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Fundamental insights into electrode–electrolyte interfaces are
crucial for our understanding of electrochemical processes.
Standard electrochemical methods, such as cyclic voltamme-
try, can reveal important information about the systems of in-
terest. Nevertheless, information about structure and
morphology of the electrode–electrolyte interface is not that
easily accessible. In situ scanning tunnelling microscopy can
resolve the electrode as well as the direct interface to the
electrolyte in real time during electrochemical measurements.
This includes changes of the electrode in the nanometre to
micrometre range, for example, during metal deposition or
corrosion, as well as the observation of ordered molecular
adlayers on the electrode. In this work, we want to highlight the
capabilities of such studies to better understand the funda-
mental processes of electrocatalysis and metal deposition and
dissolution, which are essential to electrochemical energy
storage systems.
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In situ scanning tunnelling microscopy
Since the scanning tunnelling microscope was invented
by Binnig and Rohrer in 1982 [1], researchers had the
wish to also apply this method in an electrochemical
www.sciencedirect.com
environment to explore electrodeeelectrolyte in-
terfaces. This was achieved by Itaya and Tomita, who
showed the first in situ scanning tunnelling microscopy
(STM) measurement only a few years later [2]. Two
basic requirements must be fulfilled to be able to

conduct STM measurements in an electrochemical
cell. First, the voltage between the STM tip and the
working electrode (WE) as well as the voltage between
the WE and the reference electrode (RE) must be
controlled separately. This is realised by using a bipo-
tentiostat [3]. Second, the STM tip must be shielded
from the electrolyte to prevent Faradaic reactions.
Here, different non-conductive coatings can be used,
ranging from nail polish to electrophoretic paintings,
Apiezon wax, and polyethene [4]. The general experi-
mental setup has not changed much since the first in
situ or electrochemical STM measurements. Figure 1a
shows a schematic drawing of the basic in situ STM
setup. The WE is placed on the bottom, and the cell
compartment with the electrolyte, which is for
simplicity not shown here, is mounted on top. RE and
counter electrode (CE) are dipped in the electrolyte
from aside. A piezoelectric tube scanner enables either
movement of the STM tip or the cell. Since the setup
needs to be very small, usual cells have a volume of
150e400 mL. Therefore, the CE and RE must be small,
often achieved by noble metal wires or micro-

electrodes [4,5]. Regarding the STM tips, various
metals can be used. Nevertheless, in situ STM mea-
surements are restricted to wires that are stable against
the electrolyte at the respective potentials used.
Therefore, metal wires of Pt/Ir alloys are often used,
which are rigid and have good electrochemical stability.
The tips can either be produced by sophisticated cut-
ting of a wire or by electrochemical etching [6,7].
Figure 1b shows a Pt/Ir (80:20) tip that was electro-
chemically etched in a NaCN solution. Note that
during the etching process, HCN is formed, making a

well-ventilated fume hood compulsory. Nevertheless,
this etching procedure is capable of reproducibly
yielding atomically sharp tips, which are well suited and
a prerequisite for atomically resolved imaging. The
choice of the tip coating is highly dependent on the
used electrolyte and its chemical stability. For example,
Figure 1c shows a high-density polyethylene-coated Pt/
Ir-tip.
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Figure 1

a) Schematic drawing of the typical in situ STM setup, (b) uncoated STM tip, and (c) STM tip coated with high-density polyethylene.
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It should be noted that STM images always represent a
map of the tunnelling current between the sample
surface and the STM tip, thus resembling the electronic
nature of the sample. This implies that the tip’s ge-
ometry may significantly influence the obtained current
response (and thus the image) due to tip convolution
effects [8,9]. Additionally, even if the STM tips are
perfectly shaped and well coated, they could influence
the obtained image, for instance, by disrupting adsorp-
tion layers, moving deposited material over the surface
or leading to preferential deposition or dissolution due

to local changes in the electric field around the tip [10].
These aspects always have to be taken into consider-
ation when performing and analysing (in situ)
STM experiments.
Electrode surface stability
Surface oxidation and corrosion
A fundamental understanding of surface oxidation and
corrosion plays an important role in several disciplines of
electrochemistry. For instance, in electrocatalysis,
formed surface oxides are often the catalytically active
sites [11]. Hence, their morphology can significantly
influence the electrocatalyst’s performance. Thus, by
using in situ STM in conjunction with other techniques
and theoretical simulations, the morphologies of several
surface oxides, such as the oxides of Cu [12] or Au [13],

could be resolved.

Understanding the initial stages of corrosion is of great
interest for corrosion protection. Here again, in situ STM
can help determine active sites and could provide
Current Opinion in Electrochemistry 2024, 48:101580
insights into self-protection mechanisms [14]. It could
be shown that grain boundaries and atomic defects are
the active sites for corrosion, and three-dimensional
oxide growth starts from a two-dimensional hydroxide
overlayer, which is adsorbed on the surface [14].

Another corrosion process occurs when, for instance,
noble metals are treated at highly positive or highly
negative potentials in concentrated electrolytes. This
process is known as cathodic corrosion and has been
investigated in detail recently [15,16]. Analysis of the

cathodic corrosion process by in situ STM was performed
in an alkaline electrolyte or ionic liquids (ILs) on Ag and
Au electrodes [17e19]. It could be determined that the
cathodic corrosion of Ag is faster in alkaline electrolytes
than in IL-based electrolytes [19] and that cathodic
corrosion of Au(111) in an IL starts at the elbow sites of
the reconstructed surface [18].

Surface reconstruction
Even between the potentials at which the electrode is
reduced or oxidised, the system should not be consid-
ered morphologically stable. In particular, Au surfaces

undergo surface reconstruction at negative poten-
tials [22]. At the reconstructed surface, the positions of
surface atoms deviate from the bulk-truncated config-
uration due to broken symmetry and broken bonds [23].

In an electrochemical environment, the reconstructed
surfaces tend to be stable at potentials negative to the
potential of zero charge (pzc). A negative surface charge
encourages the reconstruction of a surface, while anion
www.sciencedirect.com
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adsorption at positive surface charges induces the lifting
of reconstruction, leading to the dominance of an un-
reconstructed surface [24]. When applying a potential
negative of the pzc to an already unreconstructed sur-
face, a potential-induced surface reconstruction can be
observed [21,22,24]. The surface reconstruction signif-
icantly influences the reactivity of the electrode and its
activity as an electrocatalyst. Furthermore, the kinetics

of the lifting and potential-induced formation of the
reconstruction provide information about the mobility
of the surface atoms at the applied potential [21,20].
Figure 2

(a–g) In situ STM images of Au(111) electrode in 0.1 M H2SO4 [20]: (a) Therm
surface after the potential-induced lifting of the reconstruction at 0.8 V. (c) Po
formation of the herringbone reconstruction at −0.6 V. In (f) and (g), the corres
STM images of Au(111) in [BMPyr][TFSI] at (h) −0.25 V, (i) 0.35 V, and (j) −0
corresponding CV [7]. (Adapted from Refs. [20,21,7]).

www.sciencedirect.com
For example, the influence of the applied potential on
the surface reconstruction of Au(111) in 0.1 M aqueous
H2SO4 within the double-layer region is shown in
Figure 2aeg [20,21]. After flame-annealing and immer-
sion at �0.6 V versus mercury-mercurous sulphate elec-
trode (MSE), the thermally reconstructed Au (111)
surface is observed, showing the well-known (22� ffiffiffi

3
p

)
periodicity usually referred to as herringbone recon-

struction (see Figure 2a) [20]. Stepping the potential to
values positive of the pzc, such as 0.1 V, leads to the
lifting of surface reconstruction in conjunction with the
ally induced surface reconstruction at −0.6 V versus MSE and (b) Au(111)
tential steps from −0.9 V to −0.1 V and −0.6 V, and (d and e) subsequent
ponding CVs and chronoamperometric plots are shown [21]. (h–k) In situ
.25 V versus Ag/AgCl after applying potentials up to 0.75 V and (k)
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adsorption of specific (bi)sulphate anions. This leads to
a higher defect density and island formation as shown in
Figure 2b [20]. The sequence of images in Figure 2cee
shows how the reconstruction is lifted and then
reformed by first jumping to 0.1 V and then to �0.6 V
versus MSE [20]. Over time, a potential-induced sur-
face reconstruction is formed, leading to the develop-
ment of a herringbone structure distinct from the one

observed through thermal reconstruction [20]. The
potential-induced reconstruction is less ordered than
the thermally induced reconstruction, leading to de-
viations in the positive-going scan of CVs from the first
cycle, which starts on the thermally reconstructed
Au(111) surface, to the second cycle, as shown in
Figure 2f [21].

Figure 2g shows chronoamperometric plots for the
hydrogen evolution reaction (HER) at �0.9 V [21]. The
differences in the activity of the surface depending on

the surface morphology are obvious: The thermally
reconstructed surface has the lowest number of defects
and is, thus, the least active for the HER. If the
reconstruction was lifted previously, the HER activity is
highest [21]. The current densities observed along the
potential step series at both �0.3 V and �0.6 V versus
MSE exhibit a gradual decline in HER activity over
time, indicating structural changes due to potential-
induced reconstruction [21]. The decline in activity is
notably more pronounced for the more positive poten-
tial. This observation aligns with in situ STM studies,

which have demonstrated that at potentials approaching
the point at which the reconstruction is lifting, the
reconstruction rows manifest more rapidly within mi-
nutes [25].

Recently, in situ STM investigations have been directed
towards new classes of nonaqueous electrolytes as well,
namely, ILs and deep eutectic solvents (DESs). To
fundamentally understand the processes at the elec-
trodeeIL/DES interface, in situ STM was used in both
classes of electrolytes [7,26]. As the electrolyte signifi-
cantly influences the surface atoms’ mobility, the mor-

phologies of the reconstructed and unreconstructed
surfaces show a huge variety when using different
electrolytes [7,26]. For instance, the structural changes
of a Au(111) single-crystal surface in N-butyl-N-meth-
ylpyrrolidinium dicyanamide ([BMPyr][DCA]) and N-
butyl-N-methylpyrrolidinium bis(trifluoromethane)
sulfonimide ([BMPyr][TFSI]) were investigated using
in situ STM [7]. Here, the STM investigations of
Au(111) in [BMPyr][TFSI] reveal a stable surface with
only few corrugation lines as in Figure 2h within the
potential range from �0.25 V down to�1.75 V versus Ag/
AgCl [7]. Furthermore, the surface is stable upon
shifting to positive potentials up to 0.35 V as shown in
Figure 2i [7]. Going to more positive potentials, the
noise in the image increases, and upon shifting the po-
tential back to �0.25 V, small islands, approximately
Current Opinion in Electrochemistry 2024, 48:101580
0.25 nm in height, appear on the terraces as shown in
Figure 2hej [7]. One possible explanation is that a small
amount of Au dissolved during electrode polarisation at
positive potentials, possibly from steps or areas outside
the scanned region [7]. The small islands observed in
Figure 2j could result from the redeposition of gold
atoms upon returning the potential to �0.25 V [7].
Figure 2k shows the corresponding CVof the system [7].

The green bar indicates the potential region in which
the surface was stable as determined by in situ STM [7].
In comparison, when Au(111) was polarised in [BMPyr]
[DCA] at negative potentials, a ð ffiffiffi

3
p �22Þ surface

reconstruction was induced. At �0.30 V versus Ag/AgCl,
this reconstruction pattern became unclear, indicating
the initial lifting of the reconstruction, which is com-
plete at �0.20 V versus Ag/AgCl. Similarly, as in ILs, the
formation and lifting of the reconstruction of Au(111) is
highly dependent on the components the DES includes.
In the Cl�-containing ethaline, it was shown that the

surface mobility was very high, so that the islands
formed upon lifting the reconstruction were unstable
[26]. The surplus of Au atoms diffused to the step edges
within seconds [26].
Ordered ion adsorption
As specifically or nonspecifically adsorbed electrolyte
molecules can be rather mobile on an electrode surface,
in most in situ STM images, the electrode is imaged,
while the electrolyte close to the electrode only con-
tributes to the noise [27]. However, if the electrolyte’s
molecules form ordered adlayers, they are accessible by
in situ STM. This can be achieved in different kinds of
electrolytes as long as ordered adlayers exist. Figure 3
shows three examples for ordered adlayers on Au(111)
in (a) acetic acid, (b) the IL [BMPyr][DCA], and (c)
the DES ethaline (ethylene glycol:choline chloride 2:1)

[6,7,26]. The investigation of such structures helps to
understand the reactivity of the electrode at the
respective potential because adsorbed layers can either
block the surface for electrocatalytic reactions or pro-
mote these reactions [14,28]. Sometimes, differently
ordered adlayers can even co-exist on the surface, as for
instance, the ð ffiffiffi

3
p � ffiffiffi

3
p ÞR23.45� and the (2 � 2)

structures of acetate on Au(111) [6]. Nevertheless, after
some time, only the (2 � 2) structure remains as ther-
modynamically stable configuration, since the ð ffiffiffi

3
p �

ffiffiffi

3
p ÞR23.45� structure is metastable [6]. For the

[BMPyr][TFSI] adsorption ð ffiffiffi

7
p � ffiffiffi

7
p ÞR19.1� struc-

tures of two different species were found, which could
be related to the cations or anions [7]. Both the anions
and cations seem to alternate on the surface at the
respective potential [7]. In the DES ethaline, the
chloride anions form a ð ffiffiffi

3
p � ffiffiffi

3
p ÞR30� adlayer [26].
Metal deposition
Metal electrodeposition plays a pivotal role for a variety
of applications. For instance, in the field of
www.sciencedirect.com
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Figure 3

In situ STM image of ordered adsorbate adlayers on Au (111) in (a) acetic acid [6], (b) [BMPyr][DCA] with a schematic illustration of the adsorbate
arrangement of two different species [A] and [B] on the surface [7], and (c) ethaline as previous shown in Ref. [26] (Adapted from Refs. [6,7]).
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electrochemical energy storage, it is a key factor in
constructing stable metal batteries [30,31]. In addition,
metal deposits on a foreign substrate can enhance the
activity of an electrocatalyst [32]. In all these applica-
tions, controlling the morphology of the deposition is
crucial. Here, in situ, STM can provide important in-

sights into the initial stages of metal deposition and the
resulting bulk morphologies. It also facilitates the
investigation of processes such as dealloying [28,33].

Information about the potentials of underpotential
deposition (UPD) and overpotential deposition (OPD)
can already be extracted from pure electrochemical
measurements, such as cyclic voltammetry or chro-
noamperometry. Nevertheless, no information about
the actual active sites or the morphology of the
deposited material can be extracted from these mea-

surements. However, this information is accessible by
in situ STM measurements. For example, the initial
stages and ongoing UPD of Na deposition on a Au(111)
from the IL N-methyl-N-propylpiperidinium bis(tri-
fluoromethane)sulfonimide ([MPPip][TFSI]) were
investigated in Figure 4 [29]. The images aec show the
first nucleation on the Au(111) electrode. At 1.3 V
versus Na/Naþ, the deposition has not yet started, and
the bare herringbone reconstructed Au (111) surface is
visible in Figure 4a [29]. Decreasing the potential to
www.sciencedirect.com
1.1 V as shown in Figure 4b, small islands have nucle-
ated at the so-called elbow sites of the herringbone
reconstruction [29]. These islands are not imaged with
monoatomic height, either due to the chemical
contrast or due to an insertion of the deposited atoms
in the substrate [29]. After a further potential decrease

to 1.0 V, islands of monoatomic height started to
nucleate at the elbow sites [29]. Similar preferential
deposition was also observed for the deposition of other
metals, such as Co or Ni [34,35].

The images in Figure 4eeg show the ongoing UPD and
were all recorded at 0.5 V [29]. Whereas in the CVs
shown in Figure 4d, only one broad peak in this potential
region was seen, the in situ STM images reveal that three
processes occur subsequently [29]. First, the islands
grow, and more islands nucleate. Then, these islands

coalesce into layers before a three-dimensional growth
starts and a cauliflower-like structure evolves. These
details cannot be extracted from pure electrochemical
measurements [29].

Of course, the composition of the electrolyte, the used
substrate, and the substrate’s orientation greatly influ-
ence the deposited metal’s morphology, as shown by
several in situ STM studies in which different metals
were deposited [35e38].
Current Opinion in Electrochemistry 2024, 48:101580
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Figure 4

Na deposition form the IL [MPPip][TFIS] on Au(111) [29]: (a–c) In situ STM images of the initial island growth at the elbow sites of the reconstruction lines.
(d) CVs of the system, (e,f) ongoing UPD from island growth to layer coalescence and three-dimensional growth, (h) monolayer coverage determined
from the STM measurements (adapted from Ref. [29].)
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As long as no side reactions occur, the amount of elec-
trodeposited material can be determined by the charge

transferred during electrodeposition [28,39]. In situ STM
allows us to determine the local coverage of the depos-
ited material even if electrochemical side reactions co-
occur. This is, for example, relevant in ILs, where side
processes of residual impurities often contribute to
Faradaic currents. Exemplarily, Figure 4h shows the
coverage of each layer extracted from the series of in situ
STM measurements shown in Figures 4eeg [29].

As for the metal deposition, a quantitative analysis of the
metal dissolution can be conducted by in situ STM
measurements. For example, the dealloying of Cu from

Au after the overpotential deposition of Cu on a Au(111)
surface was observed this way [28]. This phenomenon is
not accompanied by huge currents because it is a rather
slow process. However, in situ STM measurements still
allow us to quantify the number of layers dissolved per
time [28].
Conclusion
In situ STM is a very powerful technique in many fields
of electrochemistry, with the unique ability to provide
detailed insights into the structure and dynamics of
the electrodeeelectrolyte interface. By combining
Current Opinion in Electrochemistry 2024, 48:101580
electrochemical measurements with STM, measured
currents can be related to morphological changes at the

interface. This helps in understanding phenomena such
as electrocatalytic reactions, metal deposition and disso-
lution, surface oxidation, or even corrosion. While in situ
STM measurements are not capable to provide chemical
information, these could be obtained by combination
with additional ex situ surface science techniques, such as
X-ray photo-electron spectroscopy or Auger electron
spectroscopy. With the increasing development and use
of artificial intelligence on scanning probe techniques
and in data evaluation, it can be expected that in situ STM
measurements can be facilitated in the future.
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