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Abstract
In this article, we consider distance-based clustering problems. In contrast to many
approaches, we use themaximum norm instead of themore commonly used Euclidean
norm to measure distances. This problem is nonsmooth and non-convex and, thus,
difficult to solve to global optimality using standard approaches, which is common in
cluster analysis. Therefore, we reformulate this continuous problem in light of graph-
theoretical instances which enables us to construct a bisection algorithm converging
to the globally minimal value of the original clustering problem by establishing valid
upper and lower bounding procedures. Our numerical results indicate that our method
performs well on data sets exhibiting clear cluster-pattern structure even for bigger
data instances while still guaranteeing the global optimality of the computed solution.
We compare our approach with the classical k-means algorithm and also discuss the
limits and challenges of the proposed procedure.

Keywords Clustering problem · Global optimization · Maximal clique · Bisection
method · k-means problem

Mathematics Subject Classification 90C30 · 90C26 · 90C35

1 Introduction

Clustering is awell-establishedunsupervised learning techniquewhich aims to allocate
a given set of data points to specific subsets called clusters, such that points within
a cluster are similar in some sense, whereas points of different clusters may differ.
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From an optimization perspective, this can be achieved by means of minimizing some
dissimilarity measure. Since cluster analysis is an important approach that is helpful
in various applications, it is, therefore, not surprising that a large amount of literature
is devoted to this topic. We refer to the surveys (Hansen and Jaumard 1997; Jain et al.
1999) as well as to the monographs (Hartigan 1975; Kogan et al. 2006) for a general
introduction.

There are several different possibilities to tackle this problem. A classical approach
that is widely used in practice is the k-means algorithm. Its various versions, usually
considering the Euclidean norm for measuring distances, are described in Bagirov
(2008);Bagirov et al. (2011);Hartigan andWong (1979); Larrañaga et al. (1999); Likas
et al. (2003); Loyd (1982); MacQueen (1976). Unfortunately, k-means algorithms do
only compute locally optimal solutions and, thus, one can never be sure, whether
there is a better clustering of the data points or not. This is well illustrated in Steinley
(2003) and it is shown that this drawback may already occur for small-scale problems
even when using professional software tools. Although implementations may have
improved, since the latter was published in 2003, in principle, the difficulty of getting
stuck in locally optimal points still persists. For this reason, the aim of this article is
to provide a new possibility to solve a variant of this problem to global optimality.

Although, in general, it can be stated that there are much fewer algorithms to solve
this problem globally compared to the large body of literature on heuristics or local
solution approaches, there are also other distance-based approaches that aim at solv-
ing the problem globally. In the following we briefly mention some of these. First of
all, it is interesting to see that basically all techniques that are common in the area of
global optimization can be applied here as well such as dynamic programming (see,
e.g., Jensen 1969; van Os and Meulman 2004), cutting plane methods (see Peng and
Xia 2005), as well as reformulation–linearization-technique-based methods (RLT) as
proposed in Hanif (1999); Sherali and Desai (2005). Moreover, the so-called cutting
angle method is applied to clustering (see [5,6]). Recently progress has been made
in solving the minimum sum-of-squares clustering problems (MSSC) globally where
new techniques have been developed that combine semidefinite programming relax-
ationswith branch-and-bound and branch-and-cut approaches (Piccialli et al. 2022b, a;
Piccialli and Sudoso 2023).

Furthermore, clustering problems can be reformulated as mixed-integer linear as
well asmixed-integer non-linear problems that can be solved using one of the excellent
state-of-the-art solvers that are available. However, the success of thesemodels is often
somewhat limited as described, e.g., in Klein and Aronson (1991) due to the inherent
combinatorial structure of these problems as well as due to many equivalent solutions.
In the more recent study (Liberti and Manca 2022), an interesting idea based on the
so-called random projections is applied that seems to be promising.

Among the most widely used techniques in global optimization are branch-and-
boundmethods. Therefore, it is not surprising that these are also applied to problems in
statistics as well as data analysis in general. Possible applications including clustering
can be found in Michael (2005). In addition, we mention (Koontz et al. 1975; Rao
1971) as some of the earliest approaches in that domain (see also Hand (1981)). More
branch-and-bound algorithms can be found in Klein and Aronson (1991); Brusco
(2003). An innovative idea of a branch-and-bound algorithm that exploits concepts
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related to the so-called hierarchical clustering approaches can be found in Fränti et al.
(2002). In Brusco (2006), yet another branch-and-bound procedure is proposed that
is initially applied to a subset of all data points, which is subsequently enlarged.

A completely different approach to solve clustering problems to global optimality is
column generation as done, for instance, in Johnson et al. (1993). The combination of
this approach with a branch-and-bound method also leads to an interesting possibility
for solving clustering problems to global optimality as developed inMerle et al. (1999).
A considerably improved version based on this is presented in Aloise et al. (2012).
An additional method based on column generation in general as well as on the two
aforementioned articles, in particular, is proposed inBabaki et al. (2014). The approach
is rather flexible in the sense that it is not only capable of solving clustering problems
to global optimality but also allows for additional constraints to be incorporated into
the model.

As opposed to the aforementioned methods, our new bisection method relies on
concepts from graph theory for identifying a global solution of a clustering problem
which we formulate as a non-convex continuous optimization problem. For a general
introduction to graph theory, we refer to Bondy and Murty (1976); Diestel (2000);
West (2001). In our method, two different subproblems arise, namely, the maximal
clique and the k-cover set problem. Both are well-known and extensively studied
problems settled within the areas of discrete and combinatorial optimization (Brigham
andDutton1983;Bron andKerbosch1973;Karp 1972). For a description of algorithms
to compute cliques of a graph in general, we refer to Johnston (1976) as well as to
Pardalos and Rodgers (1992) for approaches based on classical branch-and-bound
methods. As we are especially interested in the so-called maximal cliques, we also
mention the well-known Bron–Kerbosch algorithm introduced in Bron and Kerbosch
(1973) and, similarly, the article (Akkoyunlu 1973). Although being known to beNP-
hard, the clique cover problem can be accelerated, e.g., by data reduction techniques
as described in Gramm et al. (2009). Additional clique problems are examined in Jun
et al. (2020) and solved to local optimality.

The idea of applying graph-theoretical approaches to solve clustering problems
is already known in the literature. Commonly, these approaches are not distance-
based in the sense that distances between entities are assumed to be provided via
a so-called distance matrix. In contrast, algorithms of k-means type interpret data
points as elements ofR

n and compute distances usually based on Euclidean distances.
The method proposed in this article can be seen as a hybrid version. Although we also
require data points inR

n aswell as a norm tomeasure distances, we still take advantage
of graph-theoretical ideas. However, as is common for k-means type algorithms, it is
important to note that our approach does not work using arbitrary distance matrices.
In fact, for our new method, the maximum norm is required here.

Graph-theoretical approaches for solving clustering problems have in common that
data points are considered as vertices of a graph and the corresponding clusters are
identified as certain subgraphs of this graph as, for instance, described in Johnson
et al. (1993). Early and detailed introductions to graph-theoretical cluster techniques
describing different algorithms for computing cliques can be found in Gary Augustson
andMinker (1970) and the references therein. In Hansen and Delattre (1978), for solv-
ing a clustering problem, a minimum diameter partitioning problem is considered and
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solved in terms of optimal coloring of certain subgraphs. Here, the optimal clusters
correspond to the set of vertices of same color. Another clustering approach that is
based on graph coloring can be found in Brusco and Cradit (2004). Alternatively, as
suitable subgraphs, often cliques of a graph, also called complete subgraphs, are con-
sidered to identify clusters. A heuristic that exploits this idea is described in Dorndorf
and Pesch (1994) and in Ben-Dor et al. (1999) the relationship between the clique
and the clustering problem is exploited to solve problems regarding gene expression
patterns. Considering subgraphs other than cliques, different shapes of clusters can be
computed as done, e.g., in Gramm et al. (2005); Hartuv and Shamir (2000); Zhong
et al. (2010).

The goal of this article is to propose a new method for the solution of the k-
means problem with maximum norms. As already mentioned, we strive for a globally
optimal point.Althoughwe take advantage of graph-theoretical concepts, our approach
is distance-based and, thus, we try to minimize the distances corresponding to the
assignments of the data points to clusters bymeans of solving an optimization problem.
We achieve this bymeans of a bisectionmethodwhere in every iteration some classical
graph-theoretical subproblems are solved. To the best of our knowledge, this is the
first bisection method that is applied to a clustering problem. As common for k-means
problems, we do not assume any prior knowledge about the cluster assignments of
the given data points except that there is a certain number of clusters to be identified
and that this number is given in advance. In contrast to most approaches from the
literature, we measure distances in terms of maximum norms.

It should be noted that there are completely different clustering approaches such as
DBSCAN (see Ester et al. 1996) or so-called hierarchical clustering approaches (see,
e.g., Ward 1963 for an early reference in that area). The same holds for the numerous
local and heuristic approaches, since we are only concerned with globally optimal
solutions.

The article is structured as follows. In the next section, we introduce some impor-
tant notions and define the global clustering optimization problem. Based on this, in
Sect. 3, we explain some relations to important graph-theoretical concepts. In Sect. 4,
we propose a new bisection method which uses the two aforementioned subproblems,
namely the maximal clique and the k-cover set problem, to solve the original clus-
tering problem globally. In addition, we provide a proof of convergence and briefly
discuss the complexity of this approach. In Sects. 5, we discuss solution strategies
for the aforementioned subproblems and we propose acceleration steps which further
improve the overall computational performance of our algorithm. Finally, in Sect. 6,
we compare the proposed method with a randomly initiated k-means method and we
also discuss the results of the corresponding numerical experiments. The article closes
with some final remarks in Sect. 7.

2 Preliminaries, notion of the problem, and basic reformulations

In this section, we briefly review some basic concepts needed throughout this article.
We start by explaining some reformulations of clustering problems. The description
is rather detailed to keep the exposition accessible to a broad readership ranging from
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data analysis and graph theory to global optimization. At the same time, we already
introduce some important ideas along a simple example.

Given a finite set of points X = {xi ∈ R
n | i = 1, . . . ,m} with m ∈ N and given a

number k ∈ N, we are interested in partitioning the data set X in k different clusters
C1, . . . ,Ck ⊆ X satisfying

⋃k
j=1 C j = X , so that data points within one cluster C j

are close to each other. Althoughwe do not explicitly require the clustersC1, . . . ,Ck to
be disjoint, commonly, this is fulfilled automatically for globally optimal clusterings.

To obtain a reasonable criterion for measuring the similarity of the data points
within each cluster, we consider k cluster centers z1, . . . , zk ∈ R

n which represent
their position inR

n .We are interested inminimal distances between each of the cluster
centers and the corresponding assigned data points. More precisely, we try to position
k cluster centers z1, . . . , zk , such that the distances between the cluster centers and
their assigned data points are minimized. We assign a given data point x ∈ X to a
cluster center z j if and only if

‖z j − x‖ ≤ ‖zl − x‖ ∀ l = 1, . . . , k

is fulfilled with ‖ · ‖ denoting an arbitrary norm. Note that we keep the exposition
as general as possible here, although in the remainder of this article, we shall restrict
our consideration to problems involving the maximum norm. The assignment of an
arbitrary data point xi ∈ X to its closest distanced cluster center can be modeled by
an assignment map σ : {1, . . . ,m} → {1, . . . , k} defined by

zσ(i) := argmin
j=1,...,k

‖z j − xi‖

for all i = 1, . . . ,m. Clearly, the assignment map σ is not unique in general and
depends on the positions of the cluster centers. Once each data point is assigned to its
closest distanced cluster center, then the overall quality of this particular clustering is
measured by considering the norm of the vector of all minimal distances

∥
∥
∥
∥

(
‖zσ(1) − x1‖, . . . , ‖zσ(m) − xm‖

)T
∥
∥
∥
∥ .

Minimizing this expression leads to the unconstrained optimization problem

P : min
z1,...,zk

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

‖zσ(1) − x1‖
...

‖zσ(m) − xm‖

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

= min
z1,...,zk

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

min j=1,...,k ‖z j − x1‖
...

min j=1,...,k ‖z j − xm‖

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

.

The clustering problem P is, hence, to position k cluster centers z1, . . . , zk ∈ R
n , such

that the objective function of the non-convex problem P is minimized. Moreover, in
this article, we strive for a globally minimal point of P in contrast to many approaches
from the literature.

In case a globally minimal point (z1
�
, . . . , zk

�
)T of P is given, we are able to

partition the set of data points X into the corresponding k clusters C1, . . . ,Ck by
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setting
C j = {x ∈ X | ‖z j � − x‖ ≤ ‖zl − x‖, l = 1, . . . , k}

for each j = 1, . . . , k. Clearly, we obtainC j ⊆ X for all j = 1, . . . , k, and, since each
x ∈ X belongs to at least one of the clusters C1, . . . ,Ck , the property

⋃k
j=1 C j= X

is satisfied as well. Thus, identifying a globally minimal point of the problem P
immediately leads to a clustering of the data set X .

Depending on the choice of the norm that is used for measuring distances, we
obtain different objective functions of problem P and, hence, also different clustering
results are possible in general. The most prominent method called k-means (see, e.g.,
Bagirov 2008; Bagirov et al. 2011; Likas et al. 2003;MacQueen 1976) is usually based
on the Euclidean norm and the problem is, therefore, also called minimum sum-of-
squares clustering problem (MSSC). In this article, however, we restrict our approach
to maximum norms for both, the inner and the outer norms, appearing in the definition
of the problem P . This norm is also known as the Chebyshev norm and is defined
by ‖d‖∞ = maxi=1,...,n |di | for an arbitrary d ∈ R

n . This leads to the optimization
problem

P∞ : min
z1,...,zk∈Rn

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

∥
∥zσ(1) − x1

∥
∥∞

...∥
∥zσ(m) − xm

∥
∥∞

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥

∞

,

which is of our central interest in this article. By definition, this can be rewritten as

P∞ : minz1,...,zk∈Rn maxi=1,...,m min j=1,...,k maxl=1,...,n |z jl − xil |.

We continue our reformulation by shifting the objective function into the constraints
and, thus, we arrive at

minz1,...,zk∈Rn , α∈R α

s.t.

∥
∥
∥
∥
∥
∥
∥

⎛

⎜
⎝

min j=1,...,k ‖z j − x1‖∞
...

min j=1,...,k ‖z j − xm‖∞

⎞

⎟
⎠

∥
∥
∥
∥
∥
∥
∥∞

≤ α.

Rewriting the outer norm explicitly yields

min
z1,...,zk∈Rn , α∈R

α

s.t. max
i=1,...,m

min
j=1,...,k

‖z j − xi‖∞ ≤ α.
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Fig. 1 Representation of the data points in X

We now continue by replacing the latter inequality constraint by m inequalities, and
so, we finally obtain

P̃ : min
z1,...,zk∈Rn , α∈R

α

s.t. ‖zσ(i) − xi‖∞ ≤ α ∀i = 1, . . . ,m.

Thus, both problems P∞ and P̃ are equivalent in the sense that a point (z1
�
, . . . , zk

�
) is

a globallyminimal point of P∞ if andonly if there is someα�, so that (z1
�
, . . . , zk

�
, α�)

is a globally minimal point of P̃ . In this case, the value α� ∈ R attains the globally
minimal value of both P∞ and P̃ .

In view of the maximum norm, it is true that a data point xi deviates from the next
closest cluster center zσ(i) by at most α for any feasible point (z1, . . . , zk, α)T of P̃ .
Thus, geometrically speaking, we try to position k cluster centers z1, . . . , zk , such that
k equal boxes (i.e., balls measured with respect to the maximum norm) centered at
z1, . . . , zk have a minimal radius possible while ensuring that each data point x ∈ X
is contained in at least one of these boxes. This is illustrated in the following example.

Example 2.1 Let X ⊆ R
2 be a set of ten data points

x1 = (0, 0)T x2 = (0, 1)T x3 = (1, 0)T

x4 = (10, 0)T x5 = (11, 0)T x6 = (10,−1)T

x7 = (−20, 5)T x8 = (−20, 6)T x9 = (−19, 5)T x10 = (−19, 6)T .

This is depicted in Fig. 1 where we intuitively recognize three separated subsets in X .
Therefore, we propose a partition of X into the following three clusters:

C1 = {x1, x2, x3}, C2 = {x4, x5, x6}, C3 = {x7, x8, x9, x10}.

In view of the aforementioned explanation by setting k = 3, we see immediately from
Fig. 2 that it is possible to cover the whole dataset X by three boxes all of a side length
1 (or equivalently by k = 3 maximum norm balls all of a radius 0.5). Note that we
cannot cover the whole dataset X by k = 3 boxes of a side length less than 1.

The globally minimal value of P̃ is thus v� = 1
2 with the corresponding optimal

cluster centers z1
� = (0.5, 0.5)T , z2

� = (9.5,−0.5)T , z3
� = (−19.5, 5.5)T , which
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Fig. 2 Three boxes representing the global solution of the clustering problem P̃

correspond to the centers of the gray-shaded boxes depicted in Fig. 2. From these
considerations, it also becomes clear that the problem we solve differs from the k-
means problem in the sense that optimal cluster centers are not mean values of the
corresponding cluster points. The similarities between both problems, however, arise
from the similar structure of the problem, with the only difference being the different
norms that are used. Thus, let us stress that despite certain similarities, there are also
crucial differences between the problem we solve and the k-means problem.

3 Relation to graph-theoretical concepts

In this section, we recall some concepts from graph theory and relate those to the afore-
mentioned clustering problems. Clusteringmethods based on graph theory usually rely
on the so-called distance matrices and in this regard, the concept is slightly more flex-
ible compared to the distance-based k-means approaches. Note that our approach is
still distance-based as already described in the previous section, since we are, in fact,
using a highly specific distance matrix. Furthermore, it will become clear throughout
this article that this is, indeed, crucial for our bisection method, which does not work
for arbitrary distance matrices. The relation between the distance-based clustering
problem and graph theory becomes clear from the following definition.

Definition 3.1 For some finite set X ⊆ R
n and some β ≥ 0, let G(β) = (X , Eβ)

denote an undirected graph with a set of nodes X and a set of edges Eβ fulfilling

Eβ = {[x, y] | x, y ∈ X and x 
= y and ‖x − y‖∞ ≤ β}.

According to Definition 3.1, any graph G(β) = (X , Eβ) connects all data points from
X which are pairwise located within a certain threshold distance β. If two given nodes
x, y ∈ X are too far away, i.e., ‖x − y‖∞ > β, then these nodes are not connected
by an edge in the graph G(β). To illustrate this, we revisit Example 2.1. Figure3
illustrates the graph G(2) = (X , E2) for the corresponding set of data points.

A simple comparison of Figs. 2 and 3 reveals that the three clusters in the data
set X identified as a global solution of the clustering problem P̃ from Example 2.1
correspond to three such subsets of nodes in the graph G(2) = (X , E2) where nodes
are allmutually connected by an edge in the graphG(2). This gives rise to the following
definition that is well known in graph theory.
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Fig. 3 Graph G(2) = (X , E2) based on the dataset X from Example 2.1

Definition 3.2 (Clique)Let an undirected graphG = (X , E) be given.A subset S ⊆ X
is said to be a clique if and only if [x, y] ∈ E for all x, y ∈ S with x 
= y.

The next results reveal how the identification of the cliques of the graph G(β) =
(X , Eβ) relates to solving the clustering problem P∞.

Proposition 3.3 Let v� > 0 denote the globally minimal value of the optimization
problem P̃ and let k denote the number of clusters. Then, for β ≥ 2v�, there are k
cliques S1, . . . , Sk in G(β) = (X , Eβ) with

k⋃

i=1

Si = X .

Proof Let (z1
�
, . . . , zk

�
, v�)T be a globally optimal point of P̃ . Then, as already

discussed, there are clusters

Ci := {x ∈ X | ‖x − zi
�‖∞ ≤ v�}, i = 1, . . . , k

with
⋃k

i=1 Ci = X . We show that every cluster Ci may serve as a clique in the graph
G(β) = (X , Eβ). In fact, for x, y ∈ Ci , i = 1, . . . , k with x 
= y, we have

‖x − zi
�‖∞ ≤ v� and ‖y − zi

�‖∞ ≤ v�

and, thus, it holds ‖x − zi
�‖∞ + ‖y − zi

�‖∞ ≤ 2v�. Applying the triangle inequality
immediately yields

‖x − y‖∞ ≤ 2v� �⇒ ‖x − y‖∞ ≤ β,

and so, [x, y] ∈ Eβ for all x, y ∈ Ci . Furthermore, we have
⋃k

i=1 Ci = X and so
we put Si = Ci for i = 1, . . . , k. Thus, we identified k cliques S1, . . . , Sk in G(β)

which are sufficient to cover the whole dataset X , i.e.,
⋃k

i=1 Si = X and the assertion
follows. �

So far, we know that each graph G(β) = (X , Eβ) for β ≥ 2v� contains k cliques
which are sufficient to cover thewhole dataset X wherev� denotes the globallyminimal
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value of the optimization problem P̃ . Next, we shall show that for β < 2v� it is not
possible to find k such cliques in the graph G(β) = (X , Eβ). Before proving this in
Proposition 3.5, we first show the following auxiliary result stating that each clique in
the graph G(β) = (X , Eβ) can be surrounded by a box of side length β.

Lemma 3.4 Given β ∈ R and a set S ⊆ R
n with ‖x− y‖∞ ≤ β for all x, y ∈ S. Then,

there is a box B = [l1, u1]× · · ·× [ln, un] with S ⊆ B andmax j=1,...,n(u j − l j ) ≤ β.

Proof We put

l j = min{x j |x ∈ S}, j = 1, . . . , n,

u j = max{x j |x ∈ S}, j = 1, . . . , n.

Since
‖x − y‖∞ ≤ β �⇒ |x j − y j | ≤ β

holds for all x, y ∈ S and j = 1, . . . , n, we obtain u j − l j ≤ β for all j = 1, . . . , n.
Finally the inclusion S ⊆ B follows immediately from l j ≤ x j ≤ u j holding for all
j = 1, . . . , n and x ∈ S. �
Now, we are ready to state the following result.

Proposition 3.5 Let v� > 0 denote the globally minimal value of the optimization
problem P̃ and let k denote the number of clusters. Then, for β < 2v�, there are no k
subsets S1, . . . , Sk of X with

k⋃

i=1

Si = X ,

such that all sets Si , i = 1, . . . , k are cliques in the graph G(β) = (X , Eβ).

Proof We assume the existence of k cliques S1, . . . , Sk in the graph G(β) with⋃k
i=1 Si = X and derive a contradiction. Because of Si , i = 1, . . . , k is assumed

to be a clique in the graph G(β) = (X , Eβ), we have for all x, y ∈ Si the
inequality ‖x − y‖∞ ≤ β. Then, according to Lemma 3.4, there are boxes Bi =
[li1, ui1] × · · · × [lin, uin] with

max
j=1,...,n

uij − lij ≤ β < 2v� and Si ⊆ Bi

for all i = 1, . . . , k. We now put

zi :=

⎛

⎜
⎜
⎝

li1+ui1
2
...

lin+uin
2

⎞

⎟
⎟
⎠ for i = 1, . . . , k.

That means for x ∈ Si ⊆ Bi , we have

‖x − zi‖∞ = max
j=1,...,n

∣
∣
∣
∣
∣
x j − lij + uij

2

∣
∣
∣
∣
∣
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= max
j=1,...,n

max

{

x j − lij + uij
2

,
lij + uij

2
− x j

}

≤ max
j=1,...,n

max

{

uij − lij + uij
2

,
lij + uij

2
− lij

}

= max
j=1,...,n

max

{
uij
2

− lij
2

,
uij
2

− lij
2

}

= max
j=1,...,n

uij − lij
2

≤ β

2
< v�.

Hence,wehave‖x−zi‖∞ ≤ β
2 for all x ∈ Si , i = 1, . . . , k and, thus, (z1, . . . , zk, β

2 )T

is a feasible point of the optimization problem P̃ with objective function value β
2 < v�.

This, however, contradicts v� being a globally minimal value of P̃ . �
Results of this section enable us to develop an algorithm which approximates the

globally minimal value v� of the optimization problem P̃ by means of a bisection
method.

4 A global bisectionmethod for solving the clustering problem

In this section, we describe our new bisection method for solving clustering problems.
Moreover, we give a proof of convergence and comment on the maximum number of
iterations.

4.1 Description of the algorithm and proof of convergence

The main idea is to start with an initial guess v0 of the globally minimal value v� of
the problem P̃ . If there is no partition of the graph G(2v0) into k cliques S1, . . . , Sk
with

⋃k
i=1 Si = X , then, according to Proposition 3.3, we have v0 < v� and, thus, we

have to increase our initial guess v0 to some value v1 > v0. Additionally, we use v0
as a new lower bound at the globally minimal value v� of the problem P̃ .

Otherwise, if, in the graph G(2v0), there is such a partition into k cliques, then in
view of Proposition 3.5, we might want to decrease our initial guess v0 to some value
v1 < v0 as a new approximation of the globally minimal value v�. Moreover, we may
use v0 as a new upper bound at the globally minimal value v� of the problem P̃ .

These considerations lead to our new bisection method. Given a set of data points
X = {x1, . . . , xm}, a number of clusters k ∈ N and some initial lower bound v0, and
an initial upper bound v0 at the value 2v�, we can compute globally optimal values of a
clustering problem as described formally in Algorithm 1. Appropriate initial values for
lower and upper bounds are proposed below in Propositions 4.2 and 4.3, respectively.
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Algorithm 1:Algorithm to solve the optimization problem P̃ to global optimality

Data: X = {x1, . . . , xm } ⊆ R
n .

Input: number of clusters k ∈ N, termination tolerance ε > 0, initial lower bound v0 at 2v�, initial
upper bound v0 at 2v�, λ ∈ (0, 1).

Result: an ε-approximation of the globally minimal value v� of P̃ in the form of an interval
I := [vζ�

, vζ� ] with vζ� − vζ�
< ε and 2v� ∈ I .

1 Set iteration counter ζ := 0;

2 while (vζ − vζ ≥ ε) do
3 Choose vζ := λ · vζ + (1 − λ) · vζ ;

4 Generate graph G(vζ ) = (X , Evζ );

5 Try to find k cliques S1, . . . , Sk in G(vζ ) with
⋃k

i=1 Si = X ;
6 if (X can be partitioned into such k cliques S1, . . . , Sk) then
7 vζ+1 := vζ ;

8 vζ+1 := vζ ;
9 else

10 vζ+1 := vζ ;

11 vζ+1 := vζ ;
12 end
13 Increment iteration counter ζ ;
14 end
15 X can be partitioned into cliques S1, . . . , Sk in the graph G(vζ );

In line 3, we update our approximation of the value 2v� in each iteration ζ . Given
an interval [vζ , vζ ] containing the value 2v�, in every iteration, we choose a new value
vζ by setting

vζ := λ · vζ + (1 − λ) · vζ

for some value λ ∈ (0, 1). As usual for bisection methods, different values for λ

are possible. Choosing λ = 0.5 has an advantage that the number of iterations of
Algorithm1depends solely on the initial gap v0−v0 and on the value of the termination
criterion ε > 0. In such a case, irrespective of whether we update the lower bound vζ

or the upper bound vζ in an iteration ζ , the gap vζ − vζ is reduced by half in each
iteration in contrast to other possible strategies of choosing the value λ ∈ (0, 1).

At line 4, we consider the graphG(vζ ) = (X , Evζ ), and at line 5, we decide if there

is a partition of X into k cliques in the graph G(vζ ) or not. This is done by solving
the clique and the k-cover set subproblems for the graph G(vζ ) which we discuss in
detail in Sect. 5.

By means of Propositions 3.3 and 3.5, we can then update either the upper or the
lower bound. In fact, in each iteration ζ , the gap between the upper bound vζ and the
lower bound vζ is reduced, and finally, due to a constant parameter λ, both bounds
converge toward each other. We summarize this result in the next theorem.

Theorem 4.1 The sequences (vζ )ζ∈N and (vζ )ζ∈N of the non-terminating Algorithm 1
with ε = 0 both converge to the value 2v� where v� denotes the globally minimal value
of the optimization problem P̃.

Proof The proof follows immediately from Propositions 3.3 and 3.5 as well as from
the theory of bisection methods. Indeed, the initial interval [v0, v0] is divided, such

123



A bisection method for solving distance...

that the length of the interval decreases. In fact, we have

vζ+1 − vζ+1 ≤ max{λ, 1 − λ} (
vζ − vζ

)
. (1)

Due to 0 < λ < 1, we obtain limζ→∞
(
vζ − vζ

) = 0. In addition, in view of
Propositions 3.3 and 3.5, it is ensured that we always have vζ ≤ 2v∗ ≤ vζ for every
iteration ζ ∈ N and, thus, the assertion follows. �

As soon as the gap between the lower bound and the upper bound at the value 2v�

becomes small enough at some iteration ζ � ∈ N, i.e., vζ� − vζ�
< ε, the algorithm

terminates.
Clearly, in addition to the interval [vζ�

, vζ �] approximating our target value 2v�, we
are also interested in a corresponding feasible point of the clustering problem P̃ . To
achieve this, we consider the graph again. By Algorithm 1, this graph G(vζ�

) contains
k cliqueswhich partition the set of data points X according to Proposition 3.3. Thus,we
start with k cliques S1, . . . , Sk in G(vζ�

) = (X , E
vζ� ) fulfilling

⋃k
i=1 Si = X . For all

i = 1, . . . , k and for all x, y ∈ Si , we have [x, y] ∈ E
vζ� , and thus, ‖x − y‖∞ ≤ vζ�

.
Then, according to Lemma 3.4, by setting

lij = min{x j |x ∈ Si }, j = 1, . . . , n,

uij = max{x j |x ∈ Si }, j = 1, . . . , n,
(2)

for each i = 1, . . . , k, there are k boxes Bi = [li1, ui1]×· · ·×[lin, uin]with the property
max j=1,...,n(uij − lij ) ≤ vζ�

and Si ⊆ Bi for i = 1, . . . , k. Letting

zi
� :=

⎛

⎜
⎜
⎝

li1+ui1
2
...

lin+uin
2

⎞

⎟
⎟
⎠ for i = 1, . . . , k, (3)

we may now estimate the distance ‖x − zi
�‖∞ as already done in the proof of Propo-

sition 3.5. Hence, for each x ∈ Si ⊆ Bi , it holds

‖x − zi
�‖∞ ≤ vζ�

2
, i = 1, . . . , k,

and, thus, a corresponding feasible point of the clustering problem P̃ is given by

(

z1
�
, . . . , zk

�
,
vζ �

2

)T

. (4)

To apply Algorithm 1, initial valid upper and lower bounds at the globally optimal
value are required. We now propose suitable possibilities to achieve this. Note that in
the following result, the slightly unusual yet natural assumption k < m is imposed.
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Proposition 4.2 Let v� denote the globally minimal value of P̃ and, moreover, let
k < m. Then, a valid initial lower bound v0 at the value 2v� is given by

v0 = min
x,y∈X
x 
=y

‖x − y‖∞.

Proof Themain idea of the proof is to derive a contradiction by showing that with β <

v0, we need too many cliques to cover the graph G(β), whereas from Proposition 3.3,
we know that for β sufficiently large, this is not needed. Suppose it holds

β < v0 = min
x,y∈X
x 
=y

‖x − y‖∞

for some β ∈ R. Then, for two arbitrary points x, y ∈ X , x 
= y, we have

‖x − y‖∞ ≥ v0 > β,

and thus, each node of the graph G(β) = (X , Eβ) is isolated, i.e., Eβ = ∅. Each
clique in such a graph G(β) contains at most one data point and, hence, m cliques are
required to cover the dataset X . However, from Proposition 3.3, we know that for β

sufficiently large, there are k cliques that cover the graph G(β). Therefore, we have
that

v0 = min
x,y∈X
x 
=y

‖x − y‖∞

is a valid lower bound at the value 2v�. �
Similarly, there is a simple possibility to initialize the upper bound at the globally

optimal value.

Proposition 4.3 Let v� denote the globally minimal value of P̃. A valid initial upper
bound v0 at the value 2v� is given by

v0 = max
x,y∈X ‖x − y‖∞.

Proof To show the result, we construct a feasible point of problem P̃ that provides a
sufficiently small objective value. This is achieved by letting

z1i := minx∈X xi + maxy∈X yi
2

and z j = 0 for j = 2, . . . , k.

Thus, for every i = 1, . . . ,m, we have

‖z1 − xi‖ ≤ maxx,y∈X ‖x − y‖∞
2

.
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In particular, this means that

‖zσ(i) − x‖∞ ≤ ‖z1 − xi‖∞ ≤ v0

2
.

Therefore, in view of the definition of problem P̃ , we see that v0/2 is an upper bound
at v∗ and, thus, by v∗, we obtain an upper bound at 2v∗. �

4.2 Number of iterations and complexity of subproblems of Algorithm 1

In this section, we analyze our bisection method with regard to complexity consid-
erations. We start by considering the number of iterations of our bisection method
as given by Algorithm 1 for λ = 0.5. Depending on the initialization of the bounds
v0, v0 and the termination criterion ε > 0, the number of iterations of our bisection
method can be computed explicitly. The proof follows immediately using standard
arguments of bisection methods. We present these considerations here for the sake of
completeness.

Proposition 4.4 Given a termination tolerance ε > 0, valid initial upper and lower
bounds v0, v0 with v0 − v0 ≥ ε, λ = 0.5 and let �·� denote the ceiling function. Then,
the number of iterations of our bisection method in Algorithm 1 is at most

⌈

log2

(
v0 − v0

ε

)

+ 1

⌉

.

Proof According to Proposition 3.3 and Proposition 3.5, in each iteration ζ ∈ N of
Algorithm 1, the gap vζ − vζ is divided in half, that is

2(vζ+1 − vζ+1) = vζ − vζ .

Let η ∈ N denote the iteration at which Algorithm 1 terminates. Then, we have
vη − vη < ε and the number of iterations can be determined exactly due to the
equivalence

v0 − v0

2η
< ε ⇐⇒ v0 − v0

ε
< 2η

⇐⇒ log2

(
v0 − v0

ε

)

< η.

Thus, after ⌈

log2

(
v0 − v0

ε

)

+ 1

⌉

iterations, this is fulfilled and the algorithm terminates. �
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Therefore, for λ = 0.5, the number of iterations of Algorithm 1 is logarithmic with
respect to the gap v0 − v0. In view of the improved upper bounds as proposed in
Sect. 5.3.4, there may be even fewer iterations in many cases.

It is interesting to note that neither the number of data pointsm ∈ N, nor the number
of clusters k ∈ N, nor the dimension of the data points n ∈ N affects the number of
iterations. However, the positions of the data points in R

n can be expected to have
a direct impact, since the greatest and the smallest distance between two arbitrary
data points in X affects the initialization of the bounds v0 and v0 as proposed in
Propositions 4.2 and 4.3.

Next, we consider a single iteration ζ ∈ N of Algorithm 1 and we discuss the
complexity of the subproblems that need to be solved. As described throughout this
article, we have to determine maximal cliques in the graph G(vζ ) and, in case there
are more than k maximal cliques, we also have to solve the k-cover set problem
accordingly. Therefore, we take a look at the impact on the runtime through the number
of data points m ∈ N, the number of clusters k ∈ N, and the dimension of the data
points n ∈ N.

The dimension n of the given data only influences the runtime needed to compute
the distances

‖x − y‖∞ = max
i=1,...,n

|xi − yi |

between two arbitrary data points x, y ∈ X . This lies within O(n), and since this has
to be done for every pair of data points, thus, we have O(nm2). However, this proce-
dure only needs to be performed once and can be done in advance before executing
Algorithm 1.

The number of data pointsm ∈ N also plays an important role during the computa-
tion of all maximal cliques by means of the Bron–Kerbosch algorithm. The recursive
tree calls that are needed within this procedure increase with an increasing number
of data points m. Furthermore, the maximal clique problem is known to be NP-hard
(see Karp 1972), and thus, this cannot be expected to be done efficiently.

In addition, if the number of maximal cliques |S| in the graph G(vζ ) fulfills k<|S|,
we also have to consider the NP-hard k-cover set problem accordingly. Fortunately,
these are only worst-case considerations and, moreover, our numerical experiments
show that upon implementation of the acceleration strategies presented in Sect. 5.3,
we are able to solve clustering problems of reasonable sizes to global optimality.

Remark 4.5 We emphasize that despite the good upper bounds at the number of iter-
ations from Proposition 4.4, still, the computational effort that might be required in
every iteration can be large due to NP-hard problems that need to be solved. There-
fore, the worst-case performance must be expected to be bad.

It shall become clear from the numerical results that the scenarios leading to unman-
ageable optimization problems for large instancesmostly deal with data sets exhibiting
no clear cluster-pattern structure which makes them rather unsuitable for clustering
considerations, such as scenarios with only poor (or no) cluster pattern at all. Simi-
lar observations are common in the field of global optimization, where there is often
a bad worst-case performance that needs to be avoided whenever possible. Branch-
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and-bound algorithms that are common in that area are, for instance, based on such a
concept as well.

5 Solving the subproblems

Algorithm 1 requires at line 5 the computation of cliques for a given undirected graph
G(vζ ) as well as to evaluate whether there are k such cliques which cover the entire set
of nodes X ofG(vζ ) or not. This leads to the so-called clique as well as the so-called k-
cover set problems that frequently arise in graph theory and will be briefly discussed in
the following two sections. For a more detailed description of these graph-theoretical
problems, we refer to the literature, e.g., Bondy and Murty (1976); Diestel (2000);
West (2001) and the references therein.

5.1 Computing appropriate cliques

Since the number of cliques in the graph G(vζ ) that needs to be considered in each
iteration of Algorithm 1 may be rather large, we propose an approach which considers
only so-called maximal cliques.

Definition 5.1 (see Akkoyunlu 1973) Let an undirected graph G = (X , E) and the
set of all its cliques C be given. A clique S ∈ C is said to be maximal if and only if
S 
⊂ S� for all S� ∈ C.

In other words, the clique S ∈ C is maximal if and only if there is no real superset of
S denoted by S� which is also a clique in the graph G. In the following two lemmae, it
is shown that in Algorithm 1, it is, in fact, sufficient to consider only maximal cliques
in the graph G(vζ ) in each iteration ζ ∈ N.

Lemma 5.2 Let a set of data points X and a set of cliques S1, . . . , Sk in the graph
G = (X , E) with

k⋃

i=1

Si = X .

be given. Then, there are also k maximal cliques in G = (X , E) denoted by S�
1, . . . , S

�
k

with Si ⊆ S�
i for all i = 1, . . . , k fulfilling

⋃k
i=1 S

�
i = X.

Proof If Si is not maximal in G then there is another clique S�
i that is maximal and

we have Si � S�
i . For every set Si that is maximal, we put S�

i = Si . In summary, we
have Si ⊆ S�

i ⊆ X , and thus, it holds

k⋃

i=1

Si = X �⇒
k⋃

i=1

S�
i = X .

�
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Lemma 5.3 Let a set of data points X be given, such that there is no partition of the
set X into k sets S1, . . . , Sk with

⋃k
i=1 Si = X and all Si , i = 1, . . . , k are cliques in

G = (X , E). Then, we cannot find any k maximal cliques S�
1, . . . , S

�
k in G = (X , E)

with
⋃k

i=1 S
�
i = X.

Proof Since eachmaximal clique S�
i is a clique itself, we cannot find kmaximal cliques

in G which are sufficient to cover the dataset X . �
Let us stress that themaximal cliques S�

1, . . . , S
�
k do not need to bemutually distinct,

i.e., S�
i = S�

j for i 
= j is, in fact, possible. Similarly, in case a small number k̃ < k
of maximal cliques is already sufficient to cover a graph G = (V , E), we may define
additional cliques S�

k̃+1
, . . . , S�

k by, e.g., setting

S�
i := S�

1 for i = k̃ + 1, . . . , k, (5)

and so, we obtain k maximal cliques S�
1, . . . , S

�
k with

k⋃

i=1

S�
i = X . (6)

In summary, we can partition the set of nodes X of a graph G(β) = (X , Eβ) into k
cliques S1, . . . , Sk inG(β) if and only if there are less or equal than k maximal cliques
in the graph G(β) which are sufficient to cover the set X . Therefore, it is sufficient
to consider only maximal cliques in a graph G(β) = (X , Eβ) within our bisection
method. The number of maximal cliques in a graph is much smaller than the number
of cliques, because each subset of a maximal clique is a clique itself. For determining
all maximal cliques of a given undirected graph algorithmically, we use the Bron–
Kerbosch algorithm introduced in Bron and Kerbosch (1973). In the following, we
denote the set of all maximal cliques in a graph G(β) = (X̄ , Eβ) by 
X̄ (β) where X̄
denotes some non-empty subset of X .

Even though the maximal clique problem is NP-hard as shown in Karp (1972)
and, thus, cannot be expected to be solved efficiently within our bisection method,
the Bron–Kerbosch algorithm can be accelerated by exploiting knowledge of previous
iterations as we shall discuss in Sect. 5.3.

5.2 Solving the k-cover set problem

To successfully implement lines 5 and 6 of Algorithm 1, it is still required to have
a suitable procedure to decide whether in the given set of all maximal cliques S of
the graph G(vζ ) = (X , Evζ ), there are k maximal cliques S1, . . . , Sk ∈ S that cover

the whole set X , i.e., which fulfill
⋃k

i=1 Si = X . This is the well-known k-cover set
problem as discussed, for instance, in Balas and Padberg (1972). Its complexity aspects
have already been examined in Karp (1972), for instance. Clearly, if the number of
maximal cliques |S| in the graph G(vζ ) is less than or equal to k, i.e., |S| ≤ k, then
there is a partition of X into k cliques of the graph G(vζ ) which cover the set X .
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For the case |S| > k, such a straightforward conclusion cannot be drawn and, thus,
a suitable method to decide whether there are k maximal cliques S1, . . . , Sk ∈ S with⋃k

i=1 Si = X is needed. To this end, we apply an integer linear problem used, e.g., in
Balas and Padberg (1972), where we use binary decision variables s1, . . . , s|S| which
correspond to the maximal cliques S1, . . . , S|S|. A feasible solution with si = 1 for
an i ∈ {1, . . . , |S|} means that the maximal clique Si is considered as a cluster that is
needed to cover the graph, and otherwise, it is not. In contrast, if we have a feasible
solution with si = 0 for an arbitrary i ∈ {1, . . . , |S|}, the maximal clique Si is not
considered as a cluster. The integer linear problem is given as follows:

I L P : min
s1,...,s|S|

|S|∑

i=1

si

s. t.
∑

i :x∈Si ,
i=1,...,|S|

si ≥ 1, x ∈ X ,

|S|∑

i=1

si ≤ k

si ∈ {0, 1}, i = 1, . . . , |S|.

Note that the original problem from Balas and Padberg (1972) is extended by the
second constraint

|S|∑

i=1

si ≤ k

to ensure that the problem has only a feasible solution if there are at most k maximal
cliques S1, . . . , Sk ∈ S with

⋃k
i=1 Si = X .

Finally, let us stress that for solving the clustering problem globally using our
bisection Algorithm 1, it is required to determine all maximal cliques in the graph
G(vζ ) in each iteration ζ ∈ N. This problem is already NP-hard. In addition, we
have to decide whether a covering of X by k maximal cliques S1, . . . , Sk in the graph
G(vζ ) is possible. This is known to beNP-hard as well. Therefore, we cannot expect
to apply polynomial time algorithmswithin our framework. For this reason, it is crucial
to have suitable acceleration strategies that help to avoid worst-case performance for
practical problems as is common inmany procedures in global optimization in general.
This is addressed in the next section.

5.3 Acceleration steps

In the following, we propose acceleration steps to improve the runtime of the sub-
problems arising in Algorithm 1, especially that of Bron–Kerbosch algorithm which
determines all maximal cliques in each iteration of our bisection method. Although
the aforementioned methods to solve the subproblems are standard procedures, these
algorithms can be tailored to our needs by means of the following techniques. Thanks
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to these strategies, the clustering problem can be solved globally in a reasonable time
as can be seen from the numerical experiments in Sect. 6. This is discussed in the
remainder of this section.

5.3.1 Using knowledge of previous iterations

Let us assume for a moment that all maximal cliques in a graph G(β̃) = (X , Eβ̃ ) for

some β̃ > 0 are already known. Then, considering another graph G(β) = (X , Eβ)

with β ≤ β̃, according to Definition 3.1 and Definition 5.1, for two arbitrary nodes
x, y ∈ X , we have

[x, y] ∈ Eβ �⇒ [x, y] ∈ Eβ̃ .

Thus, any maximal clique S in the graph G(β) is also a clique in the graph G(β̃)

for β ≤ β̃, although not necessarily a maximal one. Hence, in Algorithm 1, we may
use the set of maximal cliques in the graph G(β̃) as a superset of the set of maximal
cliques in a graph G(β) in that case.

To take advantage of this observation, each time, we update the upper bound vζ at
line 11 in Algorithm 1 we save the maximal cliques which are already determined at
line 6. Then, instead of calculating the set of maximal cliques 
X (vζ ) from scratch,
we may determine the set of maximal cliques 
S(v

ζ ) for each S ∈ 
X (vζ ), since
the set of maximal cliques 
X (vζ ) is already known from a previous iteration due to
the inequality vζ ≤ vζ . This is a straightforward possibility to exploit knowledge of
previous iterations within our bisection method.

5.3.2 Using supersets of maximal cliques

Considering a graph G(β) = (X , Eβ) with k cliques S1, . . . , Sk fulfilling
⋃k

i=1 Si =
X , we know that each point x ∈ X is in at least one of the sets Si , i = 1, . . . , k. Then,
another point y ∈ X can be contained in the same clique only if we have

‖x − y‖∞ ≤ β.

This enables us to construct supersets of maximal cliques from the perspective of each
individual data point x ∈ X as given in the following definition.

Definition 5.4 Given some data set X = {x1, . . . , xm} and a graph G(β) = (X , Eβ)

according to some parameter β ≥ 0. Then, for i = 1, . . . ,m, we put

Gi := {y : [xi , y] ∈ Eβ} ∪ {xi }.

Each set Gi from Definition 5.4 contains a data point y ∈ X if and only if ‖xi −
y‖∞ ≤ β. In case of ‖xi − y‖∞ > β, the data points xi and y cannot be contained in
any common clique S in the graph G(β) = (X , Eβ). For that reason, for each clique
S in the graph G(β) = (X , Eβ) with xi ∈ S, we have immediately S ⊆ Gi .

Thus, instead of calculating the set of all maximal cliques in G(β) = (X , Eβ),
it may be already sufficient to calculate the set of maximal cliques 
Gi (β) for each
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i = 1, . . .m, which can help to significantly reduce runtime, since each of the sets Gi

may only contain a small fraction of all given data points X .
Nevertheless, every set Gi is only a superset for each maximal clique in the graph

G(β) = (X , Eβ) containing the point xi and it still may include points y, z ∈ X with
‖y − z‖∞ > β, while

‖xi − y‖∞ ≤ β and ‖xi − z‖∞ ≤ β

is fulfilled. Still, the sets Gi are suitable to initialize the Bron–Kerbosch algorithm
instead of always starting with the whole set of data points X from scratch.

5.3.3 Alternative detection of lower bounds

Let us consider a graph G(β) = (X , Eβ) with β ≥ 0 at some iteration of Algorithm 1
and, moreover, let there be a set L ⊆ X with |L| > k, so that we have

‖x − y‖∞ > β ∀ x, y ∈ L with x 
= y.

Then, we need at least |L| > k cliques to cover the whole dataset X , and according to
Proposition 3.3, the lower bound at the value 2v� can be increased to β immediately.

For some cases, this provides a quick possibility to determine lower bounds at the
optimal value v∗ without the need to compute maximal cliques and without solving
the k-cover set problem.

5.3.4 Improving upper bounds

Similarly to the previous section, there is a possibility to accelerate the runtime of
Algorithm 1 by improving upper bounds at the value 2v�. To this end, let us assume
that at some iteration ζ ∈ N, Algorithm 1 identifies at line 5 a number of k cliques
S1, . . . , Sk in G(vζ ) with

⋃k
i=1 Si = X . Then, instead of updating the upper bound

to the value vζ according to line 7 of Algorithm 1, we put

vζ+1 := max
i=1,...,k

max
x,y∈Si

‖x − y‖∞. (7)

Clearly, each of the cliques Si , i = 1, . . . , k in the graph G(vζ ) is also a clique in the
graph G(vζ+1) due to

‖p − q‖∞ ≤ max
x,y∈Si

‖x − y‖∞ ≤ vζ+1 ∀p, q ∈ Si ∀i = 1, . . . , k.

Since
⋃k

i=1 Si = X is fulfilled, in view of Proposition 3.3 the value vζ+1 is still a
valid upper bound at the value 2v�. Furthermore, the inequality vζ+1 ≤ vζ holds,
and, in addition, the upper bound update from Eq. (7) is better than the original one
as proposed in line 7 of Algorithm 1. Again, this can help to improve the overall
performance of our bisection method.
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5.3.5 Calculation of a feasible solution using k-means algorithm

In addition to the aforementioned steps, we may also apply the well-known k-means
algorithm to our set of data points X . As a result, we obtain a feasible solution for the
clustering problem based on Euclidean distances However, this also yields k clusters
S1, . . . , Sk with

⋃k
i=1 Si = X . From this feasible point, we may derive a solution for

our clustering problem P̃ with objective value

max
i=1,...,k

max
x,y∈Si

‖x − y‖∞
2

.

Since
⋃k

i=1 Si = X is fulfilled, in view of Proposition 3.3, this also yields a valid
upper bound at the value v�.

6 Numerical results

In this section, we present the results of our numerical experiments. In this section, our
implementation of our clustering approach is described. The algorithm is developed in
Python. A machine with an Intel(R) Core(TM) i7-8650U CPU @ 1,9 GHz processor
and 32 GB RAM running Windows is used for the computation. The application is
executed in a Jupyter Notebook launched in an Anaconda environment.

In addition, we use the Python package NetworkX to create the graphs in each
iteration and to solve the maximal clique problem with the Bron–Kerbosch algorithm.
The set-cover problem I L P as well as the MILP reformulation of our clustering
problem defined below is modeled and solved by means of the Python package Pulp
with the default solver PULP_CBC_CMD as well as by employing the Gurobi solver.
The k-means implementation from the Python package scikit-learn is used for the
acceleration step of Sect. 5.3.5. Moreover, we use the package Numpy for efficient
and comprehensive data preparation, and Matplotlib is used to visualize the clustering
results. Note that the original k-means algorithm solves the classical MSSC problem
with Euclidean distances, whereas our novel approach aims at the solution of a slightly
different problemwhere distances are computed using the maximum norm. Therefore,
it is clear that the solutions computed by both approaches may differ. Still, both
problems share certain similarities and, thus, k-means may be considered as a suitable
heuristic to also solve the clustering problem with maximum norm. This is also the
reason why we do report the corresponding results. Moreover, it is also clear that the
k-means algorithm is typically much faster than our new approach, since the former
aims at local solutions, whereas the latter does guarantee a global solution.

Our algorithm is applied to synthetic data in Sect. 6.1 as well as to real data in
Sect. 6.2.

6.1 Clustering on artificial data

To examine the runtime of Algorithm 1with respect to the number of data pointsm and
dimension n, we test our bisection method for various data instances with k = 3 and
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k = 5 clusters. For both cases k = 3 and k = 5, we generate k clusters by choosing
m
k independent points from the n-dimensional Gaussian distribution N (zi , σ ), i =
1, . . . , k for different values of σ > 0 with centers

z1 = (−50,−50, . . . )T , z2 = (0, 0, . . . )T , z3 = (50, 50, . . . )T ∈ R
n

for k = 1, 2, 3 and

z4 = (−50, 50,−50, 50, . . . )T , z5 = (50,−50, 50,−50, . . . )T ∈ R
n

for k = 4, 5. Figure4 illustrates such generated data sets X ⊆ R
2 with m = 1500

points for various values of σ > 0.
Additionally, to illustrate both, the maximal size and the level of separation among

all generated clusters, we consider the greatest distance between two data points within
one cluster

�I := max
i=1,...,k

max
x,y∈Ci

‖x − y‖∞

and the smallest distance between two data points from different clusters

�O := min
i 
= j

min
x∈Ci

min
y∈C j

‖x − y‖∞.

We set the termination tolerance to ε = 10−7 and apply Algorithm 1 to the different
sets of data points which are generated as described above.

Since some very preliminary numerical tests indicated that a value of λ = 0.8
is much better suited than, for instance, λ = 0.5, we use the update strategy vζ :=
0.8vζ +0.2vζ which leads to a very good performance due to better working superset
approximations Gi for i = 1, . . . ,m at the maximal cliques in the graph G(vζ ).

We compare our method to the well-known k-means algorithm. Note, however,
that k-means only computes locally optimal points of the clustering problem with
Euclidean distances, whereas we strive for a globally optimal solution of the clustering
problem P̃ using the maximum metric. To better compare both results, we compute
two variants of the k-means. In the first one, we use the classical Euclidean-norm
based k-means algorithm where the computed optimal points are finally plugged into
the maximum norm objective function (denoted by f �

k below). In addition, we also
apply a k-means like algorithm which is defined completely in the maximum norm-
setting (the corresponding value of the computed optimal objective is denoted by f ∗

k,∞
below). Thus, all steps are analogously to the classical k-means algorithm, where,
however, the Euclidean distances are replaced by distances that are computed based
on the maximum norm. More precisely, we apply a two-phase algorithm alternating
the computation of the centroids and then assigning the points to the centers. In this
case, however, centroids correspond to centers of the boxes and assignment of data
points to the closest center is determined using the maximum norm.

Our numerical results with k = 3 and k = 5 clusters for various data instances are
presented in Tables 1 and 2. Here, we consider the case of clearly separated clusters
by choosing σ = 2. The runtime of Algorithm 1 is given in column “t”, whereas the
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Fig. 4 Generated data set X ⊆ R
2 with k = 3 and k = 5 clusters for varying values of σ > 0

runtime of the classical Euclidean-norm-based k-means is presented in column “tk”.
Both runtime columns contain a pair of values, whereas the first value corresponds to
the runtime obtained by employing the PULP_CBC_CMD solver and the second value
corresponds to the runtime obtained from Gurobi. The value f � denotes the optimal
value of the objective function of P̃ as computed by Algorithm 1, whereas f̃ ∗ denotes
the value obtained by plugging in the optimal clusterings as computed by Algorithm 1
into a Euclidean norm instead of the maximum norm.

From Tables 1 and 2, we can see immediately that by increasing the number m
of data points, the runtime of Algorithm 1 increases as expected, but still performs
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Table 1 Results for k = 3 clearly separated clusters, i.e., σ = 2

m n t [s] �I �O f ∗/ f ∗
k tk [s] f̃ ∗/ f ∗

k f ∗/ f ∗
k,∞

120 2 0.276; 0.18 9.24 45.03 0.925 0.270; 0.177 1.038 1

120 102 0.130; 0.105 13.31 53.78 0.818 0.127; 0.102 1.108 1

120 103 0.144; 0.105 13.81 56.66 0.811 0.138; 0.1 1.096 1

120 104 0.225; 0.239 15.3 58.64 0.816 0.200; 0.223 1.094 1

120 105 1.050; 0.9 16.39 60.68 0.802 0.832; 0.75 1.094 1

1500 2 0.616; 0.422 13.5 41.52 0.859 0.289; 0.167 1.127 1

1500 102 0.800; 0.469 15.26 53.23 0.88 0.149; 0.095 1.064 1

1500 103 0.636; 0.468 16.66 56.33 0.878 0.167; 0.14 1.066 1

3000 2 1.371; 0.922 14.22 40.92 0.904 0.345; 0.178 1.078 1

3000 102 1.375; 1.015 16.13 53.05 0.884 0.121; 0.098 1.059 1

3000 103 1.985; 1.504 17.08 56.14 0.858 0.204; 0.173 1.062 1

Table 2 Results for k = 5 clearly separated clusters, i.e., σ = 2

m n t [s] �I �O f ∗/ f ∗
k tk [s] f̃ ∗/ f ∗

k f ∗/ f ∗
k,∞

120 2 0.768; 0.248 9.24 45.01 0.978 0.757; 0.233 1.047 1

120 102 0.367; 0.108 13.23 54.06 0.835 0.357; 0.104 1.094 1

120 103 0.421; 0.209 13.97 56.84 0.84 0.41; 0.198 1.097 1

120 104 0.613; 0.183 15.3 58.87 0.819 0.554; 0.17 1.097 1

120 105 2.575; 0.932 16.39 60.64 0.804 2.107; 0.816 1.098 1

1500 2 1.806; 0.388 13.48 41.87 0.868 0.7; 0.165 1.104 1

1500 102 1.775; 0.409 15.26 53.23 0.875 0.384; 0.103 1.077 1

1500 103 2.107; 0.41 16.3 56.35 0.863 0.425; 0.141 1.071 1

3000 2 4.395; 0.896 13.79 40.16 0.878 0.712; 0.171 1.056 1

3000 102 7.565; 1.138 15.54 53.11 0.86 0.475; 0.103 1.067 1

3000 103 6.111; 1.262 16.66 56.13 0.831 0.755; 0.191 1.064 1

well. Additionally, unlike k-means, Algorithm 1 also ensures the global optimality of
the computed solution. Even for larger instances such as m = 3000 data points in
n = 1000 dimensions, our new approach computes a globally minimal solution of the
clustering problem with k = 5 clusters within a few seconds.

Nevertheless, it is worth mentioning that the underlying clusters are strictly sepa-
rated in our test problems. Indeed, according to Tables 1 and 2, the smallest distance
between two data points of different clusters �O is much larger than the greatest dis-
tance between two arbitrary data points within one cluster �I meaning that there is
a clear cluster-pattern structure. In fact, for �I < �O , we are able to find a value
β ∈ (�I ,�O), such that the maximal cliques in the graph G(β) = (X , Eβ) are
clearly separated, or in other words, there is no edge [x, y] ∈ Eβ which connects two
different clusters due to β < �O ≤ ‖x − y‖∞ for x ∈ Ci , y ∈ C j with i 
= j .
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Table 3 Results for different values of σ for m = 120 and n = 2

k σ t [s] �I �O f ∗/ f ∗
k tk [s] f̃ ∗/ f ∗

k f ∗/ f ∗
k,∞

3 2 0.346; 0.179 9.24 45.03 0.925 0.343; 0.176 1.038 1

3 5 0.124; 0.087 23.11 37.59 0.925 0.119; 0.083 1.038 1

3 10 0.118; 0.102 46.22 25.17 0.925 0.112; 0.097 1.038 1

3 20 0.146; 0.102 88.04 12.17 0.921 0.142; 0.098 1.042 1

3 30 8.577; 3.919 130.37 3.32 0.825 0.125; 0.09 1.725; 1.726 0.987

5 2 0.349; 0.23 9.24 45.01 0.978 0.346; 0.228 1.047 1

5 5 0.13; 0.097 23.11 37.52 0.978 0.126; 0.094 1.047 1

5 10 0.105; 0.092 46.22 25.04 0.978 0.102; 0.089 1.047 1

5 20 12.377; 6.572 84.2 7.13 0.849 0.122; 0.088 1.302; 1.408 0.956

5 30 11.789; 6.738 107.37 4.09 0.779 0.115; 0.088 1.439; 1.522 0.876

To analyze the performance of Algorithm 1 on data sets not necessarily exhibiting
clear cluster-pattern structure, we examine the impact of the standard deviation σ

on the runtime of Algorithm 1 for k = 3 and k = 5 clusters with m = 120 two-
dimensional data points in Table 3. Due to increased standard deviation of the data
points within each cluster, the clusters begin to overlap. Nevertheless, we still obtain
good results for cases �I < �O . For �I > �O , we observe a significant increase in
runtime of Algorithm 1 unlike in the case of k-means which seems to be not affected
at all. However, also Algorithm 1 terminates in a rather small amount of time (a few
seconds at most) due to the implemented acceleration steps from Sect. 5.3. Moreover,
as can be seen from Table 3, despite slightly larger runtimes our bisection method
Algorithm 1 always identifies a global solution in all cases, whereas the k-means
sometimes terminates at locally optimal points.

Finally, we present the numerical results obtained from comparing the computa-
tional performance of our proposed method with a mixed-integer-linear programming
(MILP) reformulation of the underlying clustering problem which we solve to global
optimality by using the Python package PULP in Google Colab environment.

To this end, we consider the following well-known MILP reformulation of the
clustering problem P̃ from Sect. 2:

MI LP : min
z1,...,zk∈Rn ,α∈R,yi j∈{0,1}

α

s.t. z jl − xil ≤ α + (1 − yi j ) · M ∀i ∈ [m] , j ∈ [k] , l ∈ [n]

−z jl + xil ≤ α + (1 − yi j ) · M ∀i ∈ [m] , j ∈ [k] , l ∈ [n]
k∑

j=1

yi j = 1 ∀i ∈ [m]

with some constant M > 0 sufficiently large and with [i] := {1, . . . , i} for any i ∈ N.
We conducted experiments again across various dimensions, number of clusters,

number of data points, and standard deviation values σ . For each such parameter

123



A bisection method for solving distance...

Ta
bl
e
4

M
IL
P
re
fo
rm

ul
at
io
n
vs

A
lg
or
ith

m
1

n
k

m
σ

M
IL
P
tim

e
[s
]

A
lg
or
ith

m
1
tim

e
[s
]

M
in

A
vg

M
ax

M
in

A
vg

M
ax

4
3

21
5

1.
52

6;
0.
06

5
1.
96

9;
0.
09

7
2.
20

2;
0.
13

0.
20

1;
0.
20

1
0.
27

4;
0.
29

6
0.
46

4;
0.
53

4

4
3

21
10

1.
37

7;
0.
06

5
1.
95

;0
.0
94

2.
27

2;
0.
13

8
0.
17

9;
0.
21

7
0.
20

2;
0.
23

2
0.
24

6;
0.
27

3

4
3

21
15

1.
60

6;
0.
07

8
2.
26

4;
0.
08

4
3.
03

4;
0.
10

3
0.
16

;0
.1
77

0.
21

4;
0.
21

9
0.
31

8;
0.
25

4
3

30
5

2.
28

;0
.0
96

3.
67

2;
0.
12

6
6.
91

6;
0.
15

1
0.
12

6;
0.
18

3
0.
19

9;
0.
21

7
0.
24

;0
.2
53

4
3

30
10

2.
94

4;
0.
10

4
3.
69

7;
0.
13

3
4.
55

6;
0.
21

1
0.
14

2;
0.
19

2
0.
19

;0
.2
19

0.
25

5;
0.
24

1

4
3

30
15

2.
66

9;
0.
09

8
4.
08

8;
0.
11

5
6.
34

4;
0.
14

6
0.
13

5;
0.
16

2
0.
18

5;
0.
21

9
0.
21

6;
0.
27

8

4
4

28
5

6.
18

4;
0.
17

1
12

.1
53

;0
.2
51

25
.0
68

;0
.3
5

0.
08

3;
0.
24

0.
17

8;
0.
30

9
0.
50

3;
0.
55

7

4
4

28
10

6.
82

6;
0.
15

7
11

.3
81

;0
.2
53

16
.5
66

;0
.3
54

0.
08

7;
0.
19

4
0.
12

2;
0.
28

5
0.
22

7;
0.
48

3

4
4

28
15

9.
46

1;
0.
22

4
13

.7
66

;0
.2
84

22
.6
99

;0
.3
63

0.
08

7;
0.
20

4
0.
13

7;
0.
23

3
0.
20

5;
0.
26

9

4
4

40
5

11
.9
93

;0
.4
2

21
.9
25

;0
.5
78

32
.6
39

;0
.7
09

0.
08

7;
0.
21

1
0.
12

2;
0.
23

2
0.
23

3;
0.
24

6

4
4

40
10

16
.2
87

;0
.3
02

20
.7
48

;0
.4
3

33
.7
2;

0.
69

7
0.
08

5;
0.
21

2
0.
11

9;
0.
24

4
0.
21

7;
0.
29

3

4
4

40
15

19
.7
39

;0
.2
13

32
.7
63

;0
.3
85

53
.7
07

;0
.5
13

0.
08

5;
0.
17

7
0.
11

9;
0.
26

5
0.
17

5;
0.
31

3

6
3

21
5

2.
30

6;
0.
09

7
2.
83

7;
0.
12

3
3.
10

8;
0.
14

4
0.
14

4;
0.
18

4
0.
19

7;
0.
21

5
0.
25

8;
0.
24

8

6
3

21
10

1.
74

2;
0.
10

4
2.
30

5;
0.
13

5
2.
76

3;
0.
16

1
0.
17

8;
0.
19

1
0.
20

7;
0.
21

3
0.
23

3;
0.
23

6
3

21
15

2.
17

2;
0.
11

1
2.
96

5;
0.
14

8
4.
20

3;
0.
18

7
0.
12

1;
0.
16

5
0.
19

1;
0.
24

4
0.
27

2;
0.
28

6

6
3

30
5

2.
92

9;
0.
16

3.
90

2;
0.
17

3
5.
18

3;
0.
19

3
0.
14

1;
0.
18

8
0.
19

2;
0.
20

8
0.
22

2;
0.
24

6
3

30
10

3.
00

7;
0.
16

1
4.
81

8;
0.
21

9
6.
16

3;
0.
29

3
0.
13

8;
0.
18

2
0.
17

;0
.2
09

0.
21

1;
0.
24

6
3

30
15

3.
35

6;
0.
14

3
5.
28

1;
0.
16

8
9.
55

3;
0.
19

0.
15

;0
.2
24

0.
20

3;
0.
23

9
0.
28

6;
0.
27

8

123



P. Kirst et al.

Ta
bl
e
4

co
nt
in
ue
d

n
k

m
σ

M
IL
P
tim

e
[s
]

A
lg
or
ith

m
1
tim

e
[s
]

M
in

A
vg

M
ax

M
in

A
vg

M
ax

6
4

28
5

11
.5
82

;0
.2
27

14
.1
51

;0
.3
36

18
.4
25

;0
.4
63

0.
08

4;
0.
23

1
0.
09

7;
0.
24

8
0.
10

9;
0.
26

6

6
4

28
10

11
.3
84

;0
.2
7

16
.5
51

;0
.3
92

22
.4
2;

0.
54

2
0.
08

7;
0.
17

0.
1;

0.
22

2
0.
11

3;
0.
26

3

6
4

28
15

14
.8
08

;0
.2
48

18
.0
4;

0.
36

9
22

.5
02

;0
.4
14

0.
08

6;
0.
2

0.
12

2;
0.
23

6
0.
15

7;
0.
30

3

6
4

40
5

22
.4
84

;0
.5
11

30
.6
01

;0
.6
05

41
.7
85

;0
.7
27

0.
09

1;
0.
20

4
0.
1;

0.
25

8
0.
11

5;
0.
33

7

6
4

40
10

23
.2
96

;0
.4

39
.0
05

;0
.5
74

56
.5
27

;0
.8
39

0.
08

7;
0.
20

8
0.
09

8;
0.
24

7
0.
11

2;
0.
27

3

6
4

40
15

30
.7
35

;0
.4
55

48
.8
6;

0.
74

7
83

.9
8;

1.
06

0.
08

7;
0.
22

1
0.
13

3;
0.
28

3
0.
24

2;
0.
36

4

10
3

21
5

3.
75

3;
0.
16

2
4.
49

8;
0.
19

6.
52

4;
0.
24

4
0.
15

3;
0.
22

7
0.
2;

0.
24

4
0.
24

;0
.2
58

10
3

21
10

3.
98

6;
0.
16

5.
17

9;
0.
18

6
7.
56

5;
0.
22

1
0.
16

2;
0.
20

1
0.
19

5;
0.
23

1
0.
23

5;
0.
26

5

10
3

21
15

4.
45

7;
0.
15

1
5.
17

9;
0.
18

4
5.
90

6;
0.
24

9
0.
19

4;
0.
17

8
0.
21

3;
0.
22

3
0.
24

7;
0.
24

3

10
3

30
5

9.
12

2;
0.
19

9
12

.1
32

;0
.2
64

18
.4
47

;0
.4
5

0.
14

9;
0.
21

1
0.
20

9;
0.
23

5
0.
27

3;
0.
29

6

10
3

30
10

7.
14

2;
0.
19

7
8.
82

4;
0.
28

5
10

.7
43

;0
.5
31

0.
14

5;
0.
17

0.
17

6;
0.
20

8
0.
22

1;
0.
22

8

10
3

30
15

6.
95

1;
0.
26

5
10

.4
46

;0
.3
26

12
.1
44

;0
.3
71

0.
19

9;
0.
17

6
0.
21

2;
0.
23

0.
22

2;
0.
31

2

10
4

28
5

21
.5
14

;0
.3
76

25
.9
34

;0
.7
44

29
.1
21

;1
.2
96

0.
08

7;
0.
21

0.
10

7;
0.
23

3
0.
13

4;
0.
25

9

10
4

28
10

27
.3
23

;0
.2
95

34
.7
68

;0
.5
97

49
.6
31

;1
.0
97

0.
08

8;
0.
2

0.
09

9;
0.
22

1
0.
11

4;
0.
23

8

10
4

28
15

22
.0
78

;0
.4
46

38
.6
96

;0
.7
64

58
.1
76

;1
.2
25

0.
08

7;
0.
18

8
0.
09

9;
0.
22

6
0.
13

;0
.3
12

10
4

40
5

48
.1
24

;0
.7
32

57
.5
83

;1
.1
14

75
.4
04

;1
.3
41

0.
09

;0
.1
61

0.
10

1;
0.
21

7
0.
11

4;
0.
24

7

10
4

40
10

76
.3
4;

0.
72

4
90

.9
31

;1
.1
61

12
9.
88

5;
1.
53

9
0.
08

8;
0.
20

9
0.
10

1;
0.
21

5
0.
11

7;
0.
22

9

10
4

40
15

61
.3
62

;0
.7
01

75
.8
75

;1
.3
27

92
.6
52

;1
.7
58

0.
08

8;
0.
19

2
0.
10

1;
0.
22

5
0.
11

3;
0.
26

1

123



A bisection method for solving distance...

Fig. 5 Clustering result of the bisection algorithm for k = 3

Fig. 6 Clustering result of the k-means algorithm for k = 3

Fig. 7 Clustering result of the bisection algorithm for k = 5

configuration, we have randomly generated five times the corresponding data set and
measured the minimum, average, and maximum execution times (in seconds) required
by both approaches. The comparison reveals thatAlgorithm1 consistently outperforms
the (MILP) reformulation across different problem instances. Specifically, our method
demonstrates significantly lower computational times, indicating its efficiency on the
chosen set of problem instances when compared with the (MILP) modeling approach.
Additionally, results generated with GUROBI solver (Gurobi Optimization 2024) are
added.
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Fig. 8 Clustering result of the k-means algorithm for k = 5

Table 5 Results for data set “Labeled Faces in the Wild”

k = 3 clusters k = 5 clusters

Time for bisection method 4.0367s 35.4832s

Time for k-means algorithm 0.8070s 0.7323s

6.2 Clustering on real data

In this section, we apply our bisection method to real data. To this end, we use the
data set “Labeled Faces in the Wild” (see Huang et al. 2000) that is directly available
in the Python library scikit-learn.

We consider 50 arbitrarily selected grayscale images from the dataset. Each image
is of the size 125× 94, i.e., every image is described by a 11,750-dimensional vector.
Both algorithms, k-means as well as our newly developed bisection algorithm, are
applied. In the following, the results of this experiment are presented. We show the
results of both algorithms for k = 3 and k = 5 clusters. The resulting cluster centers are
depicted in Figs. 5, 7, 6, and 8. A notable difference is that we obtain much smoother
images for the k-means algorithm and sharper ones for our new bisection method,
which is expected to be a result of the different norms. Runtimes of this experiment
are presented in Table 5.

Although our algorithm performs really well on all these artificial as well as real
data instances (i.e., runtimes are below 1 min for all problems), it is important to
note that we observe a significant increase in runtimes on instances with more data
points. However, this is common for many NP-hard problems that often occur in
global optimization, where smaller instances can often be solved quickly, whereas
larger ones are often impossible in a reasonable amount of time.

7 Final remarks

In this article, a new clustering algorithm for the global solution of a specific type of
clustering problems is proposed. A proof of convergence is given and some numerical
results illustrate the performance of the method. However, there are still some issues
that need to be addressed.

First, our numerical results show that our new method performs well and, thus,
seems to be a reasonable method to solve clustering problems that are defined based
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on the maximum norm to global optimality. Our method is tested on real as well as on
synthetic data sets to examine the performance of the method under different circum-
stances. A difficulty that is encountered during these tests is a drop in performance in
the presence of overlapping of clusters. Although one might think that clusters should
not overlap and that overlapping clusters might be a hint of assuming the existence
of too many clusters within the set of data points, clearly, in practice such difficulties
may occur and, thus, the need to cope with these issues arises.

Moreover, our bisection method relies onNP-hard subproblems, namely the max-
imal clique and the k-cover set problem. So far, these are solved using a rather basic
implementation and we expect that by replacing these algorithms with more sophisti-
cated approaches, significant improvements in performance are possible. In particular,
the integer linear problems are currently solved using the default solver of the Python
package Pulp, which is known to be much weaker than commercial state-of-the-art
solvers. Similarly, however, it should be mentioned that the same solver is also used
in the alternative global solution approach based on an MI LP reformulation of the
clustering problem. Thus, analogously, it could be argued that also the performance
of this alternative method to solve the problem globally could be improved as well.

Finally, we would like to point out that our clustering algorithm in its current form
is sensitive to outliers, since the greatest distance between a data point and its cluster
center is responsible for the globallyminimal value. In this article, we basically assume
that a data set that is already adjusted appropriately. An approach to circumvent this
issue is to enhance our method, so that it can cope with other norms, for instance,
the Euclidean norm, which is less affected by this issue. However, without further
considerations, this breaks Proposition 3.5, which is crucial for our approach. For this
reason, major changes are required, and so, this is left for future research.
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