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1. Introduction

In biological systems, proteins play a vital
role due to their varied functions and
modes of interactions. Understanding the
complexities of protein interactions is
essential, because even subtle changes
can have a profound effect on their biologi-
cal function and stability.[1] An arsenal
of methods for studying protein–protein
interactions exist, such as tandem affinity
purification, affinity chromatography,
co-immunoprecipitation, protein arrays,
fragment complementation, phage
display, X-ray crystallography, and nuclear
magnetic resonance spectroscopy.[2–4]

However, most protein interactions are
transient, characterized by small contact
zones and moderate conformational
changes.[5] Thus, it becomes more chal-
lenging to identify weak and nonspecific
interactions between proteins. To this
end, there are significant opportunities to
augment conventional biological methods
with machine-learning (ML)-based technol-
ogies. Further advancement of artificial
intelligence (AI) in this area is expected
to contribute to predictive and correlative
models that will affect all fields of modern
biology.[6,7]

Our previous study investigated the
development of simple and accurate meth-
ods for classifying single-amino-acid mis-
matches in proteins using deep-learning
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Immunoglobulins are important building blocks in biology and biotechnology. With
the emergence of comprehensive deep-learning approaches, there are enormous
opportunities for fast and accurate methods of classification of protein–protein
interactions to arise. Herein, widely accessible image classification algorithms for
species-specific typification of a range of different immunoglobulin G (IgG) com-
plexes are repurposed. Droplets of various immunoglobulins mixed with a B-cell
superantigen (SAg) (recombinant staphylococcal Protein A) are deposited onto
hydrophobic polymer substrates and the resulting protein stains are imaged using
polarized light microscopy. A comprehensive study based on 23 745 images finds
that the pretrained convolutional neural network (CNN) InceptionV3 not only suc-
cessfully categorizes IgGs from four different species but also predicts their binding
affinity to Protein A: averaged over 36 binding pairs, the following are observed: 1) an
overall accuracy of 81.4%, 2) the highest prediction accuracy for human IgG, the
antibody with the highest binding affinity for Protein A, and 3) that the classification
accuracy regarding the various IgG/Protein A ratios generally correlates with the
binding strength of the protein–protein–complex as determined via circular
dichroism spectroscopy. In addition, the CNN pretrained with IgG/Protein A stain
images has been challenged with a new set of images using a different superantigen
(SAg, Protein G). Despite the use of the unknown SAg, the CNN correctly classifies
the images of human IgG and Protein G as indicated by a 94% accuracy over the
various molar binding ratios. These findings are noteworthy because they demon-
strate that appropriately pretrained CNNs can be used for the prediction of protein–
protein interactions beyond the scope of the original training set. Aided by
deep-learning methods, simple stains of mixed protein solutions may serve as
accurate predictors of the strength of protein–protein interactions with relevance
to protein engineering, self-aggregation, or protein stability in complex media.
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approaches.[8] We demonstrated that important information
about primary and secondary peptide structures can be deduced
from the stains left by drying droplets.[8] Deep-learning neural
networks were presented with polarized light microscopy
(PLM) images obtained from the drying droplet deposits of a
variety of amyloid-β peptides to assess complex stain patterns.
A sessile droplet of water or another volatile solvent, which con-
tains nonvolatile solutes or colloidal particles, leaves a nonuni-
form stain or deposit on a substrate when it dries. This stain
pattern is highly characteristic of processes involving heat,
momentum, and mass transport within a droplet during
evaporation, the behavior of the three-phase contact line, and
the interactions of deposited material with the interfaces between
the droplet and the substrate and air during the evaporation
process.[9–12] Several physical processes influence the pattern
of deposited aqueous droplets on a characterized surface,
referred to as coffee rings, including protein concentration,
buffer, super-hydrophobicity, contact-line motion, Marangoni
flow, surface-tension-driven flows, thermal-hydrodynamic insta-
bility, or liquid spreading. Stain formation also depends on more
general mechanisms such as solute transport, surface tension
gradients, solute diffusion, or electrostatic forces. Following the
drying of complex fluid droplets, one important aspect of droplet
spreading and evaporation is the creation of patterns.[13–16]

Additionally, protein–protein and protein–substrate interactions
play a crucial role in aggregating proteins on the substrate. The
evaporation process of a drop containing two distinct proteins is
primarily governed by these molecular interactions, leading to
the creation of complex patterns.[17]

Conserved across most species, humoral immune responses
involve polyclonal antibodies with inherent structural and func-
tional diversity, making them useful in a variety of research and
diagnostic applications.[18] Antigen binding is mediated by the
variable fragment of the antibody.[19,20] IgG antibodies play piv-
otal roles in the immune system and their interaction with target
proteins or antigens can affect body health.[21] The most impor-
tant serum antibodies are immunoglobulin G (IgG) proteins and
are divided into four subclasses: IgG1 (66%), IgG2 (23%), IgG3
(7%), and IgG4 (4%).[22] It is important to note that the species of
origin of the IgGmolecules, whether it be human, rabbit, cow, or
goat, contribute to their unique characteristics, resulting in dis-
tinct binding affinities to antigens.[23–25]

An important class of B-cell superantigens (SAgs), such
as Protein A, interacts with IgG molecules in an unusual
way by binding to the Fab region of the IgGs outside the
complementarity-determining region.[23,26] As a result of its
ability to bind to antibodies via its Fc domain, Protein A has been
demonstrated to inhibit opsonophagocytosis by orienting the
antibodies at an incorrect angle.[27] SAgs have proven to be useful
in exploring fundamental questions in immunobiology, such as
mechanisms for cell activation, tolerance, and autoimmunity.

In this study, we build from our previous work with ML-based
image-recognition algorithms[8] to develop and approach for
species-specific typification of immunoglobulin complexes using
stain patterns. To analyze the images, a trained neural network is
used to stratify polyclonal immunoglobulin G from various spe-
cies (human, rabbit, goat, and bovine) based on their interactions
with a common binding partner, Protein A. Recombinant
Protein A is a B-cell SAg with high binding affinity to human

IgG and is widely used in various biological fields for the isola-
tion and purification of human IgG.[28] For this reason, IgG was
chosen to screen different protein–protein interaction levels
obtained with different IgG sources and different molar ratios[29]

to predict the binding affinity using the classified different pro-
tein–protein interaction levels.

2. Results and Discussion

To investigate the accuracy of typification of a range of IgG com-
plexes, their deposition patterns were analyzed. PLM imaging
was applied for this purpose. Protein solutions were prepared
using 0.1 M sodium phosphate buffer with a pH of 8.1 commonly
used for IgG purification.[30,31] The total mass of all protein sam-
ples was kept constant at 0.3mgmL�1; however, different molar
ratios were employed for protein–protein interaction screening.
Several physical properties as well as environmental conditions
influence the structure of the deposition patterns of biomacro-
molecular solutions. To ensure nearly identical droplet radii
(2 mm), a hydrophobic substrate was used. Chemical vapor depo-
sition (CVD) polymerization was used to obtain poly(p-xylylene)
(PPX)-coated glass surfaces, a key condition for consistent and
reproducible droplet deposition over broad areas. Circular drop-
lets were deposited and dried under humidity and temperature-
controlled conditions for at least 6 h (Figure 1A,B). After drying,
images of the deposition patterns were captured using PLM,
applying constant parameters like resolution, magnification,
light intensity, gain, and exposure time (Figure 1C).[30,31]

Time-of-flight secondary ion mass spectrometry (ToF–SIMS)
was used to elucidate the chemical composition of the dried
patterns (Figure 1E). Mapping of the signal’s characteristic for
proteins (as CNO�, displayed in the red channel of the red, green
and blue (RGB) overlay and buffer components (as PO2

�, dis-
played in the green channel of the RGB overlay) revealed com-
plementary patterns in the droplet region. This indicates that
upon drying the solution components tend to form separate
agglomerates of either protein or buffer components. The pres-
ence of distinct regions was also confirmed by scanning electron
microscopy (SEM) (Figure 1D). The magnified SEM image of the
central region revealed the presence of crystalline structures
corroborating the high salt content.

In the following, IgG from four different species and
human serum albumin (HSA) as a control were investigated.
Specifically, different molar ratios were used to compare differ-
ent levels of protein–protein interactions.[32–34]

Figure 2A summarizes the stain patterns obtained from the
four IgGs, HSA, and Protein A following the approach outlined
earlier, as well as from the various protein–protein combinations.
The patterns of individual IgG from various species, HSA as the
primary proteins, and Protein A as an antigen are shown in
Figure 2A-I,II, respectively. The patterns of the respective IgG
and HSA complex with Protein A in the molar ratio 2:1 are
provided with a borderline color related to their position in
the relative binding strength percentage color map, explained
further below and are available in Figure 2A-III. Patterns origi-
nating from the variation of the molar ratios are summarized in
Figure S1, Supporting Information. The patterns of the complex
of the different IgG(s) with low affinity to bind to Protein A
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(e.g., goat IgG) are visually similar to the IgG patterns without
the addition of Protein A. The same trend is observed for the
HSA–Protein A mixtures.

The color map in Figure 2B depicts the relative binding
strength of various IgGs to recombinant Protein A obtained from
the circular dichroism (CD) spectroscopy measurement results.
In these measurements, the CD spectra of single proteins were
measured and summed up to achieve the spectra of their mix-
ture. These sum spectra were compared to the CD spectra of
the actual protein mixture solution. In the case of strong protein

interaction, the CD spectra of the mixture and the sum spectra
of the single proteins differ particularly as the interaction
between two proteins changes their secondary structure.[35,36]

Considering the CD intensity at 217 nm,[35,36] the percentage
of relative change in secondary structure can be calculated.
The maximum detected changes for HSA, goat IgG, bovine
IgG, rabbit IgG, and human IgG in the mixture with Protein
A were 6%, 9%, 16%, 16%, and 81%, respectively.

Here, human IgG showed a strong affinity for Protein A, while
rabbit IgG and bovine IgG displayed weak to medium interaction

Figure 1. Formation of protein stains using controlled droplet deposition and drying process. A) Cleaned glass substrates were coated with
poly(p-xylylene) via CVD polymerization to obtain reliable hydrophobic surface conditions to ensure a reproducible surface interaction. An automated
pipetting system was used for dispensing several protein sample droplets (2 μL) containing different molar ratios of IgG from different species and
Protein A. B) Dispensed droplets were dried under controlled environmental conditions (T= 25 °C, relative humidity= 40%). C) PLM imaging was used
to collect all the deposited proteins’ patterns under the same conditions to prepare sufficient images for each class for image classification with CNN
implementation, IgG from I) bovine, II) rabbit, III) goat, and IV) human serum interacting with Protein A. D) SEM image analysis of human IgG stains.
E) ToF–SIMS analysis of the deposition pattern of a complex of goat IgG with Protein A: RGB overlay image of the distribution map of PO2

� ions (green)
and CNO� ions (red).
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Figure 2. Analysis of protein–protein interactions based on image classification using InceptionV3. A) The patterns of single Protein A and IgG from
different species (HSA was included as a negative control) and their interaction in the molar ratio of 2:1 (IgG:Protein A) are shown. Black borders specify
single-protein deposition patterns. The colored borders indicate various IgG and HSA mixtures with Protein A. All images were converted to grayscale to
eliminate color effects on AI classification. B) The evaluated strength of interaction is shown in the color map from weak to strong using CD spectroscopy
measurement. Applying CD spectroscopy to compare the summation of two single-protein spectra with the spectra of their respective mixture to obtain
the relative strength of interaction leading to changes in their secondary structure (red color is for Protein A, black for i) HSA, ii) rabbit IgG, and iii) human
IgG, blue for the summation of two spectra and green for the mixture). C) The architecture of InceptionV3, a pretrained convolutional neural network
(CNN) implemented for image classification. A sufficient number of images for each class was prepared for this purpose and introduced to InceptionV3
as an input image dataset. D) The trained network can classify different proteins, determine their interaction levels, and predict the similarity between the
unknown testing image dataset and the training image dataset.
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strengths. Only negligible interactions were found for goat IgG
and HSA (Figure 2B,i–iii). These results are consistent with
other literature reports.[29,37–42] These similarities in secondary
structure of IgG complexes were observed at different molar
ratios as well and are available in Figure S2, Supporting
Information. To establish an unbiased classification of
binding interactions, the convolutional neural network (CNN),
InceptionV3, was pretrained with at least 400 images per
class.[43–47] Pretrained models, such as InceptionV3, ResNet,
and NasNetLarge, are trained on large datasets like ImageNet,
enabling them to learn rich, hierarchical features that can
generalize across various tasks.[8] The advantage of using pre-
trained models in image classification algorithms stems from
the fact that they leverage vast amounts of data and complex
architectures. Thus, they significantly enhance accuracy and
efficiency.[48–51] This network was selected because it has one
of the highest accuracies among other known CNNs (with the
same dataset) and requires less time for training compared to
other high-performance pretrained CNNs (e.g., NasNetLarge).[8]

The architecture of InceptionV3 is illustrated in Figure 2C.
The images used for training and validation for 36 classes were
completely distinct from the testing image datasets (3,600 and
2,800). After training the network with our image dataset, two out-
puts are desired: 1) screening different protein–protein interac-
tion levels as well as 2) predicting and classifying unknown
protein samples within the trained network as represented in
Figure 2D.

In Figure 3, a confusion chart of the classification of Protein A
immunocomplexes with IgGs from four different species
(human, rabbit, bovine, and goat) with binding affinities ranging
from weak to strong (as seen in Figure 2B) is displayed.
Specifically, we evaluated a range of different molar ratios

ranging from 0.5:1 to 5:1 (IgG:Protein A). This comprehensive
confusion matrix developed from 36 immunoprotein complexes
reveals the accurate classification of IgGs to the corresponding
species regardless of the used molar ratio. The total accuracy
of the 36 outlines confusion chart was 81.4%, which included
not only the species classification but also the individual classifi-
cation of the different molar ratios.

Figure 4 depicts a breakdown of this data by species to high-
light the potential for species-specific typification of the four
immunoglobulin complexes regarding the binding affinity
strength of the protein complexes. An excellent correlation
between the classification accuracy of the CNN and the binding
affinity was observed. Although the number of free proteins in
the solution varied across different molar ratios, it corresponded
to the changes in secondary structure of proteins observed by CD
spectroscopy. Furthermore, for each set, a t-distributed stochastic
neighbor embedding (t-SNE) plot was prepared to support the
cluster analysis by the trained network.[52] All t-SNE plots were
applied to the “Softmax” layer of the CNN. The output of this
layer is a 4D array that consists of x- and y-spatial dimensions
of the images, channels of the images, and batch dimension,
respectively. To illustrate the performance of the trained CNN,
high-dimensional data were evaluated as shown in the t-SNE
plot. Consequently, good classification was achieved by separat-
ing different image classes. Figure 4A represents the confusion
matrix of human IgG and Protein A image classes. As confirmed
by CD spectra (Figure S2-A, Supporting Information), human
IgG has a high affinity to bind to Protein A.[25,28] In this confu-
sion matrix, the ratio of 2:1 (IgG:Protein A) obtained the highest
prediction accuracy of (97%), which matched the ratio with
the highest extent of structural changes as detected by CD
spectroscopy (Figure S2-A, Supporting Information).[42,53]

Figure 3. The confusion matrix derived from the test image dataset generated via the pre-trained InceptionV3. The total accuracy of the confusion matrix
is 81.42%.
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Figure 4. Confusion matrix of different protein–protein interactions: A) human IgG, B) rabbit IgG, C) bovine IgG, D) goat IgG, and E) HSA. The confusion
chart was obtained for a test set of 36 categories divided into smaller charts with t-SNE plot analysis for each protein complex.
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Accordingly, the CNN classified human IgG complexes with
higher accuracy than the other IgGs. The CNN distinguished
the different molar ratios of human IgG complexes with an over-
all accuracy of 93.4%. Misclassifications with rabbit IgG com-
plexes were observed (Figure 3), which can be attributed to
the similarities in molecular weight and secondary structure
of human IgG and rabbit IgG. The t-SNE plot also indicates very
good clustering.

Figure 4B shows the confusion chart for rabbit IgG:Protein A
image classes. CD spectroscopy measurements indicated that
rabbit IgG has a weak to medium affinity to bind to Protein A
as the secondary structure changes were negligible in compari-
son to human IgG complexes.[39] As in the case for human IgG,
the trained InceptionV3 classified some rabbit IgG images into
human IgG classes. The accuracy is 81.7%which revealed several
misclassifications between different molar ratios (Figure S2-B,
Supporting Information). In Figure 4C, a confusion chart of
IgG from bovine serum and Protein A including six different
molar ratios is presented. The bovine IgG image classification
confusion matrix had an accuracy of 81%. Misclassifications
were mainly due to similarities of the patterns that only varied
in their respective molar ratios. These similarities may be attrib-
uted to small changes in the secondary structure of the protein
solution upon complexation, a tendency that was also observed
by CD spectroscopy (Figure S2-C, Supporting Information) and
several literatures.[41,54,55] Similarly, bovine IgG was found to
bind with weak to medium strength to Protein A. Consequently,
the obtained accuracy of classification for bovine IgG:Protein A
image classes is similar to rabbit IgG:Protein A. For bovine
IgG:Protein A classes, the t-SNE plot indicates no significant dif-
ferences between the stain images obtained for various molar
ratios. However, it still recognizes the single Protein A image
class accurately (100%). Additionally, for single-bovine IgG
and for the molar ratio where the Protein A content is higher
than bovine IgG (0.5:1), clustering worked well with an accuracy
of 97% and 94%, respectively. Furthermore, the trained
InceptionV3 did not misclassify bovine IgG with IgGs from three
other species (Figure 3). Figure 4D shows the confusion chart of
the mixture of IgG from goat serum with Protein A. Goat IgG
showed only weak interactions with Protein A[42,56] (Figure S2-D,

Supporting Information). Moreover, the error rates for classifying
different molar ratios are high and the local accuracy of this con-
fusion chart is only 76.6%. Correspondingly, the t-SNE plot of this
image set displays improper clustering of protein pattern classes
of different molar ratios. A confusion chart of the HSA:Protein A
image classification can be found in Figure 4E. For comparison,
the control protein HSA has no propensity to bind to Protein A
and due to this the lowest accuracy in test image classification was
obtained. For all molar ratios, there was no evidence of the for-
mation of HSA–Protein A complexes. The local accuracy of the
confusion matrix for HSA:Protein A complexes is 71.7% and
the t-SNE plot indicates limited clustering of these images.

To evaluate the performance of the trained network with IgG
from different sources and Protein A, the patterns of Protein G
and its interaction with IgG from human serum were analyzed
by the trained network as unknown samples to see how the
machine classifies these patterns into various categories of inter-
action with different molar ratios and affinities. As these two pro-
teins have the same tendency as SAgs for binding to human IgG,
their functionality and structural properties, and their deposition
patterns are given in Table 1. Although Protein G has a lower
number of binding sites to bind to human IgG in comparison
to Protein A, its affinity for IgGs is higher.[57,58] CD spectroscopy
analysis of human IgG:Protein G showed levels of interactions
that were similar to human IgG:Protein A (Figure S3,
Supporting Information). Figure 5A displays the obtained confu-
sion chart of test images of human IgG:Protein G classes. Even
though Protein G patterns are visually different from Protein A
(Table 1), the trained network remarkably predicted 83% of them
into the Protein A image class (specified with a purple bracket,
last row). Also, it predicted 13% of Protein G images as
HSA:Protein A with a molar ratio of 1:2, due to the aforemen-
tioned similarities between these proteins. Further classification
was performed on four different image datasets of mixtures of
human IgG with Protein G and similar results were obtained.
The dominant prediction (94%) of the human IgG:Protein G
images is the human IgG:Protein A image classes (displayed
with purple brackets).

In Figure 5B, examples of patterns of human IgG:Protein G
with the molar ratio of 2:1, human IgG, and human IgG:Protein

Table 1. Characteristics of recombinant protein A and protein G.

Properties
ligand

MW
[KDa]

Secondary structure No. of active sites
for binding IgG

Binding constant for human
IgG [M�1]� 10�9

Relative percentage
bond to human IgG

Deposited pattern

Protein A 36 Three α-helices 5 44.1 81%

Protein G 31 One α-helix packed onto
a four-stranded β-sheet

2 67.4 83%
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A are given, indicating the similarities between the patterns of
the Protein G:human IgG complex and those of the Protein
A:human IgG complexes compared to the single Protein G
and Protein A images.

To investigate how the network makes decision based on the
input images, a gradient-weighted class-activation mapping
(Grad-CAM) analysis was performed. Grad-CAM is a technique
applied to understand why a deep-learning network makes its
classification decisions.[59] Grad-CAM calculates the gradient
of the class score (that is, the score for the class of interest) based
on the feature maps (also called activation maps) of the final con-
volutional layer in CNN. These gradients indicate the importance
of each pixel in the feature map according to the partial deriva-
tives of the class score. This analysis allows differentiation
between multiple classes based on the features specific to each
class in the image.[60,61] In Figure 5C, the prediction of the single
images of human IgG–Protein G and their Grad-CAM image
analysis is shown. The positions where this gradient is large
are the places that were most heavily weighted in the analysis
of the neural network algorithm. In the heat map, the regions
with warmer colors are related to the areas with higher scores
in prediction. This reveals that the most important information
of the images for classification is drawn from the stain patterns,
mostly in the center. The information from the background of

the images is neglegible. On the contrary, in the case of inaccu-
rate predictions, background interference on the network’s deci-
sion making was detected in the Grad-CAM analysis as shown in
Figure 5C (II). Here, the correct classificationwas “Protein G”
but the trained network categorized it inaccurately as “HSA-
ProteinA-4-1”.

3. Conclusions

Image classification using deep-learning approaches is poised to
find a wide range of applications in different fields of biology and
medicine. Images of stain patterns of biomacromolecules and
their mixtures contain previously untapped levels of structural
and functional information. Here, we demonstrate strong corre-
lations between structural differences in protein–protein com-
plexes and how these can result in characteristic changes in
their respective deposition patterns. Using an ML algorithm,
protein–protein complexes were stratified based on the interac-
tions of IgG from various species with the SAg recombinant
Protein A. The pretrained InceptionV3 not only successfully
distinguished different IgG:Protein A combinations, but also
predicted binding propensities. Even unknown samples were
successfully sorted into classes exhibiting similar interaction

Figure 5. Performance of a pretrained network using human IgG:Protein G patterns. A) Confusion chart of human IgG:Protein G image classification as
an unknown sample (not trained). B) Examples of obtained patterns of human IgG, human IgG:Protein G with a molar ratio of 2:1 in comparison to
Protein A interaction with human IgG pattern with the same molar ratio. C) Single image prediction with Grad-CAM image analysis.
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tendencies than what was observed by CD spectroscopy. This
underlines the power of this approach, as it confirms effective
translation to unknown protein affinities. The role of the
substrate is important as it provides an inert and homogenous
support for droplet deposition. In principle, any surface coating
process would be appropriate as long as it results in homoge-
neous coatings and is scalable to the size of 96 well plates.
We used CVD polymerization because it is a commercially used
coating process that results in inert, homogenous, and well-
defined coatings of defined thickness.[62–64] Our findings may
contribute to the future development of precise, straightforward,
and unbiased methods to predict protein–protein interactions.
To ensure the broader applicability of this methodology, future
studies may focus on performance and workflow optimization.

4. Experimental Section

Protein Solution Preparation: All IgG from various species and HSA
were purchased from Sigma Aldrich (Sigma-Aldrich Chemie GmbH,
Taufkirchen, Germany). Recombinant Protein A and recombinant
Protein G were purchased from Abcam (Abcam plc, Cambridge, UK).
To prepare the protein solutions, the lyophilized proteins were dissolved
in 100mM sodium phosphate buffer at a final concentration of
0.3mgmL�1. The pH of the buffer was 8.1, containing 94.7 mMNa2HPO4

(Merck Chemicals GmbH) and 5.3 mMNaH2PO4 (Merck Chemicals
GmbH) in ultrapure water from the Mili-Q plus system (Millipore,
Schwalbach, Germany), filtered twice using a 0.2 μm syringe filter
(Sartorius Stedim Biotech GmbH, Gottingen, Germany). For good disso-
lution, each IgG was dissolved in the buffer using an tube rotator (Stuart,
Stone, UK) at 10 rpm for 2 h at room temperature. Since the IgG samples
had insoluble aggregates after mixing, these IgG solutions were centri-
fuged (Centrifuge 5804, Eppendorf, Hamburg, Germany) at 4000 rpm
for 4min. Then, the supernatant was separated, and the exact concentra-
tion was measured using a Nanodropmicro-volume spectrophotometer at
280 nm (NanoDrop One, Thermo Scientific, Darmstadt, Germany) by
using the molecular weight and extinction coefficient of each. Since
Protein A, Protein G, and HSA dissolved in aqueous solutions very well,
after mixing for 30 min, their exact concentration was directly determined
by the NanoDrop device. After the preparation of a single-protein solution
(stock samples), different protein–protein solutions were prepared with
various defined molar ratios. The total mass concentration was kept
constant at 0.3 mgmL�1. These solutions were mixed using an SB3 tube
rotator at 10 rpm for an hour to maximize the interaction between each
antibody and antigen pair. After mixing, the samples were stored in
aliquots at �20 °C. The molar ratios were 0:1, 1:0, 1:2, 1:1, 2:1, 3:1,
4:1, and 5:1 (antibody:antigen). The ratios of 1:0 and 0:1 were related
to a single-antibody/antigen solution.

Surface Preparation via CVD Polymerization: Glass plates with the exact
dimension of 96-well plates (120� 80mm) with the specifications of extra
white float, clear, and uncoated were custom-made with a thickness of
1.0� 0.05mm (Optrovision, München, Germany). Before the coating
step, the glass plates were cleaned using a Plasma Cleaner (PIE Scientific,
San Francisco, USA) with dry air to remove surface contaminants, change
the surface energy, and improve bonding strength. A power of 75W for a
5min emission was applied for this purpose. The cleaned glass plates
were then coated with PPX via CVD polymerization following a previously
described method.[65,66] The precursor, [2.2]paracyclophane (Curtiss-
Wright Surface Technologies [Galway, Ireland]) was sublimed under
vacuum and converted by pyrolysis into quinomethane, which spontane-
ously polymerized upon condensation to the glass surface. A constant
argon flow of 20 sccm was used as the sweep gas. The sublimation
temperature was 100–110 °C followed by pyrolysis at 660 °C. The coating
pressure was set to 0.15mbar.

Droplet Deposition: All protein sample solutions had a concentration of
0.3mgml in 100mM sodium phosphate buffer (pH 8.1). The deposition of

a predefined array of droplets onto the glass slide was performed by an
automated 96-well microplate pipetting device (EpMotion 5070,
Eppendorf AG, Hamburg, Germany) coupled with a 1-channel dispenser
(TS10, Eppendorf AG, Hamburg, Germany). To control environmental
conditions, the pipetting system was placed inside a climate chamber
(ICH 750, Mommert GmbHþ Co. KG, Schwabach, Germany), and the
environmental conditions were controlled at a temperature of
23� 0.5 °C and the relative humidity at 40% � 5%. Each droplet was
deposited at a dispensing speed of 3 mm s�1 and a volume of 2 μL.
The pipetting system was programed to dispense 96 droplets per glass
plate in the form of 12 columns and 8 rows. After the droplets were
allowed to dry for at least 6 h, images of the deposition patterns were cap-
tured using a polarizing optical microscope (Olympus BX-53 F, Tokyo,
Japan) equipped with an automated stage. All images were acquired at
a consistent light intensity using a 10x objective and stitched together
using the multi-image alignment algorithm included in CellSens software
(Olympus, Tokyo, Japan). The acquired images had a square dimension of
8013� 8013 pixels in the.jpg format. The images were resized to a final
dimension of 2003� 2003 pixels for fast import into the network for
training.

Training and Testing of the CNN: All raw images were imported into
MATLAB (Release 2023a, Math Works Inc.) for further processing and
training of the CNN. These images were resized to a size compatible with
the input layer of the CNN and converted to gray scale mode. InceptionV3,
a pretrained CNN, was applied for this purpose. It had an image input size
of 299� 299 pixels. InceptionV3 had 315 layers and contained five incep-
tion modules. It was one of the most accurate pretrained CNNs with
respect to the number of its layers, and the time required for training
was reasonable in comparison to other accurate pretrained CNNs such
as NasNetLarge.

Following the transfer-learning approach, a pretrained network with a
large set of image features was fine-tuned with a relatively small set of new
images. During transfer learning, the final classification layer was removed
from the network and retrained using the new dataset. Fine-tuning of the
parameters occurred across all layers using the same global learning rate
of 0.001, a minimum batch size of 64 images, and a maximum number of
epochs of 80. To prevent the network from overfitting and memorizing the
exact details of the training dataset, the images were augmented using a
random reflection function in which each image was reflected horizontally
and vertically with a 50% probability. ≈400 images per class were used for
training, and 10% of these images were randomly selected for validation
during training. In addition, 100 images per class were prepared for testing
after the network training. There was no overlap among the training,
validation, and testing datasets. This procedure was the same as that
for an unknown image test set. Using the trained network with different
classes, a completely different image as a test set was introduced to the
network for classification and it showed similarities between the given
images and the trained ones. For both types of testing datasets, the total
accuracy and confusion charts were obtained.

The t-SNE algorithm, a method for visualizing high-dimensional data,
was applied to the “SoftMax” layer of the trained network to demonstrate
how well the network clusters different protein–protein interaction levels.
A MATLAB ML package was used to perform the t-SNE.

The visualization algorithm Grad-CAM was used to understand which
regions of the image had the maximum influence on the classification
decision of the CNN.

ToF-SIMS: ToF–SIMS was performed using a ToF–SIMS instrument
(ION-TOF GmbH, Münster, Germany) equipped with a Bi-cluster liquid-
metal primary-ion source and a nonlinear ToF analyzer. For spectrometry,
short primary-ion pulses (<1 ns) of the Bi source were operated in the
“bunched” mode providing Bi1þ ion pulses at 25 keV energy and a lateral
resolution of 5 μm. As the droplets were larger than the maximum deflec-
tion range of the primary-ion gun of 500� 500 μm2, the images were
obtained using the manipulator stage scan mode. Negative polarity spec-
tra were calibrated on the C�, CH�, and CH2� peaks. Spectrometry
was performed in static SIMS mode by limiting the primary-ion dose
to <1011 ions cm�2. Charge compensation was necessary because of
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the glass substrate so that an electron flood gun providing electrons
of 20 eV was applied and the secondary-ion reflectron tuned accordingly.

SEM: The morphology of the deposited proteins and salt in dried drop-
lets was analyzed using an SEM (LEO 1530 Gemini, Zeiss, Germany).
A thin layer of gold was sputtered onto the samples prior to SEM imaging
to minimize surface charging.

CD Spectroscopy Measurements: The far-UV CD spectroscopy analysis
was conducted at 20 °C using a J-1500 Spectrophotometer (JASCO,
Deutschland GmbH), in quartz glass cuvettes with the path length of
1mm (Helma GmbH & Co. KG, Müllheim, Germany) between 260
and 180 nm and with data intervals of 0.5 nm. Two repeat scans at a scan
rate of 100 nmmin�1 were carried out for each sample and its respective
baseline of glass quartz. The spectrum of the protein-free buffer was also
recorded. The proteins had the same concentration as in the protein
stains, but in 20� 10�3

M sodium phosphate buffer (pH 8.1). After
smoothing the spectra, the final comparison was performed.
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