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Abstract 

An interesting effect in silica glass is the shift of IR- and Raman-peaks 
under externally applied stresses. A first interpretation of the influence of 
stress on the IR frequency was made possible by its influence on the bond 
angles, as had been shown very early by Galeener [1]. In this interpretation, 
the stress effect is assumed as a consequence of a change of the bond 
angles due to the stresses. 

In the following section we will show that the angle stretching is not the 
only effect that influences the position of the frequency of IR lines. The 
present Report will address the change in the peak position under uniaxial 
tension and compression in the so-called asymmetric stretching mode (AS). 
For our computations we used Lennard-Jones potential. 

From our computations, we have to expect decreased frequency under 
tension and increased frequency under compression loading. This result is 
in agreement with measurement by Tallant et al. [2]. 
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1. Position of IR- and Raman-maxima in the absence of stresses 

The interpretation of stress influences on the position of IR- and Raman-lines 
that has been dominant to date is based on Galeener's [1] suggestion. In our 
opinion, other effects are also possible that can also influence the position of the 
lines in the IR spectrum or the Raman spectrum. This report will address the 
change in the rest position of the oscillating system due to uniaxial external 
loads. An example for the influence of stresses are measurements by Tallant et al. 
[2], shown in Fig. 1 (“Frequency” in terms of the wavenumber). 

 

 
Fig. 1 Measurements by Tallant et al [2] on silica by tensile tests. 
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1.1 Structure element and binding situation for silica 
The infrared spectrum for silica glass shows a shifting of infrared peaks under stresses. 
The strongness and direction of the peak shift depends on the chosen IR-peak frequen-
cy and the surface state (water-affected, annealed, etched [3]). A first interpretation of 
the influence of stress on the IR frequency was made possible by its influence on the 
bond angles, as had been shown very early by Galeener [1]. Figure 2 shows a silica 
structural unit. The direction S represents the direction in which antisymmetric stretch-
ing (ASS) takes place, B stands for the so-called bending mode. 
Galleener suggested for the dependency between the angular frequency ω and the 
bond angle θ for the special case of the antisymmetric stretching mode [1, 4] 
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where mO is the mass of the oxygen atom and α a bond-stretching parameter. The pa-
rameters α as well as θ can depend on the global stress state, i.e. α=α(σ) and θ=θ(σ). 
In the following section we will show that the angle stretching is not the only effect 
that influences the position of the frequency of IR lines.  

 
Fig. 2 Schematic illustration of a silica structural unit with the Si-O-Si angles θ. The arrow S stands 

for the stretching mode and B for the bending mode. 

1.2 Description of a bond by the Lennard-Jones potential 
In order to minimize the number of disturbing influences, we will consider bond-
stretching first in the stress-free state, keeping α and θ as constants. For the interaction 
between Si and O atoms let us use a Lennard-Jones potential as given by eq.(2) 
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In this relation a is a measure of the distance between the different atoms and ε0 is the 
deepest point of the potential curve. The equilibrium distance r0 at which the first deri-
vative of the potential disappears, is 

 aarr
dr
dU 12246.120 6/1

0 ≅==⇒=  (3) 

Figure 3 shows the Lennard-Jones potential, eq.(2), in normalized representation. 

 
Fig. 3 Lennard-Jones potential according to eq.(2) in normalized represenration. 

The force F that must be applied to increase the distance r between the two bonding 
partners is then given by 
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This force is plotted as the red curve in Fig. 4. 
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The curvature of the potential curve provides the Hook parameter (or “spring constant”) 
k, the restoring force dF per extension dr 
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Figure 5 shows this dependency. The restoring force for r=r0, k0, reflects the relation-
ship between the force and the deflection from the equilibrium position. In our opinion 
there must exist an effect of externally applied stresses. 

 

 

Fig. 4 Restoring force F for the Lennard-Jones potential. 

The dashed part in Fig. 5 with k<0 is without relevance for the computation of vibra-
tions. The black circle represents the value at equilibrium, k=k0, in the absence of ex-
ternal stresses on the bond. This point is given by 
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and introduced in Fig. 5 at r0. The slope of the curve tangent at equilibrium results to 
be 
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By Taylor expansion of eq.(6) we obtain the linear approximation 
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which is introduced in Fig. 5 as the red straight line. The Taylor expansion for the 
force F is 
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and by combining eqs.(8) and (9) we obtain for the relation k=f(F) the linear approxi-
mation 

 
0

0 21
r
Fkk −≅  (10) 

 

 
Fig. 5 Curvature of the potential curve k∝ (d2U/dr2) as a function of r/a. Circle: Restoring force at 

equilibrium, red line: Taylor series approximation by eq.(8). 
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Finally, the mechanical properties resulting from the Lennard-Jones potential are com-
piled once more in Fig. 6. The restoring force is plotted here as 1/10×k a2/ε0, in order 
to apply the same ordinate scaling for all the curves. 

 

 
Fig. 6 Mechanical properties derived from the Lennard-Jones potential, blue: Potential U/ε0, red: 
binding force Fa/ε0, black: restoring force 1/10×k a2/ε0, in order to use the same ordinate scaling for 
all the three curves. 

2. Effect of stresses 
An axially applied stress σappl leads to a tensile force Fappl in the r-direction, which can 
be roughly estimated by  

 applappl aF σ2≈  (11) 

When this external load Fappl is applied, a new equilibrium position results at the inter-
section of the binding force F(r) with the externally caused force Fappl (see Fig. 7). The 
new balance is symbolized by the red circle. Under compressive stresses, we obtain 
the green line with the green circle indicating the intersection with the binding force 
curve. 
Whereas for the stress-free case the eq.(6) holds with k=k0=57.14 ε0/a2, we obtain for 
tension loading Fappl=+1/2 ε0/a with k=47.65 ε0/a2 and for compressive load Fappl=−1/2 
ε0/a the result of k=66.39 ε0/a2. The “spring constant” k and the vibration frequency ν 
are related by  
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where m is the “reduced molecule mass”. All results obtained from the Lennard-Jones 
potential are compiled in Table 1. 

  
Fig. 7 Binding forces under externally applied forces Fappl,. 

 

loading Fappl×a/ε0 r/a k a2/ε0 k/k0 ν/ν0 

+1/2 1.1320 47.654 0.8339 0.913 
0 1.1224 57.145 1 1 

−1/2 1.1143 66.391 1.1618 1.078 

Table 1: Results from computations on the Lennard-Jones potential. 

Figure 8 finally indicates the shift of k by the external stresses (see also eq.(10)). The 
most important result of our study is the fact, that externally applied uniaxial loading 
must change the frequency of molecular vibrations. We have to expect a decreased fre-
quency under tension and an increased frequency under compression loading. 



 8 

 

Fig. 8 Binding forces under externally applied forces Fappl. Circles: Black without stress, red under 
tension, green under compression.  

The linear relation between spring constant k and externally applied force F=Fappl, 
eq.(10), is of course sufficiently correct for small forces compared with the maximum 
force Fmax, with the value of 
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In order to be able to assess the accuracy of the approximation eq.(10), the curve k(F) 
was calculated (black curve) and compared in Fig. 9 with the linear approximation (red 
line). From Fig. 9, we can conclude that the linear approximation is sufficient in the 
region of -2<F<1 with maximum deviations of 1.7%. 
Finally, Fig. 10 represents the dependency in a normalized form 
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Fig. 9 Dependency k=f(F), given by the black curve, linear approximation eq.(10) by the red line. 

Because of eq.(11) the relation (15) can be expressed also in terms of stresses 
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where σ0 is the so-called ideal strength and σappl stands for the applied stress. The ideal 
strength is of course larger than all measured strengths and could only occur if no 
surface cracks are present in test fibers. From measurements by Brambilla and Payne 
[5] on extremely thin silica fibers of about 60 nm radius, one can conclude that σ0 may 
exceed 25 GPa. 
We therefore suggest using the following linear approximation up to an applied stress 
of around σappl/σ0=0.4: 
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Fig.10 Normalized representation of Fig. 9 with the applied load Fappl scaled on the maximum possible 

force Fmax. Dashed lines: limits for the suggested linear solution, eqs.(10, 10a). 

 
 
Conclusion: By application of the Lennard-Jones potential, it can be shown that the 
effect of stresses on the peak positions of Raman- and IR-spectra in silica is a shift to 
lower frequency under tensile loading and to higher frequency under compression 
loading. This result is in good agreement with the measurements by Tallant et al. [2]. 
In a following study, we will address also multiaxial stress states as for instance equi-
biaxial and hydrostatic compression.  
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