KIT | KIT-Bibliothek | Impressum | Datenschutz

Precursors and pathways: dynamically informed extreme event forecasting demonstrated on the historic Emilia-Romagna 2023 flood

Dorrington, Joshua 1; Wenta, Marta ORCID iD icon 1; Grazzini, Federico; Magnusson, Linus; Vitart, Frederic; Grams, Christian M. 1
1 Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO), Karlsruher Institut für Technologie (KIT)

Abstract:

The ever-increasing complexity and data volumes of numerical weather prediction demand innovations in the analysis and synthesis of operational forecast data. Here we show how dynamical thinking can offer directly applicable forecast information, taking as a case study the extreme northern Italy flooding of May 2023. We compare this event with long-lasting historical northern Italy rainfall events in order to determine (a) why it was so extreme, (b) how well it was predicted, and (c) how we may improve our predictions of such extremes. Lagrangian analysis shows, in line with previous work, that 48-hourly extreme rainfall in Italy can be caused by moist air masses originating from the North Atlantic; North Africa; and, to a lesser extent, eastern Europe, with compounding moisture contributions from all three re-
gions driving the May 2023 event. We identify the large-scale precursors of typical northern Italy rainfall extremes based on geopotential height and integrated vapour transport fields. We show in European Centre for Medium-Range Weather Forecasts (ECMWF) operational forecasts that a precursor perspective was able to identify the growing possibility of the Emilia-Romagna extreme event 8 d beforehand – 4 d earlier than the direct precipitation forecast. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000174430
Veröffentlicht am 23.09.2024
Originalveröffentlichung
DOI: 10.5194/nhess-24-2995-2024
Scopus
Zitationen: 3
Dimensions
Zitationen: 3
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Meteorologie und Klimaforschung Troposphärenforschung (IMKTRO)
Troposphärische Messkampagnen und Modellentwicklung (IMKTRO-T)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 09.2024
Sprache Englisch
Identifikator ISSN: 1561-8633, 1684-9981
KITopen-ID: 1000174430
HGF-Programm 12.11.34 (POF IV, LK 01) Improved predictions from weather to climate scales
Erschienen in Natural Hazards and Earth System Sciences
Verlag European Geosciences Union (EGU)
Band 24
Heft 9
Seiten 2995 – 3012
Vorab online veröffentlicht am 04.09.2024
Nachgewiesen in Dimensions
Web of Science
Scopus
Globale Ziele für nachhaltige Entwicklung Ziel 11 – Nachhaltige Städte und Gemeinden
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page