KIT | KIT-Bibliothek | Impressum | Datenschutz

Stable Air Retention under Water on Artificial Salvinia Surfaces Enabled by the Air Spring Effect: The Importance of Geometrical and Surface‐Energy Barriers, and of the Air Spring Height

Speichermann-Jägel, Lutz 1,2; Dullenkopf-Beck, Susanna 1,2; Droll, Robert ORCID iD icon 1,2; Gandyra, Daniel 1,2; Barczewski, Matthias ORCID iD icon 1,2; Walheim, Stefan 1,2,3; Schimmel, Thomas 1,2,4
1 Institut für Angewandte Physik (APH), Karlsruher Institut für Technologie (KIT)
2 Institut für Nanotechnologie (INT), Karlsruher Institut für Technologie (KIT)
3 Karlsruhe Nano Micro Facility (KNMF), Karlsruher Institut für Technologie (KIT)
4 Materialwissenschaftliches Zentrum für Energiesysteme (MZE), Karlsruher Institut für Technologie (KIT)

Abstract:

Superhydrophobic surfaces that can remain dry under water have a high
potential as nontoxic antifouling coatings or for drag-reducing ship coatings. The Salvinia effect leads to impressive stable air layers on underwater submerged floating plants Salvinia, decisively determined by the hydrophilic tips of the otherwise hydrophobic Salvinia hairs (Salvinia paradox). The water adheres to these hydrophilic tips, stabilizing the water–air interface. An even more important contribution to the stability of the air layer is provided by the air spring, which is formed by the air volume bound by the hydrophilic leaf edge and the leaf base. Using an artificial Salvinia model with hydrophobic pillars (syn-trichomes), how the stability against pressure changes in water depends on the height of the artificial hair is systematically shown: a reduction of the air spring height from 3 mm to 300 μm increases the stability against negative pressure by 500% from 72 to 380 mbar. Thicker air layers react much more strongly when subjected to overpressure (1000 mbar). It is also shown that the presence of a boundary is essential for the function of the air spring: removing the limiting hydrophilic edge around the hydrophobic air
... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000174428
Veröffentlicht am 23.09.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Angewandte Physik (APH)
Institut für Nanotechnologie (INT)
Karlsruhe Nano Micro Facility (KNMF)
Materialwissenschaftliches Zentrum für Energiesysteme (MZE)
Publikationstyp Zeitschriftenaufsatz
Publikationsjahr 2024
Sprache Englisch
Identifikator ISSN: 2196-7350
KITopen-ID: 1000174428
HGF-Programm 43.31.02 (POF IV, LK 01) Devices and Applications
Erschienen in Advanced Materials Interfaces
Verlag John Wiley and Sons
Seiten Art.-Nr.: 2400400
Vorab online veröffentlicht am 10.09.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page