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FROM GUIDELINES TO PRACTICE: INTEGRATING TECHNIQUES IN

DEVELOPMENT PLATFORMS TO ACHIEVE TRUSTWORTHY AI

Research Motivation

Growing calls for guidelines to ensure the development of trustworthy AI (TAI) systems [1-2]

Current guidelines [3], principles [4-5], and best practices [6] remain abstract and difficult to apply [2-3]

Tools are only of limited use for developers as they co-exist in isolation, focus on only one or few TAI qualities, and lack 

alignment to guide the entire AI development lifecycle [4, 7-10]

Cloud-based AI development platforms can foster TAI because these platforms provide developers with best practices and 

tools to enable and guide the AI development [11]

Extant TAI research is spread across various disciplines (e.g., information systems, computer science, or medicine [12])
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Research Question:

What are the key techniques for fostering TAI that can be integrated into AI development platforms?
(Descriptive Literature Review [13])

TAI Quality AddressedExemplary TechniquesAI Dev. Lifecycle 

Phase [14-15]

Technique Category Description

Privacy [16], Fairness [35], 

Security [36], Robustness 

[37], Performance [38]

Issue Detection [16], Debiasing 

[17], Data augmentation [18], 

Preserving Privacy [19]

Data 

Preprocessing (1)

Trustworthy Training Data

Techniques for monitoring and 

preprocessing the training data.
1

Privacy [16], Fairness [35], 

Robustness [37]

Robust Training [20], Model 

Debiasing [21], Differential Privacy 

[22]

Model 

Development (2)

Trustworthy Model Training

Techniques to build and train robust, 

fair, and privacy-preserving models.

2

Fairness [35], Accountability 

[40], Robustness [37], 

Performance [38], 

Transparency [39]

Fairness Evaluation [23], 

Robustness Evaluation [24], 

Ensuring Explainability [25]

Model Evaluation 

(3)

Trustworthy Model Evaluation

Techniques to evaluate model’s 

fairness, performance, and robustness; 

and ensure explainability.

3

Robustness [37], Security 

[36], Transparency [39]

Input Monitoring [26], Input 

transformation [27], Inferencing 

control [28], Output Monitoring [29]

Inferencing (4)Trustworthy Inferencing

Techniques to monitor and actively 

control inferencing.
4

Accountability [40], Security 

[36], Transparency [39]

Documentation [30], Collaboration 

and Communication [31], Process 

control [32]

Applicable in all 

lifecycle phases

Internal and External Transparency

Techniques to enable transparency of 

AI development decisions and process, 

incl. internal / external communication.

5

Privacy [16], Security [36]Access Control [33], Homomorphic 

Encryption [19], Trusted Execution 

Environment [34]

Applicable in all 

lifecycle phases

Data Protection

Techniques to transmit, store and 

process sensitive data securely.
6

Implications for Research

Synthesized overview how to address various TAI 

qualities by these techniques in parallel

Paves the way for future research to further investigate 

the consequences of combining TAI qualities and 

techniques (e.g., synergies or adverse effects [41-42])
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Implications for Practice

Starting point for AI developers and platform providers to 

construct TAI development platforms by providing 

concrete techniques

Organizations can harness extant techniques to provide 

TAI development guidance for developers
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