lattice, since the unit cell is D6-invariant
rather than O(2)-invariant (Auffray et al., 2015).

5. Summary

We have examined Rayleigh waves in 2D extremal materials from both continuum and discrete perspectives. Second gradient high
order continuum and its corresponding microstructural model are also proposed to manifest the influence of fine microstructure in
these extremal materials. By directly solving the constraint equations, it is demonstrated that Rayleigh waves cannot propagate in 2D
extremal elastic materials when the principal material axis is parallel to the free planar surface. However, when the microstructural
effect is pronounced, we showed that Rayleigh waves can propagate at finite frequencies. This behavior can be captured by using
strain-gradient elasticity. The characteristics of Rayleigh waves in isotropic second gradient elasticity medium have been analyzed in
detail. It is found that the polarization of the surface Rayleigh wave in isotropic pure second gradient elasticity can be linearly or
elliptically polarized and the Rayleigh waves may not be unique depending on the material parameters. To validate our findings based
on strain-gradient continuum theory, we proposed a metamaterial model based on pantographic microstructures. The microstructure
calculations agree quite well with the continuum model. This work provides the first systematic study on Rayleigh waves in extremal
elastic materials and pure second gradient materials as well, and offers a new perspective to control Rayleigh waves in extremal elastic
metamaterials. The analysis here can be generalized for three-dimensional extreme elastic materials, where more possibilities of
extreme elastic materials exists, like pentamode and qudramode materials. Other interesting properties might be obtained.
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Fig. 7. Verification of one elliptically polarized surface waves in a pure isotropic second gradient material with effective constants g2 = g3 = 0 and g1/g4 = 0.5, corresponding to θ = π /6 for the
microstructure model. (a) Band structure for a strip geometry with 200 unit cells along the a1 direction (dashed gray lines for bulk states, dashed blue line for surface state), together with surface state
results from the continuum model (red line for without second-order inertia, short as SOI, black line for with SOI). (b) Illustration of displacement fields for surface states with ka /π = 0.04. The blue
line, gray line and orange line are for the microstructure model, and the continuum model without SOI, and the continuum model with SOI, respectively. Zoomed-in view plots the displacement
trajectories of particles for the microstructure model (blue line), the continuum without SOI (red line), and the continuum model with SOI (black line), respectively. (c) Normalized displacement
amplitude |u|/|u0| versus the normalized depth kd/(2π) for different ka. (d) Same as (b) but for ka/π = 0.1.
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Fig. 8. Verification of two linearly polarized surface waves in a pure isotropic second gradient material with effective constants g1 = g2 = 0 and g3/g4 = 1, corresponding to θ = π /4 for the
microstructure model. (a) Band structure for a strip geometry with 200 unit cells along the a1 direction. Here, the blue line, the red line, and the black line are each doubly degenerate, corresponding to
two degenerate surface states. (b1) (b2) Illustration of the displacement fields for the two surface states with ka/π = 0.1. (c1) (c2) Normalized displacement amplitude |u|/|u0| versus the normalized
depth kd/(2π) for different ka.
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Appendix A

A 3D model of the 1D pantographic unit cell is shown in Fig. A1(a), consisting of two layers, which corresponds to Fig. 5(a). In
Fig. A1(a), the rigid rods are linked by ideal joints, and rigid rods with the same color are connected by torsion springs. The structure
shown in Fig. A1(b) corresponds to the unit cell of the substructure Group 1 in Fig. 5(b). Finally, Fig. A1(c) shows the toy model of the
2D isotropic pure second gradient elasticity microstructure, which corresponds to the unit cell in Fig. 5(c).

Fig. A1. 2D pure second gradient model with pantographic structures. (a) 1D pantographic truss unit cell toy model corresponding to Fig. 5(a). (b)
and (c) are toy model corresponding to the unit cell of the substructure group 1 and the composite unit cell in Fig. 5(c), respectively.

Appendix B

Here, we give the expression of the sub-stiffness matrices corresponding to torsion spring elements. An 1D pantographic strip in the
(x1, x2)-plane is shown in Fig. B1(a), with ϑ denoting its angle with respect to the x1-axis. The torsion springs can be simplified sketched
as Fig. B1(b).
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Fig. B1. (a) The 1D composite pantographic strip. (b) The simplified sketch for torsion springs.

When ϑ = 0, the energy of an element in the 1D composite pantographic strip can be expressed as

E(ijk) =
1
2

[
κh

(
u(i)
1 − 2u(j)

1 + u(k)
1

)2
+ κa

(
u(i)
2 − 2u(j)

2 + u(k)
2

)2]
, (67)

where κh = Mrs/(2h2) and κa = Mrs/(2a2) are the effective stiffness of the torsion springs. According to Eq. (67), it can be seen that the
energy generated by the torsion spring is contributed by three nodes. The tension at each node can be expressed as

f(i) =
∂E(ijk)

∂u(i) , f
(j)

=
∂E(ijk)

∂u(j) , f
(k)

=
∂E(ijk)

∂u(k) . (68)

Firstly, we consider the stiffness matrix of the torsion springs with an arbitrary ϑ. According to Eq. (68), the stiffness matrix can be
naturally expressed as

[κ](ijk) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∂2E(ijk)

∂u(i)∂u(i)
∂2E(ijk)

∂u(i)∂u(j)
∂2E(ijk)

∂u(i)∂u(k)

∂2E(ijk)

∂u(j)∂u(j)
∂2E(ijk)

∂u(j)∂u(k)

sym
∂2E(ijk)

∂u(k)∂u(k)

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (69)

where

∂2E(ijk)

∂u(i)∂u(i) =
∂2E(ijk)

∂u(i)∂u(k) =
∂2E(ijk)

∂u(k)∂u(k) = RTGR,

∂2E(ijk)

∂u(i)∂u(j) =
∂2E(ijk)

∂u(j)∂u(k) = − 2RTGR,

∂2E(ijk)

∂u(j)∂u(j) = 4RTGR,

R =

[
cosϑ sinϑ

− sinϑ cosϑ

]

,G =

[
κh 0

0 κa

]

.

(70)

Then, the global stiffness matrix of a unit cell (or supercell) can be obtained by assembling the sub-stiffness matrices of all elements:

[κ] =
∑

i,j,k
[κ](ijk). (71)

Note that the summation symbol in Eq. (71) doesn’t mean the algebraic summation but represents the assembly procedure in finite
element analysis. Subsequently, particles polarization and dispersion properties for linear wave propagating in an infinite or semi-
infinite lattice can be studied by using Bloch theory.
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