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Abstract

Glass-forming colloids consisting of soft core-shell particles were investigated experimentally under medium and large amplitude oscillatory
shear (MAOS and LAOS) using Fourier transform rheology to decompose the stress signal into a series of higher harmonics. The anharmo-
nicity of the stress response under MAOS and LAOS is quantified by the intensity of the third harmonic normalized to the fundamental

(I3/1 ¼ I3/I1) and within the intrinsic nonlinearity framework of the Q-parameter Q0 ¼ lim
γ0!0

(I3/1/γ20)

� �
. Furthermore, the results of the strain

amplitude dependence were compared to the literature showing the mechanical anharmonic behavior of the core-shell system being close to
the behavior of ultrasoft systems. In the glassy state, I3/1 shows an unusual scaling of I3/1 / γ40 at low frequencies, similar to amorphous poly-
meric materials when they undergo plastic deformation. For investigating the frequency dependence of the anharmonicity in a specially
designed binary mixture to test for critical behavior close to the glass transition as predicted by mode coupling theory (MCT) and extend the
measurements to the glassy state, we used the frequency sweep MAOS methodology. Using this time-efficient method, the frequency depen-
dence of a wide range of volume fractions and frequencies was investigated, finding the anharmonicity parameter Q0 to be maximal in the
region of the α-relaxation for colloidal liquids. The colloidal glasses do not exhibit a maximum in Q0, but an increase in Q0 with decreasing
frequency over the investigated region, as the α-relaxation slows down significantly in colloidal glasses. Predictions from MCT from the liter-
ature show agreement with the experimentally determined scaling laws. © 2024 Author(s). All article content, except where otherwise
noted, is licensed under a Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
https://doi.org/10.1122/8.0000827

I. INTRODUCTION

Nano- or micrometer-sized solid particles dispersed in a
liquid have extensive technological applications, ranging
from cosmetics and food science to building materials. Most
such colloidal suspensions use water as the continuous
phase. Examples include toothpaste, ink, paints, blood, or
clay. These examples demonstrate the relevance of colloidal
suspensions to a broad spectrum of scientific research [1].
Understanding the flow behavior of colloidal suspensions is
a critical part of adjusting a particular colloidal system for
specific applications, for instance, when mechanical behavior
must be adjusted or enhanced [2]. When the colloid volume
fraction becomes appreciable, the viscosity of the suspension
increases and it exhibits non-Newtonian mechanical behavior
as one of its characteristics [1,2].

If the particles in a colloidal system are close to monodis-
perse and spherical, they can either form a crystalline state or
become trapped in a metastable glassy state. Which state is
formed depends on how fast the critical volume fraction is
reached. If the critical volume fraction is reached quickly, the

crystallization process is kinetically suppressed, leading to a
glassy state. Shear induced crystallization can occur for col-
loids in the metastable glassy state [3]. To investigate a pure
glassy state, the crystallization has to be prevented by intro-
ducing a certain dispersity of the radius of the colloids
(σrel . 12 % [4]). In general, the glassy state of colloids is
characterized by trapping the particles in a cage formed by the
surrounding particles in which the movement of the particles
is cooperatively constrained [5]. This constraint of particle
movement causes the colloidal suspension to exhibit viscoelas-
tic behavior in the glassy state as well as a yield stress. These
topics have been extensively investigated [6–14].

In addition, colloidal suspensions exhibit significant nonlin-
ear mechanical behavior when exposed to large deformation, as
shown in several publications [13,15–20]. Understanding this
nonlinear behavior is crucial since materials frequently undergo
large deformations during industrial processing and real-life
applications.

A widely used method to characterize the nonlinear rheo-
logical behavior of materials is the oscillatory excitation of a
sample under sinusoidal large amplitude oscillatory shear
(LAOS) deformations, where characteristic frequency and
strain amplitude can independently be controlled,

γ(t) ¼ γ0sin(ω1t): (1)
a)Author to whom correspondence should be addressed; electronic mail:
manfred.wilhelm@kit.edu
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At large strain amplitudes, the material’s response func-
tions, namely, the storage modulus G0 and the loss modulus
G00, begin to display a dependence on the applied strain
amplitude. For most materials, this is accompanied by an
anharmonic stress response of the material, meaning that the
stress response cannot be described by a single sine wave.
Just a few materials show only a dependence of the moduli
on the applied strain amplitude while still having a pure
sinusoidal stress response [21–26].

There are several ways to analyze the anharmonic stress
response. The first approach was plotting σ(t) vs γ(t) or vs
_γ(t), obtaining the so-called Lissajous–Bowditch figures,
while the first quantitative approach to analyze the anharmo-
nicity of a material was Fourier transform (FT) analysis
[19,27–41]. With this approach, the higher harmonics of the
stress signal are obtained. Another method that has been
developed is a stress decomposition into elastic and viscous
components [42,43], which gives some physical meaning to
the anharmonic behavior, or to analyze σ 0(t) and σ 00(t) as a
series of Chebyshev polynomials [44–47], which also makes
a distinction between the elastic and the viscous contribu-
tions to the anharmonicity. All those methods are based on
the full cycle of the oscillatory response. As an alternative to
those, the sequence of physical process (SPP) analysis has
been suggested [48–51], where the transient stress response
of the material is analyzed having the advantage over the
other two methods of enabling microstructural interpretations
throughout the oscillation cycle [52,53]. However, FT rheol-
ogy and the Chebyshev method have the advantage that they
are easy to calculate [54].

Recently, recovery rheology was developed [55–57],
which can be used to understand the full amplitude sweep by
splitting the strain in its recoverable and unrecoverable com-
ponents. Utilizing recovery rheology [57] by combining
strain-controlled oscillatory shear with stress-controlled
recovery tests, it can be distinguished between recoverable
and unrecoverable contributions to the total energy dissipa-
tion. Furthermore, traditional material functions can be rede-
fined using recovery rheology unifying the interpretations of
MAOS response [54].

The focus of this work is to answer a question raised by a
previous comparison of FT rheological results to mode cou-
pling theory (MCT). There, the strong growth of the third
harmonic response when approaching the glass transition was
observed in LAOS strain measurements, while theory even
predicts its divergence [58]. The behavior in the glass state
was not addressed. Therefore, FT rheology is chosen to gain
a quantitative analysis of the nonlinear response approaching
the colloidal glass transition and in the colloidal glass which
enables the comparison to the MCT calculations.

Using the FT approach, the nonlinear stress signal is
expressed as a Fourier series as the stress response can be
interpreted as a sum of sines with the fundamental frequency
of the applied oscillatory strain and the odd harmonics of the
fundamental frequency with phase shifts. Because of symme-
try reasons and, as described in detail in Wilhelm [30], Cziep
et al. [59], and Hirschberg et al. [60], the even harmonics are
not present as long as flow instabilities such as slip do not
occur [20]. Note that the FT-rheology spectra are initially

recorded when analyzing data via Chebyshev polynomials.
Furthermore, in the analysis via the SPP approach, the FT
can be applied as an efficient comb filter in frequency space.

The relative intensity of the magnitude of the third har-
monic with respect to the fundamental, I3/1 ¼ I3/I1, obtained
from the FT is utilized as a quantification of the anharmonic-
ity of the investigated material [41] and can be used as a
quantitative measure for the transition from the linear region
to the asymptotic nonlinear region of the material, the
so-called medium amplitude oscillatory shear (MAOS)
region [61–63]. Another measure of the onset of nonlineari-
ties, which is often used, is the asymptotic deviation of G0

from its plateau value. The advantage of using I3/1 is the pos-
sibility to extrapolate it to a specific threshold, e.g.,
I3
I1
, 0:005, to gain a characteristic strain amplitude for the

onset of nonlinear behavior. Furthermore, the anharmonicity
I3 can be quantified at the third harmonic frequency 3ω1. At
this frequency, the stress response vanishes in linear
response, and I3 gives the dominant anharmonic response. It
decreases for decreasing strain amplitude according to
scaling laws.

However, only a few oscillatory nonlinear rheological
measurements have been performed on glass-forming colloi-
dal suspensions, and most are limited to a few frequencies
and focus on the dependence of the anharmonicity on the
strain amplitude [13,64–66]. Only a few publications address
the frequency dependence of the anharmonic behavior
[15,16,58,67]. In Seyboldt et al. [58], the frequency depen-
dence of the anharmonicity is addressed in the supercooled
state of the sample close to the glass transition volume frac-
tion and compared to MCT. The MCT predictions show that
the anharmonicity of the colloidal suspension strongly grows
in an intermediate frequency window when approaching the
glass transition volume fraction. Upon increasing the volume
fraction, this maximum increases and shifts to lower frequen-
cies, with a predicted power-law divergence for low frequen-
cies at the glass transition. This behavior raises the question
of what is happening within the glass. Preliminary data in the
glass already exist [16], but extensive experimental data,
especially in the low-frequency regime, are still missing.

To fill this gap, we scaled up an existing synthesis of colloi-
dal suspensions of polystyrene-poly-N-isopropylacrylamide
core-shell particles [68] to be able to extensively study the fre-
quency dependence of the anharmonicity of colloidal suspen-
sions in the fluidlike and the glassy regimes. In contrast to
previous investigations, which used monomodal samples with a
high dispersity in radius to suppress the particle crystallization
process, we study a well characterized binary mixture of
spheres, whose individual radius distributions are rather narrow
for gaining better comparability to MCT calculations as they are
mostly based on monodisperse samples and can be extended to
binary mixtures [69].

In this article, we present oscillatory nonlinear measure-
ments at multiple frequencies on this model system below
and above the glass transition volume fraction. The core-shell
particles possess an intermediate interparticle (soft) potential,
in contrast to the starlike micelles (ultrasoft) and the sterically
stabilized polymethyl methacrylate (PMMA) hard spheres
(hard) used as the two extrema studied in Poulos et al. [16].
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We compare the strain amplitude dependence of I3/1 in the
glass and the liquidlike region close to the glass transition of
our soft system with the results of Poulos et al. [16] on ultra-
soft and hard systems.

We address the frequency dependence of the anharmonicity
in the supercooled regime by determining the intrinsic anhar-
monicity Q0 and compare the experimental findings to MCT
predictions of Seyboldt et al. [58]. We extended the experimen-
tal results in the supercooled regime to more effective volume
fractions and determined the frequency dependence with a
higher point density and less scattering compared to the data of
Seyboldt et al. [58] by using the frequency sweep MAOS
methodology introduced by Singh et al. [70] and could there-
fore show the overlap of the intrinsic anharmonicity in the
high-frequency regime predicted by MCT. Additionally, the
MCT predictions [58] of the scaling laws of Q0 in the low-,
medium-, and high-frequency regimes agree with our experi-
mental findings, thus increasing the confidence in the linear
and nonlinear predictions of the MCT. In addition, we extended
the experimental results to the glassy regime.

With this, we provide an extensive dataset on the anharmo-
nicity of a colloidal suspension in both the supercooled and
glassy regimes. This dataset will serve as a foundation for
future studies using MCT, which are already in preparation.

II. THEORY

Nonlinear oscillatory shear measurements are most often
conducted as so-called strain amplitude sweeps. The material is
excited with a sinusoidal strain deformation with a specific
angular frequency ω1 and a specific strain amplitude γ0 [see
Eq. (1)] and the torque response M(t) of the instrument is
recorded. From this, the material parameters G0, G00, and the
nonlinear parameters are calculated. The strain amplitude is
increased successively, and for each combination of the fre-
quency and the strain amplitude, the time-dependent stress and
the material parameters are recorded. In the limit of low ampli-
tudes, the stress response of the material is a pure sine with the
angular frequency ω1 and a phase shift due to viscous effects,
and G0 and G00 are independent of the strain amplitude. This
region is called the small amplitude oscillatory shear (SAOS)
region and is described by linear response theory. At higher
strain amplitudes, the material parameters start to depend on the
strain amplitude. For most materials, this is accompanied by an
anharmonic stress response of the material, where the stress
signal is not a pure sine anymore. The stress can then be inter-
preted as reflecting changing physics throughout the oscillation
period or can be interpreted as consisting of a sum of sines and
cosines with the fundamental frequency and the harmonics of
the fundamental frequency [see Eq. (2)]. Because of symmetry
reasons, even harmonics are not present as long as flow insta-
bilities, such as slip or shear bands, do not occur [20,30,59],

σ(t) ¼
X
n[N

Insin(nω1t þ δn): (2)

The most prevalent method for quantifying the frequency-
dependent asymptotic nonlinear mechanical behavior of a
material is FT rheology, extensively studied by Wilhelm

et al. [30,34,39,41]. Note that there are several other methods
for analyzing and interpreting the nonlinear oscillatory shear
response of a material, as described in Sec. I. This work
focuses on FT rheology due to the comparability of the
obtained data to the MCT predictions.

The measurement and analysis procedure of FT rheology is
shown schematically in Fig. 1(a). In (1) the time-dependent
stress signal is shown. By a FT of this stress signal, a magni-
tude frequency spectrum (2) is obtained. The ratio of the mag-
nitude of the third harmonic to the fundamental I3/1 ¼ I3/I1 can
be used as a measure for the anharmonicity of the material. In
the SAOS region, where the anharmonicities are too low to be
detected with the specific hardware, a proportionality of I3/1 /
γ�1
0 is obtained as I1 / γ0, and I3 just records the noise level.

For higher strain amplitudes, i.e., in the MAOS region also
known as the asymptotic region, a proportionality of I3/1 / γ20
is generally expected. For even higher strain amplitudes, i.e.,
the LAOS region, I3/1 levels off to a plateau value. I3/1 can be
used as a measure of the anharmonicity of the stress response.
To quantify the intrinsic anharmonicity of complex fluids as a
function of the frequency, a pure frequency-dependent parame-
ter Q0(ω) introduced by Hyun and Wilhelm [63] can be
obtained from the asymptotic regime at low strain amplitudes.

The anharmonic parameter Q(ω1, γ0) ¼ I3/1/γ20 is calcu-
lated [see Fig. 1(a4)], enabling the determination of the
intrinsic anharmonicity Q0, which is defined as
Q0(ω1) ¼ lim

γ0!0
Q(ω1, γ0) ¼ lim

γ0!0
(I3/1/γ20) [59]. This procedure

is repeated for different frequencies to obtain the frequency
dependence of the intrinsic anharmonicity Q0(ω1), illustrated
in Fig. 1(a5). To obtain the frequency dependence, a strain
amplitude sweep of all the relevant angular frequencies ω1 is
necessary. Note that we will use the term “strain sweep”
instead of “strain amplitude sweep” for brevity in the rest of
the work.

Depending on the applied frequency, the investigated
amplitude region, and the data point density in the strain
sweep, one of these experimental strain sweeps can take up
to several days. Therefore, this method is quite time and
sample consuming, particularly when exploring a wide fre-
quency range or focusing on the material’s low-frequency
behavior. For polymer melts, the time-temperature superposi-
tion principle is used to reduce the measurement time to
obtain the Q0 value over a broad frequency range [59,63].
For colloidal suspensions, the time-temperature superposition
principle is not applicable [71]. For water-based systems, the
measurement time per sample loading is also limited due to
evaporation. Often, evaporation is so pronounced that it is
necessary to seal the sample from the environment. If the
sample cannot be separated from the sealing material, the
sample can only be used within one rheometer loading. To
overcome these limitations, the frequency sweep MAOS
method was introduced by Singh et al. [70].

In the asymptotic MAOS regime, the anharmonic parame-
ter Q(ω1, γ0) is a plateau value, as shown in Fig. 1(a4).
Therefore, rather than extrapolating the amplitude depen-
dence of I3/1, the intrinsic anharmonicity can be calculated
from one value of I3/1 by the following equation:
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Q0(ω1) ¼ I3/1(ω1)
γ20

: (3)

Consequently, one frequency sweep is sufficient to obtain
the frequency dependence of the intrinsic anharmonicity Q0

if the boundaries of the asymptotic region of the sample are
known. The boundaries of the MAOS regime can be tested
with two strain sweeps at the highest and lowest angular fre-
quency ω1 of interest, as schematically shown in Fig. 1(b).

For Deborah numbers De ¼ ω1τα equal to or greater
than 1, the departure from linearity is a γ0-controlled
process, whereas for De � 1, the departure from linearity
is a _γ0-controlled process [72]. Therefore, for De � 1 and

De . 1, the strain amplitude of the asymptotic anharmonic
behavior is expected to be independent of the frequency
γ0 = γ0(ω1), whereas for lower Deborah numbers De � 1
the strain amplitude is expected to be inversely propor-
tional to the frequency γ0 / ω�1

1 , as _γmax ¼ γ0ω1. How
our experimental results align with this is discussed in
Sec. VI A.

III. MATERIALS AND EXPERIMENTAL SETUP

A. Synthesis and purification

The thermoresponsive polystyrene (PS) poly-N-isopropyl
acrylamide (PNIPAm) core-shell particles are synthesized in

FIG. 1. (a) Schematic illustration of the determination of the frequency dependence of a material using strain amplitude sweep LAOS measurements adapted
with permission from Cziep et al., Macromolecules 49(9), 3566–3579 (2016). Copyright 2016 American Chemical Society. (1) In the anharmonic regime, the
stress signal becomes distorted. Fourier transform of this stress signal leads to the intensity spectrum of the harmonics (2). The relative intensity of the third har-
monic I3/1 ¼ I3/I1 can be used as a measure for the anharmonicity of the sample. In the asymptotic region, the relative intensity of the third harmonic I3/1 shows
a dependence on γ0 with I3/1(γ0, ω1)/ γ20 (3). The normalization to γ20 gives the Q-parameter (4). To obtain a pure frequency dependent parameter, the intrinsic
anharmonicity Q0(ω) ¼ lim

γ0!0
(I3/1/γ20) is determined by extrapolation to zero strain (5). (b) Schematic illustration of the SAOS, MAOS, and LAOS regimes in

the log(ω1)� log (γ0)-space to illustrate that this process can be shortened to a frequency sweep MAOS procedure introduced by Singh et al. [70] if the bound-
aries of the asymptotic MAOS region are known. Three trajectories of strain sweeps are shown as vertical red lines. For further information, see the text.
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a two-step synthesis process according to Dingenouts et al.
[68]. In the first step, a PS core is synthesized via emul-
sion polymerization using potassium persulfate (K2S2O8)
as an initiator, sodium dodecyl sulfate (SDS) as an emulsi-
fier, styrene as a monomer, and a small amount of
N-isopropyl acrylamide (NIPAm) as a comonomer to make
the deposition of the oligo-NIPAm in the second synthesis
step to the cores more likely. The core is purified by dia-
lyzing against purified water for three weeks. In the
second step, a crosslinked PNIPAm shell is synthesized
onto the core particles in a seeded emulsion polymeriza-
tion process. As a crosslinker, 2:5mol:% of N,
N0-methylenebisacrylamide (MBA) is used. The initiator
K2S2O8 is used as in the core synthesis. The thermores-
ponsive core-shell particles are purified by ultrafiltration
against deionized water for six weeks to remove traces of
monomer and free polymer in the suspension. The
weighed quantities of the educts are given in Table S1 in
the supplementary material.

By this synthesis procedure, two core-shell systems
(V ¼ 1:6L, w � 8wt:%) with different core and shell sizes
were synthesized to obtain systems with a certain size ratio.
These are used to obtain a bimodal mixture to suppress parti-
cle crystallization and to be able to investigate the anhar-
monic behavior of a glassy system at long time scales. The
synthesized systems are listed in Table I.

B. Experimental methods

Particle size distributions were measured by differential
centrifugal sedimentation (DCS) on an analytical disc
centrifuge (DC24000 UHR, CPS Instruments, Inc.,
Prairieville, LA, USA). A density gradient was prepared
from nine aqueous sucrose solutions (1:6ml each) ranging
from 8:0 to 2:0wt:% inside a hollow disk rotating
at 24 000 rpm, corresponding to a centrifugal force of
225–277 g acting on the particles. A thin layer of
n-dodecane was deposited onto the gradient, thus mini-
mizing evaporation of water, and extending the lifetime
of the gradient. The step gradient was allowed to equili-
brate within 30min, thus yielding a continuous gradient,
which is linear in volume. Each particle size measurement
was calibrated using polystyrene nanospheres with a
nominal size of 251 nm and a particle density of
1:054 g cm�3. A volume of 100 μl of diluted suspensions
of the core-shell particles and their cores (0:02wt:%)
were injected into the spinning disc. During the

centrifugation, the particles were sedimenting at rates that
depend on the actual size and density of the particles.
The measured sedimentation time is inversely related to
the sedimentation coefficient [73]. Stokes’ law and parti-
cle densities measured either on a densitometer or derived
from DLS measurements were used to calculate the actual
particle sizes from the sedimentation coefficients mea-
sured in the DCS experiment. The concentration of the
particles arriving at the detector position were determined
using light attenuation at λ ¼ 405 nm, thus allowing for
the complete determination of the particle size distribu-
tion. Mean particle sizes and dispersities given as weight-
average diameter divided by the number-average diameter
were obtained this way.

The temperature-dependent DLS measurements were per-
formed with the Zetasizer Nano S from Malvern Panalytical.
The wavelength of the laser was 633 nm and the scattered
light was detected at an angle of 173�. Measurements were
performed in semi macro cuvettes (PMMA/VWR) in a tem-
perature range from 10 to 50 �C in steps of 0:5 �C. The equil-
ibration time between each step was set to 300 s. Each
measurement was performed three times and the given result
is the average of the three measurements. The hydrodynamic
radius was determined by cumulant analysis, which is imple-
mented in the instrument software.

The oscillatory and steady shear rheology measurements
were conducted on an ARES-G2 rheometer (TA Instruments,
Newcastle, USA) using a 40mm plate-plate geometry at a
gap of 1mm. The samples were put on the plates with a
syringe and sealed with silicone oil with a viscosity between
215 and 315 mPa s for the investigated temperatures to sup-
press water evaporation. All the shear experiments were con-
ducted between 20 and 10 �C resulting in effective volume
fractions between 0.70 and 0.83; see below for its deter-
mination. Linear oscillatory shear was measured in an
angular frequency range of ω1 ¼ 100 rad s�1 to down to
ω1 ¼ 10�3 rad s�1 depending on the mechanical behavior of
the sample at the specific volume fraction and a strain ampli-
tude of γ0 ¼ 1%. The more solid the samples are, the lower
the lowest angular frequency was chosen. All samples were
sheared at _γ ¼ 100 s�1 for t ¼ 2min before all measurements
(except for the steady shear measurements) to rejuvenate the
sample. The measurements were performed after a waiting
time of tw ¼ 90 s after preshearing, as within this time the
microstructure of the material was rebuilt. For more informa-
tion, refer to the supplementary material, specifically
Fig. S3(c). The steady shear rheology was measured in a

TABLE I. Table of the synthesized PS-PNIPAm core-shell systems and the bimodal mixture used to suppress the crystallization of the particles, the
hydrodynamic radius RH,core,25 �C of the cores and RH,cs,25 �C of the core-shell systems at T ¼ 25 �C and their thermal expansion coefficients determined by
DLS, the relative standard deviation of the particle size distribution determined by differential centrifugal sedimentation, the share of the small and the large
particles and the mass ratio of the used samples suspended in water.

Sample RH,core,25 �C(nm) RH,cs,25 �C(nm) RH,cs,50 �C(nm)
Thermal expansion
coefficient (nm �C�1) σrel(%)

Share of the small
particle (−)

Share of the large
particle (–)

Mass ratio
(wt:%)

Large particle 50.8 130.0 78.8 −0.99 6.0 0 1 8.3
Small particle 36.7 76.7 47.2 −0.47 10.4 1 0 —

Bimodal mixture 36.7 and 50.8 127.5 77.4 −0.74 — 0.1 0.9 8.3
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shear rate range from _γ ¼ 300 s�1 to down to _γ ¼ 10�4 s�1

depending on the rheological behavior of the sample at
the certain volume fraction. The LAOS measurements
were conducted as strain sweeps from γ0 ¼ 1% to
γ0 ¼ 5� 102% for angular frequencies between
ω1 ¼ 10 rad s�1 to down to ω1 ¼ 3:98� 10�3 rad s�1 and
as frequency sweeps at a fixed strain amplitude of γ0 ¼
7% or γ0 ¼ 10% depending on the volume fraction. The
frequency sweeps were conducted from ω1 ¼ 10 rad s�1 to
ω1 ¼ 0:02 rad s�1 for all volume fractions. Note that the
use of a plate-plate geometry leads to inhomogeneous
shear fields, for which corrections are made as described
in Sec. VI. Despite this, the plate-plate geometry was
chosen because the evaporation of the water could be con-
trolled for longer times as shown in Fig. S3 in the supple-
mentary material.

IV. COLLOIDAL MODEL SYSTEM

As a model system, thermoresponsive PS-PNIPAm core-
shell particles were synthesized as described in Sec. III A.
PNIPAm has a lower critical solution temperature in water,
which causes a rapid volume transition at TLCST ¼ 32 �C of
the core-shell systems shown schematically in Fig. 2(a). This

reversible volume phase transition is caused by the change in
the hydration state of the PNIPAm. By heating, the H-bonds
between the water and the amide molecules become weaker,
leading to a shrinkage of the crosslinked shell and, at the
TLCST , to a complete demixing of the PNIPAm and the water
[74], resulting in a collapse of the crosslinked shell around
the polystyrene core. This results in a temperature depen-
dence of the hydrodynamic radius RH . This temperature
dependence measured by DLS is shown in Fig. 2(b) for three
different samples: a large particle, a small particle, and a
bimodal mixture of the two with a mass ratio of 90:10 used
to suppress particle crystallization. The large and the small
core-shell particles have a size ratio of approximately 0:58 in
the investigated temperature range of T ¼ 10� 20 �C.
Between T ¼ 10 �C and T ¼ 25 �C, the hydrodynamic
radius shows a linear dependence on the temperature with
thermal expansion coefficients between �0:5 and
�1:0 nm �C�1 depending on the effective crosslinking
density followed by a drop with the highest first derivative at
T ¼ TLCST ¼ 32 �C. At temperatures above T . 35 �C, the
hydrodynamic radius RH levels off to a plateau value.
From this, it could be concluded that the shell thickness
is 29 nm for the large and 11 nm for the small particles
in the shrunken state. To suppress the particle crystalliza-
tion a bimodal mixture of the large and the small parti-
cles is used. The systems used are listed in Table I.
All investigations are conducted on the bimodal mixture
with a radius ratio of 0:58. The samples contain
potassium chloride (cKCl ¼ 0:05mol l�1) to screen the
electrostatic interactions between the particles. The con-
centration was chosen according to the literature [75]. It
results in a Debye length of λD � 1:3 nm, which is lower
than the shell thickness resulting in a purely steric inter-
action potential. Colloidal stability at this salt concentra-
tion is given due to the steric interactions of the
particles caused by the polymeric shell.

A. Determination of the effective volume fraction

To determine the effective volume fractions of the
bimodal thermoresponsive system, the relative zero-shear
viscosity ηrel ¼ η0/ηs of a series of suspensions with dif-
ferent mass fractions was measured at 20 �C. The
Krieger–Dougherty equation [76] was used to fit the
obtained data and determine the factor k(20 �C) ¼ 0:0846
between the mass fraction w and the effective volume
fraction feff at 20 �C. The factor k depends on the tem-
perature due to the temperature dependency of the RH of
the core-shell particles and was only used to determine
feff at T ¼ 20 �C,

ηrel(20
�C) ¼ η0(20

�C)
ηs(20 �C)

¼ 1� feff (20
�C)

fmax

� ��2:5fmax

¼ 1� k(20 �C)w
fmax

� ��2:5fmax

: (4)

The volume fractions at the other investigation tempera-
tures T were calculated using the effective volume fraction at

FIG. 2. (a) Schematic illustration of the volume transition of the synthesized
thermoresponsive PS-PNIPAm core-shell model systems at the lower critical
solution temperature TLCST ¼ 32 �C in water. (b) Temperature dependent
hydrodynamic radius RH of the particles measured in dilution with DLS. In
the region between 10 and 25 °C, the hydrodynamic radius RH shows a
linear dependence with thermal expansion coefficients between −0.5 and
−1.0 nm/°C depending on the effective crosslinking density of the shell.
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20 �C renormalized to the ratio between the hydrodynamic
radius RH(20 �C) and the RH(T),

feff (T) ¼ feff (20
�C)

RH(T)
RH(20 �C)

� �3

: (5)

V. RHEOLOGICAL CHARACTERIZATION OF THE
MODEL SYSTEM

A. Oscillatory shear

The linear rheological behavior under oscillatory shear of
the bimodal mixture is shown in Fig. 3 for effective volume
fractions feff below and above the glass transition volume
fraction fg for a sample with a weight fraction of 8:3wt:%.
The volume fraction was varied by changing the radius of
the particles by changing the temperature as described in
Sec. IV. The measurements were conducted in the linear
regime at a strain amplitude of γ0 ¼ 1%. To allow compari-
son between the different volume fractions of the sample
with differing radii of the colloids, the storage modulus G0

and the loss modulus G00 were normalized to the character-
istic energy scale of a particle to the reduced moduli
G0

red ¼ G0(R3
H /kBT) and G00

red ¼ G00(R3
H /kBT) and the angular

frequency ω1 was normalized to the characteristic time scale
of the diffusion of a single particle in dilution by its own
radius to the rescaled frequency Peω ¼ (6πηsR

3
H /kBT)ω1. The

normalization parameters for the different volume fractions
are listed in Table S2 in the supplementary material. It is the
same temperature-dependent particle volume R3

H that rescales
volume fraction, moduli, frequency, and (see below) shear
rate. Note that at high packing fractions, the normalization
might not be appropriate, because the hydrodynamic radius
was measured with DLS in high dilution. The effective
radius of the particles in high concentration may differ due to
the finite E-modulus of the hydrogel leading to local defor-
mation of the particles.

In the region between feff ¼ 0:75 and feff ¼ 0:78, mea-
surements were done with small feff -steps of Δfeff � 0:06
shown in Fig. S2 in the supplementary material. For the
volume fraction of f ¼ 0:76, no decrease of G0

red was found
within the investigated time scales. Therefore, the glass tran-
sition volume fraction was defined as fg � 0:76. This glass
transition volume fraction is higher than for monodisperse
hard sphere particles, found to be around fg ¼ 0:58 in com-
puter simulations [77] and experimentally [5,78]. The higher
glass transition volume fraction results from the softness and
especially the dispersity of the radius of the particles
[12,64,65].

The samples with feff . fg exhibit a solidlike behavior
over the whole investigated frequency range as expected for
colloidal glasses [12,64,79], with G0

red ¼ constant and G00
red

being about one decade smaller than G0
red and exhibiting a

minimum. This minimum is correlated to the transition
region between the α-relaxation, i.e., the out of cage motion,
and the β-relaxation of the particles in the glass, i.e., the
relaxation or rattling of the particles within the cages [80].
The samples below the glass transition (feff , fg) show the
same behavior for high rescaled frequencies Peω with G0

red

being lower than in the glassy samples. For lower frequen-
cies, (respectively Peω), G0

red starts to decrease, while G00
red is

slightly increasing and then decreasing as well, resulting in a
crossover point of G0

red and G00
red and a maximum in G00

red

close to the crossover point. Below that, the samples show a
flow regime, which is typical for viscoelastic materials. The
crossover point is correlated to the inverse of the α-relaxation
time of the particles in the glass, i.e., the time the particles
need to escape their cages. The flow regime shows the possi-
bility of free diffusion of the particles, which escaped their
cages.

The α- and the β-relaxation are getting slower, i.e., shift-
ing to lower frequencies, for increasing volume fraction feff .
For volume fractions higher than the glass transition volume

FIG. 3. Reduced frequency sweeps with G0
red ¼ (R3

H /kBT)G
0 (filled symbols), G00

red ¼ (R3
H /kBT)G

00 (open symbols), and Peω ¼ (6πηsR
3
H /kBT)ω1 in the liquid-

like (a) and the glassy regimes (b). The crossover points of G0
red and G00

red are related to the time scales of the α-relaxation of the colloids, which becomes
slower for increasing volume fractions.
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fraction feff . fg, the α-relaxation vanishes completely for
our investigation times (t � 11 h) as the particles are densely
packed that they cannot escape their cages within the investi-
gation time.

B. Steady shear

The reduced shear stresses as a function of the shear rate
of the bimodal mixture are shown in Fig. 4 for effective
volume fractions feff below and above the glass transition
volume fraction fg, determined by oscillatory shear
measurements. As for the oscillatory shear measurements,
the measured data were double normalized to the radius
of the particle, i.e., the stress σ was normalized to the
characteristic energy scale of a particle to the reduced stress
σred ¼ σ(R3

H /kBT) and the shear rate _γ to the Péclet number
Pe0 ¼ (6πηsR

3
H /kBT) _γ by normalizing to the characteristic

time of self-diffusion of a particle in dilute suspension.
For the two lowest investigated volume fractions of

feff ¼ 0:70 and feff ¼ 0:73 at low shear rates and conse-
quently low Péclet numbers, the reduced stress is directly
proportional to the shear rate, i.e., the viscosity η of the mate-
rial is constant. The materials exhibit a first Newtonian
plateau as the particle’s α-relaxation time is lower than the
inverse of the shear rate leading to free diffusion of the parti-
cles. Increasing Pe0 leads to a sublinear increase in σred

showing that the material is shear thinning. Note that this
happens already at Pe0 far less than unity. Further increasing
the Pe0 leads to a steeper increase in σred with approximately
σred / Pe0:50 predicted for soft particles and associated with
interparticle slippage [81–83]. For increasing feff , the first
Newtonian plateau shifts to lower Pe0, disappearing from the
experimental window for feff . 0:75.

For samples with a volume fraction of feff . 0:78, the
reduced stress approaches a constant plateau value at low
Pe0. At these volume fractions, the α-relaxation is slowed

down to the point where the particles are unable to diffuse
out of their cages and flow without the disturbance due to an
external stress of at least the same magnitude as this plateau
value. The stress required to cause a material to flow is
defined as the yield stress σy. Applying a stress higher than
this stress (σ . σy) leads to a shear thinning of the material.

For higher Pe0, the reduced stress σred increases with
increasing Péclet number Pe0, showing that the shear thin-
ning is getting less pronounced. A yield stress plateau was
encountered first at feff ¼ 0:78, close to the experimentally
determined glass transition at fg ¼ 0:76. These flow curves
are similar to other investigations on comparable systems of
dense colloidal suspensions below and above the glass transi-
tion volume fraction [12,79,84].

VI. MEDIUM AND LARGE AMPLITUDE
OSCILLATORY SHEAR

In Sec. VI, first I3/1 in dependence on the strain amplitude
for different amplitudes and frequencies is shown for the
investigated soft particle system. The behavior of solidlike
and liquidlike samples is compared. Additionally, the behav-
ior of the investigated soft system is compared to investiga-
tions of Poulos et al. [16] on ultrasoft and hard sphere
glass-forming colloids. Then, the frequency dependence of
the intrinsic anharmonicity Q0 is investigated for samples
below and above the glass transition volume fraction and
compared to MCT predictions by Seyboldt et al. [58].

A. Strain amplitude dependence of the nonlinearity

The investigated core-shell system exhibits a liquid to
glass transition at an effective volume fraction of feff ¼ 0:76
as shown in Sec. V A. In this section, the LAOS response in
the liquidlike and the solidlike states is compared. Note that
adjustments have to be made to match the experimental data
of plate-plate measurements to cone-plate measurements by
accounting for the inhomogeneous flow field in parallel plate
geometries [85]. These adjustments can be made by multi-
plying the strain amplitude of the plate-plate measurements
by 0:75 [34] or multiplying the I3/1 values by 1:5 [85,86]
resulting in similar correction factors for Q0. Since this
section presents a qualitative comparison between I3/1 and
the yield strain γy depending on the state of the sample and
the frequency, our direct measurement results are displayed
instead of the corrected values. For the quantitative compari-
son with MCT, adjustments are made according to the
description provided later in more detail.

In Figs. 5(a) and 5(b), the linear dynamic frequency
sweeps, in Figs. 5(c) and 5(d) the material parameters G0 and
G00, and in Figs. 5(e) and 5(f ) the relative intensities of the
third harmonics I3/1 are shown as a function of the strain
amplitude γ0 for two different volume fractions in the liquid-
like regime feff , fg. In Fig. 6, the same is shown for two
volume fractions in the glassy regime. The two volume frac-
tions below the glass transition show a typical viscoelastic
liquid response, while the two volume fractions above the
glass transition show the typical characteristics of a soft
glass.

FIG. 4. Reduced flow curves plotted as the reduced stress with
σred ¼ (R3

H /kBT)σ as a function of the reduced shear rate with
Pe0 ¼ (6πηsR

3
H /kBT) _γ of the bimodal mixture for volume fractions feff

above and below the glass transition volume fraction fg approaching a yield
stress plateau for the samples in the glassy state.
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1. Third order anharmonic response

For all investigated volume fractions, the relative intensity
of the third harmonic I3/1 shows a monotonic increase with
the strain amplitude where the proportionality I3/1 / γ20 is
observed for medium strain amplitudes. This region is

defined as the scaling region and is followed by a leveling
off to a plateau value.

For the volume fraction of feff ¼ 0:71, most of the inves-
tigated frequencies are intentionally chosen to be in the range
where the sample shows predominantly viscous behavior.

FIG. 5. [(a) and (b)] Frequency sweeps in the linear regime of the samples, [(c) and (d)] G0 (closed symbols) and G00 (open symbols) as a function of the strain
amplitude, and [(e) and (f )] I3/1 as a function of the strain amplitude from the same strain sweeps at two different volume fractions in the liquidlike region
(feff , fg). I3/1 shows the proportionality of γ20 in the asymptotic regime. The colored vertical lines and symbols in [(a) and (b)] indicate the angular frequen-
cies at which the strain amplitude dependence and I3/1 was measured.
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For these angular frequencies, the strain amplitude γ0 of the
onset of anharmonicities decreases as the angular frequency
ω1 increases, because the maximum shear rate attained
during an oscillation cycle is equal to the product of the
strain amplitude and the frequency _γmax ¼ γ0ω1. The

anharmonicity levels off to the same plateau value. In con-
trast, for the two frequencies measured in the predominantly
elastic regime of the sample [marked in Fig. 5(a) with the red
circle and black square], the plateau value decreases for
increasing frequencies. This decrease of I3/1 from the plateau

FIG. 6. [(a) and (b)] frequency sweeps in the linear regime of the samples, [(c) and (d)] G0 (closed symbols) and G00 (open symbols) in dependence on the
amplitude, and [(e) and (f )] and I3/1 as a function of the strain amplitude from the same strain sweeps at two different volume fractions in the solidlike region
(feff , fg). I3/1 shows a quadratic increase with γ0. For low frequencies additionally, a small region of strain amplitudes with a higher exponent is observed.
The line with the slope of 4 is a guide for the eye. For further information, see the main text. The colored vertical lines and symbols in (a) and (b) indicate the
angular frequencies at which the strain dependence of G00 and I3/1 was measured.
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value in the LAOS regime is seen for the three volume frac-
tions, measured in the predominantly elastic regime as well
[shown in Figs. 5(d), 6(c), and 6(d)] and is in agreement with
model predictions [64] and experimental findings on a
similar system. It can be rationalized by the transformation of
the sample from a viscoelastic solid to a viscoelastic liquid at
the yielding point [34].

The plateau value of I3/1 is higher for the glassy samples
[Figs. 6(e) and 6(f )] than for the liquidlike samples
[Figs. 5(e) and 5(f )]. The findings of the soft core-shell
systems are in agreement with the findings of Poulos et al.
[16] on ultrasoft starlike micelles. It differs from the behavior
of hard sphere glasses, where the plateau value and the
general course of I3/1 show a stronger dependence on the fre-
quency as seen in Fig. 5 of Poulos et al. [16], where the
decrease in the plateau value of I3/1 is present at low volume
fractions for the liquidlike samples and gets even more pro-
nounced in glassy samples [16]. Additionally, the glassy
sample in Fig. 5 of Poulos et al. [16] displays a peak in I3/1,
which has been attributed to the phenomenon of two-step
yielding that is observed in hard sphere glasses [15,16].

For the other three volume fractions, the investigated
frequencies are chosen to be in the range where the sample
exhibits predominantly elastic behavior [see Figs. 5(b), 6(a),
and 6(b)]. Here, the onset of anharmonicities (defined by
extrapolation of the scaling region of I3/1 / γ20 to 0:005) shifts
to slightly lower strain amplitudes as the frequency decreases,
similar to the decrease in the yield strain γy with decreasing fre-
quency. This will be discussed below. For the two samples in
the glassy regime (Fig. 6), the scaling is first I3/1 / γ20 but
changes to a scaling with a higher exponent shortly before
reaching the plateau for the two lowest frequencies. This transi-
tion falls in a similar strain amplitude range as yielding and is
also observed in polymeric glasses when the sample deforms
plastically and the deformation of the sample becomes localized
[87]. In our system, this transition point is shifting to lower
strain amplitudes for decreasing frequencies. In Fig. 7(a), the
strain amplitude dependence of I3/1 for the highest volume frac-
tion is shown at the lowest frequency measured. Here, only a
substantial increase in I3/1 with the dependence of I3/1 / γ40 is
observed as the proportionality of I3/1 / γ20 vanishes at low
strain amplitudes into the region where I3 is experimentally too
small to be detected above the noise.

In Fig. 7(b), the absolute stress signals of the fundamental
and the harmonics are shown for a high volume fraction. The
third harmonic of the stress signal shows a power law of
I3 / γ50 instead of the expected power law of I3 / γ30, while
the first and the fifth harmonic still show the expected power
laws of I1 / γ10 and I5 / γ50 confirming that the unexpected
increase in I3/1 arises from the increase in I3 rather than from
a decrease in I1. This suggests that additional nonlinear pro-
cesses besides the predicted homogeneous nonlinear visco-
elasticity are involved, leading to the observed increase. This
amplification might be attributed to the same localization
effect of deformation seen in polymeric glasses, where a
change in the scaling of I3/1 / γ20 to I3/1 / γ40 is observed
when the deformation of the sample becomes localized [87].

To the best of our knowledge, an increase with a higher
exponent than I3/1 / γ20 was never found before in

suspensions. Only recently lower noninteger exponents were
found [88,89] and attributed to the particle contact dynamics
of attractive suspension networks [89].

2. Influence on the moduli

The samples in the predominantly elastic regime
(G0 . G00) show an overshoot in G00 as a function of the
strain amplitude without showing an overshoot in G0, which
is type III behavior according to Hyun et al. [40] and is
typical for soft glassy materials as concentrated emulsions
[90,91], suspensions [20,92], and colloidal glasses
[6,16,64,93]. Recently, Donley et al. [57] could gain more
insight into this yielding behavior of type III materials by
distinguishing between solidlike and fluidlike contributions
to the total energy dissipation combining strain-controlled
oscillatory shear with stress-controlled recovery tests.
Zero-stress recovery tests [56] allow to distinguish between
recoverable and unrecoverable energy dissipation. They
could show that the overshoot in G00 comes with a continuous
transition from predominantly solidlike to predominantly flu-
idlike dissipation by showing that the deformations transition
from predominantly recoverable to predominantly unrecover-
able. In colloidal glasses, a significant recoverable compo-
nent was observed at flow reversal, at strain amplitudes,
where G0 and G00 already crossed [94] in accordance with
Donley et al. [95] finding large correlations in the micro-
structure before and after yielding.

Based on those findings, a microstructural interpretation
of the processes during this yielding process can be made. In
the low strain region where G0 and G00 are still constant, the
strain amplitude is not sufficient to break or irreversibly
deform or modify the shape of the local cages of the glassy
structure.

The increase in G00 and decrease in G0 for type III materi-
als is directly accompanied by an increase in the unrecover-
able strain [57], which characterizes the extent of
microscopic changes [95], as the shear amplitude is sufficient
to locally deform the cages, but the reformation of the cages
is faster than the destruction of the cages. While further
increasing the strain amplitude, the destruction of the cages
becomes more dominant, leading to a higher unrecoverable
strain component than a recoverable component. The
maximum in G00 is correlated to the dissipation of energy due
to the breaking of the cages for colloidal glasses [64]. This is
more pronounced in soft sphere glasses compared to hard
sphere glasses due to the deformability and elasticity of the
particles.

The peak value of G00 slightly decreases for decreasing
frequencies, i.e., the dissipation energy resulting from break-
ing the cages slightly decreases, as the Brownian motion of
the particles supports the opening of the cages [13].

3. Influence on the yield strain

Several methods of the determination of the yield strain γy
from oscillatory shear measurements are frequently used,
such as the strain at the crossover point of G0 and G00, at the
maximum in G00, at the deviation of G00 from its linear
plateau value, or at the intersection between a horizontal line
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through the plateau modulus with a power-law fit of the high
strain behavior of G0. Another method to determine the yield
strain is to plot σ vs γ0 on logarithmic coordinates and find
the intersection of a line with unit slope at low strains (corre-
sponding to the linear regime) with a power-law fit of the high
strain behavior. Those methods were recently compared for
different materials [96–99] finding the obtained values for the
yield strain and the yield stress to vary about 3 orders of mag-
nitude depending on the method with the yield strain at the
crossover of G0 and G00 being the highest. Furthermore, these
studies have demonstrated that defining a single yield strain is
uncertain. During an oscillation cycle, the material yields and
unyields depending on the strain currently applied [97,100].

By looking into the transient behavior during a cycle of
oscillation, Donley et al. [97] found the G0

t and G00
t values to

show a time dependency as soon as the averaged moduli G0

and G00 show deviations from the linear viscoelastic regime.
Additionally, they found that the strain amplitude at which
the transient behavior crosses the line of G0

t ¼ G00
t for the first

time is close to the strain at the maximum of G00. Therefore,
they interpret the strain at which G0 decreases and G00

increases simultaneously as the strain at which small fractions
of the material already yield [101], while the material as a
whole yields close to the maximum of G00 [97]. Aime et al.
[102] found a transition from a slow relaxation mode to a fast
relaxation mode in concentrated microgels between the
maximum of G00 and the crossover of G0 and G00 associated
with yielding. Recently, Kamani et al. [100,103] developed a
model with only a single yield stress that can depict the char-
acteristics of the whole amplitude sweep by allowing for a
rate-dependent relaxation time and plastic viscosity.

In this work, two different metrics for the yield strain are
utilized, namely, the strain at which G00 deviates 5% from its
plateau value in the linear regime and the strain at the
maximum of G00, respectively. The frequency dependence of
the metric γy ¼ γ0(G

00
max) and the frequency dependence of

the metric γy ¼ γ0(G
00 ¼ 1:05 � G00

lin) are shown in Figs. 8(a)
and 8(b), respectively. Note that both metrics may be based

FIG. 7. (a) The strain amplitude dependence of G0, G00 (left axis), and I3/1 (right axis) for a solidlike sample at low angular frequency ω1 showing a proportion-
ality of I3/1 / γ40 instead of I3/1 / γ20. This may be due to the localization of deformation at low deformation frequencies as found in polymeric glasses, where
the scaling of I3/1 / γ20 changes to I3/1 / γ40 when the deformation becomes localized [87]. (b) The strain amplitude dependence of the fundamental and the
absolute value of the harmonics I3 and I5. The dependence of I3 and I1 confirms that this increase arises from the increase in I3 rather than a decrease in I1. I5
shows the expected proportionality. (c) The Lissajous–Bowditch figure at γ0 ¼ 8:175% visualizes the nonlinear behavior of the sample. This strain amplitude
γ0 ¼ 8:175% is highlighted with a yellow box in both (a) and (b).
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on the same underlying physics as a model with a single
yield stress can depict both rheological characteristics
[100,103].

For increasing frequency, an increase in the yield strains is
observed in accordance with previous experimental findings
in soft and hard sphere glasses [10,64,65,104]. This can be
rationalized by the cage effect, which is present for parame-
ters, where G0 . G00 in the linear regime. At low applied
angular frequencies, the Brownian motion of the particles
supports the escape from the cages. At higher frequencies,
the particles have less time to escape the cage, i.e., a higher
strain amplitude is necessary to break the cage. The suspen-
sion behaves still linearly at higher strain amplitudes than it
does at lower frequencies.

In Figs. 8(c) and 8(d), the volume fraction dependence of
the yield strain amplitudes is shown for three different
angular frequencies. It is observed that both yield strains

increase with increasing effective volume fraction in accor-
dance with the findings of Koumakis et al. [66] on soft core-
shell particles.

In contrast, for hard sphere glasses, a maximum in the yield
strain in dependence on the volume fraction was observed
determined from oscillatory shear [3,66] and from creep and
recovery measurements [65,105]. Note that different methods
for the determination of the yield strain γy do not necessarily
yield the same values, but Dinkgreve et al. [96] found the
same qualitative behavior for different simple yield stress
fluids in dependence on the volume fraction feff for different
methods. Therefore, a qualitative comparison of the yield
strains can be made, but a quantitative comparison between
the yield strains obtained with different yielding criteria such
as γy ¼ γ0(G

00 . 1:05 � G00
lin) and γy ¼ γ0(G

00
max) with the

values from literature at γy ¼ γ0(G
0 ¼ G00) [3,66] or from

creep and recovery measurements [65,105] is not reasonable.

FIG. 8. Yield strain as a function of angular frequency ω1 for different volume fractions in the liquidlike and in the glassy region for (a) γy ¼ γ0(G
00 ¼ 1:05 � G00

lin)
and (b) γy ¼ γ0(G

00
max) showing an increase in the yield strain for increasing angular frequencies. In (c) and (d), the dependence of the yield strains on the

volume fraction feff for three different angular frequencies [marked in (a) and (b) with the black, red, and blue boxes] is depicted. The yield strains increase
with increasing volume fraction. The yield strain determined as γy ¼ γ0(G

00 ¼ 1:05 � G00
lin) shows a higher scattering of the data due to the less accurate determi-

nation of the deviation from a plateau value compared to the determination of a maximum.
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The maximum yield strain observed in hard sphere
glasses [65,66] was attributed to two competitive effects. In
the glassy regime, the distance between particles decreases
while increasing the effective volume fraction approaching
random close packing. This results in a decreased strain
required to break the cages. Additionally, the yield strain
tends toward zero at the liquid-to-glass transition as particles
are not permanently caged in the liquid state causing the
yield strain to decrease for decreasing volume fraction start-
ing from the maximum.

The increase in the yield strain of soft particle glasses for
increasing volume fraction below the glass transition volume
fraction can be attributed to the same effect of the emergence
of the cage effect as in hard sphere glasses. The increase
above the glass transition volume fraction is attributed to the
particle softness, which dampens the cage relaxation partially
[65,66].

B. Influence of the frequency on the asymptotic
anharmonic behavior of colloidal liquids and
glasses

1. Validation of the frequency sweep MAOS

To reduce the measurement time for investigating the fre-
quency dependence of the intrinsic anharmonicity Q0, the mea-
surements can be conducted as a frequency sweep instead of
several strain amplitude sweeps as described in Sec. II. To
determine the minimum and maximum strain amplitude thresh-
olds for the MAOS region at various frequencies, we utilize the
strain sweeps depicted in Figs. 5(e), 5(f), 6(e), and 6(f).

For the effective volume fractions of feff ¼ 0:71 and
feff ¼ 0:73 [see Figs. 3, 6(a), and 6(b)], the sample is in the
range of De , 1 for the low frequencies. However, there is
still no shift in the strain amplitude range of asymptotic
behavior, indicating that the sample is not in the region of
De � 1. For the higher volume fractions feff ¼ 0:80 and
feff ¼ 0:83 in the glassy regime, the sample is in the region
of De . 1 for all investigated angular frequencies.

In the solidlike regime (feff ¼ 0:73 and ω1 . 0:2 rad s�1;
feff ¼ 0:80; feff ¼ 0:83), there is a slight shift in the strain
amplitude boundaries for asymptotic behavior to lower
strains at lower frequencies, as previously described. But it is
still evident that for all volume fractions a fixed strain ampli-
tude can be utilized for the frequency sweep MAOS. The
strain amplitude was selected between γ0 ¼ 7% and 10%,
depending on the volume fraction. Strain sweeps at lower fre-
quencies were conducted within a shortened measurement
window to confirm whether the selected strain amplitude is
still within the MAOS regime for those low frequencies.
Note that for low angular frequencies (ω1 , 0:01 rad s�1),
the region where I3/1 scales quadratically with γ0 could not
be detected as described in Sec. V A with Fig. 7. Therefore,
the investigation of Q0 is limited to an angular frequency
range of 0:01 rad s�1 � ω1 � 10 rad s�1.

To further evaluate the suitability of the frequency sweep
MAOS and strain amplitude for our system, a comparison
between a frequency sweep at a fixed strain amplitude of
γ0 ¼ 10% and different strain sweeps is shown in Fig. 9 for
a volume fraction of feff ¼ 0:73. The Q0 values observed

from the frequency sweep and the strain sweeps show the
same trend and, especially in the high and low Peω-region,
the data overlap. Only in the region around the maximum,
the Q0 values determined from the frequency sweep MAOS
deviate slightly from the values determined from the strain
sweep MAOS. Note that the strain sweep data scatter, while
the frequency sweep data are quite smooth. By using a fixed
amplitude, the scattering of the I3/1 data is reduced, resulting
in small deviations from the actual value. However, the
values are consistent with each other.

2. Frequency dependence of the anharmonic behavior
of the sample

By using this time-efficient method, we could investigate
the intrinsic anharmonicity Q0 for a large frequency window
and with a high point density in frequency space, in both the
liquidlike and the glassy regime while reducing measurement
artifacts from water evaporation. Note that determining criti-
cal spectra requires wide frequency ranges. In Fig. 10(a), the
intrinsic anharmonicity Q0 for the liquid states is plotted
against the rescaled frequency Peω. The Q0(Peω) curves of
the different volume fractions overlap in the high-frequency
regime and exhibit a maximum in Q0, which increases and
shifts to lower Peω for higher volume fractions in agreement
with MCT predictions from Seyboldt et al. [58] (discussed
more in detail below). In addition, predictions from MCT
from Seyboldt et al. [58] are shown. The absolute predicted
Q0 values based on input parameter from the linear rheology
of a disperse system are illustrated as a dashed line, whereas
the predicted scaling laws for the low-, medium-, and high-
frequency behavior, which are universal for glass-forming
colloids, are shown as solid lines.

Due to the inhomogeneity of the flow field in parallel
plate geometries, adjustments of the nonlinear rheological

FIG. 9. Comparison of the frequency-dependent intrinsic anharmonicity Q0

obtained from the frequency sweep MAOS measurements with a strain
amplitude of γ0 ¼ 10% and from strain sweep MAOS measurements
showing agreement (ca. 20% deviation of Q0,max ) of the results confirming
that the frequency sweep MAOS is a suitable alternative to the strain sweep
MAOS.
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results have to be made to match the results to the data from
cone-plate and plate-plate experiments. Wilhelm et al. [34]
adjusted by multiplying the strain amplitude values of the
plate-plate measurements by 0:75, whereas Wagner et al.
[86] and Giacomin et al. [85] multiplied the I3/1 values
obtained from parallel plate experiments by 1:5, yielding
similar correction factors for Q. We compared the results in
I3/1 of parallel plate (pp) and cone-plate (cp) experiments and
found that in our case, a correction by multiplying the strain
amplitude by 0:75 leads to agreement between the cone-plate
and plate-plate results (see Fig. S4 in the supplementary
material). A direct multiplication of the I3/1 values is not rea-
sonable for our measurements, as the plateau value of I3/1 is
almost independent of the used geometry. From this, a cor-
rection of approx. Q0,CP ¼ 1:77 � Q0,PP results. In Fig. 10(b),
the adjusted values of Q0 are presented. Additionally, the
experimental findings published in Seyboldt et al. [58] are
displayed. Agreement between the two datasets is observed
for the high-frequency flank with deviations of 6� 45%
between them. Deviations between our work and the work of
Seyboldt et al. [58] may be accounted for by the different
particle size distributions and modalities, as Seyboldt et al.
[58] investigated a polydisperse monomodal system.

3. Scaling laws in the liquidlike samples

The MCT predicts three different regimes with different
dependence of Q0 on the rescaled frequency Peω. The pre-
dicted scaling Q0 / Pe�a

ω with a ¼ 0:32 in the high-
frequency regime and the scaling in the intermediate fre-
quency regime Q0 / Pebω with b ¼ 0:69 agree with our
experimental findings. Additionally, a first indication of the
predicted quadratic behavior in the low-frequency regime
Q0 / Pe2ω is observed.

Note that the high-frequency regime in Q0(Peω) in mono-
disperse polymer melts shows similar scaling laws and the
low-frequency regime shows the same scaling law as in col-
loidal suspensions, so an exponent of 0:35 and 2. In polymer
melts, the exponent of the low-frequency regime highly
depends on the dispersity of the molecular weight of the
system [59].

The different regimes shift to lower angular frequencies,
respectively, lower Peω, for higher volume fractions consis-
tent with MCT predictions as the relaxation times of the
sample are increasing for increasing volume fractions.

For high Peω, the MCT theory predicts the overlap of the
intrinsic anharmonicity Q0 of the different volume fractions.
Our findings validate this overlap and coincide with the find-
ings of Seyboldt et al. [58] on a similar system. Note that the
data shown in Seyboldt et al. [58] show the expected propor-
tionality in the high-frequency region only for the highest
investigated volume fraction feff , while our experimental
data show the dependence for all investigated volume frac-
tions as our experimental results show reduced scattering
compared to the data of Seyboldt et al. [58] due to the use of
the time-efficient frequency sweep MAOS instead of using
strain sweep MAOS. The deviations of the experimental
results from the absolute predicted values by MCT [depicted
as a dashed line in Figs. 10(a) and 10(b)] can be explained
by the difference in the particle size distribution, as Seyboldt
et al. [58] investigated a monomodal, but disperse suspension
(σrel ¼ 17%), i.e., the input parameter of the MCT predic-
tions was based on the linear rheology of this system. In con-
trast, the experimentally investigated system in this work is
bimodal.

The similarities between the experimental findings and
the MCT predictions imply the need for further scrutiny of
MCT predictions, which are based on input parameters from

FIG. 10. (a) Q0 obtained from frequency sweep MAOS measurements with a plate-plate geometry at a strain amplitude of γ0 ¼ 10% at different volume frac-
tions in the liquidlike region. The experimental results of the high-frequency behavior of Q0 overlap with the predictions from the MCT. The scaling laws of Q0

show agreement with the predictions from MCT depicted by the black lines. The dashed line depicts the MCT results of Fig. 2 from Seyboldt et al. [58]. (b) Q0

values from the same measurements (closed symbols), corrected for the inhomogeneity of the shear field in plate-plate geometries (for more details on how the
values were corrected, see the text) and the experimental data (open symbols) from Seyboldt et al. [58]. The scaling laws and absolute predicted values are iden-
tical to those presented in (a).
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the linear rheology of the bimodal system. In addition, the
qualitative agreement between the MCT predictions, which
were often used to describe hard sphere glass-forming col-
loids, and our experimental results of soft core-shell systems
further supports the independence of the anharmonicity from
the particle interactions, which was proposed by Poulos et al.
[16]. They found qualitative agreement of the anharmonicity
of the two more extreme cases of ultrasoft starlike micelles
and hard sphere glasses.

4. Anharmonicities in the glass

In Fig. 11(a), the course of Q0 for the liquidlike and the
glassy samples is shown as determined from the frequency
sweep MAOS via Q0 ¼ I3/1/γ20. The glassy samples show the
predicted scaling Q0 / Pe�a

ω with the critical exponent a ¼
0:32 in the high-frequency regime in quantitative agreement

with the liquidlike samples. The intrinsic anharmonicity Q0 of
the liquidlike samples overlap, whereas in the glassy regime, Q0

decreases for increasing volume fractions, which is not expected.
Therefore, in Fig. 11(b) the intrinsic third anharmonicities
[I3] ¼ I3/γ10 and the intrinsic fundamentals [I1] ¼ jG*j ¼ I1/γ10
are shown to analyze if the decrease arises from a decrease in
[I3] or an increase in [I1]. They can be used as an internal com-
parison, since the samples are measured with the same rheome-
ter, and thus with the same torque sensitivity.

We can conclude that the decrease in Q0 is due to the
increase in [I1] rather than a decrease in the intrinsic third
harmonic [I3]. [I3] and [I1] increase with the volume fraction
feff in the liquidlike region, whereas in the glass this increase
vanishes for [I3] while [I1] still scales with the volume frac-
tion feff . Consequently, the decrease in the intrinsic anhar-
monicity Q0 is caused by the higher linear elasticity of the
sample approaching higher volume fractions rather than a

FIG. 11. (a) Q0 obtained from frequency sweep MAOS measurements at different volume fractions for the glassy and liquidlike samples. In the glassy regime,
a decrease in the intrinsic anharmonicity Q0 is observed. (b) The intrinsic [I3] values obtained from the same measurement do not show a decrease for the
glassy samples, confirming that the decrease in Q0 arises from the normalization to the fundamental [I1], which increases with increasing volume fraction
shown in (c). (d) Comparison of the volume fraction dependence of the position in Peω of the linear characteristic mechanical properties, as the crossover point
of G0 and G00, the minimum in the loss factor tan (δ)min and in G00 and the maximum in G00, as well as the position in Peω of the maximum of the intrinsic anhar-
monicity Q0. The results show that the maximum in Q0 is located in the region of the α-relaxation (Peω(G0 ¼ G00)) and scales accordingly.
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decrease in the intrinsic third harmonic [I3]. The collapse of
[I3] ¼ I3/γ30 in the glass is suggestive and should be analyzed
by MCT predictions based on the linear rheology of our
sample.

5. Comparison of the nonlinear mechanical behavior
to the linear mechanical behavior

In Fig. 11(d), the volume fraction dependence of Peω of
the characteristic linear and nonlinear mechanical properties
is shown. The minimum in the loss factor tan (δ) and in G00

extracted from the linear frequency sweeps (see Sec. V A,
Fig. 3) shows different scaling laws in the liquid and in the
glass. The maximum in Q0 obtained from the frequency
sweep MAOS measurements [see Fig. 10(a)] lies in the
region of the α-relaxation process and scales accordingly.
The maximum in Q0 is about two decades higher in ampli-
tude than that found in linear and sparsely branched polymer
melts [59]. This is in agreement with the findings on soft col-
loidal star polymer systems [106] and is attributed to the dif-
ference in the onset of nonlinearities. Polymer melts behave
linearly over a wider range of strain amplitudes (γy � 100%)
than colloidal suspensions (γy � 10%) resulting in lower
maximal Q0 values compared to colloidal suspensions. The
Q0 value is lower for a system that exhibits linear behavior
over a wide range of strain amplitudes compared to a system,
where the onset of nonlinearities occurs at smaller strain
amplitudes.

In agreement with Poulos et al. [16], we find an increase
in I3/1 for samples in the supercooled state in the frequency
region, where the sample shows a predominantly viscous
behavior in the linear regime and a decrease for frequencies
in the region, where the sample shows predominantly elastic
behavior in the linear regime. This can be explained by the
increasing shear rates reached during a cycle of oscillation.
For liquidlike samples, this leads to stronger shear thinning,
resulting in an increase in the nonlinearities. In contrast, for
solidlike samples, this leads to a transition from elastic to
plastic flow and, therefore, to a decrease in anharmonicities
as the material cannot follow the applied external shear rate
[16]. The intrinsic anharmonicity Q0 is closely related to the
linear frequency-dependent behavior, as it describes the
anharmonicity of the sample in the limit of vanishing strain
amplitude Q0 ¼ lim

γ0!0
(I3/1/γ20). For volume fractions in the

glassy state, no maximum in Q0 is observed supporting the
MCT predictions of a power-law divergence for low frequen-
cies at the glass transition. This demonstrates the need for
MCT predictions of the glassy state.

VII. CONCLUSIONS

Soft thermoresponsive PS-PNIPAm core-shell particles in
suspension were synthesized and purified to investigate the
nonlinear oscillatory rheology of the glass-forming suspen-
sion below and above the glass transition volume fraction for
answering a question, which was raised by previous compari-
son of FT rheological results to MCT [58]. It addresses the
behavior in supercooled states close to the glass states for
which we provide data in a broad frequency range. To suppress

particle crystallization, a bimodal mixture with a size ratio of
approx. 0:58 in radii in the investigated temperature range of
10� 20 �C and a mass ratio of large (RH,20 �C ¼ 135 nm) to
small (RH,20 �C ¼ 79 nm) particles of 90:10 was used, instead
of using a disperse system enabling better comparability to
MCT predictions. The nonlinear rheology of the samples was
investigated at both low and high volume fractions, where the
behavior is liquidlike and glassy, respectively, using frequency
and strain sweep MAOS.

The soft core-shell particles behave similarly to the ultra-
soft system studied by Poulos et al. [16]. Their study investi-
gated the nonlinear behavior of ultrasoft starlike micelles and
hard sphere glasses. We found that the core-shell particles
feature a constant plateau value of I3/1 for angular frequencies
in the predominantly viscous regime. For angular frequencies
in the dominantly elastic regime, there is a slight decrease in
this plateau value with increasing γ0. The ultrasoft systems
show the same behavior. In contrast, the hard sphere glass-
forming colloids already show a decrease in the plateau value
in the predominantly viscous regime and a significant drop in
the glassy regime [16].

In addition, a substantial increase of I3/1 at low angular
frequencies with a dependence of I3/1 / γ40 in colloidal
glasses was observed. This behavior is similar to that
observed in amorphous polymeric materials when they
undergo plastic deformation, where the deformation of the
sample becomes localized [87].

The oscillatory yield strain amplitude (obtained from the
strain at the maximum in G00) increases for increasing frequen-
cies and for increasing volume fraction. The increase in yield
strain for increasing frequencies can be attributed to the
reduced time the particles have to escape from their cages.
Thus, higher strain amplitudes are required to break the cages.

Additionally, we supported the findings of Singh et al.
[70] that utilizing frequency sweep MAOS is a viable and
more time-efficient alternative to strain sweep MAOS to
obtain the frequency-dependent anharmonic characteristics of
colloidal glasses. By using frequency sweep MAOS instead
of strain sweep MAOS, we could determine the anharmonic-
ity of glass-forming colloidal suspensions in a broad fre-
quency and volume fraction regime with a high point density
in frequency space, which makes a thorough comparison to
MCT predictions possible. Our experimental results show
little deviation (max. � 50%) from the quantitative MCT pre-
dictions of Q0 in the high-frequency region. This supports
the MCT prediction of a power-law rise of the nonlinearity
with decreasing frequency that is independent of the distance
to the glass transition.

Furthermore, our findings reveal that Q0 exhibits the
scaling laws predicted by MCT in the three different fre-
quency regions [58]. The frequencies at which these scaling
laws occur depend on the radius and volume fraction of the
particles. The qualitative agreement between the MCT pre-
dictions of Q0 based on a monomodal, disperse system with
the experimental results of the bimodal system investigated
in this work shows the universality of the critical nonlinearity
at the MCT glass transition and suggests a more detailed
analysis of MCT predictions, which start from the measured
linear rheology of the bimodal system.

COLLOIDAL GLASSES UNDER NONLINEAR OSCILLATORY SHEAR 725
 24 Septem

ber 2024 16:10:08



It was demonstrated that for colloidal liquids Q0 reaches a
maximum in the region of the α-relaxation, and its position
scales accordingly. As the sample becomes more fluidized,
the material can dissipate the energy introduced via the
shear, which leads to a decrease in the intrinsic anharmonic-
ity Q0. In contrast, in the solidlike regime, the higher shear
rates reached during a cycle of oscillation lead to a transition
from predominantly elastic to predominantly viscous flow,
which leads to a monotonous decrease in the anharmonicity.

The glassy samples still show the predicted scaling of
Q0 / Pe�0:32

ω . In the high-frequency limit, the intrinsic anhar-
monicity Q0 is not a function of the volume fraction in the
liquidlike region, whereas it decreases with volume fraction
in the glassy region. In contrast, the intrinsic third harmonic
of the stress signal [I3] increases in the liquidlike region,
whereas above the glass transition, it is no longer a function
of the volume fraction, while the intrinsic fundamental [I1]
and consequently the stress σ increases with increasing
volume fraction. Consequently, the decrease in the intrinsic
anharmonicity Q0 is caused by the higher elasticity of the
sample approaching higher volume fractions rather than a
decrease in the absolute third harmonic I3. The collapse of
[I3] in the glass indicates the need for a comprehensive analy-
sis of MCT predictions based on the linear rheology of our
sample.

SUPPLEMENTARY MATERIAL

See supplementary material for the synthesis details; nor-
malization factors for the frequency, shear rate, moduli, and
stress; frequency sweeps with small effective volume fraction
steps to investigate the glass transition volume fraction with
high precision; time sweeps of the sample with plate-plate
and cone-plate geometries to show the sample stability over
time and the time scale of the recovery of the microstructure
and the comparison between the relative intensity of the third
harmonic measured with a plate-plate and with a cone-plate
geometry.
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