KIT | KIT-Bibliothek | Impressum | Datenschutz

Portable Acceleration of CMS Computing Workflows with Coprocessors as a Service

CMS Collaboration; Hayrapetyan, A.; Tumasyan, A.; Adam, W.; Andrejkovic, J. W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Hussain, P. S.; Jeitler, M.; Krammer, N.; Li, A.; Liko, D.; Mikulec, I.; Schieck, J.; Schöfbeck, R.; Schwarz, D.; Sonawane, M.; ... mehr

Abstract:

Computing demands for large scientific experiments, such as the CMS experiment at the CERN LHC, will increase dramatically in the next decades. To complement the future performance increases of software running on central processing units (CPUs), explorations of coprocessor usage in data processing hold great potential and interest. Coprocessors are a class of computer processors that supplement CPUs, often improving the execution of certain functions due to architectural design choices. We explore the approach of Services for Optimized Network Inference on Coprocessors (SONIC) and study the deployment of this as-a-service approach in large-scale data processing. In the studies, we take a data processing workflow of the CMS experiment and run the main workflow on CPUs, while offloading several machine learning (ML) inference tasks onto either remote or local coprocessors, specifically graphics processing units (GPUs). With experiments performed at Google Cloud, the Purdue Tier-2 computing center, and combinations of the two, we demonstrate the acceleration of these ML algorithms individually on coprocessors and the corresponding throughput improvement for the entire workflow. ... mehr


Verlagsausgabe §
DOI: 10.5445/IR/1000174438
Veröffentlicht am 23.09.2024
Originalveröffentlichung
DOI: 10.1007/s41781-024-00124-1
Dimensions
Zitationen: 1
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Astroteilchenphysik (IAP)
Institut für Experimentelle Teilchenphysik (ETP)
Institut für Prozessdatenverarbeitung und Elektronik (IPE)
Scientific Computing Center (SCC)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 12.2024
Sprache Englisch
Identifikator ISSN: 2510-2036, 2510-2044
KITopen-ID: 1000174438
Erschienen in Computing and Software for Big Science
Verlag Springer
Band 8
Heft 1
Seiten 17
Vorab online veröffentlicht am 04.09.2024
Nachgewiesen in Dimensions
Scopus
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page