
Johannes Pfau

RFET Reconfigurable
Devices:
Power Aware FPGA
Architectures and
Toolflow

RFET Reconfigurable Devices:
Power Aware FPGA Architectures
and Toolflow

Power consumption in modern Integrated Circuits has become
increasingly important. Field Programmable Gate Arrays are
especially hampered by high power consumption. In FPGAs, the
real application is not known during chip manufacturing time
and will only be programmed later, in the field. FPGAs will there‐
fore have unused resources, if applications don't use all of them.
Furthermore, Process-, Voltage-, Temperature-Variation and
Aging (PVTA) are difficult to address in FPGAs, as logic place‐
ment and density are not known during manufacturing time.

To solve these problems, this thesis proposes the Power Aware
Reconfigurable FPGA Architecture (PARFAIT). This FPGA is divi‐
ded into power regions, that can be controlled individually by
power controllers. The Electronic Design Automation toolflow for
user application synthesis is modified to determine the required
performance in each region. Additionally, a measurement system
obtains real propagation delays at runtime. Combining those two
approaches allows to adjust the power in each region dynamical‐
ly at runtime. Such a system also implicitly compensates dyna‐
mic changes in PVTA values. Jo

ha
nn

es
 P

fa
u

RF
ET

 R
ec

on
fig

ur
ab

le
 D

ev
ic

es
:

Po
w

er
 A

w
ar

e
FP

G
A

Ar
ch

it
ec

tu
re

s
an

d
To

ol
flo

w

RFET Reconfigurable Devices:
Power Aware FPGA Architectures

and Toolflow

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften (Dr.-Ing.)

von der KIT-Fakultät für Elektrotechnik und Informationstechnik
des Karlsruher Instituts für Technologie (KIT)

angenommene

Dissertation
von

M.Sc. Johannes Pfau

Tag der mündlichen Prüfung: 25.06.2024
Hauptreferent: Prof. Dr.-Ing. Dr. h. c. Jürgen Becker
Korreferent: Prof. Dr.-Ing. Klaus Hofmann

RFET Reconfigurable Devices:
Power Aware FPGA Architectures and Toolflow

First edition: September 2024
DOI: 10.5445/IR/1000174452
Copyright © Johannes Pfau, 2024

The latest digital edition of this work is available at
dx.doi.org/10.5445/IR/1000174452 .

https://dx.doi.org/10.5445/IR/1000174452

This page intentionally left blank

This page intentionally left blank

Abstract

In recent years, power consumption in modern Integrated Circuits (ICs) has
become increasingly important. One special kind of IC, Field Programmable
Gate Arrays (FPGAs), is especially hampered by high power consumption.
The main reason for this being that in FPGA, the real application is not known
during chip manufacturing time and will only be programmed later, in the
field. Because of this, FPGAs will have unused resources, as applications
rarely use all of them. Such unused resources do not use dynamic power,
but they will use static power due to leakage currents. Classical mitigation
approaches, such as power gating, can not easily be used in FPGA, as the
non-utilized resources are often spread over the whole chip area. In addition
to this, Process-, Voltage-, Temperature-Variation and Aging (PVTA) effects
also affect FPGAs worse: Unlike in Application Specific Integrated Circuits
(ASICs), logic placement and density are not known during manufacturing
time. Voltage drop and temperature analysis can therefore not be performed
before chip manufacturing. FPGA architectures must therefore assume uni-
form applications and worst-case PVTA effects instead. With some transistor
technologies, it is however possible to trade-off leakage power with logic
performance. In this case, safety margins in performance prevent further
reduction in power usage.

As a solution to these problems, this thesis proposes the Power Aware Re-
configurable FPGA Architecture (PARFAIT). This FPGA is divided into power
regions, that can be controlled individually by power controllers. The Elec-
tronic Design Automation (EDA) toolflow for user application synthesis is
modified to determine the required performance in each region. Additionally,
instead of simply assuming worst-case PVTA, a measurement system obtains
real propagation delays at runtime. Combining those two approaches allows
to reduce the power in each region at runtime, until the performancematches
the determined requirements. Such a system also implicitly compensates
dynamic changes in PVTA values.

To realize this architecture, a transistor technology that enables a trade-off
between performance and leakage current is needed. For comparison, this
thesis evaluates all results in Silicon on Insulator (SOI) technology with body

ii Abstract

biasing. The main technology investigated however is Reconfigurable (Am-
bipolar) FET (RFET) technology with program gate voltage scaling. To fully
utilize this technology, various changes to standard FPGA toolflow and archi-
tecture are proposed: A standard cell library and evaluation for RFET enables
realization of non-reconfigurable logic. For reconfigurable logic, RFET based
Universal Logic Modules (ULMs) are investigated as a less area intensive alter-
native for Lookup Tables (LUTs). Based on this, the architecture with power
regions and region controller is introduced. The architecture further intro-
duces logic invasion, a novel method to repurpose parts of the reconfigurable
logic for performance measurement at runtime.

Performance requirements are calculated for each power region during appli-
cation synthesis with the adjusted EDA toolfow. These values are then used
in a final hardware / software co-simulation, demonstrating the functionality
and determining achievable power savings. For the simulation, technology
models determining propagation delay fromPVTA parameters will be derived.
Additionally, various scenarios to describe the PVTA parameters in the evalu-
ation are developed. Final results show that a static power reduction down
to 49.1% of original power consumption is possible with RFET. Due to the
different behavior of SOI technology, this technology even allows power to be
reduced down to 2.76%. This large difference seems to suggest that leakage
power sensitivity for the control parameter needs to be improved in RFET
technology. As will be explained in the thesis though, the absolute leakage
currents of RFETs are already significantly smaller, so that further optimiza-
tion may actually not be required. RFET technology propagation delay is also
more sensitive to changes in the control parameter, which enables a wider
range of compensation.

Kurzfassung

Der Stromverbrauch in Informationsverarbeitungssystemen hat in den letz-
ten Jahren mehr und mehr an Bedeutung gewonnen, weswegen eine Reduk-
tion derVerlustleistung auch in ICs immer relevanter wird. ImVergleich zu
ASICs haben FPGAs hierbei aufgrund ihrer besonderen Eigenschaften oft eine
besonders hoheVerlustleistung: Da die Endanwendung bei der Chipfertigung
nochnicht bekannt ist,müssen FPGAs generisch für verschiedeneAnwendun-
gen ausgelegt werden. Konkrete Endanwendungen benötigen jedoch selten
alle FPGA-Ressourcen, was zu ungenutzten Ressourcen und erhöhtem Ener-
giebedarf führt. DieVerlustleistung in diesen Ressourcen wird primär durch
statische Leckströme erzeugt, dynamische Verlustleistung ist in ungenutz-
ten Ressourcen irrelevant. Viele Lösungsansätze, die üblicherweise in ASICs
verwendet werden, sind in FPGAs nicht realisierbar: So ist beispielsweise
Power-Gating schwer umzusetzen, da unbenutzte Ressourcen zur Fertigungs-
zeit unbekannt, und oft über die Chip-Fläche verteilt sind. Aus denselben
Gründen sind FPGAs auch von PVTA Effekten besonders betroffen: Damit der
Logikplatzierung auch die Logikdichte zur Fertigungszeit unbekannt ist, kön-
nenAnalysen zu Spannungsabfällen undTemperaturverteilungennicht vorab
durchgeführt werden. FPGAs müssen also unter Annahme vonWorst-Case-
Szenarien entwickelt werden.Werden zur FPGA-Realisierung Technologien
verwendet, die eine Abwägung zwischenGeschwindigkeit undVerlustleistung
erlauben, verhindert die Nutzung solcherWorst-Case-Szenarien eine weitere
Reduktion der Verlustleistung.

Zur Lösung dieser Probleme wird in dieser Dissertation die Power Aware
Reconfigurable FPGA Architecture (PARFAIT) vorgestellt. Diese unterteilt
den FPGA in mehrere Regionen mit dazugehörigen Controllern zur Rege-
lung der Verlustleistung und Geschwindigkeit. Zur Bestimmung des maxi-
malen Propagation Delays, das als Maß für die Geschwindigkeitsanforderun-
gen in jeder Region dient, werden Open-Source EDA Programme angepasst.
Anstatt einWorst-Case-Szenario anzunehmen, wird zusätzlich ein System
entwickelt, um das tatsächliche Propagation Delay in jeder Region zu erfas-
sen. Durch die Kombination der beiden Ansätze wird ein System realisiert,
dass die Verlustleistung dynamisch reduziert und dabei sicherstellt, dass

iv Kurzfassung

die Anforderungen an die Schaltungsgeschwindigkeit erfüllt werden. Wei-
terhin lassen sich mit diesem System dynamische PVTA Effekte kompensie-
ren.

Zur Umsetzung dieser Ansätze werden Schaltungstechnologien verwendet,
die eine Abwägung zwischenVerlustleistung und Geschwindigkeit erlauben.
Hierfür werden eine kommerzielle SOI Technologie mit Body Biasing (BB) als
Referenz, und eine RFETTechnologie mit Program-Gate basiertem Threshold-
Voltage-Scaling, evaluiert.Weiterhin erfordern die Konzepte auch Anpassun-
gen an EDA Tools und der FPGA Architektur: So wird in dieser Arbeit eine
Standardzellenbibliothek für RFETs zur Realisierung von digitaler Logik ein-
geführt. Zur Umsetzung der rekonfigurierbaren Logik werden RFET-basierte
Universal Logic Modules (ULMs) als Alternative für LUTs untersucht. Darauf
aufbauend wird die FPGA Architektur mit Power Regionen und Region Con-
troller vorgestellt. Unter anderem wird hier das Konzept der Logic-Invasion
eingeführt, das eine Charakterisierung der Schaltungsgeschwindigkeit durch
Mitnutzung der bereits vorhandenen rekonfigurierbaren Logikelemente er-
möglicht.

Die Anforderungen an die Schaltungsgeschwindigkeit in jeder Region werden
durch die angepassten EDATools berechnet. Für verschiedene Benchmarks
werden diese Anforderungen dann in einer Hardware/Software-Kosimulation
verwendet, um die mögliche Reduktion der Verlustleistung zu bestimmen.
Dafür werden für die untersuchten Technologien Simulationsmodelle einge-
führt, die eine Abschätzung des Propagation Delay in Abhängigkeit von PVTA
ermöglichen. Abschließend werden mehrere Szenarien zu Änderungen der
PVTA Parameter evaluiert. Hierbei wird gezeigt, dass mit der RFET Technolo-
gie eine Reduktion auf bis zu 49% der ursprünglichenVerlustleistung möglich
ist. Für die untersuchte SOI Technologie ergibt sich eine Reduktion auf bis zu
2%. Diese Ergebnisse zeigen einerseits, dass der Einfluss des Program-Gates
auf die Leckströme in der RFET Technologie noch verbessert werden kann.
Anderseits sind die absoluten Leckströme in der RFETTechnologie bereits um
Größenordnungen geringer. Zusätzlich ist die Abhängigkeit der Schaltungsge-
schwindigkeit von dem Kontrollparameter in RFET Technologie stärker, was
eine bessere PVTA Kompensation ermöglicht.

Acknowledgements

Writing a dissertation and the research involved in it is a complex, long-term
task. I couldn’t have completed itwithout variouspeople’s help, both technical
help and support in general.

First, I’d like to thankmy supervisor JürgenBecker: When I joined the institute,
I intended to work in longer established projects. Luckily you convinced me
to join the Power Aware Reconfigurable FPGA Architecture (PARFAIT) project.
As the project progressed, you always provided invaluable feedback and ideas,
e.g. during meetings and interim presentations. Despite this guidance, you
still offered me complete freedom to shape the research according to my
interests. I’mvery grateful for the trust inmeand forproviding theopportunity
to take responsibility early on. I’d also like to thank the members of my
examination board: Klaus Hofmann for providing help and feedback as my
secondary advisor and as project partner in PARFAIT. I still fondly recall the
productive discussions and unique ideas we developed in project meetings.
Peter Rost for chairing the examination and for the reassuring words in the
preparation meeting and Jasmin Aghassi-Hagmann and Laurent Schmalen
for investing their time to be part of the committee.

Invaluable insights were also provided by PARFAIT project partners and the
co-authors of my research papers: Maximilian Reuter started his dissertation
research at essentially the same time as I did. It was a pleasure to discuss ideas,
organizeworkplans, write joint papers andcarry out researchanddissertation
basically in lockstep. Tillmann Krauss introduced me to the world of RFETs.
Thank you for the patience when teaching me RFET working principles and
for the dedication to still offer advice years after you left university. Jens
Trommer joined the second phase of the PARFAIT project. Being the “new
Till” for me, you had to explain RFET circuits such as RGATEs. Your help with
the PARFAIT 2 project proposal enabled a large part of the research in this
thesis. Giulio Galderisi was the one carrying out device measurements and
improvements. For a long time I thought this dissertation would have to be
based solely on simulated transistors. You made it possible to actually use
real, measured transistor characteristics in the evaluation. In addition, there
have been many more people involved to get the PARFAIT project up and

vi Acknowledgements

running. There are too many of you to list everyone, but I certainly did not
forget your valuable help. This also includes all students whose master or
bachelor thesis I supervised. I always loved to gain new perspectives and to
discuss various technical details with you.

I also want to express my gratitude to all colleagues and friends at the insti-
tute: A special thanks goes to Tobias Dörr, with whom I shared an office for
almost seven years. Whenever I had any question about anything, you always
provided advice and often a complementary perspective, which I could not
get to on my own. More thanks go to Hannes Stoll and Timo Sandmann. For
a short time, we set up some server things at the institute and since then,
you’re my go-to experts for everything network related. Similarly, thanks go
to the “dynamic duo” Fabian Lesniak and Tim Hotfilter: We did not only set
up servers but also locomotives and coffee machines. Time went by way too
fast when we plotted various plans, and I’ll for sure continue to annoy you
with music genre discussions. In almost seven years at the institute I met
many more colleagues, most of which I consider good friends by now. There’s
not enough space here to thank everyone individually, but anyone who was
part of the cinema group, shared discussions in coffee breaks or at lunch,
was part of PhD hat building projects or any other craft projects: You’re what
makes the institute special. Thank you for all the shared laughs and the great
atmosphere in the last seven years.

I’d also like to thank everyone involved in my research stay in Kobe, especially
Kentaro Sano who so kindly received me as his guest researcher. Thanks to
the whole team in Kobe as well, I learned so much from you. The opportunity
to see a culture which is sometimes so different from the German one, was
probably a once-in-a-lifetime experience. Special thanks go to Carlos Cortes
for being an awesome friend, tour guide and for always finding all the best
places to eat in Japan.

An apology to my non-institute friends and family: You didn’t get to see me a
lot when I was writing the thesis and I am sorry for missing one or the other
event. Special thanks to everyone in the board game group, for offering an
escape from sometimes boring day-to-day life: ToValentin and Sara for always
offering shelter, Benni for figuring out the best strategies, Jannika for being
the best hiking-buddy one can think of, Feli and Steven for always having an
ear for me ranting about something, and Pia and Reiner for always coming
back the long distance to Karlsruhe to meet everyone. Thank you all for the
countless fun hours. Thanks also go to my small family core: To my parents,
Hans and Gaby, who always supported me on my way to the PhD. You always
believed in me and let me go my own way, even though academia is not really

Acknowledgements vii

your world. To my grandma Anne-Marie, who still can’t believe that sitting in
front of a screen in home-office is real work, and to my brother Mathias, who
has to do the real work while I’m sitting in front of screens. Also thanks to my
aunt, uncle and cousin Johanna, Kurt and Monika. I’ll promise to join family
meetings more often again.

Last but not least, I’d like to thank the giants on whose shoulders I’m standing
on: This includes all the countless scientists, who did the previous research
that enabled the work I did as part of this thesis. It also includes all those,
that invested their time to teach me those scientific concepts in 13 long years
of school and five years of university. All those motivated teachers who put
in unpaid extra hours, true humanists burning for education and enabling
social advancement through the promotion of knowledge. Thanks to all those
who still do more than “Dienst nachVorschrift” and burn for something more
than ever more money in these neoliberal times.

This page intentionally left blank

To all my friends, present, past and beyond
—Pennywise

This page intentionally left blank

Contents

Abstract . i

Kurzfassung . iii

Acknowledgements . v

Notation . xv

Symbols . xvii

I Prologue 1

1 Introduction . 3

2 Fundamentals . 9
2.1 Classic Silicon Semiconductors 9
2.2 Ambipolar Silicon Semiconductors 14
2.3 CMOS Circuit Technology . 20
2.4 PVTVariation and Aging . 27
2.5 FPGA Logic Generators . 45
2.6 Ambipolar Reconfigurable Cells 53
2.7 FPGA System Architecture . 57
2.8 Synthesis and Implementation 63

3 RelatedWork . 69
3.1 Ambipolar Standard Cell Libraries 69
3.2 Ambipolar FPGA Architectures 74
3.3 Dynamic Reconfiguration . 77
3.4 PVTA Compensation . 85
3.5 Power Management Techniques 96
3.6 Synthesis for Reconfigurable Cells 101
3.7 Summary . 103

xii Contents

II PARFAIT Architecture 105

4 Overall System . 107
4.1 FPGA Base Architecture . 107
4.2 FPGA Power Regions . 114
4.3 PVTA Compensation . 117
4.4 FPGA Implementation . 120
4.5 FPGAToolflow . 127
4.6 Technology Modeling . 133
4.7 PVTA Scenario Modeling . 152
4.8 Upcoming Aspects . 157

5 Ambipolar Standard Cells . 161
5.1 Standard Cell Library . 161
5.2 Application in Arithmetic Units 168
5.3 Application in Cryptographic Accelerators 170

6 Ambipolar Reconfigurable Cells 177
6.1 Basic Logic Cells . 177
6.2 Electronic Design Automation 180
6.3 Design Methodology . 184
6.4 Logic Clusters . 186

7 Power Management Regions . 195
7.1 Region Modelling inVPR . 196
7.2 Static Mode Assignment . 198
7.3 Dynamic Mode Assignment 199

8 PVT- and Aging Compensation 203
8.1 Performance Requirement Determination 203
8.2 Transparent Logic Invasion 206
8.3 Chip Performance Characterization 214
8.4 Power Management Controller 224
8.5 Power-Aware FPGA Architecture 227

9 System Simulation and EvaluationMethodology 231
9.1 Virtual FPGA Evaluation . 231
9.2 Static Power Analysis . 240
9.3 Functional Runtime Simulation 243
9.4 Co-Simulating DVS . 245
9.5 Benchmark Applications . 249

Contents xiii

III Final Remarks 251

10 Evaluation . 253
10.1 Ambipolar Standard Cell Application 253
10.2 Ambipolar Reconfigurable Cells 260
10.3 Power Management Regions 264
10.4 Power Management and Compensation 266

11 Conclusion and Outlook . 287

Bibliography . 293

Publications . 321

StudentTheses . 325

Figures . 329

Tables . 335

Listings . 337

Acronyms . 339

Glossary . 343

Appendix 347

A Research Data Archive . 347

B FPGA Architecture Descriptions 349

C Delay Model Extraction . 353

D Standard Cell Library Excerpts 355

E FASM for Logic Invasion . 359

F PARFAIT FPGA Evaluation Results 365

Index 411

This page intentionally left blank

Notation

This chapter introduces the notation and symbol types which are used in this
thesis.

General notation

Numbers 1.0 Numbers are set like this: 1.0.
Code code Inline program code is set in typewriter

font.
Variables a Variables are set in typewriter font.
PDKs XT018 PDK names are referred to in italics.
Gates XOR Gates are referred to in italics.
Blocks CTRL References to blocks in diagrams are given

italics.
File .vhd File extensions are set in typewriter font.
Tools Genus Tool names are set in italics.
Sets 𝑥0..𝑥𝑁 Simple sets are abbreviated as 𝑥0 ..𝑥𝑁,

meaning {𝑥𝑖 ∣ 𝑖 ∈ ℤ∧0 ≤ 𝑖 ≤𝑁}.
Intervals [𝑛,𝑚] Intervals are abbreviated as [𝑛,𝑚], describing

an interval of real numbers including the
limits 𝑛 and𝑚.

xvi Notation

Terminology

Technology Process and/or transistor type used.
Hard Logic Logic realized in non-reprogrammable ways.
Soft Logic Logic realized in reprogrammable logic ways.
Faster Logic Higher application frequency, i.e. less

propagation delay in the critical path.

Symbols

𝛼 Switching activity.

𝐶in Input capacitance.
𝐶L Load capacitance.
𝐶tot Total load capacitance in a path.

𝑓clk Clock frequency.

𝐼D The current flowing through the drain contact of a FET.
𝐼off Off current of a FET: The maximum current when the transistor off

voltage is applied to the respective gate.
𝐼on On current of a FET: The maximum current when the transistor on

voltage is applied to the respective gate.

𝐿eff Effective transistor channel length, i.e. including process variation.

𝜇 Charge carrier mobility in a FET.

𝑇 Temperature.
𝑡arr Actual arrival time: Actual time a signal arrives at a Flip-Flop (FF)

input.
𝑇clk Clock period: Time between two rising clock edges.
𝑡f Fall time: Time for an output to fall from 80% of its steady state high

value to 20%.
𝑡hold Hold time: Time a signal at a Flip-Flop input must be stable after the

clock edge arrived.
𝑡PD Propagation delay: Time for a signal to propagate through a cell.
𝑡r Rise time: Time for an output to rise from 20% of its steady state high

value to 80%.
𝑡req Required arrival time: Latest time a signal must arrive at a FF input at

for timing closure.
𝑡setup Setup time: Time a signal at a Flip-Flop input must be stable before

the clock edge arrives.

xviii Symbols

𝑡skew Clock skew: Time a local clock is shifted compared to a global, virtual
time reference clock.

𝑡slack Slack: Difference between required arrival time 𝑡req and actual arrival
time 𝑡arr.

𝑡WD Wire delay: Part of propagation delay caused by parasitic effects of
connected wires.

𝑉 SupplyVoltage.
𝑉𝐷𝐷 SupplyVoltage Positive Potential.
𝑉𝑆𝑆 SupplyVoltage Ground Potential.
Δ𝑉 Variation in SupplyVoltage.
𝑉IH Input voltages above this threshold are stable high signals.
𝑉IL Input voltages below this threshold are stable low signals.
𝑉BS Body Bias voltage, as potential difference between bulk and source

contacts.
𝑉th ThresholdVoltage of a FET.
𝑉th,FG ThresholdVoltage of the Front Gate.

𝑥 Input of a logic gate.

𝑦 Output of a logic gate.

Part I

Prologue

This page intentionally left blank

Chapter 1

Introduction

This thesis describes the overall design and some specific features of the
PARFAIT. It was derived by the author as part of the PARFAIT research project,
which focuses on the use of RFET technology in FPGAs. Whereas project
partners focus on development of RFET transistor devices [1, 2] and circuits
[Reu20, Reu21], this thesis discusses system level aspects related to use of
RFET technology in FPGA architecture design. Although this thesis provides
a short introduction to the device and circuit aspects in chapters 2 and 3, the
reader is referred to additional publications for a complete overview of the
PARFAIT research project.

Power Reduction In recent years, power efficiency of embedded systems has
become more and more important. Reducing power consumption is a chal-
lenge especially for FPGAs, which are commonly considered to be less energy
efficient than ASICs or Central Processing Units (CPUs). The power losses in
ICs are generally classified into static and dynamic power, as will be explained
in section 2.3. The dynamic power part is dominated by switching power,
which is proportional to the clocking frequency.

In FPGAs, user applications usually do not make use of all available resources.
Unused resources do not have switching transistors and therefore do not
exhibit dynamic power loss. They however are affected by static power losses,
especially by static leakage paths. These paths are caused by transistors in
off state conducting leakage current, thus essentially forming paths between
power supply rails. CPUs and ASIC use well-established techniques to reduce
power in such contexts: Solutions such as power-gating can turn of unused
parts of ICs. These approaches have not seen widespread application in
FPGA though: Which resources are unused depends primarily on the FPGA
user application. This information is not known at the time the FPGA is
manufactured, rendering many of the ASIC power management solutions
unusable. The primary objective of this work is to investigate approaches to
reduce static leakage power suitable for FPGAs.

4 Chapter 1 Introduction

PVTA This dissertation also addresses PVTA in FPGAs. As will be explained in
detail in section 2.4, PVTA effects describe variations of transistor characteris-
tics because of various causes. Such varying transistor characteristics lead to
varying propagation delays of logic cells (section 2.3). These effects therefore
need to be taken into account when designing ICs: Process variation causes
differences in transistor characteristics introduced by the IC manufacturing
process. These variations can cause both differences between ICs and differ-
ences between different logic cells in one IC. In FPGAs, again many of the
established solutions for ASICs are not applicable: When a user application is
synthesized to a bitstream, it is expected to work on any FPGA IC.Whereas
ASICs can be measured and binned after production, this is therefore not
readily possible for FPGAs. Each FPGA IC must work with any bitstream,
regardless of the actual resources used in the bitstream. Speed grading in
FPGAs therefore can not be based on specific resources on the device, but
must always consider all resources.

Voltage and temperature variation can cause similar effects: Locally increased
power consumption can lead to a localized drop in supply voltage or temper-
ature hotspots. As the use of FPGA resources is not known during manufac-
turing time, solutions such as locally increasing power grid density can not be
used. Unlikeprocess variation, the effects on theuser application canhowever
be estimated during synthesis of the user application. In addition to those
effects, aging describes wear of devices over time.

When performing Static Timing Analysis (STA) for FPGA applications, EDA
tools have to assume the worst-possible delay a IC could have, effectively
using the worst case process variation. In reality, not all resources on each IC
will be affectedbyworst-caseprocess variation. Theapplicationmay therefore
have a larger timing slack in practice then predicted during STA. This unused
performance may also be interpreted as a waste of power: Solutions which
trade-off transistor performance with power could enable power reduction,
if the available timing slack was known.

Performance Power Trade-Off The performance of ICs is mainly charac-
terized by the propagation delay through the used logic cells. As mentioned,
this delay relates to the drain current 𝐼D of used transistors. Both this on-
current 𝐼D and the off-current leakage 𝐼D are affected by the threshold voltage
𝑉th. Trade-offs between performance and leakage power can therefore be
achieved if 𝑉th can be modulated.

Depending on the technology used, there are various effects that can be
used to modulate 𝑉th. In bulk silicon technology and more effectively in

5

SOI, body biasing can be used (see section 2.1). For the RFET technology
used in PARFAIT, a similar effect can be achieved through voltage scaling
on the Program Gate (PG), an additional gate introduced in RFET devices.
A quick introduction to this effect will be given in section 2.2. The newly
introduced PG also enables novel approaches for reconfigurable logic. This
dissertation will therefore also discuss the use of LUT replacements based on
RFET technology in FPGAs.

MICROCHIP MICROCHIP MICROCHIP

MICROCHIP MICROCHIP MICROCHIP

MICROCHIP MICROCHIP MICROCHIP

MICROCHIP

Figure 1.1:The PARFAIT FPGA architecture with the shade of red in each region rep-
resenting locally adjusted performance using PVTA compensation. Also
shown are region controllers and the main controller, which orchestrate
logic invasion and measurement.

Power Regions Scaling 𝑉th instead of 𝑉𝐷𝐷 enables connecting regions with
different performance: In 𝑉𝐷𝐷 scaling, when gates of transistors in one
region are being driven by transistors in another region, certain restrictions
for the voltage levels arise. With 𝑉th scaling, all gate and supply voltages are
identical, avoiding these problems. 𝑉th scaling therefore enables fine-grain
power regions as shown in figure 1.1.

6 Chapter 1 Introduction

With power regions introduced in chapter 7, each region enables a local trade-
off between performance and power. When additionally supporting dynamic
adjustment of this trade-off, the system can also be used to counter PVTA
effects. For this, in addition to knowing the application slack in each region
(section 8.1), the FPGA architecture also has to determine the current real
performance under PVTA effects. Chapter 8 describes the logic invasion
method introduced as part of this thesis: It invades application resources
to periodically characterize the performance of each resource in the FPGA,
without interrupting the user application.

LogicCells For logic cells to use𝑉th scaling, special RFET reconfigurable cells
are used. Those can provide more area efficient configurable logic than LUTs,
but come with certain limitations: Most notably, those ULM can often not
realize all functions of𝑁 input variables, but only a certain subset. Chapter 6
explains how such cells canbeused in anFPGAarchitecture andwhat changes
are necessary. In addition, chapter 5 describes how RFET cells can be used to
realize standard cell based applications.

Evaluation In order to evaluate the PARFAIT FPGA architecture, section 9.1
introduces optimizations for the Virtual FPGA (VFPGA), enabling evaluation
on commercial FPGAs. Such a VFPGA-based evaluation can however not
simulate the PVTA effects. Because of this, the main evaluation of this thesis’
results is based on simulation. Section 4.6 introduces the technology models
that derive propagation delay 𝑡PD from PVTA parameters. Models are then
extended to also consider 𝑉th scaling using a control parameter. Two models
are introduced: One for a reference SOI technology, based on Scarpato’s work
[3]. This model is extended to support 𝑉th scaling and then parametrized
for the used technology. In addition, the Scarpato model is adjusted for the
RFET technology characterized in [2]. Here, some changes in modeling are
necessary. The model is then fitted to the measured RFET characterization
data of [2] to obtain propagation delays.

To obtain 𝑡PD, the delay model requires PVTA parameter inputs. Section 4.7
describes the scenario models used to derive realistic PVTA parameters for
the evaluation. The control parameter is calculated by region controllers in
the FPGA architecture, as shown in figure 1.1. To simulate these Very High
Speed Integrated Circuit Hardware Description Language (VHDL) based con-
trollers and the delay model, a co-simulation framework will be introduced
in section 9.4. The final evaluation in chapter 10 then uses a set of benchmark
user FPGA applications introduced in section 9.5. Those are first placed on
the PARFAIT FPGA with different regions sizes, then the slack factors for all

7

regions are calculated. Using these factors and the scenario models, the co-
simulation evaluates the region controller responses. The relative power and
the control voltage in each region, as well as the achieved delay factors, will
be presented in the results chapter.

Novel contributions As part of this thesis, various new topics have been
investigated or advanced significantly beyond state of the art. The following
list provides an overview, referencing the relevant section in the disserta-
tion.

• Parametrization of the Scarpato delay model for SOI technology and
extensions to model body biasing: Section 4.6.

• Modification of the Scarpato delay model for RFET technology and
parametrization according to measurements: Section 4.6.

• Evaluation of large digital circuits in RFET technology using a custom
standard cell library: Section 5.3.

• Derivation of relative power and delay metrics, that can be used in
absence of absolute power and delay information: Sections 4.6 and 9.2.

• Derivation of a toolflow tomap FPGA applications toULMs: Section 6.2.

• Design of Controllable Logic Blocks (CLBs) based on ULMs and metrics
and methodology to evaluate the designs: Section 6.4.

• Introduction of Logic Invasion, efficiently reusing CLBs for 𝑡PD charac-
terization of all CLBs with little resource overhead: Section 8.2.

• Introduction of slack factors to describe the available timing slacks in
power regions, and algorithms to derive those: Section 8.1.

• Introduction of a co-simulation framework to evaluate power aware
architectures and derivation of related PVTA scenarios: Section 9.4.

• Evaluation of power saving in the PARFAIT: Section 10.4.

• Introduction of manual placement techniques for VFPGA: Section 9.1.

This page intentionally left blank

Chapter 2

Fundamentals

This chapter reviews necessary prerequisites for understanding of the PAR-
FAIT architecture. Explanations are kept succinct, as the reader is assumed
to possess knowledge of electrical and information systems engineering.
If further explanations are desired, the end of each chapter includes refer-
ences to relevant standard works discussing the topics in more breadth and
depth.

2.1 Classic Silicon Semiconductors

Silicon semiconductors used for CMOS circuits are realized in various dif-
ferent physical device implementations, mostly depending on target feature
size and other application characteristics. In this section, only basic device
implementations will be discussed, as this is sufficient to describe the func-
tional difference between devices for classic Complementary Metal Oxide
Semiconductor (CMOS) and RFET.

G

S D

Figure 2.1:Cross-section of a basic bulk-silicon type Metal Oxide Semiconductor
FET (MOSFET). The bulk (or body) silicon is electrically connected to the
source (S) terminal. Apart from this, the source (S) and drain (D) terminals
are symmetrical. Materials for N-Channel MOSFET (NMOS) / P-Channel
MOSFET (PMOS) are n/p doped bulk (black), n+/p+ doped source and
drain regions (orange), some insulator for the gate oxide (yellow), poly-
silicon for the gate region (green) and metal for the wiring contacts (blue).

10 Chapter 2 Fundamentals

Figure 2.1 on the preceding page shows the most basic MOSFET, a bulk type
device. It is stacked onto the bulk or body silicon, which is provided by the
wafer itself and usually lightly doped. Source and drain regions of the wafer
are n+ doped for NMOS devices. An oxide layer – in the simplest form sili-
con oxide – is then used to isolate the channel regions from the polysilicon
gate region. Gate, source and drain are connected to the metal wiring lay-
ers to form circuits. The body contact connecting to the bulk is not shown
in figure 2.1. It is often globally connected to the source terminal of the re-
spective device type and not available as an individual terminal. In a simple
explanation, the electric field between gate and bulk forms a depletion re-
gion and causes charge carriers to form a conducting channel below the
gate oxide. When this channel has been established, a current flow between
gate and source can be induced when a respective potential difference is
applied across the source and drain terminal. In this current flow, generally
only one type of charge carrier is involved. The distinction between source
and drain contacts is needed because of the potential applied to the bulk
terminal.

D

S

FG

(a) NMOS

D

S

FG

(b) PMOS

D

S

FG BG

(c) 4-T MOSFET

Figure 2.2: Symbols and Terminals for MOSFET Devices.

In the bulk MOSFET, the potential of the device body is usually applied glob-
ally to the bulk substrate, so individual control of the potential per transistor is
not possible. The device can therefore be described as a three-terminal device,
as indicated by the commonly used symbols shown in figures 2.2a and 2.2b.
Other device types allow more fine-grain access to the body potential and can
thus support four-terminal device control as shown in figure 2.2c. An example
for such a technology are SOI MOSFETs as shown in figure 2.3a on the next
page. Unlike bulk MOSFETs, the semiconductor layers are not etched and
doped into the bulk silicon substrate. In SOI devices, the substrate is instead
electrically isolated using a Buried Oxide (BOX), onto which semiconductor
layers are deposited.

A SOTBdevice, a special realizationof SOI, is shown infigure 2.3bon the facing
page. Compared to normal SOI devices, SOTB devices feature a thinner BOX.
The main benefit of a thin oxide is better modulation of the device channel

2.1 Classic Silicon Semiconductors 11

G

S D

(a) SOI MOSFET

G

S D

(b) SOTB MOSFET

Figure 2.3:Cross-sections of SOI MOSFETs. The transistor layers are similar to the
bulk MOSFET, but all layers are stacked onto a buried oxide layer. (a)The
conventional SOIMOSFETwith thick BOX. (b) Silicon onThinBOX (SOTB)
device with thinner BOX layer. These devices differ in manufacturing and
in electrical characteristics.

from the substrate below the BOX, including more effective body biasing [4,
p. 14]. In a generalized abstract view, a contacted substrate can act similarly
to the transistor gate. To be able to better describe these contacts in these
devices, gates are usually distinguished as Front Gate (FG) and Back Gate
(BG).

In conventional designs, the substrate is connected to the same voltage poten-
tial as the source terminal. Body Biasing (BB) designs use a potential differ-
ence between substrate and source to enable more control over the threshold
voltage 𝑉th and the on (𝐼on) and off (𝐼off) currents. For bulk devices, the body
effect is commonly described as a shift in 𝑉th:

𝑉th =𝑉th0+𝛾(√|−2Φ−𝑉BS|−√|−2Φ|) (2.1)

Here,𝑉BS is the body biasing voltage,𝑉th0 the threshold voltage without body
biasing,Φ the substrate Fermi potential and 𝛾 is the body effect coefficient,
a technology specific constant. The maximum potential difference in bulk
silicondesigns is limited, leavingmost benefits of body biasing for SOI devices.
As the substrate is isolated from the channel by the BOX, the terminal used
for body biasing in these technologies is commonly referred to as Back Gate
(BG).Whereas BB conceptually makes the MOSFET a four-terminal devices
as shown in figure 2.2c on the preceding page, the fourth terminal’s purpose
is usually limited to power saving. Unlike four-terminal RFETs introduced in
the next chapter, the classic MOSFET structure with n or p channels is kept.
Only one type of charger carrier, electrons in the NMOS or holes in PMOS, is
involved in current flow.

SOI devices can be divided into Partially Depleted SOI (PDSOI) and Fully

12 Chapter 2 Fundamentals

Depleted SOI (FDSOI) types. For FDSOI, the channel material is intrinsic
silicon. As the channel material is not doped, the channel is fully depleted.
For PDSOI, the channel material is doped like in bulk devices. PDSOI is
commonly used for thick BOX devices, whereas FDSOI commonly goes with
SOTB. FDSOI technology has recently been adopted in industry and designs
have demonstrated speed improvements and power reductions for both logic
and memory applications [5, 6, 7].

The drain current 𝐼D of the transistor plays an important rule in the develop-
ment of digital circuits. It depends on the technology type and its formulaic
description changes depending on the region of the transfer characteristic,
the transistor is used in. For example, in the Shockley model, there is a cut-
off, a linear and a saturation region. Static operation of digital circuits uses
transistors in the saturation region. Drain current in the Shockley model is
described for the saturation regions as below [8]:

𝐼𝐷 = 0.5𝐾(𝑉GS−𝑉th)
2

=𝐶𝑠 (𝑉GS−𝑉th)
2 (2.2)

The Shockley model has been found to be insufficient to describe modern
Field Effect Transistors (FETs), as it does not model short-channel effects. It is
therefore commonly replaced by amore general formula, the alpha-power law.
This thesis will later on make use of the Scarpato model to describe circuit
delay depending on PVTA. As the Scarpato model is based on the alpha-
power-law, this necessitates its introduction [3]. Digital circuits operate in the
pentode region of that model, where the drain current is defined as follows
[8]:

𝐼𝐷 =
𝑊

𝐿eff𝑃𝐶
(𝑉GS−𝑉th)

𝛼

=𝐶𝛼𝜇(𝑉GS−𝑉th)
𝛼

(2.3)

Both models make use of different constants, but only the temperature de-
pendency of those is relevant for this thesis. This dependency was analyzed
by Dasdan and Hom, especially focusing on the Inverted Temperature De-
pendence (ITD) effect [9]. They note that the carrier mobility 𝜇 and threshold
voltage 𝑉th depend on the temperature like this:

𝜇(𝑇) = 𝜇(300)(300𝑇)
𝑚

(2.4)

𝑉th(𝑇) = 𝑉th(300)−𝜅(𝑇−300) (2.5)

2.1 Classic Silicon Semiconductors 13

It can therefore be seen that rising temperature 𝑇 leads to decreasing mobility
𝜇 and therefore decreasing 𝐼D. On the other hand, rising temperature causes
decreasing threshold voltage 𝑉th and therefore increasing 𝐼D. Which effect is
dominant, and whether 𝐼D ultimately increases or decreases with 𝑇, depends
on the supply voltage 𝑉𝐷𝐷 [9].

Further Reading

A broad range of textbooks are available discussing various aspects of classic
silicon technology. For a broad overview of topics concerning digital circuit
design, see [Rab03]. For an introduction into Metal Oxide Semiconductor
(MOS) technology and details on analog circuit design, see [Raz16]. An
introduction into Ultra-Thin-Body MOSFETs and SOI in general can be
found in [Fos13]. For details about manufacturing and devices in SOI,
[Kon14] may be used as a reference. Articles describing various body biasing
techniques for FDSOI devices at various granularity have been collected in
[Cle20].

[Rab03] RABAEY, Jan M.; CHANDRAKASAN, Anantha P. and NIKOLIĆ, Borivoje: Digi-
tal integrated circuits: Adesignperspective. 2. ed. PrenticeHall electronics
andVLSI series. Upper Saddle River, NJ: Prentice Hall, 2003.

[Raz16] RAZAVI, Behzad: Design of analog CMOS integrated circuits. Second edi-
ton. NewYork: McGraw Hill Education, 2016.

[Fos13] FOSSUM, Jerry G. and TRIVEDI, Vishal P.: Fundamentals of ultra-thin-body
MOSFETs and FinFETs. Cambridge: Cambridge Univ. Press, 2013.

[Kon14] KONONCHUK, O. and B-Y., Nguyen, eds.: Silicon-on-insulator (SOI) tech-
nology: Manufacture and applications.Woodhead Publishing series in
electronic and optical materials. Cambridge, UK:Woodhead Pub, 2014.

[Cle20] CLERC, Sylvain; DI GILIO,Thierry and CATHELIN, Andreia, eds.:The Fourth
Terminal: Benefits of Body-Biasing Techniques for FDSOI Circuits and
Systems. 1st ed. 2020. Integrated Circuits and Systems. Cham: Springer
International Publishing and Imprint Springer, 2020.

14 Chapter 2 Fundamentals

2.2 Ambipolar Silicon Semiconductors

In all devices introduced in section 2.1, current through the channel involves
only one type of charge carrier. The type of carrier is fixed at manufacturing
time by selection of materials, usually by the doping of the source and drain
regions. Devices where current flow through the channel involves both elec-
trons and holes, are called ambipolar devices. With early ambipolar devices,
the ambipolarity was not actively used to enable additional features and de-
vices were designed to suppress the ambipolar behavior [10, 11]. A recent
review publication summarizes various approaches which have been taken in
this respect [12]. Active use of ambipolarity was initially described in [13] and
is the main idea of Reconfigurable (Ambipolar) FETs (RFETs), which use the
ambipolar behavior to switchdevicepolarization. It should thereforebenoted
that not all ambipolar devices qualify as RFET.

G

S D

(a) SBFET

G

S D

(b) Planar RFET

Figure 2.4:Cross-sections of basic ambipolar MOSFETs. Unlike bulk and SOI MOS-
FETs, the shown devices employ source and drain region materials with
metallic behavior. Junctions between these regions and the channel re-
gion show Schottky junction behavior. (a)The basic Schottky Barrier FET
(SBFET) device is derived from the bulkMOSFET. (b)Abasic planar Recon-
figurable (Ambipolar) FET (RFET) device derived from the SOI MOSFET.

Figure 2.4a shows the cross-section of the Schottky Barrier FET (SBFET) de-
vice. The SBFET’s structure is similar to the bulk MOSFET of figure 2.1 on
page 9, with the main difference being the use of different material for source
and drain regions. Instead of using p- or n- doped silicon, SBFETs use ma-
terials with metallic behavior, usually a silicide. The use of these materials
creates Schottky junctions between the channel and these regions. The ef-
fect of the gate can then now longer be described as forming a conducting
channel through accumulation of charge carriers. Instead, a more complex
analysis has to consider band diagrams in the device and of the junctions,
and how the electric field formed by the gate contact interacts with those
junctions. For the use of the devices in this thesis, a detailed understanding
of such effects is not necessary and the reader is referred to literature [1].

2.2 Ambipolar Silicon Semiconductors 15

The use of Schottky contacts leads to ambipolar behavior, i.e. both charge
carrier types are involved in current flow. The SBFET is a conventional three
terminal device, so the ambipolarity is usually not used to enhance the FET
functionality.

Figure 2.4a shows the idea of a simple, planar RFET device. Froma technology
and manufacturing perspective, this device is related to the basic SOI and
SOTB devices. Like those, it builds on top of a BOX, where usually a thin-BOX
concept is used to enhance electrostatic control using the back gate. Like
the SBFET, it uses source and drain region materials with metallic behavior,
but unlike the SBFET it uses four or more terminals. In RFET concepts, the
polarity of the channel can be changed. For the device shown here, applying
a certain voltage potential bias can either make the device act like a PMOS
or a NMOS device. The analogy is limited to functional level, in particular
the polarity of the front gate threshold voltage 𝑉th,FG. More detailed analysis
of channel currents will show differences in device physics and behavior
when compared to classic NMOS of PMOS devices. For the architecture-level
analysis in this thesis, these details are not relevant. The reader is referred to
[1] for more details.

Some types of RFET devices, such as e.g. the PARFAIT device, do not use
any doped materials. Instead, they rely only on intrinsic silicon, poly sili-
con, oxides and silicides [14]. Apart from removing reducing manufacturing
steps, this also allows devices to be used across a wider temperature range:
Freeze-out at low temperature and intrinsic behavior at high temperature
are not an issue with these RFET concepts [15]. As the functionality of the
device is determined by the BG potential instead of by doping, the process of
configuring the device using a static voltage potential is called electrostatic-
doping [16]. From fabrication point of view, electrostatic doping poses similar
requirements as body biasing in SOI devices [17]. If reconfiguration is not
required, RFETs can be configured statically as PMOS or NMOS devices by
statically connecting the back gates of all respective devices to the respective
supply [18]. Alternatively, the back gates can be connected to variable voltage
rails to enable similar effects as body biasing in SOI.

Figure 2.5 shows the final RFET device developed in the PARFAIT 1 project.
To enhance device characteristics, the FG has been split into three gates. Two
TG are directly placed above the Schottky junctions and are used to configure
the device polarity. The FG is located in the center of the channel and is
used as the main control gate for this device. Both TG are usually connected
internally to reduce external wiring overhead and therefore influence both
junctions identically. In its most general configuration, the PARFAIT RFET

16 Chapter 2 Fundamentals

F TT

S D

Figure 2.5:Cross-section of the PARFAIT RFET, adapted from [19]. Compared to
the basic planar RFET, the PARFAIT RFET splits the top gate into three
independent gates. The Top Gates (TGs) (T in the figure) are internally
connected and exposed as one contact.

is a five-terminal device as shown in figure 2.6a. It features the well-known
source and drain terminals connected to the channel, the back gate below
the BOX and one contact for TG and FG each.

To reduce complexity both in connecting the devices using metal layers and
in circuit design, certain device variations with combined terminals have
been devised: Figure 2.6b shows a variant where the BG has been connected
to the source terminal. This design is based on the bulk MOSFET design,
where the substrate or well is connected to the source terminal. As thin-BOX
technology is not always available, the BG is often separated from the channel
through a larger oxide than TG. Because of this, TG often provides a more
efficient way to manipulate the Schottky junction, justifying this device de-
sign. For details, please refer to [19] and [1]. Figure 2.6c shows a variant
where the TG and FG has been connected. This configuration resembles
the more traditional design of figure 2.4 on page 14 with one front and one
back gate. It can be used for circuits originally devised for these less complex
devices.

D

S

FG

TG

BG

(a) 5-T

D

S

FG

TG

(b) BG-S Combined

D

S

FG BG

(c) FG-TG Combined

Figure 2.6: Symbols and Terminals for the PARFAIT RFET Devices.

Whereas this introduction derived ambipolar transistors from planar SBFETs,
ambipolar behavior was chronologically first explored as part of other de-
vice technologies. A summary of early publications can be found in [20]
and more current ones are summarized in [21]. Early devices were mostly

2.2 Ambipolar Silicon Semiconductors 17

one-dimensional devices and include silicon [22, 23, 24, 25, 26] or germa-
nium nanowires [27, 28] as well as carbon nanotubes [13]. Later on, two-
dimensional devices using graphene [29], dichalcogenides [30, 31, 32, 33]
and black phosphorus [34] materials were introduced. Planar, silicon based
RFETs on the other hand can be considered as an extension of existing tran-
sistor technology. They can be realized with comparatively small changes
to existing manufacturing processes [18]. As shown in the deduction of the
PARFAIT RFET from SOI and SBFET devices, the main difference is in the ma-
terial of source and drain regions. As silicides are already available in existing
processes, the technology can be adapted for most FDSOI processes, but a
thin-BOX process is advantageous for good electrostatic behavior. This has
lead planar RFETs to now entering the world of commercial manufacturing
processes. For example, devices have recently been integrated into Global-
Foundries FDX22 [17] 22 nm FDSOI technology with minimal changes to the
manufacturing process [35, 36].

From a circuit perspective, RFETs can be divided into two groups [18]: Those
with independent control of the source and drain junctions and those with
only combined control over both interfaces. The PARFAIT device in figure 2.5
on the preceding page is an example of the second category: Although it
does provide two TGs, those are internally connected. The BGs of figures 2.4b
and 2.5 on page 14 and on the preceding page also control both junctions at
the same time, and therefore also belong to category two. In the remaining
thesis, when RFET technology is referred to, a device of the second category
will be assumed.

Compared to conventional silicon technology, RFETs offer three primary ben-
efits which will be leveraged in this thesis: As already mentioned, RFETs offer
reconfiguration, providing a way to change the polarity of the device not only
during manufacturing, but also in the field. This technological advantage
enables the design of various circuits with fewer transistors, potentially reduc-
ing area and power of circuits [18]. Enabling hardware reconfiguration, this
immediately benefits FPGAs and will therefore be discussed in detail as part
of this thesis. Whereas these logic cells for FPGA based on RFET technology
will be introduced in section 2.6 on page 53, an overview of reconfiguration
and further applications can be found in literature [18, 26, 37, 38, 39]. The
second major benefit of RFETs is the increased temperature range [40]. As
the devices do not require doping, wide temperature ranges [15, 41] allow
targeting cryogenic and high-temperature applications. Whereas this enables
the devices to function over a wide range, temperature-dependent change
of device performance is still likely. This thesis therefore will introduce a
mechanism to counter temperature variation induced effects and discuss

18 Chapter 2 Fundamentals

them in more detail in section 2.4 on page 27. The third and most important
advantage is the ability to adjust the threshold voltage of the device [37, 38, 42,
43]. Whereas for basic RFETs changing 𝑉th happens with the same terminal
that programs the polarity of the device, more advanced designs such as the
PARFAIT 1 RFET allow independent control using additional terminals. An
adjustment of the threshold voltage changes the static leakage current and
affects the dynamic power as well. On the other hand side, it modifies the
on-current 𝐼on, affecting the delay times and therefore performance of the
circuits. A detailed derivation of these effects will be given in section 2.3.
The trade-off between power and performance forms the main aspect of this
thesis.

The planar PARFAIT device is also compatible with CMOS processes, which
enables mixed circuits made of both RFET and normal CMOS devices. This
allows for more rapid integration and will be used in this work to reduce
the complexity of the RFET standard cell library presented in chapter 5 on
page 161. RFETs further possess someadvantageousproperties for analog and
RF design, which are not further explored here [Reu22]. The reader is referred
to the PARFAIT project publications and related work for more information
on those topics.

Further Reading

As academic research initially focused on suppression of ambipolarity instead
of on active use, most information about ambipolar transistor development is
currently found in research articles. Most of those articles have narrow scope
and are therefore not useful as overview works. They have be referenced in
the bibliography section instead. The review articles [Ren19] for ambipolar
devices in general and [Hu21, Fei22] for two-dimensional devices serve as a
good overview of recent developments. For general information about design
of SBFETs devices, refer to the summary in [Rud23]. Additionally, an introduc-
tion into characteristics and manufacturing of the specific RFET device used
in PARFAIT 1 can be found in [Kra19]. As there has been further research since
the finalization of [Kra19], readers are advised to also review the PARFAIT
research literature referenced in this section.

[Ren19] REN,Yi;YANG, Xiaoyang; ZHOU, Li;MAO, Jing–Yu;HAN, Su–Ting andZHOU,
Ye: “Recent Advances in Ambipolar Transistors for Functional Applica-
tions”. In: Advanced Functional Materials 29.40 (2019), p. 1902105. DOI:
10.1002/adfm.201902105.

https://doi.org/10.1002/adfm.201902105

2.2 Ambipolar Silicon Semiconductors 19

[Hu21] HU,Wennan; SHENG, Zhe; HOU, Xiang; CHEN, Huawei; ZHANG, Zengxing;
ZHANG, DavidWei and ZHOU, Peng: “Ambipolar 2D Semiconductors and
Emerging Device Applications”. In: Small methods 5.1 (2021), e2000837.
DOI: 10.1002/smtd.202000837.

[Fei22] FEI, Wenwen; TROMMER, Jens; LEMME, Max Christian; MIKOLAJICK,
Thomas and HEINZIG, André: “Emerging reconfigurable electronic
devices based on two–dimensional materials: A review”. In: InfoMat 4.10
(2022). DOI: 10.1002/inf2.12355.

[Rud23] RUDAN, Massimo: Springer Handbook of Semiconductor Devices. Spri-
nger Handbooks. Cham: Springer International Publishing AG, 2023.

[Kra19] KRAUSS, Tillmann A.: “Planare elektrostatisch dotierte rekonfigurierbare
Schottky-Barriere FDSOI Feldeffekttransistor Strukturen”. Dissertation.
Darmstadt: Technische Universität Darmstadt, 2019.

https://doi.org/10.1002/smtd.202000837
https://doi.org/10.1002/inf2.12355

20 Chapter 2 Fundamentals

2.3 CMOS Circuit Technology

In order to realize logic using transistor devices, those have to be connected
in specific ways. There are various logic technologies, but themost commonly
used one for digital logic is CMOS technology. In CMOS, logic gates consist
of a pull-up network used to connect the output to 𝑉𝐷𝐷 and a pull-down
network, which connects to 𝑉𝑆𝑆. To avoid short circuits, it must be ensured
that only one of the networks is conducting at a time, i.e. the networks have
to be complementary.

This simplified view only applies to the static, steady state case, where
all inputs of a cell are constant. Observation of the dynamic behavior,
as explained below, will show a current flowing through the pull-up and
pull-down networks during the output transition. It should also be noted
that some optimized cells – such as multiplexers and LUTs – are commonly
realized using other logic, e.g. using pass transistors or transmission
gates.

CMOS Cells

VDD

VSS

x y

(a) Traditional Inverter

VDD

VSS

x y

VSS

VDD

(b) RFET Inverter

Figure 2.7: Inverter circuit in MOSFET CMOS technology and in statically configured
RFET CMOS technology. The MOSFET inverter realizes the classical in-
verter circuit using PMOS and NMOS devices [44]. The RFET inverter uses
a static configuration, where the TG of the inverters are directly connected
to the𝑉𝑆𝑆 and𝑉𝐷𝐷 voltages [Reu19]. In this configuration, RFETs always
behave as either PMOS or NMOS transistors and can not be reconfigured.

Figure 2.7 shows a simple inverter as an example for a gate in CMOS logic.
Implementations are shown for both SOI MOSFET and RFET technology. As

2.3 CMOS Circuit Technology 21

one of the most basic gates, the inverter features only one input 𝑥 and one
output 𝑦, which simplifies the introduction of the required concepts. In the
RFET case in figure 2.7b, the RFETs are statically configured by connecting
their TGs to 𝑉𝐷𝐷 or 𝑉𝑆𝑆 [Reu19]. This way, the transistor shown in the
upper part of the figure will behave as a PMOS transistor, the lower transistor
as NMOS. As this circuit is not reconfigurable, from a system perspective
it behaves similar to the SOI inverter in 2.7a. From a circuit perspective,
electrical characteristics such as the voltage transfer characteristic of course
vary.

Figure 2.8: Inverter voltage transfer characteristic, showing the output voltage de-
pending on input voltage for the RFET inverter of figure 2.7b. The figure
depicts noise margins, slope tangents and the low and high levels derived
from those. Taken from [Reu19].

Power: Figure 2.8 shows the voltage transfer characteristic for a statically
configured RFET inverter, closely resembling those of an SOI inverter [Reu19].
As can be seen from the figure, an input voltage between 𝑉IL and 𝑉IH will
cause an output voltage somewhere in between the low andhigh levels. In this
range, both the pull-up and the pull-down network are conducting, leading to
a current flow from 𝑉𝐷𝐷 to 𝑉𝑆𝑆. For static operation, a circuit designer has
to ensure that the input voltage is out of this range. For dynamic operation,
when the input is switching from low to high or vice versa, the input voltage
will be in this range for some time.

In order to quantify the energy loss during such a transition, a closer look at
power loss in CMOS gates is necessary. In general, dynamic power loss in

22 Chapter 2 Fundamentals

nanometer CMOS is caused not only by short-circuit currents, but mostly
by charging and discharging of load capacitance. This load capacitance is
constituted of parasitic input capacitance of the gates connected to an output,
as well as of the capacitance of the metal connection. In addition to those
dynamic effects, which occur only during transitions of input signals, there
are also static power dissipation effects, occurring even when signals are
constant. These effects include subthreshold leakage, gate leakage, junction
leakage and contention current. The following formulas summarize the power
dissipation in CMOS circuits [45]:

𝑃total =𝑃dynamic+𝑃static (2.6)
𝑃dynamic =𝑃switching+𝑃short circuit (2.7)
𝑃static = (𝐼sub+𝐼gate+𝐼junct+𝐼cont)𝑉DD (2.8)

Switching power is given as:

𝑃switching =𝛼𝐶L𝑉2
DD𝑓 (2.9)

Where𝐶L is the load capacitance,𝑉𝐷𝐷 is the supply voltage, and the clock fre-
quency 𝑓clk multiplied by the activity factor 𝛼 gives (half) the amount of tran-
sitions per second. The switching power therefore is directly proportional to
the frequency f and the activity rate, which specifies in what proportion of the
cycles the signal is actually switching. Switching power is therefore ultimately
dependent on the number of transitions. Short circuit current has become
mostly negligible in nanometer processes [45].

0

0.5

1

t

V
in

0
0.2

0.5

0.8
1

t

Vo
ut

tPD, HL tPD, LH

trtf

Figure 2.9:Definition of the propagation delay 𝑡PD for both high-to-low and low-to-
high transition at output of an inverter. Also shown are the definitions of
the rise and fall times 𝑡r and 𝑡f.

2.3 CMOS Circuit Technology 23

Delay: Figure 2.9 on the preceding page shows the definition of the propa-
gation delay, a value used to characterize dynamic timing behavior of cells
[45]. If there is a change of the value of a cell input that leads to a change
of the value of a cell output, the propagation delay is the time between the
input being at 50% of its high potential and the output reaching 50% of the
high potential. Propagation delay can vary for different transitions. For an
inverter, the only two possible transitions, a falling output and a rising out-
put, are shown in the figure. More complex gates with multiple inputs and
outputs accordingly need more propagation delay values to be described
completely. The figure also shows definitions of rise and fall times, the time
needed for an output to transition between 20% and 80% of its steady state
high value. Those again depend on the combination of input and output
used.

Furthermore, the exact values of those variables also depend on the load
connected to the output. Assuming a load capacitance 𝐶L, the propagation
delay can be specified based on the time needed to load this capacitance.
Using the alpha-power model, this leads to [8]:

𝑡PD = (12 −
1−𝜈T
1+𝛼)𝑡T+

𝐶L𝑉DD
2𝐼D

(2.10)

Neglecting the constant addend which depends on the input signal, Scarpato
simplifies this to the following proportionality [3]:

𝑡PD ∝
𝐶L𝑉DD
𝐼D

(2.11)

Using the alpha-power law model of equation (2.3) for the drain current, this
can be written as:

𝑡PD ∝
𝐶L𝑉DD

𝜇(𝑉GS−𝑉th)
𝛼 , (2.12)

where the temperature dependency of 𝜇 and 𝑉th are given in equations (2.4)
and (2.5). Scarpato then extends this model for chains of gates, assuming
that 𝐼D and 𝑉𝐷𝐷 are constant and using a replacement capacitance 𝐶tot as
the sum of all load capacitances in a path [3]:

𝑡PD,Path ∝
𝐶tot𝑉DD

𝜇(𝑉GS−𝑉th)
𝛼 (2.13)

Static Timing Analysis

Figure 2.10a shows a sequential (clocked) circuit consisting of two FFs and
a combinational part with one inverter and one AND gate. In order for the

24 Chapter 2 Fundamentals

FFs to properly latch the input signal (avoiding zero and double clocking),
certain constraints regarding setup and hold times must hold. Conceptually,
the setup time is the duration the signal at a FF input must be stable before
the clock edge arrives at the FF. Hold time on the other hand is the duration
the input signal must be stable after the clock edge arrived. Satisfying these
constraints for all FFs in a circuit achieves timing closure and the process of
verification is called STA [46].

Q

D Q

Q

D Q

clk

a

b

tPD,a1

tPD,a2

tPD,i

tWD

(a) Example Circuit

t0

tclk(n− 1) tclk(n)

tarr treq

tslack

tPD,a1 tPD,i1 tWD

tsetup

tskew

Tclk

(b) Setup Time Constraints

t0

tclk(n)

tPD,a1 tPD,i1 tWD

tholdtskew

(c) Hold Time Constraints

Figure 2.10: Example circuit and explanation of times used in STA.

Various definitions for the setup time calculations of the example circuit are
shown in figure 2.10b. The markers at 𝑡𝑐𝑙𝑘 denote the clock edges of a global,
virtual reference clock with period 𝑇clk. Because of delay caused by clock
routing, the clock may not arrive at exactly the same time at all FFs. In that
case, 𝑡skew describes the delay of the clock arriving at one FF, compared to
the virtual global clock. It essentially “shifts” the clock edges in the figure.
In the example, the skew for the first FF is assumed to be zero for simplicity,

2.3 CMOS Circuit Technology 25

i.e. a clock perfectly aligned to the virtual reference. The setup time itself,
𝑡setup, describes how long before the clock edge the input signal needs to be
stable. This point in time is shown as 𝑡req, the required arrival time. The actual
arrival time 𝑡arr canbe calculatedby summing all signal delays in thepath. This
includes thepropagationdelays 𝑡PD of all gates in thepath, aswell aswire delay
𝑡WD. Wire delay usually describes the increase of propagation delay of the
driving gate due to parasitic capacitance of the interconnect. In some cases, it
also includes propagation delays of buffers inserted by EDA tools to drive long
wires. The difference between 𝑡req and 𝑡arr is called slack 𝑡slack. If it is positive,
the signal arrives early enough and setup time constraints are adhered to.
Putting all this together leads to a formula for the maximum achievable clock
frequency and minimum clock period:

𝑇clk ≥ 𝑡comb+𝑡setup+𝑡skew (2.14)

Definitions for the hold time are shown in figure 2.10c, where the local clock
may again be delayed by 𝑡skew. The hold time 𝑡hold denotes the hold time re-
quiredby the FF.To analyze hold time constraints, the signal propagation time
needs to be assessed relative to the same clock edge at the first FF.The formula
for a minimum combinational delay is then:

𝑡comb ≥ 𝑡skew+𝑡hold (2.15)

As shown in this example, the combinational path is usually formed out of
multiple independent elements, ARCs. STA usually represents the complete
circuit as a graph and validates the mentioned constraints for all possible
paths. As previously explained, 𝑡PD varies for different transitions. STA there-
fore has to consider the worst case (or the worst possible combination) of all
propagation delays in a path. Furthermore, cell speed differs depending on
temperature, supply voltage and manufacturing effects. Process Design Kit
(PDK) vendors therefore usually provide different parametrized sets of values.
Fixing the temperature, voltage and process parameters allows to obtain one
set of values, a so-called corner. STA in common realizations uses the worst
case value, leading to pessimistic results [46, p. 224].

Real circuits will possess many timing paths, but for circuit designers, pri-
marily the critical paths are important. These are paths which either have
a negative slack, or the ones with the smallest slack value, where the one
with the smallest slack is called critical path. Manual optimizations of com-
binational delay are usually only needed for setup time constraints. For the
hold time constraint, EDA tools can automatically increase the delay of the

26 Chapter 2 Fundamentals

combinational path, if necessary. Furthermore, clock skew can be adjusted
deliberately to achieve timing closure [46].

Further Reading

CMOS circuit fundamentals have been discussed on different abstraction
levels in various standard works. Streetman focuses largely on technology
aspects and transistor devices, but also gives a quick introduction to inverter
characteristics [Str15]. Razavi also summarizes semiconductor physics, but
focuses more on circuit level aspects [Raz21]. He also covers an introduction
to CMOS circuits, focusing on noise margins and transition times. Baker also
explains circuits such as oscillators, rather than only basic gates [Bak19]. He
also covers physical aspects of cell design such as transistor sizing and layout.
Weste covers CMOS design from a system perspective [Wes11]. After quickly
introducing MOSFET devices and basic concepts such as delay and power in
CMOS circuits, he covers delay models, interconnect aspects, combinational
and sequential circuit design, EDA and verification. Sakurai focuses on SOI
and circuit design for this technology [Sak06]. He also includes a chapter
on CMOS circuit design with focus on low-power realization in SOI. An in-
troduction to timing analysis can be found in [Wes11], but a more thorough
introduction to this topic is given in [Kah22]. The actual algorithms used in
EDA tools are described in more detail in [Ger99].

[Str15] STREETMAN, Ben: Solid State Electronic Devices: Global Edition. 7th Edi-
tion. Harlow: Pearson, 2015.

[Raz21] RAZAVI, Behzad: Fundamentals of microelectronics:With robotics and
bioengineering applications. Third edition. Hoboken:Wiley, 2021.

[Bak19] BAKER, Russel Jacob: CMOS circuit design, layout, and simulation. Fourth
edition.Vol. 22. IEEE Press series on microelectronic systems. Piscataway,
NJ and Hoboken, New Jersey: IEEE Press andWiley, 2019.

[Wes11] WESTE,Neil H. E. andHARRIS, DavidMoney: CMOSVLSI design: A circuits
and systems perspective. 4. ed. Boston, Mass.: Addison-Wesley, 2011.

[Sak06] SAKURAI, Takayasu: Fully-Depleted SOI CMOS Circuits and Technology:
For Ultralow-Power Applications. Boston, MA: Springer, 2006. DOI: 10.
1007/978-0-387-29218-2.

[Kah22] KAHNG, Andrew B.; LIENIG, Jens; MARKOV, Igor L. and HU, Jin: VLSI Physi-
cal Design: From Graph Partitioning to Timing Closure. Cham: Springer
International Publishing, 2022. DOI: 10.1007/978-3-030-96415-3.

[Ger99] GEREZ, Sabih H.: Algorithms for VLSI design automation. Chichester and
Weinheim:Wiley, 1999.

https://doi.org/10.1007/978-0-387-29218-2
https://doi.org/10.1007/978-0-387-29218-2
https://doi.org/10.1007/978-3-030-96415-3

2.4 PVT Variation and Aging 27

2.4 PVT Variation and Aging

As one of its primary features, the PARFAIT FPGA architecture enables local
power adjustments. These can be used to tune the performance of the imple-
mented circuit toward user application requirements: For example, the power
and performance of paths which are not critical for timing can be reduced.
However, in order to guarantee that paths still meet timing requirements, it
is necessary to not only know the expected path delay, but also the actual
delay in the manufactured circuit. Here it is important to notice that currently
used models for STA do not represent the real path delay accurately, as they
ignore various operating condition effects. Additionally, corner-based STA
analysis for ASIC can conceive various combinations of operating conditions,
balancing device yield and productivity loss by overly strict requirements.
As will be shown here, FPGAs however generally have to use the worst-case
corner, leading to pessimistic STA results.

In the following chapter, the four main operating conditions which affect
circuit delays will be introduced:

• Process Variation: Due to manufacturing effects,

• Voltage Variation: Due to locally varying power supply,

• Temperature Variation: Due to locally varying temperature and

• Aging: Due to degradation of circuits over time.

It will be explained what causes those effects and how representative models
for simulation can be derived from literature. In addition, it will be shown
how existing models can be adapted for RFET devices. Following that, the
influence of transistor-level effects on circuit and system level metrics will
be explained and how modeling for those effects will be introduced. In later
chapters, thesemodels will be used to simulate the PARFAIT architecture with
changing operating conditions.

Process Variation

Process variation describes the fact that transistor parameter values are not
identical for all transistors on a manufactured IC, even if they have been
designed with nominally same values. This variation of transistor parameters
is caused by manufacturing and illustrated in figure 2.11. It mainly affects the
threshold voltage 𝑉th and effective channel length 𝐿eff, but other parameters

28 Chapter 2 Fundamentals

x0 xµ xn

Systematic Variation

Random Variation

Total Variation

x

f
(x
)

Figure 2.11: ProcessVariation affecting a transistor parameter 𝑥. The figure shows the
probability density of a parameter relative to its nominal value 𝑥0. 𝑥𝜇
shows the effective mean value including variation, 𝑥𝑛 is one instance of
a measured device. Adapted from [47].

are affected as well. This variation is usually assumed to be Gaussian and
can then be split into an offset of the mean and into zero-mean Gaussian
variation. To understand process variation in transistor manufacturing, it is
illustrative to review the main processing steps introducing variations. For an
overview of Very Large Scale Integration (VLSI) device manufacturing, please
refer to literature [48, 49, 50].

Process Variation Sources: In device manufacturing, photolithography is
used to project patterns from masks onto the wafer. The process consists
of multiple steps, including deposition of a resist film, mask alignment, ex-
posure of the resist, development and baking. As structure sizes have de-
creased, various complex forms of photolithography have been introduced.
Photolithography introduces process variation mainly through two effects:
Line-Edge Roughness (LER) is a variation of the channel length along the
width, or the width along the length. It is caused by optical effects in during
exposure andmainly affects the𝑉th of devices. The second effect is theOptical
Proximity Effect (OPE): Because of diffraction effects, exposing a structure
is actually dependent on neighboring elements. OPE correction has been
developed, but can not completely counter the effect. OPE mostly leads to
width variation and affects a device’s 𝑉th. In addition, mask alignment issues
during lithography also affect device width and 𝑉th.

Etching, which removes unneeded structures according to the mask, is an-
other step introducing process variation. Depending on the method used
(wet / dry / plasma / sputtering), there can be over- or underetching. These
effects depend on the mask layout and therefore introduce variation. Doping
is also a main contributor to process variation. It is used to insert dopants
into a grid to form semiconductors. Commonly used methods for doping
include ion implantation and diffusion. The process is prone to Random
Dopant Fluctuation (RDF), causing locally varying doping concentrations,
which mainly leads to varying 𝑉th.

2.4 PVT Variation and Aging 29

Process Variation
Systematic

Non-Systematic
Inter-Die

Intra-Die
Pure Random

Spatially Correlated

Figure 2.12: Process Variation taxonomy according to [51]. Adapted from [52].

Deposition of materials is one more step which can cause process variation.
As the threshold voltage depends on the gate oxide thickness, layer deposition
of the gate oxide can cause variation. Methods commonly used for deposition
are Chemical Vapor Deposition (CVD), Physical Vapor Deposition (PVD) and
atomic layer deposition. One more processing step introducing variation
is planarization of surfaces. As the wafer has to be as planar as possible
for various production steps, it is planarized repeatedly. Whereas there are
various etchback techniques, Chemical Mechanical Polishing (CMP) is the
most commonly use planarization method. It is prone to two effects causing
variation: Dishing happens when the wafer is over-polished and too much
metal is removed between dielectric parts, as it is softer than those. Erosion is
similar, but includes both dielectric andmetal loss. Again it ismoremarked in
locations where there is lots of metal compared to dielectric, i.e. in locations
with dense metal wiring. Both effects reduce the metal layer width, increasing
resistance in the interconnect.

ProcessVariationTaxonomy: According to [51, 52], process variation effects
can be classified into the categories shown in figure 2.12. Systematic or deter-
ministic process variation is caused by deterministic effects, which affect all
produced devices similarly. These manufacturing effects are identical across
wafers, but could for example depend on the circuit layout instead. The most
common cause of such effects occurs in photolithography, with optical prox-
imity effects being the main contributor to variation. As these effects are sys-
tematic, they can be compensated at least partially.

Apart from systematic effects, all other effects can be categorized as Non-
Systematic or random effects [52]. As these variations are arbitrary, modeling
generally uses statistical approaches. Non-systematic effects can then be
further separated into Inter-Die or global variation, and Intra-Die or local
variation. Inter-Die Variation affects transistors on each single die in the
same way, but does produce variations across different dies. Such effects
are generally introduced by manufacturing variations which concern at least
the whole die in the same way. Here die-to-die variations can occur due to

30 Chapter 2 Fundamentals

mask alignment issues, wafer-to-wafer variations due to wafer positioning,
lot-to-lot variations because of changes in equipment or source material and
fab-to-fab variations due to differences in different fabs. Inter-Die variation is
usually countered by binning devices [47]: Device performance is measured
and devices are classified into different speed grades according to their perfor-
mance. As Inter-Die variation affects all transistors and therefore logic paths
on a wafer similarly, there is little use in trying to locally compensate effects
on the produced chips. Inter-Die variation can be modeled using a statistical
distribution of affected device parameters, in the simplest case assuming a
Gaussian distribution. As these effects do not have spatial correlation, all
transistors can be modelled in the same way.

Intra-Die variation on the other hand can be differentiated into pure random
variation and spatially correlated variation. Most notably, these changes can
affect the feature size of different transistors on one die, leading to varying
electrical characteristics for those. In currently used, modern technologies,
most variation within produced devices is intra-die variation. Pure random
intra-die variation represents effectswhichdonothave any spatial correlation,
i.e. affect nearby transistors in the same way as transistors which are at a
larger distance.

According to [52], these effects are mainly caused by random-dopant fluctua-
tion and line edge roughness: Random-dopant fluctuation is less of an issue
for RFET technology, as it does not use any doping steps. Line edge roughness
however affects RFET technology as well, as photolithography is used for
RFET manufacturing. Spatially correlated variation is location dependent
and describes an effect of the correlation between transistor characteristics
depending on their relative distance, with larger correlation for transistors
more closely located on the die. Intuitively, this means that transistors close
to each other on a die are more likely to have “similar” characteristics. Various
manufacturing steps can introduce such effects, most notably photolithogra-
phy, etching and chemical-mechanical publishing. All of those can change
gradually along the die. Intra-die variation affects mostly the channel length,
width and oxide thickness of transistors.

Process VariationModeling: This thesis will mainly address intra-die vari-
ation, but inter-die effects can be added using an additional Gaussian pa-
rameter in the variation model. In that case, mean and standard deviation
of the inter-die variation distribution has to be known. The most commonly
used way to model process variation of some parameter 𝑋 in literature, is to
consider it as a random variable. Then a linear combination of individual

2.4 PVT Variation and Aging 31

components can be used to describe the final random variable for the total
variation [52, 53, 54, 55]:

𝑋=𝑋0+Δ𝑋D2D+Δ𝑋WID

=𝑋0+Δ𝑋D2D+Δ𝑋WID,c+Δ𝑋WID,r
(2.16)

In equation (2.16), 𝑋0 represents the nominal value of the parameter, Δ𝑋D2D
inter-die variation andΔ𝑋WID intra-die variation with correlated partΔ𝑋WID,c
and pure random part Δ𝑋WID,r. Assuming 𝑋 to be normally distributed and
consideringΔ𝑋D2D,Δ𝑋WID,c andΔ𝑋WID,r as normally distributed and indepen-
dent, mean 𝜇𝑋 and variance 𝜎2𝑋 of 𝑋 are given as:

𝜇𝑋 =𝑋0 (2.17)
𝜎2𝑋 = 𝜎2𝑋D2D

+𝜎2𝑋WID,c
+𝜎2𝑋WID,r

(2.18)

Which of the parts contributes to the parameter variation 𝑋 differs for each
parameter, depending on how it is affected by the variation sources [52].
Equations (2.17) and (2.18) don’t necessarily apply for some recent models
which use non-normally distributed variables.

VARIUSModel: Models for process variation usually need technology depen-
dent parameters. As those are not always available from fabs, this can make
adaption of those models difficult. The thesis therefore first introduces the
VARIUS process variation model from [53], as it is a simple model requiring
few parameters and provides exemplary parameter values which match the
empirical study in [56]. It can easily be adjusted for device data from other
studies such as [57, 58], or be tailored to a custom device characterization.
The model is physically motivated, i.e. derived from transistor equations, and
considers two main factors in process variation: Threshold voltage 𝑉th and
the effective gate length 𝐿eff.

VARIUS describes Δ𝑋WID,r and Δ𝑋WID,c in equation (2.16) as independent
normal distributions. It models spatial correlation between two points on the
chip with the correlation

𝑐𝑜𝑟𝑟(𝑋 ⃗𝑥,𝑋 ⃗𝑦) = 𝜌(𝑟) 𝑟 = | ⃗𝑥 − ⃗𝑦| (2.19)

anda sphericalmodel for the correlation function𝜌(𝑟):

𝜌 = {
1− 3𝑟

2Φ
+ 𝑟3

2Φ3
(𝑟 ≤ Φ)

0 otherwise
(2.20)

32 Chapter 2 Fundamentals

It notes that the spatially correlated component of 𝐿eff is correlated to𝑉th and
derives it accordingly:

𝐿eff = 𝐿0eff(1+
𝑉th−𝑉0

th

2𝑉0
th

) (2.21)

The publication also offers parameter valuesΦ= 0.5, 𝜎/𝜇 = 0.063 for random
and systemic𝑉th, and𝜎/𝜇 = 0.032 for random𝐿eff. Those can be used to repro-
duce the results for the transistor technology of [56].

Scarpato Model: In [3], Scarpato presents a complete approach to derive
parameters from fab data for his propagation delay model. Compared to
theVARIUS model, the model directly represents propagation delay instead
of transistor parameters. It provides a complete model not only for process
variation, but also for voltage and temperature variation as well as aging.
Parameter values for this model are obtained through SPICE simulation of
the intended target technology. As test circuit for the simulation, a repre-
sentative path is selected from the target application [3]. To model process
variation, the Scarpato model first characterizes the technologies voltage and
temperature dependencies. First, various voltage and temperature values are
simulated. Then the parameters in the following equation are fitted to the
SPICE simulation results:

𝑡pd(𝑉,𝑇) = 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2−𝑘2𝑇𝑛2))
𝑝𝛼 (2.22)

To model the process dependency, the simulation is repeated for various
corners. To be able to get results for process variation between corners, some
sort of interpolation is necessary. Scarpato therefore introduces parameter
shifts depending on the process corner. Here he notes that there seems to
be no meaningful dependency when all the parameters are varied between
corners. Therefore, the model uses constant values for all parameters except
for𝐶2 and𝑝𝛼. Thoseparameters can thenbe considered tobe a linear function
between best and worst values:

𝐶2(𝑃) = 𝐶2,𝐹𝐹+𝑚𝑐2 ⋅ 𝑃 (2.23)
𝑝𝛼(𝑃) = 𝑝𝛼,𝐹𝐹+𝑚𝑝𝛼 ⋅ 𝑃 (2.24)

With 𝑃 being a normalized process parameter from fastest (0) to slowest (1),
𝐶2,𝐹𝐹/𝑝𝛼,𝐹𝐹 thebase values at the fastest corner and𝑚𝑐2/𝑚𝑝𝛼 the slopes of the
linear functions. Inserting into equation (2.22) yields:

𝑡pd(𝑃,𝑉,𝑇) = 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2(𝑃)−𝑘2𝑇𝑛2))
𝑝𝛼(𝑃)

(2.25)

2.4 PVT Variation and Aging 33

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4

1

1.05

1.1

Supply Voltage [V]

N
or

m
al

iz
ed

D
el

ay

Figure 2.13:Delay increase due to supply voltage drop. The figure shows the effect of
a 5mV drop depending on the supply voltage. Adapted from [3].

TheScarpato model thereby provides delay for the estimated circuit at one op-
erating point described by the (𝑃,𝑉,𝑇) tuple. It does notmodel local variation
directly, but can be used to obtain locally varying delays. When the local varia-
tion of the parameters 𝑓∶ (𝑥,𝑦)↦ (𝑃,𝑉,𝑇) has been modelled, the Scarpato
model can be used to obtain the local delay.

Other Models: Various other models have been proposed in literature. Sim-
ple, grid based models have been described as early as in [59]. As process
variation grows increasingly complex, the amount of parameters can be ex-
pensive for simulation times. Because of this, [60] proposes a model to re-
duce the amount of modelled parameters, which is especially important for
Monte-Carlo simulations. Othermodels enable description of manufacturing
parameters as non-gaussian and correlated parameters [61, 62]. An overview
of commercially used models is given in [63, 64]. Other recent publications
have focused on describing the variation as a skewed distribution instead of
normally distributed [65]. The methods shown in this thesis can be used for
all of those models. In order to simulate all four PVTA parameters, a model en-
compassing all of those is necessary. As the mentioned models focus only on
process variation, this thesis’ evaluations will be based on a Scarpato model
variant extended for local variation.

Voltage Variation

As demonstrated in figure 2.13, changes in the supply voltage also cause
changes in circuit delay. Supply voltage variation can be classified in two
categories: Steady-state effects and dynamic effects [3]. Steady-state effects

34 Chapter 2 Fundamentals

are caused by 𝐼𝑅-drop, the voltage drop caused by the parasitic resistance
𝑅 of the power network when a current 𝐼 flows [66]. Varying voltage drops
can therefore be caused by both variation in resistance 𝑅 and variation in
𝐼. Local variation of the resistance can be caused by process variation. In
addition, it can also be systematically caused by unbalanced power network
design. Changes in current can be caused by both density of transistorswithin
a certain area and switching activity. Varying switching activity through clock
gating or frequency scaling results in varying local power usage and 𝐼𝑅-drop
[67]. Switching activity is furthermore data-dependent, but for analysis of
steady-state effects, considering the mean switching activity is sufficient.
Whereas the transistor density can be taken into account when designing
the power network, switching activity can not be compensated easily, as it
may not be constant over time. This is especially the case in FPGAs designs,
where both the final switching activity and density of actively used transistors
depends on the application bitstream. Both effects can therefore not be
estimated until the chip programmed in the field, making power network
based compensation largely impossible. Dynamic effects are mostly caused
by 𝑑𝑖/𝑑𝑡 noise [66] and can cause supply voltage variations of up to 10% [3].
They can be classified according to duration of the drops they cause [68]: The
deepest drops are usually short and in the range of nanoseconds. They are
causedbypackage inductance and capacity of the power distributionnetwork.
Effects in the range of hundreds of nanoseconds and slower effects in the
range of microseconds usually have external cause. They can be mitigated by
better package decoupling on the Printed Circuit Board (PCB) integrating the
IC.

Effects on FPGAs: For FPGAs, voltage variation is an especially difficult is-
sue to address. In ASICs, the power supply network can be adapted to the
application as it is manufactured together with the circuit. In FPGAs, the
power grid has to be pre-defined at the manufacturing time of the FPGA IC.
The application is known only much later however, when programming the
bitstream. It is therefore not readily possible to adapt the grid to the transistor
density and switching activity of the target application. Because of that, the
power network in FPGAs needs to be designed defensively. In addition, when
mapping the target application and calculating timing slacks, certain safety
margins have to be included. Voltage drops are the reason for the largest part
of the timing margins and cause overly pessimistic margins in general [69].
Because it is difficult to address this issue in the FPGA architecture, publica-
tions such as [69] instead provide advice for FPGA application designers. For
example, careful floor planning of the user application can reduce the issue.
The analysis in [69] also shows that out of Process-, Voltage-, Temperature-

2.4 PVT Variation and Aging 35

Variation (PVT), dynamic voltage variation contributes most to increase of
path delay, followed by process variation, temperature variation and static
voltage variation at last.

Voltage Variation Modeling: Influence on the circuit timing can be esti-
mated with a 𝑃𝑉𝑇 model such as equation (2.25) or the alpha-power law
[66]:

𝑡pd(𝑉+Δ𝑉) ∝
𝑉+Δ𝑉

(𝑉+Δ𝑉−𝑉th)
𝛼 (2.26)

Here it can be seen that the closer𝑉 and𝑉th, the larger the influence ofΔ𝑉 [3].
This effect can also be seen in figure 2.13 on page 33, where a voltage drop of
5mVhas no effect at a supply voltage of 1.4 V, but causes 10% additional delay
at 0.86 V. With such a model, a model describing the voltage variation on
the IC, 𝑓∶ (𝑥,𝑦)↦ (𝑉), is needed. Modeling of such power variation differs
for steady-state and dynamic variation. For ASICs, steady-state variation
is usually analyzed using deterministic methods. If the application design
and switching frequencies are known, Computer Aided Design (CAD) tools
support calculation and analysis of 𝐼𝑅 drop in power networks. Similarly, for
FPGAs power drop effects could be estimated if details about FPGA power
network, the application bitstream and switching activity are known. As this
drop can be analyzed deterministically for applications, there are no ready to
use models which represent a “typical” application.

Research on dynamic voltage drops, especially on FPGAs, on the other hand
largely focuses on security issues. Voltage drops can leak data through side-
channels or could be used for Denial Of Service (DOS) attacks in cloud FPGA
hosts [70]. Models for these effectshave so far onlybeenprovidedon transistor
level [71]. It has also been shown that power drop effects are usually spatially
correlated over the IC [72], as voltage drops effectively occur in the power
network. They therefore always affectmultiple devices connected to that local
part of the network. The author of this work is not aware of any system-level
model combining these aspects for representable applications on FPGA. The
example evaluations in this work will therefore only consider static effects,
but the designed simulation framework will be adaptable to dynamic models
as well.

Temperature Variation

Temperature variation can be a large issue in modern VLSI ICs. Early works
have demonstrated that there can be local hotspots in CPUs of up to 120 °C

36 Chapter 2 Fundamentals

[67]. Furthermore, it has been shown that both transistor device and inter-
connect performance are affected by temperature effects [67]. Whereas this
effect is an issue for classic circuits as well, energy saving Near-Threshold
Voltage Operation (NTVO) is affected in a special way: In this situation, on-
chip temperature is often close to ambient temperature. Therefore, fluctua-
tions in ambient temperature have immediate effect on circuit performance
[73].

(a) Soft Logic [74] (b) Hard Blocks [75] (c) Simulation [76]

Figure 2.14: Temperature variation on FPGAs as reported by previous works in mea-
surements and simulation models. (a) Temperature profile for an appli-
cation using only programmable soft logic. (b)Temperature profile for
an application using hard blocks on a platform FPGA. (c)Temperature
profile as obtained using a simulation model.

Whereas in ASICs a temperature profile can be devised by CAD tools before
manufacturing the chip, in FPGA such an analysis can only be performed
when implementing the user application. Mitigation techniques which im-
prove cooling of the chip locally, can therefore not be applied. Furthermore,
recent work shows that heating can also be excessive on FPGAs. Specially
designed FPGA applications were able to heat commercial FPGAs to temper-
atures of 50 °C to 120 °C [77]. Standard FPGA designs also cause temperature
variation, especially in platform FPGAs (figures 2.14a and 2.14b). In those,
especially hard blocks can cause local heating [75]. An exemplary analysis of
CPU circuits implemented on FPGAs has further found temperature hotspots
caused by cache and memory interfaces [78]. Other works have inserted
temperature sensors into certain FPGA applications to verify predictions of
hotspot locations or monitor those at runtime [74].

Placement Strategies: One way to counter these hotspot effects in FPGA is
using a thermal aware placement strategy [75]. In those works, the thermal
effects are usually estimated using a thermal simulator and the placement
is then modified accordingly. Apart from larger modifications of placement,
even small changes such as swapping the inputs of LUTs can reduce the ther-
mal hotspots [79]. Lu et al. provided a slightly different approach where the

2.4 PVT Variation and Aging 37

initial temperature profile is not obtained through simulation, but through
measurements [80]. They first perform a normal placement, but embed tem-
perature sensors. The user application design then needs to be executed
on the FPGA, so the embedded sensors can be used to obtain the temper-
ature profile. The proposed algorithm then perform a new placement for
the application, taking the temperature profile into account. Overall, this
resulted in a 13.9% increase of uniformity in temperature distribution over
the FPGA.

Modeling Approaches: To evaluate the effectiveness of all those mitigations
for temperature variation in simulation, a model for this variation is needed.
Temperature variation is usually modelled deterministically, based on the
concrete circuit. Whereas CAD tools for ASICs integrate such temperature
modeling, for FPGAs usually only an overall temperature for the whole chip is
estimated by vendor tools. Academia has therefore focused on deriving cus-
tom workflows to generate temperature profiles. Equations (2.27) and (2.28)
demonstrate that the chip temperature is related to leakage power and dy-
namic power [76]:

𝑃leak =𝑃0𝑒
−𝑘
𝑇 (2.27)

𝑇= 𝑇𝐴Θ(𝑃leak+𝑃d) (2.28)

It is therefore necessary to derive dynamic and leakage power to estimate
temperature profiles. Whereas dynamic power can be obtained from switch-
ing activity, leakage power is often not reported by FPGA vendor tools. In [76],
the authors therefore propose an iterative approach to derive the leakage
power. Once those components are known, the temperature distribution can
be obtained using thermal simulators such as HotSpot or ISAC. An example
for such a simulated heatmap is shown in figure 2.14c. Validating their mea-
surements using thermal cameras, [76] shows that this strategy can estimate
temperature with a precision of up to 1 °C. The author of this dissertation
is not aware of any application-independent, generic, temperature model.
All models focus on the behavior of a given application, but there are none
which predict the behavior of an exemplary application. As such, tempera-
ture modelling for the purpose of this thesis needs to be performed using the
modelling approach presented above: The dynamic and leakage power need
to be derived, and the temperature distribution can then be obtained using
thermal modeling for each specific application.

Effect onCircuitDelay: Theeffect of varying temperature depends largely on
the actual transistor technology used [81]. Previous studies found transistor

38 Chapter 2 Fundamentals

drive current to decrease by 4% and interconnect delay to increase by 5% for
a temperature increase of 10K [67, 81]. Various parameters in the transistor
equation are temperature dependent, including the channel mobility and
charge, as well as the gate overdrive voltage through the dependency of the
threshold voltage. For FinFET and other SOI devices, reduced short channel
effects and self heating effects might have additional influence [81]. For bulk
MOSFET, temperature effects can be physically understood using the BSIM3
and BSIM4 transistor models. These models contain various parameters
with temperature dependencies. The delay variation characteristics change,
depending on which parameter is dominant in each specific case [82]. As an
example, reduced supply voltage can cause an inversion of the temperature
dependency: In older technologynodes, carriermobility variationdominated,
increasing circuit delay with rising temperature. In 45 nm technology, gate
overdrive becomes the dominant parameter and circuit delay now decreases
with rising temperature [83].

Because of this technology dependent behavior, there are no physically based
models for system level delay estimation. Simulation is commonly based on
the device level SPICE models, which is accurate yet computationally infeasi-
ble for large circuits. Alternatively, mathematical models that abstract from
the physical device behavior and use parameter fitting can be used. This is the
approach used in the Scarpato model, fitting parameters of a mathematically
motivated model to SPICE simulations. Here the dependency of the temper-
ature variation on the dominant physical parameter is hidden in the fitted
model parameters. This simplifies the equations and allowing for efficient
computation using a generic model, adapting to various technologies. The
resulting model is only valid as long as the temperature and other parameters
stay within the limits used in the fitting process [3].

Aging

Apart from process variation, which affects circuit performance indepen-
dently of the environment conditions during operation, and environment
conditions such as voltage and temperature, another aspect to consider in
circuit performance is IC aging. IC aging can be caused by Front End of Line
(FEOL) effects, i.e. by transistors, by Back End of Line (BEOL) effects, i.e.
metal layers, and on package level and back end [84]. Aging effects can cause
gradual degradation in performance or complete breakdown of functionality.
Effects can also be temporary, allowing recovery under certain conditions,

2.4 PVT Variation and Aging 39

or permanent. For the analysis in this thesis, both permanent and tempo-
rary gradual degradation effects will be addressed. Effects causing complete
breakdown of functionality will not be considered.

FEOL effects: There are three main effects belonging to the FEOL category:
Hot Carrier Injection (HCI) is an effect where charges get trapped in the di-
electric of the transistor. It is caused by current flow in the transistor channel,
letting “hot” carriers enter the dielectric. Whereas it also affects carrier mobil-
ity and current flow, its main result is a permanent change in 𝑉th [3]. Signal
activity is the main factor affecting HCI severity. It is also dependent on the
supply voltage of the transistors, but mostly independent of the temperature
[85, 86]. It is generally most relevant for analog circuits and less of an issue in
digital designs [87].

Figure 2.15:NegativeBiasTemperature Instability (NBTI) stress and recovery inPMOS
transistors, taken from [87]. Left: Charge carriers entering dielectric and
breaking Si-H bonds under stress (negative 𝑉th). Right: Charge carriers
leaving dielectric and Si-H bonds restoring under recovery conditions
(zero 𝑉th).

Thesecond effect in FEOL is BiasTemperature Instability (BTI) and its variants
NBTI and Positive Bias Temperature Instability (PBTI). NBTI as shown in
figure 2.15 occurs in PMOS devices and is the more common of the two
effects. Like HCI, it is an effect where charge carriers enter the dielectric and
causes an increase in𝑉th. Unlike HCI however, the cause for BTI is the electric
field perpendicular to the channel. The effect is therefore mainly caused by
the voltage applied to the gate and the severity of BTI depends on the signal
switching probability [3]. Some of BTI is reversible: Charge carriers entering
the dielectric can leave it again if reduced gate voltage is applied. BTI can
however also lead to permanent effects, e.g. through broken Si-H bonds [3].
The effect is highly temperature dependent [88, 89] and is the dominant aging
effect in digital circuits [87].

The third common aging effect in FEOL is Time Dependent Dielectric Break-

40 Chapter 2 Fundamentals

down (TDDB). TDDB is a mostly permanent and often destructive effect. It
causes a conductive path in the dielectric, which leads to increased leakage
currents. When the hard breakdown occurs, a conducting path is created
from gate to substrate, making the transistor unusable [3]. As destructive
effects won’t be addressed in this thesis, TDDB effects will not be examined
further.

BEOL effects: BEOL aging effects are those effects, which are caused in metal
layers. The most prominent failure mechanism for metal layer based inter-
connects is Electromigration (EM). EM is caused by the electric field enabling
the current flow in a conductor. This field causes atoms in the conductor to
slowly migrate, as shown in figure 2.16. As a result, wires can develop voids,
causing increasing resistance on the wire. This effect is not necessarily de-
structive. In addition, migrated atoms accumulate on certain spots, forming
hillocks. Hillocks can cause short-circuits between neighboringwires, leading
to permanent defects [90].

Figure 2.16: EM effects observed using a scanning electronmicroscope. Picture taken
from [91]. Left: A void in the metal wire connection, increasing con-
nection resistance. Right: A hillock in the wire connection, potentially
causing short circuits.

Metal layers are further affected by mechanical stress, e.g. caused by
thermal cycling [3]. More aging effects concern the packaging of the IC.
As those are usually destructive effects, they are not further elaborated
here.

Aging in FPGAs: For FPGAs as primarily digital circuits, BTI is the most
critical aging cause. When considering both BTI and HCI, it should be noted
that treating them as completely independent effects can result in pessimistic
estimations [3]. WhenmodellingBTI, it should alsobe considered that it varies

2.4 PVT Variation and Aging 41

locally. This local variation is however largely independent of the process
variation [3]. As BTI causes increased 𝑉th and therefore increased delay in
circuits [87], it will also affect FPGA logic. Due to the FPGA’s late configuration,
it is again not possible to consider application specific countermeasures
during circuit design. Solutions therefore could use adding safety margins
during timing analysis of FPGA applications. Local variation and dependency
on switching activity will however lead to pessimistic results. Alternatively,
agingmonitoring can detect delay degradation. Such systems can also handle
local degradation, if they can counter effects using somemechanism to locally
increase performance.

Modeling Approaches: Models for the aging processes have been proposed
at various layers of abstraction. At the lowest abstraction, physicalmodels can
be used to enhance SPICE simulations with aging information. Until recently,
fabs have provided EDA specific simulation models and libraries for their
respective technologies [92]. More recently, the Silicon Integration Initiative’s
Compact Model Coalition has standardized an Application Programming
Interface (API) to develop heating and aging models [84, 93]. These models
are thenused in combinationwith the standard SPICE transistormodels, such
as BSIM. Factory provided models for aging can be both empirical or physical
models, trading of performance and accuracy. For physical models, reaction-
diffusion [94] and trapping-detrapping [95] models have been proposed. A
summary of these models and the corresponding equations are given by
Khoshavi et al. and can be found in [87].

To provide faster models for simulation, circuit level predictive aging models
have been proposed [87]. For example, long-term HCI and BTI effects in cir-
cuits can be modeled using these equations [96, 97]:

Δ𝑉th_BTI = 𝑎(𝑇𝑆𝑃 ⋅ 𝑡)𝑛 (2.29)
Δ𝑉th_HCI = 𝑏(𝑇𝑆𝑤𝑃 ⋅ 𝑡)𝑚 (2.30)

In these equations,𝑎 and𝑏 are technology and temperature specific constants,
𝑇𝑆𝑃 is the transistor stress probability, 𝑇𝑆𝑤𝑃 is the transistor switching stress
probability, 𝑡 is time, and 𝑛 and 𝑚 are time exponential constants. As the
switching stress probabilities are application dependent, a work load profile
for the application has to be provided [98]. For the different effects, both the
signal probability (time a signal assumes a certain value) and transition den-
sity has to be known. In addition, these models require temperature and sup-
ply voltage profiles as inputs [99]. Furthermore, stochastic models can take
non-deterministic effects into account [100]. For some effects, it is however

42 Chapter 2 Fundamentals

important that process variation and aging are not modelled independently,
as this could yield to pessimistic results [87].

Another kind of aging models on a yet higher level of abstraction are architec-
ture models [87]. For example, [101] proposed to select an “representative”
transistor for a certain area and use it to estimate the values of all transistors
in this area. [102] simulates a certain workload pattern and derives volt-
age and temperature profiles. It then uses this information to derive gate
delays. [103] extends all these considerations to instantaneous BTI effects.
Application specific models are of limited use in FPGAs, as the application
is not known during FPGA design time. As the FPGA transistor sizes are pre-
determined, these models can be used for analysis, but are of limited use for
mitigation.

Scarpato Model: One variant of a circuit level aging model is the one pro-
posed in [3]. As an extension of the PVT model presented in the same work,
it is primarily an empirical, mathematical model: Parameters in the model
equation are fitted to results of SPICE simulations. This approach therefore re-
quires existing aging models that can be used in a SPICE simulator. The main
benefit of the Scarpato model is its reduced computation complexity when
compared to the SPICE model. The Scarpato PVT model presented earlier in
this section was therefore analyzed to determine which parameters change
with BTI and HCI effects. EM effects where not considered in this model, but
extending it accordingly is possible. To reduce the model complexity, aging
variation has been reduced to an aging-dependent shift of a single parameter
in the model.

𝑡pd(𝑉,𝑇) = 𝑝𝛽+𝑝𝜇−1(𝑇)(
𝑉

(𝑉−𝑝𝑉th(𝑇))
𝑝𝛼) (2.31)

𝑡pd(𝑉,𝑇, 𝑡) = 𝑝𝛽+𝑝𝜇−1(𝑇)(
𝑉

(𝑉−(𝑝𝑉th(𝑇)+Δ𝑝𝑉th(𝑉,𝑇, 𝑡)))
𝑝𝛼) (2.32)

Δ𝑝𝑉th(𝑇) ∝ 𝑒
−𝐸𝛼
𝑘𝑇 (2.33)

Δ𝑝𝑉th(𝑉,𝑇) = 𝐴 ⋅𝑉𝛾 ⋅ 𝑒
−𝐸𝛼
𝑘𝑇 (2.34)

Revisiting equation (2.31), a short-hand version of equation (2.22), 𝑝𝑉th
was identified as the parameter affected most by aging shift. Introducing
the new Δ𝑝𝑉th parameter into this equation yields the aging-aware model
in equation (2.32). Scarpato then continues to describe the temperature
and supply voltage dependencies. Various alternatives are examined for

2.4 PVT Variation and Aging 43

the voltage dependency, but ultimately equation (2.33) is used in the
model.

To introduce the time dependency of the aging parameter, Scarpato
introduces trapping-detrapping and reaction-diffusion models into equa-
tion (2.34). He then evaluates which variant of the equation yields a better
fit of the SPICE simulations. Ultimately, the final model chosen for Δ𝑝𝑉th is
given as:

Δ𝑝𝑉th(𝑉,𝑇, 𝑡) = (𝐶1𝑡𝑛1+𝑎1𝑙𝑜𝑔(𝑉)+𝐶2𝑡𝑛2+𝑎2𝑙𝑜𝑔(𝑉)) ⋅𝑉𝛾 ⋅ 𝑒
−𝐸𝛼
𝑘𝑇 (2.35)

Equation (2.31) does not include process variation effects, but Scarpato
showed that process variation is uncorrelated to aging. The parameter can
therefore be determined once and be reused for different corners in equa-
tion (2.22) to include process variation.

As mentioned in the introduction of the physical aging effects, workload
described by switching frequency and signal probability also affects the aging
process. As it was found that workload can not be simply reduced to a fixed
number of parameters, the Δ𝑝𝑉th parameter is instead being estimated for
different workloads using different SPICE simulations. The model can also
include dynamic variation, i.e. changing supply voltage, temperature and
workload over time. Refer to [3, p. 74] for details.

Further Reading

Various textbooks cover the VLSI IC fabrication process in detail. For example,
a recent take can be found in [Gen17]. For process variation, [Cha18] provides
a detailed introduction from a circuit perspective. After introducing classical
STA and explaining the need for statistical analysis, it introduces mathemat-
ical foundations needed for the modeling. It further includes an overview
of process variation sources and a classification of those. It also extends the
analysis to gate and path delays for CMOS circuits. Additional information
about process variation and modelling can be found in [Chi07, Die12, Huf20].
A detailed introduction to voltage variation can be found in [Wir13] and an in-
troduction to aging, including sources, models and optimization techniques,
is provided by [Tan19]. Additionally, [Ye21] presents methods to deal with
aging effects. The PVTA simulationmodel by Scarpati, which is primarily used
in this thesis to simulate the developed FPGA architecture, is described in
detail in his dissertation [Alt17].

44 Chapter 2 Fundamentals

[Gen17] GENG, Hwaiyu: Semiconductor Manufacturing Handbook, Second Edi-
tion. 2nd edition. NewYork, N.Y.: McGraw-Hill Education and McGraw
Hill, 2017.

[Cha18] CHAMPAC, Victor and GARCIA GERVACIO, Jose: Timing Performance of
Nanometer Digital Circuits Under Process Variations. Vol. 39. Cham: Spri-
nger International Publishing, 2018. DOI: 10.1007/978-3-319-75465-9.

[Chi07] CHIANG, Charles C. and KAWA, Jamil: Design for manufacturability and
yield for nano-scale CMOS. Series on integrated circuits and systems.
Dordrecht: Springer, 2007.

[Die12] DIETRICH, Manfred and HAASE, Joachim: Process Variations and Proba-
bilistic Integrated Circuit Design. NewYork, NY: Springer NewYork, 2012.
DOI: 10.1007/978-1-4419-6621-6.

[Huf20] HUFF, Michael: ProcessVariations in Microsystems Manufacturing. 1st
ed. 2020. Microsystems and Nanosystems. Cham: Springer International
Publishing and Imprint Springer, 2020. DOI: 10.1007/978-3-030-40560-1.

[Wir13] WIRNSHOFER, Martin: Variation-aware adaptive voltage scaling for digital
CMOS circuits. Vol. 41. Springer series in advanced microelectronics.
Dordrecht: Springer, 2013. DOI: 10.1007/978-94-007-6196-4.

[Tan19] TAN, Sheldon; TAHOORI, Mehdi Baradaran; KIM, Taeyoung; WANG,
Shengcheng; SUN, Zeyu and KIAMEHR, Saman: Long-Term Reliability of
NanometerVLSI Systems: Modeling, Analysis and Optimization. Springer
eBook Collection. Cham: Springer, 2019. DOI: 10.1007/978-3-030-26172-6.

[Ye21] YE,Wei; ALAWIEH, Mohamed Baker; HSU, Che-Lun; LIN, Yibo and PAN,
David Z.: “Dealing with Aging andYield in Scaled Technologies”. In:De-
pendable Embedded Systems. Ed. by HENKEL, Jörg and DUTT, Nikil. Em-
bedded Systems. Cham: Springer International Publishing, 2021, pp. 409–
429. DOI: 10.1007/978-3-030-52017-5_17.

[Alt17] ALTIERI SCARPATO, Mauricio: “Digital circuit performance estimation un-
der PVT and aging effects”. Thesis. Université Grenoble Alpes, 2017. URL:
https://theses.hal.science/tel-01773745.

https://doi.org/10.1007/978-3-319-75465-9
https://doi.org/10.1007/978-1-4419-6621-6
https://doi.org/10.1007/978-3-030-40560-1
https://doi.org/10.1007/978-94-007-6196-4
https://doi.org/10.1007/978-3-030-26172-6
https://doi.org/10.1007/978-3-030-52017-5_17
https://theses.hal.science/tel-01773745

2.5 FPGA Logic Generators 45

2.5 FPGA Logic Generators

The CMOS circuits introduced previously have their functionality determined
and fixed at manufacturing time of the circuit. As manufacturing is a long
and expensive process, this approach is not suitable for prototyping or if only
a few devices are needed. A solution to this issue lies in field programmable
devices, which have their ultimate functionality decided after manufactur-
ing, “in the field”. Over the last decades, various approaches have emerged
to realize the main component of such systems, the programmable logic
cell.

Logic Matrices The first commercially available devices that provided pro-
grammable cells have been Programmable Read Only Memorys (PROMs)
[104]. Whereas they were mainly meant to be used as memory, connecting
input signals to address lines and output signals to the data output of the
memory realizes programmable logic. This approach works like an early im-
plementation of a LUT, but is rather inefficient due to the need for a complete
address decoder.

Q

D Q q0

Q

D Q q1

x0 x1 x2 x3 q0 q1

Figure 2.17: Programmable Array Logic (PAL) structure according to [104]. Like Pro-
grammable Logic Arrays (PLAs), PALs realize two level logic, but unlike
those, they do not support configuration of the OR stage. As depicted in
the left part of the picture, all configuration happens in the AND plane.

The next step in the evolution of programmable logic cells were PLAs. PLAs
realize two-level logic, where thefirst level is implemented as awiredAND and
the second level as a wired OR. Due to this structure, this circuits can directly
realize the Sum-of-Products (SOP) form of an equation. PLAs were mainly

46 Chapter 2 Fundamentals

used to implement combinational logic and to replace multiple discrete gates
on a PCB. PLAs had comparatively wide inputs in both configurations stages,
causing the main drawback of early PLAs: Comparatively large delay caused
by two levels of configurable cells and complex manufacturing[104]. To solve
these issues, PALs as shown in figure 2.17were introduced. Compared to PLAs,
these systems kept the configurable AND plane, but fixed the functionality
of the OR stage. In addition, PALs also introduced FFs on the outputs of
the combinational logic cell. As those are also available as inputs for the
AND matrix, these programmable logic circuits enable implementation of
sequential circuits.

Later on, combinations of multiple PLAs or PALs were put in a single chip,
connected using some kind of interconnect [104]. These chips, called Com-
plex Programmable Logic Device (CPLD), enable realization of more complex
sequential logic such as state machines. The basic element in all these men-
tioned logic circuits are programmable matrices, usually a programmable
AND matrix. They have to support a wide number of inputs and are therefore
usually implemented in specific ways, which are more efficient than naive
CMOS implementation. As programmable matrix structures will not be em-
ployed in this thesis, the transistor level implementation details will not be
discussed further.

AND-Inverter Logic Another possible realization of configurable logic has
been introduced in 2012 by Parandeh-Afshar and Benbihi[105]: So-called
AND-Inverter Cones (AICs) are configurable logic cells consisting of AND and
INVERTER gates. Unlike PALs and PLAs, AICs do not realize the configurable
logic through specific assignment of inputs to gates. Instead, connections are
hardwired and reconfiguration is achieved by changing the logic function in
the logic element. Figure 2.18 shows a simplified 3-level AIC implementation.
Each node in the shown graph is an AND with an optional INVERTER and
can therefore either realize an AND or aNAND function. Each cell provides
multiple outputs, allowing to derive multiple outputs from one block. This
feature may also be used to implement multiple functions in a single block,
enabling a fracturable logic system.

AICs are inspired by modern synthesis tools, which represent circuits as
graphs of AND and INVERTER nodes. Their area scales linearly with the
number of inputs, which is a benefit compared to LUTs which scale exponen-
tially. Furthermore, the delay scales logarithmically, whereas it scales linearly
for LUTs. Because of those advantages, Parandeh-Afshar et al. introduced the
logic cell in a hybrid FPGA, combining both LUTs and AICs. They achieved

2.5 FPGA Logic Generators 47

i0 i1 i2 i3 i4 i5 i6 i7

o1o0 o2

Figure 2.18: AIC-3 structure adapted from [105]. Each node represents a logic cell
which can either realize an AND or a NAND function. Shown here is a
simplified 3-stage design, where the AICs used in practice usually consist
of 6 levels. Intermediate signals are also available as outputs to make the
cell fracturable and enable reuse of intermediate values.

a 16% decrease in area and up to 32% decrease in delay compared to their
LUT-only reference. [105]

AICs are less expressive than LUT, as they can not realize every possible func-
tion of their inputs. Because of that, numerous AICs needs to be used, which
causes additional interconnect pressure. To avoid routing congestion in the
interconnect, multiple AICs are combined within one cluster using internal
loopback connections. In 2014, Zgheib et al. implemented the proposed
AICs FPGA in 40 nm technology [106]. They found that because of the large
number of inputs and outputs, a comparatively large crossbar is required.
This crossbar requires almost twice as much area as the LUT system used for
comparison. Furthermore, authors show that reduced delays compared to
LUTs only were achieved for short critical paths.

In 2020, Thummler et al. proposed new, optimized mapping algorithms
for AIC based programmable logic systems [107]. Their algorithm reduces
area by up to 16.4%, but the general issue with large crossbars persists to
date. Because of this, authors have proposed alternative solutions with small,
reconfigurable cells as summarized in [108]. The most common replacement
cell design changes functions betweenNOR andNAND. Compared to LUTs
or ULMs explained in the next section, the number of functions that can be
realized by the cell are still small.

Universal Logic Modules Whereas AICs realize two logic functions in logic
cells, ULMs take this idea one step further. Initial ULM research was carried
out decades before the introduction of first FPGAs [109]. An early definition
of the ULM was given in [110] for example: An𝑈𝐿𝑀.𝑚 is a function𝑈(𝑧0..𝑧𝑛)

48 Chapter 2 Fundamentals

that realizes all possible functions𝑓(𝑥0..𝑥𝑚) by substitution of 𝑧0..𝑧𝑛 with any
of {𝑥0..𝑥𝑚,𝑥0..𝑥𝑚,0,1}. Strictly speaking, a𝑈𝐿𝑀.𝑚must therefore be able to
implement all functions of𝑚 input variables. Later works however also refer
to logic cells which only implement a subset of functions as ULM, or “almost
ULM”.

(a) ULM.3 Implementation [109] (b) 8-COGRE Logic Cell [111]

Figure 2.19: Exemplary ULM implementations proposed in literature. (a) ULM.3
designed by Zilic et al. using Binary Decision Diagrams (BDDs). (b)
8-input logic cell manually designed by Iida et al.

Figure 2.19 shows two examples which were especially designed for FPGA
application. The adaption of ULMs for FPGA happened later, starting with
Thakur et al. in 1995 [112]. This publication adapted the previous ULM work,
considering that equivalent functions can be combined and inputs can be
swapped in FPGAs. It then provided an algorithm to derive sets of𝑈𝐿𝑀.𝑚
and compared some possible implementations to the Actel multiplexer based
cell. The main goal of that publication was to generate set of suitable func-
tions.

Zilic et al. expanded on this work in 1996 [109]. Unlike Thakur et al., this work
uses BDDs to design the ULMs. It also provides concrete 3 and 4 input exam-
ple implementations, where the𝑈𝐿𝑀.3 has been reproduced in figure 2.19a.
This publication also first separated configuration and general purpose in-
puts. Configuration inputs are then driven by Static Random-Access Memory
(SRAM) or similarmemory cells, reducing pressure on the global interconnect.
Zilic et al. also note how the number of configuration bits for their 4-input
cell was reduced to 13 bit, compared to 16 bit needed for a 4-input LUT. Some
years later, new algorithms for ULM design were proposed to design cells
with more inputs [113].

A set of cell implementations using even less area has been presented in [111],
the COGRE cells. Strictly speaking, those cells are not ULMs, as they do not

2.5 FPGA Logic Generators 49

cover all possible functions. Taking advantage of that design decision, the
authors state that their 8-input cell uses 75.19% less area and 68.27% less
configuration bits than an 8-input LUT. An implementation of the 8-input
COGRE cell is shown in figure 2.19b. Even though there has been continued
research on ULMs themselves, there are few publications and no commercial
systems actually using them in FPGAs.

Figure 2.20:Microsemi Axcelerator C-Cell Logic Block [114], cited via [115]. This block
realizes a Multiplexer (MUX) based Logic Element (LE), but combines
the multiplexer with hard logic gates to achieve higher expressiveness.

Multiplexer Logic An alternative to ULMs are MUX-based logic cells. Com-
pared to LUTs, MUX-based cells route input signals to both select and data
inputs of multiplexers. LUTs are similarly based on multiplexers. As they
route input signals to the select inputs of multiplexers only, data inputs in
LUTs are however always constant. They are directly connected to memory,
usually SRAM.

A two data input multiplexer can realize six functions, when it uses variables
and constants as inputs. In general, MUX-based logic cells can therefore
achieve large expressiveness with few transistors. This benefit however is
diminished by the introduction of a large number of inputs, compared to
LUT based cells. Additional inputs increase resource demand and complex-
ity in the interconnect, making the use of small routing switches especially
important. In practical realizations, MUX-based logic cells have therefore

50 Chapter 2 Fundamentals

often been combined with flash or anti-fuse technology [116]. To realize cells
with more inputs, MUXs are often combined with logic gates to yield more
complex functions. Figure 2.20 shows an example of such a cell which was
used in a commercial architecture released in the early 1990s, the Actel ACT3
[114]. In addition to the MUXs, it includes hard logic AND andOR gates to
realize more functions. Another early example of MUXs cells are early FP-
GAs by Quicklogic [104]. Both early commercial variants are Antifuse based,
making use of small switches to reduce the wiring overhead. MUX-based
logic cells have gone out of fashion in recent FPGAs architectures, which use
LUTs almost exclusively. This is often attributed to the comparatively complex
tools needed to map user applications to such logic. For LUT-based FPGAs in
comparison, the mapping step is reduced to a less-complex graph-covering
problem [117].

In 2016, Chin et al. presented a more modern variant of a MUX-based logic
cell. Their variant realizes a 6-input LE using a 4-input MUX. Using both the
data and the select inputs of these multiplexers they obtain a LE with the
same amount of inputs as in modern LUT-based LE. The authors’ LE requires
only 15% of the area of a comparable 6-input LUT.When used in a hybrid
architecture mixed with LUTs, the hybrid FPGA architecture still used 8% less
area than a LUT-only architecture. The logic cell can map all functions of 2
and 3 inputs and some functions of up to 6 inputs. For the logic mapping,
authors explain in detail how the Shannon expansion can be used to fit logic
functions to the LE.

Lookup Tables LUTs are the most common logic generator used in recent,
commercial FPGAs [118, p.4ff]. An𝑁-LUT combines a 2𝑁-to-1MUX and a 2𝑁
bitmemory, usually SRAM. Figure 2.21b depicts the transistor level implemen-
tation of such a basic LUT. Memory outputs are connected to the data inputs
of the multiplexer, whereas its select inputs are external inputs for the logic
function’s parameters. The figure also includes signal buffers in various parts
of the LUT, similar to the buffered MUX shown in figure 2.21a. Depending on
the requirements of output signal levels and the characteristics of transistors
and technology, some buffers may not be required.

To realize a function 𝑓(𝑥0..𝑥𝑛) in a LUT, its truth table needs to be obtained
and stored in the memory. Inputs 𝑥0..𝑥𝑛 are connected to the select inputs
and choose the matching output value from the truth table for the given input
combination. Like in MUX logic, the function table can again be obtained
using the Shannon Composition 𝑓(𝑥0,𝑥1..𝑥𝑛) = 𝑥0 ⋅𝑓0(𝑥1..𝑥𝑛)∨𝑥1 ⋅𝑓1(𝑥1..𝑥𝑛).
An important difference compared to MUX logic is that the composition

2.5 FPGA Logic Generators 51

needs to be applied repeatedly until all data inputs of the multiplexers are
constant.

(a) 2-Level Buffered MUX [119] (b) 6-LUT (Partial View) [119]

Figure 2.21: Exemplary MUX and LUT implementations proposed in literature. Im-
plementations shown are models used in COFFEE, which automatically
determines transistor widths for FPGA elements [119]. (a) A two-level
multiplexer in pass-transistor logic configured by SRAM cells. The output
contains a level restore buffer to compensate for the voltage drop across
pass transistors. (b) An implementation of a LUT using pass-transistors.
Internal level restore buffers are needed after three pass transistors to
ensure signal integrity. Buffered multiplexer select inputs are driven ex-
ternally, whereas buffered data inputs are driven by SRAM cells.

LUTs can describe all functions of𝑁 inputs and have therefore been called
“computational heart” of the FPGA [118, p.4 ff.]. They allow for a higher logic
density and large digital designs, causing a historical paradigm shift [104]:
Large digital systems can now be realized in small quantities, avoiding the
initial setup cost involved in ASIC manufacturing. The best size of a LUT,
i.e. the number of select inputs, depends on the mapped user applications
and has been extensively researched. Literature suggests 4-input LUTs, but
commercial architectures commonly use 6-input LUT as well. Larger LUTs
can realize more complex functions, but cause higher propagation delay [118,
p. 4]. Whereas delay of LUTs grows linearly with the number of inputs, its area
grows exponentially [116]. Because of this, useful sizes of LUTs are limited. An
alternativeway to realize large functions is to divide the function intomultiple
parts, which are then realized inmultiple LUTs[118].

Recent commercial LUTs often include enhanced functionality, such as be-
ing useable as memory or shift registers [120, p. 37]. These extensions are
usually realized on transistor level, allowing for an area and delay efficient
implementation. Other extras which are often implemented on cell level to
complement the LUT include dedicated signals for carry chains and external
adders or XOR gates [121, p. 25].

52 Chapter 2 Fundamentals

Further Reading

Information about CPLDs, PLAs and PALs can be found in an early work of
Brown et al. [Bro96]. This work also gives a quick summary of commercial
architectures available in the late 1990s. In a more recent overview, Kuon et
al. give an overview of commercial architectures available in 2007 [Kuo07].
[Yan14] can be used as a starting point for information on AICs. Information
about LUTs can be found in most FPGA textbooks, as these are the most
commonly used logic generators. Some examples include [Vas07] which sum-
marizes various architecture studies, [DeH07], which includes a discussion
of granularity, and [Ama18], which discusses performance trade-offs and
LUT size. The 2020 textbook of Rodríguez-Andina provides an overview of
commercial FPGA architectures and used logic generators in 2020 [Rod20].
When it comes to most recent logic generator recent research, [Rai21] pro-
vides a short overview. Apart from discussing AICs again, this work also
introduces logic generators which make efficient use of various novel tran-
sistor technologies. Those generators will be discussed in detail in the next
section.

[Bro96] BROWN, S. andROSE, J.: “FPGAandCPLDarchitectures: a tutorial”. In: IEEE
Design&Test of Computers 13.2 (1996), pp. 42–57. DOI: 10.1109/54.500200.

[Kuo07] KUON, Ian; TESSIER, Russell and ROSE, Jonathan: “FPGA Architecture:
Survey andChallenges”. In: Foundations and TrendsⓇ in Electronic Design
Automation 2.2 (2007), pp. 135–253. DOI: 10.1561/1000000005.

[Yan14] YANG, Haigang; ZHANG, Jia; SUN, Jiabin and LEYU: “Review of advanced
FPGA architectures and technologies”. In: Journal of Electronics (China)
31.5 (2014), pp. 371–393. DOI: 10.1007/s11767-014-4090-x.

[Vas07] VASSILIADIS, Stamatis, ed.: Fine- and coarse-grain reconfigurable com-
puting. Dordrecht: Springer, 2007.

[DeH07] DEHON, André andHAUCK, Scott: Reconfigurable Computing:TheTheory
and Practice of FPGA-Based Computation. 1. Aufl. Systems on Silicon.
s.l.: Elsevier professional, 2007.

[Ama18] AMANO, Hideharu, ed.: Principles and structures of FPGAs. Singapore:
Springer, 2018.

[Rod20] RODRÍGUEZ-ANDINA, Juan José; LA TORRE-ARNANZ, Eduardo de and
VALDÉS PEÑA, María Dolores: FPGAs: Fundamentals, advanced features,
and applications in industrial electronics. First issued in paperback.
Boca Raton: CRC Press, 2020.

[Rai21] RAI, Shubham; NATH, Pallab; RUPANI, Ansh; VISHVAKARMA, Santosh Ku-
mar and KUMAR, Akash: “A Survey of FPGA Logic Cell Designs in the Light
of EmergingTechnologies”. In: IEEE Access 9 (2021), pp. 91564–91574. DOI:
10.1109/ACCESS.2021.3092167.

https://doi.org/10.1109/54.500200
https://doi.org/10.1561/1000000005
https://doi.org/10.1007/s11767-014-4090-x
https://doi.org/10.1109/ACCESS.2021.3092167

2.6 Ambipolar Reconfigurable Cells 53

2.6 Ambipolar Reconfigurable Cells

The logic generators discussed so far have been realized mostly in traditional
CMOS silicon technologies. The development of those logic generators has
therefore been limited to designs which can be efficiently realized in that
technology. Furthermore, those works focus on the design of efficient cells
for FPGAs leveraging flexibility given by the technology. In recent years, a new
type of logic generators has been proposed in literature: Logic cells which
make use of – and are optimized for – ambipolar transistor technologies. As
these technologies enable efficient implementation of reconfigurable FETs,
the adaption in larger, reconfigurable cells seems natural. The realization
of such cells however has to obey different technology constraints, leading
to new challenges. Most notably, the cell implementations with low area
usually also provide low flexibility or expressiveness [122]. Ambipolar re-
configurable cells have been realized in both dynamic and in static logic
styles. In dynamic logic, the cell needs to be clocked to transition between
various internal states over time. Usually, such additional states are used
to pre-charge certain capacitances in the circuit. Apart from the need of a
clocking system for the cells, another drawback of dynamic logic is reduced
energy efficiency [123]. Static cells on the other handdonot need any clocking
input and can therefore replace LUTs in common FPGA architectures more
easily.

A main differentiating characteristic of ambipolar reconfigurable cells is the
number of functions they can realize “in the field” [18] and the number of
transistors used [124]. Here, Mikolajick et al. first classify cells according
to their configuration inputs as “hard-wired” or “soft-wired”. “Hard-wired”
logic cells connect their configuration inputs to voltages statically, i.e. during
manufacturing. Such devices do not offer any customization in the field [18].
They can however allow for more cost-efficient manufacturing of ASIC, as
the functionality of the circuit can be changed through modification of only
metal layers. The semiconductor layers can therefore be manufactured using
the same masks for different applications. Furthermore, it is also possible to
develop standard cells with completely fixed functionality for these ambipolar
technologies [125].

More interesting for this thesis is the second group of “soft-wired” logic cells.
These cells enable changing of functionality “in the field” and can therefore be
used to realize FPGAs architectures. The most basic of those cells can realize
only two different functions. They are usually implemented using complimen-
tary pull-up and pull-down networks and switch between complimentary

54 Chapter 2 Fundamentals

functions [18]. In this category, NAND/NOR, AND/OR, XOR/XNOR and other
cells have been proposed [26]. Other works in literature have also combined
multiple of these cells using multiplexers, forming more expressive cells, e.g.
a 6-function static-logic cell [126].

(a) DRLC_7T Cell [123, 127] (b) CNT_SRC_10T Cell [123]

Figure 2.22: Reconfigurable cells basedonambipolar devices asproposed in literature.
Circuits were originally realized using Dual Gate CNTFET (DGCNTFET)
devices [123], but the structure has been adapted to other ambipolar
technologies. (a) A 7-transistor cell realizing 14 functions of two inputs.
This realization uses a dynamic logic approach. (b) A 10-transistor cell
realizing all 16 functions of two inputs. The circuit has been realized as
static logic.

More advanced cells can be grouped into almostULMs, ULMs and novel LUTs
classes. An example of an almost ULM is shown in figure 2.22a. The original
version of this circuit was presented in [127] and described an 8-function cell.
It was derived from [128], which is the first published “soft-wired” ambipolar
reconfigurable cell. The circuit is implemented using DGCNTFET in dynamic
logic. The threeprogramming inputsA,B andC areprogrammedwithpositive
and negative supply voltages. In [123], the concept was extended to use three
values for the programming voltages. Using an additional zero level voltage
allows turning off RFET devices, and enables realization of 14 functions in to-
tal. Jabeur et al. also proposed a similar static logic cell, shown in figure 2.22b.
This cell is an example of a full ULM, as it can realize all possible 16 functions
of 2 input signals. Whereas a static cell is easier to use, the main drawback
of this specific cell is the large number of configuration inputs: A total of 9
configuration inputs with three possible values each require more configura-
tion storage than the 4 bit needed for a two-input LUT. Because of that, later
works such as [129] explicitly try to reduce the needed configuration storage:
The cell proposed by Kato et al. reduces configuration input values back to
only two voltages, but it is a dynamic logic design. Some designs of similar

2.6 Ambipolar Reconfigurable Cells 55

cells, such as a 6-function 2-input cell or a 13-function 3-input cell, can be
found in [122]. The 6-input static cell presented there uses only 150 transistors
compared to 648 needed for a similar LUT.

The fourth class, LUT-like cells, can also realize all possible functions for a
certain input configuration. Unlike ULM, these devices however implement
a memory based logic generator, just like traditional LUTs. Examples of such
cells include the ones proposed by Kumar et al. [130] and improved by Guo et
al. [131]. Both works use memristors to implement LUTs in less area than is
needed for a silicon LUT realization. They mainly achieve this through com-
bination of the data storage and the MUX or decoder network. Furthermore,
they replace the SRAM for configuration storage with memristor elements.
Such logic cells have been proposed as two, four and six input variants. Both
Kumar’s and Guo’s implementations are similar, with the main difference be-
ing a reduced number of transistors in Guo’s variant.

Another way to classify ambipolar logic generators is according to the way
the logic elements have been designed. Here, Cheng et al. distinguish four
classes [122]: CMOS like structures are based on complementary networks
and include designs like the simple 2-function cells of [26]. Stack based cell
architectures stack multiple rows, where each row consists of two transistors.
Invertedoutput architectures are thosewhich feature an inverter at theoutput,
such as the designs of figure 2.22. BDD based cells are designed using BDDs,
enabling the designer to specify the functions to be realized [132]. Yet another
way to classify those cells is chosen by Rai et al. and groups devices according
to technology [108]: The realizations by Jabeur et al. [123] and Cheng et al.
[124] are DGCNTFET based, whereas Gaillardon’ works are based on silicon
nanowires [125]. Rai also presents Spintronic based cells as well as memristor
based LUT realizations. As some of those ambipolar reconfigurable cells
provide only limited expressiveness, some works have investigated efficient
interconnect concepts to combine multiple of those cells. Yakymets et al.
propose an efficient interconnect matrix [133], whereas Cheng et al. focus on
the implementation of efficient cell clusters [124].

Further Reading

As there are no textbooks available on reconfigurable ambipolar logic cells,
information has to be obtained largely from original publications. Some re-
view papers are available and summarized in the following: [Che13] provides
an overview of cell designs published until 2013. It analyzes the number of
transistors used as well as the number of functions realized. In a publication

56 Chapter 2 Fundamentals

published three years later, Cheng et al. categorize various 2-input cells and
analyze the realized functions in detail. They also discuss efficient combina-
tion of multiple cells in matrix structures [Che17]. Mikolajick et al. provide an
overview of RFET device technology in 2017, including a short section on ap-
plications [Mik17]. They describe various published reconfigurable cells and
cover the topic ofMultiple IndependentGate FETs (MIGFETs), which allow for
further optimizations in cell design. Themost recent review on reconfigurable
ambipolar cells was published by Rai et al. in 2021 [Rai21]. It summarizes
both traditional FPGA logic generators and RFET based ones, as well as mem-
ristor and Spintronic cells. Rai et al. also evaluate these cells in terms of area,
delay and power for certain FPGA benchmarks.

[Che13] CHENG, Kevin; LE BEUX, Sebastien and O’CONNOR, Ian: “Am/IDG-FET
based reconfigurable cells versus LUTs: Characteristics description and
analysis”. In: 2013 25th International Conference on Microelectronics
(ICM). IEEE, 2013, pp. 1–4. DOI: 10.1109/ICM.2013.6734987.

[Che17] CHENG, Kevin; LE BEUX, Sebastien and O’CONNOR, Ian: “Hybrid Topolo-
gies for Reconfigurable Matrices Based on Nano-Grain Cells”. In: 2017
IEEE International Conference on Rebooting Computing (ICRC). IEEE,
2017, pp. 1–8. DOI: 10.1109/ICRC.2017.8123639.

[Mik17] MIKOLAJICK, T.; HEINZIG, A.; TROMMER, J.; BALDAUF, T. andWEBER,W. M.:
“The RFET—a reconfigurable nanowire transistor and its application to
novel electronic circuits and systems”. In: Semiconductor Science and
Technology 32.4 (2017), p. 043001. DOI: 10.1088/1361-6641/aa5581.

[Rai21] RAI, Shubham; NATH, Pallab; RUPANI, Ansh; VISHVAKARMA, Santosh Ku-
mar and KUMAR, Akash: “A Survey of FPGA Logic Cell Designs in the Light
of EmergingTechnologies”. In: IEEE Access 9 (2021), pp. 91564–91574. DOI:
10.1109/ACCESS.2021.3092167.

https://doi.org/10.1109/ICM.2013.6734987
https://doi.org/10.1109/ICRC.2017.8123639
https://doi.org/10.1088/1361-6641/aa5581
https://doi.org/10.1109/ACCESS.2021.3092167

2.7 FPGA System Architecture 57

2.7 FPGA System Architecture

Previous sections have introduced reconfigurable cells that can be used to
realize small combinational functions. In order to design larger digital cir-
cuits, these basic cells need to be integrated in a larger, reconfigurable system.
This thesis will focus on one specific type of reconfigurable systems, Field
Programmable Gate Arrays (FPGAs). FPGAs are “field programmable”, which
means that they can be reconfigured “in the field”, i.e. without manufacturing
of customized hardware. This is in contrast to ASICs andmask-programmable
devices, where customizing the function means developing at least some cus-
tom masks and manufacturing new ASIC devices using those. FPGAs are
fine-grain reconfigurable devices: They are optimized to provide efficient
manipulation of single bits, whereas coarse-grain systems operate on whole
words – often even floating point values – at once [134]. As FPGAs enable the
implementation of customized digital ICs without expensive manufacturing,
they are widely used for prototyping and small-scale series production, where
manufacturing ASICs is not cost-efficient. Commercial devices are available
from various vendors with different performance, power and cost characteris-
tics. The following section will summarize quickly how FPGAs are realized us-
ing the reconfigurable cells introduced previously.

Figure 2.23:Combination of an D-FF and the reconfigurable cell in a LE [118].

Logic Elements LEs are based on the previously shown reconfigurable cells,
but extend them in various ways. In commercial devices, LEs are usually
realized using LUTs, but any of the previously introduced reconfigurable cells
could be used. As this cell is the base element of FPGAs, it has to feature
some way to reconfigure the logic function it realizes in-the-field. In addi-
tion, to support arbitrary user application logic functions, the FPGA must
be able to provide a functionally complete set of boolean operations. Al-
though this usually means one type of LE has to support such a complete
set, it is also possible to use multiple types of LEs in an FPGA. Alternatively,
some logic operations could be integrated within device interconnect, e.g.

58 Chapter 2 Fundamentals

an inversion as part of an inverting buffer. As long as the combined set of
reconfigurable elements in the FPGA realizes a functionally complete set of
operations, basic FPGA functionality can be achieved. Larger logic functions
can then simply be decomposed into operations supported by the LEs using
EDA tools.

In addition to the reconfigurable cells, which enable implementation of com-
binational logic, LEs usually feature a storage element [118]. In most imple-
mentations, this element is a simple D-FF connected to the output of the
reconfigurable cell, as shown in figure 2.23 on the previous page. It is needed
to implement sequential circuits, commonly used in Finite State Machine
(FSM) implementations. TheFF is usually not directly connected to theoutput
of the LE, but via a user-configurable MUX: This design allows to optionally
bypass the FF and output the combinational signal of the reconfigurable cell.
It is mostly useful to realize large combinational functions using multiple LE.
Similarly, a bypass for the reconfigurable cell, which is often realized using
the identity function in LUTs, allows to use the LE as a basic memory storage
element.

Figure 2.24:The logic cluster as used in the commercial Intel Aria 10 architecture
[135]. The cluster consists of MLAB and LAB, each consisting of 10 ALMs.

LogicClusters Multiple LEs are commonly combined in clusters, calledLogic
Array Block (LAB) in Intel and CLB in Xilinx FPGAs [120, 136]. An example
of such a cluster, the LAB used in Aria 10 FPGAs, is shown in figure 2.24. A
LAB consists of 10 Adaptive Logic Module (ALM), where “ALM” is Intel’s term
for LE [135]. As can be seen in the figure, logic clusters commonly share a
local interconnect, which is their defining characteristic: The interconnect

2.7 FPGA System Architecture 59

is commonly the largest single contributor to FPGA area and application
delay, with up to 50% of both being caused by it [137]. Because of that, FPGA
designers introduce one level of hierarchy using a local interconnect. This
way, not all signals have to be routed using the global interconnect. Xilinx uses
similar clusters called CLBs. As an example, in their Ultrascale+ architecture,
this cluster consists of 8 6-input LUTs, 16 FF and additional carry chain logic
[138].

Figure 2.25:Defining characteristics of an island-style FPGA architecture [134]. The
interconnect is routed in a 2D-grid, logic blocks are islands within the
interconnect.

Global Architecture Logic Clusters are then combined in the FPGA system
as depicted in figure 2.25. The main feature at this abstraction level is the
FPGA’s programmable interconnect. It allows to connect the logic clusters
in a way that is configured by the user when programming the FPGA. The
interconnect itself used tobeanactive areaof research. Commonly, the Switch
Boxs (SBs) have been altered to only support some connections instead of
all, in an effort to reduce their area [120]. Similarly, Connection Boxs (CBs)
often do not connect logic clusters to all signals in a channel, but only to
a few. For the spatial placement of logic clusters, multiple variants have
been used over time: Whereas row-based systems used to be common for
early FPGAs, modern systems are largely island-style architectures. Those
have shown to be efficiently implementable, as their defining characteristic, a
regular 2D grid of wires, is easy tomanufacture [137]. In addition, commercial
systems tend to divide the FPGA into regions, where some resources such
as clock signals, are constrained to individual regions. Commercial systems
usually do not only consist of configurable logic clusters, but they include

60 Chapter 2 Fundamentals

hard logic such as memory blocks, Digital Signal Processing (DSP) blocks,
optimized Input / Output (IO) and other Intellectual Property (IP) blocks
[120]. Hard logic in this case describes logic which is directly realized on
the chip, as opposed to soft logic, which is using the programmable logic
resources.

Figure 2.26: Simple FPGA architecture as used in the remaining thesis. IO blocks
are at the periphery. Central blocks are logic clusters (white), memory
(diagonal lines) and compute elements (grid). SBs are denoted as small
gray blocks, CBs as dots.

Academic FPGA architectures on the other mostly focus on research of LE
and interconnect. They are usually simple island-style architectures as shown
in figure 2.26, with IO at the periphery. In real ICs this is difficult to real-
ize, as large pin-count demand IO pads all over the chip area. Furthermore,
hard logic for high-performance IO needs to be physically close to the IO
pads, which may cause issues if pads are only at the periphery. Because of
the research focus, such architectures commonly do not include any hard
logic blocks. Figure 2.26 shows an illustration of an island-style FPGA ar-
chitecture which will be used in the rest of this thesis. It has been simpli-
fied to show interconnect as simple dots and squares, avoiding visual clut-
ter.

Programming & Storage Whether based on LUTs or other reconfigurable
cells, FPGA also need reconfigurable storage. To date, three types of memory
have been commonly used for that [134]: The most commonly used storage is
SRAM storage. It is commonly used in high-performance commercial FPGAs
and is relatively easy to integrate in manufacturing, as it has little demands

2.7 FPGA System Architecture 61

on device technology. Its main drawbacks are relatively large size of up to 6
or 7 transistors per bit and the relatively high power usage. Furthermore, the
volatility of the storage necessitates additional non-volatile storage, which is
used to program the SRAM storage in the final system. One way to avoid this
external storage is to directly use Flash storage in the FPGA. This approach
is not commonly used though, as it poses certain requirements on the tech-
nology used. Efficient realization of Flash cells requires thick oxide layers to
prevent discharge of stored charges. Additionally, programming of the storage
cells requires high voltages, needing additional circuits and making dynamic
reconfigurationmore difficult. As a slight variation, Dynamic Random-Access
Memory (DRAM) FPGAs have been proposed in academia: They store data
similarly to Flash based FPGAs, but need periodic refreshes of the stored
charges. Whereas this relaxes some requirements on device technology, it also
makes storage volatile again. The third category ofmemory is Anti-Fuse based
memory. This approach has been used in older commercial devices. Its main
benefit is the non-volatility and power efficiency of the storage. Programming
again needs to happen using high voltages. This is then used to break down
fuses, often realized in between metal layers to avoid area overhead on the
semiconductor layers [139]. Whereas this storage is nonvolatile, programming
is also permanent and does not enable any reprogramming. Furthermore,
scalability to smaller devices nodes is limited.

Further Reading

Various textbooks on FPGA design cover FPGA architectures and some good
survey papers are available as well. [DeH07] provides an extensive overview
of all FPGA related topics, especially compute models and programming.
As it was published 2007, it also features description of older commercial
architectures. For an overview of PLA and PAL architectures, [Kuo07] can
be used. In addition to those works, [Vas07] provides an overview of re-
search architectures available in 2007. For a more recent introduction to
FPGA architectures, [Ama18] can be recommended. It is supplemented
by [Rod20] which focuses on use of commercial FPGA in industry contexts
and [Bou21], which provides an overview of research FPGA architectures in
2021.

[DeH07] DEHON, André andHAUCK, Scott: Reconfigurable Computing:TheTheory
and Practice of FPGA-Based Computation. 1. Aufl. Systems on Silicon.
s.l.: Elsevier professional, 2007.

[Kuo07] KUON, Ian; TESSIER, Russell and ROSE, Jonathan: “FPGA Architecture:
Survey andChallenges”. In: Foundations andTrendsⓇ in ElectronicDesign
Automation 2.2 (2007), pp. 135–253. DOI: 10.1561/1000000005.

https://doi.org/10.1561/1000000005

62 Chapter 2 Fundamentals

[Vas07] VASSILIADIS, Stamatis, ed.: Fine- and coarse-grain reconfigurable com-
puting. Dordrecht: Springer, 2007.

[Ama18] AMANO, Hideharu, ed.: Principles and structures of FPGAs. Singapore:
Springer, 2018.

[Rod20] RODRÍGUEZ-ANDINA, Juan José; LA TORRE-ARNANZ, Eduardo de and
VALDÉS PEÑA, María Dolores: FPGAs: Fundamentals, advanced features,
and applications in industrial electronics. First issued in paperback.
Boca Raton: CRC Press, 2020.

[Bou21] BOUTROS, Andrew and BETZ, Vaughn: “FPGA Architecture: Principles and
Progression”. In: IEEECircuits and SystemsMagazine 21.2 (2021), pp. 4–29.
DOI: 10.1109/MCAS.2021.3071607.

https://doi.org/10.1109/MCAS.2021.3071607

2.8 Synthesis and Implementation 63

2.8 Synthesis and Implementation

The following section gives a quick introduction to EDA tools. This thesis
will introduce both standard cell design for RFETs and new approaches for
application mapping to RFET-based FPGAs, so both FPGA and ASIC design
flows will be explained. Due to the similarities of the design flows, and FPGA
tools being more relevant for this thesis, the FPGA flows are used as an exam-
ple and relevant differences to ASICs will be noted inline. Figure 2.27 shows
involved EDA tools for FPGA application design. This figure includes host
integration, as in the general case, FPGA may be used in combination with
a host processor [140]. This aspect is of no particular relevance to this work
though and therefore won’t be elaborated further.

Figure 2.27:Design flow for FPGA applications, including design capture using High
Level Synthesis (HLS) and Domain Specific Languages (DSLs), as well as
integration with host code [140].

Design Capture The first step in designing an FPGA application is design
capture [141]. In this step, the user describes the application in a machine-
readable way. For higher productivity, DSLs and HLS have been introduced as
ways to enable higher-level descriptions than the traditionally used Hardware
Description Languages (HDLs) VHDL and Verilog. A detailed overview of
such high-level approaches is given in [140], but the applications used in this
thesis will start on HDL level.

Synthesis After a HLS design has been compiled to HDL or a user has
developed a HDL design, the first step is to transform it to a technology-
independent netlist in Register Transfer Level (RTL) form. The RTL form

64 Chapter 2 Fundamentals

consists of only registers and combinational logic, allowing direct mapping to
the reconfigurable and non-reconfigurable logic cells introduced previously.
The transformation step, technology-independent synthesis, replaces high
level language constructs such as processes, and emits a structured netlist.
As a technology-independent description of combinational logic, netlists
often include function tables with an arbitrary number of inputs. The tools
commonly used in the open source community for this synthesis step are
ODIN II [142] and Yosys [143]. In addition, various commercial tools are
available. In general, technology independent synthesis does not differ
for ASICs and FPGA targets and tools like Yosys have been used for both.
Nevertheless, FPGA vendors often include tools specific to their FPGAs in
their tools, such as in Xilinx Vivado. Similarly, tools like Cadence Genus are
mostly used for ASIC design. Often, technology independent synthesis and
technology mapping, are combined in one tool.

TechnologyMapping TechnologyMapping is the step of converting the tech-
nology independent RTL netlist to a technology specific netlist. For ASICs, the
tools have to ensure to only use logic cells available in a standard library. For
LUT based FPGA, the problem is easier, as LUT can realize any function. The
only limitation in that case is the number of available inputs of the LUT, reduc-
ing theproblem to a coveringproblemwhich canbe solvedusing e.g. dynamic
programming [118]. Both standard cellmapping andLUTmapping is handled
by ABC in open source design flows. ABC converts netlists into an internal
And-Inverter Graph (AIG) representation, performs technology independent
logic optimization, and also maps the internal presentation to cells or LUTs
[144]. Commercial tools again include FPGA specific vendor tools such as
Vivado and tools such as Cadence Genus for ASICs.

ASIC tools can in general be used with different technology nodes and fabs.
For a tool to work with their technology, technology vendors provide PDKs
to be used with those tools. For the technology mapping, PDKs provide
Liberty or .lib files, describing which standard cells are available and their
timing information. The format developed by Synopsys is text based and can
therefore easily be generated manually [145]. Apart from information about
the cells themselves, such as names and pins, the file includes all possible
timing ARCs for the cells. Furthermore, it includes a wire-load model to
be used to derive an approximation of the capacitive load caused by wires
connecting cells. This load information is then used to look up the timing
arcs, which are usually parametrized on this load. Traditional standard cell
libraries may provide multiple cells with the same function for different wire-
loads. The synthesis then performs STA as explained earlier and chooses

2.8 Synthesis and Implementation 65

a cell which minimizes the path delay or area, depending on optimization
goal and criticality of the path. Whereas STA for ASICs works as previously
explained, STA for FPGA applications is simplified: For LUT based FPGAs, the
delay introduced by logic elements is always the same. However, in FPGA the
interconnect, delay is more important: Unlike in ASICs it is not only caused
by parasitic wire loads. It also includes the delays caused by interconnect
switches. For both targets, synthesis will perform STA even before placement
to obtain estimates of expected delays and guide synthesis. The longest,
critical pathwill limit themaximumachievable frequency, whichhas tomatch
or surpass the target frequency set by the application designer. In ASIC, STA is
explicitly performed on different corners because of the delay variations due
to PVTA. Usually, results of the worst corner have to be used, pessimizing the
timing results. Even though FPGA tools often do not expose various corners
for STA, they are also affected by PVTA and internally assume worst case
delays of cells.

Packing Packing or Clustering is a step performed before the placement step,
reducing that step’s complexity [118]. It is most commonly used to cluster
primitives which need to be placed in related locations on the final FPGA. An
example for this is Versatile Place and Route (VPR)’s VPACK algorithm: It is
primarily used to cluster LUT and FF which usually are realized in one LE in
FPGAs. Furthermore, it also allows packing multiple LE within a logic cluster
[146]. Apart from handling some parts of the placement process, packing also
handles some placement legality constraints, simplifying the implementation
of placement algorithms [118].

Placement Placement can be realized using structured or unstructured ap-
proaches. Structured approaches use information about the design hierarchy,
whereas unstructured approaches view the circuit as a large unstructured
network of logic blocks and FFs. Structured approaches include datapath
oriented placement as well as user guided placement variants. The most
commonly used placement algorithms however are unstructured [118]. For
ASICs, placement usually means placing rectangular elements on a 2D grid or
placing standard cells within predefined rows. For this, information about the
physical dimensions of a cell is needed, which is provided as a .lef file. Place-
ment for ASICs can be separated in global and detailed placement. Global
placement may then generate illegal results, such as small overlaps between
cells, which need to be sorted out in detailed placement [46]. Apart from
stochastic placement algorithms, ASICs sometimes use analytic approaches:
Here, a global function describing the total wire length is used to analytically
find a minimum [118]. FPGAs usually use stochastic placement algorithms,

66 Chapter 2 Fundamentals

where the most commonly used ones are based on simulated annealing [118].
For example, VPR’s placer operates in three phases [146]: In the first, it pro-
duces a randomplacement. In the second it performs randompairwise swaps
and in the third reevaluates costs. Using the standard deviation of these initial
placements, an initial temperature for the annealing is derived. As a last step,
the annealing itself is performed with a specific temperature schedule. For
an open source tool placement tool targeting commercial FPGAs, refer to the
nextpnr tools [143].

Routing Routing finds legal connections between placed logic elements,
according to the netlist. In ASICs, routing is often split into global and detailed
routing phases [46, 147]. Global routing in this case determines routing
between certain predefined regions, whereas detailed routing then finalizes
the connections for each single network. FPGA tools usually combine global
and detailed routing, as resources in routing channel are more limited than
in ASICs [118].

Figure 2.28: Tools and file formats used in common FPGA design flows [148]. The
figure focuses on open source tools, but includes some commercial tools
for reference. Highlighted is the fasm format, which is used to as a text-
based bitstreams description for various FPGA architectures.

Bitstream Generation After a legal placement and routing has been ob-
tained, the reconfigurable cells and interconnect of the FPGA have to be
configured to realize this result. For that, usually a file containing the con-
figuration bits for all reconfigurable units is created [118]. For LUTs, this
means directly storing the function table, whereas for other elements, the
configuration has to be encoded somehow. Regarding the interconnect, se-
lected multiplexer bits are usually stored directly. Figure 2.28 shows tools
and file formats used in open source design flows for FPGAs. Bitstream gen-
eration is generally an FPGA dependent task, but the FPGA ASM (FASM)
format allows to encode this information in a common text format [148].
FASM data can be generated by VPR as a result of the place and route phases

2.8 Synthesis and Implementation 67

[149] and can then be used in custom tools to transfer the result to a binary
format.

Further Reading

EDA tools and algorithms have been covered for both ASICs and FPGAs in
literature. For DSLs, HLS and programming paradigms for FPGAs in general,
refer to [Del23]. An in-depth treatment of mapping, placement, routing and
bitstream generation for FPGA is given in [DeH07]. For a shorter, more recent
summary of those topics, refer to [Ama18]. Examples and case studies of FPGA
architectures and tools can be found in [Vas07], whereas an industry oriented
introduction covering mixed signal simulation and debugging in general is
given by [Rod20]. ASIC EDA topics are covered in detail in [Ger99], with a
shorter, more recent summary given in [Kah22]. For an overview of design
flows and mixed signal aspects, refer to [Wes11].

[Del23] DEL SOZZO, Emanuele; CONFICCONI, Davide; ZENI, Alberto; SALARIS,
Mirko; SCIUTO, Donatella and SANTAMBROGIO, Marco D.: “Pushing
the Level of Abstraction of Digital System Design: A Survey on How to
Program FPGAs”. In: ACM Computing Surveys 55.5 (2023), pp. 1–48. DOI:
10.1145/3532989.

[DeH07] DEHON, André andHAUCK, Scott: Reconfigurable Computing:TheTheory
and Practice of FPGA-Based Computation. 1. Aufl. Systems on Silicon.
s.l.: Elsevier professional, 2007.

[Ama18] AMANO, Hideharu, ed.: Principles and structures of FPGAs. Singapore:
Springer, 2018.

[Vas07] VASSILIADIS, Stamatis, ed.: Fine- and coarse-grain reconfigurable com-
puting. Dordrecht: Springer, 2007.

[Rod20] RODRÍGUEZ-ANDINA, Juan José; LA TORRE-ARNANZ, Eduardo de and
VALDÉS PEÑA, María Dolores: FPGAs: Fundamentals, advanced features,
and applications in industrial electronics. First issued in paperback.
Boca Raton: CRC Press, 2020.

[Ger99] GEREZ, Sabih H.: Algorithms for VLSI design automation. Chichester and
Weinheim:Wiley, 1999.

[Kah22] KAHNG, Andrew B.; LIENIG, Jens; MARKOV, Igor L. and HU, Jin: VLSI Physi-
cal Design: From Graph Partitioning to Timing Closure. Cham: Springer
International Publishing, 2022. DOI: 10.1007/978-3-030-96415-3.

[Wes11] WESTE,Neil H. E. andHARRIS, DavidMoney: CMOSVLSI design: A circuits
and systems perspective. 4. ed. Boston, Mass.: Addison-Wesley, 2011.

https://doi.org/10.1145/3532989
https://doi.org/10.1007/978-3-030-96415-3

This page intentionally left blank

Chapter 3

RelatedWork

This chapter covers related work for the various aspects covered in this thesis.
It starts with ambipolar standard cell libraries, continues with ambipolar
FPGAs, introduces works related to dynamic reconfiguration in FPGA, sum-
marizes somePVTA compensationworks andpowermanagement techniques
and concludes with an overview of synthesis approaches for reconfigurable
cells.

3.1 Ambipolar Standard Cell Libraries

To develop digital circuits based on ambipolar devices in an automated, stan-
dard cell based EDA flow, a matching PDK including a set of standard cells is
required. Traditionally, PDKs have been largely shipped as closed source IP
and have been provided by the foundries which developed the technology
nodes and ultimately manufacture the ICs. In recent years, there have been
releases of open-source PDKs for commercially available CMOS technologies.
Two famous examples include SkyWater’s 130 nm SKY130 [150] and Global-
Foundries 180 nm GF180MCU [151] technology.

Predictive PDKs It is possible to develop PDKs without having a complete
manufacturing process for a technology. Those PDKs are called Predictive
PDK (PPDK), as they describe a predicted technology. Traditionally, academia
did not have access to the small-feature size technologies, such as recent
FinFET technology. Because of that, researchers build PPDKs for these CMOS
technologies, enabling them to prototype and test their circuit designs on
modern technology nodes without access to the foundries commercial PDK.
One of the earliest example for a standard CMOS PPDK is the 45 nm FreePDK
[152]. Some years later, FreePDK15 [153] was developed to target a functional
15 nm FinFET technology. A basic PDK such as FreePDK15 usually includes

70 Chapter 3 RelatedWork

various rules and definitions: A set of design rules specifies required distances
between traces and similar geometric rules. The layer definitions determine
what layers are available and what properties they possess. This includes
active layers for the design of transistor devices as well as metal layers for
wiring. Furthermore, a PDK usually includes SPICE simulation models for
the transistor devices. More advanced PDKs may also provide support for Par-
asitics Extraction (PEX) to determine parasitics from the layout and Layout vs.
Schematic (LVS) to verify that the layout matches the schematic. With those
parts, PDKs can be used to design and simulate analog circuits, including the
standard cells themselves.

View File Description
Technology
Library

.lib Provide logic, timing, power and area information of
the cells in the library.

Geometric
Library

.lef Provide information about the physical layout of the
library in plain text, including design rules and abstract
information about the cells.

Simulation
Library

.v Provide a behavioral information of the cells for simula-
tion intents.

Cell
Layouts

.gds Provide information about planar geometric shapes,
text labels, and other layout information in a binary
format.

Cell
Netlists

.spi Provide an instance-based transistor netlist, represent-
ing instances, nets, and some attributes.

OpenAccess .oa Provide a database containing layouts and netlists.

Table 3.1: Views and file formats to describe a standard cell library for use in com-
mon commercial EDA tools. The table shows the views supported by the
FreePDK15 standard cell library and was taken from [154]. Not all functions
in the EDA flow require all views.

Standard cell libraries are often not included with the PDKs themselves, but
offered as an additional package. For example, for FreePDK15, a standard cell
libraryhasbeenprovidedbyMartins et al. [154]. Dependingon theactual EDA
tool and the task to be performed, different information grouped in “Views” is
needed. Table 3.1 shows the views provided by the FreePDK15 library, which
is a mostly complete set. Here, the .lib file is used for synthesis, .lef for
physical synthesis, .v is used for simulation, the .gds file for streamout and
the .spi file for timing characterization of the standard cells. The .oa file
is a database which combines some of these individual files. Standard cell
libraries vary in the number and type of cells they provide, as well as in the

3.1 Ambipolar Standard Cell Libraries 71

functions those cells can realize. For example, [154] provides 76 cells with
21 logic functions. Some cells are available in different drive strengths, so
that cells with higher drive strength can be used in high-fanout situations. In
addition, buffer and inverter cells are usually available inmore drive strengths
than usual cells. The library also provides sequential cells such as FFs, scan-
flops and latches. In addition to such logic cells, libraries provide helper cells:
Antenna cells, tie high and tie low cells and filler cells. The implementation
of cells commonly follows a template, as described in [154]: Apart from the
physical height of cells, usually positions of the power supply pins as well as
some well dimensions are the same for all cells. Such regularity ensures that
the user application design can later be routed more efficiently by the EDA
tools. Timing and power information are ultimately stored as simple tables
in the respective views, where values may be interpolated by the EDA tools
if necessary. Nevertheless, some methodologies have been established for
the characterization of cells to obtain these tables: As presented in [154], the
non-linear delay model is commonly used, the Composite Current Source
model is used by Synopsys and the Effective Current Source model is used by
Cadence. In general, tools like Cadence Liberate can provide an automated
characterization of CMOS standard cells: Given a netlist for a cell, these
tools automatically create SPICE netlists to simulate the cell. The simulations
are then performed using the SPICE model of the PDK and the results are
used to derive the values for the .lib file. This approach can also be used
to characterize RFET based cells, as it is independent of the cell layout. It
however requires fully functional SPICE models.

RFET Specific Optimization When it comes to logic cells for RFET, few
publications provide a complete set of standard cells. Most of the publications
focus on some specific issues and optimization instead: For example, Rai et
al. propose a set of six functionally enhanced logic gates [126]: Compared to
commonly used standard-cells, these integrate XOR operations, which can
be efficiently realized using RFET. In another publication, Rai et al. introduce
the concept of self-dual functions [155]: They first observe, that a specific
class of reconfigurable cell can be obtained by switching of pull-up and pull-
down networks, including the power rails. Such an operation makes a cell
switch between its dual functions. For example, a traditional CMOS NOR
becomes a NAND it its pull-up network and pull-down network are switched.
Of course, for traditional technology, switching means keeping the network
topology but using the correct transistor type in each network. For ambipolar
transistors used in RFET circuits, the transistors in pull-up and pull-down
network are identical and switching their polarities andpower rails can indeed
realize the opposite circuit. Based on this idea, Rai proposes a workflow

72 Chapter 3 RelatedWork

which finds such pairs of functions, called self-dual in the publication. The
workflow then automatically derives a set of standard cells which implements
these special, reconfigurable cells. In benchmarks, Rai et al. could show
a decrease in used area of 13% and a decrease in delay of 11.5%. Another
RFET specific optimization for standard cells has been proposed by Krinke et
al. in [156]: After observing that the additional configuration gates used by
RFET circuits add additional wiring overhead, Krinke et al. propose various
solutions to this issue. Apart fromoptimizing the layout of reconfigurable cells
and relative positions of these additional gate contacts, they also introduce
special buffer drivers to drive the gates in a reconfigurable cell. Furthermore,
they investigate placement of parts of the cells in specific power regions to
reduce power.

RFET PPDKs and Standard Cells To date, few standard cell libraries have
been presented for RFET PPDK. The first one was presented by Ben-Jamaa
et al. in [157] for Carbon Nanotube FETs (CNTFETs). They developed a
library based onNOR,NAND, AOI andOAI gates, but extended it with “non-
conventional” gates embedding XOR functionality. They also realized 46
functions with one base cell design to achieve a reduction of 26% in delay and
32% in area compared to using only unipolar CNTFET gates. The library char-
acterization was performed mostly manually. For area, the authors provided
relative estimates basedonaweighteddevice count: Theynormalized the area
of each used transistor in respect to a unit transistor and then summed the
normalized area of all transistors in a cell. They did however not consider the
complete layout of each single cell. For thedelay, Ben-Jamaa et. all used SPICE
simulation to obtain the FO4 delay, where each gate is driving 4 instances of
the same gate at its output. For evaluation, the authors used the open source
ABC tool to perform technology mapping. They developed a custom genlib
file to specify the available gates to ABC and mapped various benchmark
circuits, achieving a 6.9% average speedup.

In 2018, a new set of standard cell librarieswas presentedbyRai et al., this time
for Silicon Nanowire (SiNW) technology [158]. Unlike Ben-Jamaa, Rai et al.
designed full cell layouts for seven cells and characterized their library in .lib
and .lef files. Their library does not contain any sequential elements. To ob-
tain the timing characterization, the authors simulated the SPICE netlist with
aVerilog-A tablemodel for the silicon nanowire transistors. Areawas obtained
from the gate layouts. Using those files, they evaluated the MCNC bench-
marks using the qflowflow, which internally usesYosys and ABC.Their circuits
required in average 13%more area than a comparableCMOS implementation,
which used an scaled version of FreePDK45.

3.1 Ambipolar Standard Cell Libraries 73

Yet another PDK was presented by Gore et al. in 2019 [159]. The PDK features
Verilog-A SPICE models, design rule manuals and Design-Rule Check (DRC)
and LVS support for 10 nm silicon-nanowire Three-Independent-Gate FET
(TIGFET). As common for these PPDK, the SPICEmodelwas derived as a table
model from Technology CAD (TCAD) simulation. Whereas this initial publica-
tion did not include a standard cell library, it was presented in 2022 by Gauchi
[160] and Keyser [161]. Using the analog features of the PDK, Gauchi designed
layouts for 11 cells in CadenceVirtuoso. The cells where then characterized
using Cadence Liberate and the results where analyzed using benchmarks.
Whereas the analog flow and design of the libraries used Cadence tools, the
benchmarks where synthesized using open source tools such as Yosys. When
analyzing the synthesis results of the PicoRV32 RISC-V processor, Gauchi
reported 2.3 times less area and 5.7 times less energy compared to the Global-
Foundries 12 nm technology. Figure 3.1 shows the cell characterization flow
for this technology as described bey Keyser [161]. Keyser’s description focuses
more on physical aspects of the cells. After layout, DRC and LVS, they authors
also perform PEX to assess parasitics of the devices. They then use Cadence
Liberate to obtain the .lib files.

Figure 3.1:Design flow for a TIGFET standard cell library, taken from [161]. Gates are
designed using the analog parts of the TIGFET PDK of [159]. Functionality
is then verified in DRC and LVS checks. The gates are then combined
with wire models taken from FreePDK15 to obtain parasitics for the final
characterization.

The latest PDK was presented by Quijada et al. in 2022 [162]. It targets the ger-
manium nanowire technology and again derived its SPICE model as aVerilog-
A table model from TCAD simulation. The authors analyze various cells in
SPICE, but do not provide any .lib or .lef files for a complete standard cell
library. The authors claim that parasitic effects can easily be derived, because
the nanowire design is based on a commercial FinFET process and values can

74 Chapter 3 RelatedWork

Author Ben-Jamaa Rai Gore
Gauchi
Keyser

Quijada

Year 2011 2018 2019 – 2022 2022
Publication [157] [158] [159]

[160, 161]
[162]

Device Used CNTFET SiNW SiNW
TIGFET

Germanium
Nanowire

Sequential Cells no no no no
Characterization Manual Silicon

Smart
Liberate no

Synthesis ABC Yosys
ABC

Yosys no

Wireload ? ? FreePDK15 no
Si-Compatible no no no no

Table 3.2:Overview of previously published PDKs for ambipolar transistor devices.
The table compares the technology used, whether sequential cells such as
FFs are provided, how .lib files are obtained, whether the PDK supports
standard cell synthesis for digital circuits, whether it integrates a wireload
model and whether it can be mixed with existing silicon standard cells.

be adapted. But before standard cells can be provided, the PDK needs to be
extended with DRC and LVS support first.

3.2 Ambipolar FPGA Architectures

Although various publications have covered ambipolar reconfigurable cells
and FPGAs are commonly mentioned as the main use case, few publica-
tions on ambipolar device based FPGAs are available. Part of the reason
for this is that a circuit level implementation and evaluation requires a full
PPDK and EDA integration. So far, only one such PPDK for RFET has been
published and only in 2022: The SiNW TIGFET PDK by Gore, Gauchi and
Keyser [159, 160, 161]. Without such a PDK, full circuit level implemen-
tation, simulation and evaluation is not possible. Nevertheless, some pre-
vious works have investigated partial aspects of ambipolar FPGA architec-
tures.

3.2 Ambipolar FPGA Architectures 75

Novel non-RFET FPGAs Some publications have investigated FPGA archi-
tectures using novel LEs, but still using conventional technology. An example
for this is the work by Parandeh-Afshar et al. in 2012 [105]: In this publication,
LUTs have been replaced with AICs. As a motivation, the authors argue that
programmable devices have previously been designed to fit EDA tools: As
those tools mostly used SOP representation of logic, PALs and similar devices
have focused on AND andOR gates. With the adaption of AIGs in EDA tools,
the introduction of AICs enables a simple technology mapping implementa-
tion. As AICs are less expressive than LUTs, a larger number of AICs has to
be used, increasing demands on the interconnect. To avoid congestion, the
authors propose the introduction of AIC clusters, where they also evaluate
various different sizes. For the local interconnect in these clusters, the authors
evaluate various depopulation levels for crossbars to reduce the area usage.
For their architecture, they found 75%populated crossbars to provide the best
trade off. In addition to a purely AIC based system, the authors also introduce
a hybrid system which mixes LUTs and AIC. Little details are provided for the
hybrid system, but ultimately, the authors claim this architecture reduced
delay by up to 32% and area by 16%.

Another novel, non-RFET FPGA architecture has been proposed by Gonçalves
et al. in 2013 [163]. In this architecture, the authors replaced normal SRAM-
based LUTs with Magnetoresistive Random-Access Memory (MRAM) backed
ones. This architecture is intended to be used in space systems, where radia-
tion is causing issues with SRAM based storage. The 2 input LUT, a combi-
nation of MRAM for long-term storage and DRAM for permanent access to
the stored data, has been manufactured and analyzed. The authors have not
discussed the system architecture of their FPGA or any implications for EDA
tools. As the new architecture is however still using LUTs, it can be assumed
that few or no changes are necessary.

Ambipolar FPGA Architectures The first and to the knowledge of the au-
thor only complete description of an FPGA architecture based on ambipolar
devices has been given in various publications by Ben-Jamaa and Gaillar-
don. In 2011, they first described their reconfigurable logic cell, a DGCNTFET
based replacement for LUTs [164]. In addition to the reconfigurable cell, the
authors also introduced a way to allow permutation of power lines, which
may be needed if nets change between pull-up and pull-down functionality.
Special to this initial publication is that configuration inputs of the cell are
not directly connected to storage. They are realized as normal inputs instead
and routed using the interconnect. The authors present a EDA flow based on
ABC, VPACK andVPR and evaluate various benchmarks for their architecture.

76 Chapter 3 RelatedWork

They report a 13% speedup compared to a reference architecture with LUTs,
but at an area overhead of 10%. The authors have not made use of any other
benefits of RFET and have not introduced any novelties in the FPGA system
architecture.

Figure 3.2: Introduction of the MCluster and different internal routing architectures
[165]. MClusters reduce the amount of signals which are routed on the
global interconnect and therefore reduce routing congestion.

A slightly modified variant of this FPGA architecture has been presented in
the same year by Gaillardon and Ben-Jamaa [166]. The main novelty of this
publication is the introduction of MClusters, shown in figure 3.2. Using 3x3
MClusters, the authors managed to reduce the area by 62% compared to
LUTs. As MClusters use a special interconnect implementation, there are
more changes required in EDA tools, which are explained in detail in the
publication. Again, the publication does not make use of any other features
of RFET, e.g. for power reduction. The final version of this architecture has
been presented 4 years later, in [165]. It is based on the same dynamic logic
reconfigurable cell as the previous publications and again uses MClusters.
This publication however puts even more focus on EDA aspects and evaluates
a larger set of benchmarks. In addition, the authors perform an evaluation of
various granularity levels for MClusters.

Whereas the FPGA architecture by Gaillardon et al. did not make use of
special RFET features, a publication by Park et al. in 2017 [167] explicitly
focuses on one such feature: The technology used enables the storage of
configurationdata on theBGsof the device. TheBGs therefore effectivelywork
as a flash memory, as shown in figure 3.3. Programming of the BGs is carried
out using high voltage pulses, where the pulse duration determines drain
current and pulse potential determines threshold voltage. Unfortunately, the
publication provides little additional information: The transistor technology

3.3 Dynamic Reconfiguration 77

Figure 3.3: Programming of a transistor using charge storage on the BG [167]. Left:
Programming pulse polarity determines device polarity. Pulse duration
determines drain current. Right: Variation of programming voltage affects
threshold voltage.

has not been presented in detail. It is based on poly-silicon and the measured
devices have gate lengths of 1μm. The authors did not explain whether they
expect their technology to be shrinkable to smaller features sizes. Similarly,
little information is given about the reconfigurable cell or the system FPGA
architecture. Although the publication envisions high-density reconfigurable
devices, it does not present such a system. The publication rather focuses on
the description of the device on transistor level.

3.3 Dynamic Reconfiguration

Modern FPGA architectures do not only allow to configure FPGAs once at
startup, but provide more advanced configuration features. As most commer-
cial FPGA are SRAM based, various advanced applications using the ability to
quicklymodifymemoryhavebeendeveloped. In general, reconfiguration, the
process of programming an FPGA with a bitstream, has been distinguished in
different categories [168]: Reconfiguration in general describes a replacement
of the configuration of the whole FPGA. In contrast, partial reconfiguration
replaces only a part of the FPGA bitstream. Both techniques can be further
distinguished as static or dynamic reconfiguration: In static reconfiguration,
non-reconfigured logic is kept in a reset, or stopped state. In dynamic recon-
figuration on-the-other hand, those areas which are not reconfigured contain
active logic and FPGA applications mapped to those areas are not interrupted
by reconfiguration. Most commercial FPGA now either provide only static

78 Chapter 3 RelatedWork

reconfiguration of the whole FPGA, or they provide Partial Dynamic Recon-
figuration (PDR), allowing to replace parts of the logic while keeping other
parts of the application working.

A summary of recent academic and commercial reconfiguration architectures
has been collected in 2019 byVipin et al. [168], whereas older architectures
have been described in [169]. PDR enables various new application patterns:
Logic can be time-multiplexed, which allows execution of large circuits on
smaller FPGAs. As reconfiguration is often implemented using serial register
chains and serial programming, the data transfer rate in reconfiguration is
often limited. Reconfiguration can therefore be performed faster in general,
if only a part of the bitstream is changed. Another benefit of PDR is that a
part of the user application circuit can be kept active during reconfiguration.
This can be useful to keep a peripheral link active and is commonly used
with Peripheral Component Interconnect Express (PCIe) connections to host
computers.

Reconfiguration architectures can be distinguished into architectures sup-
porting fine-grain reconfiguration and coarse grain reconfiguration. Whereas
fine-grain reconfiguration allows reconfiguring individual programmable ele-
ments, most architectures combine multiple elements to be reprogrammed
at the same time into Partially Reconfigurable Regions (PRRs). Grouping ele-
ments in this way allows reducing area overhead of the configuration network
at the cost of reduced flexibility. Most architectures support reading back
the configuration SRAM, but this feature is often not exposed. Cardona et al.
used this feature to read back frames, modify single LUTs and write back the
bitstream [170]. This enabled them to support fine-grain reconfiguration on
an architecture which originally only supports frame-based reconfiguration.
In addition to reconfiguration, some architectures support relocation: In the
relocation case, a user application can be placed onto a location on the FPGA
for which it has not originally been synthesized. Such concepts are most
common when multiple applications are to be executed on one FPGA. In
such a case, it might not be known during synthesis time which applications
will be running on the FPGA later on, and the location can not be determined
ahead of time. Most of the commercial toolchains still require defining possi-
ble target areas ahead of time. An application can then be placed onto any
such block, but not onto freely chosen locations. Yet another conceptual
difference can be found in reconfiguration time: Whereas specialized early ar-
chitectures enabled reconfiguration in one clock cycle, for recent commercial
architectures, reconfiguration is a slower process.

In an abstract view, the configuration memory of an FPGA can be thought

3.3 Dynamic Reconfiguration 79

Figure 3.4:Conceptual view of reconfiguration in FPGA [168]. Left: Configuration
memory as a virtual layer, independent of the hardware layer. Right:
Extending the concept to multiple memory layers leads to multi-context
FPGAs.

to be independent of the hardware logic, as shown in figure 3.4. The figure
also shows a conceptional view of multi-context FPGAs, which was an active
topic of research in the late 1990s. As FPGA were limited in size, such a con-
cept allowed to split larger circuits in a time-multiplexed manner. To realize
this, multi-context FPGAs store multiple independent bitstreams and switch
between those, usually on a fixed clock-cycle schedule. Switching between
different bitstreams leads to lots of changing signals, which ultimately causes
a large activity factor for most nets in the FPGA. This leads to high power
consumption, which ultimately caused this concept to be no longer used
when large FPGAs became available [168].

When it comes to adoption in commercial architectures, Xilinx and Intel sup-
port PDR on a coarse grain level. Xilinx introduces frames as the smallest re-
configurable unit. In early Xilinx architectures, frames used to cover complete
columns in the FPGA. They have become smaller in more recent architectures
though. National Semiconductor, Lattice and Actel initially supported PDR,
but removed it from later architectures. In general, PDR has not been adopted
by a larger audience [168]. Nevertheless, some applications where it has been
used will be explained in more detail:

Task Based Reconfiguration Apart from domain-specific examples, PDR
has been mostly investigated as part of task based reconfiguration systems.
Such systems take the idea of tasks as used in software Operating System
(OS) and transfer it to FPGA. As shown in figure 3.5, hardware tasks are
usually realized as partial bitstreams describing a local region of the overall
FPGA.

Publications for FPGA tasks can be roughly sorted into four categories: Task-
Mapping, Task-Scheduling, OS and Hardware-Software integration. Most

80 Chapter 3 RelatedWork

Figure 3.5:Hardware tasks in a 1D area model [171]. In the 1D model, tasks are al-
ways full-height and vary only in width, simplifying task placement. Tasks
need predefined communication interfaces to be relocatable. Steiger’s
architecture also reserves some area for OS support.

publications do not describe any changes in FPGA architecture, but they
make certain assumptions on the reconfiguration system. When it comes
to task mapping, one of the earliest publications was published by Diessel
in 1997 [172]. The publication assumes a homogeneous FPGA which allows
arbitrary relocation of logic in two dimensions. For such an architecture, the
authors presented an algorithm which can find free space to efficiently map
tasks. If not enough space is available, tasks can be moved to reduce gaps,
called compaction or defragmentation. In [173],Walder et al. use a similar
approach, but propose a different algorithm to efficiently keep track of free
space. A more recent take of task mapping is given by Sidiropoulos et al. in
[174]. The authors use an architecture with multiple independent FPGA cores
and combine those with a host computer. The host computer keeps track
of the unused logic resources within each FPGA core. When an application
needs to be mapped, the system uses the netlist to actually place and route
the design on demand. It takes into account information about already used
resources and therefore enables tasks to overlap in area. Compared to other
systems which are based on pre-placed and pre-routed tasks, this allows for
better resource usage. For large FPGA designs, the reconfiguration time can
however become excessive when a place and route step has to be performed
on demand.

3.3 Dynamic Reconfiguration 81

Task scheduling has been discussed starting with [175]. In this publication,
authors describe a system which allows to choose the location of tasks at
runtime. They provide an algorithm for efficient arrangement and packing,
assuming a homogeneous FPGA architecture. For recent, commercial FPGAs,
Sterpone et al. introduce a custom routing system [176]. As this system is
aware of reconfiguration frames, it routes the design in a way to minimize
the number of frames and bitstream size. This allows for more efficient recon-
figuration of tasks. Another scheduling algorithm has been presented by da
Silva et al. and focuses on streaming applications [177]. It uses runtime task
scheduling and introduces a performance model to enable prediction of the
speedup.

The third topic, OS for FPGA systems, has been lead by Steiger et al. In 2003,
they first described the idea of an FPGA OS as shown in figure 3.5, including
a scheduler, placer and loader for tasks [178]. The publication’s main focus
however is on algorithms for planning and placement. In the followup publi-
cation [171], Steiger et al. then describe the OS in detail. It introduces online
scheduling with hard realtime guarantees. It further asserts that as FPGA
systems do not always allow arbitrary relocation of logic, tasks need to use
a pre-defined communication scheme. In such a scheme, the location of
communication logic within a task is fixed.

More recently, with the introduction of FPGA in data centers and cloud com-
puting, hardware-software co-design aspects have been investigated. In such
systems, a host computer is used to configure the FPGA with various tasks.
These tasks are then used to accelerate certain specific operations, but the
main application logic is still executed in software on the host computer. Pub-
lications include [179], which was one of the first to discuss the topic and to
combine software and hardware tasks. Janßen et al. then expanded on the
concept by providing a predefined library of hardware accelerators, so-called
hardware overlays [180, 181]. Their system was on of the first to be integrated
with the PYNQ software stack. Another hardware-software integration frame-
work which provides automated design-space exploration to find efficient
trade-offs is TaPasCo. It focuses on parallel computation of tasks and ease of
use in software [182].

Fine Grain Reconfiguration Previously mentioned publications have not
made any changes to FPGA architecture, although some of them have as-
sumed fine-grain reconfigurability with relocation support. In the follow-
ing, custom architectures with novelties in the reconfiguration system are
reviewed quickly.

82 Chapter 3 RelatedWork

(a) (b)

Figure 3.6:Overview of a time multiplexed FPGA as described by [183]. (a)Working
principle with multiple independent memory layers time multiplexed for
one logic layer. (b) Splitting combinational logic into multiple contexts.

Figure 3.6 shows one of the first multi-context FPGA [183]. It is reconfigurable
in one cycle and allows to choose one out of eight stored configurations. To
support quick saving and restoring of the state, the architecture introduced
micro registers, which can storeCLBoutputs. The authors also explore various
usage patterns of such architecture in detail. One of those, Logic Engine
mode, is shown in figure 3.6b. It depicts how the system can be used to time-
multiplex a single design: Combination logic is split into multiple parts and
executed in multiple cycles.

A similar architecture was proposed by Li et al. [184]. Based on multi-context
FPGAs, they introduce configuration caching: To reduce the time spent in
reconfiguration, the authors propose various optimizations to reduce the
number of reconfigurations. They also propose caching algorithms with work
efficiently for relocation and defragmentation.

Figure 3.7: Rowbaseddefragmentation as proposedbyCompton [185]. Configuration
data and state of each single row is first read into the rowbuffer, then stored
into the new location.

Figure 3.7 shows row-based defragmentation, a concept proposed by Comp-
ton et al. [185]. Their architecture is a homogeneous FPGAwith homogeneous
and virtual IO to enablemoving of logic. As 2D defragmentation is an algorith-
mically complex problem, the authors focus on 1D defragmentation instead.

3.3 Dynamic Reconfiguration 83

Through introduction of a row buffer, reconfiguration of the device always
happens one row at a time. In addition, the current configuration and state
can be read back into the row buffer. When multiple applications have been
started and stopped, some empty rows may reside between applications. To
free up this space into a larger region, a defragmentation system is introduced.
This system moves applications on the FPGA by copying them into the row
buffer and then to their new location row-by-row. A slightly modified and
extended variant of this architecture has been presented by Brebner et al.
[186]. The author’s architecture enables relocation without a host computer,
implementating all the relocation logic in hardware. For this, they extend
the Compton architecture’s row-based defragmentation to quickly find free
rows in hardware. Based on this free-space search, they implement on-chip
compaction of running FPGA tasks.

In 2004, Koch et al. introduce hardware extensions for preemptive task
scheduling and defragmentation [187]. FFs can already be configured as
part of the bitstream, as those can have defined initialization values. Freez-
ing the current application state can therefore be realized without hardware
extensions, but it requires reading back the complete configuration memory,
including LUT configuration which does not change. The authors therefore
introduce an additional scan chain which only connects the FFs in the logic
cells. This way, a smaller amount of data needs to be saved and restored. The
authors also present an extension to enable two-dimensional defragmenta-
tion through shifting.

Figure 3.8: FPGA core fusion as proposed by Figuli [188]. Multiple independent FPGA
cores can be combined to place larger tasks.

84 Chapter 3 RelatedWork

Figure 3.8 shows an approach to task mapping presented by Figuli et al. in
2011 [188]. This FPGA architecture is divided into multiple identical cores,
which behave independently. Application size is limited to be multiples of
the core size and applications are mapped to the cores using a controller.
When an application is too large for one core, the system supports core fusion:
In core fusion, the IO peripherals on one side are disabled and intercon-
nect switches instead connect to the next core. To enable routing of IO pins
in such an architecture, the authors also provide virtual IO adapters. De-
fragmentation can be performed on a coarse level using this system: The
architecture supports freezing and restoring state of a complete core. This
allows applications to be moved between cores, enabling defragmentation
on core level.

A completely different approach to fine-granular reconfiguration presented
by Bozzoli et al. in 2019 is shown in figure 3.9 [189]. This architecture allows re-
configuration on single LUT level through introduction of the“Reconfigurable
MultipotentCell”, ReM.This cell combines logic,memory and reconfiguration:
It enables distributed reconfiguration, as each cell can trigger reconfigura-
tion of its neighbors. Unfortunately, the authors have not demonstrated
how existing, regular applications can make use of such a novel architecture.

Figure 3.9: Basic cell of the distributed reconfigurable architecture by Bozzoli et al.
[189]. Each cell can trigger reconfiguration of its neighboring cells.

Anextension for relocation support on commercial FPGAshas beenpresented
by Adetomi et al. [190]. Its main contribution is the use of clock lines to
communicate between applications. As clock lines are not part of static
wiring in Xilinx architectures, this can reduce routing issues when relocating
applications. This approach is mostly useful when an existing architecture
must be used and can not be modified. When novel FPGA architectures are

3.4 PVTA Compensation 85

designed, it is possible to include dedicated wiring such as Network-on-Chip
(NoC) instead.

3.4 PVTA Compensation

TraditionalPVTASuppresionMethods Asexplained in theprevious chapter,
various PVTA sources affect the propagation delay of logic gates, including the
reconfigurable logic elements in FPGA. Similar effects also affect the propaga-
tion delay of wires and the FPGA interconnect in general. When working with
average or typical process values and the corresponding propagation delays,
circuits can fail: Whenone of the critical paths contains gateswithworse delay
than assumed in EDA STA, the circuit may actually cause setup time violation,
even though this was not visible in STA. Commonly used solutions include
speed binning and worst corner design: In speed binning, it is accepted that
some produced ICs may fail at their nominal clock frequency. Therefore, each
single IC is measured either statically after fabrication or dynamically at run-
time. Depending on the results, it may be used with clock frequencies which
are lower than the nominal frequency. Similarly, ICs with lower propagation
delaysmay be used at a higher frequency. Such an approach however requires
detailed measurements of the IC, which often needs test structures requiring
additional area on the chip. An alternative to this is worst-corner design: In
this case, STA is performedwith theworst case values for all possible variation
sources. This includes process, voltage and temperature variation as well as
aging. As process variation is largely random, the worst case combination of
all sources is unlikely to occur, especially all the time and affecting the total IC
area. Worst-case corner design therefore introduces overly pessimistic guard
bands [191]. This leads to additional design effort in otherwise unnecessary
circuit optimization. It also means that circuits often are clocked at a lower
frequency than theoretically possible. For FPGAs, this issue occurs in exactly
the same way. A commonly proposed solution to improve this situation, is
Statistical STA (SSTA) [51]. SSTA does not work with single values for prop-
agation delays, but operates on statistical distributions instead. As a result,
SSTA yields a distribution of circuit delay paths. This allows to estimate the
amount of circuits which can operate within a certain performance region. It
therefore allows to shape the performance distribution during design, which
increases the yield after binning.

Applicability for FPGAs Whereas FPGA suffer from performance variation
due to PVTA just like ASICs, the SSTA solution is unfortunately not easily

86 Chapter 3 RelatedWork

applicable. An approach was described in [192], but it suffers from various
usability issues: In FPGAs, the critical paths are not known during design
and manufacturing of the FPGA itself. SSTA therefore has to be performed
on the user application. However, at this time after FPGA ICs have already
been manufactured and sold, a yield optimization is difficult. In essence this
would mean that a produced bitstream works only on some FPGAs. Whereas
this is already undesirable for FPGA users, it would also be more difficult to
realize binning for FPGA bitstream programming. To make matters worse,
whether a bitstream operates properly on some FPGA IC is also highly de-
pendent on the placement. An FPGA IC which works for one version of the
design might not work anymore when minor changes in the design demand
a rerun of the EDA flow and yield a changed placement. Design synthesis
could then be repeated until the design is found to work on an FPGA, but
again, this only optimizes for a single IC. All in all, SSTA approaches therefore
are less suited for FPGAs: As binning becomes infeasible due to previously
manufactured devices and because of device reuse using reconfiguration, the
utility of statistical approaches is limited.

FPGA Specific PVTA Handling Solutions to mitigate PVTA effects on FPGA
therefore look different fromones used for ASICs. They are usuallymaking use
of the reconfigurability of the FPGAs in some way. Most of the time, solutions
are dynamic, adjusting various aspects of the implemented circuit during
circuit operation. A few completely static solutions, which do not perform
any operation at runtime, but only modify the EDA flow, have been proposed.
Usually those rely on a previous characterization of the target IC and make
use of that information during placement. Dynamic solutions also rely on
such a measurement of device characteristics, but perform these online. In
addition, they also include some aspects to compensate the PVTA effects
during runtime. In some cases, solutions also characterize the user applica-
tion: This allows to not only compensate PVTA to reach nominal operating
conditions, but to also accept reduced performance in areas where the user
application has sufficient slack and can tolerate larger delays. Compared to
nominal conditions, this concept allows for further energy saving optimiza-
tion. In the following, publications covering those individual aspects will be
presented. Publications combining these topics to yield a full compensation
system similar to the one in this thesis will be introduced at the end of this
section.

3.4 PVTA Compensation 87

Critical Path Identification

Identification of critical paths in an application design can be obtained
in two ways: One approach is special handling or detection of paths
during synthesis and implementation in the EDA tools. The other is to
detect critical paths or violation of their timing constraints directly in a
circuit.

In 1990, Kaenel et al. [193] presented a system for global voltage reduction.
To estimate the available timing slack of the critical path, they built a circuit
which emulates this path. This “Equivalent Critical Path” is measured and
dependingonavailable slack, the global power supply of the circuit is adjusted.
To build this equivalent path, the authors identify and extract the critical path
using EDA tools.

Figure 3.10: Variation aware chipwise placement as proposed by Cheng et al. [194].
Placement uses a chip specific variation map to optimize critical path
location.

A different approach was taken by Cheng et al. [194]. Instead of regulating
performance dynamically, they characterize each FPGA IC individually: Using
test circuits configured onto the FPGA, they obtain performance variation
maps for some defined regions in their ICs. They then integrate this infor-
mation in the EDA flow as shown in figure 3.10 to customize the placement
step for each FPGA IC. As the process variation is known, critical paths can be
placed into regions with smaller propagation delay. Overall, this allowed to
achieve a 12% improved performance. The main drawback of the system is
that the application bitstream has to be regenerated for each FPGA IC, which
is a time intensive operation.

A related approach was taken by Ghosh et al. [195] for low-power design. In
such systems, optimization such as gate sizing can increase the number of
critical paths. In order to compensate process variation, the authors therefore
describe a way to reduce critical paths in circuits: Using modified EDA tools,
they customize the Shannon Expansion step in a way to shape critical paths.

88 Chapter 3 RelatedWork

Using this, they then confine the critical paths to certain logic cofactors and
isolate them. They then switch to two-cycle operation at runtime when those
critical paths are activated. A different solution was given by Ebrahimi et al.
[196]. Their compensation approach is based on the common critical path
replica idea, but the selectionof the critical path is special: Whereas there have
already been publications describing how to select those critical paths, which
aremost likely to be affectedby aging, for ASICs, the authors adapt this idea for
FPGAs. As the transistor-level design of commercial FPGAs is not publically
known, ASIC models can not be used and the authors derive an FPGA model,
taking e.g. static and dynamic stress into account.

Elgebaly et al. noted, that the critical path in a circuit might change over time
due to PVTA [197]. They therefore propose to track a changing, emulated
path. This emulated path is designed to exhibit the same behavior as the
actual critical path under all PVT conditions. Their path emulation covers
both interconnect and combinational logic.

Figure 3.11: Razor (left) and Bubble Razor (right) timing violation detector [198].
Special hardware monitors in all paths detect violations of setup time
constraints.

A different style of compensation systems has been published based on the
Razor system. Figure 3.11 shows a comparison of Razor and similar systems
and the Bubble Razor system. Instead of detecting critical paths ahead of
time, razor like systems extend combinational logic to include detectors for
setup time violation. The original razor system detects such a violation by
checking whether a transition on the data signal occurs shortly after a clock
transition. Razor therefore however adds a constraint on the minimal hold
time within a circuit. Bubble Razor on the Other hand introduces two latches
in between combinational paths and uses them to detect changes within

3.4 PVTA Compensation 89

the combinational logic at invalid times. When integrated into PVTA com-
pensation systems, those systems operate the application at almost-failure
frequency. When a failure occurs, the system needs to invoke restore logic to
replay the operation.

A novel approach for critical path replica in ASIC was recently published by
Miro-Panades et al. [199]. It operates the application circuit in two phases:
In the first phase, it detects the available timing margins. In the second
phase, it actually operates the application normally. The remaining slack
is estimated using a timing fault sensor, emulating critical paths. Unlike
previous publications, this sensor is not fixed-function but configurable. It
can therefore adapt to different application designs.

Device Characterization

Apart from detecting the critical path in applications, PVTA compensation
systems usually also characterize the device in some way. Often, a circuit
is characterized using a replica of the critical path in the application. In
other cases however, process, voltage, temperature variation and aging are
measured directly. Most of those sensors proposed for FPGAs are based
on delay measurements. As all of those physical values are correlated with
delay, designing sensors for one of them requires compensation of the others.
The following section will present a short overview of publications on those
topics.

Figure 3.12: Fully digitally temperature sensor as presented by Chen et al. [200]. All
signal processing is performed in the digital domain.

90 Chapter 3 RelatedWork

Yu et al. describe a way to measure process variation, which they use for a
variation aware design approach [201]. They measure the delay of a ring-
oscillator based circuit to estimate both LE and wire delay. The design is
implemented for FPGA and only uses resources available in standard FPGA
architectures. Gnad et al. analyzed voltage fluctuations in commercial FPGAs
and used a similar time-to-digital sensor to measure the voltage [69]. They
placedmultiple sensors over thewhole FPGA area and analyzed temporal and
spatial effects depending on the application design.

Various publications have used similar sensors for temperature sensing. One
of the first such temperature sensors was described by Chen et al. and is
shown in figure 3.12. It consists of a cyclic delay line and uses the system
clock as a time reference. The whole design fits into 140 LEs and achieves
an error between −1.5K and 0.8KWith 260μs conversion time, the sensor
can be used for dynamic measurements. Franco et al. describe a similar, ring
oscillator based temperature sensor for Virtex 5 [202]. They explicitly discuss
the voltage sensibility of the sensor and how to address it. Happe et al. use 144
similar sensors on aVirtex 6 architecture [203]. Using this dense set of sensors,
they derive a thermal model which they use for thread mapping onto CPU
cores. For characterization and dynamic modelling, a set of heating elements
on the IC produces temperature gradients which are measured using the
sensors. Calibration is performed using a temperature measurement diode
which is integrated in the FPGA.

Aging and process variation is monitored similarly. Agarwal et al. describe a
system for circuit failure prediction [204]. They mostly focus on PMOS aging
and NBTI effects and implement and aging detector integrated into a FF.
Huard et al. use aging monitors to perform adaptive wearout management
[205]. They argue that replica elements work well for global effects, but less
so for local effects. In-situ monitors integrated within the application de-
sign and embedded in the physical area of those application parts enables
more direct monitoring of delays of real paths. Another ring oscillator based
system to detect aging was presented by Sengupta et al. [206]. Their publica-
tion focuses on BTI and HCI effects and explains the required sensor circuit
calibration.

A sensor directly developed tomeasuredelaywaspresentedbyZick et al. [207].
They implemented an FPGA based sensor node in 8 LUTs. The sensor element
was therefore able to fit within a single Virtex 5 CLB. For usage scenarios,
they explain how the sensor can measure delay, temperature and IR drop or
voltage variation.

3.4 PVTA Compensation 91

PVTA Compensation Architectures

Based on critical path identification and device characterization, various
solutions for management and compensation of PVTA have been proposed.
Most systems target ASICs and are often not directly applicable for FPGAs,
as the critical path is not known at IC manufacturing time. Some ideas pre-
sented in these systems are however general and have been adapted to FP-
GAs.

An analysis focusing on circuit and transistor level aging solutions was pre-
sented by Alam et al. [208]. The authors suggest considering aging effects
already in the design of circuits. Transistor sizes and other physical param-
eters would then also be chosen according to aging requirements. Unlike
this static compensation approach, Gupta et al. presented TRIBECA, a dy-
namic compensation system mostly targeting processor systems [209]. The
authors provide an analysis of variation sources, then propose a system for
error detection and compensation: In order to correct errors, they introduce
an error detection unit and operation replay support. As their solution is local,
it can also handle spatial variation effects. The proposed system is tightly
integrated with the CPU architecture presented and can therefore not be used
for general purpose applications. When it comes to more general compensa-
tion systems for ASICs, various systems have been proposed over time. An
overview of those systems can be found in recent survey publications [87, 210,
211]. Khoshavi et al. provide an overview of measurement and monitoring
approaches. They compare static guard banding and dynamic approaches.
Static approaches include design aware balancing, which balances critical
paths according to aging criteria and other EDA based solution such as the
one by Alam. Dynamic approaches presented focus mostly on voltage and
frequency scaling. Another summary, focusing mostly on CPU systems, was
published by Mittal et al. [210]. They mostly include solutions which address
process variation, including block selection and error management tech-
niques. Compared to other publications, they also summarize works which
investigate scheduling of tasks on CPU under process variation. A similar, but
more extensive survey is given by Rahimi et al. [211]. It focuses on processor
systems as well, but covers variability mitigation from circuit to software level.
In the following, some individual works which are closely related to the work
in this thesis will be presented in more detail.

Adaptive Body Biasing Similar to RFET technology, BB in SOI devices en-
ables fine-grain adjustment of transistors threshold voltages 𝑉th. As SOI

92 Chapter 3 RelatedWork

technology is readily available in commercial manufacturing processes, vari-
ous systems using BB at different granularity have been proposed. When the
amount of BB is adjusted at runtime, these systems are called Adaptive Body
Biasing (ABB) systems. Figure 3.13 shows such an ABB based compensation
system, as presented by Tschanz et al. [212]. This early work focused on die-
to-die chip variation and as such uses BB on a chip-wide scale. The system is
dynamic, in that it finds the optimum BB voltage for each chip during run-
time of the application. To determine whether the circuit speed needs to be
improved or whether the circuit can get slowed down, the system constantly
monitors a replica of a critical path. It then adjusts the bias of a circuit block
accordingly. In the test chip shown in the figure, this circuit block is not a
complete processor, but only consists of some extracted processor paths for
simplicity. The authors also propose an extension to use multiple instances of
this system on one IC to compensate intra die variations. The granularity of
this ABB approach is therefore at chip level, the proposed extension operates
at region level.

Figure 3.13: Adaptive Body Biasing test chip presented by Tschanz et al. [212]. The
chip contains a critical path replica used for characterization as well as a
circuit block, which simulates a CPU.

A similar systemproposed byTeodorescu et al. is explicitly tailored tomitigate
process variation for processors [213]. This work considers fine-grain BB,
although in this case granularity is also only at region, not at transistor scale.
It also combines the BB system with DynamicVoltage and Frequency Scaling
(DVFS)of theprocessor, to reducepower consumptionevenmore. In addition,

3.4 PVTA Compensation 93

the authors propose an in-chip 𝑉th variation model for the manufacturing
process they use.

Yet another ABB system was proposed by Mauricio et al. [214]. As shown in
figure 3.14, this work again devides a chip into regions, where each region
contains one biasing system. These systems track runtime variations in the
circuits in a region using a delay sensor, which is not further specified. The
main focus of the paper is on an area efficient bias generator for the individual
regions. Using a charge pump in this bias generator allows generating bias
voltages above and below the power supply voltages. Here, the authors claim
their approach to require 70% less area than a comparable system using
Digital to Analog Converters (DACs).

Figure 3.14: Body Biasing Islands in a compensation system proposed by Mauricio et
al. [214]. Each island contains the compensation circuit, which consists
of a delay detector and charge pump.

Whereas previous systems have been proposed for general purpose ASIC
application, a system closer to solutions for FPGAs has been proposed by
Matsushita et al. [215]. This work focuses on Coarse Grain Reconfigurable
Arrays (CGRAs) andprimarily aims to reduce leakage power using BBon SOTB
technology. To enable BB, the authors first divide the CGRA into multiple
regions of a certain size. In CGRAs, just like in FPGAs, some details about
critical paths may only be known after configuration with a user application.
The authors therefore determine the biases for each region as part of the
application EDA flow, after the CGRA user application has been placed. As
there is no runtime management system, the authors’ approach is completely

94 Chapter 3 RelatedWork

static. To find the optimal size, the grain size is then varied in a design space
exploration. The authors claim to achieve a 40% reduction of static leakage
using this approach, at an area overhead of 6%.

FPGA Solutions In addition to the generic compensation systems presented
so far, some specialized FPGA systems have been described in literature as
well. Chow et al. proposed one of the first systems to realize DynamicVoltage
Scaling (DVS) on commercial FPGAs. Their proposed system uses the delay
sensor in figure 3.15 to determine the current speed of the FPGA logic. It then
scales the supply voltage globally for the whole FPGA to reduce power as far
as possible. The system was mainly meant to be used to reduce power usage,
not to counter PVTA. As such, there is only one sensor for the whole IC and
there is no local adjustment of voltages. The authors therefore claim a 54%
reduction in power.

Figure 3.15: Logic delaymeasurement circuit proposed byChow et al. [216]. Registers
are clocked using the same signal as the data input of the inverter chain.
The falling clock edge will trigger signal changes in the inverter chain,
which will be captured by the FF.

A different goal was pursued by Nabaa et al. [217]: Their system primarily tar-
gets compensation of process variation, requiring a more fine-grain, localized
measurement of delays. The main novelty in this publication is the fact that
the characterizer circuit shown in figure 3.16 is placed only once on the IC. To
measure delays in different areas of the FPGA, the authors iteratively route the
signal to be measured through different LEs on the FPGA. They then use BB
to slow regions which positive slack, achieving a 3-times reduction in leakage
power. As the system can only characterize LE as long as they are not in use by
the application, the authors propose to run the characterization phase once,
before starting the user application. This semi-dynamic compensation can
therefore not address variation during application runtime, including temper-
ature variation and voltage variation. Long-term aging can be compensated,
if the user application is stopped periodically.

3.4 PVTA Compensation 95

Hioki et al. focus on reduction of leakage power in their SOTB test chip [218].
Using a fine granular approach with 57 𝑉th domains per FPGA region, they
achieve up to 50 times reduction in leakage. Due to this fine-grain approach,
they however report area overhead of 26% and addition 10% areawhichneeds
to be unused for separation. There is no runtime measurement of path delay.
Instead, the authors modify their FPGA tools to adjust the bias for all power
domains after placing the user application. As such, not only the critical path
but all paths individually are considered. The resulting circuit characteriza-
tion is used to tune the biases in the power domains of the device. As this
approach is static, it can not address temperature and voltage variation, as
well as aging. It could compensate process variation, if the chips are charac-
terized before configuration. This option was however not explored by the
authors.

Figure 3.16: FPGA block characterizer used in the system proposed by Nabaa et al.
[217]. A clock signal is routed through the block to be characterized to a
phase detector. The phase detector also gets a direct connection to the
clock, so that the measured phase difference characterizes the delay of
the FPGA block and wire delay.

A slightly different approach has been taken in the thesis by Burmester
Campos [219]. His work focuses on EDA algorithms and proposes vari-
ation aware optimization algorithms. These approaches are validated
on the PAnDA architecture, an FPGA with reconfigurable transistor
widths.

96 Chapter 3 RelatedWork

Focusing on FPGA runtime again, Maragos et al. proposed a PVT system
for commercial FPGAs[220]. It places dozens of delay sensors onto an FPGA
embedded into the user application. The sensor then uses a logic chain to
measure the delay and compares it to a configurable, acceptable delay. This
acceptable delay is predetermined in the EDA flow for the user application.
This information is then used to dynamically adapt the global power supply
of the FPGA. The authors achieve up to 27% reduction in power, at a resource
overhead of 1.6%. The main limitation of this approach is that DVS can only
happen globally in commercial FPGA.

Apart from these compensation systems presented in academia, commercial
FPGA vendors have started to make use of BB in SOTB FPGAs. In 2019, Lattice
Semiconductor presented the Crosslink-NX FPGA, the first based on the
Nexus platform [221]. These devices are based on a FDSOI process and enable
BBonachip-wide level. Thedevices alsoonly allow for twoperformance levels
to be selected. So far, no dynamic management system has been proposed,
further limiting the use for PVTA compensation.

3.5 Power Management Techniques

The previous section has included some systems, which do not only focus on
PVTA compensation, but also feature power reduction. As the mechanisms
for performance measurement and adjustment are the same in both cases,
solutions are often similar as well. Previously presented publications were
however more focused on technology-level details, such as BB in SOI devices.
The power management schemes discussed in this section focus more on
system-level aspects.

Figure 3.17:Classification scheme for power aware FPGA architectures and tech-
niques as proposed by Akgün et al. [222].

3.5 Power Management Techniques 97

Figure 3.17 shows a classification of such power aware FPGA techniques, as re-
cently proposed by Akgün et al. [222]. The authors distinguish between three
main topics: Power-saving techniques, runtime management and fault diag-
nosis. In the following, we will mainly consider the first topic, which includes
system architecture solutions. The second aspect mostly focuses on applica-
tion specific solutionswhich are of less relevance to this thesis. Error detection
and recovery is also not relevant to this work.

EDA Techniques In addition to hardware approaches, power saving ap-
proaches have also been introduced in EDA tools. Early works by Sutter et
al. have focused on more power efficient FSM state encoding [223]. Apart
from binary and one-hot encoding, they also analyzed two-hot encoding and
a custom scheme which is intended to minimize switching activity. Using
the best technique reduces the power consumption by 57%. Whereas this ap-
proach considers one small detail, more systemic EDA power saving solutions
have been proposed by Singh et al. [224]. Their work considers clustering
and placement under power reduction constraints. Using a specialized logic
clustering algorithm enabled power reduction by up to 13%. To achieve that,
the authors proposed a new algorithm for routeability estimation between
logic cluster block. Gayasen et al. introduced power regions in their FPGA
architecture [225]. In order to reduce leakage power, they added sleep transis-
tors to all those regions and turn of unused ones. To improve power reduction
results, they also customized the placement phase in their EDA tools. Using
a vertical or horizontal direction based placement allowed to maximize the
number of unused regions. Further details on the placement algorithm were
not given by the authors. They also quickly note that their region based power
management, essentially a power gating scheme, can also be used at runtime.
This however requires explicit activation or deactivation of regions by the user
application.

Power Gating Many other publications have focused on clock gating on an
architectural level. In 2007, Tuan et al. described a low-power version of the
Xilinx Spartan 3 architecture [226]. Apart from various general optimizations,
such as lowering the core voltage and reducing leakage in configuration SRAM,
they also include a power gating scheme. As SRAM leakage has already been
optimized, the authors do not power gate the configuration storage. Whereas
power gating was originally mostly used for unused logic, keeping configura-
tion storage also enables a standby mode in the architecture: In this mode,
the logic in the design can be power gated dynamically and powered on later
on again. The authors propose this could be usedwith a user-provided central
power controller, which is itself never power gated.

98 Chapter 3 RelatedWork

Figure 3.18: Fine grain power gating for FPGA as proposed by Bsoul et al. [227]. All
logic blocks (LC) and neighboring routing channels can be power gated
individually.

As the area overhead of power gating solutions can be significant, Bsoul et
al. carried out a design space exploration of various sizes of gating regions
[228]. The authors use a dynamically power-gated design and study the area
vs. power saving trade-off. For their architecture, they find tiles of 3x3 CLB to
be most efficient, reducing leakage by 40% at an area overhead of only 1%.
The proposed architecture allows runtime adaption as well, but the power
controller needs to be implemented by the FPGA application designer. In
a follow-up publication, Bsoul et al. extend the architecture [227] to allow
for fine-grain power gating, as shown in figure 3.18. Apart from the finer
granularity for SBs, the authors also introduce a modified EDA tool flow. To
introduce a power domain aware routing algorithm, they modify the cost
function of VPR’s router to penalize routing through regions which do not
belong to the fan-ins or fan-outs of the net. This is intended to reduce routing
through otherwise unused tiles, making more tiles available for power gat-
ing. With these changes, the authors managed to reduce leakage by 83% in
total.

Whereas Bsoul et al. modified CAD algorithms, a different approach is taken
by Seifoori et al. [229]. In an attempt tomore efficiently select themultiplexers
which are part of one power region, the authors first place and route a set of
benchmarks for a baseline FPGA architecture. They then perform k-means
clustering and a custom utilization similarity clustering to find multiplexers

3.5 Power Management Techniques 99

and SBs which are commonly used together. Instead of modifying the CAD
tools, this approach shapes the power-gating regions according to the results
of the CAD tools for certain benchmark circuits.

DVS and DVFS Another commonly used power management technique on
FPGA is DVS. As previously mentioned, one of the first such systems was
the setup by Chow et al. [216]. It used an off-chip voltage controller and a
commercial FPGA to realize global DVS for the complete IC. A more recent
publication by Nabina et al. replicated the idea on a Virtex 5 architecture
[230]. Using a LEON3 processor, the authors realize an Application Specific
Integrated Processor (ASIP), where some FPGA resources are used to imple-
ment a reconfigurable part. For the processor, the authors also implement
dynamic frequency scaling. For the reconfigurable module, the authors use
an adaptive voltage scaling scheme, measuring the logic delay using a delay
measurement circuit.

Figure 3.19 on the next page shows a DVS system proposed by Nunez-Yanez
[231]. This system also uses an external power regulator, but uses an in-situ
detector to determine whether the voltage should be scaled up or down. The
detector consists of two FFs, a main FF and a slow FF. The main FF directly re-
places a FF in user application logic, whereas the slowFF connects to the same
input, but with an additional delay. When propagation delay increases due
to voltage reduction and there is a setup time violation, this is first detected
in the slow FF. As the main FF still operates correctly, the user application
will not be affected. The DVS controller uses the information about failing
slow FFs to stop further reduction of the supply voltage. To integrate these
detectors within the application logic, the author has developed an EDA tool
to automatically replace FFs in critical paths.

AnotherDVS systemwas proposed by Ahmed et al. [232]. This system changes
the supply voltage according to a calibration lookup table. This table contains
the minimum operation voltage for the circuit at various operation points.
It is obtained through a custom EDA tool which automatically generates a
calibration bitstream based in the user application. The calibration bitstream
thenhas to be programmedonce to each FPGA IC to obtain the device specific
calibration. In [233], this idea was extended by the authors to use multiple
calibration bitstreams.

Recent systems realizing DVFS have also been proposed by Levine, Zhao and
Taka. Levine’s system performs online slack measurement using shadow reg-
isters. These registers have to be added to critical paths using a custom EDA
tool [234]. Apart from enabling global power scaling, the proposed system

100 Chapter 3 RelatedWork

Figure 3.19:DVS system for FPGA proposed by Nunez-Yanez [231]. Voltage scaling is
performed off-chip, as the used commercial FPGA does not provide any
on-chip voltage configuration.

also scales one global clock. Zhao’s system performs offline self-calibration
instead, finding the frequency and voltage limits for an application before it
is actually active [235]. To realize this, the authors extract the critical paths
of the user application and build a calibration design based on these critical
paths. The custom FPGA bitstream then performs the self-calibration step.
The authors also scale power and one global clock and evaluated their design
using an Finite Impulse Response (FIR) filter. Taka’s design focuses on one
specific application only, a RISC-V processor[236]. To detect whether the pro-
cessor is operating correctly at a certain frequency and voltage, the authors
slowly increase the frequency of the processor for each tested voltage. The
authors then run a test application at all frequency steps and verify the ap-
plications output. If the application output is incorrect, the system assumes
the frequency has been increased too much. As the system requires running
software, the concept is limited to processors.

Other publications attempted to reduce power on FPGAs using a dual-𝑉𝐷𝐷
design [237]: In such architectures, voltage scaling is not global and each
CLB can be programmed to use a high or a low supply voltage. For this,
Gayasen et al. changed EDA tools to assign CLBs to one of the supply rails.
After evaluation various techniques, one was found to provide an average
power reduction of 61% in the MCNC benchmarks. Historically, a few such
dual-𝑉𝐷𝐷designshavebeenexplored. With the availability of SOI technology,
fine-grain techniques have focused more on BB, as explained in the previous
section.

3.6 Synthesis for Reconfigurable Cells 101

3.6 Synthesis for Reconfigurable Cells

Whereas various ambipolar reconfigurable cells have been described in litera-
ture, there are few publications focusing on EDA flow integration to use these
cells in FPGA. As most of these cells are experimental and have not been man-
ufactured in large-scale FPGA devices, there was so far no demand for EDA
tools. Nevertheless, a few publications have proposed solutions for ambipolar
reconfigurable cells or for ULMs and logic macro cells, which need similar
EDA flows. For DGCNTFET, Zukoski et al. have described not only their logic
cell, but also gave a quick introduction to the EDA flow they use [238]. They
use ABC for optimization and tech mapping. For the tech mapping itself, they
provide a custom library of gates which represent the functions that can be
realized by the reconfigurable cell. The place and route steps for use in a final
FPGA architecture are not further explained.

Figure 3.20: Asymmetric 4+5 LUT (left) and extended 5 LUT (right) by Anderson et al.
[239]. The asymmetric LUT was developed for trimming input optimiza-
tion, the extended LUT for gated input optimization.

Publications on EDA for ULM and macro-cell based reconfigurable architec-
tures have been proposed in the late 1990s and early 2000s. Due to their age,
these publications use older synthesis approaches, based on SOP represen-
tation. For example, Lin et al. use the SIS mapper for their reconfigurable
architecture [240]. They first map a set of benchmarks to a generic 3 input
LUT architecture. They then analyze which functions are commonly used
and derive a set of custom ULM modules for this information. Synthesis for
these ULM modules is not explained in detail. Another EDA flow has been
presented by Cong et al., focusing on synthesis for 𝑘/𝑚 cell reconfigurable
logic [241]. 𝑘/𝑚 cells are PLA-like reconfigurable cells and can be described
by the number of inputs, 𝑘, and the number of product terms that can be
realized,𝑚. Unlike a PLA, 𝑘/𝑚 cells have always exactly one output signal.
Optimization and mapping for this cell has been implemented as a custom

102 Chapter 3 RelatedWork

algorithm in SIS and verified using the MCNC benchmarks. For place and
route, VPR has been used.

Figure 3.20 on the preceding page shows a special reconfigurable cell derived
by Anderson et al. [239]. The architecture has been developed to fit a specific,
custom EDA flow efficiently: The authors introduce the notion of trimming
inputs and gated inputs. A trimming input an input, which when used in a
Shannon decomposition yields a co-factor with more than one variable less
than the original function. When applied to functions with 6 inputs, such a
decomposition can be realized by the reconfigurable element on the left-hand
side of figure 3.20. A gating input is a special trimming input, which yields
one constant cofactor in the Shannon decomposition. Such a decomposition
has been realizedwith the cell in the right-hand side of the figure. The authors
observe, that such special inputs can be found quickly in AIGs by finding
non-inverting paths. The mapping algorithm can therefore be implemented
in tools like ABC.

Apart from special EDA solutions for specific architectures, literature has also
proposed solutions for hybrid architectures. These architectures do contain
LUTs, which are primarily used when the hard logic macro can not represent
a function. Such an approach was used by Hu et al. [242]: The authors
first analyze which functions are commonly used in a set of benchmarks
and then design a macro cell to realize those. They then propose an FPGA
architecture using both these cells and LUT. For EDA, they use a standard
cut-based mapping technique for LUTs first. They then determine which
LUTs in the netlist could be replaced by a macro cell. Furthermore, they use a
modified packing and repacking scheme to recover area. This step consists of
realizing macro functions using a LUT instead of a macro cell, if many free
LUT are available.

A similar approach to combine LUTs and ULMs, also called universal logic
generator, has been presented by Luo et al. [243]. The publication focuses
on the description of the complete EDA flow, as shown in figure 3.21. It uses
ABC for optimization and technology mapping to standard 4 input LUTs. In
a post-processes pass, the netlist is modified to replace LUT instances with
ULMs when possible. Packing, placement and routing is performed in VPR as
usual. The authors however note that a LUT can also realize theULM function,
but not the other way round. They therefore specify LUTs as multimode cells
in the VPR architecture, enabling VPR to also place logic mapped to ULMs
into LUTs.

3.7 Summary 103

Figure 3.21: EDA flow for a hybrid FPGA consisting of LUTs and universal logic gener-
ators (ULG) [243]. Applications are first mapped to LUT as usual, then
eligible LUT are replaced by ULGs.

3.7 Summary

Table 3.3 shows a quick summary of the related works which are most closely
related to this dissertation. Table columns show: Whether a non-LUT LE
is used, whether moving and freezing of data is supported, whether power
reduction is supported, whether PVTA compensation and measurement hap-
pens once or repeatedly, whether compensation is local or global andwhether
a delay measurement system is used and if it reuses existing logic. This dis-
sertation combines three aspects, which has not been done in any related
work: RFET standard cell usage, system level FPGA power management and
PVTA compensation and low level reconfiguration aspects. As there is little
overlap, the first aspect was not included in the table, but is explained in
section 3.1. As the table clearly shows, no previous work has combined the
low-level reconfiguration system with PVTA and power reduction techniques.
Combining these aspects is the main novelty of this thesis, as it allows for
fully dynamic, local PVTA with limited resource overhead. And whereas some
works do use FPGA resources for measurement, none is able to share the
resources with an application. To the best of the author’s knowledge, the
transparent logic invasion concept has not been proposed anywhere previ-
ously.

104 Chapter 3 RelatedWork

Source
N
on-

Reconfiguration
Pow

er
PVTA

C
haracterization

LU
T

M
ove

Freeze
Static

D
ynam

ic
Local

M
easure

Reuse
[105]

3
7

7
7

7
7

7
7

7

[163]
7

1
7

7
7

7
7

7
7

7

[164]–[166]
3

7
7

7
7

7
7

7
7

[185]
7

7
2

7
7

7
7

7
7

7

[186]
7

3
7

7
7

7
7

7
7

[188]
7

3
3

7
7

7
7

7
7

[193]
7

7
7

3
7

3
7

3
7

[194]
7

7
7

7
3

7
3

7
7

[195]
7

7
7

3
3

3
3

3
7

[201]
7

7
7

3
3

7
3

7
7

[69]
7

7
7

7
3

7
3

3
3

7
4

[202]
7

7
7

7
3

7
7

3
7

4

[216]
7

7
7

3
7

3
7

3
7

4

[217]
7

7
7

3
3

7
3

3
3

5

[218]
7

7
7

3
3

7
7

7
7

[220]
7

7
7

7
7

3
7

3
3

4

Th
is

3
3

3
6

3
3

3
3

3
3

Table
3.3:O

verview
ofrelated

w
orksw

ith
m

ostsim
ilarity

to
thisthesis.RFET

w
orkspresented

in
section

3.1
do

notinclude
any

system
levelFPG

A
features,so

they
are

notshow
n

here.

1U
sesM

RAM
-based

LU
Ts.

2Requiresa
hostcom

puter.
3Localanalysis,butnotcom

pensation.
4U

sesreconfigurable
logic,butdoesn’tshare

w
ith

application.
5O

nly
once,atapplication

startup.
6Partially,im

plicitly
during

m
ovem

ent.

Part II

PARFAIT Architecture

This page intentionally left blank

Chapter 4

Overall System

In the following chapters, state-of-the-art PVTA compensation and power
saving measures in FPGAs will be investigated to be used with ambipolar
transistor devices. To keep the overall system independent of technology, it
will also be adapted and evaluated for a state-of-the-art SOI technology. This
chapter will first introduce a standard FPGA architecture for PARFAIT, which
will be used as the baseline in the evaluation. It furthermore introduces the
simulation models and parameters for the technologies used. The chapter
concludes with a quick preview of topics which will be investigated in more
detail in following chapters.

4.1 FPGA Base Architecture

Top Architecture Figure 4.1 shows the top-level view of the base FPGA ar-
chitecture used in this thesis. It is based on k6_frac_N10_40nm, which is
one of the reference architectures shipped with Verilog to Routing (VTR).
These architectures model a 40 nm technology FPGA, trying to match the
Stratix IV architecture closely. Area, wire segment lengths, capacitances and
resistances have been modelled to match this commercial FPGA architecture.
k6_frac_N10_40nm is based on the main VTR flagship architecture, but with
the memory blocks, DSP blocks and carry chains removed: As these elements
are not relevant for this thesis, the simplest of the flagship architecture ver-
sions, consisting of only CLBs and Input-/Output-Blocks (IOBs), was selected.
The flagship architecture uses uniform channel widths of 1.0 for all channels
andWilton switch blocks with 𝑓𝑠 = 3. It uses only one type of wire segments
of length 4 and fully populated connections to CB and SB, i.e. wires are con-
nected to those elements whenever they intersect. Blocks shown in white
are the logic generators (CLBs), and blocks with a dotted pattern are IOBs for

108 Chapter 4 Overall System

external connectivity. For more details about this architecture, refer to the
VTR reference manual.

Figure 4.1: Top-level view of VTR’s flagship k6_frac_N10_40nm architecture specified
in the timing/k6_frac_N10_40nm.xml file shipped with VTR version 8.
It consists of IOBs at the periphery and CLBs in all remaining locations.
The corners do not contain any blocks.

A reduced excerpt of the XML architecture description is given in listing 4.1.
Physical values depending on technology such as delays, capacitances, re-
sistances and area have been removed in the excerpt for brevity. For all eval-
uations performed with VPR, the values have been kept as in the original
file.

1 <architecture>
2 <layout>
3 <auto_layout aspect_ratio="1.0">
4 <perimeter type="io" priority="100"/>
5 <corners type="EMPTY" priority="101"/>
6 <fill type="clb" priority="10"/>
7 </auto_layout>
8 </layout>
9

4.1 FPGA Base Architecture 109

10 <device>
11 <chan_width_distr>
12 <x distr="uniform" peak="1.000000"/>
13 <y distr="uniform" peak="1.000000"/>
14 </chan_width_distr>
15 <switch_block type="wilton" fs="3"/>
16 <connection_block input_switch_name="ipin_cblock"/>
17 </device>
18 <switchlist>...</switchlist>
19 <segmentlist>
20 <segment freq="1.000000" length="4" type="unidir">
21 <mux name="0"/>
22 <sb type="pattern">1 1 1 1 1</sb>
23 <cb type="pattern">1 1 1 1</cb>
24 </segment>
25 </segmentlist>
26
27 <complexblocklist>..</complexblocklist>
28 <power>..</power>
29 <clocks>..</clocks>
30 </architecture>

Listing 4.1: Top-level part of the XML architecture description used by the VTR
framework and VPR.

The excerpt shows how architecture dimensions are defined and how specific
blocks are assigned to locations, according to their priority. The auto_lay-
out statement in line 3 instructs VPR to automatically size the device to fit the
FPGA user application which is currently being placed. Lines 11 – 14 specify
the channel width, which is specified as a relative fraction of the architecture
channel width. This final architecture channel width is usually determined
dynamically by VPR when placing the application: VPR starts with a small
value and increases the channel-width whenever it can not route a design
due to congestion.

The following lines specify SB and CB details. For the SB, only the switch-
ing pattern is specified here. For the CB, a switch is selected from the
switch_list. This architecture uses only one SB and one CB type. Lines
19 – 25 specify the routing segments available in the global interconnect.
This specifies the wire length as 4 and that the wires connect to all SBs
and CBs. Line 28 species technological parameters for power analysis and
line 29 specifies the clock, for which the reference architecture defines

110 Chapter 4 Overall System

only a single one. Line 27 describes the blocks in the architecture in more
detail.

IOB Description IOBs will not be further examined in this thesis, but their
architecture affects the placement of FPGAuser applications in the evaluation.
Therefore, a quick description of the blocks is given here, whereas the full
IOB architecture description can be found in the appendix, see listing B.1 on
page 349. IOBs in the architecture operate in one of two modes, but never in
both at the same time: An IOB can either be in input, or in output mode. IOBs
are clocked devices and therefore connect to the global device clock. On each
IOB location, there can be up to 8 instances of IOBs. This means that each
single location provides up to 8 inputs or outputs. For inputs, IOBs connect
to 15% of the wires in a channel, for outputs to 10%. The IOB architecture
model specifies pins on all sides allowing for a single model to be used for
all FPGA sides. As only one of the IOB sides is ever connected to the global
interconnect, this does not increase the number of available connections for
the IOB.

C
ro

ss
ba

r FLE

CLK

I /
40

/
60

O/
20

/
20

Figure 4.2:CLB in VTR’s flagship k6_frac_N10_40nm architecture for VTR version 8,
containing 10 Fracturable Logic Elements (FLEs).

CLBDescription Figure 4.2 shows the structure of the CLB logic generator in
the reference architecture. It is a cluster of𝑁 = 10 FLEs, where each FLE can
be configured as either one𝐾 = 6 input LUT, or as two𝐾 = 5 input LUTs with
identical inputs. The CLB connects to the global clock, which is forwarded
to the FLE. To connect the inputs to the global interconnect, it contains a
fully populated crossbar. The crossbar connects 40 inputs to the tracks in
the adjacent channel through a CB. In addition, all 20 outputs of the FLE
are fed back into the crossbar to realize a local interconnect. This allows
to connect multiple FLEs in series without using global routing resources.

4.1 FPGA Base Architecture 111

The crossbar then provides 60 inputs to the FLEs, 6 for each single one. As
the crossbar is fully populated, all outputs can select any of the inputs. The
CLB connects to 15% of input wires in a channel and 10% of outputs. An
architecture description, reduced in the same way as the top architecture
description, is shown below in listing 4.2.

1 <pb_type name="clb" area="53894">
2 <input name="I" num_pins="40" equivalent="full"/>
3 <output name="O" num_pins="20" equivalent="none"/>
4 <clock name="clk" num_pins="1"/>
5
6 <pb_type name="fle" num_pb="10">
7 <input name="in" num_pins="6"/>
8 <output name="out" num_pins="2"/>
9 <clock name="clk" num_pins="1"/>

10
11 <mode name="n2_lut5">...</mode>
12 <mode name="n1_lut6">...</mode>
13 </pb_type>
14 <interconnect>
15 <complete name="crossbar" input="clb.I fle[9:0].out"

↪ output="fle[9:0].in"></complete>
16 <complete name="clks" input="clb.clk" output="fle[9:0].clk

↪ "></complete>
17 <direct name="clbouts1" input="fle[9:0].out[0:0]" output="

↪ clb.O[9:0]"/>
18 <direct name="clbouts2" input="fle[9:0].out[1:1]" output="

↪ clb.O[19:10]"/>
19 </interconnect>
20
21 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="

↪ 0.10"/>
22 <pinlocations pattern="spread"/>
23 </pb_type>

Listing 4.2:CLB part of the XML architecture description used by the VTR framework
and VPR.

BLE Description A structural depiction of the FLE modes is shown in fig-
ure 4.3, where Figure 4.3a shows the 6 input LUT FLE mode. It contains a
Basic Logic Element (BLE) with an additional FF and a MUX to select be-
tween the LUT output and the FF output. This way, the FLE can realize both
combinational and sequential logic. The architecture description XML for this

112 Chapter 4 Overall System

mode is given in the appendix, see listing B.2 on page 350. figure 4.3b shows
the second mode the FLE can operate in, as two 5-input LUTs. In this mode,
only the first 5 of the 6 available inputs are used. The inputs are connected
identically to both LUTs. LUTs are again combined with a FF and MUX in a
BLE. This mode provides two outputs, which are both connected individually
to the outputs of the CLB.Thismode’s architecture description XML can also be
found in the appendix, see listing B.3 on page 351.

LUT

Q

D Q
I

CLK

/
6

O

(a)

LUT

Q

D Q
I

CLK

/
5

O

LUT

Q

D Q

I

O

(b)

Figure 4.3: FLE used in the CLBs in VTR’s flagship k6_frac_N10_40nm architecture.
The FLE can be configured to operate in one of twomodes: (a) LUT6mode
which implements a single 6-input LUT with one output. (b) Fractured
mode, which implements two LUT5 with the same 5 inputs and provides
two outputs in total.

RFET Hard IP In order to make use of the BG of RFETs to trade-off per-
formance and static leakage, as introduced in section 2.2 on page 14, the
transistors in the FPGA architecture have to be replaced with RFETs. One
approach to achieve this is by replacing common CMOS cells with RFET stan-
dard cells. Chapter 5 on page 161 will therefore present an RFET standard

4.1 FPGA Base Architecture 113

cell library. It will also describe an EDA flow as introduced in section 3.6 on
page 101 to make use of them. Results will be compared with the state-of-the
art works introduced in section 3.1 on page 69.

RFETLogicGenerators Whereas RFETs canbeused as drop-in replacements
for standard silicon devices, such a usage neglects some of RFETs benefits,
especially for reconfigurable LEs. This thesis will therefore analyze substi-
tution of CLBs in the architecture with RFET based LEs, as introduced in
section 2.6 on page 53. Details of this analysis will be presented in chapter 6
on page 177 and results will be compared to the state-of-the-art architectures
of section 3.2 on page 74.

Due to different propagation delays of the cells, replacing these CLBs in fig-
ure 4.1 on page 108 and adjusting their BG voltages will not only affect the
leakage current, but also the performance of the FPGA: In that figure, an
example of a critical path is shown in orange. It depicts the path with the
least available slack as introduced in section 2.3 on page 20, for a specific
user application. Similarly to the example in that chapter, the total propa-
gation delay 𝑡PD is given as the sum of propagation delays in the wiring and
in the combinational logic. And similarly to the introduction there, setup
and hold conditions dictate the maximum clock frequency (equation (2.15)
on page 25) and the minimal delay (equation (2.14) on page 25). A major
difference is that in FPGAs, there are no logic gates to be considered. De-
lays are instead caused by the LEs (section 2.5 on page 45) and MUXs in the
interconnect.

This dissertation has to answer the question how a change in BG voltage will
affect these delays andhow such a change canbemade at application runtime
without violating timing constraints. As shown in equation (2.3) on page 12,
for normal CMOS devices, 𝐼D is dependent on 𝑉th, which is modulated in
RFETs using the back gate:

𝐼𝐷 =
𝑊

𝐿eff𝑃𝐶
(𝑉GS−𝑉th)

𝛼

=𝐶𝛼𝜇(𝑉GS−𝑉th)
𝛼

(4.1)

𝑡PD on the other hand depends on 𝐼D, as introduced previously in equa-
tion (2.10) on page 23:

𝑡PD = (12 −
1−𝜈T
1+𝛼)𝑡T+

𝐶L𝑉DD
2𝐼D

(4.2)

114 Chapter 4 Overall System

This leads to a dependency of 𝑡PD on the BG voltage. The propagation delay of
a combined path, containing multiple transistors or gates, can be described
as in equation (2.13) on page 23:

𝑡PD,Path ∝
𝐶tot𝑉DD

𝜇(𝑉GS−𝑉th)
𝛼 (4.3)

The exact relation of 𝑡PD and the BG voltage depends on the used technology.
It can be simulated in SPICE simulations, if a suitable model for dynamic
behavior is included in the PDK. As shown in section 3.1 on page 69, this is
commonly not the case for RFET technologies. As an alternative, the Scarpato
Model introduced in section 3.4 on page 85 will be adopted and parametrized
for the considered target technologies. This parametrization will be detailed
in the following sections in this chapter.

Possible change of 𝑡PD in the critical path also needs to be considered during
user application synthesis, which will be covered as part of chapter 7 on
page 195. Furthermore, using different LEs requires changes in EDA tools,
which will be discussed in chapter 6 on page 177 and compared to the state-
of-the art solutions of section 3.6 on page 101.

Power can be described as static and dynamic power, as shown in equa-
tions (2.8) and (2.9) on page 22:

𝑃total =𝑃dynamic+𝑃static (4.4)
𝑃dynamic =𝑃switching+𝑃short circuit (4.5)
𝑃static = (𝐼sub+𝐼gate+𝐼junct+𝐼cont)𝑉DD (4.6)

𝑃switching =𝛼𝐶L𝑉2
DD𝑓 (4.7)

As static leakage current is also dependent on 𝐼D, there is a trade-off between
performance and power usage that will be exploited in power management
techniques similar to section 3.5 on page 96 and will be evaluated in chapter 9
on page 231.

4.2 FPGA Power Regions

Figure 4.4 shows the reference architecture of figure 4.1 with a slightly more
complex user application, depicted in orange. As depicted in this example,
utilization of FPGAs is commonly below 100% in real world applications. Full

4.2 FPGA Power Regions 115

utilization usually reduces performance because of routing congestion or
makes designs not routable in extreme cases. Other effects reducing the total
utilization are limited amounts and fixed positions of other resources, such
as DSP blocks or specific IOB.

As introduced in the previous section, it is now possible to scale the overall
performance vs. leakage power of the FPGA, as long as the timing constraints
for the critical path hold. However, as can also be seen, the utilization of CLBs
can vary locally: This example design was placed into the bottom left corner
of the device, adjacent to the used IOBs. On the other hand side, almost no
CLBs in the top right corner are utilized. With a global power scaling approach
as presented in section 3.5 on page 96, those unused cells still draw static
power 𝑃static due to leakage (see equation (4.6)). As a first estimate, it can be
assumed that there is however no dynamic power use 𝑃dynamic, as there is no
switching, i.e. 𝑓 = 0 (see equation (4.5)).

Figure 4.4:The k6_frac_N10_40nm architecture with a placed user application (or-
ange) and the newly introduced region grid (blue). Region size was arbi-
trarily chosen as 3x3 blocks, including IOBs.

To avoid static power in unused CLBs, a region based power management
strategy is introduced for the PARFAIT system. Regions are depicted in blue

116 Chapter 4 Overall System

in figure 4.4 and allow voltage scaling approaches to be used locally. The
concepts introduced in the dissertation are largely independent of the power
management technology used. The evaluation of the RFET system will use
BG based threshold voltage adjustment, evaluation of SOI reference tech-
nology will use body biasing. The approaches and tools presented here can
also be used for supply voltage scaling, as previously presented in literature.
In that case, the limited output voltage swing of cells needs to be consid-
ered when driving cells in other regions. As the approaches used here do
not scale the supply voltage, this problem is not relevant for the PARFAIT
system.

With the exemplary region size and application of figure 4.4, four of nine
regions could be turned off completely. But even for regions where this is not
the case, more fine-grained power management is now possible: Timing re-
quirements in form of the critical path can now be considered independently
for the regions. Instead of focusing on the one global critical path, the critical
path in each section needs to be considered. This becomes especially obvious
when thinking of examples where the critical path does not cross one region
at all. Nevertheless, timing constraints for paths in this region need to hold,
and a local, critical path needs to be tracked. For this, the EDA process for
user applications introduced in section 2.8 on page 63 needs to be modified:
The critical path needs to be determined and stored for each single region.
Special caremust be taken for paths which cross region boundaries, as scaling
the performance in one region affects the performance of the whole path. It
might therefore preclude further scaling in other regions which contain this
path as well.

In addition to critical path extraction, a region based architecture calls for
further optimization in the EDA tools: If placement is made aware of regions
by factoring in the cost of placing logic into currently unused regions, keeping
regions empty can be incentivized. Another approach is to predefine regions
with fixed performance/power trade-offs at FPGA manufacturing time. Such
a static high performance / low power region approach reduces complexity
and circuit overhead, as dynamic scaling after in-the-field programming is not
required. EDA tool modifications presented here will also enable evaluation
of such systems.

Details on power management region aspects of the PARFAIT system will be
presented in chapter 7 on page 195 and a simulation framework to evaluate
the whole system including regions support will be presented in chapter 9
on page 231. Final Design Space Evaluation (DSE) of parameters, such as the

4.3 PVTA Compensation 117

region size or cost function weights, will then be presented in chapter 10 on
page 253.

4.3 PVTA Compensation

Previous sections explained how voltage adjustment can be used to reduce
performancewhere the slackof the critical paths allows it, andhow todecrease
the static leakage. In a first implementation, this can be realized as a static
approach: The user application can be analyzed in an EDA tool and the slack
can be derived in each region and then stored as part of the FPGA bitstream.
When programming, the regions can be changed to the proper performance
level and then don’t change at runtime.

Figure 4.5:The k6_frac_N10_40nm architecture with the shade of red in each region
representing local performance variations due to PVTA. Effects vary within
each region as well, but have been limited to region scope here for read-
ability.

Such a static approach however wastes some potential. As has been discussed
in section2.4 onpage 27,manufacturedFPGA ICshave local performance vari-

118 Chapter 4 Overall System

ations, which then cause pessimistic results in STA. This effect is depicted in
figure 4.5, where different shades of red show different performance in the re-
gions. Even when the application is analyzed during EDA, as the performance
of each region is not known ahead of time, the performance adjustment needs
to be performed conservatively.

To address this in the PARFAIT system, a dynamic, closed loop control system
for performance in each region is introduced. The overall, high level concept
is presented in figure 4.6.

Measure

Target
MICROCHIP V

(a)

Measure

Target
MICROCHIP V

(b)

Measure

Target
MICROCHIP V

(c)

Figure 4.6: Region detail and region controller concept. The figures show a zoomed
in detail of the central region in figure 4.4. (a) Region controller in idle
mode. (b) Row was reconfigured dynamically with measurement circuits.
(c)Delay characterization is active.

Figure 4.6a shows a zoomed in detail of one region. In addition to the FPGA
elements of the base architecture, it also contains the building blocks for
the closed loop control system introduced in section 3.4 on page 85: Critical
path identification is performed in EDA tools for the FPGA application. The
determined, available slack is used to derive a slack factor, whichdescribes the
relative percentage of how much the delay in a region is allowed to increase.
This is stored as the Target for each region.

The architecture does not make use of path replicas. As paths on FPGA are
always made up of the base LEs anyway, it is sufficient to characterize these
basic LEs. This work is performed in theMeasure block. The PARFAIT archi-
tecture measures the real delays of real LEs, not artificial, additional logic.
This also enables the architecture to effectively measure each single CLB and
BLE on the FPGA. In order to keep resource overhead low, the architecture
uses fine-grain dynamic reconfiguration (section 3.3 on page 77) to temporar-
ily reprogram areas of the FPGA. As depicted in figure 4.6b, the architecture
therefore transparentlymoved the user application downone row in the FPGA
on a row-by-row basis. In order for this to work, one row of the FPGA needs

4.3 PVTA Compensation 119

to stay unprogrammed. Furthermore, some special handling is needed to
ensure that the user application can continue to be executed. Details about
this are given in section 8.2 on page 206.

Once the original application logic has beenmoved, the row is reprogrammed
with specific delay measurement circuits. This process will be called “Logic In-
vasion” in the future, as it replaces theuser application logic. Whilemost of the
measurement logic is kept in reconfigurable cells, a centralMeasure controller
orchestrates the measurements, as shown in figure 4.6c. The measured delay
is then compared to the nominal delay and the target delay in a controller
system. This controller appropriately adjusts the performance in the regions
using a voltage controller. Although not directly visible in figure 4.6, this effec-
tively forms a closed loop system: The change in voltage will change the cell
delay, as introduced previously, closing the loop.

Whereas this enables more efficient power reduction for the user application,
it also allows addressing PVTA effects: As these manifest in changed cell
propagation delay, they will be picked up by theMeasure characterization
step and be compensated transparently. It should be noted that the high-level
description here is simplified and the mentioned blocks do not necessarily
all have dedicated hardware in each region. As will be shown later, all blocks,
except for the voltage adjustment logic, will actually be centralized to reduce
the hardware overhead.

Simulation and DSE Whereas previous sections have described the com-
plete PARFAIT architecture, some more thoughts are necessary to efficiently
simulate and evaluate the system. As previously described, simulation mod-
els are necessary to describe the actual influence of voltage adjustment on
the propagation delays of cells. Furthermore, a similar model is needed to
estimate the changes in 𝑃static with voltage adjustment. For PVTA, two sim-
ulation models are required: First, it must be determined how those effects
actually affect the propagation delay, 𝑡PD:

𝑡PD =𝑓(𝑃,𝑉,𝑇,𝐴) (4.8)

And considering the possibility of another independent variable for perfor-
mance adjustment, 𝐶:

𝑡PD =𝑓(𝑃,𝑉,𝑇,𝐴,𝐶) (4.9)

These equations are heavily technology-dependent. For well-established
technologies, an algebraic expression can be derived from equations given
in chapter 2. For various novel technologies, including the RFET technology,

120 Chapter 4 Overall System

such detailed equations and understanding are however not yet available.
Even for SOI and similar technology, using text-book equations may lead to
larger modeling errors than using vendor-specific SPICE models shipped as
part of PDKs. This dissertation will therefore use the generic Scarpato model
presented in section 2.4 on page 27, fitting it to the technologies evaluated in
this thesis.

With thismodel, the systemcanbe simulated given the𝑃,𝑉,𝑇,𝐴 and𝐶 inputs.
𝐶 can be obtained through simulation of the voltage control loop, but for the
other inputs, realistic test scenarios need to be given. The following sections
will derive both the technology model and the scenarios used to derive PVTA
parameters in detail.

4.4 FPGA Implementation

For comparison of the final results and as a basis for the PARFAIT FPGA, the
k6_frac_N10_40nm architecturewas implemented in VHDL.TheVPR toolflow
was extended with missing tools to enable a full Verilog-to-Bitstream flow for
this architecture. Ultimately, benchmark applications can therefore be synthe-
sized to a bitstream and the FPGA can be simulated in Questasim, including
the application bitstream. This workflow enables prototyping of system-level
FPGA features with quick functional verification.

Architecture Modifications Some minor details of the k6_frac_N10_40nm
reference had to be changed for implementation: First, a fixed layout has
been introduced instead of the originally used automated layout. With an
automated layout, VPRdynamically sizes the FPGA, finding the smallest FPGA
size which fits the user application to be placed. Although the bitstream
generator and the FPGA implementation support parametrization to any
size, there are benefits in fixing the size. For example, it allows generation of
bitstreams for multiple applications, that can all be evaluated on the same
FPGA instance. As a second step, FASM metadata has been added to the
architecture to enable generation of bitstreams. This metadata does not affect
the FPGA architecture in any way and will be discussed in detail in the next
section.

In addition, there are actual changes of the functional architecture itself: The
pin equivalence for CLBs has been changed to none. Without this setting,
VPR introduces another stage in the final generated netlist which permutes
inputs of CLBs. Although the VHDL code for the implemented architecture

4.4 FPGA Implementation 121

supports this permutation, VPR does not emit FASM for those. Without this
information, it is however not possible to generate correct bitstreams, so the
permutation was disabled completely. In an additional change, the capacity
of IO cells has been reduced to five instead of eight in the original architecture.
As a consequence, therewill be only five input andoutput pins per IOB instead
of eight. This is not a real limitation, as the evaluatedbenchmarks require large
FPGA sizes and the IOports are therefore not a limiting factor. IOBs connect to
channels on only one side, so five outputs in totalmatch theCLB’s five outputs
on each side. Given that VPR selects the tracks to connect to depending on the
outputs of blocks adjacent to a channel, using the same amount here greatly
simplifies the connection pattern. With this change, this pattern becomes
identical for all block outputs all over the FPGA, for both IOBs and CLBs. This
greatly reduces complexity both in the VHDL FPGA implementation and in
the bitstream generator. Block input mapping still varies between blocks, as
well be explained later in this section.

The last change is related to the routing channels and Programmable Switch
Matrixs (PSMs): In VPR, PSMs for FPGAs with unidirectional channels use
modifiedWilton switch patterns. These patterns are can only be tiled, i.e. are
only identical for each PSM instance, if all tracks start or stop at a PSM. If a
track instead passes through a PSM, VPR will use a custom pattern for each
PSM. As such an irregularity largely increases complexity of the FPGA and
the bitstream generator, pass-through tracks had to be avoided. To realize
this, the segment length of tracks was set to one instead of the original four.
As these architecture changes affect benchmark results, both the LUT based
architecture used for comparison and the ULM RFET architecture implement
all these changes consistently.

FPGA Interconnect An important aspect of FPGA implementations that has
not been discussed so far is the interconnect system, responsible for routing
of signals between logic blocks. This work focuses largely on changes of the
CLB, but an FPGA implementation also has to deal with various interconnect
aspects, which are explained in the following.

The interconnect system can be divided roughly into two categories: First, a
local interconnect, which is used for internal connections within each logic
block. In the PARFAIT FPGA, this is mainly the crossbar in CLBs, explained
as part of figure 4.2 on page 110. The second category is the global intercon-
nect, which consists of PSMs and the routing channels, which contain tracks
connecting the PSMs. These tracks also connect to CBs, where CBs can be
either part of CLB or of the top-level system. The PARFAIT FPGA realizes a
generic CB with customizable patterns, which specify how to connect inputs

122 Chapter 4 Overall System

0

1

0

0

1

1

0

1

iob_s

iob_n
io

b_
w

io
b_

e

(a)

0,1

0,2

1,0

1,1

1,2

1,3

2,0

2,1

2,2

2,3

3,1

3,2

blk x

iob_n

bl
k

y

io
b_

e

(b)

0,0

1,0

1,0

1,1

clb x

iob_n

cl
b

y

io
b_

e

(c)

psm x

iob_n

ps
m

y

io
b_

e

0,0

(d)

psm x

iob_n

ps
m

y

io
b_

e
0,0

(e)

psm x

iob_n

ps
m

y

io
b_

e

0,0

(f)

Figure 4.7: Various grids and numbering conventions used in the FPGA implemen-
tation. (a) Indices and names of IOs as used in VHDL. (b) Indices of all
FPGA blocks as used in FASM. (c) Indices of CLBs as used in VHDL. (d)
Indices of PSMs as used in FASM and VHDL. (e) Indices and names of
Connection Box South-North (CBSN) as used in VHDL. (f) Indices and
names of Connection Box East-West (CBEW) as used in VHDL.

and outputs to certain tracks. In this implementation, the CBs are therefore
part of the global interconnect.

Figure 4.7 shows various grids and indexing that is used in the top-level de-
sign of the FPGA. As shown in (a), IOBs are numbered in a one-dimensional
scheme: They are grouped into north, east, south and west and then num-
bered from left to right or bottom to top. This indexing is primarily used in the
VHDL code, as there is no IOB specific bitstream in the bitstream generator.
Subfigure (b) shows the 2Dgrid used to number all blocks. This is the indexing
scheme which is used in FASM and the generated bitstream, as it handles
all block indices in a generic way. Subfigure (c) shows the 2D grid indexing
scheme used to name CLBs in the VHDL code. The VHDL code gives names
to blocks according to type.

4.4 FPGA Implementation 123

Subfigure (d) shows the locations and indexing of PSMs. It should be noted
that PSMs at edge and corner locations are technically not connected to all
channels. Nevertheless, for simplicity, an identical implementation is used.
For technical reasons, the VHDL codehowever has to actually connect unused
channel outputs. Because of that, the unused signals are declared in the code,
but they are not connected anywhere else. Subfigure (e) and (f) show CBs
connecting channels to blocks south and north or east and west. The VHDL
implementation of those CBs is the same for both variants. It should be noted
that the size of all grid varies a bit, but is always derived from the total FPGA
width and height.

The top-level file and interconnect are automatically generated using the
custom pgen tool. This tool parses a mustache template file and then
generates a VHDL file implementing an FPGA of the selected size. An
excerpt of this template is shown in listing 4.3 as an example. As can be
seen, this template system allows substitution of certain values and repeated
instantiation of blocks. A single instance of generated code is shown in
listing 4.4.

1 {{#IOB_N}}
2 iob_n{{NUM}}: entity vfpga.IOB
3 port map (
4 din => cb_ns_no({{CB_X}}, {{CB_Y}})(7 downto 0),
5 dout => cb_ns_ni({{CB_X}}, {{CB_Y}})(7 downto 0),
6
7 pad_i => iob_ni({{NUM}}),
8 pad_o => iob_no({{NUM}})
9);

10 {{/IOB_N}}

Listing 4.3: Excerpt of the top-level FPGA mustache template showing the IOB
instantiation code.

1 iob_n00: entity vfpga.IOB
2 port map (
3 din => cb_ns_no(0, 3)(7 downto 0),
4 dout => cb_ns_ni(0, 3)(7 downto 0),
5
6 pad_i => iob_ni(00),
7 pad_o => iob_no(00)
8);

Listing 4.4: Excerpt of the top-level FPGA architecture generated from listing 4.3.

124 Chapter 4 Overall System

CB Implementation The used Connection Box consists of multiple config-
urable multiplexers, as shown in figure 4.8.

CHAN I

CHAN D

IN 1 IN 2 OUT 1 OUT 2

CHAN I

CHAN D

Figure 4.8:CB used in the PARFAIT FPGA. CHAN I and CHAN D are channel signals
connecting toPSMs. As tracks areunidirectional, aCBconnects to tracks in
increasing and decreasing direction. IN 1 and OUT 1 are output and input
signals from one CLB adjacent to the CB. IN 2 and OUT 2 are respective
signals for the other CLB.

The exact number of tracks in all signal busses can be configured in the VHDL
code. How a specific CB instance maps the output signals OUT1 and OUT2
to channel tracks can be specified using a generic parameter. The same is
true for the input signals IN 1 and IN 2. Which of the individual connected
tracks is actually selected by the multiplexers is configurable through the
FPGA bitstream. The CB instances in the PARFAIT architecture use pin maps
extracted from VPR, to realize the connections following the VPR architecture
description.

A requirement of VPR is that both connectedCLBsmust be able to drive inputs
of the other one through the CB. Therefore, both CLB’s inputs IN 1 and IN
2 are first multiplexed onto the channel bus. After that, both CLB outputs
OUT 1 and OUT 2 are read from the now multiplexed channel. Signals are
unidirectional, so each CLB connects to the channel busses for increasing
and decreasing direction. The CLB signals must be able to drive and read
signals in both directions, which is ensured by the realization in figure 4.8.
VPR normally determines the required channel width on the fly, depending
on the mapped application. To get more reproducible results, the channel
width is always fixed to 80 tracks in this dissertation, giving 40 tracks in each
direction.

4.4 FPGA Implementation 125

Programming Programmable elements, which include the CLBs, PSM and
the CBs contain internal configuration storage. This storage is realized as shift
register with serial input and output, and a parallel output. This way, multiple
elements can be chained. Data is transferred using a single serial data line, a
clock signal and an enable signal. Such an approach reduces the number of
requiredwires at the expense of longer configuration times, as long sequences
of bits need to be shifted into the registers. Configuration time is not critical
for the PARFAIT FPGA, so this approachwas chosen.

(a) (b)

Figure 4.9: Programming chain connecting the configurable blocks in the PARFAIT
FPGA. (a) Chain for the CLBs. Each row can be programmed individually.
(b) Chain for interconnect elements. Programs all PSMs, CBSN and CBEW
at once.

Figure 4.9 shows how the programmable elements are chained. The leftmost
arrows depict external inputs, which are connected to the FPGAprogramming
port driven by the ProgController code. Subfigure (a) depicts the configu-
ration chains for the CLBs. CLB configuration includes the local interconnect,
i.e. the crossbar. It does however not include any of the CBs, which are pro-
grammed as part of the interconnect bitstream instead. Each row gets an own
CLB configuration chain. This enables configuration of single CLB rows while
keeping other rows unaffected. Subfigure (b) shows the configuration chain
for the global interconnect. As can be seen, this chain includes the PSMs,
CBSNs and CBEWs.

Figure 4.10 shows the FSM describing the PROG controller. This controller can
program a configuration chain of arbitrary length. It uses a simple interface
to receive the data to be programmed in parallel, and to enable program-
ming of the serial chain. As shown in the FSM, the controller initially resets
the configured chain’s storage registers. It then shifts all bits onto the con-

126 Chapter 4 Overall System

figuration chain. When it finished programming all bits, it asserts the done
signal.

INIT RESET WRITE DONE

∀ bits

Figure 4.10: FSM describing the PROG component.

Figure 4.11 depicts how the PROG block is used in a ProgController to pro-
gram all chains of figure 4.9. There are two instances of the PROG block:
One directly drives the interconnect programming chain. The other one
is used to program the CLB rows. As only one controller is used for the
rows, a multiplexer connects the proper row configuration chain to the con-
troller.

FSM

ROW PROG

IC PROG

en, data

done

en, data

done

Row 0

Row 1

Row N

IC

clk
arstn

rst

done

Figure 4.11: Block diagram describing the ProgController component. It consists
of the control FSM two PROG controllers for the interconnect and for the
CLB rows and one multiplexer to select the active CLB row.

The FSM shown in figure 4.12 is used to coordinate the programming process.
It first programs the interconnect, then all the CLB rows individually. Once
the FPGA is fully programmed, it asserts a done signal to inform the user that
the FPGA application is now ready.

INIT PROG INTERCONN PROG CLB ROW DONE

∀ rows

Figure 4.12: FSM describing the ProgController component.

The exact format of the bitstream will be introduced as part of the next sec-
tion, as it is relevant for the logic invasion concept introduced in this the-
sis.

4.5 FPGA Toolflow 127

4.5 FPGA Toolflow

The VPR toolchain can place applications to FPGA architectures using only
an architecture file. It can then gather statistics such as the number of used
blocks, routing track utilization and more. When testing functional aspects
such as logic invasion presented in section 8.2 on page 206, it is more promis-
ing to simulate the real implementation of the architecture presented in the
previous chapter. However, for such an evaluation, the user application needs
to be programmed to this custom FPGA architecture. This then requires a
more complete toolflow than the one offered by VPR, as the placed and routed
design also needs to be converted to a bitstream.

ODIN II: Synthesis

File-Alt
Benchmark
Application

ABC: Optimization ABC: Tech Mapping VPR: Pack

VPR: Place VPR: Route

MICROCHIP
Architecture

Model

GENFASM PBIT: Binary

PBIT_RR: RRG

VTR: Statistics

Figure 4.13: Verilog-to-Bitstream toolfow for the LUT based PARFAIT reference ar-
chitecture. Parts marked in orange are custom parts that have been
developed as part of this thesis.

Figure 4.13 shows the toolflow developed as part of this thesis. It is largely
based on the original VPR toolflow, but extended with some newly written
tools, which are shown in orange in the figure. The basic approach chosen
for bitstream generation is based on FASM, a text based format for bitstream
representation available in VPR [244].

1 BLK_X[001]Y[002]Z[000].CLB.FLE[8].5BLE[1].LUT5.INIT[31:0]=32'b
↪ 11110000000000001111000000000000

Listing 4.5: An example FASM feature for a 32 bit LUT.

FASM aims to be the analogon of software assembly formats for FPGA based
hardware description. The format specification only specifies that “features”

128 Chapter 4 Overall System

are hierarchically grouped keys, which optionally candefine a value. Theexact
content and meaning of these keys is specified by the architecture designer in
the VPR architecture description, asmetadata. An example FASM feature illus-
trating these elements is given in listing 4.5. Here, everything up to the equals
sign is the feature key. The value is aVerilog-style binary string literal. The fea-
ture is hierarchical: It describes the INIT value of the second LUT5 in a 5BLE
in the eight FLE of the CLB at block position 1, 2.

Although FASM can be written manually for maximum control of placement
and routing, it commonly is generated automatically fromVerilog code in-
stead. As shown in figure 4.13, theVerilog application is first fed intoODIN
II for synthesis. After synthesis has transformed theVerilog application into
a technology-independent netlist, this netlist is getting optimized in ABC.
Then, also in ABC, the netlist is mapped to the target technology. For the
reference architecture, ABC is instructed to map to 6-input LUTs. If less in-
puts are required, VPR will later automatically use the fractured 5-input LUT
instead.

After synthesis, VPR is used for the implementation passes. First, it packs
related FFs and LUTs together for use in BLEs. It then places all logic into BLEs
and CLBs based on the architecture description. In the last implementation
step, VPR routes the design. At this point, the placed and routed design is
saved into multiple files: A .place file describing block locations, a .route
file specifying the global routing, a .net file describing the intra-block routing
and a .blif file, describing the netlist. All files need to be parsed manually
to obtain the full information required to generate bitstreams. As this is a
tedious and error-prone process, the GENFASM tool has been introduced. It
can read the aforementioned files and emit FASM such as the one in listing 4.5.
Given that FASM does not provide any semantic meaning in the specification,
it however needs additional specifications using metadata in the architecture
description. Furthermore, metadata needs to be added to the VPR Routing
Resource Graph (RRG), which is realized by the custom written PBIT_RR tool.
The generated .fasm code finally can be transformed to a binary bitstream
using the custom PBIT tool. In the following pages, the newly introduced
tools and steps will be explained in more detail.

ArchitectureMetadata VPR emits FASMwhenever it creates instances of pbs
specified in an architecture description. Listing 4.6 shows an example of such
metadata added to the FPGAarchitecture description. In this case, it describes
the LUT5.INIT[31:0] feature. VPR will automatically add the LUT table as
the feature value. The prefix of the feature is also constructed automatically,
by looking at the metadata of parent pbs.

4.5 FPGA Toolflow 129

1 <pb_type name="lut5" blif_model=".names" num_pb="1" class="lut
↪ ">

2 <metadata>
3 <meta name="fasm_type">LUT</meta>
4 <meta name="fasm_lut">LUT5.INIT[31:0]</meta>
5 </metadata>

Listing 4.6: Architecture metadata to generate FASM features for LUTs.

VPR’s current FASM implementation does not support emitting block location
indices. Instead, users have to specify metadata for each single CLB individu-
ally. As this is rather tedious, the FASM support was extended as part of this
thesis to automatically add position information when a $BLK_X_Y_Z feature
is processed. Indices in the block grid are defined according to figure 4.7b on
page 122. Furthermore, VPR currently only supports emitting FASM for mul-
tiplexers, but not for crossbars. The reference k6_frac_N10_mem32K_40nm
architecture however does use a crossbar in the CLB implementation. As the
architecture should not be modified too much to keep results comparable,
crossbar FASM support was added to VPR as well.

The features shown in listing 4.7 show all the features that are derived from
the architecture description. Those include LUT data for the two 5-input LUTs
in a BLE or for a single 6-input LUT, if the BLE is not in split mode. It further
specifies whether the FF in the BLE is used or bypassed. The last feature
shows how the CLB crossbar is modeled in the PARFAIT FASM description:
It specifies that the third input of BLE 8 should be connected to the second
input of the CLB, driven by the global interconnect. Alternatively, a value of
fle[0].O[0]would specify internal feedback, i.e. connecting the first output
of BLE 0 to this input.

1 BLK_X[001]Y[002]Z[000].CLB.FLE[8].5BLE[1].LUT5.INIT[31:0]=...
2 BLK_X[001]Y[002]Z[000].CLB.FLE[8].5BLE[1].FF.BYPASS
3 BLK_X[001]Y[002]Z[000].CLB.FLE[8].5BLE[0].LUT5.INIT[31:0]=...
4 BLK_X[001]Y[002]Z[000].CLB.FLE[8].5BLE[0].FF.ENABLE
5 BLK_X[000]Y[000]Z[000].CLB.FLE[7].6BLE.LUT6.INIT[63:0]=...
6 BLK_X[000]Y[000]Z[000].CLB.FLE[7].6BLE.FF.ENABLE
7 BLK_X[001]Y[002]Z[000].CLB.FLE[8].CB.I[2]="clb[0].I[1]"

Listing 4.7: Summary of features that are derived from the architecture description.

PBIT_RR is used to parse the VPR RRG and add FASM metadata. Listing 4.8
shows an example of an RRG after it has been processed by PBIT_RR, where

130 Chapter 4 Overall System

the metadata tag has been added by the tool. The modified RRG is fed into
theGENFASM tool, whichwill simply emit the feature stringwhenever it finds
that a segment has been used in the routing.

1 <node id="20" type="OPIN" capacity="1">
2 <loc xlow="0" ylow="1" xhigh="0" yhigh="1" side="RIGHT"

↪ ptc="1"/>
3 </node>
4 <node id="9552" type="CHANY" direction="INC_DIR" capacity="1">
5 <loc xlow="0" ylow="1" xhigh="0" yhigh="1" ptc="0"/>
6 </node>
7 <!−− ... −−>
8 <edge src_node="20" sink_node="9552" switch_id="2">
9 <metadata>

10 <meta name="fasm_features">BLK_X[000]Y[001]Z[000].CBW[
↪ E].ODST[00]=1</meta>

11 </metadata>
12 </edge>

Listing 4.8: Example VPR RRG extended with FASM metadata by PBIT_RR.

In the RRG, nodes represent channels (connecting PSMs), or IPINs and OPINs,
representing inputs and outputs of CLBs and other blocks. Edges on the other
hand represent a possible connection between such nodes. The RRG contains
all theoretically possible connections. It is therefore only dependent on the
FPGA architecture description, but is independent of the application. The
PBIT_RR tool analyzes all segments and derives FASM features for them. It
then distinguishes two kinds of edges: If an edge connects two channel nodes,
it is representing a connection in a PSM. If it connects a channel and an IPIN
or a channel and an OPIN, it is a CB connection.

1 PSM_X[000]Y[001]Z[000].MUX[S].TRACK[79]="N"
2 BLK_X[001]Y[002]Z[000].CBW[W].ODST[79]=59
3 BLK_X[000]Y[001]Z[000].CBR[E].I[12]=79

Listing 4.9: Summary of features that are derived from the RRG.

Listing 4.9 gives examples of those generated features, with the first line
describing a PSM connection. Apart from block coordinates, it contains the
information that track 79 in the south output of the PSM needs to be driven
by the input from north. Each PSM output only connects to one track in each
direction, so this information is complete.

4.5 FPGA Toolflow 131

The second line shows information for the output part of a CB, driving routing
channels from a CLB or IOB. This specific feature signifies that track 79 in the
channel in the west needs to be driven by output 59 of the block. The tracks
that can connect to a certain output, follow a fixed pattern, so not all numbers
may be emitted here. The third line shows information for the input part of a
CB, selecting tracks to route into a CLB or IOB. In this case, it specifies that
input 12 should be driven by track 79 in the channel to the east of the logic
block.

The generated FASM uses pin and track numbers as used by VPR, to enable
easier debugging. These numbers do not directly correspond to multiplexer
indices though: As only some connections are possible, there are less multi-
plexer addresses than pin and track numbers. The mapping is done by both
PBIT, which maps track indices to multiplexer addresses, and by the VHDL
code specifying the architecture. The latter has to undo the mapping to con-
nect to the proper tracks for a certain multiplexer address. The connection
patterns of pins to tracks are determined in VPR using an elaborate algorithm.
Reimplementing this algorithm in custom tools would be error-prone, so a
different solution has been chosen: The PBIT_RR tool will generate pin maps
based on the RRG [245] to be used in the other tools. An example of such a
pin map for inputs in the north of an IOB block is shown in listing 4.10. Here,
the first line for example states that IOB pin 0 can connect to track pins 0, 1,
12, etc.

1 ======================== IOB_N ========================
2 00 => [0, 1, 12, 13, 26, 27, 40, 41, 52, 53, 66, 67]
3 03 => [2, 3, 16, 17, 28, 29, 42, 43, 56, 57, 68, 69]
4 06 => [4, 5, 18, 19, 32, 33, 44, 45, 58, 59, 72, 73]
5 09 => [8, 9, 20, 21, 34, 35, 48, 49, 60, 61, 74, 75]
6 12 => [10, 11, 24, 25, 36, 37, 50, 51, 64, 65, 76, 77]

Listing 4.10: Pin map generated by PBIT_RR for the north inputs of an IOB.

PBIT reads FASM files, which might be either generated as previously ex-
plained, or manually written, and transforms them to binary configuration
data. In this process, it first maps track indices and block pins to multiplexer
addresses, using the pin maps generated by PBIT_RR. It then converts these
addresses to binary data vectors. Vectors representing different blocks are
then ultimately combined to fit the order of the configuration chains of fig-
ure 4.9 on page 125. Data can be directly emitted as a VHDL package, based
on a given mustache template.

132 Chapter 4 Overall System

Bitstream formats are shown in tables 4.1 to 4.4. Table 4.1 shows the bitstream
format used for PSMs. For all 40 tracks in all 4 directions, it encodes the
direction a track is driven from. For example, the N entry in TRACK_0 specifies
where the track 0 output in the north of the PSM is driven from. Values are
encoded as 2 bit in increasing order: from left, fromcenter, from right (looking
from output track into the PSM).

319 7 0

TRACK_39 TRACK_1 TRACK_0

W S E N W S E N W S E N

Table 4.1: Bitstream Format for the PSM

Table 4.1 describes the bitstream format used for BLEs. It consists of the LUT
data, which might either be two times 32 bit in fractured LUT mode, or one
time 64 bit for a 6-input LUT.Whichmode is selected is specified by the SPLIT
bit. MUX0 and MUX1 bits then drive the multiplexers selecting between LUT or
FF outputs.

66 65 64 32 0

SPLIT MUX_1 MUX_0 LUT_1 LUT_0

Table 4.2: Bitstream Format for the BLE

Table 4.3 describes the bitstream format for complete CLBs. It consists of 10
BLEs as specified in table 4.2. Furthermore, it contains the configuration for
the crossbar in the CLB. Each entry is a 6 bit value, selecting one of 40 global
inputs (0 – 39) or one of the feedback signals (40 – 59). Inputs are sorted, so
that the six inputs I[0]-I[5] in category MUX[0] drive inputs 0 – 5 of BLE 0.

1029 705 669 0

MUX_9 MUX_0 BLE_9 BLE_0

I5 I4 I3 I2 I1 I0 I5 I4 I3 I2 I1 I0

Table 4.3: Bitstream Format for the CLB

Table 4.4 describes the bitstream format for CBs. A CB can drive 32 tracks
of a channel in both directions, from two inputs A and B. Each of the fields

4.6 Technology Modeling 133

DBD, etc., is a single bit which is high if the respective track is driven from the
respective input. Otherwise, the track is passed through unmodified. As an
example, a 1 bit in DBD of DRIVE_0 signifies that track 0 in decreasing channel
direction should be driven by port B. Note that track index 0 is not the track
index as in VPR and the pin index in B is not configurable. These values are
fixed in the VHDL implementation according to the previously introduced
pin maps. Values in the READ categories describe what channel track should
drive an input to logic block A or B. Each value is a 4 bit vector, encoding
values from 0 to 12. Again, the exact track numbers selected are determined
according to the pin map. In addition, the numbers also encode the direction,
as the multiplexer connects to both channel directions (refer to figure 4.8 on
page 124). For example, RA = 4b'0010 in READ_9 signifies that input signal
9 of the block A should be driven by track 2.

207 135 128 3 0

READ_9 READ_0 DRIVE_31 DRIVE_0

RA RB RA RB DAI DAD DBI DBD DAI DAD DBI DBD

Table 4.4: Bitstream Format for the CB

4.6 Technology Modeling

To be able to simulate the PARFAIT architecture, a simulation model to
predict the circuit delay under certain process conditions is required. Al-
though any model can be used in the tools designed as part of this thesis,
the evaluation here will use models based on Scarpato’s work [3]. Refer to
sections 2.3 and 2.4 on page 20 and on page 27 for an introduction to this
model.

ad as nrd nrs pd ps W
PMOS 1.68×10−12 1.68×10−12 0.08 0.08 7.96×10−6 7.96×10−6 1𝑢
NMOS 2.4×10−13 2.4×10−13 0.54 0.54 1.96×10−6 1.96×10−6 0.5𝑢

Table 4.5: Layout parameters for the MOSFETs used in the test circuit for 𝑡PD analysis
in XT018. Most parameters are identical to [Reu21], but the device width
was recalculated to obtain symmetrical inverters at 1.8 V.

In general, the Scarpato model describes delay for a certain gate or a whole
circuit. In this dissertation, the model was derived for specific test gates.

134 Chapter 4 Overall System

Based on this, it is assumed that FPGA circuits based on reconfigurable LEs
show behavior proportional to the test gates. The propagation delay mod-
els will therefore be normalized to yield a 1.0 value at nominal condition.
As a result, the final models will yield a factor that can be multiplied with
the LE delay at nominal condition to describe performance increase and
decrease.

SOI Reference Technology

The commercial XT018 technology is used as a reference to compare the
RFET results to. It is a 180 nm SOI technology, featuring a similar feature size
as the PARFAIT RFET. As the technology features a complete, commercial
PDK, required simulation models can be fitted to results of SPICE simulations.
For these evaluations, a simple CMOS inverter as shown in figure 4.14 was
designed in Cadence Virtuoso. General layout parameters were taken from
Reuter et al. to match the investigation in [Reu21]. As the operating voltage
used in this dissertation is 1.8 V, the width of the transistors had to be refitted
though. Layout parameters are shown in table 4.5.

Test Circuit Figure 4.14 shows the test circuit used to extract the propagation
delays. Delays are measured for the second inverter and in between the I and
O points.

In analog simulations, the first inverter’s input is driven by a simulated, vari-
able voltage source. The source voltage starts at 0 V at 𝑡 = 0, and starts rising
linearly at 𝑡 = 40ps with a slope of 1.8V/40ps. For the nominal voltage of
1.8 V, this ensures that the input rises in 40 ps to the maximum input voltage.
When using non-nominal supply voltage, this specification keeps the slope
constant, changing the transition time. At 𝑡 = 500ps, the input falls linearly
to 0 V, matching the same absolute slope as for the rising edge. This artifi-
cial signal generates an output at the first inverter, which is close to inverter
output transients in real circuits. It drives the second inverter, which in turn
drives four other inverters at its output. Outputs of the last inverter stage are
kept unconnected. An implementation of this circuit is evaluated in Cadence
Virtuoso, where it can be parametrized for the supply voltage, body biasing
voltage and temperature.

Voltage andTemperature Following the process in [3], themodelwill first be
fitted to the V and T data. Delays are extracted from the transient simulations
shown in figures 4.15a and 4.15b on page 136, where the propagation delay is

4.6 Technology Modeling 135

VBS,n

VBS,p

VBS,n

VBS,p

VBS,n

VBS,p

VBS,n

VBS,p

VBS,n

VBS,p

VBS,n

VBS,p

I O

−
+

Vin

Figure 4.14: Test circuit to extract the FO4 delay of an inverter. The characterized
inverter (second from left to right) is driven by another inverter and
drives a load consisting of four inverters.

computed in Cadence Virtuoso using the delayMeasure function. Both the
rise-fall 𝑡PD and fall-rise 𝑡PD haven been extracted, and it has been verified
that they show identical behavior with respect to the tested parameters. The
absolute values of these delays are not identical, due to small mismatches in
the PMOS and NMOS networks. However, for the system level simulation, the
model only needs to report a performance scaling factor. Because of this, the
absolute values are not important, and the model developed here therefore
will be parametrized using only fall-rise transitions. The model will then be
normalized in the end.

For supply voltage dependency modeling, the supply voltage was swept from
1.3 V to 2.3 V using steps of 50mV, whereas other parameters have been fixed
at nominal conditions. The simulated data, 21 points covering a range of
±500mV centered on the nominal 1.8 V, was then exported. Data samples
are shown in figure 4.16 on page 141 as dots in the left column. A similar
approach was taken to extract the temperature dependency figure 4.15b.
Temperature 𝑇 was swept from −40 °C to 175 °C with step size 5 °C. The re-
sulting 44 delay values were exported and then converted to Kelvin units.
Resulting values are shown in figure 4.16 on page 141 as dots in the right
column.

136 Chapter 4 Overall System

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

Time [ns]

Vo
lta

ge
[V

]

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

Time [ns]

Vo
lta

ge
[V

]

(b)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

1

2

Time [ns]

Vo
lta

ge
[V

]

(c)

Figure 4.15: Transients obtained for the test circuit of figure 4.14 for XT018 technology,
varying various parameters. All simulations represent the typical corner.
Only four curves are shown for illustrative reasons. (a)Varying 𝑉 from
1.3 V to 2.3 V. 𝑇 = 25 °C, 𝑉𝐵𝐵 = 0V. (b)Varying 𝑇 from −40 °C to 175 °C.
𝑉 = 1.8V, 𝑉𝐵𝐵 = 0V. (c) Varying 𝑉BB from −0.5 V to 0.5 V. 𝑇 = 25 °C,
𝑉 = 1.8V.

4.6 Technology Modeling 137

The data was fitted to the equation (2.22), which is repeated here in equa-
tion (4.10). Fitting used a least-squares optimization and the Python
scipy.curve_fit function. This resulted in the parameters shown in
table 4.6, resulting in the initial model to describe variation in delay based on
temperature 𝑇 and supply voltage 𝑉𝐷𝐷.

𝑡PD =𝑓(𝑉,𝑇) = 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2−𝑘2𝑇𝑛2))
𝑝𝛼 (4.10)

Parameter Value
𝑝𝛽 3.22858639×10−10

𝐶1 −2.40261187×10−2

𝑘1 −1.79415324×10−12

𝑛1 3.69762143
𝐶2 −1.43610580×101

𝑘2 5.79932114×10−8

𝑛2 2.78263332
𝑝𝛼 6.80111280

Table 4.6: Parameters obtained when least-squares fitting the delays obtained in sim-
ulations of the test circuit in the XT018 technology to equation (4.10).

Process Variation As in [3], the next step in derivation of the delay model is
characterization of the process variation dependency. Unfortunately, little
information about process variation was available for the evaluated XT018
technology. Variation of geometrical parameters (see section 2.4) could be
simulated in Virtuoso through parametrization. However, the more interest-
ing information is the absolute amount of variation to be expected, which
could not be obtained. Therefore, instead of modifying the SPICE circuit sim-
ulation to estimate process variation, factory provided data for digital cells
was used: For those cells, the PDK provides various corners (see section 2.8)
for slow, typical and fast devices.

The test circuit of figure 4.14 has therefore been replicated in VHDL as
shown in listing C.1 on page 353. The test uses inverter cells of type INHDX0
from the D_CELLS_HD high density standard cell library shipped with the
PDK. The VHDL test circuit has then been synthesized in Cadence Genus
using all available corners. A timing analysis has been performed and the

138 Chapter 4 Overall System

top 100 critical paths have been extracted. Out of those paths, the worst
rise-fall and fall-rise propagation times for the second inverter, inv1, have
been extracted. Again, only the fall-rise transitions have been used for
modelling.

The absolute delay of the custom designed cell in SPICE simulation is not
identical to the one of the commercial cells in the PDK. Because of that, a
scaling factor has been derived using the delays of both cells at nominal
operating conditions. For the SPICE simulated results, the delay was obtained
using the model in equation (4.10). For the cell from the standard cell library,
the delay has been obtained through simulation in Cadence Genus. The
obtained scaling factor was used to scale all delays obtained in the Genus
simulations before any further processing.

Then, as in [3], all parameters except for 𝐶2 and 𝑝𝛼 were fixed to the values in
table 4.6. As there were not many data points available, 𝑝𝛼 could also be fixed
in addition. Then, all 4 delays obtained for the fast corner, at various temper-
atures and 𝑉𝐷𝐷, were used to fit equation (4.10) with these fixed parameters.
This process was repeated with the delays obtained for the slow corner. The
resulting 𝐶2 values are shown in table 4.7.

Parameter Value
𝐶2 slow −14.66985571431331
𝐶2 typical −14.36105
𝐶2 fast −14.138776396937581

Table 4.7: Fitted 𝐶2 for equation (4.10) and the Cadence Genus results for the XT018
technology. Other parameters are kept fixed as in table 4.6.

As in [3], to obtain delays for continuous process variation instead of only
for the corners, the 𝐶2 variable has been interpolated linearly, fitting it to the
following equation:

𝐶2(𝑃) = 𝐶2C+𝐶2m ∗𝑃 (4.11)

Here, 𝑃 describes the process as a number ranging from−1 (slow) to 1 (fast).
Values were fitted as 𝐶2C = −14.361068 and 𝐶2m = 0.26553966 and the ex-
tended model with process variation is given as:

𝑡PD =𝑓(𝑉,𝑇,𝑃) = 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2(𝑃)−𝑘2𝑇𝑛2))
𝑝𝛼 (4.12)

Figure 4.17 on page 142 shows examples of varying the process parameter
𝑃 in the derived model, keeping other parameters at nominal values. Five

4.6 Technology Modeling 139

values are depicted, −1 (slow), −0.5, 0 (typical), 0.5 and 1.0 (fast). Dots in
these figures depict the simulated values obtained from the Cadence Genus.
Unfortunately, the available corners do not only differ in process variation,
but also in supply voltage and temperature. Because of this, only a typical
process corner is available at nominal temperature and supply voltage, so
only one dot for the typical process is shown.

BodyBiasing As a next step, the dependency of body biasing, used to control
the performance of the device, is added to the model. Body biasing is not cov-
ered in [3], but the extensionof themodel is straightforward: Comparing equa-
tion (4.10) and equation (2.12) to the physicalmodel of the drain current equa-
tion (2.3), shows the physical motivation of the Scarpato delay model, and
that the threshold voltage 𝑉th is modeled like this:

𝑉th ∝ (𝐶2(𝑃)−𝑘2𝑇𝑛2) (4.13)

Body biasing affects the threshold voltage 𝑉th based on body effect factor
𝛾 and the Fermi potential Φ according to equation (2.1) on page 11. The
original model has therefore been extended with additional terms affecting
the threshold voltage following equation (2.1) in equation (4.15). The new
complete model is given in equation (4.14):

𝑡PD =𝑓(𝑉,𝑇,𝑃,𝐶)

= 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1) ∗
𝑉

(𝑉−(𝐶2(𝑃)+𝐶3(𝐶)−𝑘2𝑇𝑛2))
𝑝𝛼

(4.14)

𝐶3(𝐶) = 𝐶𝛾 ∗(√|−𝐶Φ−𝐶|−√|−𝐶Φ|) (4.15)

The control input 𝐶 corresponds directly to the body bias voltage 𝑉BS and 𝐶𝛾
and 𝐶Φ are newly introduced fitting parameters.

The test circuit of figure 4.14 was evaluated for a body bias voltage sweep
from −500mV to 500mV, where bulk voltages are defined as in the follow-
ing:

𝑉BS,p =𝑉DD−𝑉BS (4.16)
𝑉BS,n = 0V+𝑉BS (4.17)

PMOS and NMOS devices are therefore biased symmetrically. Positive 𝑉BS
is defined as forward body biasing, where the delay of the circuit is reduced.
The voltage has been increased in 50mV increments and the resulting 21 data
points are shown as dots in the left-hand side figures of figure 4.17. The newly
introduced parameters were then fitted as 𝐶𝛾 = 0.17329925253921682 and

140 Chapter 4 Overall System

𝐶Φ = 0.7588269701830175. Interpolated results, which were obtained using
this model, are shown in figure 4.17.

Aging As a final step, the model was extended to model aging. Unfortunately,
no detailed aging information was available in the used XT018 PDK. This is an
issue, as aging itself depends on temperature and voltage [3], which makes it
difficult to model without sufficient data. However, as the model derived here
will only be used as a realistic test case, it does not have to model the XT018
technology exactly. As long as the model behaves in a way a real technology
would, it is suitable for the architecture evaluation. Because of this, an existing
aging model from [3] has been integrated into the SOI reference model used
here. Following equation (3.10) in [3], aging is introduced as a shift in 𝑉th
with Δ𝑉th =𝐴, yielding the final model:

𝑡PD =𝑓(𝑉,𝑇,𝑃,𝐶,𝐴)

= 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1) ∗
𝑉

(𝑉−(𝐶2(𝑃)+𝐶3(𝐶)+𝐴−𝑘2𝑇𝑛2))
𝑝𝛼

(4.18)

The simplest of the aging models investigated in [3] has been chosen for the
final propagation delay model:

𝐴=𝑓(𝑡,𝑉A,𝑇A) = 𝐶 ∗ 𝑡𝑛 ∗𝑉𝛾
𝐴 ∗𝑒−900/𝑇𝐴 (4.19)

The parameters have been taken from table 3.5 in [3] and are reprinted in this
thesis in table 4.8.

Parameter Value
𝛾 4.88
𝐶 2.5×10−3

𝑛 0.16

Table 4.8: Parameters for equation (4.19) taken fromTable 3.5 in [3]. This reproduces
the aging model for the technology evaluated in [3].

This approach is realistic, as this aging model represents an absolute shift of
the threshold voltage. Even though the technologies are different, absolute
values of threshold voltages are similar, which allows to obtain a realistic com-
bined model. It should be noted that parameters 𝑉 and 𝑇 in equation (4.18)
are instantaneous values at a certain time 𝑡. The values in equation (4.19) on
the other hand are values which represent the aging process, e.g. devices age
faster at higher temperature. 𝑉 and 𝑉A, and 𝑇 and 𝑇A, therefore have to be
considered to be independent parameters.

4.6 Technology Modeling 141

1.2 1.4 1.6 1.8 2 2.2 2.4
60

80

100

120

T

VDD [V]

t P
D
[p
s]

(a)

−50 0 50 100 150 200
60

80

100

120

VDD

T [°C]

t P
D
[p
s]

(b)

1.2 1.4 1.6 1.8 2 2.2 2.4

50

100

P

VDD [V]

t P
D
[p
s]

(c)

−50 0 50 100 150 200
40

60

80

100

120

P

T [°C]

t P
D
[p
s]

(d)

1.2 1.4 1.6 1.8 2 2.2 2.4

60

80

100

120

VBS

VDD [V]

t P
D
[p
s]

(e)

−50 0 50 100 150 200

70

80

90

100

110

VBS

T [°C]

t P
D
[p
s]

(f)

1.2 1.4 1.6 1.8 2 2.2 2.4

80

100

120

t

VDD [V]

t P
D
[p
s]

(g)

−50 0 50 100 150 200

80

100

t

T [°C]

t P
D
[p
s]

(h)

Figure 4.16: 𝑡PD model (lines) and fitting data (dots) for the XT018 technology.
The left-hand side figures show propagation delay vs. supply voltage,
parametrized on the four other parameters. The right-hand side shows
the delay dependency on temperature. Parameters were chosen to yield
five exemplary curves covering the full parameter range, where one curve
matches the parameter value for the original fitting data.

142 Chapter 4 Overall System

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

70

80

90

T

VBS [V]

t P
D
[p
s]

(a)

−1 −0.5 0 0.5 1 1.5
40

60

80

100

120

T

P

t P
D
[p
s]

(b)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

60

80

100

P

VBS [V]

t P
D
[p
s]

(c)

−1 −0.5 0 0.5 1 1.5

50

100

VDD

P

t P
D
[p
s]

(d)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

80

100

VDD

VBS [V]

t P
D
[p
s]

(e)

−1 −0.5 0 0.5 1 1.5
40

60

80

100

120

VBS

P

t P
D
[p
s]

(f)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

80

90

100

t

VBS [V]

t P
D
[p
s]

(g)

−1 −0.5 0 0.5 1 1.5

60

80

100

120

t

P

t P
D
[p
s]

(h)

Figure 4.17: 𝑡PD model (lines) and fitting data (dots) for the XT018 technology. The
left-hand side figures show propagation delay vs. body bias voltage,
parametrized on the four other parameters. The right-hand side shows
the delay dependency on process variation. Parameters were chosen to
yield five exemplary curves covering the full parameter range, where one
curve matches the parameter value for the original fitting data.

4.6 Technology Modeling 143

0 1 2 3 4 5 6

·108

80

90

100
T

t [s]

t P
D
[p
s]

(a)

0 1 2 3 4 5 6

·108

80

100

120

VDD

t [s]

t P
D
[p
s]

(b)

0 1 2 3 4 5 6

·108

60

80

100

120

P

t [s]

t P
D
[p
s]

(c)

0 1 2 3 4 5 6

·108

80

90

100

VBS

t [s]
t P

D
[p
s]

(d)

Figure 4.18: 𝑡PD model (lines) and fitting data (dots) for the XT018 technology. Fig-
ures show propagation delay vs. aging, parametrized on the four other
parameters. Aging was simulated at a temperature of 120 °C and 1.8 V.

Normalization Ultimately, the model in equation (4.9) has been normalized
to yield value 1.0 at nominal conditions, 𝑃 = 0, 𝑉 = 1.8V, 𝑇 = 25 °C, 𝐴 = 0V
and 𝐶 = 0V. As a result, the final model in equation (4.18) needs to be scaled
by 𝐶norm = 1.2068296052×1010.

Leakage Current In addition to the model for 𝑡PD, to model power through
static leakage (equation (2.8)), a model for the leakage current is required.
Similar to the 𝑡PD model, an inverter will be used as a representative CMOS
circuit and a factor describing increase or decrease has been derived. The
leakage current in a CMOS inverter is mostly determined by the 𝐼D current of
the transistor in off state. As such, two aspects are primarily important: The
absolute value of the gate voltages, i.e. whether the driving gate achieves full
output swing. For this dissertation, this aspect will be assumed to be given.
The second aspect is the 𝐼D when 𝑉GS is close to 0 V.

Theoretically, this drain current can again depend on 𝑃, 𝑉, 𝑇 and aging. For
this thesis, the most important relation is the dependency on the control
input or body bias voltage 𝑉BS. As the derivation of a more complete model
is out of scope of this thesis, only the𝑉BS dependency has been modeled. For
this, a single inverter has beenmodeled inVirtuoso, again using the geometric

144 Chapter 4 Overall System

parameters of table 4.5. The inverter input has been biased to 0 V and the body
bias voltage was again swept from 500mV to 500mV in 21 steps. The results
of this simulation are shown as dots in figure 4.19.

−0.6 −0.4 −0.2 0 0.2 0.4 0.6

0

10

20

VBS [V]

I l
ea

k
[n
A
]

Figure 4.19: Leakage current in an inverter for the XT018 technology. Dots depict
values simulated in Cadence Virtuoso SPICE simulation, the line shows
values obtained through equation (4.20).

This datawas then fitted to a shifted power function:

𝐼leak =𝑓(𝐶) = 𝐶ID ∗ (1.8−𝐶)
𝛼ID (4.20)

The parameters for this model and the test data were calculated as 𝐶ID =
1.14293038×10−6 and 𝛼ID =−1.46337323×101.

RFET Technology

Now that the model for SOI technology has been derived, a similar 𝑡PD model
will be discussed for RFET technology: This work will primarily use Galderisi’s
RGATE [246] to demonstrate the feasibility of an FPGA based on ambipolar
technology. To estimate the feasibility of the introduced PVTA compensation
concepts, and to demonstrate the potential of RFETs, evaluations should
ideally be performed using the RGATE technology.

Unfortunately, the RGATE and related technology were only introduced re-
cently (2024 and 2022). Because of this, no propagation delay model, PDK or
even SPICEmodel is available yet. However, extensive device characterization
data for various parameters has been published in [42] and [2]. As a tempo-
rary solution until more exact models become available, the Scarpato model
will be adapted and fitted to the device data in a best-effort approach. Certain

4.6 Technology Modeling 145

deviations and inaccuracies are expected: Physical effects determining the
device performance are partially different for Schottky Barrier based RFETs,
whereas the Scarpato model was derived for standard silicon technologies.
Conclusions drawn using the adapted model should therefore be interpreted
with caution, but this model at least enables a proof-of-concept evaluation.
Concrete limitations of the model will be explained during the derivation and
discussion of the model.

The general approach for 𝑡PD modelling using device datawas derived through
observation of equation (2.11). Introducing the modeled parameters results
in the following equation:

𝑡PD (𝑉,𝑇,𝑃,𝐶,𝐴) ∝
𝐶L𝑉

𝐼D (𝑉,𝑇,𝑃,𝐶,𝐴)
(4.21)

With the parameters as in the SOI model: 𝑉 as supply voltage 𝑉𝐷𝐷, 𝑇 as
temperature,𝑃 as process variable,𝐶 as control variable for the PGand𝐴 as an
aging parameter. In the equation, it has been assumed that𝐶L is independent
of the parameters. Whether this is the case needs to be confirmed through
future device characteristics measurements and physical modeling, which
are out of scope for this dissertation.

Equation (4.21) only provides a proportionality, so deriving absolute propa-
gation delays requires fitting a model to measured or simulated delays. It is
however not possible to perform these evaluations for the chosen RFET tech-
nology, as neither measured data nor simulation models are available. This
dissertation however only needs information about relative effects in delay: If
one of the parameters changes, how does the delay change in comparison to
the original value? This normalization is used even for the SOI model, where
absolute data is theoretically available: A model using absolute values is only
valid for a single, specific gate with specific load conditions. Deriving relative
changes instead enables generalization of the model for various gates, as will
be shown later.

The relative delay can then be described as:

𝑡PD (𝑉,𝑇,𝑃,𝐶,𝐴)
𝑡PD (𝑉0,𝑇0,𝑃0,𝐶0,𝐴0)

=
𝑉 ⋅ 𝐼D (𝑉0,𝑇0,𝑃0,𝐶0,𝐴0)
𝑉0 ⋅ 𝐼D (𝑉,𝑇,𝑃,𝐶,𝐴)

(4.22)

It can be seen that equation (4.22) allows derivation of a propagation delay
model when knowing only the drain current 𝐼D and supply voltage 𝑉𝐷𝐷.
These values are available from [2, 42]: 𝐼D is the main quantity evaluated
in device characterization and directly available. For 𝑉𝐷𝐷, the situation is
more complicated: In a typical CMOS-like circuit, 𝑉𝐷𝐷 determines both the

146 Chapter 4 Overall System

drain-source voltage of the device and the control gate voltage. How this
voltage exactly determines the drain-source voltage in a circuit depends on
the circuit andwon’t bediscussedhere indetail. For themodel,measurements
performedusing adrain-source voltageof1 Vwill beused,which is thehighest
voltage measured. The 𝑉𝐷𝐷 parameter dependency will be extracted from
the control gate voltage.

Another source of errors is inherent in this derivation process: Obtaining
propagation delays from measured drain currents requires an inversion op-
eration. Currents are however generally small, which causes larger relative
measurement errors. When these values are inverted, such small errors lead
to larger errors in propagation delay. It would therefore be preferable to di-
rectly measure delays, but respective data is not available. Measurement
errors are partially reduced through the normalization step performed in
equation (4.22), but this only cancels gain errors.

Voltage and Temperature Galderisi et al. provide characterizations for
RFETs in low- and high-threshold configurations and for n, p and ambipolar
modes [2]. For brevity, the model will be parametrized for only the p mode
low-threshold configuration, although the RGATE uses both low- and high
threshold configurations and n and p mode. In the model parameters and
in the figures shown, the sign of all voltages will be flipped so that the final
model parameters are positive numbers.

Parameter Value
𝑝𝛽 7.38781712×109

𝐶1 3.35401541×102

𝑘1 −3.31907695×102

𝑛1 2.16939171×10−3

𝐶2 −4.23116198×104

𝑘2 −2.04660655×104

𝑛2 6.82800925×10−2

𝑝𝛼 −2.32258543

Table 4.9: Parameters for RFET propagation delay model in nominal conditions. Data
was derived from drain current measurements in [2].

For the voltage dependency, the data available from figure 1h in [2] has been
used. The data was extracted for a drain voltage of −1 V, a program gate
voltage of−3 V and a temperature of 25 °C. As for all measurements used, it

4.6 Technology Modeling 147

will be assumed that values correspond to the typical process. Control gate
values were selected from −2.45 V to −3 V to ensure the current values are
obtained in the saturation region.

Temperature data was obtained from figure 5c in [2], which again describes
the p mode in low-threshold configuration. Program gate and drain volt-
age were again fixed at −3 V and −1 V, and the data was assumed to repre-
sent the typical process. Drain currents were extracted for a control gate
voltage of −3 V and temperatures from 325K to 425K. In addition, a data
point representing room temperaturewas taken from the voltage dependency
dataset.

As in the SOI model, data was fitted to equation (2.22) using a least-squares
fit and the Python scipy.curve_fit function:

𝑡PD =𝑓(𝑉,𝑇) = 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2−𝑘2𝑇𝑛2))
𝑝𝛼 (4.23)

This resulted in the parameters shown in table 4.9 for the initialmodel describ-
ing delay variation for temperature 𝑇 and supply voltage 𝑉𝐷𝐷. Figure 4.20
on page 150 shows how the final model fits the extracted values. The model
in equation (4.23) corresponds to the final model with 𝐶 = 3.0V, 𝑃 = 0 and
𝑡 = 0, i.e. no aging. Data in the figures has been normalized so that the delay
at nominal condition (𝑇 = 25 °C, 𝑉 = 3.0V, 𝐶 = 3.0V, 𝑃 = 0, 𝑡 = 0) equals
1.0.

Process Variation Galderisi et al. provide some initial process variation data
in [2, 42]. As this is currently a lab-scale process and scaling of the technology
will likely have effects on process variation, this data was not used and the
process variation data obtained for the industrial SOI process reference has
been adapted instead: First, relative changes in delay for worst and best pro-
cess have been evaluated for the SOI model, obtained at otherwise nominal
conditions. This lead to a propagation delay increase of 30% for the slow
process and a decrease of 34% for the fast process. These values were then
used to scale the previously obtained temperature and voltage datasets. Like
in the SOI model, all parameters except for 𝐶2 were fixed to the values in
table 4.9. The data for the slow and fast process was then again fitted to this
model, yielding the 𝐶2 values shown in table 4.10.

Following [3] the 𝐶2 variable has been interpolated linearly again by fitting it
to the following equation:

𝐶2(𝑃) = 𝐶2C+𝐶2m ∗𝑃 (4.24)

148 Chapter 4 Overall System

Parameter Value
𝐶2 slow −4.16620881×104

𝐶2 typical −4.23116198×104

𝐶2 fast −4.29951574×104

Table 4.10: Fitted 𝐶2 for equation (4.23) and relative process variation matching the
RFET technology. Other parameters are kept fixed as in table 4.9.

Here, 𝑃 again describes the process as a number ranging from −1
(slow) to 1 (fast). Values were fitted as 𝐶2C = −4.23116198×104 and
𝐶2m = −666.535 and the extended model with process variation is again
given as:

𝑡PD =𝑓(𝑉,𝑇,𝑃) = 𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2(𝑃)−𝑘2𝑇𝑛2))
𝑝𝛼 (4.25)

A comparison of the nominal operating point and the modelled values for
various different process parameters is shown in figure 4.21 on page 151
in the right column. As can be seen in figure 4.20d, the model becomes
unrealistic for high temperatures in the fast process, even leading to negative
values. Evaluations in this parameter combination region should therefore
be avoided.

ProgramGate Voltage For the PG voltage, a different modeling approach
had to be chosen compared to the SOI body biasing voltage: The physical
principles are different and figure 1j in [2] suggests that the influence of the
PG voltage is exponential. With the previously shown fitted parameters, 𝑝𝛽
is comparatively large. This means that the whole second term can only
have limited effects on the propagation delay value. Modeling the control
parameter as part of this term, like in the SOI model, could therefore not
represent this exponential influence.

𝑡PD =𝑓(𝑉,𝑇,𝑃,𝐶)

= (𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2(𝑃)−𝑘2𝑇𝑛2))
𝑝𝛼) ⋅𝐶3(𝐶)

(4.26)

𝐶3(𝐶) = 𝐶𝛾 ⋅ 𝑒𝐶𝜙⋅𝐶 (4.27)

As a solution, the slightly modified version of the model above was intro-
duced. Instead of modifying the second term, the whole function is scaled
using an exponential function. This model is not physically motivated and

4.6 Technology Modeling 149

is therefore a pure mathematical model. It assumes that the PG voltage and
other parameters are uncorrelated and canbemodelled independently, which
needs to be verified in future research and with more measurements. For
the evaluation of the PARFAIT system, this assumption is however not limit-
ing.

The data to be matched was extracted from figure 1j in [2] for 𝑉 = 3V. Drain
voltage and temperature were 1 V and 25 °C respectively, and values belong
to the typical process. The PG voltages for the extracted drain currents were
between 0 V and 3 V. The exponential term was then first fitted independently
to the normalized, inverted drain current values. The least-squares fit was
modified with the additional constraint that the value for 𝑉PG = 3V matches
the nominalmodel exactly, i.e. it yields exactly 1.0. This ensures high accuracy
for the nominal PG voltage.

The newly introduced parameters were then fitted as 𝐶𝛾 = 71310.4 and 𝐶Φ =
−3.724932. Interpolated results which were obtained using this model are
shown in figure 4.21 on page 151 in the left column. Note that these results
are plotted using a linear y axis, whereas other figures showing the PG voltage
as a parameter are plotted on logarithmic y axis.

Aging As there is no aging data available for RFETs, the same model as used
for the SOI reference has been integrated into the RFET model. For the same
reasons as in the PG voltage modeling, aging can not easily be modeled as
a shift in threshold voltage. A solution similar to the PG voltage model was
used: The dependency was extracted from nominal values in the SOI model
(SOI aging at 1.8 V and 120 °C). The obtained data was then fitted to a shifted
root function and introduced in the final model:

𝑡PD =𝑓(𝑉,𝑇,𝑃,𝐶,𝐴)

= (𝑝𝛽+(𝐶1+𝑘1𝑇𝑛1)
𝑉

(𝑉−(𝐶2(𝑃)−𝑘2𝑇𝑛2))
𝑝𝛼) ⋅𝐶3(𝐶) ⋅𝐴

(4.28)

Where the aging parameter is defined as:

𝐴=𝑓(𝑡) = 1+𝐶𝐴 ∗ 𝑡𝛼𝐴 (4.29)

This models aging independently of temperature and voltage, which
is sufficient for this thesis. Values were fitted to 𝐶𝐴 = 0.00192291 and
𝛼𝐴 = 0.19914002. Examples of aging data obtained using the model are
shown in figure 4.22 on page 152.

150 Chapter 4 Overall System

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

0.5

1

1.5

T

VDD [V]

t P
D

(a)

20 40 60 80 100 120 140 160 180 200

0

1

2

3

VDD

T [°C]

t P
D

(b)

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

0.5

1

1.5

2

P

VDD [V]

t P
D

(c)

20 40 60 80 100 120 140 160 180 200

0

1

P

T [°C]

t P
D

(d)

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

100

101

102

103

VPG

VDD [V]

t P
D

(e)

20 40 60 80 100 120 140 160 180 200
10−1

100

101

102

103

VPG

T [°C]

t P
D

(f)

2.4 2.5 2.6 2.7 2.8 2.9 3 3.1

1

1.5

2

t

VDD [V]

t P
D

(g)

20 40 60 80 100 120 140 160 180 200

0.5

1

t

T [°C]

t P
D

(h)

Figure 4.20: 𝑡PD model (lines) and fitting data (dots) for the RFET technology. The
left-hand side figures show propagation delay vs. supply voltage,
parametrized on the four other parameters. The right-hand side shows
the delay dependency on temperature. Parameters were chosen to yield
five exemplary curves covering the full parameter range, where one curve
matches the parameter value for the original fitting data.

4.6 Technology Modeling 151

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

·104

T

VPG [V]

t P
D

(a)

−1 −0.5 0 0.5 1 1.5

0

0.5

1

1.5

T

P

t P
D

(b)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

0.5

1

·105

P

VPG [V]

t P
D

(c)

−1 −0.5 0 0.5 1 1.5

1

2

3

VDD

P

t P
D

(d)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

1

2

·105

VDD

VPG [V]

t P
D

(e)

−1 −0.5 0 0.5 1 1.5

100

101

102

103

VPG

P

t P
D

(f)

0 0.5 1 1.5 2 2.5 3 3.5 4

0

2

4

6

8

·104

t

VPG [V]

t P
D

(g)

−1 −0.5 0 0.5 1 1.5

0.5

1

1.5

t

P

t P
D

(h)

Figure 4.21: 𝑡PD model (lines) and fitting data (dots) for the RFET technology. The
left-hand side figures show propagation delay vs. program gate voltage,
parametrized on the four other parameters. The right-hand side shows
the delay dependency on process variation. Parameters were chosen to
yield five exemplary curves covering the full parameter range, where one
curve matches the parameter value for the original fitting data.

152 Chapter 4 Overall System

0 1 2 3 4 5 6

·108

0.4

0.6

0.8

1

T

t [s]

t P
D

(a)

0 1 2 3 4 5 6

·108

1

2

3

4

VDD

t [s]

t P
D

(b)

0 1 2 3 4 5 6

·108

0.5

1

1.5

P

t [s]

t P
D

(c)

0 1 2 3 4 5 6

·108

100

101

102

103

VPG

t [s]
t P

D

(d)

Figure 4.22: 𝑡PD model (lines) and fitting data (dots) for the RFET technology. Figures
show propagation delay vs. aging, parametrized on the four other pa-
rameters. Aging was matched to SOI aging at 120 °C and 1.8 V.

Leakage Current Leakage data was extracted from drain currents for a con-
trol gate voltage of 0 V from figure 1k in [2]. Program gate voltages were
selected from 0 V to 3 V. Data had to be extracted from the 𝑛mode graphs, as
data on 𝑝mode were not discernible at 0 V. Figure 4.23 shows the measured
data as dots and the final model as a line.

For the final model, the measured data was fitted to the following exponential
function:

𝐼leak =𝑓(𝐶) = 𝐶ID ∗𝑒𝛼ID⋅𝐶 (4.30)

The parameters for this model and the test data were calculated as 𝐶ID =
2.81359916×10−14 and 𝛼ID = 3.55417232×10−1.

4.7 PVTA Scenario Modeling

Previously introduced delay models for SOI and RFET provide the delay for a
circuit under certain PVTA conditions and body bias. To simulate the com-
plete FPGA architecture, it is necessary to derive PVTA conditions on the chip
as inputs for the delay models. In the following, specific PVTA scenarios used

4.7 PVTA Scenario Modeling 153

0 0.5 1 1.5 2 2.5 3

40

60

80

VPG [V]

I l
ea

k
[f
A
]

Figure 4.23: Leakage current in transistor for theRFET technology. Dots depict values
extracted from [2], the line shows simulated values obtained through the
model in equation (4.30).

for evaluation in this thesis will be discussed, but the propagation delay mod-
els and simulation framework enable simulation of any other PVTA scenario
as well. The model’s 𝐶 input used for body biasing will not be discussed here:
It is not an external scenario influence, but will be directly controlled by the
FPGA architecture instead.

Process Variation As introduced in section 2.4 on page 27, models for pro-
cess variation are usually technology dependent. As the required technology
parameters are not always available, this can make adaption of some models
difficult. Some of them also require detailed modeling of the circuit for which
process variation is analyzed, e.g. in SPICE. As a primary aim of the frame-
work developed in this thesis is quick evaluation of different architectures,
such extensive modelling approaches are not feasible and a simpler model is
needed.

The previously introduced VARIUS process variation model [53] fits these
requirements: It has few parameters and provides exemplary values, which
match the empirical study in [56]. It will therefore be used for all evaluation
scenarios in this thesis. The simulation framework derived here however also
supports more advanced models such as [60, 61, 247, 248], when required
parameter values are available.

TheVARIUS model considers two main factors in process variation, threshold
voltage 𝑉th and the effective gate length 𝐿eff. For the discussion here and for
the derivation of the 𝑃 parameter, only the 𝑉th part will be used. Following

154 Chapter 4 Overall System

(a) (b) (c)

Figure 4.24: Simulated intra-die process variation showing the transistor threshold
voltage 𝑉th for a 24x24 grid. The spatially correlated part is shown in (a),
the uncorrelated part in (b) and (c) depicts the resulting total variation.
Brighter color indicates smaller 𝑉th.

equations (2.19) and (2.20), 2D process variation maps will be derived as
random samples of the stochastic distribution determined by the correlation
between values:

𝑐𝑜𝑟𝑟(𝑃 ⃗𝑥,𝑃 ⃗𝑦) = 𝜌(𝑟) 𝑟 = | ⃗𝑥 − ⃗𝑦| (4.31)

𝜌 = {
1− 3𝑟

2Φ
+ 𝑟3

2Φ3
(𝑟 ≤ Φ)

0 otherwise
(4.32)

Values are then normalized to be in range [−1,1] to match the 𝑃 process
parameter. For the simulation, 𝑥 and 𝑦 are chosen to be coordinates on the
finest FPGA grid, the block grid. This way, each CLB gets a distinct process
variation factor. The 𝑃 parameter is finally given as:

𝑃 = 𝑓(𝑥,𝑦) =map𝑖 (𝑥,𝑦) , (4.33)

wheremap𝑖 is one randomly sampled2Dmapof theVARIUSmodel.

In the evaluation, a singlemapwill be considered. Given the stochastic nature
of the variationmap, results obtainedwith a single instance are representative.
The parameter values Φ = 0.5, 𝜎/𝜇 = 0.063 for random and systemic 𝑉th
presented in the original VARIUS paper will be used for process variation
modeling throughout this thesis. An exemplary 24x24 variation grid for 𝑉th
derived in this way is shown in figure 4.24.

Voltage Variation As motivated in section 2.4, supply voltage variation af-
fects the propagation delay on FPGAs. In ASIC design, voltage variation is

4.7 PVTA Scenario Modeling 155

analyzed deterministically for each circuit, simulating switching activity and
power supply wire density to determine IR drop. The information obtained in
simulation is then commonly used to increase metal width are wire density
locally. This technique can not be used in FPGA, as the local resource utiliza-
tion and switching activity is not known at manufacturing time of the IC and
only becomes known after application placement.

As deterministic analysis is effective, statistical models describing voltage
variation for artificial circuits are not commonly available. Suchmodels could
be derived through analysis of multiple real circuits, but this is not necessary
for this thesis: In a simpler approach, a deterministic, application specific
voltage drop model is used for each user application. An IR drop analysis
as sophisticated as in ASIC design is however out of scope for this thesis: It
requires detailed knowledge of the power supply network of the modeled
FPGA architecture and modeling of the metal layers of the used technology.
In high-level, early design stage DSE of FPGA architectures, this information
may not be readily available.

In this thesis, it is therefore assumed that the power grid in the FPGA ar-
chitecture is regular: For all locations on the FPGA, an identical utilization
percentage and switching activity will lead to the same IR drop. IR drop then
does not only depend on a single unit such as one CLB, but on all devices
in the vicinity as well, as they share at least parts of the supply. Further-
more, it is assumed that all LEs within a power region have identical supply
voltage: This assumption requires that the local power connections within
a region are dense enough that there is no voltage drop within the region.
Each region then get assigned a voltage drop factor, describing the percent-
age of supply voltage reduction. To simplify the model, it is also assumed
that power usage in regions does not interfere with other regions, so the
voltage drop within each region depends only on the utilization within this
region:

𝐿𝐸(𝑅) = {𝑒 ∈ 𝑅| type(𝑒) = 𝐿𝐸} (4.34)

𝐿𝐸used (𝑅) = { 𝑙𝑒 ∈ 𝐿𝐸(𝑅) |used (𝑙𝑒) } (4.35)

Κ(𝑅) = 𝜖 ∗
|𝐿𝐸used (𝑅) |
|𝐿𝐸(𝑅) | (4.36)

𝑉=𝑓(𝑥,𝑦) = (1−Κ(𝑟𝑒𝑔(𝑥,𝑦))) ∗𝑉0 (4.37)

In this notation, 𝑟𝑒𝑔(𝑥,𝑦) returns the set of all elements in the region which
covers position (𝑥,𝑦). Κ(𝑅) is the voltage reduction factor for a region 𝑅 and
𝑉𝐷𝐷 reduction is obtainedaccording to equation (4.37).

156 Chapter 4 Overall System

Temperature Variation For temperature variation, similar remarks apply
as for voltage variation. There are no commonly used statistical models as
their usefulness would be limited. Instead, ASICs are again designed with
temperature analysis specific to each single circuit and again this approach
is not suitable for FPGA. This thesis will therefore use a high level model
for temperature modeling. Like in the voltage variation case, the FPGA is
assumed to be regular and whether heating occurs is mainly determined by
the utilization in the vicinity. However, unlike voltage variation, temperature
variation is modelled as an IC-global effect: Even when a LE is at a physically
large distance from the analyzed LE, it is assumed that it still adds to overall
heating and produces a temperature increase in the analyzed LE. To model
this, the distance between two LEs is first given as the geometrical distance
between their coordinates:

𝑑(𝑥1,𝑦1,𝑥2,𝑦2) =√(𝑥1−𝑥2)
2+(𝑦1−𝑦2)

2 (4.38)

The heating of a LE at position 𝑥,𝑦 is then determined according to the fol-
lowing equation:

Λ(𝑥,𝑦) = 𝛿0 ∗ ∑
(𝑖,𝑗)∈𝑈

𝑒−𝛿1∗𝑑(𝑥,𝑦,𝑖,𝑗) (4.39)

Here it is assumed that LEs have exponentially declining impact on the an-
alyzed LE’s temperature with increasing distance. The equation then sums
up contributions of all LE which are used by the user application, denoted as
set𝑈. The rate of the decline can be adjusted using parameter 𝛿1, whereas
parameter 𝛿0 is used to scale the overall contribution to the ambient tem-
perature. It can be derived when finding the maximumΛ(𝑥,𝑦) for an appli-
cation, then fixing 𝛿0 to yield the desired maximum temperature increase
Δ𝑇:

max
(𝑥,𝑦)∈U

Λ(𝑥,𝑦)∗𝑇0 =Δ𝑇 (4.40)

This definition is dependent on the placed user application. If an absolute
reference is desired, 𝛿0 can be calculated in the same way, but assuming that
all LE are used. In this case, Δ𝑇will be the maximum theoretically possible
temperature increase if the FPGA is fully utilized.

Using the local temperature increaseΛ(𝑥,𝑦), the final temperature is derived
based on the ambient temperature 𝑇0 as:

𝑇 = 𝑓(𝑥,𝑦) = (1+Λ(𝑥,𝑦)) ∗𝑇0 (4.41)

Previous analysis has only considered static scenarios, where the temperature
stays constant over time. As the architectures discussed in this thesis cover

4.8 Upcoming Aspects 157

dynamic effects, dynamic heating scenarios will be considered as well. For
this, temperature rise in local hotspots will be derived as an exponentially
falling temperature gradient, relative to a center position (𝑥0,𝑦0). In addition,
temperature will be exponentially increasing over time. These requirements
lead to the model shown below:

Λ𝑡 (𝑥,𝑦, 𝑡) = 𝛿0 ∗𝑒−𝛿1∗𝑑(𝑥,𝑦,𝑥0,𝑦0) ∗ (1−𝑒−𝛿2𝑡) (4.42)

Here, 𝛿0 is a parameter for the total temperature rise at the center point, 𝛿1
models the distance covered by the hotspot and 𝛿2 determines how long it
takes for the rising temperature to reach the final value. The final temperature
for the dynamic model is given below:

𝑇 = 𝑓(𝑥,𝑦) = (1+Λ𝑡 (𝑥,𝑦, 𝑡)) ∗𝑇0 (4.43)

This thesis will consider both local hotspot heating over time and global chip
heating, which can be caused e.g. due to insufficient cooling of the IC. The
same formula will be used for both cases, only the hotspot position and 𝛿
parameters will be changed.

Aging For aging, two scenarios can be considered: The first is global aging,
which assumes the same conditions on the whole IC. In this mode, the aging
parameter𝐴will be derived from equation (4.19) using constant 𝑉A and 𝑇A
values. This allows artificial aging simulations for predefined environment
temperatures and voltage changes.

The second scenario is slightly more realistic and calculates 𝑉A and 𝑇A based
on the temperature and voltage profiles defined before. The aging parameter
will be then dependent on 𝑥 and 𝑦 as well. The model for this scenario is given
below:

𝐴=𝑓(𝑥,𝑦, 𝑡) = 𝐴(𝑡, 𝑉(𝑥,𝑦), 𝑇(𝑥,𝑦)) , (4.44)

with𝐴(𝑡,𝑉A,𝑇A) fromequation (4.19),𝑉(𝑥,𝑦) fromequation (4.37) and𝑇(𝑥,𝑦)
from equation (4.41). Like the aging model in general, this scenario assumes
that 𝑉 and 𝑇 distributions calculated at the beginning are constant over time
during the aging process.

4.8 Upcoming Aspects

This chapter has presented a high-level overview of the PARFAIT architec-
ture derived in this thesis. Whereas this top-down view provides the overall

158 Chapter 4 Overall System

idea and picture, individual subtopics will be addressed in more detail in
the following chapters. In addition, some aspects regarding simulation and
evaluation of the architecture will also be presented.

Chapter 5 will derive a standard cell library for RFET devices and demonstrate
a synthesis flow using these. This will enable the development of digital
circuits in RFET technology using state-of-the-art commercial EDA tools. In
the PARFAIT architecture, this could be used to realize the non-reconfigurable
hard blocks, such as DSP blocks or others, in RFET technology. Although
RFET technology can be combined with classical MOSFETs on one die, using
RFETs for such circuits enables fine-grain performance scaling using the BG.
For evaluation of the library, the dissertation will present basic arithmetic
circuits and one large circuit, an accelerator for a symmetric cryptography
cipher.

Chapter 6 will focus on the main element of a FPGAs, the reconfigurable LE. It
will introduce the RFET based logic element used in the PARFAIT architecture
and describe integration in the base FPGA architecture as described here.
To allow for fairer comparison between the reference architecture and the
PARFAIT one, the top-level architecture will be kept unmodified, as described
in section 4.1. In order to also keep the FPGA device size similar for both
approaches, the RFET based CLB needs to provide similar expressiveness as
the LUT based one. Apart from discussing this in detail and evaluating the ex-
pressiveness, the chapter also focuses on changes needed in EDA tools tomap
user applications to such RFET based logic cells.

Chapter 7 will introduce power regions in more detail. As the architecture
of power regions is simple, the chapter instead focuses on the changes in
EDA tools necessary to support those regions. This includes support to
model regions as part of the FPGA architecture description in VPR. Both
pre-determined low-power / high performance modes for regions (Static
Assignment) and runtime configurable region (Dynamic Assignment) are
considered.

Chapter 8 will introduce the PVTA compensation system in detail. It first
describes how the required performance for each region is determined by
extracting the local critical path in VPR. It then describes the Ring Oscillator
(RO) based approach to determine the momentary performance in each re-
gion. Based on this information, it continues with a description of the Logic
Invasion (LI) system, which dynamically reconfigures parts of the FPGA as RO
circuits. This allows to transparently characterize the whole FPGA without im-
pacting the user application. After introduction of these building blocks, the
powermanagement controllerwill be introduced. Thechapter concludeswith

4.8 Upcoming Aspects 159

an overall summary of the PVTA compensation and performance adjustment
system.

Chapter 9 concludes the main chapters. It will present methodology for sim-
ulation and evaluation of the PARFAIT architecture. For that, it will give an
introduction to VFPGAs, which enable prototyping of FPGA architectures on
commercial FPGAs. It then continues by describing the static power analysis
used in VPR for power evaluation. In order to also model dynamic effects
caused by the PVTA compensation system, a QuestaSim based runtime simu-
lation framework is derived. Whereas this can provide a functional simulation
of the FPGA architecture and the power management controller, it can not
simulate the propagation delay due to PVTA and voltage scaling. The fol-
lowing section in the chapter therefore introduces a co-simulation system.
This system combines the PVTA models described in section 4.7 as a soft-
ware implementation with the VHDL hardware implementation simulated in
QuestaSim. The chapter concludes with an introduction of the chosen user
application benchmarks for the final DSE and descriptions of the concrete
PVTA scenarios which will be evaluated.

Thefinal chapterswill conclude the thesis: Chapter 10will provideDSE results
and results for the previously introduced test scenarios. Results will be pre-
sented individually for the RFET standard cells, the RFET LE, power regions,
and theoverall PARFAITpowermanagement system, combining those aspects.
Chapter 11will then summarize results and insights obtained in this thesis and
will give an outlook on possible future research.

This page intentionally left blank

Chapter 5

Ambipolar Standard Cells

To analyze application of RFET in non-reconfigurable parts of FPGAs, a stan-
dard cell based approach has been taken. The following sections will first
explain the derivation of an RFET standard cell library, based on characteri-
zation data obtained in the PARFAIT project by Reuter [Reu21]. Based on this
cell library, this thesis will investigate application in simple arithmetic units,
like they are used as static logic extensions in LEs. To also verify applicability
of RFET cells in large circuits and to test mixing of RFET and standard silicon
CMOS, the last section in this chapter presents an RFET based cryptographic
accelerator.

5.1 Standard Cell Library

Characterization and derivation of an RFET based standard cell library has
originally been described in [Reu21]. This chapter will first introduce the
RFET device used. It will then summarize the work by Reuter, which consists
of modeling and analyzation of the individual cells. The section will conclude
with a derivation of a standard library as done by this thesis’ author in a
contribution to [Reu21].

RFET Device After early works of Reuter had analyzed static device behav-
ior such as Voltage-Transfer-Characteristics (VTCs) [Reu20, Reu19], [Reu21]
discusses dynamic characteristics. As no SPICE transient model was avail-
able for the RFET technology, logic cells have been modelled and analyzed
in TCAD. Figure 5.1 shows the RFET device which was used for the design
of the standard cell library. It is based on the work by Krauss [1], but device
size has been optimized by Reuter [Reu21]. Providing both BG and TG, the
device enables independent biasing of those gates. With a 90 nm FG length
but 210 nm BG length, fair comparisons should compare the device to SOI

162 Chapter 5 Ambipolar Standard Cells

technology with 210 nm. Reuter therefore compares results to a commercial
180 nm SOI technology, where the transistors have been manually scaled to a
gate length of 210 nm. Asmodification of the commercial standard cell library
was not possible, this comparison was only possible for analysis of single cell
characteristics. Comparison of the standard cell library was therefore based
on the commercial 180 nm standard cells.

Figure 5.1:The RFET device used for the standard cell characterization [Reu21]. Pos-
sessing a 90 nm FG length and a 210 nm BG length, the device can be
compared to 210 nm SOI devices.

The cell supply voltage 𝑉𝐷𝐷was fixed at 1.6 V to match the commercial SOI
technology. In addition, the device has been tuned for symmetric behavior
in p- and n- configuration through adjustment of gate work functions. As
the device behaves symmetrically, one device can be used for pull-up and
pull-down networks, so transistor sizing to compensate drive current is not
necessary. After tuning, drive currents 𝐼D weremeasured at 64.3μA in n-mode
and 83.4μA in p-mode.

Cell Characterization For development of the standard cells, the devices
operate as described in figure 2.6b: The BG of all devices are connected to
the devices’ source terminals. TG terminals of each device are combined
and used as the configuration gate or secondary input. Use of the config-
uration gate to configure the device as NMOS or PMOS device is shown in
figure 5.2a on the left: For NMOS operation, the TG is connected to 𝑉𝐷𝐷,
for PMOS it’s connected to 𝑉𝑆𝑆. The FG is used as the primary gate of a
transistor.

The drive current of all cells has been normalized to match the drive current
of the inverter. INV, NAND and NOR cells do not make use of reconfigura-
tion and use statically configured RFETs as shown in figure 5.2b. The XOR
cell on the other hand uses the reconfiguration gate as a logic input. The

5.1 Standard Cell Library 163

(a) (b)

Figure 5.2: Schematics for the RFET based standard cells as designed by Reuter
[Reu21]. (a) Static biasing of RFET devices to obtain NAND, NOR and
INV gates equivalent to conventional CMOS designs. (b) XOR gate real-
ized using RFET reconfiguration. As described in [Reu20], this device can
be realized in 8 transistors, including required input inverters.

cell design shown in figure 5.2b is based on the design in [Reu20] and real-
izes the XOR gate using fewer transistors than is possible in standard CMOS
technology.

(a) (b)

Figure 5.3:Characterization of dynamic cell behavior as described by Reuter for an
INV cell [Reu21]. (a)Characterization of rise 𝑡r and fall times 𝑡f, here called
𝑡rise and 𝑡fall. (b) Characterization of propagation delay 𝑡PD, here called 𝑡d.
Delays are individually characterized for possible ARCs and edges.

Figure 5.3 shows an exemplary extraction of cell characteristics for the INV
gate. The characteristics are obtained in theNon-LinearDelayModel (NLDM).
In this model, cell characteristics such as propagation delay 𝑡PD and rise 𝑡r
and fall times 𝑡f are modeled as a lookup table. The table is parametrized
by the input transition time and the output capacitance. Furthermore, EDA
tools interpolate between table entries. For the output capacitance, Reuter
uses fixed values between 3 fF and 15 fF. Compared to other common mod-
els like FO4, dynamic capacitance effects are therefore not included. This

164 Chapter 5 Ambipolar Standard Cells

trade-off is necessary, as the number of transistors that can be simulated
in reasonable time in TCAD simulation is limited. Reuter then performs
transient simulations as shown in figure 5.3a for rise and fall times and in
figure 5.3b for propagation delay. Similar simulations are executed for the
modified 180 nm reference technology to obtain values for comparison. Char-
acterization values are extracted from these simulations using custom scripts.
Results show that the reference technology achieves higher drive currents,
which also affects the slew rate. For the same output capacitance, depending
on the gate type, propagation delay has been 160% to 638% slower for the
RFET cells. On the other hand, RFET standard cells possess 86% to 64% less
input capacitance 𝐶in. Further details on cell characterization can be found
in the original publication [Reu21]. Based on the work by Reuter described in
the previous two paragraphs, this thesis’ author contributed a cell library for
synthesis in Cadence Genus to [Reu21], which will partially be reproduced
and summarized in the following sections.

Wire Load Estimation Before considering a library description of the cells
itself, a characterization of connections between the cells, wires, is needed.
Suchwires addparasitic resistance and capacitance to the load of their driving
cell. To ensure that the results of RFET synthesis can be compared to synthesis
results of CMOS technologies, such wire load effects need to be modeled. Ca-
dence Genus in version 17.11.00 was used for synthesis in both reference SOI
and RFET technologies. Genus supports four methods to estimate wire load
effects: Wireload models, Physical Layout Estimation (PLE), spatial synthesis
and physical synthesis. Wireload models are a statistical solution, providing
tables of absolute capacitance, resistance, wire length and wire area. These
tables are provided as part of the timing .lib file and parametrized on the
number of gates in the circuit and the fanout of the respective cell. Addi-
tionally, these tables can be parametrized on process corner, supply voltage
and temperature, using common liberty file constructs. Wire load models
therefore essentially estimate values by averaging over representative circuits
of a certain size. For fanout values which are not present in the table, Genus
uses linearly interpolated values. PLE uses physical information from .lef
files and capacitance table files, aiming to obtain more accurate estimations.
Physical information most notably includes resistance and capacitance per
wire length values. Genus then uses a proprietary algorithm to derive the wire
lengths for various connections and calculate the capacitance and resistance
for all nets. To provide more exact results, unlike wireload models, PLE cal-
culates the length for each net individually. The third category of wire load
estimation includes spatial and physical estimation. Both use the physical
information used in PLE and additionally take a user-supplied floorplan into

5.1 Standard Cell Library 165

account. In spatial mode, only a quick initial placement is used. In physical
mode, an intermediate step invokes a full layout step to take into account cell
placement, routing and congestion effects.

Circuit Gates Technique R [Ω] C [fF]
Wireload 8.0 0.3
PLE 6.0 1.2
Physical 39.0 3.8

fa 5

Implementation 20.7 2.3
Wireload 5.0 0.2
PLE 4.0 0.8
Physical 13.0 2.1

chacha_reg 16029

Implementation 10.1 1.3

Table 5.1:Comparison of the wire load estimation techniques supported in Cadence
Genus, using the SOI reference technology. Values shown are averages over
all nets in the circuit. Statistical models show larger deviations for small
circuits, as those do not match the average circuit assumed in the model.

Table 5.1 shows estimated values in the reference SOI technology to estimate
quality of results for different estimation techniques. Results have been eval-
uated for the small fa and the large chacha_reg circuit, which will be used
for all analysis in this chapter. In addition, wire loads have been extracted
after implementation in Cadence Innovus 17.11.000 to evaluate the accu-
racy of the estimations. For both physical synthesis and implementation,
the same simple quadratic floorplan targeting a utilization ratio of 70% has
been used. As can be seen in table 5.1, the wireload model and PLE under-
estimate capacitance and resistance for the test circuits. The physical flow
overestimates values for the small circuit but is more accurate for the large
circuit.

Liberty File Derivation Based on the device characterization by Reuter and
the wire load discussion, a .lib file has been derived to enable synthesis of
larger circuits. This file is reprinted in appendix D for reference. Apart from
the main definitions, it consists of the library name, the type of delay model
used, metadata and the definition of units for all values. Power related units
are defined for completeness, although the RFET liberty file currently focuses
on timing information, and does not contain power or area information.
For the wire load model, PLE or the physical flows cannot be used, as full
layout and area information for cells is not available in the current RFET PDK.

166 Chapter 5 Ambipolar Standard Cells

Wireload models on the other hand can be included in the RFET standard
cell library, enabling fairer comparison to the SOI reference technology. As
one of planar RFET technology’s main advantages is integration with existing
CMOS technologies, repurposing an existing wireload model is possible. As
the device size is comparable, and the metal layers will be identical, the
reference SOI wireload model will be reused for the RFET library as well.
Listing 5.1 shows how this wireload model is defined in the library. Concrete
values where taken from SOI liberty files, but have been replacedwith dummy
values to conform to NDA rules. Line 1 describes one of the tables, defining
absolute area, capacitance, wire length and resistance for various fanout
values. Synthesis tools choose the respective entry within this wire load table
according to the fanout, interpolating the value if necessary. The wire load
selection wload_sel in line 9 maps the tables is to the area of the synthesized
circuit. The final statement then defines the default wire load selection to be
used in the library file.

1 wire_load_table (wload_1) {
2 fanout_area (1, 1);
3 fanout_capacitance (1, 1);
4 fanout_length (1, 1);
5 fanout_resistance (1, 1);
6 // ...
7 }
8 // ...
9 wire_load_selection (wload_sel) {

10 wire_load_from_area (0, 100, wload_1);
11 wire_load_from_area (100, 500, wload_5);
12 // ...
13 }
14
15 default_wire_load_selection : wload_sel;

Listing 5.1: Structure of wireload descriptions for RFET .lib file taken from reference
SOI technology. Values have been randomized to avoid infringing NDAs.

An example for a cell definition is shown in listing 5.2 on the next page, a
reduced version of the RFET inverter definition. The cell definition consists of
pindefinitions, includingpowerpins (not shownhere) and the input pinA and
output pin Q. Each pin section includes the pin direction. For inputs, the input
capacitance of the pin on a rising transition and on a falling transition are de-
fined according to the values obtained by Reuter. Outputs contain a logical de-

5.1 Standard Cell Library 167

1 cell (INV) {
2 // ...
3 pin (A) {
4 direction : input;
5 rise_capacitance : 0.004;
6 fall_capacitance : 0.003;
7 }
8 pin (Q) {
9 direction : output;

10 function : "!(A)";
11
12 timing () {
13 timing_sense : negative_unate;
14 related_pin : A;
15 rise_transition (delay_3x3) {
16 index_1 ("0.06, 0.30, 0.54");
17 index_2 ("0.003, 0.0065, 0.010");
18 values (\
19 "0.10, 0.14, 0.19", \
20 "0.16, 0.20, 0.25", \
21 "0.22, 0.26, 0.31");
22 }
23 fall_transition (delay_3x3) {
24 index_1 ("0.06, 0.30, 0.54");
25 index_2 ("0.003, 0.0065, 0.010");
26 values (\
27 "0.11, 0.15, 0.19", \
28 "0.17, 0.21, 0.25", \
29 "0.24, 0.28, 0.31");
30 }
31 // ...
32 }
33 }
34 }

Listing 5.2: Shortened version of the RFET inverter cell section in the .lib file. Values
have been truncated, cell_rise and cell_fall sections are not shown and
power pin related constructs have been removed.

168 Chapter 5 Ambipolar Standard Cells

scription of the output as a function of the cell inputs andwheremodeled sim-
ilarly to the SOI reference technology. Furthermore, output pins contain delay
model tables for rise and fall, as well as for cell_rise and cell_fall (not
shown here). The rise and fall tables model the transition times 𝑡r and 𝑡f of
the output pin. cell_rise and cell_fall tables on the other hand model
the cell propagation delay 𝑡PD from input edge to output edge. Delay tables
are indexed by the input slew rate and the total capacitance connected to
the output pin. The slew rate is defined to be the duration in which the input
edge is between 20% and 80% of 𝑉𝐷𝐷.

As FF cells are required to implement sequential circuits and the RFET PDK
does not provide such a cell yet, the reference technology SOI cell was used in
the RFET library. This is justified, as the technology allows mixing RFET and
other cells. However, it should be noted that the limited drive current of RFET
cells and the comparatively large input capacitance of the FF SOI cell will lead
to increased delays. Furthermore, as the RFET cell consists of only five cells,
a comparison to a normal standard cell library with hundreds of cells would
not be fair: Synthesis tools could choose cell variants optimized for a certain
fanout, or they could use advanced cells, which combine multiple basic func-
tions in one cell. In order to allow for fairer comparison, a reduced library has
been derived for the SOI technology. This library consists of only those cell
types, which are also available in the RFET library.

5.2 Application in Arithmetic Units

After analysis of the dynamic characteristics of the standard cells and the ex-
traction of properties such as propagation delays into a cell timing library, the
library was evaluated in demonstration circuits. The selected circuits make
use of XOR cells, which to demonstrate one main benefit of RFET technology.
As shown, XOR cells can be implemented using fewer transistors than in the
normal CMOS implementation. For a complete evaluation, two methods
were examined to map the circuit to the cells in the respective timing library:
In the first test with combinational circuits, cells are mapped manually to en-
sure the netlist of planar RFET and SOI reference technology coincide. In the
next section, a normal synthesis approach will be used and will perform indi-
vidual optimizations on the circuit, depending on the provided timing library.
All syntheses are performed for both, the planar RFET technology and the SOI
reference. Comparability between planar RFET and SOI reference technology
is limited, due to the fact that the SOI reference cell library is based on 180 nm

5.2 Application in Arithmetic Units 169

digital devices. Upscaling of the SOI devices to match channel lengths, as
performed by Reuter when comparing the cell performance, is not possible
for a digital cell library. The device performance is expected to decrease with
upscaling of the channel length, which benefits the presented timing charac-
teristics of the reference technology. The interpretation of the results of the
comparison between the two technologies therefore have to take into account
a significant boost for the reference technology.

For the direct comparison of identical netlists, a set of simple test applica-
tions has been chosen. Those applications resemble circuits that are com-
monly used in FPGAs and implemented in non-reconfigurable logic. Here,
full adders are commonly included in LEs to allow for faster carry-ripple adder
implementations. Figure 5.4 introduces the combinational test circuits: A
32 bit carry ripple adder made entirely out of the full-adder cells of figure 5.4a,
a 4 bit parity checking adder, as initially proposed for nanowire RFETs in
[249], complemented carry generation for the checked adder in figure 5.4b
and the two-rail checker for the checked adder in figure 5.4c. Circuits have
been transformed to NAND and NOR logic, as they will be directly mapped
to gates according to these schematics.

41a
b

cin

2

3

5 cout

y

(a)

a
cin

b cout

(b)

y

y

a
b

a
b

a
b

a
b

(c)

Figure 5.4: Arithmetic, combinational test circuits for logic synthesis. (a) Full Adder
cell. (b) Complemented carry generation for Checked Adder [249]. (c)
2RC Checker for Checked Adder [249].

For these small circuits, each single gate was analyzed in detail. It was there-
fore necessary, that the final netlist is structured exactly as shown in figure 5.4.
To ensure this, an essentially pre-mapped, albeit hierarchical netlist was
used as input to the Genus synthesis tool: Circuits are modeled in struc-
tural VHDL, where gates are modelled as small entities wrapping the respec-
tive technology’s cell. An example for the xor2 cell is shown in listing 5.3.

170 Chapter 5 Ambipolar Standard Cells

1 architecture parfait of xor2 is
2 begin
3 cellx: entity work.EO2
4 port map (
5 A => a,
6 B => b,
7 Q => y
8);
9 end;

Listing 5.3: VHDL description to model the xor2 cell for synthesis.

To prevent Genus from analyzing the cell functions and mapping to differ-
ent gates, the dont_touch attribute was used for all cells instantiated in the
circuits. The syn_map phase was then skipped.

5.3 Application in Cryptographic Accelerators

To analyze the use of the RFET lib file in a more realistic way using stan-
dard synthesis and mapping, a larger test circuit is needed. To make use of
RFET benefits, an application which makes heavy use of XOR cells was se-
lected. An accelerator for the ChaCha cipher fits these requirements and will
be described in the following. The accelerator was originally designed and
evaluated for FPGAs by this thesis’ author in [Pfa19].

TheChaCha Cipher

ChaCha is a symmetric stream cipher originally published by Bernstein in
2008 and is now commonly used in various communication protocols [250].
As a stream cipher, the various ChaCha𝑁 variants first generate a stream
of key data, the keystream. To encrypt data, the bytes of the keystream
are combined with the bytes of the datastream by an XOR operation, re-
sulting in the cipherstream. As decryption is symmetrical, both the en-

5.3 Application in Cryptographic Accelerators 171

and decrypting parties have to generate the same keystream. The algo-
rithm for encryption and decryption is therefore identical and shown be-
low:

cipherstream= keystream ⊕ datastream (5.1)
datastream = keystream ⊕ cipherstream (5.2)

In order to generate the keystream, ChaCha performs various operations on
a matrix consisting of 32 bit unsigned integers. The initial matrix𝑀 is formed
as follows:

𝑀=
⎛
⎜
⎜
⎝

61707865 3320646𝑒 79622𝑑32 6𝑏206574
𝑘𝑒𝑦0 𝑘𝑒𝑦1 𝑘𝑒𝑦2 𝑘𝑒𝑦3
𝑘𝑒𝑦4 𝑘𝑒𝑦5 𝑘𝑒𝑦6 𝑘𝑒𝑦7

𝑐𝑜𝑢𝑛𝑡𝑒𝑟0 𝑐𝑜𝑢𝑛𝑡𝑒𝑟1 𝑛𝑜𝑛𝑐𝑒0 𝑛𝑜𝑛𝑐𝑒1

⎞
⎟
⎟
⎠

(5.3)

The values in the first row are the 16 constant bytes expand 32-byte k in
hexadecimal notation, and are followed by the symmetric key. The counter
is used to provide the current position in the keystream. For the first block,
i.e. the first 64 bytes in the keystream, it is zero. For the next block it is one,
etc. ChaCha allows for random access to the keystream: It is possible to
calculate blocks at any stream offset without calculating any previous block.
The last entry, is a number unique to each keystream, the Number-used-Once
(nonce).

To process the matrix𝑀, ChaCha𝑁 performs𝑁 = 8, 12 or 20 rounds of opera-
tions on the matrix, as shown in listing 5.4:

1 foreach i in (0 .. N-1)
2 in = odd(i) ? diags(M) : cols(M)
3 out[0..4] = qround(in[0..4])
4 odd(i) ? diags(M) = out : cols(M) = out

Listing 5.4:The 𝑟𝑜𝑢𝑛𝑑𝑠𝑁(𝑀)Operation

Quarter-rounds consist of addition +, xor ^= and rotate <<<= operations as
shown in listing 5.5:

1 a += b; d ^= a; d <<<= 16;
2 c += d; b ^= c; b <<<= 12;
3 a += b; d ^= a; d <<<= 8;
4 c += d; b ^= c; b <<<= 7;

Listing 5.5:The 𝑞𝑟𝑜𝑢𝑛𝑑(𝑎,𝑏,𝑐,𝑑)Operation

172 Chapter 5 Ambipolar Standard Cells

Figure 5.5 shows how even rounds operate on the four columns of the matrix
(column rounds) and odd rounds on four diagonal vectors (diagonal rounds).
Each round then performs the quarter-round sub-operations 𝑞𝑟𝑜𝑢𝑛𝑑 once
per input vector.


m0 m1 m2 m3 m0 m1 m2 m3

m4 m5 m6 m7 m4 m5 m6 m7

m8 m9 m10 m11 m8 m9 m10 m11

m12 m13 m14 m15 m12 m13 m14 m15



c0 c1 c2 c3

d0 d1 d2 d3

Figure 5.5:Definition of columns 𝑐𝑖 and diagonals 𝑑𝑖 for the 𝑞𝑟𝑜𝑢𝑛𝑑 input data.

After matrix𝑀 has been processed through𝑁 rounds, the last processing step
for the ciphertext block 𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚(𝑐𝑜𝑢𝑛𝑡𝑒𝑟) is to add the processed matrix
to the initial matrix:

𝑘𝑒𝑦𝑠𝑡𝑟𝑒𝑎𝑚(𝑐𝑜𝑢𝑛𝑡𝑒𝑟) ∶=𝑀+𝑟𝑜𝑢𝑛𝑑𝑠𝑁(𝑀) (5.4)

To obtain the next 64 B of the keystream, the counter field in the initial matrix
𝑀 is incremented by one and the process in equation (5.4) is repeated for the
new matrix.

ChaCha in Digital Hardware

++ <<<
16
<<<
16

++

+ <<<
16

+

++ <<<
12
<<<
12

++

+ <<<
12

+

++ <<<
8

<<<
8

++

+ <<<
8

+

++ <<<
7

<<<
7

++

+ <<<
7

+

a

b
d

b

c

c‘

b‘

d‘

a‘

Figure 5.6:Quarter-round operation depicted as a Data Flow Graph (DFG).

Figure 5.6 shows the quarter-round operation of listing 5.5 as aDFG, depicting
both the operations used and the data flow of the algorithm. As can be seen,
each output 𝑎, 𝑏, 𝑐 and 𝑑 is dependent on each input and on intermediate

5.3 Application in Cryptographic Accelerators 173

results, showing that parallelization of this operation is not easily possible.
Figure 5.7 shows a slightly modified form of the first two sections of the graph,
suggesting that the whole operation can be built out of four basis cells. These
Add Rotate XOR (ARX) cells form the base operation used in the ChaCha
cipher, but outputs need to be permuted in order to directly chain these cells:
The outputs of the first cell, 𝑎′, 𝑏′, 𝑐′ and 𝑑′ are updated input variables as
described in line one of listing 5.5. Line two of listing 5.5 then applies the same
operations on the updated input variables. As it maps the inputs differently
to the operations, the basis cell has to perform that permutation. If four basis
cells are connected serially, the final result will be in the same order as the
input variables.

ADD32

XOR32 ROT32

a

b

d

c

b

Figure 5.7: ARX cell with permuted outputs to realize the 𝑞𝑟𝑜𝑢𝑛𝑑 operation.

As shown in the graph, the rotation distance is different for each stage. To
handle this in the basis cell, the distance can be required to be a constant
parameter. The rotation operation will then be implemented as a simple wire
permutation by synthesis tools, introducing no additional logic delay. As
such a cell can be used for only one stage in the quarter-round, four physical
copies of these cells with different rotation distances will be required. An
alternative is to make the rotation distance changeable as a runtime input: In
that case, the rotation operationwill be synthesized into a 4-inputmultiplexer
structure, requiring additional hardware resources and introducing logic
delay. As explained in more detail in [Pfa19], it is possible to pipeline this ARX
basis cell.

Quarter-Round and Rounds Two different options to combine ARX cells
have been evaluated. One option is to employ a pipeline structure as depicted
by the sections in figure 5.6. In this implementation, the quarter-round is im-
plemented as one pipeline consisting of four physical ARX cells. This pipeline
does the complete round processing for a quarter of thematrix and each oper-
ation can be mapped to one physical ARX cell. The rotation distance for each
cell is constant, reducing logic delay. Another benefit of this structure is the
possibility of deep pipelining: As the ARX basis cell is pipelined, an in-series

174 Chapter 5 Ambipolar Standard Cells

chain of these cells should not pose further restrictions on the critical path
and overall performance.

In order to utilize such a deep-pipeline completely, all stages have to be filled
with independent data vectors, i.e. any vector in the pipeline may not in any
way depend on the final 𝑞𝑟𝑜𝑢𝑛𝑑 result for any other vector in the pipeline. As
can be seen from figure 5.5, and in listing 5.4, the four quarter-rounds in each
round are independent. Their inputs depend on the results of the previous
round, but not on any result of other quarter-rounds in this same round.
Problems however arise after the vectors of one round have been processed:
The operations of the next round have data dependencies on all data vectors
modified in the previous round [Pfa19]. One solution is to start processing the
next round onlywhenprevious columns have been completely processed, but
this reduces the performance of the implementation. As individual keystream
blocks in ChaCha are independent, another solution is to prepare the initial
matrix𝑀𝑛+1 for the next keystream block and process this matrix’ rounds
interleaved with the𝑀𝑛 rounds. This idea can be generalized to any number
of matrices, depending on the pipeline depth. In general, processing then
alternates between the rounds of multiple matrices.

Alternatively, a more software like approach where at least one ARX cell is
used with a configurable rotation distance was evaluated. This way, the four
stages of a quarter-round can be processed consecutively and the result of
every step will be written back to the processing matrix. Four ARX cells were
still used in parallel to enhance throughput, similar to Single Instruction Mul-
tiple Data (SIMD) in software optimizations. In this implementation, four
parallel ARX cells will process the whole matrix at once instead of processing
vectors consecutively. As one cycle always yields a complete matrix, there
are no pipelining complications when starting to process the next round. It
is therefore not necessary to alternate processing between multiple matri-
ces. The main drawback is that this approach requires a runtime-adjustable
rotation distance, as the distance will be different for each processing cy-
cle.

After the matrix has been processed through the 𝑟𝑜𝑢𝑛𝑑𝑠𝑁 implementation,
the final addition of equation (5.4) and the encryption or decryption opera-
tions equations (5.1) and (5.2) need to be performed. As the final operation is
an addition followed by an XOR operation, it is possible to reuse the ARX cell
for this operation.

ChaCha Accelerator System Architecture Based on the previously intro-
duced building blocks, three different system architectures have been evalu-

5.3 Application in Cryptographic Accelerators 175

ated. The pipeline implementation consists of four parallel quarter-round
cells, calculating one round completely in parallel. The individual Round
blocks are then chained to form a deep pipeline, taking care to permute sig-
nals connecting two rounds. If the output datastream is not ready or the
input datastream is not valid, a FSM accordingly stops the Round blocks to
pause keystream generation.

The Block Memory and the Register implementation share most modules.
The core blocks which calculate the complete 𝑟𝑜𝑢𝑛𝑑𝑠𝑁 however differ be-
tween the two implementations. In either case, processing a matrix in a
Core block takes a certain amount of cycles. The top level module there-
fore allows to use a configurable number of cores in parallel, interleaving
their outputs and enhancing throughput. As the outputs are interleaved,
the maximum number of cores is reached when every cycle yields 16 words
of data. Any further parallelization then requires duplicating the top-level
architecture.

For the Block Memory Implementation, one pipelined quarter-round is used.
The four output words are then saved to four parallel Block Rams at certain
indices: Each row of the matrix is kept in one Block Ram, which then allows to
read all four inputs for a column roundor for a diagonal round inparallel using
proper addressing. The benefit of this implementation is that all operations
in the quarter-round are placed into one physical pipeline implementation
with constant rotation values.

For the register based implementation, no complex address calculation needs
to be done formemory access. Instead, after the initialmatrix has been loaded
using a multiplexer, the complete matrix is kept in register storage internal to
a parallel quarter-round implementation. The outputs are then looped back
to the inputs. The block operates on the whole matrix, processing one fourth
of a round per cycle.

RFET Implementation

After the cryptographic accelerator has beendesigned and evaluated onFPGA,
this thesis’ author used it for RFET standard cell evaluation in [Reu21]. Out of
the ChaCha implementations, only the Register variant shown in figure 5.8
was used for RFET synthesis. This variant is smaller than the Pipeline variant
and does not need block memory, which is not available in the minimal
standard library. Instead of analyzing every single gate as done for small
circuits, the purpose of this larger circuit is mainly to verify proper synthesis

176 Chapter 5 Ambipolar Standard Cells

and to evaluate wire load estimation approaches on large circuits. Because
of this, standard behavioral VHDL coding techniques have been used and
RFET .lib file with the INV,NAND,NOR and XOR cells has been supplied
to Genus, instead of manually mapping cells. A similarly reduced library
with the same types of cells was used for the SOI technology, to allow for
direct comparison. As technology mapping is done entirely by the synthesis
tool in usual digital standard cell flows, this approach is closer to common
practice.

FSM

M

Counter

Finalizer

Initial matrix

config

data

cipherstreamInitial matrix

ARX
n
ARX

n
ARX

nARX

FSM

Figure 5.8: Simplified system architecture of the Register ChaCha accelerator variant
[Reu21].

The timing library of the planar RFET is limited to combinational cells and
therefore only allows for synthesis of combinational circuits. To be able to
evaluate sequential circuits, the .lib a D-FF was added to the library. The
deployed D-FF comes from the SOI reference technology .lib file as ex-
plained previously. The input capacitance of the D-FF is approximately half
the capacitance of the RFET inverter input pin and the timing tables support
output loads of up to 80 times the maximum input capacitance of all pins
in the RFET library. The cells are therefore compatible for use in the timing
analysis.

Chapter 6

Ambipolar Reconfigurable Cells

As applicability of RFET in non-reconfigurable digital logic was evaluated
in the previous chapter, this chapter now focuses on the application of re-
configurable cells. A summary of available reconfigurable cells was given in
section 2.6 on page 53, whereas reconfigurable cells in the PARFAIT RFET
technology have only become available during writing of this thesis. This
chapter therefore focuses on use of ULM cells in FPGA in general, indepen-
dent of the technology used and of the concrete cell design. The content of
this chapter has been previously published in [Pfa20], but it has been edited
and extended for this thesis.

6.1 Basic Logic Cells

Various existing ambipolar technology reconfigurable cells were considered
for an FPGA architecture which realizes the opportunities offered by ambipo-
lar transistor technology. As a result, the CNT-DR8F cell presented by Liu et
al. [128] was selected as a base for this work: Compared to simpler 2-input
cells with only two selectable functions, this eight-function cell offers more
choices for the mapping and packing algorithms. Unlike some larger pro-
posed cells, this cell does however not provide the complete function set of
two variables. It is therefore not a 1:1 replacement for LUTs: A cell which
allows to represent all possible functions of𝑁 input variable can be treated
like a LUT in most of the EDA tool flow. It therefore puts fewer restrictions on
the EDA tools than cells with a reduced function set. For specialized RFET
reconfigurable cells, it is often not easily possible to influence the realized
function set. Because of that, it is important to evaluate the EDA tool flow
and the architecture in regard to a real ambipolar base cell. This will take into
account restrictions which may arise due to the limited set of functions in the
used cells. CNT-DR8F offers the function set shown in table 6.1. The table also

178 Chapter 6 Ambipolar Reconfigurable Cells

shows the names of the functions as they are used in the rest of this chapter,
the EDA tools and the FPGA architecture. Simple permutation of cell inputs
can easily be done in the FPGA interconnect and does not need to be imple-
mented explicitly in the reconfigurable cell. The functionpairs (𝐴⋅𝐵, 𝐴⋅𝐵) and
(𝐴+𝐵, 𝐴+𝐵) supported by the original cell have therefore been combined
into single ulm_and2n and ulm_or2n functions.

𝑉bA 𝑉bB 𝑉bC Y Name
+V +V +V 𝐴+𝐵 ulm_nor2
+V +V -V 𝐴+𝐵 ulm_or2
-V -V +V 𝐴⋅𝐵 ulm_and2
-V -V -V 𝐴⋅𝐵 ulm_nand2
+V -V +V 𝐴⋅𝐵 ulm_and2n
+V -V -V 𝐴+𝐵 ulm_or2n
-V +V +V 𝐴⋅𝐵 ulm_and2n
-V +V -V 𝐵+𝐴 ulm_or2n

Table 6.1:Theset of functions supportedby theCNT-DR8F ULMcell. Thecell operates
with two configuration voltage levels and is using in dynamic logic. Adapted
from [128].

Logic Generator Table 6.1 also shows the configuration values to obtain a
certain output function for reference. For the following discussions, the exact
(𝑉bA,𝑉bB,𝑉bC) combination used is however not relevant. If the physical view
considering the voltages is mapped to a logical view considering configura-
tion bits of SRAM cells, the combination determines essentially the bitstream
encoding used. An important point is the number and type of used reconfigu-
ration inputs. Some reconfigurable cells use three values for the configuration
input: A positive, a negative and a zero voltage. In those cells, the positive and
negative voltages are used to configure n-channel or p-channel behavior. The
zero voltage is used to put the transistor in an off, high-impedance state. Such
three-level configuration can however not directly be represented in SRAM,
so a decoder network is needed for these cells. The selected CNT-DR8F cell
uses two input values and three inputs. The configuration storage for such
an element can therefore be kept entirely in three SRAM cells. If the chosen
ambipolar technology supports to store the configuration as charges of the
respective configuration gates [167], external SRAM storage is not needed. In
this case, logic and memory are combined, so the extra transistors otherwise
used for configuration memory can be saved. The total transistor count for

6.1 Basic Logic Cells 179

the CNT-DR8F cell, including configuration storage, then reduces to seven
transistors [128].

Figure 6.1: Top Level FPGA Architecture. Dotted: IO blocks; white: Configurable
logic blocks; diagonal: Memory blocks; grid: Multiplier blocks. Multiplier
and memory blocks repeat every 8th column. Wire length of the global
interconnect is 4.

FPGA Architecture The RFET FPGA architecture is based on the VPR refer-
ence architecture k6_frac_N10_mem32K_40nm shown in figure 6.1. In addi-
tion to being the base for the RFET architecture, this architecture will also be
used as a reference to compare the results to. Certain differences between
the RFET reconfigurable cell and LUTs have to be considered when designing
the RFET FPGA: As CNT-DR8F is a cell using only two inputs, it has less ex-
pressiveness than the 6-input LUT commonly used as LEs in FPGAs. Using
it directly as a configurable logic block in the FPGA grid of the reference ar-
chitecture therefore leads lots of wires having to be routed using the global
interconnect. Such routing leads to increased wire delay, negatively affecting
the critical path and severely limiting the maximum frequency achievable for
user designs in the FPGA architecture. It may also lead to routing congestion
for some user applications. As the interconnect in modern FPGAs already
makes up most of the total area, using even wider interconnect channels is
not an option. The RFET based architecture evaluated here will therefore
keep identical channel width as the reference architecture which is used for
comparison. To ensure the global interconnect can be kept unchanged, the
RFET-based CLB replacementwill be designed to possess a similar expressive-
ness as the reference architecture CLB. The discussion in this chapter will be

180 Chapter 6 Ambipolar Reconfigurable Cells

kept on system level: For example, cell area largely depends on the technology
and cell used. In a more detailed analysis, cell area however does have an
effect on the application performance and on interconnect design. Future,
circuit-level investigation will therefore require a more detailed analysis of
the logic cell and a complete circuit level reimplementation of the cell in
the target technology, including a cell layout. Because of this, circuit-level
analysis is deferred to future work.

Fracturable Logic Cell Aiming to stay close to the design of the VPR
k6_frac_N10_mem32K_40nm reference architecture, the fracturable 6-input
cell structure shown in figure 6.2a has been derived. It combines 5 ULM
base cells in a tree-like structure, providing three outputs. In this base
structure, the outputs are not independent and can only be used in parallel
if an intermediate output is required. Analysis of the packed netlist will
show whether such situations are common enough in the netlists of real
applications to be beneficial. The maximum depth of the cell is three ULM
cells deep, but it is not a fully populated tree. Depths of one ULM or two
ULMs (full tree) are available at the other outputs. Such a cell does however
not yet allow to implement all required functions on an FPGA: As an example,
the case where an IO input is directly connected to a register cannot be
represented in this architecture, as all signals have to be routed through a
logic blocks before being fed into a register. LUT based architectures are
not affected by this problem, as they always allow to implement the identity
function, a simple pass-through. To make the ULM based architecture
universal, a pass-through mode has to been added to the ULM element, as
will be explained in the following sections.

6.2 Electronic Design Automation

To evaluate various parameters and compare the designed logic cells to LUT
based FPGA, an evaluation methodology is needed. Like most FPGA research,
this workwill be carried out in an empirical way, analyzing various representa-
tive benchmarks applications. Evaluation and benchmarking of the different
architectures will be performed in the most recent VTR release, version 8.0
[142]. The VTR tool suite has originally been designed for LUT based FPGAs,
which means various changes are necessary to use it with fixed function ULM
cells. An approach to handle this was originally presented in [Pfa20] and will
be summarized here. In addition, a novel, more advanced EDA approach

6.2 Electronic Design Automation 181

ULM ULM ULM

ULM

ULM

F F F

(a)

Crossbar

LE
internal

LE FLE

0 1

(b)

Figure 6.2: Basic structure of the ULM based LE and logic cluster. (a) ULM based
6-input FLEs. (b) Configurable logic block cluster of LEs and FLEs.

yielding better results for fracturable cells will be presented in the second part
of this section.

Basic EDA Flow Figure 6.3 on the next page shows the most basic modifica-
tions of the VTR flow that are needed to synthesize for ULMs. Whereas tools
depicted in gray and black are unchanged from the original VTR flow, those
in orange are newly introduced or modified. User applications, in case of VTR
the benchmark applications, are first passed toODIN 2 for synthesis. This step
is largely technology independent, except for the direct use of black boxes and
other IP cores in theVerilog code. Use of special mathematical or memory
operations may also need a DSP or block memory element in an architecture
description for ODIN. These descriptions do not differ between ULM and
LUT based FPGA and are therefore not further described. After synthesis,
ABC performs technology independent optimizations. This step is again un-
changed. The primary change is in the next step, technology mapping in
ABC. Technology mapping is guided by a synthesis script, which is automati-
cally generated by the VTR tool flow. The generated script however assumes
mapping to LUTs and cannot be used for ULM. This script was adapted to
perform a standard cell mapping, using a custom genlib technology file. The
genlib library usually contains available cells in a standard cell library. In
this case, the different ULM modes have been specified as individual gates.

182 Chapter 6 Ambipolar Reconfigurable Cells

ODIN II: Synthesis

File-Alt
Benchmark
Application

ABC: Optimization ABC: Tech Mapping

Database
ULM

Library

G2S: Convert

VPR: Pack

MICROCHIP
FLE

Model

VPR: Place

MICROCHIP
Architecture

Model

VPR: Route

VTR: Statistics

UANA: Statistics

Figure 6.3:Custom EDA flow to map VTR benchmarks to ULMs. Steps in orange have
been newly added using custom written tools. Libraries and models in
orange have been newly derived for the specific ULM used.

As a result, ABC will map the user application logic to those functions. As
a slight complication, VTR sometimes performs multiple iterations of read-
ing, optimizing and writing the mapped netlist. This is supported by ABC
when using LUTs as the target technology, as the representation of logic in
unmapped netlists happens to be the same as for LUTs. For standard cell
synthesis, this is not the case and care must be taken to perform initial ABC
steps using LUT mapping, only switching to standard cell mapping in the
final iteration.

The mapped netlist generated by ABC in cannot be directly used in the pack
and place phase of VPR: The generated Berkeley Logic Interchange Format
(BLIF) file uses .gate directives, which are not supported in VPR. Therefore,
the custom G2S script is used to transform the .gate directives to .subckt
directives. Those directives are supported by VPR and are usually used to
specify black boxes and more complex predefined blocks in the FPGA archi-
tecture. As the VPR packer was designed to be flexible, it can be used to pack
the ULMs functions into the FLEs. For this, a custom FLE model is provided
to VPR. It is modeled to consist of ULMs, which are modeled as logic block
with different modes. Each mode corresponds to one function of the ULM
cell and to one entry in the ABC gate library. The configuration of each indi-
vidual ULM can therefore be obtained by simply extracting the used mode
from VPR results. A major drawback of this simple approach is extended tool
runtime, as an unusually large amount of cells has to be processed by the
packer. Furthermore, some logic functions cannot be legally packed onto
some ULMs in a FLEs due to routing restrictions. This will lead to a lot of

6.2 Electronic Design Automation 183

backtracking in the packer. As in the LUT case, the packer is also used to pack
FLEs into logic clusters.

Place and route steps are largely unmodified. VPR needs an architecture
description which declares the location and amount of logic clusters. Here,
no complex modifications are necessary and this thesis will adapt a reference
architecture from VTR. To evaluate results, statistics will be extracted as will
be described in the remainder of this chapter. Various top-level statistics
such as FPGA size and channel width can be obtained directly from VTR.
Other interesting statistics, such as the utilization of FLE in logic clusters,
the modes ULM operate in etc. are not available from VTR’s statistics. The
information is however available in the mapped netlist generated by VPR.
Therefore, the custom tool UANA was written to extract the relevant met-
rics.

Flow for Fracturable Cells As will be analyzed in the evaluation, the simple
EDA flow presented in [Pfa20] has significant limitations. As previously de-
scribed, it slows down the packing phase a lot. Furthermore, mapping to FLE
has shown to be inefficient. Although in general VPR is able to pack multiple
ULM into a FLE, output and input utilization of those FLE is in average under-
whelming. As the problem is mainly in the packing step, a modified flow as
shown in figure 6.4 on the following page has been implemented. Elements
shown in blue have been modified compared to the previously described
basic flow.

Instead ofmodeling the base primitives in the technologymapping, amore ex-
haustive technology library was derived. This library contains every complex
N-input logic function which can be represented by the FLE. It includes both
functionswhich use thewhole FLE and those, which only use a part of the FLE
and can be used in fracturable mode. Here, fitting more complex functions
in a FLE makes less use of the local and global interconnect than mapping to
multiple, simple functions. This should be reflected in the generated library
to incentivize the synthesis tool to use the larger functions. Adjusting the cost
of functions this way has been implemented by ensuring that larger functions
are virtually assigned a smaller cost, i.e. area.

The G2S step now becomes slightly more complicated: It still adapts .gate
directives into .subckt directives, but in addition, it also transforms the
netlist from the complex, modeled function to ULM FLE mode. A FLE mode
is a configuration, which differs in more than only the ULM function used.
For example, a FLE can be in fractured mode realizing a two-input and a
four-input function. Or it might only realize a single 6-input function. Two,

184 Chapter 6 Ambipolar Reconfigurable Cells

ODIN II: Synthesis

File-Alt
Benchmark
Application

ABC: Optimization ABC: Tech Mapping

Database
Function
Library

F2L: Remap

VPR: Pack

MICROCHIP
Cluster
Model

VPR: Place

MICROCHIP
Architecture

Model

VPR: Route

VTR: Statistics

UANA: Statistics

Figure 6.4: Advanced custom EDA flow to map VTR benchmarks efficiently to ULM
based FLEs. Tools, libraries and models in orange have been newly added
compared to the standard VTR flow. Components highlighted in blue
have been modified or extended compared to the simpler approach of
figure 6.3.

four and six-input are therefore modes, but a two-input NAND and a two-
inputNOR would be mapped to the same mode, as both can be realized by
the same FLE topology and only need different ULM configurations. When
this mapping step is performed in the F2L tool, it should be noted that the
information about which function exactly is implemented in each directive is
lost. While removing this information is the main step to simplify packing,
it needs to be restored in bitstream generation. For packing, FLEs are now
simply described as the different modes. ULMs do not need to be described
in VTR anymore at all. The task of the packing tool is therefore reduced to its
original task, packingmultiple logic functions into one FLE. Packing FLEs into
logic clusters then works as usual and the remaining EDA toolflow operates
in the same way as in the basic flow.

6.3 DesignMethodology

As the expressiveness of such a 6-input cell is still limited, the ULM based
FLE cell has been embedded in a cluster, as shown in figure 6.2b on page 181.
This is also consistent with the VPR reference architecture, which uses 10
6-input LUTs in each logic cluster. Like in the reference architecture, the
inputs of the cluster are connected to the inputs of the FLEs using a full

6.3 DesignMethodology 185

crossbar and the outputs of the cell are fed back into the crossbar. This al-
lows to route connections between multiple of these cells locally, without
using global interconnect. The logic element is supposed to have the same
expressiveness as the one of the reference architecture, which means the
FPGA device size and global interconnect usage should be the same for a
set of benchmark circuits. The exact amount and type of FLEs in a complex
cluster will therefore be determined according to this goal in the following
sections.

Benchmark-Driven Design The actual benchmarking of the architecture is
performedusingVTR’s benchmark set, whereas for evaluation of intermediate
architecture results, only a reduced set of benchmarks is used to reduce tool
runtime. To evaluate the results and guide architecture design, the statistic
results offered directly by VPR are useful, but not sufficient: These statistics
are mostly centered on the top-level view of the FPGA architecture, including
the FPGA dimensions in blocks of the top level grid, the block type which
dominates the device size, channel width and congestion for global routing,
and similar data points. The main conclusion that can be drawn from these
measurements is whether the objective of performing similarly to a LUT
based architecture, with respect to the global architecture, has been fulfilled.
Here, a comparison between the VTR reference architecture and the same
architecture with the LUT based logic block replaced by ULM logic clusters
will be carried out.

Custom Analysis In the design phase of a replacement logic cell which is
supposed to integrate in an unmodified global architecture, evaluating these
global aspects is of limited use. Bottlenecks such as reduced logic expressive-
ness caused by too few logic elements in a cluster, by restricted local routing
or because of underutilized logic elements can not be found in these top-level
statistics. To remedy this, a custom tool for analysis and statistics collec-
tion for the logic cluster blocks has been designed. Parsing VPR’s structured,
packed netlist output, it is possible to gain interesting information about the
sub-blocks in the hierarchy instead of only top-level information. Quantities
which will be analyzed include the utilization of input and output ports of the
logic clusters, the utilization of the available FLE cells in a cluster, utilization of
inputs and outputs of the FLE cells, ULM configurations used in the FLE cells
and similar metrics. Statistics are the generated for aggregated quantities,
such as the average and median number of inputs used, and similar values.
To make informed decisions on the architecture, histograms are generated in
addition. Those can for example be used to gauge how likely outputs, inputs
or FFs in a FLE are used. In addition to aggregated statistics, statistics for

186 Chapter 6 Ambipolar Reconfigurable Cells

individual outputs and cells are generated. This allows to answer questions
such as how often a specific output or cell is used.

6.4 Logic Clusters

Changing certain parameters in the FLE and logic cluster can largely af-
fect the expressiveness of the logic cluster. Cell design therefore needs to
be guided through a set of measurable variables, which will be obtained
through analysis of user application benchmarks. The following quantities
have been selected to evaluate the expressiveness of the overall logic clus-
ter:

1. Total FPGA size: The width and height of the FPGA in complex blocks.
This measurement is only relevant if the logic blocks (LUT- or ULM-
Cluster) determine the device size. Both points can be determined from
the statistics file generated by VPR.

2. Percentage of FLEs used in logic clusters: This measurement gives an
overview of how well device logic resources are utilized and allows
drawing indirect conclusions on congestion issues of the global and
local interconnect. Non-fully utilized FLEs (if the device size is limited
through logic cells), hints that the cells cannotbe connectedaccordingly.
This may be caused by congestion on global or local interconnects, as
well as by not enough available inputs or outputs.

3. Logic cluster input and output utilization: A high utilization of inputs
or outputs with little FLE utilization suggests that excessive amounts of
signals have to be routed using the global interconnect. Improving con-
nectivity of the local interconnect canunburden the global interconnect
and allow for better FLE utilization.

4. FF utilization: The amount of FFs which are actually used. This mea-
surement is particularly sensitive to the set of benchmarks used. If the
ULM based logic cluster is designed to have the same expressiveness as
a LUT based cluster, it is also expected to see the same amount of FFs
in such a cluster as in the reference architecture.

In addition to those quantities for logic cluster design, additional quantities
can be used to evaluate the FLE. The following quantities are therefore also
evaluated:

6.4 Logic Clusters 187

1. FLE input usage and distribution: Information about the average num-
ber of inputs used can suggest whether a FLE with more or less inputs
may lead to a better utilization of ULM cells. A low number of used
inputs suggests that the input circuits do not map well to the ULM
topology, whereas a low number of distinct inputs suggests that some
ULM inputs may be combined into a single input, to reduce size of the
logic cluster crossbar. The distribution of inputs can also be used to
gain certain insights: It allows drawing conclusions which part of the
fracturable logic is most often used.

2. ULMusage anddistribution: This is anothermeasurement to determine
which part of the fracturable logic is most used. It further provides
direct feedback whether the FLE cell successfully matches the input
logic functions, or whether the topology of ULMs does not allow nets
to be mapped efficiently.

3. FLEoutput usage anddistribution: This is the primaryway to determine
whether a FLEdesign isworking efficiently. A lownumber in the average
amount of used outputs suggests that the cell can not drive multiple
outputs at the same time, likely caused by the cell topology. A low
utilization of a certain, specific output can hint that this sub-part of
the FLE topology is not frequently used and that the output may be
removed from the architecture without reduction of expressiveness.

LE Inputs Figure 6.5a on the following page shows the LE utilization for a
very simple, naïve FLEwhich consists of only oneULM.This LE is instantiated
ten times in the cluster, according to figure 6.2b on page 181. The resulting
architecture has been modelled in VPR and the VTR MCNC benchmarks have
been evaluated for it. As can be seen in figure 6.5, the results motivate the
need for a more complex cell. In the architecture, VPR makes use of only 9.64
inputs and 3.5 outputs in average, although the ULM utilization in figure 6.5a
is at 96.1%. This clearly shows that even when all ULM are fully utilized, not
all inputs and outputs can be used. In such a situation, either the number
of inputs and outputs needs to be reduced, or the LE in the cluster needs
to be changed. Furthermore, the amount of complex logic blocks used in
the benchmarks increased by 241.4% compared to the reference architecture.
Caused by fewer used inputs and outputs, theminimum channel width is also
reduced to 77.0%. As the FPGA top level architecture is supposed to be kept
the same, this clearly indicates that a 2-input ULM is not expressive enough
as a basic logic element.

188 Chapter 6 Ambipolar Reconfigurable Cells

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

0.2

0.4

0.6

(b)

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

(c)

Figure 6.5: Logic cluster utilizationwhen using a simple LE consisting of oneULM. (a)
Utilization of LEs in the cluster. (b)Utilization of cluster inputs. Unused
values not shown, in total 40 inputs are available. (c)Utilization of cluster
outputs. Unused values not shown, in total 40 outputs are available.

6.4 Logic Clusters 189

Fracturable LEs As an initial improvement, the combined cell in figure 6.2a
on page 181 was derived: Like the 6-LUT building block in the reference archi-
tecture, it can take up to six different inputs signals. This decision has been
made to initially have similar routing requirements in the local interconnect
of the logic cluster as in the reference architecture. This is supposed to yield
higher input utilization for clusters even with an unchanged input crossbars.
In addition, the cells have been arranged in a way to allow the system to be
fracturable: If ULM 4 in the tree is configured to pass through its right-hand
input, the 6-input FLE decomposes into a two-input and a four-input logic
element. Similarly, the cell can be decomposed into three two-input logic
elements by further putting ULM 3 into bypass mode, forwarding only its
right input. As previously explained, multiple outputs can still be derived
from all six inputs, if the outputs are related and their combinational logic
functions can be mapped to the topology shown in figure 6.2a. Reevaluating
the changed architecture yields the results in figure 6.6, where it can be seen
in (c) that only one output is heavily used. Further analysis shows some func-
tions mapped to this output actually are two-input functions, which forces
other ULM cells into bypass mode and essentially implements simple func-
tions in overly complex cells. The main problem lies within the overly simple
technology mapping and packing approach: Directly mapping onto ULMs in
synthesis and combiningmultiple suchmapped functions intomore complex
logic blocks in thepacking stageprevents the synthesis tool from transforming
functions directly for those larger cells. Another drawback of the simple FLEs
as a simple set of ULMs also increases calculation effort in the packing stage,
which will result in increased tool runtime. This limitation is not present in
the advance toolflow presented later on.

Internal LEs In order to reduce utilization of the global interconnect, logic
clusters usually provide a local interconnect with direct feedback paths from
the logic output to the logic input. If an output is fed back in the local inter-
connect, unless it is also required as an input for another logic function, it
is not routed on the global interconnect. This means that larger utilization
of the local interconnect will lead to less utilization of the logic cluster out-
puts. In order to avoid wasting resources, there are two possible solutions:
One is to reduce the number of outputs. This however has consequences for
the global interconnect and the overall FPGA architecture. As the original
top-level architecture should be kept close to the reference architecture, the
number of outputs in a logic cluster should be kept the same. To still achieve
higher output utilization, internal-only cells have been tested: The output
of these cells are only connected to the local interconnect and to other logic
cells’ inputs in the same cluster. They are not connected to outputs of the

190 Chapter 6 Ambipolar Reconfigurable Cells

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

(a)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

(b)

0 1 2 3
0

0.2

0.4

0.6

0.8

1

(c)

0 1 2
0

0.2

0.4

0.6

(d)

Figure 6.6: Internal utilization of elements in the 6-input FLE as well as input and
output utilization. (a) Amount of FLE inputs used. (b) Amount of internal
ULMs used in the FLE. (c) Amount of FLE outputs used. (d)Distribution
of the used FLE outputs.

logic cluster and therefore also not connected to the global interconnect. This
logic cluster architecture including internal cells was presented in figure 6.2b
on page 181.

Simple LEs For internal cells, questions regarding number of inputs, the
amount of basic ULMs chained and the overall topology of the LE arise in the
same way they do for the non-internal cells. If internal cells do not contain
FFs, they need to be part of a deeper logic function. In this case, the depth
of the internal cell itself should be reduced to make sure that total depth
of one internal-only cell chained with one non-internal-only cell is not too
large, which would prevent mapping of logic functions. If FFs are used in
internal cells, the internal cells can be used to terminate a combinational
net. The output must however still be mapped to a non-internal cell and if
the FF in a cell is optional and bypassed, the considerations regarding path
depth still hold. For this internal cell purpose, a non-fracturable version of
the FLE as shown in figure 6.7a was evaluated. Compared to simple logic cells
consisting of one ULM and one FF that can be bypassed, these cells do not
show large advantages in experimental benchmark statistics. The simple cell
consisting of one ULM is sufficient to increase output utilization. The final

6.4 Logic Clusters 191

evaluated architecture therefore uses 5 such simple LE combined with 15
FLEs. As this adds up to 20 outputs in total, which matches the logic cluster
output count, all cells outputs are exposed and internal-only cells are not
used.

ULM ULM ULM

ULM

ULM

F

(a)

ULM ULM ULM

ULM

ULM

F F F

(b)

Figure 6.7:Modified ULM architectures for further evaluation. (a) A non-fracturable,
reduced version of the LE. (b) A version introducing bypass paths.

Cell Functions Apart from the functions of table 6.1 on page 178 which
are directly provided by the ambipolar base cell, EDA tools used require
certain other, artificial modes: The ABC tool for synthesis expects a buffer
cell, an inverter cell and constant zero and one generator cells. The buffer
cell is unnecessary (or implicit) in an FPGA architecture and can simply be
removed from the netlist. The inverter cell can be represented in the CNT-
DR8F cell, when both inputs are connected to the same input variable and
a configuration such as ulm_nor2 is chosen. Connecting inputs in this way
is possible for those ULM cells which are directly connected to the input
crossbar, i.e. simple LE and the first level of cells in the FLEs. For other
ULMs, an inverter function can not be realized without additional hardware.
Alternatively, better EDA algorithms could reduce use of the inverter function,
as it can be largely absorbed into complex modes with inverted inputs. For
constant inputs, LUT based FPGA architectures can simply adjust the lookup
tables to adjust for the constant inputs. An ULM based architecture on the
other hand’s side has to provide these constant values as possible inputs to
the logic cells. The constant zero and one generator cells have therefore been

192 Chapter 6 Ambipolar Reconfigurable Cells

implemented as two additional inputs to the logic cluster input crossbar,
as shown in figure 6.2b on page 181. Having local constants avoids routing
of these constant nets, reducing congestion on the interconnects while still
creating minimal resource usage in a logic cluster.

Cell Bypass In some cases, ULMsneed abypassmodewhich simply forwards
one of the inputs to the output. This function equivalent to the buffer function
which is required by synthesis tools, but the buffer function is removed from
the netlist before packing. Themain difference is the reason such a function is
required: Whereas the buffer mode is required because of limitations of EDA
tools not adapted completely to an ULM workflow, the bypass mode is used
to increase flexibility of the fracturable logic cells: To realize simple two-input
functions in the proposed FLE, some ULMs need to be bypassed. In the same
way as the inverter function, the bypass function can be implementedwith no
overhead if both inputs of the bypassed ULM can be connected to the same
input. This is again the case for those ULMs which directly connected to the
input crossbar, as these can be configured in ulm_and2mode to forward the
input. For other ULMs, additional multiplexers are required to either bypass
the cell, or connect both inputs to the same value. Connecting the inputs
has the benefit of the bypassed ULM still serving as an electrical buffer and
has been implemented in figure 6.7b. This approach has the drawback of
requiring additional transistors for the multiplexers, as well as an additional
bit of configuration storage.

0 1
0

0.2

0.4

0.6

0.8

1

(a)

0 1
0

0.2

0.4

0.6

0.8

1

(b)

Figure 6.8:Utilization statistics for the FF in the logic cluster. (a)Utilization of FFs in
FLE cells. (b)Utilization of FFs in simple cells.

FF Amount When there are more FLEs in the RFET logic cluster than in
the reference architecture LUT cluster, it can be questioned whether each
FLE needs to contain one FF. Gathering the FF usage statistics from the VPR
benchmarks shown in figure 6.8 suggests that only 12.2% of the FFs in FLEs
and 9.2% of the FFs in simple logic elements are used. Adjustments to the

6.4 Logic Clusters 193

architecture and further benchmark statistics suggest that a total of 10 FFs
per logic cluster yields almost complete utilization of all FFs. At the same
time, the total FPGA area did not increase in these benchmarks. This effect
would occur if there are too few FF in a logic cluster and more clusters need
to be instantiated. A reasonable trade-off therefore seems to be to reduce
the amount of FFs in the cluster to 10: The final tested architecture therefore
uses 5 simple logic elements with FFs, 5 FLEs with FFs and 10 FLEs without
FFs.

This page intentionally left blank

Chapter 7

Power Management Regions

The following chapter provides details for the implementation of the region
concept presented in section 4.2 on page 114 for VPR. The implementation
presented enables different parts of the FPGA architecture to operate un-
der different PVTA conditions and in different performance levels. An ex-
ample of a supported region grid is shown in figure 7.1, reprinted from fig-
ure 4.4.

Figure 7.1: An example of the k6_frac_N10_40nm architecture with a placed user
application (orange) and region grid (blue). Region size was arbitrarily
chosen as 3x3 blocks, including IOBs.

196 Chapter 7 Power Management Regions

Apart from the introduction of the region feature, region assignment will be
discussed. Region assignment determines how FPGA resources are grouped
into regions and which operating conditions are used for each region. Two
variations of region assignment will be presented: Static region assignment
maps the operating conditions to each region statically, according to the
FPGA architecture description. This mapping is therefore fixed for all user
applications and all FPGA devices of this architecture. Dynamic region as-
signment on the other hand is used for architectures, where the operating
conditions of a region can change in the field, during application use. The
final PARFAIT PVTA system will use only dynamic region assignment, but
static assignment can provide a less complex alternative which needs fewer
resources to realize.

The region description format was kept abstract, to enable modelling of not
only DVS systems, but also other varying parameters. Parts of this chapter
were originally published in [Pfa23b] and this chapter has been extendedwith
further details. In addition, the region model support has been integrated
and evaluated in a more thorough design space exploration, which will be
presented in the final chapters of this dissertation.

7.1 RegionModelling in VPR

To support locally varying operating conditions, two new concepts are intro-
duced: Power regions and region modes. A power region is a physical area on
an FPGA containing one or multiple primitive blocks, usually CLBs. Such a
region is the smallest entity for which operating conditions can be changed
individually.

1 <region sizex="2" sizey="2" default="vdd_1V">
2 <mode name="vdd_1V"/>
3 <mode name="vdd_0.95V"/>
4 <layout>
5 <fill type="vdd_1V" priority="10"/>
6 <pattern type="vdd_0.95V" priority="20" ... />
7 </layout>
8 </region>

Listing 7.1: Example showing a region specification with two modes, vdd_1V and
vdd_0.95V, with static region assignment.

7.1 RegionModelling in VPR 197

What operating conditions can be changed within a region is irrelevant for
the modeling scheme: It could be𝑉𝐷𝐷, body biasing, PG voltage or any other
quantity. A region mode is a specific instance of these operating conditions.
For example, if 𝑉𝐷𝐷 is varied, operating modes could be two different volt-
ages, 1.0 V and 0.95 V, as shown in listing 7.1. Regions are usually placed as
rectangles in grid form, but the introduced extensions for the architecture
description allow any shape supported by VPR. In the simplest case, a VPR ar-
chitecture description is extended with region width and height information
and the gridwill be created automatically. In listing 7.1, a patterndescription
enables static assignment of region modes.

LUT and therefore CLB delays are the most critical components to consider
in mode adjustments, e.g. when reducing operating voltage [251]. Primitive
blocks, switches and other elements in these blocks will exhibit different prop-
agation delays and power usage, depending on the operating conditions. For
the region models in this thesis, clocking and routing networks are assumed
to have an independent power supply and are not included in the regions. The
VPR architecture description format was accordingly extended to support dif-
ferent delay values depending on region mode. An example for such a mode-
based timing specification is shown in listing 7.2.

1 <delay_constant max="85e−12" in_port="l.o" out_port="b.o">
2 <region mode="vdd_1V" max="85e−12"/>
3 <region mode="vdd_0.95V" max="84.27e−12"/>
4 </delay_constant>

Listing 7.2: Example showing the description of timing specifications which vary
depending on the region mode.

In addition, two changes were made in the VPR power estimator: To enable
parametrization on modes, absolute values given in the architecture file such
as in absolute or pin-toggle power models, are changed to tables. For
more complex transistor level power modeling, e.g. as part of the auto-size
model, VPR obtains per transistor data from a .tech file. This functionality
was also extended to support loading different .tech files depending on each
region’s current mode.

For logic block delay calculation, the VPR algorithms were changed to use
the delay from the architecture file according to the region mode. In the
placement phase, it is ensured that the cost function also considers the now
region-specific, adjusted delays. The power estimation was also changed
to estimate each region’s power usage independently, based on its current
mode.

198 Chapter 7 Power Management Regions

7.2 Static Mode Assignment

In static region assignment, modes are pre-assigned to power regions in the
FPGA architecture description. VPRwill not changemodes of the regions, and
will simply calculate the initial placement according to this grid instead. Fig-
ure 7.2 shows two simple examples of such static assignments, a checkerboard
and a column pattern.

(a) (b)

Figure 7.2: Two example grids specified using static assignment. Two different modes
are indicated by the shade of blue. (a) Checkerboard pattern. (b) Column
pattern.

The main expected benefit of static assignment is reduced resource overhead
in implementation: As each region operates in only one predeterminedmode,
the implementation only has to provide one operating condition, e.g. one
supply voltage, for each region. Compared to a dynamic scheme, this how-
ever trades off resource overhead with reduced flexibility: Modes can not be
adjusted according to the placed application. Instead, the placement logic
will be modified to place the application accordingly to the predefined grid.
Another major limitation that follows from this limitation is that a system
with static assignment can not adjust modes at runtime. It can therefore not
implement the PVTA compensation scheme.

Figure 7.3 shows modifications in the VPR toolflow to support static region
assignment. Firstly, a new region layout stage is inserted in the VPR flow after
packing, building the grid according to the architecture file. This step has
to be performed after packing, as the FPGA size is not available before. This

7.3 Dynamic Mode Assignment 199

limitation is grounded in VPR’s support for application-specific FPGA size
determination, which is performed in the packing phase. Secondly, the newly
built region grid (R-Grid) is made available for the placement phase. In this
phase, VPR uses the new information to place logic in low-power or high
performance regions. This is accomplished primarily through consideration
of timing delays according to the respective modes.

Pack R-Layout Place

Database R-Grid

Route STA

Figure 7.3: VPR extensions to support mapping applications to regions with statically
assignedmodes. TheR-Layout pass and theR-Gridmodel shown inorange
have been newly added to the original VPR flow.

As an implementation peculiarity, VPR caches certain block-internal delay
values, assuming those are independent of the exact location of the block. As
this is not true if regions exhibit different performance characteristics, the
implementationwas changed to update cached delays whenever a logic block
moves between regions.

7.3 Dynamic Mode Assignment

As static assignment cannot beused for PVTAcompensation, a dynamicmode
assignment scheme was implemented as well. In this approach, modes are
assigned to regions after the design has been placed as usual by the standard
VPR flow. For the placement phase, there are two options to consider: All
regions may be considered to be in low power mode when the design is
placed. After placement, the voltages of regions containing paths failing the
timing constraints are increased, until the paths meet the timing constraints.
Alternatively, the design may be placed assuming all regions are in high-
performance mode. After the initial placement, the voltage for each region is
reduced until the design fails to achieve timing closure. Experiments show
that the latter approach yields better results.

Figure 7.4 shows examples of dynamically assigned modes for the grid in-
troduced in figure 7.2. Two different applications were placed to the FPGA,
as indicated by the orange blocks. Regions which do not contain any logic
used by the application can be switched off completely, as can be seen in

200 Chapter 7 Power Management Regions

figure 7.4a in the top-right and in figure 7.4b in the bottom left. The modes
selected by VPR map to the initial or expected conditions: Based on the prop-
agation delays for the default process, VPR calculates the available slack. If
PVTA conditions are considered, the real available slack in each region may
change. Usually, the delays used during placement are the worst case ex-
pected delays: This ensures that the placed application works on every FPGA
IC.

(a) (b)

Figure 7.4: Example mode assignments for two applications using dynamic assign-
ment. Different modes are indicated by the shade of blue. (a) Application
1. (b) Application 2.

Figure 7.5 shows the implementation of dynamic region mode assignment
in VPR. The implementation of the algorithm largely follows the variant pro-
posed by [237] for dual power supply FPGAs: Two new processing phases
are introduced in figure 7.5: Slack budget calculation and dynamic region
assignment. In slack budget calculation, all paths going through a region are
enumerated and their timing slacks are collected. The minimum slack is then
assigned as the slack budget of that region. After determining the budgets
of all regions, budgets are sorted and the dynamic region allocation phase is
executed: VPR iterates through all regions, starting with those with the high-
est slack budget. It assigns a lower voltage to the region and recalculates the
overall timing. If timing closure is still achieved, the change is accepted and
processing continues with the next region. Otherwise, the change is reverted
before continuing with the next region. When all regions are processed, the
algorithm concludes with a final timing analysis.

7.3 Dynamic Mode Assignment 201

Place and Route Budget R-Assign STA

Figure 7.5: VPR extensions to support mapping applications to regions with dynami-
cally assigned modes. The Budget slack estimation pass and the R-Assign
mode assignment pass shown in orange have been newly added to the
original VPR flow.

The approach introduced here uses information about the delays in modes to
select modes during placement. The next chapter will discuss an alternative
approach, where the slacks in each region will simply be recorded. Together
with the critical path length in each region, this information will be used to
derive a 𝑘slack factor: This factor represents a relative measurement stating
how much relative increase in path delay can be accepted, before timing
violations occur.

This page intentionally left blank

Chapter 8

PVT- and Aging Compensation

With RFET-based LEs in place and power region support in EDA tools intro-
duced, the final steps for power management are determining the acceptable
performance degradation in regions and measuring a region’s current per-
formance. These two aspects are first covered in this chapter. The chapter
then concludes with a summary describing the PARFAIT power controller
and FPGA architecture.

8.1 Performance Requirement Determination

The PVTA compensation approach employed in the PARFAIT FPGA does not
have direct feedback of whether an application achieves timing closure: Un-
like the Razor schemes introduced in section 3.4 on page 85, the scheme used
here does not detect timing violations in the configured application. Instead
of that, themeasurement approach introduced in the next section determines
the current propagation delays for all LEs. The impact on user application
paths is however not directly known, as the PVTA controller does not know
how LEs are connected by paths in the application.

Nevertheless, the controller approach needs a target variable for each region.
This dissertation therefore introduces the derivation of a slack factor for each
region and each application. This factor is calculated in the EDA flow in each
region, based on the critical path and its available slack. As the EDA timing
analysis uses the nominal or typical LE delay, the factor describes how much
LEdelay can differ fromnominal delay to still ensure timing closure. Referring
to section 2.3 on page 20, 𝑡slack is the difference between required and actual
arrival time. This means that the path delay, as characterized by VPR when
placing the user application, could increase by up to 𝑡slack for the circuit to
still work correctly:

𝑡PD,max = 𝑡PD,typ+𝑡slack (8.1)

204 Chapter 8 PVT- and Aging Compensation

The slack factor, 𝑘slack, is then defined as:

𝑡PD,max = 𝑘slack ∗ 𝑡PD,typ (8.2)

𝑘slack =
𝑡PD,max

𝑡PD,typ
(8.3)

=
𝑡PD,typ+𝑡slack

𝑡PD,typ
(8.4)

Equation (8.4) can be easily obtained from the VPR tool with someminor code
changes. Defining the 𝑘slack factor provides a relative definition independent
of the absolute slack and propagation delay, which both depend on the path
length. When assuming that a path delay is a linear combination of LE delays
and that all LEs are affected by a change in delay in the same way, the 𝑘slack
factor can be compared to relative change in LE performance: If the delay
of each LE in a path increases by less than 𝑘slack, the total path delay will not
exceed 𝑡PD,max.

When a path passes through multiple regions, the path element delays could
theoretically have different relative delay increases. To properly handle this
case, the VPR code calculating 𝑘slack considers all paths passing through each
region and selects the smallest factor. A path spanning multiple regions
might therefore determine the factor in most of those regions. If the factor is
different for one region, as per the definition, it must be smaller. So even in
this case, 𝑡PD,max still won’t be exceeded. Such a case however provides room
for future optimization: If a part of a path is known to never be operating at
its slowest possible performance, as other paths in that region require higher
performance, the delay in other regions might be safely increased further
than the averaged 𝑘slack factor suggests.

Listing 8.1 shows pseudocode implementing the 𝑘slack calculation in VPR.
In general, the calculation code builds on the region definition code of sec-
tion 7.1 to load regions from the architecture definition. VPR then places and
routes the user application or loads a pre-defined placement and routing.
The pseudocode then uses VPR’s TimingPathCollector to iterate over all
paths and determines whether the path uses any CLB in a specific region.
Ultimately, it selects the path with the smallest slack in a region to calculate
the region’s factor.

1 auto paths = path_collector.get_all_paths();
2
3 for (auto path: paths) {
4 auto slack = get_slack(path);

8.1 Performance Requirement Determination 205

5 auto delay = get_delay(path);
6
7 for (auto elem: get_elements(path)) {
8 auto loc = get_loc(elem);
9 auto region = get_region(loc);

10
11 if (result[region].slack > slack) {
12 result[region].slack = slack;
13 result[region].k = (delay + slack) / delay;
14 }
15 }
16 }

Listing 8.1: Pseudocode implementing the newly introduced 𝑘slack calculation in VPR.

Figure 8.1b shows a graphical demonstration of obtained 𝑘slack for a bench-
mark application. Here, the diffeq1 benchmark has been placed to a 24x24
FPGA, with 4x4 power regions. Figure 8.1a shows the user application place-
ment, Figure 8.1b the 𝑘slack factors. In this example, the critical path spans 7
regions, which therefore all have the same slack factor of 1.17. The remaining
regions have varying factors from 1.39 to 4.73.

(a) (b)

Figure 8.1: Example application placement and available slack in each region. (a)
shows how the benchmark application has been placed onto the FPGA
and into regions. (b) depicts the slack factor for each region. Brighter
color indicates a lower factor, i.e. less available slack in the critical path.
Unused regions are depicted in white color.

206 Chapter 8 PVT- and Aging Compensation

8.2 Transparent Logic Invasion

As explained in section 4.1, a special logic invasion scheme has been de-
signed as part of this thesis to characterize the performance of CLBs. In this
scheme, the user application is transparently relocated, with the application
output being unaffected. This relocation process is specifically designed to
always keep a single row of the FPGA unused. Over time, each single row
of the FPGA becomes temporarily unused, allowing characterization of all
CLBs with few changes in FPGA architecture and little hardware overhead.
The performance measurement system is described in detail in the next sec-
tion. This section describes the invasion process itself, which realizes the
logic relocation and the programming of arbitrary bitstreams onto unused
CLBs.

Concept The overall process of logic invasion is depicted in figure 8.2 by
means of a small example. Subfigure (a) shows the initial state after the user
application has been programmed, i.e. the DONE state has been reached in
figure 4.12 on page 126. In this example application, a bitstream has been
programmed to the four upper CLBs, the lowest row being unused. Numbers
in the CLBs denote the individual CLB bitstreams programmed onto those,
whereas blocks in blue show unused CLBs. The global interconnect, including
PSMs and CBs, is not affected by the logic invasion scheme. After the user ap-
plication has been programmed initially, this configuration is never modified.
It will therefore not be mentioned explicitly in the following discussion and
figures.

Subfigure (b) shows the FPGA after the first logic invasion: The middle row
has been invaded and is now effectively unused. It could be programmedwith
any arbitrary bitstream at this point without affecting the user application.
To achieve this, the CLB configuration and bitstream of this row has been
duplicated to the previously unused row below. In the following, this process
will be called relocation of logic from the invaded row to the backup row.
As mentioned before, the interconnect is not modified, so inputs for the
relocated CLBs, which are now in the lower row, are still provided by the
CBs in the invaded row. The architecture has been modified accordingly to
allow redirection of the inputs of one CLB to the CLB directly below. Similarly,
outputs can be redirected from the relocated-to row back to the invaded
row. Active extra connections are shown in orange in the figures and make
up the main changes and resource overhead of the proposed logic invasion
scheme.

8.2 Transparent Logic Invasion 207

0

2

1

3

(a)

0

2

1

3

(b)

0

2

1

3

(c)

0

2

1

3

(d)

0

2

1

3

(e)

Figure 8.2:Overview of the logic invasion process, numbers depict specific appli-
cation CLB bitstreams. (a) Initial state. (b) Row 1 invaded. (c) Row 2
invaded, final up state. (d) Row 1 invaded. (e) Row 0 invaded, final down
state.

This strategy using additional connections has been chosen, as the alterna-
tive, dynamic reprogramming of the global interconnect, essentially requires
expensive re-routing of the user application: It is not possible to simply move
PSM configurations downwards. Even in this simple architecture there may
be signals which still need to connect to specific IOBs in the invaded row.
PSMs in the invaded row could therefore not simply be reprogrammed to for-
ward between the upper and lower row. As an example, consider the leftmost
CLB in the middle row would connect to the left IOB in the same row. If the
CLB moves down, it still needs to connect to the IOB one row above. This
connection requires introducing another track, which might not be available.
For such a simple architecture, an elaborate solution could be implemented
in the EDA toolflow: If the EDA tools ensure that in these cases, CBs always
use a wire in upwards direction, this wire could be forwarded to the PSM
above. Such an approach however may be difficult to scale to more com-
plex architectures. It is mentioned here though as a possible optimization
for future research, which could further reduce hardware overhead in logic
invasion.

Subfigure (c) shows the final invasion in upward direction. In this case, the
top-most row has been invaded, where the general concept is the same as for
all other rows. The invaded, or unused, row has now fully moved from the
bottom to the top of the FPGA, covering each single CLB once. As there is
now no unprogrammed row in the bottom that can be used for relocation,
the invasion process can not simply start again from the beginning. Instead,
the invasion process is now rolled back step-by step until the original state is
reached again.

Subfigure (d) shows the first invasion in downwards direction. In this case,

208 Chapter 8 PVT- and Aging Compensation

logic of CLB 2 and 3 is moved back to its original location in the top-most row.
In the following, this processwill be called relocation of logic from the invaded
row back to the original row. As the logic moved back to the original location,
no further connections are necessary. Previously active bypass connections
shown in orange will just have to be deactivated again. Subfigure (e) shows
the final invasion in the downwards direction. At this point, the bottom-most
row is invaded and the FPGA state is identical to the state in the beginning in
subfigure (a). The invasion process can now start again from the beginning,
allowing for unlimited, continuous operation.

C
ro

ss
ba

r FLE
I /

40
/

40

/
60

IBP_I

/
40

IBP_EN

IBP_O

O

/
20

/
20

/
20

OBP_O

OBP_I

/ 20

FBBP_O
FBBP_S
FBBP_N

/
20

/
20
/

20

OBP_EN

FBBP_S

FF_S

/ 20

FF_N

/ 20

FF_O

/ 20

FF_S FF_L

Figure 8.3:Modifications of the CLB of figure 4.2 on page 110 to enable logic invasion.
Newly added components are marked in orange.

Architecture Changes As was explained in the overview, changes to the ar-
chitecture are necessary to support the relocation process. All changes are
contained in the CLB implementation and are shown in figure 8.3, which
is a modified version of figure 4.2 on page 110. For the logic invasion im-
plementation, the BLE is treated largely as a black box, enabling any logic
generator to be used as the BLE. The concept here is therefore not limited to
LUTs. The only needed change in BLEs is using the FF implementations with
an asynchronous load option.

The main changes in figure 8.3 are the introduction of new multiplexers
marked in orange and the corresponding in- and output signals. The multi-
plexer on the left side is added to support redirection of the inputs. It uses
the IBP_I signal to gain access to the global interconnect inputs of the CLB
in the row above. At the same time, it also forwards its input to the CLB in
the row below using the IBP_O output. Similarly, the output multiplexer can

8.2 Transparent Logic Invasion 209

connect the global interconnect output to the output of the BLEs in the row
below, the OBP_I signal. It also forwards its own BLE outputs to the CLB in
the row above using the OBP_O signal.

Q

D QD

CLK

Q

FF_O

A L

FF_LFF_S FF_N FF_S

Figure 8.4:Modification of the FFs in the BLEs for logic invasion. A direct output
provides the FF output independently of the MUX state in the BLE. In ad-
dition, the FF supports asynchronous loading from two selectable inputs.

Further modifications concern internal signals: During reconfiguration, in-
ternal feedback loops may not be initialized: Some BLE might recursively
depend on internal feedback of some other BLE, rendering its output initially
undefined. As the BLEs are not connected to the global interconnect yet, this
is not immediately an issue, but ultimately, the output needs to be defined
for relocation to be successful. As an example, think of a BLE acting as a
simple latch, passing one input directly to the output. If the latch output is
fed back to the input, this results in a stable 0 or 1 at the output. Which one it
is after programming of the BLE is however undefined. The new architecture
therefore introduces the feedback multiplexer and the FBBP signals: These
allow to temporarily drive the feedback inputs for the crossbar from either
the CLB above, or the CLB below. Note that in this case, connections to both
above and below CLBs are required. For the global interconnect CB inputs
and outputs, this was not necessary: In the downwardsmove, connections are
just restored to the original connections. But for feedback, the relocated-to
row has to get feedback from the active row, which is the row below in the
downward relocation case.

Similar observations apply to the FFs in the BLEs. When relocating logic, the
state of FFs needs to be preserved. FFs in the relocated-to row therefore need
to load their values from the relocated-from row. Again, for the same reasons
as for the feedback signals, the CLB must be able to load these from both
the CLBs in the rows above and below. In figure 8.3, FF loading is realized
by the FF signals. The modified FF architecture itself is shown in figure 8.4:

210 Chapter 8 PVT- and Aging Compensation

It consists of a multiplexer to select the load input from one of two options,
north and south, and the FF itself. The FF has an additional asynchronous
load input, L. As long as this input is high, the FF asynchronously loads the
input A as its stored value. In this mode, the output Q therefore follows the
input A transparently.

Toolflow Modifications As depicted in figure 8.2 on page 207, the intro-
duced invasion scheme requires that the bottom row is not used in the initial
state. This means that the application bitstream must not use the CLBs in
this row. Other interconnect resources and IOBs can be used as usual. To
ensure that VPR does not place any logic in these CLBs, they were defined
as special blocks in the FPGA architecture. Marking them simply as empty
has important side effects: VPR changes the pin connection pattern of other
CLBs next to these empty blocks. This complicates bitstream generation and
in order should be avoided. The blocks have therefore not been defined as
empty, but as special black box blocks. These blocks have the same number
of global interconnect inputs and outputs as CLBs, and therefore the same
connection pattern. They however do not contain any BLEs, LUTs or any
other logic blocks, so VPR does not attempt to place application logic in these
locations.

In addition, these changes in the architecture may increase the worst-case
propagation delays through CLBs, as additional signal routing is introduced.
The EDA tools have to use these new worst-case delay values for CLBs in
timing analysis.

Invasion Steps Figure 8.5 shows the new state machine introduced in the
ProgController block. It hooks into the state machine in figure 4.12 and
replaces the DONE state: Instead of stopping operations after the initial pro-
gramming, the controller jumps to the new WAIT state in the logic invasion
logic.

1. The initial WAIT state is used to pause logic invasion. It waits for the
invasion_en signal and only continues to the next state if this signal is
asserted.

2. In the INIT state, the FSM sets the row select signal for the row where
logic will be relocated to. It also disables the clock of that row. All
operations carried out during logic invasion operate on one specific row,
so control signals are used in a special way: There is one row_select
signal, selecting the row which is being operated on. All other control
signals are provided in parallel to all rows. They are gated accordingly

8.2 Transparent Logic Invasion 211

WAIT

INIT PROG
ROW

BP
ON

START
CLK

COPY
FF

BP
OFF

DOUT
BP

NEXT

invasion_en == 1

Figure 8.5: FSM which summarizes the steps in the invasion process. After invasion
finishes in the DOUT BP state, the CLBs in the original row are unused and
can be reprogrammed with an arbitrary bitstream.

to ensure only the selected row is affected. Operations always affect all
CLBs in the selected row in the same way.

3. In PROG ROW, the FSM configures the row programmer of figure 4.11 to
program the relocated-to row with the bitstream of the relocated-from
row. In practice, the bitstream is not read from the relocated-from row,
as the configuration system only supports writing the configuration.
TheFSMcomputes the index of the row in the original bitstream instead,
depending on the reconfiguration direction. It then configures the
row programmer to use that bitstream, activates the programmer and
waits for the row to be programmed. Once programming is finished, it
transitions to the next state.

4. Depending on reconfiguration direction, the BP ON state activates or
deactivates the CLB input bypass IBP_EN: When moving up, logic is
moved down and the bypass is enabled in the relocated-to row. Oth-
erwise, the bypass in the relocated-to row is deactivated to fetch the
inputs from the interconnect, as in the initial configuration. Further-
more, this state selects the FFBP_N input in upward relocation, FFBP_S
in downward relocation. All these actions are performed in the same
cycle, and the FSM immediately proceeds to the next state.

5. The START CLK state simply enables the clock for the newly configured,
relocated-to row. The feedback bypass is still kept active and the FF
have not been initialized yet.

212 Chapter 8 PVT- and Aging Compensation

6. In COPY FF, the FSM enables the load signals for the FFs. When relocat-
ing upwards, it selects FF_N, otherwise FF_S.

7. In the next state, BP OFF, the feedback bypass signals FFBP_S of FFBP_N
and the FF load signal FF_L are deasserted. These signals are deasserted
at exactly the same time, ensuring that the FFs values and the feedback
signal are synchronized. After this step, the relocated-to CLBs are now
fully using their internal feedbacks. They get interconnect inputsmatch-
ing the relocated-from CLBs, and compute the same outputs.

8. The DOUT BP state configures the OBP_EN switch of the original row: It’s
either enabled, when relocating up, or disabled again, when relocating
down. After this step, the relocated-from CLBs have been disconnected
entirely from the global IC, and can be reconfigured arbitrarily.

9. The final state, NEXT, prepares invasion of the next row. It adjusts the
internal row counter accordingly and changes direction if necessary. It
then proceeds to the WAIT state again, which allows pausing the inva-
sion process using the invasion_en signal.

Figure 8.6 shows two CLBs of two adjacent rows after an upwards relocation.
Here, the input multiplexer in the lower row was configured to select the
signal from above. The output multiplexer of the upper row selects the output
signal from the CLB below. It can be seen that the lower CLB could still pass
down its original input to the next CLB below. It could also still connect its
interconnect output to the CLB below, even it is itself acting as a relocated-to
row for the one above. This feature is required to ensure that all rows can be
relocated consecutively.

The arrows marked in orange depict the complete signal path for a relocated
CLB. The blue path denotes that the internal feedback is also completely
contained within the relocated-to CLB. It does not depend on the relocated-
from CLB in any way.

8.2 Transparent Logic Invasion 213

C
ro

ss
ba

r FLE
I

/
40

/
60

IBP_I

/
40

IBP_EN

/
40

IBP_O

O

/
20

/
20

/
20

OBP_O

OBP_I

/ 20

FBBP_O
FBBP_S
FBBP_N

/
20

/
20
/

20

OBP_EN

FBBP_S

FF_S

/ 20

FF_N

/ 20

FF_O

/ 20

FF_S FF_L

(a)

C
ro

ss
ba

r FLE
I /

40
/

40

/
60

IBP_I

/
40

IBP_EN

IBP_O

O

/
20

/
20

/
20

OBP_O

OBP_I

/ 20

FBBP_O
FBBP_S
FBBP_N

/
20

/
20
/

20

OBP_EN

FBBP_S

FF_S

/ 20

FF_N

/ 20

FF_O

/ 20

FF_S FF_L

(b)

Figure 8.6: Example showing how the modifications in figure 8.3 are used to relocate a
CLB. Used bypass connections are shown in orange. When the relocation
is complete, the relocated-to CLB uses internal feedback, shown in blue.
The original CLB is unused. (a) CLB in upper row, relocated from. (b) CLB
in lower row, relocated to.

214 Chapter 8 PVT- and Aging Compensation

8.3 Chip Performance Characterization

With the changes introduced in the previous chapter, it is possible to program
arbitrary bitstreams to invaded CLBs, without affecting the user application.
In this section, this feature will be used to continuously perform performance
characterizations of all CLBs on the FPGA.Here, the performance ismeasured
as the propagation delay 𝑡PD of the LEs in eachCLB. As explained in section 4.3
on page 117, information about the performance of each specific CLB, which
changes depending on location and time, will then be used to compensate
PVTA effects.

Overview The primary goal of the performance measurement system in the
PARFAIT FPGA is to achieve a fine-grain characterization of all CLBs with few
additional hardware resources. This requirement and the specific architec-
ture of FPGAs compared to ASICs makes some characterization approaches
introduced in section 3.4 on page 85 less viable: Critical path extraction and
replica are less useful in FPGA. First, replica paths require additional hard-
ware resources. In addition, critical paths in FPGAs are not known during
chip manufacturing. Only when the user application is considered as well, a
critical path can be determined as explained in section 8.1. A replica would
therefore have to be reconfigurable as well. Spending additional resources
for reconfigurable replica which are not used for application logic, however
seems wasteful.

The alternative approach, directly measuring performance of the individual
building blocks in a path, is more viable for FPGAs: Paths are made up of LEs,
which to a large part determine the delay of a path. In addition, the routing
delay caused by both parasitic effects and interconnect multiplexers can be
significant in FPGAs. As a first estimate, it will be assumed that performance
increase or decrease in routing multiplexers follows the relative changes in
speed of nearby logic elements. This work will therefore focus on the delay
of logic elements, determining the delay of individual LEs using ring oscilla-
tors and counters: A ring oscillator forms an inverting, back-coupled delay
path through certain LEs. As a result, when measuring a signal connecting
any two LEs in the path, an oscillating rectangle wave can be obtained. The
frequency of this rectangle wave is determined by the propagation delay, as
will be explained in detail soon. Determining the propagation delay there-
fore becomes a problem equivalent to determining the oscillation frequency.
As previously shown in state-of-the-art works, this can easily be achieved
when counting the number of oscillations in a certain, predetermined time
frame.

8.3 Chip Performance Characterization 215

Whereaspreviousworkshaveoftenused suchmeasurements in a coarse-grain
way and often measured temperature or voltage, this work will directly mea-
sure propagation delay. As all the PVTA effects affect this propagation delay,
isolating one effect requires compensation of the other effects, and can there-
fore be difficult. For the closed loop PVTA compensation system designed
here, this is not necessary: A change in propagation delay can be compen-
sated independently of the original cause of the change. This measurement
approach is therefore expected to yield better results thanwhenused to obtain
temperature or voltage measurements.

In order to achieve more fine-grain characterization than state-of-the-art
works, each single CLB will be characterized. To avoid heavy resource
overhead, configurable FPGA resources will be reused as much as possible
through the previously introduced invasion technique: Ring oscillators
and counters will be realized as soft logic using the BLEs of the FPGA
architecture. Apart from saving resources, this provides one other, major
benefit: Characterization is actually performed on those LEs, which also
implement the user application circuit. Compared to path replica, the
proposed approach therefore provides a better estimate of propagation delay
in LEs. The following paragraphs describe this characterization system in
more detail.

C
ro

ss
ba

r FLE
I /

40
/

40

/
60

IBP_I

/
40

IBP_EN

IBP_O

O

/
20

/
20

/
20

OBP_O

OBP_I

/ 20

FBBP_O
FBBP_S
FBBP_N

/
20

/
20
/

20

OBP_EN

FBBP_S

FF_S

/ 20

FF_N

/ 20

FF_O

/ 20

FF_S FF_LEXT_I LUT0_O CLK_S

Figure 8.7:Modifications for the CLB of figure 8.3 on page 208 to enablemeasurement
of propagation delay in the CLB. Newly added components and connec-
tions are marked in orange.

Architecture Changes Even though the measurement approach presented
here largely reuses existing hardware in soft logic, three further modifications

216 Chapter 8 PVT- and Aging Compensation

to the CLBs are required. Figure 8.7 shows the CLB for logic invasion from
figure 8.3 on page 208 with newly introduced signals marked in orange. The
EXT_I signal is an additional input provided to the crossbar. It can be passed
to any of the crossbar outputs, which in turn allows passing an external value
to any of the BLEs and LEs. Changes to the bitstream structure are not re-
quired: The crossbar’s 6 bit multiplexer select signals already allow selection
from 64 inputs, leaving 4 inputs unused. The FASM assembler for the archi-
tecture has been extended to support this external input option for each BLE,
generating the matching bitstream. VPR based logic synthesis does not use
this input and therefore does not have to be changed. All soft-logic bitstreams
for characterization will be manually designed in FASM instead of Verilog for
full control of placement and routing. Supporting this signal in the assembler
is therefore sufficient.

The second change is the introduction of the 1 bit LUT0_O signal. It passes
the output of LE 0 in BLE 0 to the ProgController, which orchestrates the
performance characterization. Such a single output allows for transmission
of arbitrary data when using a serial protocol. It is deliberately connected to
the LE output directly instead of the BLE output: As shown in figure 4.3b on
page 112, this essentially means the signal always carries the LE output signal,
regardless of how the output multiplexer is configured. This primarily allows
configuration of this multiplexer to forward the FF state of the respective BLE,
while still making the LE output accessible externally. As will be explained
later, this is not strictly required, but it simplifies reading of register values
via this output.

The last change is the introduction of a clock switch signal, CLK_S. Counting
the ring oscillator pulses will be realized using a synchronous counter: The
pulse signal to be counted will be provided as clock signal to all counter FFs
synchronously. Compared to asynchronous counters, this requires only a
small change in the clockingnetwork: Insteadof using an external clock signal,
all FFs will be configured to switch to an internally provided clock signal. In
the implementation, a single clock multiplexer in the CLB allows selection
of the LUT_0 signal as clock for all FFs. As this connection provides access to
the signal output of LE 0, it can be used as a tap into the ring oscillator. In
commercial FPGA architectures, clock switching architectures are commonly
used to provide CLB with different clocks. The introduction of another clock
switch is therefore not an intrusive change.

Measurement Steps Based on the discussed architecture changes, measure-
ments can be implemented in soft logic. Like invasion, the measurement
process is implemented in ProgController. An overview of all states for

8.3 Chip Performance Characterization 217

measurement is given in figure 8.8. As an additional change, a new MEA-
SURE state is inserted in figure 8.5 between the DOUT BP and NEXT states. In
this state, the relocation of a row has just been finished and CLBs in the
relocated-from row are ready to be configured with arbitrary bitstreams. The
measurement states introduced here are sub-states of the MEASURE state in
the invasion FSM. In the following, a quick overview of the measurement FSM
states will be given, before the most important aspects will be discussed in
detail.

i == 9

i < 9

INIT

PROG
INIT

PROG
COUNT

START

COUNT

PROG
READ

READ

OUT

Figure 8.8: FSM realizing the measurement of propagation delay in the invaded CLBs.

1. The INIT state selects the relocated-from row for invasion and measure-
ment.

2. PROG INIT programs the invaded row with a bitstream that initializes
all FFs which are used in the counter. It also disables the external clock
input for the row and the configuration reset in the row programmer:
Usually, the row programmer resets FF contents before programming,
to guarantee a defined reset state. The measurement process however
requires that FF values are kept between reconfigurations, so the pro-
grammer is configured not to issue such reset requests.

3. The PROG COUNT state programs the bitstream that realizes the ring
oscillator and the counter in the CLBs.

4. The START state starts the measurement. For this, it initializes the Prog-
Controller time counter to 0 and sets the EXT_I signal to 1, enabling
the ring oscillator. It also asserts the CLK_S signal to ensure that the FFs
in the CLBs are clocked from the LE 0 output, i.e. the ring oscillator.

218 Chapter 8 PVT- and Aging Compensation

5. The COUNT state counts up the reference counter using the ProgCon-
troller reference clock. When the count reaches a predefined value,
it deasserts the CLK_S signal to stop clocking of the CLB FFs. This es-
sentially switches back to the external clock, which is still disabled for
the row. It ensures the FFs keep their values, which represent the final
counter state. The EXT_I signal is furthermore set to 0 to disable the
soft-logic oscillator, saving energy.

6. PROG READ programs the bitstream that outputs the registers using the
LUT0_O signal.

7. In the READ state, the ProgController reads the values from all CLBs’
LUT0_O outputs in the measured row. This essentially reads one register,
i.e. one bit of the counter state, for each CLB. The process needs to be
repeated for all 9 registers with a slightly modified bitstream, to select
the registers properly. ProgController uses an internal counter for
this and returns to the PROG READ state until all FFs have been read out.
After reading the last FF, the FSM proceeds to the OUT state.

8. In OUT, the ProgController simply provides the measurement values
of all CLBs in the row to an external controller. It uses a simple bus
consisting of VALID, CLB_X, CLB_Y and VALUE signals. VALID is asserted
for one cycle for each CLB. If it is asserted, CLB_X and CLB_Y provide
the position of the CLB. VALUE provides the counter value describing
the propagation delay.

Invasion Bitstreams Some measurement steps mentioned require program-
ming of the measured CLBs with special bitstreams. In the following, these
special bitstreams will be demonstrated for a single CLB. All CLBs in an in-
vaded row are configured with the same bitstream and perform the same
operation. Therefore, the bitstream for only a single CLB is stored in mem-
ory, and the ProgController duplicates this bitstream for all CLBs in the
row.

The first special bitstream initializes the counter registers in the PROG INIT
state. Although register initialization could be handled using explicit archi-
tecture modifications, this is not necessary. The required functionality can be
realized without any additional logic using the existing CLB structure. Fig-
ure 8.9 shows the CLB configuration used. All BLEs are configured in split
mode, providing two LEs and FFs. The multiplexers selecting between FF or
LE output are not shown in the figure. Similarly, unused FFs are not shown
and connections between FFs and LEs which pass through the crossbar, are
shown as direct connections. Elements which had to be added to the CLB

8.3 Chip Performance Characterization 219

only for measurement and which are used in this configuration are shown in
orange. The blue box shows one example of how the depicted LEs and FFs
map to the BLEs: The upper row shows the LE 0 elements of the CLB and no
FFs, as the FF 0 elements are not used. The second row shows the LE 1 and FF
1 elements. One LE in the top row and the LE and register below therefore
belong to one BLE.

BUF - - - - - - - - -

1 0 0 0 0 0 0 0 0 -

EXT_I

CLK_S

Figure 8.9: Initialization of registers used to realize the counter in a CLB. Required
newly added components and connections aremarked in orange. Theblue
box shows which LEs and FFs are contained in a single BLE (figure 4.3b).

Initializing the registers consists of setting the first register to logic value 1, all
others to 0. This is required due to a peculiarity of the chosen counter: The
Linear Feedback Shift Register (LFSR) connects feedback of registers through
an XOR operation to the first shift register input. However, if the initial state
is all 0, the shift register is stuck in this state. To initialize the LFSR, the LEs
connected to the registers are configured to output a constant value, 0 or 1.
All FFs then need to be clocked once, to ensure that the input is stored in the
FF. As the measurement logic has no control of the user-provided application
clock (it might be unpredictably slow or gated off), the CLB is configured to
use the LE 0 output as a clock. This LE 0 is configured to pass through its only
input, acting as a transparent buffer. The crossbar then connects this input to
the newly added EXT_I input, which is driven by the ProgController. It can
therefore directly drive the clocks and issue a clock edge as needed by driving
this input pin. An excerpt of the FASM used to realize this configuration is
shown in listing 8.2, the full FASM is available in the appendix, see listing E.1
on page 359.

1 # Pass through FLE0 LUT0 input 0 from external input
2 FLE[0]
3 .CB.I[0]="ext[0].I"
4 .5BLE[0].FF.ENABLE
5 .5BLE[0].LUT5.INIT[31:0]=32'b10101010101010101010101010101010
6
7 # Configure BLE0 LUT 1 as constant 1
8 .5BLE[1].FF.ENABLE
9 .5BLE[1].LUT5.INIT[31:0]=32'b11111111111111111111111111111111

220 Chapter 8 PVT- and Aging Compensation

10
11 # All other LUTs as constant 0
12 FLE[1]
13 .5BLE[0].FF.ENABLE
14 .5BLE[0].LUT5.INIT[31:0]=32'b00000000000000000000000000000000
15 .5BLE[1].FF.ENABLE
16 .5BLE[1].LUT5.INIT[31:0]=32'b00000000000000000000000000000000

Listing 8.2: FASM excerpt representing the register initialization for measurement. A
full version can be found in listing E.1 on page 359.

The configuration for the second bitstream, used during measurement, is
shown in figure 8.10, with the same conventions as in the previous figure.
This bitstream realizes a ring oscillator using 11 LEs, 10 in the top row and the
rightmost one in the bottom row. It also realizes a LFSR based counter using
the first 9 FFs in the second row. The measurement system uses the newly
added CLK_S signal to drive the FFs clocks using the LE 0 output. Placing the
logic appropriately therefore enables the oscillation signal to be used as a
clock for the counter. This setup ensures that the path used for propagation
delay measurement passes through all 10 BLE elements and the additional
eleventh LE is used to further reduce the oscillation frequency. When using a
classical oscillator consisting of only inverters, the frequency directly repre-
sents the propagation delay of one gate. This is however not practical here, as
the oscillation frequency is too high to clock the FFs in the counter: As the
feedback is also realized using one LE, it will have a propagation delay of half
the clock period in this case. To obtain higher margins for timing closure and
to reduce the total number of clock periods counted, this setup instead uses
a single inverter paired with 10 buffers. The frequency can then be obtained
as in the following equation:

𝑡PD,OSC = 11∗ 𝑡PD,LE (8.5)
𝑇OSC = 2∗ 𝑡PD,OSC (8.6)

𝑓OSC =
1

𝑇OSC
(8.7)

Instead of using a simple inverter in the first gate, it is replaced by aNAND
gate combining the feedback path and the EXT_IN input. This input can then
be driven low to stop oscillation, or high to enable the oscillator. Driving the
output low for some time also ensures a defined state after programming:
As the initial LE output values are unknown after programming, it is not
guaranteed that all outputs initially have the same value. The measured
oscillation signal could therefore be unpredictable. When driving EXT_IN low

8.3 Chip Performance Characterization 221

until the LE outputs have propagated through the whole chain, all outputs
will be predictably 0.

The LFSR used has the characteristic polynomial 𝑥9+𝑥5+1. This LFSR is of
maximum length, with a period of 2𝑛−1 [252]. It therefore counts 𝐶max = 511
distinct values, before it starts repeating values. The main benefit of this
counter is, that it requires little logic, only a single XOR gate. The drawback
of LFSR counters is, that decoding the LFSR state into the count number is
non-trivial. As the amount of distinct states is small in this specific counter, de-
coding can however be efficiently implemented using a precomputed lookup
table.

& BUF BUF BUF BUF BUF BUF BUF BUF BUF

⊕ BUF BUF BUF BUF BUF BUF BUF BUF BUF

EXT_I

CLK_S

Figure 8.10: Ring oscillator and counter realized in a single CLB for propagation delay
characterization. Required newly added components and connections
are marked in orange.

Considering that the LE delay of the VPR reference architecture is 235 ps, 11
LEs cause an oscillation period of 𝑇OSC = 5.17ns. When using a 100MHz
reference clock in the ProgController and counting for 100 cycles, the mea-
sure time 𝑇meas is 1000 ns, resulting in a count value of 194 for the nominal
frequency. It is also possible to calculate the minimum and maximum LE
delay before the counter will overflow or underflow:

𝑇OSC,min =
𝑇meas
𝐶max

(8.8)

𝑇OSC,max =
𝑇meas
1 (8.9)

𝑡PD,LE,min =
𝑇OSC,min

2∗11 (8.10)

𝑡PD,LE,max =
𝑇OSC,max

2∗11 (8.11)

For the values chosen here, this leads to a minimum measurable LE propaga-
tion delay of 89 ps. The circuit can therefore be up to 2.6 times faster than the
nominal case, before the measurement circuit counter rolls over. Similarly,
the calculated maximum propagation delay of 45 ns means the circuit can

222 Chapter 8 PVT- and Aging Compensation

slow down by factor 190. It should be noted, that the relative resolution of
values becomes lower for lower count values:

𝑡PD,LE,1

𝑡PD,LE,2
=
𝑇OSC,1

𝑇OSC,2
(8.12)

= 𝐶2
𝐶1

(8.13)

= 𝐶1+1
𝐶1

(8.14)

For smaller counts, the factor is up to 100%, whereas for counts close to
the maximum, the factor is 0.2%. At the nominal count of 194, the factor is
0.5%, showing the minimal change relative to the nominal propagation delay
that can be measured. Further optimization of these limits can be achieved
through variation of themeasure time: A longermeasure timewill yield higher
counts and resolution, whereas a shorter measure time enables measuring
faster signals without overflow. In addition, when the signal is known to be in
a certain range, roll-over events of the counter can be taken into account to
enable even longer measure times. Knowing the typical propagation delay
of the LE, a relative increase 𝑘clb in the delay can be calculated from the
count value. This relative increase can then directly be compared to the slack
factor 𝑘slack determined in equation (8.4). As long as the measured increase
factor is less than 𝑘slack, user application paths are guaranteed to meet timing
closure.

Listing 8.3 shows an excerpt of the FASM used to implement the counter
and oscillator. The full FASM is available in the appendix, see listing E.2 on
page 361.

1 # Invert fle[9].O[1] if ext[0].I is 1
2 FLE[0]
3 .CB.I[0]="fle[9].O[1]"
4 .CB.I[3]="ext[0].I"
5 .5BLE[0].FF.BYPASS
6 .5BLE[0].LUT5.INIT[31:0]=32'b01010101000000000101010100000000
7 # x9 + x5 + 1. Use I1 and I2 for an XOR
8 .CB.I[1]="fle[8].O[1]"
9 .CB.I[2]="fle[4].O[1]"

10 .5BLE[1].FF.ENABLE
11 .5BLE[1].LUT5.INIT[31:0]=32'b00111100001111000011110000111100
12
13 # LUTs as pass−through, oscillator ones without registers
14 FLE[1]
15 .CB.I[0]="fle[0].O[0]"

8.3 Chip Performance Characterization 223

16 .CB.I[1]="fle[0].O[1]"
17 .5BLE[0].FF.BYPASS
18 .5BLE[0].LUT5.INIT[31:0]=32'b10101010101010101010101010101010
19 .5BLE[1].FF.ENABLE
20 .5BLE[1].LUT5.INIT[31:0]=32'b11001100110011001100110011001100

Listing 8.3: FASM excerpt representing the counter and oscillator for measurement.
A full version can be found in listing E.2 on page 361.

The third special bitstream is used in the PROG READ state to receive the count
value stored in the CLB registers. For this, all clocks applied to the registers are
stopped after counting, so the values are stable. The readout then utilizes only
the existing interconnect and the single, newly added LUT0_O output to read
all 9 bit. Figure 8.11 shows the general idea for this: LE 0 is programmed in
buffer mode, simply passing its input to its output. This output is connected
to LUT0_O and can be read externally. The ProgControllernowmodifies this
original bitstream to obtain nine slightly different versions: The crossbar con-
figuration is modified to pass other signals to the LE 0 input. This way, there is
onemodifiedbitstream for eachof thenineFFs, routing its value to this LE and
ultimately to the output. Programming all nine modified bitstreams one after
the other, the ProgController can read all bits.

BUF - - - - - - - - -

- - - - - - - - - -

LUT0_O

Figure 8.11:Configuration of the CLB used to output counter register 0 to the Prog-
Controller. Required newly added components and connections are
marked in orange. To read other registers, the CLB crossbar is repro-
grammed to connect these registers’ outputs to the LUT 0 input.

Listing 8.4 shows an excerpt of the FASM used to implement the read-
out logic. The full FASM is available in the appendix, see listing E.3 on
page 363.

1 FLE[0]
2 # This selects the register routed to the first LUT
3 .CB.I[0]="fle[0].O[0]"
4
5 # LUT0 just forwards its input 0

224 Chapter 8 PVT- and Aging Compensation

6 .5BLE[0].LUT5.INIT[31:0]=32'b10101010101010101010101010101010
7 .5BLE[0].FF.ENABLE
8 .5BLE[1].FF.ENABLE
9

10 # Enable all FFs
11 FLE[1]
12 .5BLE[0].FF.ENABLE
13 .5BLE[1].FF.ENABLE

Listing 8.4: FASMexcerpt representing the FF readout configuration formeasurement.
A full version can be found in listing E.3 on page 363.

8.4 Power Management Controller

With the performance requirement 𝑘slack for a region, and the current
measured performance 𝑘clb of each CLB, the power management con-
troller can now be derived in this chapter. Referring back to the concept
in figure 4.6 on page 118, the region controller is reprinted here in fig-
ure 8.12.

Measure

Target
MICROCHIP V

(a)

Measure

Target
MICROCHIP V

(b)

Measure

Target
MICROCHIP V

(c)

Figure 8.12: Region detail and region controller concept. The figures show a zoomed
in detail of the central region in figure 4.4. (a) Region controller in idle
mode. (b)Rowwas reconfigured dynamically withmeasurement circuits.
(c)Delay characterization is active.

The 𝑘clb factor is measured for each CLB, but the 𝑘slack factor is only deter-
mined once for a whole power region. This factor could easily be calculated
for each CLB, but the performance and voltage adjustment techniques used
operate on whole regions. In addition, as the 𝑘slack values need to be stored
as part of the bitstream, a single factor per region reduces the configuration

8.4 Power Management Controller 225

storage requirements. The configuration for the 𝑘slack factors themselves is
inserted in the interconnect configuration chain. As these factors are constant
and do not need to change during logic invasion, they can be stored as part
of the static configuration.

Unlike shown in the simplified concept in figure 8.12, the 𝑘clb measurement is
notperformed locally by the region controller. It is rather orchestrated globally
for the whole FPGA in the ProgController's logic invasion of section 8.2.
The measured values therefore have to be passed from this central controller
to the individual regions’ controllers. Figure 8.13 shows this final FPGA power
compensation scheme, with the global and the per-region controllers added,
including control connections.

MICROCHIP MICROCHIP MICROCHIP

MICROCHIP MICROCHIP MICROCHIP

MICROCHIP MICROCHIP MICROCHIP

MICROCHIP

Figure 8.13:The PARFAIT FPGA architecture with the shade of red in each region
representing locally adjusted performance using PVTA compensation.
Also shown is how region controllers connect to the ProgController
which orchestrates logic invasion and measurement.

All region controllers connect to the same measurement output port of the
central controller. They then assess the X and Y signals of that port to deter-

226 Chapter 8 PVT- and Aging Compensation

minewhether ameasured value belongs to the current region. The controllers
detect when the factor for the last CLB in the region’s last row has been re-
ceived and then perform one update cycle. As controllers only consider the
slowest CLB, they only keep the largest 𝑘clb factor for the region. It then cal-
culates a single new control value using a control algorithm and adjusts the
voltage in the region. The next adjustment will then be performed when a
new measurement is available.

Because of the slow invasion process, the controller operates in closed-loop
configuration with a slow update rate. As the PVTA changes observed are
generally slow effects, this is not an issue. For the initial characterization,
which compensates primarily the process variation, this might seem counter-
intuitive: However, during the EDA flow, the application timing analysis
was performed for nominal delay. Therefore, there shouldn’t be any timing
violations, as long as the CLBs do not have higher delays than the nominal
values. Voltage changes in this initial case will in turn only reduce the voltage
and performance, reducing energy consumption in the device. Adjustments
to actually increase performance are only required once aging slows down
the circuit further.

Listing 8.5 shows the VHDL code used to implement the control algorithm
within the region controller. For the evaluations in this thesis, a basic pro-
portional controller is used and investigation of more elaborate control al-
gorithms is left for future work. In addition, the current implementation is
only meant to be used during simulation and therefore was not designed to
be synthesizable.

1 architecture sim of RegionPCTRL is
2 signal bg_voltage_buf: real := 1.0;
3 constant MAX_DELTA: real := 0.001;
4 begin
5 bg_voltage <= bg_voltage_buf;
6 impl: process(clk)
7 variable bg_new: real;
8 begin
9 if rising_edge(clk) then

10 if target_delay_factor > 10.0 then
11 bg_voltage_buf <= VAL_MIN;
12 else
13 bg_new := bg_voltage_buf - VAL_P * (

↪ target_delay_factor - current_delay_factor);
14 if bg_new < VAL_MIN then
15 bg_new := VAL_MIN;
16 elsif bg_new > VAL_MAX then

8.5 Power-Aware FPGA Architecture 227

17 bg_new := VAL_MAX;
18 end if;
19 bg_voltage_buf <= bg_new;
20 end if;
21 end if;
22 end process;
23 end;

Listing 8.5: VHDL excerpt showing a simple proportional controller used to calculate
the control voltage from 𝑘slack and 𝑘clb in each region. MAX_DELTA,
VAL_MIN and P are generic parameters.

8.5 Power-Aware FPGA Architecture

This section will quickly summarize how the previously discussed, individ-
ual aspects are combined in the PARFAIT FPGA. An overview of the final
architecture has been shown in figure 8.13 on page 225. Implementation of
non-reconfigurable logic uses the ambipolar standard cells introduced in
chapter 5. Apart from implementing standard logic, this provides an addi-
tional BG allowing for 𝑉th voltage scaling.

For the LE in the PARFAIT FPGA, reconfigurable ambipolar cells as introduced
in chapter 6 are used. However, for the final evaluation, the RFET technology
characterized in [42] was used. This technology was developed by PARFAIT
project partner NaMLab and was characterized in the ways necessary for the
PARFAIT FPGA. The original characterization in [42] and the temperature
characterization in [2] enabled the derivation of the RFET delay model in
section 4.6 on page 144. During writing of this thesis, a novel LE based on this
technology has been published in [246] as an early access publication. This al-
lows the PARFAIT FPGA to actually make use of an ULM realized in exactly the
technology used for the delay model characterization. For more consistent re-
sults, the final PARFAIT FPGA therefore uses this cell instead of the CNT-DR8F
cell introduced in section 6.1 on page 177. As the set of supported functions
is mostly overlapping for both cells, the approach presented in section 6.1
does not change. Figure 8.14 shows the LE based on the RGATE. Unlike the
CNT-DR8F based LE in chapter 6, this cell has not yet been optimized to
match the LUT expressiveness, as will be explained in the results chapter. For
synthesis, the PARFAIT architecture only uses the combined genlib synthesis
approach introduced in section 6.2.

228 Chapter 8 PVT- and Aging Compensation

Power management regions are used in the PARFAIT FPGA as introduced
in chapter 7. The PARFAIT architecture exclusively uses dynamic power re-
gion assignment: As all regions are characterized repeatedly using the in-
vasion scheme, all regions also enable threshold voltage adjustment. The
benefits of higher power reduction in dynamic assignment are therefore
achievable with little resource overhead, which makes it the preferred so-
lution.

RGATE RGATE RGATE

RGATE

RGATE

FF

Figure 8.14: Final FLE used for the PARFAIT FPGA, using the RGATE as published in
[246] based on the technology of [2].

For logic invasion itself, the scheme introduced in section 8.2works identically
for ambipolar cells as well as for LUTs. For measurement in section 8.3, some
slight adjustments are necessary: Whereas the approach works just as before,
the LUT values in the bitstream have to be replaced with configuration for the
newLEs. Theusedmeasurementbitstreamsdemandsome requirements from
the LE feature set: For register initialization, the LEs must be able to output
constant 0 or 1 values on both outputs. This can be achieved by routing some
constant values to LE inputs in the crossbar and passing through or inverting
in the LE. In addition, output 0must be able to pass through an input to enable
clocking of the registers, which is supported as well.

8.5 Power-Aware FPGA Architecture 229

For the measurement bitstream, output 0 of a BLE must be able to realize
a NAND function. The minimal LE based on RGATEs from [246] does not
support this directly: Although the first RGATE supports theNAND, the sec-
ond stage can not be configured in pass-through mode and will always invert.
As a solution, output 0 of the second BLE in the oscillator chain can be con-
figured as an inverter instead of a buffer. This is possible, as the first stage
RGATE does support pass-through mode. The counter only requires pass
through mode on the BLE 1 output, which is also supported. For FF readout,
again only a pass-through for output 0 of LE 0 is needed. Therefore, both
the CNT-DR8F ULM and the RGATE based ULM support all measurement
operations.

This page intentionally left blank

Chapter 9

System Simulation and Evaluation
Methodology

Previous chapters have introduced the PVTA compensation system, the PAR-
FAIT architecture and the delay models. This chapter will describe how those
parts are combined for the final evaluation. Two approaches will be covered:
First, a hardware evaluation based on the VFPGA system will be described.
This approach can only be used for prototyping of the digital aspects, so PVTA
changes can not be assessed with such a system. For faster validation, a func-
tional simulation of the PARFAIT system is introduced. To evaluate PVTA as-
pects, this simulationwill be coupledwith the technologymodels (section 4.6)
and the scenario models (section 4.7). The introduced co-simulation system
will also integrate VPR to enable power analysis.

9.1 Virtual FPGA Evaluation

Evaluation of custom FPGA architectures on commercial FPGAs can be
achieved using VFPGAs: VFPGAs are a small layer on-top of commercial
FPGAs implementing custom FPGAs. The PARFAIT implementation pre-
sented in chapter 4 on page 107 can essentially be used as a VFPGA.When
mapping to commercial FPGAs, there is however one issue: FPGAs need
to ensure uniform delays for all their logic blocks. This then enables VPR
architectures to describe the propagation delay characteristics for basic
blocks, and to calculate the final delays. Such uniform delays can however
not be guaranteed when mapping an FPGA to another FPGA. Fine-grain
timing constraints can ensure that a guaranteed maximum delay is never
exceeded, but this is not very practical: Ideally the whole FPGA should
operate at themaximumpossible performance, not at a user derived arbitrary
frequency.

232 Chapter 9 System Simulation and EvaluationMethodology

To solve this issue, manual placement was investigated in [Pfa21] and [Pfa22].
The primary idea here is that the custom FPGA architecture is uniform, as is
the commercial FPGA it is mapped to. Using scripts, it is therefore possible
to manually fix the placement, instead of leaving placement up to vendor
tools. A detailed evaluation of this approach can be found in the original
publication, but the following paragraphs will quickly reprint and summarize
these publications.

VFPGA Architecture

Figure 9.1 shows the VFPGA architecture and the arrangement into the com-
mon types (1-9) of tiles. In its simplest configuration, the VFPGA consists of
9 different tile types, which are distinguished by orientation and contained
elements. A single tile can contain all elements (like type 2 and 4), all but the
IOB (type 9, i.e. the central tiles), PSM and IOB (type 1, 5, 6, 8), CLB, PSM
and two IOBs (type 3), or only the PSM (type 1). Even for tiles which have
the same types of elements, their differences in orientation — and therefore
layout — will require them to be placed differently.

(a) (b)

Figure 9.1: VFPGAarchitecture details. (a)TileDistribution and top-level architecture.
(b) CBR and CBW implementation and connection to routing channels.

The Configuration Units (CUs) are not shown in figure 9.1a, as it is an
implementation detail of the VFPGA. They store and provide the con-
figuration for the CLB, PSM and IOB in their respective tile and enable

9.1 Virtual FPGA Evaluation 233

dynamic reconfiguration of the VFPGA. In the used VFPGA implementa-
tion, the CU is implemented essentially as a shift register with parallel
output. It will have to be mapped to the host FPGA in addition to the other
components.

Figure 9.1a also shows the wires corresponding to relevant delays for the final
VPR architecture model: Apart from intra-block delays such as delays within
the CLB, these consist of nets in the global routing channels. Figure 9.1b
shows how the CLB in a tile connects to the global routing channels. Con-
nection points are realized using Read Connection Boxes (CBRs) and Write
Connection Boxes (CBWs). Those consist of multiplexers, which either con-
nect multiple wires to one CLB input, or the CLB output to one of the channel
wires.

To realize this connection, the CBW consists of one multiplexer for each
wire in the channel. The multiplexer either forwards the signal of the chan-
nel wire or writes the CLB output to this wire. Structurally, these multi-
plexers will be mapped to host FPGA LUTs. Therefore, on the host FPGA,
a VFPGA wire from PSM to PSM will actually consist of at least two host
wire segments and the LUT. Similar effects are also caused by IOB connec-
tions.

Another peculiarity of the original VFPGA implementation concerns the im-
plementation of its bidirectional wiring: Logically, the VFPGA architecture
uses bidirectional wiring, but the implementation on the host FPGA can only
make use of unidirectional wiring. Figure 9.1b shows how the CBR and CBW
connect to different host wires, leading in different directions. In order to
drive a logical VFPGA wire in both directions, the PSMs will loop back the
right-to-left signal in left-to-right direction. Due to that, in the final PARFAIT
architecture, only unidirectional wiring is used.

All these effects cause two implications for this work: First, when constrain-
ing the design, the VFPGA wire can not be constrained as one unit. In-
stead, all wire segments on the host FPGA have to be constrained individ-
ually. Furthermore, when modelling the VFPGA architecture in VPR, the
delay for the complete net is needed. For this reason, the data extraction
script extracts the individual segments. But for architecture modeling and
for assessment of placement results in this publication, these have to be
summed.

234 Chapter 9 System Simulation and EvaluationMethodology

Uniformity Metrics

Uniformity is a measurement of local delay variation across the VFPGA struc-
ture. Placing every tile in the same way, the VFPGA is a uniform structure,
which in theory could be placed uniformly on the host FPGA. As explained
previously, not all tiles have exactly the same internal structure and non-
uniformity of the host FPGA architecture will further degrade the uniformity.
To address this, the introduced definition of uniformity divides the VFPGA
into𝑁𝐶 sets, where each set represents one column 𝐶. Nets are grouped into
classes, so that similar nets in different tiles are within a single class. The
following classes have been introduced:

1. PSM Left: Horizonal nets, starting at PSM left output multiplexers and
ending at PSM right input multiplexers.

2. PSM Right: Horizontal nets, starting at PSM right output multiplexers
and ending at PSM left input multiplexers.

3. PSM Top: Vertical nets, starting at PSM top output multiplexers and
ending at PSM bottom input multiplexers.

4. PSM Bottom: Vertical nets, starting at PSM left output multiplexers
and ending at PSM right input multiplexers.

5. PSM Internal: Internal nets within the PSM, realizing theWilton switch
pattern.

6. CLB Input: Nets starting at the output of the CBR and ending at the
input of the LUT.

7. CLB Output: Nets starting at the LUT output and ending at the input
of the CBW.

The definition of uniformity then essentially measures differences between
rows within a set. This definition is then formalized in the following equa-
tions:

𝜇𝑐,𝑛 =
1
𝑁𝑅

𝑁𝑅

∑
𝑟=1

𝑡𝑐,𝑟,𝑛 (9.1)

𝜎2𝑐,𝑛 =
1
𝑁𝑅

𝑁𝑅

∑
𝑟=1

(𝑡𝑐,𝑟,𝑛−𝜇𝑐,𝑛)
2 (9.2)

𝜎 = 1
𝑁𝐶𝑁𝑁

𝑁𝐶

∑
𝑐=1

𝑁𝑁

∑
𝑛=1

√𝜎2𝑐,𝑛 (9.3)

9.1 Virtual FPGA Evaluation 235

𝑐𝑣 =
1

𝑁𝐶𝑁𝑁

𝑁𝐶

∑
𝑐=1

𝑁𝑁

∑
𝑛=1

√𝜎2𝑐,𝑛
𝜇𝑐,𝑛

(9.4)

Here, 𝑡𝑐,𝑟,𝑛 is the delay of a net in class 𝑛, column 𝑐 and row 𝑟. Equation (9.1)
provides the arithmeticmean𝜇𝑐,𝑛 of the delays, calculated over the𝑁𝑅 VFPGA
rows. 𝜎2𝑐,𝑛 then calculates the variance for a net class in a certain column over
the rows. This is further used in 𝜎 to calculate the arithmetic mean of the
standard deviations of all net classes in all columns. 𝑐𝑣 provides the arith-
metic mean over the coefficient of variation of all net classes in all columns.
Whereas the standard deviation is an absolute value and therefore depends
on the mean of the delays, the coefficient of variation provides a relative
measurement. As the delays in the host FPGA are largely discrete (e.g. fixed
delays in LUTs), it is expected that relative delays can not be reduced further
at some point. Because of this, 𝜎 is used to guide the design of the placement
strategies and for evaluation of practically achievable uniformity. 𝑐𝑣 is used to
judge the quality of results for VFPGA: As a smaller delay 𝜏 allows to put more
logic elements in a path at the same frequency for VFPGA applications, a con-
stant standard deviation leads to reduced certainty of the number of VFPGA
logic elements in the path. A constant relative value 𝑐𝑣 signifies unchanged
conditions for the VFPGA application synthesis.

Building Blocks

After a VFPGA design has been synthesized, the custom placement strategies
are applied. The strategies will be described in detail in the next section, but
all of them are based on the following constraints:

Timing Constraints As Vivado analyzes every possible path in the design, it
will also consider configurations of PSM multiplexers that can create combi-
national loops. It is therefore not easily possible to constrain the timing of
the design by simple definition of the final clock period, as Vivado will break
the loops at arbitrary points. This generates long paths through different
numbers of CLBs and PSMs, making it further impossible to constrain a path
just between two specific PSMs. To solve this problem, these paths are broken
manually.

Two variants of constraints are used: In the variant with fine-grain constraints,
all individual atomic nets have their delay constrained using the set_max_de-
lay timing exception, ensuring that the design still meets timing constraints
and forcing the timing driven optimization to operate. These constraints

236 Chapter 9 System Simulation and EvaluationMethodology

will lead to path segmentation, which is the desired outcome. In addition, it
will add false path constraints on the original long paths automatically. Path
segmentation can affect logic placement and timing results, so special care
needs to be taken when examining the Vivado timing reports. Because of
this, custom scripts are used to evaluate the delays of relevant nets. As was
shown in [Pfa22], these fine-grain constraints are necessary to force Vivado
to optimize the routing for the manually placed design. The drawback of
this approach is limited scalability, as large designs which introduce many of
these constraints cause excessive memory usage and runtime in the Vivado
toolflow. Due to this, placement strategies without the fine-grain constraints
were evaluated as well.

Placement Constraints Placement constraints are used to perform floor-
planning through definition of pin placement and absolute, or relative, place-
ment of cells. It guides and controls where the place-and-route tools may put
FPGA design elements. Vivado supports various placement constraints, rang-
ing from just constraining a group of logic in a certain area to exact placement
of single cells to a certain logic element. The following placement constraints
were used in this work:

1. LUTNM and HLUTNM: Used to place two combinational functions
into the same LUT.

2. PROHIBIT:When the only requirement is to avoid placing any logic at
a specific site, this is achieved using this constraint.

3. LOC and BEL: To place a logical element in a specific location, the
place_cell command is used. This command translates into LOC and
BEL constraints, where LOC links the element from the netlist to a slice
and BEL places it to a specific LUT or flip-flop within the slice.

4. PBlock: A PBlock is a collection of cells in one or more rectangular
regions that specify the device resources contained by the block. It is
more restrictive than no placement constraints, but less constraining
than LOC and BEL.

Placement Strategies

The following paragraphs introduce the manual placement strategies in de-
tail. The uniformity metric was used to guide development of the strategies.
Critical path delay and LUT overhead will not be evaluated here, but were
assessed in [Pfa22].

9.1 Virtual FPGA Evaluation 237

Figure 9.2: VFPGA placed using standard Vivado placement. Host-FPGA CLBs be-
longing to same VFPGA tile are shown in the same color. As can be seen,
some tiles are compact, whereas some are scattered across wider area. It
can also be seen that Vivado packs tightly and does not keep empty sites
to preserve overall structure.

StandardVivadoPlacement Figure 9.2 showsplacement result of the default
Vivado strategy (Vivado Synthesis Defaults, Vivado Implementation Defaults,
Vivado 2019.1.1). The figure illustrates the arguments given previously in
the motivation of this work: Automated placement does not make explicit
use of the structural regularity of the VFPGA, which results in tiles being
implemented in slightly different ways. Some are more distributed, others
more localized, leading to varying net delays and reducing uniformity of the
VFPGA architecture. This effect is evenmore apparent in larger designs, where
placement algorithms have to deal with an overall larger amount of nets and
cells.

Basic PBlock Strategy In the basic PBlock strategy, each tile is contained in
a single Partition Block (PBlock): After a block with suitable size is created in
quadratic or rectangular form, the add_cells_to_pblock TCL command is
used to add all cells of a tile to the block. When the tile size has been deter-
mined, the host FPGA location and target area are fixed. Finally, all VFPGA
cells are fixed to the PBlocks belonging to their tile using the PBlock con-
straints, completing the basic PBlock placement.

Nested PBlock Strategy In addition to the PBlocks used in the first strategy,
this strategy introduces up to two additional PBlocks within each tile. Logic

238 Chapter 9 System Simulation and EvaluationMethodology

belonging to the VFPGA CLBs and IOBs is mapped to these nested PBlocks
accordingly: When defining the PBlocks, all assigned logic cells are forced into
the blocks, but this does not prevent placing any additional unassigned cells
into them. Based on this idea, two more variants are introduced in addition
to the rectangular vs. quadratic layout distinction: In the partially nested
strategy, the outer PBlock is used for the tile and nested blocks are used for
IOB and CLB, but the PSM is only constrained by the outer PBlock. This gives
Vivado the freedom to place the PSM in the remaining outer PBlock area, or
place part of it inside the nested PBlocks. In the fully nested strategy, Vivado
is forced to not place any PSM logic in the nested PBlocks, prohibiting usage
of remaining logic cells in them. Figure 9.3 demonstrates the concept for a
5x5 CLB VFPGA.

Figure 9.3: 5x5 CLB VFPGA floorplan with nested PBlocks. The nested CLB PBlock
is divided into two pieces to ensure the minimum possible area is used.
The top right corner tile has an extra nested PBlock for its second IOB unit.
No internal PBlock was used at all in the bottom left corner tile, as it only
contains a PSM.

The placement script is extended with the following steps to create the nested
PBlocks:

1. The internal PBlocks can consist of multiple rectangles. The CLB PBlock
is placed in the bottom left corner with height at most equal to the
height of the tile minus one. This guarantees some freedom to IOB
PBlock and to ensures distribution of the PSM unit over the tile PBlock.

2. The IOB PBlock is placed within the tile PBlock. The side is determined
according to the tile type.

Fine-Grain Manual Placement Strategy This strategy further constrains
logic, directly mapping the relevant LUTs and flip-flops to specific LUTs or

9.1 Virtual FPGA Evaluation 239

flip-flops in the 7 series host CLB. As there are numerous ways to place the
logic within a tile, a manually derived layout is chosen instead of trying to
find a fully automated one. The strategy is then made generic to support
different VFPGAparameters, but the layout is fixed to theVFPGAand therefore
cannot be reused for completely different applications. Evaluation of different
manual layouts led to a placement as was presented in figure 9.1a: The PSM is
located in the upper right corner and the CLB is placed in the lower part of the
tile. Figure 9.4 shows the device view in Vivado after the manual placement
strategy has been applied.

Figure 9.4: VFPGA tile (type 9) placed using the manual placement strategy. Multi-
plexers of the PSM’s top, right, bottom and left side are marked red (1),
purple (2), yellow (3) and blue (4). The CLB is located at the bottom with
the LUT, two internalmultiplexers andD-flip-flop colored in black (5). Sky
blue color represents the configuration units of the tile (6). Yellow blocks at
the bottom (7) depict Write Connection Boxes, whereas Read Connection
Boxes are marked green and turquoise (8) and make up remaining logic
distributed around the LUT.

The implementation of this strategy operates on two lists for each tile PBlock,
an instruction list and a list of the free host FPGA LUTs. The instruction list
contains simple VFPGA logic element place instructions, interleaved with
sorting instructions. It is processed element by element, either placing logic
elements or resorting the list of free resources. When an element placement
instruction is processed, the logic elements are mapped sequentially to the el-
ements in the sorted list of free resources, starting at a specified offset. When a
resorting instruction is found, the resorting algorithm sorts the list of remain-
ing available host LUTs. It sorts horizontally or vertically and uses ascending
or descending sorting order, depending on the instruction. As an example,
the sort_xy_dd instruction sorts first based on the 𝑥 location, and if the 𝑥
value is the same for some CLBs, it uses 𝑦 as secondary criteria. Descending
sorting is applied in both cases. This specific instruction is used to sort the list

240 Chapter 9 System Simulation and EvaluationMethodology

of available logic elements before placing the right and left multiplexers of the
PSM, as they need to be placed vertically from the top right corner. Sorting is
always done on the list of free resources, so the length of this list decreases as
the placement process proceeds. This makes it possible to reach every single
CLB in the PBlock, not just the ones at the borders.

9.2 Static Power Analysis

Section 2.3 on page 20 introduced the sources for power consumption in digi-
tal circuits. Power consumption was split into two categories, dynamic power
and static power. Where dynamic power is largely determined by switching
power, static power is largely determined by leakage effects. Switching power
was given in equation (2.9) as:

𝑃switching =𝛼𝐶L𝑉2
DD𝑓 (9.5)

As can be seen, it is dependent on the switching frequency, which is applica-
tion specific.

Power analysis for custom FPGA architectures for both dynamic and static
power can be performed in VPR. For the dynamic power estimation, VPR
can estimate the switching activity in a placed application. To realize power
estimation, it uses .tech files which represent power for a specific technol-
ogy. VPR ships such files as examples for some technologies and provides a
workflow to derive files for other technology from SPICE models. The VPR
power estimator has been extended as explained in chapter 7 to support vari-
ous operating modes and regions. However, obtaining the .techmodels for
RFET technology is difficult: As there are no SPICE models available, those
would have to be derived manually. This is difficult again, as only selected
current measurements are available for RFETs, but power measurements are
not available.

As an alternative, higher level power modelling in VPR does not require .tech
files: In thismodel, RC values or absolute power for components are specified
in the architecture. This model was also extended to support regions and
multiple modes. Still, obtaining power values for RFETs is difficult due to the
reasons mentioned before.

For the evaluation in this thesis, a different approach was chosen because
of these difficulties with the VPR power estimation: The PVTA system intro-
duced and the voltage scaling methods used primarily effect static power:

9.2 Static Power Analysis 241

Switching power in equation (9.5) is derived from charging curves of load ca-
pacitances and therefore only depends on the voltage the gates are charged to
or from. This voltage is the supply voltage 𝑉𝐷𝐷, so threshold voltage scaling
or body biasing do not affect the switching power. For dynamic power, these
approaches can affect the short circuit power, but this effect is not further
discussed here.

Figure 9.5: Potential current leakage paths in the RGATE between 𝑃1 and 𝑃2. Current
direction depends on the program voltages 𝑃1 and 𝑃2. Which transistor is
“off” and contributes to the total leakage, depends on 𝑃1 and 𝑃2 as well as
the input variable state. Figure adapted from [2].

Static power and the subthreshold leakage on the other hand are directly
influenced by threshold voltage scaling and body biasing. As figure 9.5 shows,
leakage current is also a concern in the CMOS-like arrangement of transistors
in theRGATE.With themodels for the leakage current parametrizedon control
variables introduced in section 4.6, static power can be estimated. Whereas
thesemodels do not allow for absolute power estimation, a relative estimation
can be used to evaluate how much the leakage current is reduced: First, the
total leakage current in absence of voltage scaling for all CLBs in an FPGA can
be described as:

𝐼tot0 =
𝑁CLB

∑
𝑖=1

𝛼 ⋅ 𝐼Leak(𝑉C0)

= 𝛼 ⋅𝑁CLB ⋅ 𝐼Leak(𝑉C0) (9.6)

Where 𝛼 is a proportionality constant representing the number of transis-
tors forming potential leakage paths and 𝑉C0 is the control parameter at the
nominal value. Generalizing these formulas for arbitrary control parameters

242 Chapter 9 System Simulation and EvaluationMethodology

then yields the general formulas. The current with body biasing or threshold
voltage scaling in regions is then given as:

𝐼tot =
𝑁Region

∑
𝑖=1

𝛼 ⋅ 𝐼Leak(𝑉C,i)

= 𝛼
𝑁Region

∑
𝑖=1

𝐼Leak(𝑉C,i) (9.7)

The relative current consumption then is given as:

𝑖 =
𝐼tot
𝐼tot0

=
∑𝑁Region

𝑖=1 𝐼Leak(𝑉C,i)
𝑁CLB ⋅ 𝐼Leak(𝑉C0)

(9.8)

Given that 𝑃 = 𝑈 ⋅ 𝐼, 𝑉𝐷𝐷 being the relevant voltage and 𝑉𝐷𝐷 being unaf-
fected by the control parameter, the relative power is equal to the relative
current:

𝑝 =
𝑃tot
𝑃tot0

=
𝑉DD ⋅ 𝐼tot
𝑉DD ⋅ 𝐼tot0

= 𝑖 (9.9)

The derivation given here is only valid for body biasing and threshold volt-
age scaling. When scaling the supply voltage, formulas need to be adjusted
accordingly. Furthermore, scaling the supply voltage also affects the dy-
namic power with a quadratic influence. Using different voltages however
requires careful matching between the regions and is not considered in this
thesis.

Power analysis will be mostly important for performance adjustments in an
application: When the application is run at nominal conditions, the power
can be reduced as the control voltage will be reduced in various sections.
PVTA compensation uses the same control mechanism, but will not nec-
essarily lead to leakage reduction: The PVTA effects increase the delay and
therefore require adjusting the control voltage in ways which will increase
leakage currents. When the process variation in a given IC leads to reduced
propagation delay compared to the nominal delay, reductions in leakage
currents may be observed though. When FPGA applications are placed for
worst-case conditions, this will commonly be the case and process variation
compensation can reduce the leakage.

If PVTA effects are analyzed over time, the energy may be more meaning-
ful than the instant power. Relative energy can easily be obtained through
integration of relative power over time.

9.3 Functional Runtime Simulation 243

9.3 Functional Runtime Simulation

To validate the logic invasion and characterization concept of section 8.2, a
testing framework has been set up in QuestaSim. First, various small unit
tests have been derived for the individual parts of the FPGA. These are also
used as regression tests, to quickly find broken changes during development.
In addition, a large integration test has been devised to test the system as a
whole with all parts included.

FPGA
4x5

Application Stimuli

Golden Reference

Application Check Characterizer Check

File-Alt Bitstream

Test Controller

Figure 9.6: Test setup to validate logic invasion and logic characterization functions.
A 4x5 FPGA is programmed with a sample application bitstream. The
application is provided with stimuli and its outputs are compared to a
golden reference. In parallel, the FPGA transparently invades the logic and
provides characterization results, which are validated as well.

The structure of this integration test is shown in figure 9.6. It consists of the
4x5 FPGA to be tested and various helper logic. 4x5 is the smallest config-
uration where the logic invasion can be tested appropriately, as it contains
two usable rows apart from the reserved one for logic invation. A simple
test application was then synthesized for this FPGA, using 3 input signals to
generate 3 output signals. The bitstream is embedded in the simulation and
after initial programming, the application virtually runs on the FPGA in the
QuestaSim simulation.

The Application Stimuli generator periodically repeats all possible input com-
binations. The stimuli are then provided to the FPGA on the IOB ports used
by the test application. In parallel, stimuli are also provided to the golden
reference model. This model calculates the expected outputs independently,
reimplementing the test application’s logic operations in VHDL code. The
output of this golden reference and the test application running on the PAR-
FAIT FPGA are continuously compared and checked for equality. If values
differ at any point in time, the test fails.

244 Chapter 9 System Simulation and EvaluationMethodology

After the test application has been programmed and some time has been
spent verifying the application output, the Test Controller enables logic char-
acterization in the FPGA. At this point, the ProgController embedded in the
FPGA will start transparent logic invasion. Application stimuli testing contin-
ues in parallel, to verify that logic invasion does not upset the test application
operation.

The measured delays are verified in the Characterizer Check. This component
verifies the locations and delay values produced by the ProgController in
the FPGA. To simulate the LUT delay, VHDL transport delays were modeled
for the LUT as shown in listing 9.1.

1 if (split = '1') then
2 q0 <= transport table(sel and "011111") after 235 ps;
3 q1 <= transport table(sel or "100000") after 235 ps;
4 else
5 q0 <= transport table(sel) after 235 ps;
6 q1 <= 'U';
7 end if;

Listing 9.1: VHDL implementation of a LUT with delay information added. Type casts
have been omitted to increase readability.

With LUT delays of 235 ps, the period of the ring oscillator is 2 ⋅ 11 ⋅235ps=
5.17ns. The ProgController is clocked at a period of 10 ns and measures
for 100 clock cycles, yielding a measuring time of 1000 ns. Comparing the
oscillator period to that, the expected count is194. Converting this to theLFSR
value yields a value of 241, which is the expected output of the characterizer
in the test case. As the functional simulation does not model any difference
in propagation delays in different LUTs, the expected value is the same for all
tested CLBs. The Characterizer Check also validates that values are emitted
for all CLBs in the FPGA.

In addition to the automated test cases, the measuring time has also been ver-
ifiedmanually through observation of signal waveforms. This ensures that the
measuring time was implemented correctly, which is crucial for the system.
Validation of the system with RGATE or other ULMs can be performed in the
sameway. As the logic invasion system is independent of the logic cell used, re-
sults are however expected to match the LUT case.

9.4 Co-Simulating DVS 245

9.4 Co-Simulating DVS

The previously introduced functional simulation shows the working principle
of the PVTA invasion. It can however not directly answer the question, how
much power can be saved or how well the controller reacts to PVTA changes.
This information can not be evaluated in the pure digital simulation, as the
effects cannot be modeled there. As a solution, the VHDL FPGA implementa-
tion was combined with the propagation delay and PVTA models from chap-
ter 4. This section introduces this QuestaSim based co-simulation framework.
Apart from the architecture andmodels, it will also include VPR for timing and
power evaluation. Parts of this section were originally published in [Pfa23b],
but it has been extended with further details.

Database PnR Results Budget kslack Update kclb VHDL Step

File-Alt PVTA Chart-line tPD

Figure 9.7: Process flow for the PVTA compensation co-simulation. The simulation
loads results previously obtained using the VPR place and route flow. It
then calculates the initial 𝑘slack factors once before starting the main op-
eration loop. In this loop, the simulation repeatedly updates the VHDL
controller state and recalculates the 𝑘CLB factors based on the control vari-
able and PVTA conditions.

Figure 9.7 shows the generalworkflowof the co-simulation: First, applications
are placed and routedusingVPRas explained in chapter 6 forULMsand in sec-
tion 4.5 for LUT based architectures. The place and route files are then loaded
into the co-simulation, which is implemented as a QuestaSim plugin. It uses
an embedded version of VPR to calculate the initial slack budgets 𝑘slack once
for all regions. After this initial step, it repeatedly updates the 𝑘CLB factors us-
ing the propagation delay model and the scenario models. The control input
for the propagation delay model is directly obtained from the VHDL architec-
ture implementation. This VHDL code is then given the 𝑘slack and 𝑘CLB factors
and one time-step of the DVS controller is simulated. After this, updated 𝑘CLB
values are calculated and the process repeats.

As an optimization, the logic invasion based measurement is not used here
and𝑘CLB factors are directly provided to theDVS controllers in the tiles instead.
The main reason for this is that the simulation models produce relative delays,
which directly correspond to these factors. They could be used to derive
absolute LUT or ULM delays through scaling of a typical value, but there is

246 Chapter 9 System Simulation and EvaluationMethodology

little benefit in doing this. It would significantly increase simulation time and
provide no new information, as the logic invasion measurement was already
evaluated independently.

MICROCHIP DVS

Database kslack

Characterizer VPR STA

VPR PowertPD Model Chart-line

File-Alt PVTA

Figure 9.8:QuestaSim andVPR based co-simulation framework to simulate region
based adaptive voltage scaling FPGA architectures. Grey blocks are im-
plemented in HDL as part of the FPGA architecture and simulated using
QuestaSim. Blocks in orange are either embedding VPR C++ code or a Lua
interpreter, evaluating PVTA models as .lua scripts.

Figure 9.8 shows a structural view of the co-simulation extensions. As shown
in figure 9.7, the overall simulation setup realizes a closed feedback loop.
This loop can be used to evaluate either the DVS controller, user provided
scenarios of external influences PVTA, or the 𝑡PD 𝑀𝑜𝑑𝑒𝑙. The left-hand side
of the figure is part of the simulated FPGA architecture and is modeled in
HDL using QuestaSim. It consists of the DVS controller, which adjusts the
performance of regions dynamically, memory which stores 𝑘slack characteri-
zation values, and the Characterizer, which assesses the current performance
within a region. The simulation framework does not dictate any concrete
implementation of those components, giving maximum flexibility to user
supplied models.

The right-hand side of figure 9.8 is part of the simulation environment, imple-
mented in C++, and interfaces to the HDL code using QuestaSim’s Foreign
Language Interface (FLI). It takes the requested control voltage from the archi-
tecture’sDVS controller and passes it to user-supplied PVTA scenario models
written in LUA. Scenario model results are passed to other modules to derive
the 𝑘CLB timing degradation factors through the 𝑡PD models. Using this infor-
mation, a static timing analysis with updated delays can be performed inVPR.
The STA pass allows to assess the target application’s timing requirements
under changing operating conditions. The results are also forwarded to the
Characterizer, which estimates the current delay in each region. To obtain a
region’s total performance, the characterizer uses the worst factor of all CLBs
within a region. The interface integrating C++ and VHDL code is shown in
figure 9.9.

9.4 Co-Simulating DVS 247

Chart-line

X

Y

C

kslack

kclb

Figure 9.9: Logic interface block which provides the interface between software and
VHDL code in each region. The interface receives its position in the grid
as well as the control input. As output, it provides the current 𝑘CLB factor
as well as the initial 𝑘slack factor for the region.

For power analysis, model values are forwarded to the VPR Power estimator,
most notably the current voltage for a region. The VPR power analysis region
extensions can then be used to calculate per-region power for all primitive
blocks. The support of different .tech files for each region and point in
time allows full flexibility for simulation of DVS systems. For the evaluation
presented in this thesis though, the simpler analysis method introduced in
section 9.2 on page 240 will be used.

Figure 9.10 shows a graphical depiction of an example benchmark evaluation.
In this figure, subfigures (a) and (b) show the 𝑘CLB factors at the beginning
and at the end of the simulation. It can be seen that in the beginning, the
measured delay largely conforms to the example process variation introduced
in figure 4.24c on page 154. At time 𝑡1, the FPGA architecture’s DVS controller
has adjusted the power supply in each region and made the measured delay
variations match the applications slack factors, 𝑘slack. The adjustment in the
control voltage needed to achieve this, is shown in figure 9.10c. This result is
mostly a combination of the process variation map and the slack factor, as
the voltage adjustment has to both cancel the process variation and adapt
the local performance to application requirements.

The simulation framework also enables validation of timing paths under
voltage scaling: The slack values can be assessed through additional STA for
the target application at different time steps in the simulation. The results
for this demonstration are shown in figure 9.11, where regions are numbered
from bottom-left to top-right. Analysis of the minimal slack in each region
shows that all paths still achieve timing closure and most critical paths have

248 Chapter 9 System Simulation and EvaluationMethodology

(a) 𝑡0:Delay Factor (b) 𝑡1:Delay Factor (c) 𝑡1:Voltage

Figure 9.10:Delay factors 𝑘CLB and region voltage at start and end of simulation. Un-
used regions are depicted in white color. (a) and (b) show the current
delay factors at the respective point of time. Brighter color indicates
a smaller factor, i.e. delays in the region are smaller compared to the
nominal case. (c) shows the voltage factors used to achieve the delay
factors in (b). Brighter color indicates a lower factor, i.e. the threshold
voltage in that region has been increased. At the initial time 𝑡0, all region
factors are 1.0.

reduced slacks. This also applies for the averages in most regions, showing
that all paths are affected similarly.

An important observation is that some regions evenprovide larger slack values.
This is caused by the initial measurement 𝑘slack being based on the initial VPR

0 1 2 3 4 5 6 7 8 9 10 12 13 14
0 ns

10 ns

20 ns

30 ns

Region

Sl
ac

k

Figure 9.11: Available slacks for each a region. Bars depict the mean over the slacks
of all paths in a region and error bars show the minimum and maximum
slack values. The nominal initial distribution after placement, ignoring
the device specific variation model, is shown as white bars. Black bars
show the final distribution with adjusted voltage factors at 𝑡1.

9.5 Benchmark Applications 249

placement, which does not include device specific variation. In some cases,
the device specific variationmight provide locally better performance in some
regions than the worst case corner model, that was used for 𝑘slack. Another
observation that can be made, is that the slack values of critical paths have
not been reduced to zero. As explained previously, this happens when paths
traverse other critical regions: For example, the worst path in region 3 could
be scaled by factor 4.73 and the analysis assumes it is scaled by this factor
in all regions it traverses. However, the path also passes through region 2,
which contains another, more critical, path, and can only be scaled by 1.59.
The effect is also further explained by the paths used for characterization not
being identical to the real application paths.

9.5 Benchmark Applications

Results in FPGA research also depend on the benchmark user applications
used to evaluate the architecture, so a representative standard set of bench-
marks had to be chosen. Out of the benchmarks offered by VTR, theMCNC20
benchmarks have been discarded as being too small: The VTR documen-
tation discourages their use, as results obtained using those are no longer
representative for real-world applications.

The Titan set of benchmarks provides large-scale benchmarks for FPGA de-
sign. Thesebenchmarks arehowever only available as pre-synthesizednetlists.
Such netlists are already mapped to a certain logic generator primitive, usu-
ally a specific LUT type. They can therefore not be used to target ULM based
FPGAs or FPGAs with other custom LUT types. This set of benchmarks has
therefore also been discarded.

Newly available Koios 2.0 benchmarks could theoretically be used in future
work. The stable VTR distribution used for the evaluation of this thesis does
however not yet support these benchmarks. Synthesizing the benchmarks
with the old ODIN version included in stable VTR is not successful, as some
Verilog features are not supported. As the benchmarks were designed for
machine learning use case evaluation, which is not relevant here, they have
not been used. Similarly, the Symbiflow benchmarks have not been used
as they are meant to be used only as regression test suite for some specific
architectures. NOC benchmarks have also not been used, as the PARFAIT
architecture does not provide NoC support.

250 Chapter 9 System Simulation and EvaluationMethodology

Instead of these, the VTR Benchmark standard set has been used. Those
medium-sizedbenchmarks are directly supported inVTR, and canbemapped
to any logic generator. To enable evaluation of all benchmarks, the PARFAIT
architecture had to be extended with hard memory blocks. The evaluation
was then performed using the run_vtr_flow tools: At first, all benchmarks
were mapped using an auto_layout version of the architecture. Then, the
maximum FPGA size to realize the benchmarks was determined. After that,
all benchmarks were mapped to an appropriate fixed_layout of fixed size
for all applications.

Part III

Final Remarks

This page intentionally left blank

Chapter 10

Evaluation

The following sections will present various evaluation results for the PARFAIT
FPGA. First sections evaluate selected individual aspects, whereas the final
section presents power saving and PVTA compensation results for the whole
system.

10.1 Ambipolar Standard Cell Application

Non-reconfigurable logic can be implemented in RFET using the custom stan-
dard cell library introduced in chapter 5. In this section, implementations of
test circuits using these cells will be evaluated. At first, simple combinational
circuits will be analyzed. Then, amore complex cryptographic accelerator will
be evaluated to demonstrate sequential circuits.

Combinational Cells

To compare the results of synthesis of combinational circuits, the full adder
cell was synthesizedwith both planar RFET and SOI reference timing libraries.
A manual mapping was performed to ensure the netlists in both technolo-
gies are equal. These results have previously been published as a part of
[Reu21].

The timing report of the full adder circuit, presented in table 10.3 on page 257,
lists the internal gates (1, 2 and 3) in the full adder, referring to gate numbers
in the full adder schematic in figure 5.4a on page 169. Gates which are directly
connected to anoutput donot drive any loads, as ideal high impedance circuit
outputs were used. Because of this, the timing of internal gates, which do
have loads, will be analyzed.

254 Chapter 10 Evaluation

Although theNAND gates (index 2 and 3) show an increased cell delay, the
overall critical path of the planar RFET circuit (1130 ps) is lower than for
the SOI reference technology (1331 ps). The reason for this can be found
when comparing the XOR gate (index 1) delay: While the planar RFET XOR
gate has a cell delay of 336 ps, the cell delay of the XOR gate provided by the
SOI reference is, with 493 ps, significantly higher. A substantial difference
between the timing of the planar RFET and the reference technology is that
the critical path is different: For the planar RFET, it runs from input 𝑎 to the
carry output 𝑐𝑜ᵆ𝑡. For the SOI technology however, the critical path leads from
𝑎 to output 𝑦. This observation reinforces the assumption, that the planar
RFET boosts performance of largely XOR based circuits when compared to
the SOI reference technology.

Table 10.4 on page 258 shows reduced versions of critical paths in (a) a 32 bit
carry ripple adder, (b) a 4 bit checked adder and (c) the ARX cell. The circuits
are based on the building blocks in figure 5.4 on page 169. They are completely
combinational and therefore synthesized to exclusively RFET cells. Using
fanout information and the input capacitance of the cells and the wire loads,
Cadence Genus determines the output load of all cells. It then calculates
the delay according to the cell type, arc (input pin to output pin used by the
analyzed timing path), the input slew rate (not shown), the input transition
edge (rise or fall) and the output load. Delays match what a manual analysis
suggests, which ecourages the view that the extracted timing information has
been properly transformed into the .lib file. Further extraction and valida-
tion of the capacitance_max_rise and capacitance_max_fall values has
been performed, to ensure that rising and falling transitions are both handled
correctly.

Cryptographic Accelerator

In the following, the various system architectures for the cryptographic accel-
erator will be presented first, followed by a mapping to RFET. Results for the
system architecture have been presented previously in [Pfa19], results for the
RFET mapping in [Reu21].

FPGAEvaluation XilinxVivado 2018.3wasused for evaluation. Retimingwas
explicitly enabled, and theVC707 board andVirtex 7 XC7VX485T-2FFG1761C
FPGA were targeted for implementation. Architectures can be parametrized
on core count and the maximum reachable clock frequency reduces with
higher count. This can be explained by increased stress on placement and

10.1 Ambipolar Standard Cell Application 255

routing. Throughput depends on both the number of cores and the clock
frequency, so figure 10.1 compares different implementations’ throughput vs.
the required resources. The Pipeline implementation is shown as points, as it
does not provide a Core count parameter to balance resources vs throughput.
𝑑 = denotes whether DSP blocks have been used for the ARX cell (1) or not
(0) and 𝑟 = gives the number of introduced pipeline registers. Table 10.5 on
page 259 shows that these implementations surpass all state of the art ChaCha
implementations, except for the low-resource optimized implementation by
At et al., when comparing bitrate per slice. The Block Memory and Pipeline
implementation also surpass Advanced Encryption Standard (AES) state of
the art, the Pipeline implementation even by a factor of 8. Results shown
are for ChaCha8. To calculate numbers for ChaCha12/20, divide through-
put by 1.5 and 2.5 for the Register and Memory implementations. For the
Pipeline implementation, resource requirements are increased by these fac-
tors and the maximum clock frequency and therefore throughput may also
be affected.

0 1 2 3 4 5 6 7 8 9 10 11 12

·103

50

100

150

200
(d=0 r=1)

(d=0 r=2)

(d=1 r=1)

(d=1 r=2)

Number of Slices

B
itr

at
e

in
G

bi
t/

s

reg d=0 r=1
reg d=0 r=2
reg d=1 r=1
reg d=1 r=2

mem d=0 r=1
mem d=0 r=2
mem d=1 r=1
mem d=1 r=2

Figure 10.1:Comparing throughput vs. number of slices for various ChaCha acceler-
ator system architectures.

RFET Evaluation To evaluate the RFET .lib file, the ChaCha accelerator cir-
cuit was synthesized in Cadence Genus. For this synthesis run, pure logic
synthesis based on the .lib file was performed. Physical information from
.lef files or capacitance tables are omitted. The synthesis makes use of the
SOI D FF and is therefore not completely synthesized in RFET technology.
Unlike for the small circuits, the dont_touch attribute is not used, permitting
optimization during synthesis. As the cells have only been characterized for
up to 15 fF output capacitance, synthesis tools insert buffer cells if deemed
appropriate. This however increases the path lengths and reduces achievable
target frequencies.

256 Chapter 10 Evaluation

Table 10.1 shows the critical path in the ChaCha accelerator for the planar
RFET timing library. The critical path length of the SOI reference technology is
58% of the critical path length of the planar RFET, leading to an advantage of
42% in speed for the reference technology. Inspecting the critical path of the
planar RFET synthesis shows that 63 out of 96 gates in the critical paths are
NAND gates. The comparison of cell timing characteristics between planar
RFET and SOI reference cells in [Reu21] states that the relative performance
of the planar RFET technology is worst for theNAND cell. The overall worse
performance of the planar RFET implementation for the ChaCha accelera-
tor can therefore be partly traced back to the worse relative performance of
the proposed planar RFET cells. On the other hand, the missing derating of
the SOI reference, which would compensate the device specific characteris-
tics like channel length and threshold voltage, benefits the reference as well
[Reu21].

Gate Arc Edge Fanout Load [fF] Delay [ps]
DFF C->Q R 10 52.3 1150
INV A->Q F 2 9.1 367

NAND B->Q F 1 5.5 582
NAND B->Q R 1 10.2 416
XOR B->Q F 1 5.6 222
NAND B->Q R 1 6.7 364
NAND B->Q F 1 3.3 552
DFF - F 1 0 0

Table 10.1: Excerpt of critical path analysis in ChaCha accelerator for RFET standard
library.

Table 10.2 shows the area summary for the ChaCha accelerator as reported by
Cadence Genus. As can be seen, the cell area is largely zero. This is expected,
as the .lib file is currently missing area definitions for the RFET cells and only
SOI D FF cells provide area information. Although area reports are currently
of limited use because of this, they can be used to verify whether wire load
models are working correctly.

10.1 Ambipolar Standard Cell Application 257

Instance Cells Cell Area Net Area Wire Load
chacha_reg 36386 0 33952 wload_30k
core[0].in-

stance
12219 0 10143 wload_05k

arx[3].in-
stance

2096 0 1652 wload_01k

pipe 519 0 350 wload_500
addi 1004 0 811 wload_500
roti 417 0 323 wload_100
xori 156 0 71 wload_100

Table 10.2:Genus area report for ChaCha accelerator for RFET standard library.

Technology N Type Wire Load Total
R [Ω] C [fF] C [fF] T [ps]

1 XOR 8 0.3 13.6 336
2 NAND 3 0.1 5.5 429Planar RFET

1130𝑝𝑠
3 NAND 3 0.1 6.8 158
1 XOR 8 0.3 9.1 493
2 NAND 3 0.1 3.1 373SOI

1331𝑝𝑠
3 NAND 3 0.1 3.7 146

Table 10.3:Delay analysis for the full adder in RFET technology in comparison to SOI
technology.

258 Chapter 10 Evaluation

Gate Arc Edge Fanout Load [fF] Delay [ps]
NAND B->Q F 1 5.7 373
NAND A->Q R 2 13.9 346

NAND B->Q R 2 13.9 453
XOR B->Q F 1 0.3 696

(a)

Gate Arc Edge Fanout Load [fF] Delay [ps]
NAND B->Q F 1 5.7 373

NOR B->Q F 1 5.8 280
NOR A->Q R 1 7.2 329
XOR A->Q F 1 0.2 643

(b)

Gate Arc Edge Fanout Load [fF] Delay [ps]
NAND B->Q F 1 5.7 373
NAND A->Q R 2 13.9 346

XOR B->Q F 2 7.9 771
XOR A->Q F 1 0.3 610

(c)

Table 10.4:Genus critical path analysis in combinational circuits for RFET technology.
(a) 32 bit carry ripple adder: Reference is 78% faster. (b) 4 bit checked
adder: Reference is 26% faster. (c) ARX cell: Reference is 42% faster.

10.1 Ambipolar Standard Cell Application 259

Va
ri
an
t

Co
re
s

D
SP

D
ep
th

𝑓 m
ax

LU
T

FF
B
R
AM

18
D
SP

Sl
ic
es

Bi
tr
at
e

Bi
tr
./S
lic
e

M
H

z
G
bi

ts
−

1
(M

bi
t/
s)
/s

lic
e

ch
ac

ha
_r

eg
1

ye
s

1
25

6.
3

16
93

15
02

0
20

68
2

3.
82

5.
74

2
31

2.
5

17
38

20
25

0
20

71
3

4.
66

6.
69

no
1

36
2.

5
23

69
21

52
0

0
89

6
5.

40
6.

17
2

39
3.

7
23

92
28

73
0

0
85

2
5.

87
7.

06

ch
ac

ha
_m

em
1

ye
s

1
27

5.
0

86
2

11
62

4
8

48
7

4.
10

8.
62

2
26

8.
7

87
1

12
60

4
8

47
6

4.
00

8.
61

no
1

34
3.

8
13

66
18

31
4

0
63

3
5.

12
8.

25
2

37
5.

0
13

87
22

10
4

0
68

0
5.

59
8.

42

ch
ac

ha
_p

ip
e

-
ye

s
1

28
1.

2
45

56
13

48
4

0
14

4
28

67
13

4.
09

47
.8

9
2

35
6.

3
56

33
15

70
7

0
14

4
28

19
16

9.
87

61
.7

1

no
1

36
8.

7
91

38
18

00
4

0
0

29
82

17
5.

82
60

.3
8

2
35

6.
3

10
10

1
25

68
0

0
0

40
75

16
9.

87
42

.6
9

Xi
ph

er
a
(C

ha
Ch

a2
0)

[2
53

]
(X

ili
nx

U
ltr

aS
ca

le
+)

-
<

40
00

0.
50

>
�0

.2
6

At
et

al
.[

25
4]

(X
ili

nx
Vi

rt
ex

-6
XC

6V
LX

75
T-

2)
-

35
6.

3
2

49
0.

60
12

.5
4

St
rö

m
be

rg
so

n
[2

55
]

(X
ili

nx
Ar

tix
-7

XC
7A

20
0T

-3
FB

G
48

4)
-

10
0.

0
38

37
19

49
10

76
5.

96
5.

67

Si
lit

on
ga

et
al

.(
AE

S,
H

LS
)[
25

6]
(X

ili
nx

Zy
nq

-7
00

0)
-

11
70

4
85

12
43

.9
0

�7
.6

8

So
lta

ni
et

al
.(

AE
S)

[2
57

]
(X

ili
nx

Vi
rt
ex

-6
XC

6V
LX

24
0T

)
-

35
32

8
26

0.
15

7.
54

Ta
bl
e
10
.5
:R

es
ou

rc
e
an

d
cl
oc

k
fre

qu
en

cy
co

m
pa

ris
on

fo
rs

el
ec

te
d

im
pl

em
en

ta
tio

n
an

d
co

nfi
gu

ra
tio

ns
.

260 Chapter 10 Evaluation

10.2 Ambipolar Reconfigurable Cells

For the evaluation of the logic cell, all parameters were tuned as explained in
chapter 6: The logic cluster has 40 inputs that feed an input crossbar. It com-
bines 5 simple, two-input logic elements with one FF each, 5 FLEswith one FF
each and 10 FLE without FF. Each of the previously mentioned cells provides
one output of the 20 outputs of the logic cluster and there are no internal-only
cells in the final architecture. The evaluation used a FLE with the topology
of figure 6.7a, as results did not show large benefits when using fracturable
outputs. As will be shown, benefits of fracturable cells can only be realized
when the more advanced combined genlib EDA approach is used. Results
currently do not include an absolute timing analysis for the FPGA architecture,
as this requires dynamic characterization of at least the ULM in the RFET
technology. Preferable, all FPGA components should be characterized in the
target technology to get detailed results, but due to incomplete PDKs, such a
detailed analysis is currently not possible. As timing and delays also influence
FPGA size due timing driven routing algorithms, timing driven routing and
packing was disabled in VPR for this evaluation.

SimpleEDAFlow Figure 10.2 on the next page show results obtained through
the VTR benchmark flow. Data has been collected from benchmarks and
averaged accordingly. Figure 10.2a shows the input utilization of the logic
cluster. The architecture uses up to 32 inputs, which is the maximum channel
width in the routed design. As VTR automatically increases the channel
width in benchmark mode, this shows that a larger channel width was not
required. One limiting factor of the architecture is therefore likely the amount
of LEs in each cluster. This conclusion is assured by the output utilization
of the logic cluster shown in figure 10.2b. It can be seen there, that out of 20
available outputs, an average of only 6.9 are used. Both FLE and simple LE
are almost fully utilized, as can be seen in figures 10.2c and 10.2d. This further
reinforces the conclusion that the main limiting factor of logic expressiveness
in this architecture is still the LE. Introducing more LE however increases the
size of the input crossbar, which increases area and makes comparison to
the reference architecture more difficult. As will be shown in this section,
even though this architecture does not yield full utilization of logic cluster
inputs and outputs, in most benchmarks the final FPGA size is close to the
reference architecture. A problem can be seen in figure 10.2e, which shows
the utilization of FLE inputs. It can be seen that without the fracturable LE,
the LE is fully utilized in only a few cases. In the most common case, simple
2-input functions are mapped to the LE and most inputs remain unused. As

10.2 Ambipolar Reconfigurable Cells 261

0 3 6 9 12 15 18 21 24 27 30
0

5 · 10−2

0.1

0.15

(a)

0 3 6 9 12 15 18
0

5 · 10−2

0.1

0.15

(b)

0 3 6 9 12
0

0.2

0.4

0.6

0.8

1

(c)

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

(d)

0 1 2 3 4 5 6
0

0.2

0.4

0.6

(e)

Figure 10.2:Utilization statistics for the proposed logic cluster. (a) Cluster input
utilization. Mean = 16.8. (b) Cluster output utilization. Mean = 6.9. (c)
Utilization of FLEs in cluster. Mean = 12.8. (d)Utilization of simple LE in
cluster. (e)Utilization of the FLE inputs.

262 Chapter 10 Evaluation

some complex functions are successfully mapped to the FLE, it can however
be seen that the approach in general is working correctly. The issue with
underutilized FLE inputs will be further discussed for the results using the
advanced EDA flow.

od
in ab

c
pa

ck
pla

ce
rou

te1
rou

te2
0

1,000

2,000

3,000

10

839

47 146

2,081

408

704

2,396

230

3,075

46

Ti
m

e
[s]

LUT ULM

Figure 10.3:Comparison of EDA metrics for ULM clusters and LUT. This figure shows
the EDA tool runtime, averaged over all benchmark circuits.

Figure 10.3 shows the average tool runtime compared to the runtime in the
LUT based FPGA case for the evaluated benchmarks in the relevant tool steps.
As can be seen, runtime is largely similar for most steps. For the packing
phase however, the runtime is increased by almost two decades. An increase
in packing time is expected, as the packer has to pack all ULMs into the
FLE in the simple EDA flow. As there are numerous unused ULMs due to
their limited expressiveness, more packing steps are necessary than in a LUT
based architecture. In LUT-based FPGA architectures on the other hand,
packing is often used only to combine FF and LUT or multiple LUTs into
one cluster. Nevertheless, this increase in packing runtime is excessive and a
severe limitation of the ULM synthesis toolflow. As will be explained in the
next section, this overhead can fortunately be reduced using the advanced
EDA flow. In addition, there is a slight increase in routing runtime. This
increase can be explained by the mapped ULM benchmarks being slightly
larger than the LUT baselines.

Figure 10.4 evaluates the FPGA sizes for the used VTR benchmark circuits.
FPGA size is evaluated in blocks, counting logic and memory blocks but ex-
cluding the peripheral blocks. It can be seen that the ULM based architecture
uses less than 10%more blocks inmost cases. For the LU*PEEng and the mcml
circuits, the ULM based FPGA was however up to 50% larger. This suggests
that further architecture tuning may be beneficial for some circuits and that

10.2 Ambipolar Reconfigurable Cells 263

arm
_cor

e
bg

m

blo
b_

merg
e

bo
un

dto
p

ch
_int

rin
sic

s

diff
eq

1
diff

eq
2

LU
8P

EEng

LU
32

PEEng

LU
64

PEEng
mcm

l

mkD
ela

yW
ork

er3
2B

mkP
ktM

erg
e

mkS
MAda

pte
r4B

or1
20

0

ray
ge

nto
p

sha

ste
reo

vis
ion

0

ste
reo

vis
ion

1

ste
reo

vis
ion

2

ste
reo

vis
ion

30

1

2

3

4
·104

CL
Bs

LUT ULM

Figure 10.4:Comparison of EDAmetrics forULMclusters andLUT.This figure depicts
the FPGA device size in blocks for the various benchmarks.

the FLE expressiveness does not yet fully match the LUT baseline. The issue
can be addressed by introduction of more FLEs in the logic cluster, at the
expense of increasing the input crossbar size.

Advanced EDA Flow To address underutilized inputs of LE cells and non-
utilized outputs of the fracturable cell, results have been reevaluated with the
advanced tool flow. As this flow models combined functions to be realized
by multiple ULMs in one FLE cell, it reduces the amount of work in the pack-
ing step. The packing algorithm is then only used to pack one or multiple
combined functions into one FLE and operates in the same way as for frac-
turable LUTs. Figure 10.5 shows an evaluation of the fracturable LE using the
advanced flow. As can be seen in figure 10.5a, the EDA flow now successfully
makes use of multiple inputs in the FLE. Functions with one input are still
used, as those are needed to realize inverter or buffer functions in some cases.
Two or three inputs are never used for the tested benchmark sets. This clearly
shows that in cases where a 2 input function is mapped to a FLE, it gets frac-
tured and another function is additionally mapped. More than half of the
cells have fully utilized their inputs, a significant difference to the simple EDA
results of figure 10.2e. Figure 10.5b shows the utilization of FLE outputs. It
can clearly be seen that multiple outputs are now actively used. Whereas cells
with only one mapped output suggest that the whole cell has been mapped
to one function, two and three outputs can be intermediate results or be
fractured cells implementing multiple functions.

264 Chapter 10 Evaluation

(a) (b)

Figure 10.5:Utilization of the 6-input FLE when using the advanced, combined func-
tion EDA flow. (a) Amount of FLE inputs used. (b) Amount of FLEs
outputs used.

10.3 Power Management Regions

To demonstrate the use of power management regions and mode assignment
approaches, a simple architecture supporting two power modes is evaluated.
Parts of this evaluation were originally published in [Pfa23b], but this version
has been extended with a more thorough evaluation of modified FPGA ar-
chitectures. For the static mode assignment, modes have been assigned in
an alternating pattern. The architecture used for evaluation is based on the
40 nm k6_frac_N10_40nm architecture shipped with VTR. It contains only
basic logic elements and no memory, allowing easier comparison. To extend
the architecture, delay values for various supply voltages were obtained in
a similar 45 nm PPDK using COFFEE 2 [258] and HSPICE. Power and delay
values obtained with 1 V supply voltage were used for the high performance
power regions. For the low power regions, varying power and delay values
were evaluated. To evaluate the architecture, MCNC benchmarks shipped
with VPR were used. As a system-level measurement for power reduction,
the amount of used CLBs which are in low-power mode are compared to the
baseline architecture. All result figures then show averages for the evaluated
benchmarks.

Figure 10.6 depicts results for the static assignment strategy, showing that
between 30% and 40% of the CLBs have been placed into low power regions.
Larger region sizes, which need less hardware resources in implementation,
do not strongly affect the amount of low-power CLBs in this evaluation. As the
target frequency was not set (best-effort), there’s a decrease of the maximum
frequency of factor 1.1 at 0.95 V up to 1.8 at 0.7 V. When actively using static
assignment, it should be assessed whether setting a fixed target frequency is
necessary.

10.3 Power Management Regions 265

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

32

34

36

38

40

Supply Voltage [V]

Lo
w

-P
ow

er
C

LB
%

1x1
2x2
3x3
4x4

Figure 10.6: Static region assignment: Fraction of CLBs in low power mode for dif-
ferent region sizes and low power supply levels. The supply voltage in
high-performance regions is 1 V.

Unlike static assignment, a dynamic assignment will not affect maximum ap-
plication frequencies: The algorithm essentially modifies the distribution of
timing slacks, reducing the slack of non-critical paths. For an exemplary eval-
uation, the architecture is modified to specify only one region type with two
possible voltage/power/delay combinations. The high performance mode
continues to operate at 1 V and the low power mode uses varying voltage,
power and delay. Figure 10.7 shows the average amount of cells in low-power

0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84 0.86 0.88 0.9 0.92 0.94 0.96

20

40

60

80

100

Supply Voltage [V]

Lo
w

-P
ow

er
C

LB
%

1x1
2x2
3x3
4x4

Figure 10.7:Dynamic region assignment: Fraction of CLBs in low power mode for
different region sizes and low power supply levels. The supply voltage in
high-performance regions is 1 V.

for the dynamic strategy. It illustrates that a large amount of CLBs can be oper-
ated in lowpowermode, but results dependheavily on the parameters chosen:
A low-power supply voltage of 0.9 V will enable almost all CLBs to be in low-
power mode. At 0.75 V for most region sizes, less than 25% of the CLBs are
placed in this mode. The other factor largely influencing the results is region
size: A finer granularity in voltage adjustments allows for better results. For
practical FPGA design, such fine-grain voltage selection will have to balanced
with the need for excessive additional resources.

266 Chapter 10 Evaluation

10.4 Power Management and Compensation

The following section will discuss various tests and evaluations using the final
PARFAIT architecture. Evaluations will focus on PVTA compensation and
power reduction using the co-simulation environment. The logic invasion
scheme has been abstracted in the co-simulation to decrease simulation
times. Apart from that, the evaluated architecture follows the description in
section 8.5 onpage 227. This evaluation section explains how to read the result
graphs and provides an overview of aggregated results. Additional raw evalu-
ations for eight selected benchmarks are available in appendix F on page 365
and will be referenced in this evaluation section.

General As previously mentioned, this final evaluation does not use the
CNT-DR8F based LE presented in section 10.2, but the RGATE based LE from
figure 8.14. The primary reason for this is that the RGATE was realized in
a technology, for which characterization data is available for various PVTA
parameters. This allowed the RFET propagation delay model in section 4.6 to
be fitted for multiple parameters, which wasn’t possible for the CNT-DR8F
gate. Using RGATE therefore allows for more realistic evaluation, as the delay
model matches the technology of the actual cell.

arm
_cor

e
bg

m

blo
b_

merg
e

bo
un

dto
p

ch
_int

rin
sic

s

diff
eq

1
diff

eq
2

LU
8P

EEng

LU
32

PEEng

LU
64

PEEng

mkD
ela

yW
ork

er3
2B

mkP
ktM

erg
e

mkS
MAda

pte
r4B

or1
20

0

ray
ge

nto
p

sha

ste
reo

vis
ion

0

ste
reo

vis
ion

1

ste
reo

vis
ion

2

ste
reo

vis
ion

30

1

2

3

4
·104

CL
Bs

LUT ULM

Figure 10.8:Number of ULM-based CLBs in the PARFAIT FPGA vs. number of LUT-
based CLBs in the reference FPGA for the evaluated benchmarks.

Figure 10.8 provides an overview of CLB usage in the reference architecture
vs. the modified architecture with RGATE cells. As can be seen, the RGATE
based FLE has not been optimized for expressiveness, as was done for the

10.4 Power Management and Compensation 267

CNT-DR8F based LE. Due to that, in the worst case there is an increase of
up to 3.31 in CLB usage. It should be noted that the RGATE LE shown in
figure 8.14 needs only 10 bit for storage, plus one bit to select split mode.
This is 54 bit less than the LUT used for comparison in the reference architec-
ture.

A 3.31x overhead would therefore still reduce the needed configuration stor-
age. The total area however is also determined by the interconnect size, which
increases by factor 3.31x as well. A naive approach could simply increase
the number of LEs in a CLB, therefore avoiding increase in CLBs and global
interconnect. This approach would however increase the size of the crossbar
used for local interconnect in the CLB, as well as the number of output pins.
A more advanced approach could consider that few of the RGATE LEs are
actually used in split mode in the benchmarks. Split mode could therefore be
removed, and the second output could be driven by an identical implemen-
tation of the LE. This essentially enables doubling the logic density without
increasing the number of output pins or the crossbar, but input pins need to
be shared between two instances of the RGATE logic. Further evaluation is
necessary to determine whether such a system can be fully utilized in bench-
marks. Alternatively, different topologies for the ULM, with e.g. more RGATEs,
could be considered.

(a) (b) (c)

Figure 10.9: Process variation map used for the PARFAIT FPGA evaluation in this
section. The map was generated as explained in section 4.7 and contains
250x250 points, one for each location on the FPGA. (a) Pure random
variation. (b) Spatially correlated variation. (c) Final process variation
model.

Figure 10.9 shows the process variation map which will be used to simulate
process variation for the final results. All benchmarks in this analysis were
mapped to a device of size 250x250, as this fits the largest benchmark. Because
of this, the process variationmapwas also generated at a resolutionof 250x250

268 Chapter 10 Evaluation

according to section 4.7. This then enables each CLB in the architecture to get
an individual process variation factor, as opposed to one factor for a whole
region. Subfigure (a) shows the pure random variation, which does not have
any spatial correlation. Subfigure (b) shows the spatially correlated part and
subfigure (c) shows the combined process variation, which is used in the co-
simulation. The variation maps were generated to describe 𝑉th, as explained
in the introduction of the process variation model. Values are then scaled
to be in the range of [−1,1] to fit the 𝑃 parameter range of the propagation
delay models. Darker colors in the figure depict a larger 𝑃 value, i.e. a CLB
with less propagation delay. As this process variation map is representative
for process variation, it is used in all the following evaluations. Although the
co-simulation easily allows simulation with different process variation maps
to assess the effects of those, such an additional evaluation was out of scope
of this thesis.

(a) (b) (c)

Figure 10.10: Placements for three exemplary benchmarkswhich are evaluated in this
section on the PARFAIT FPGA architecture. Placements were obtained
using the ULM VPR flow introduced in section 6.2 on page 180. (a)
arm_core benchmark. (b) stereovision0 benchmark. (c) LU64PEEng
benchmark.

Figure 10.10 shows placement maps of three selected example benchmarks.
Orange color depicts used CLB blocks, red color at the border shows used
IOBs and blue color shows used memory blocks. Gray color in general depicts
unused blocks and gray stripes are caused by columns of memory blocks
being unused. Figure F.1 on page 366 in the appendix shows the placement
maps of all evaluated benchmarks. In general, due to the device size being
fixed to 250x250 blocks and the benchmarks having widely varying sizes, the
results are quite different. For example, figure 10.10a shows an average size
benchmark, figure 10.10b a similarly sized one with two clusters of placed
logic and figure 10.10c shows the benchmark with the largest utilization.
This evaluation section will only provide averaged statistics and explain the

10.4 Power Management and Compensation 269

general structure of evaluation graphics using examples. Due to the differ-
ent placements of benchmarks, individual results may be interesting and
are provided in appendix F for all benchmarks and most parameter com-
binations. The placement of benchmarks was fixed for all evaluations, the
co-simulation was configured to always load the pre-placed results shown
here.

Power Reduction Figure 10.12 provides an exemplary overview of all eval-
uations for the arm_core benchmark, with RFET delay and power models
and no PVTA. Columns show different regions sizes, whereas the rows show
different parameter evaluations. The first row shows target delay factors 𝑘slack,
as obtained from VPR.Values have been color coded according to figure 10.11,
where unused blocks are shown in gray. For larger region sizes, the worst case
value for all CLBs within a region is used. As can be seen in e.g. figure 10.12c
and as expected, this causes larger regions to require the worst case slack
value, even if only a single CLB within the region is utilized. 𝑘slack values
are independent of PVTA and are therefore shown only once. Factors for all
benchmarks can be found in figures F.2 to F.5.

Delay:
SOI Voltage:

RFET Voltage:
Power:

1.3
−0.5V

2V

0

1
0V

2.5V

1

0.7
0.5V

3V

10

Figure 10.11:This legend shows the color coding for the various heatmaps. Values in
the center depict typical values, the left side shows slow values and the
right side fast values. Color gradients are scaled exponentially, so that
smaller changes in the typical region cause larger variation in colors.

The second row shows the achieved delay factor, 𝑘CLB. As in 𝑘slack figures, a
blue value shows a smaller target factor and depicts smaller propagation delay
and therefore faster than nominal circuits. Colors in all graphs have been nor-
malized to common values according to figure 10.11, enabling comparisons
between multiple figures.

The third row shows control voltage 𝐶. Graphs have been normalized for the
range of [2,3] volts, with the minimum value used by the power controller
being 1 V. Values outside the color range will be clamped to the range lim-
its. Color normalization comes at the drawback of reduces color resolution
for some regions. For example, a control voltage of 2.0 V can not easily be
distinguished from a value of 2.05 V. Because of this, some control voltage

270 Chapter 10 Evaluation

and power heatmaps appear to have uniform color, although there actually
are differences in the obtained values. The last row in figure 10.12 shows
the relative current or power, with blue color depicting higher power. For
the absolute color values, the same remarks as for the control voltage ap-
ply.

Figure 10.13 shows relative power for the benchmarks. Simulations were
performed using 100 simulation time steps, i.e. 100 invocations of the con-
trol loop. The value for each benchmark was obtained by first finding the
control voltage in each CLB at the last simulated time point. These values
were then used with RFET and SOI current models of section 4.6 to obtain
the normalized leakage current for all CLBs. The result is assumed to also
model the relative change in power, as explained in section 9.2. Finally, the
average of these values is calculated to obtain an aggregate value for each
benchmark. The results for SOI are shown in figure 10.13a, for RFET in fig-
ure 10.13b.

It can be seen that for the SOImodel, all benchmarks applications at all region
sizes have a relative power of 2.76×10−2. This is caused by the characteristics
of body bias control in this SOI technology: The application benchmarks
have been placed assuming the worst-case process variation, 𝑃 = −1. This
co-simulation on the other hand does not yet include the process variation
map and therefore determines the current delay factors 𝑘CLB using nominal
process variation, 𝑃 = 0. Due to this, each CLB is already 30.2% faster than
what was assumed during application placement. The controller accordingly
modifies the body bias to increase delay and save power. The slope 𝛿𝑡PD/𝛿𝑉BS
is comparatively small, as was shown in figure 4.17 on page 142. This leads to
the controller quickly setting the bias voltage to the minimum value,−0.5V.
Essentially, the controllers configure all region in the slowest low-powermode
available, reducing power as far as possible. The power saving is still signifi-
cant, due to the larger slope of 𝛿𝐼leak/𝛿𝑉BS as shown in figure 4.19 on page 144.
In this case, region size does not have any influence, as all regions always use
the same body bias, regardless of region size.

The RFET simulation in figure 10.13b shows different behavior: The slope
𝛿𝑡PD/𝛿𝑉PG is steeper and the behavior of that dependency is exponential,
as was shown in figure 4.21 on page 151. This means possible change by
controllers for PG voltage are limited, before the delay is increased too much.
In addition, 𝛿𝐼leak/𝛿𝑉PG is comparatively small, as shown in figure 4.23 on
page 153. It should be noted that this leakage current model may however
vary a lot with changes in RFET technology and that the measurements used
for modelling have a high uncertainty due to difficulty of measuring these

10.4 Power Management and Compensation 271

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10.12: Power reduction and delay for the arm_core benchmark. Evaluated
using the RFET model and without process variation. Rows show from
top to bottom: Target delay, achieved delay, control voltage and relative
power. Columns show different regions sizes. From left to right: 5x5,
10x10 and 25x25.

272 Chapter 10 Evaluation

values. Refer to [2] for details. It should also be noted that while this effect
limits the total energy saving possible using 𝑉th scaling in RFET technology,
it also means large compensation in performance can be achieved with small
changes in program voltage.

1 5 10 25 50

2.5

3

·10−2

r

p

arm_core bgm blob_merge diffeq2 ch_intrinsics
LU64PEEng mkSMAdapter4B average stereovision0

(a)

1 5 10 25 50

0.5

0.6

0.7

0.8

r

p

arm_core bgm blob_merge diffeq2 ch_intrinsics
LU64PEEng mkSMAdapter4B average stereovision0

(b)

Figure 10.13:Normalized static power 𝑝 for the benchmarks versus power region size,
simulated without process variation. (a) SOI model. (b) RFET model.

As the region controllers do not reach limits when scaling control voltages
for RFET, region size and resource utilization effects can now be seen. In
general, unused resources will still be scaled to the minimum control voltage
and power consumption. Higher utilization reduces the number of regions
in this low power mode and therefore leads to higher power consumption

10.4 Power Management and Compensation 273

for all regions sizes. This can for example be seen easily in the largest bench-
mark, LU64PEEng having the highest power consumption and the second-
largest, bgm, following. Region size effects can also be seen: A single CLB
with higher performance requirements in a region causes the whole region
to consume more power. Therefore, larger regions are expected to increase
power consumption. On the other hand, placement of logic is often clus-
tered, which affects the severity of this effect. Figure 10.13b shows that for
benchmarks with limited resource utilization, the difference between fine-
grain 1x1 regions and large 50x50 regions is less than 20% and that bench-
marks with less resource utilization are less affected by region size. The effects
for 25x25 regions are already less severe, so a trade-off between additional
logic for voltage scaling and power saving can be made based on these fig-
ures.

Process Variation Figure 10.16 shows similar FPGA maps, but this time for
SOI technology and including process variation. Target delay factors 𝑘slack
are shown again in the first row to easily compare them to the graphs in the
rows below. The figure also shows achieved delay, control voltage and relative
power using the same conventions as the previous figures. It can be seen that
even for SOI technology, with process variationnot all regions canbe operated
in the lowest power mode. Higher power regions are required according to a
combination of the placement map and the process variation map: Locations
where the target slack factor is smaller, or the process variation leads to worse
performance, require higher body bias voltages.

Figure 10.17 shows the effect for the RFET technology. Due to the previously
explained differences in RFET and SOI models, the difference between off-
regions and regions where active logic is placed is larger for RFET technology,
which means the placement locations can be easily recognized in the second,
third and fourth row. When looking closely, process variation can still be seen
in the background of the current delay figures. The control parameters also
vary slightly, but due to the large 𝛿𝑡PD/𝛿𝑉PG, this slight variation is not visible
in the figures.

Figure 10.14 shows aggregate values, obtained in the same way as the ones
in figure 10.13. There is little change compared to the data without process
variation for the RFET technology, as changes in the control voltage are small
due to the large slope of the delaymodels. Results for SOI aremore interesting:
Here, it can be seen that with process variation, not all regions are in low-
power mode and differences between regions sizes and benchmark resource
utilization start to show. It can again be seen, that larger benchmarks cause
higher relative power consumption for all regions. Also, larger regions lead to

274 Chapter 10 Evaluation

more current consumption for all benchmarks and affect larger benchmarks
more.

1 5 10 25 50

0

0.5

1

1.5

r

p

arm_core bgm blob_merge diffeq2 ch_intrinsics
LU64PEEng mkSMAdapter4B average stereovision0

(a)

1 5 10 25 50

0.5

0.6

0.7

0.8

r

p

arm_core bgm blob_merge diffeq2 ch_intrinsics
LU64PEEng mkSMAdapter4B average stereovision0

(b)

Figure 10.14:Normalized static power 𝑝 for the benchmarks versus power region size,
simulated with process variation. (a) SOI model. (b) RFET model.

One interesting observation is the largest benchmark requiring more power
than nominal power in the 50x50 region case. This can be explained in the
following way: Due to the simple proportional control algorithm used for
the region controllers, the control voltage for some regions did not settle
on a final value yet. The regions therefore are in higher performance mode
than necessary and use more power. This is especially severe when large
regions are used, as the affected area compared to total area becomes larger.
In the 50x50 case, the effect is severe enough that more than nominal power

10.4 Power Management and Compensation 275

is required. Even with the simple algorithm, the problem would be solved by
simulating more than 100 time steps. If a faster settling time is demanded, a
more elaborate control algorithm should be chosen.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0

0.5

1

1.5

Utilization

p

1x1 5x5 10x10 25x25 50x50

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

0.5

0.6

0.7

0.8

Utilization

p

1x1 5x5 10x10 25x25 50x50

(b)

Figure 10.15:Normalized static power 𝑝 for the benchmarks versus utilization, simu-
lated with process variation. (a) SOI model. (b) RFET model.

Figure 10.15 evaluates the samedata in a slightly differentway: Here, the y-axis
still depicts relative power, but over an x-axis depicting logic utilization. The
tested utilization range is limited according to the available benchmarks. In
this figure, it can be clearly seen how a larger utilization leads to higher power
consumption. As expected, there’s therefore more potential for power saving
when there’s less resourceutilization. Additionally, it canbe seenhow larger re-
gion sizes reduce the obtainable power reduction. The previously mentioned
limitation in the 50x50 test can also be seen here.

276 Chapter 10 Evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10.16: Process variation and delay for the arm_core benchmark, evaluated
using the SOI model. Rows show from top to bottom: Target delay,
achieved delay, control voltage and relative power. Columns show dif-
ferent regions sizes. From left to right: 5x5, 10x10 and 25x25.

10.4 Power Management and Compensation 277

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 10.17: Process variation and delay for the arm_core benchmark, evaluated
using the RFET model. Rows show from top to bottom: Target delay,
achieved delay, control voltage and relative power. Columns show dif-
ferent regions sizes. From left to right: 5x5, 10x10 and 25x25.

278 Chapter 10 Evaluation

Voltage Variation Voltage variation has been evaluated similarly, using the
voltage variation scenario described in section 4.7. For this evaluation, it has
been assumed that the power grid is using 5x5 tiles, independent of the power
regions implemented for power management. The figures in figure 10.18
have been derived using this grid and variation scenario based on the local
utilization in each region. Examples for three benchmarks are given here,
whereas the voltage variation maps for the remaining benchmarks can be
found in figure F.18 on page 383. The voltage variation maps shown here are
independent of the 𝜖 value, as it scales all voltage drop values in the same
way. Figure 10.19 shows the achieved delays for the arm_core benchmark
and 𝜖 = 0.1 in the RFET model. Heatmaps for the SOI model are similar
and are therefore not explicitly shown in this chapter. The voltage variation
simulations shown here and in the appendix additionally include process
variation as explained in the previous section. Graphs for other values of 𝜖
and for SOI are shown in appendix F.

(a) (b) (c)

Figure 10.18: Voltage variation maps for example applications. (a) arm_core bench-
mark. (b) stereovision0 benchmark. (c) LU64PEEng benchmark.

Figure 10.20 shows aggregate statistics for the voltage variation case, similarly
to the previously shown aggregate statistics for process variation. Unlike in
previous graphs, the graphs here only show relative current instead of relative
power: Due to the voltage variations, 𝑉𝐷𝐷 can no longer assumed to be
constant and power can no longer be derived from current using a single
factor. The overall trend of larger region causing higher leakage currents can
be seen for both technologies. The effect seems to be independent of the
𝜖 value, i.e. the magnitude of the voltage drops. This can be explained by
voltage drops occurring in regions with active logic independently of values
of 𝜖 or region size.

For the SOI model, differences between 𝜖 values are clearly visible. Because
of the large range of current values, the y-axis was plotted logarithmically.

10.4 Power Management and Compensation 279

Values below 1 show operation parameters under which the system is still
able to reduce current. For larger 𝑒𝑝𝑠𝑖𝑙𝑜𝑛 or larger region sizes, this is not
the case and higher currents are accepted when boosting the performance of
regions.

The influence of 𝑉𝐷𝐷 in the RFET model is less significant and results for all
𝜖 values are similar. Due to the large influence of the program gate control
voltage on the propagation delay, the compensation system is able to com-
pensate completely. Because of this, the effect of different 𝜖 values on the
total leakage current is also limited.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.19: Voltage variation compensation for the arm_core benchmark, evalu-
ated using the RFET model and 𝜖 = 0.1. Rows show from top to bottom:
Achieved delay, control voltage and relative power. Columns show dif-
ferent regions sizes. From left to right: 5x5, 10x10 and 25x25.

280 Chapter 10 Evaluation

1 5 10 25 50

10−1

100

101

r

i

ε = 0.1 ε = 0.2 ε = 0.3

(a)

1 5 10 50
0.5

0.55

0.6

0.65

r

i

ε = 0.1 ε = 0.2 ε = 0.3

(b)

Figure 10.20:Normalized leakage current 𝑖 for the benchmarks versus power region
size and voltage variation. (a) SOI model. (b) RFET model.

Temperature Variation Temperature variation results are given in fig-
ure 10.21, showing again achieved delay, control voltage and relative power
for one exemplary benchmark. Additionally, aggregated statistics in fig-
ure 10.23 show achieved static power reduction with the hotspot simulations.
The local hotspot model introduced in section 4.7 used for the evaluation is vi-
sualized in figure 10.22. It can be seen that the hotspot appears over time, the
evaluation figures however show the results at time step 100, when the final
value has been settled. Simulation over time is supported in the co-simulator,
but the data has not been evaluated here.

Figures 10.23a and 10.23b show little effect of the local hotspot. Those graphs
closely resemble the average graphs for the process variation evaluation,

10.4 Power Management and Compensation 281

which is expected as the temperature hotspot scenario was simulated with
process variation. The power usage is independent of the hotspot for both
technologies. In the SOI model, the hotspot leads to slightly increased local
delay. The effect is compensated by the PVTA scheme, but due to the small
number of affected regions, the leakage power reduction does not change
significantly.

In the RFET model, higher temperature leads to reduced delays. This effect
allows reducing the control parameter locally, but this does not lead to visible
changes in leakage power either.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.21: Temperature variation compensation for the arm_core benchmark,
evaluated using the RFET model and 𝑇 = 100. Rows show from top to
bottom: Achieved delay, control voltage and relative power. Columns
show different regions sizes. From left to right: 5x5, 10x10 and 25x25.

282 Chapter 10 Evaluation

(a) (b) (c) (d)

Figure 10.22: Local hotspot simulation for various points of time in the simulation.
(a) 𝑡 = 1. (b) 𝑡 = 5. (c) 𝑡 = 10. (d) 𝑡 = 20.

1 5 10 25 50
0

0.1

0.2

0.3

r

p

T = 25K T = 100K

(a)

1 5 10 25 50
0.5

0.55

0.6

r

p

T = 25K T = 100K

(b)

Figure 10.23:Normalized static power 𝑝 for the benchmarks versus power region size
and temperature variation. (a) SOI model. (b) RFET model.

10.4 Power Management and Compensation 283

Aging Achieved delay, control voltage and relative power for one exemplary
benchmark in the aging scenario are shown in figure 10.24. Figure 10.25
again shows aggregated static power statistics and additional graphs are again
available in appendix F.

Aging was modeled according to section 4.7 on page 152 and as all other
simulations, was simulated with process variation. For SOI, the param-
eters used to derive that aging parameter 𝐴 were chosen as 120 °C and
1.8 V. As was explained section 4.6, the RFET aging model was already
matched to produce results matching this aging parameter in the SOI
technology.

With aging, it can be seen that there is again no large influence on the RFET
model, but the SOI power consumption changes after longer aging. This is
again related to the delay sensitivity to control voltage changes in RFET and
SOI models. Again, due to the large sensitivity of the current model in SOI,
relative power increases up to an order of magnitude. The region size again
has a large influence on the additional power used. For RFET, high sensitivity
of propagation delay and low sensitivity of current on the control voltage
again result in little changes over time.

The RFET technology therefore seems to be relatively stable against any PVTA
influences, as they can be compensated more effectively than in SOI technol-
ogy. On the other hand, power saving benefits in RFET result primarily from
completely unutilized regions: Due to small changes in control voltage and
little sensitivity of the leakage current to this control voltage, the effects are
limited. This can be beneficial, as increasing relative performance is easier,
and detrimental, as saving power is more difficult. Whether this different be-
havior is beneficial therefore depends on the absolute performance reachable
in each technology. Such performance results are however largely dependent
of the maturity of the technology and could not be evaluated in this thesis.
It should also be remembered that the RFET model partially uses data from
the SOI model, such as aging and process variation. When production ready
manufacturing for RFET is introduced, those parts need to be re-modeled
to match the technology. Nevertheless, this initial analysis provided certain
insights in the differences of the technologies used and showed viability of a
power region based FPGA with PVTA compensation at system level, for both
technologies. The introduced co-simulation and the evaluation methodol-
ogy lay the foundations to evaluate improved models and region controller
control strategies in future work.

284 Chapter 10 Evaluation

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10.24: Aging compensation for the arm_core benchmark, evaluated using the
RFET model and 𝑡 = 10𝑦. Rows show from top to bottom: Achieved de-
lay, control voltage and relative power. Columns show different regions
sizes. From left to right: 5x5, 10x10 and 25x25.

10.4 Power Management and Compensation 285

1 5 10 25 50

0

10

20

r

p

t = 1 year t = 5 years t = 10 years

(a)

1 5 10 25 50
0.5

0.55

0.6

r

p

t = 1 year t = 5 years t = 10 years

(b)

Figure 10.25:Normalized static power 𝑝 for the benchmarks versus power region size
and aging. (a) SOI model. (b) RFET model.

This page intentionally left blank

Chapter 11

Conclusion and Outlook

The following sections will quickly summarize the topics and results
of this thesis. The final section will then discuss aspects that could
not be addressed fully in this thesis and should be addressed in future
work.

Summary

The overall goal of this thesis was to introduce novel ideas to reduce power
consumption in FPGA. Here, the thesis focused largely on static leakage cur-
rents, which could be reduced down to 2.76% in the most extreme cases,
when the whole FPGA could be put to low-power mode with the evaluated
SOI technology. Other, related topics were addressed in this document as
well: For PVTA compensation, simulation models and a co-simulation sys-
tem were introduced. For example, this simulator has shown that for region
sizes up to 10x10, voltage drops of up to 10% could be compensated in the
RFET technology without additional current draw. Similarly, it was shown
that small, local temperature hotspots have little effect on overall leakage
current with the simulated transistor technologies. It was also shown the
process variation can lead to propagation delay variation of up to 30% in the
evaluated technologies. Making use of the fact that FPGA applications are
commonly checked against worst case delays in STA, the power reduction
to 2.76% could be realized. It was also shown that for some benchmarks,
depending on region size, the improvement can be less. The results therefore
can serve as guidance when selecting the region size for such a power-aware
FPGA architecture.

The thesis also introduced RFET based logic generators for FPGAs, evaluating
the power savings achievable with RFET technology. It introduced a delay
and a powermodel for this technology, that was used in the final evaluation to

288 Chapter 11 Conclusion and Outlook

estimate the power savings. Furthermore, it was shown that the RFET technol-
ogy used has a high sensitivity of propagation delay in regard to the program
gate voltage, and little sensitivity of leakage current depending on this voltage.
The high sensitivity in the propagation delay enables more efficient PVTA
compensation compared to the tested SOI technology. On the other hand,
low sensitivity in the leakage current limits the achievable power reduction
compared to SOI. For example, the final evaluation showed a best-case power
reduction to 49.1%, whereas the SOI model could reduce power to 2.76%.
The results of this thesis suggest that future technology research could focus
more on influence of program gate bias on off-currents. On the other hand, it
should be noted that the RFET technology already offers absolute values for
off currents, that are much smaller than the ones in other technologies [2].
To demonstrate all those benefits, various FPGA aspects have been analyzed
with respect to RFET technology.

SimulationModels For the final evaluation, system-level simulation models
for RFETwere needed. This thesis therefore analyzed away to derive high level
propagation delays when only knowing the device currents, as available in de-
vice research papers. It further described how to take this propagation delay
information for a single cell to determinedelays in awhole FPGA.Thosedelays
were thenmodeled as relative changes, as absolute valueswere not obtainable
with raw device data. Themodels were then designed to describe PVTA depen-
dencies and control parameters for program gate voltage scaling. In addition
to RFET models based on device measurements, a SOI model was introduced
to describe a commercial technology for comparison. For this comparison
model, propagation delays could directly be obtained from SPICE simulation.
As some PVTA dependencies were not known for the RFET technology, they
were transferred from the SOImodel to the RFETmodel, obtaining a plausible,
but not real, estimated technology.

Building Circuits In order to build large circuits using RFET technology, the
design and use of an RFET standard cell library was investigated. Whereas
simulation of individual cells was performed by Reuter et al. [Reu21], the
derivation of the standard cell library was part of this thesis. The library was
then used for STA of large circuits, focusing on a cryptographic accelerator
for the ChaCha cipher. Especially for FPGAs, application of RFETs in reconfig-
urable logic was evaluated. Whereas small reconfigurable cells are available
in literature, they can not directly be used in FPGA due to their limited ex-
pressiveness. Because of that, more complex ULMs have been derived based
on these reconfigurable cells to replace the LUTs in FPGA. Then, efficient
strategies to combine these ULMs in clusters were evaluated. This thesis also

289

developed tools and methodology to evaluate the expressiveness of these
cells and compare them to reference LUTs. In addition, a toolflow that can
map arbitrary circuits to such ULM-based FPGA instead of LUT-based FPGA
has been introduced.

Building FPGAs To use these RFET ULMs in FPGA, system level changes
in the FPGA architecture were evaluated: Power management regions were
introduced to enable local trade-offs between performance and power. To
map applications to power regions, two approaches to assign region modes
have been introduced: Static assignment and dynamic assignment. In static
assignment body biasing, or program gate voltage scaling are determined dur-
ing user application implementation. Thedynamic assignment, which is used
in the final PARFAIT architecture, allows changing these control voltages at
runtime. For this, modifications in the EDA toolflow have been implemented
to characterize application paths and derive slack factors for each region.
Whereas this gives ametric for the required performance in a region, a mecha-
nism to measure the actual performance in each region is also required. Here,
the novel logic invasion scheme allows measuring the propagation delay of all
CLBs on an FPGA with little hardware overhead. Logic invasion uses special
auto-generated, partial bitstreams, to dynamically reprogram parts of the
FPGA with delay measurement logic, i.e. ring oscillators and counters. This
invasion occurs transparently, not interfering with the user application. It is
performed repeatedly to enable measurement of dynamic effects over time.
Target slack factors and the measured delays are then compared in a region
controller. This controller can adjust the body bias or program gate voltage in
a closed-loop manner, as it receives feedback from the delay measurement
system.

Methodology and Evaluation To evaluate possible power savings, the de-
rived current and delay models for SOI and RFET technology were used in
simulation. For this simulation, a co-simulation framework has been de-
signed to combine VHDL simulation for the FPGA architecture, Lua models
for PVTA influence and VPR for target slack factor estimation. The resulting
simulator is fully flexible in regard to the used technology models and the sim-
ulation scenarios. Whereas this thesis provided some example evaluations,
further evaluations can be realized easily. For example, heating evaluation
could consider larger hotspots, faster dynamic effects, multiple hot spots etc.
In addition to this simulation, the VFPGA was extended to allow for some
hardware simulation of the architecture.

290 Chapter 11 Conclusion and Outlook

Outlook

This thesis has set the foundations for research into power aware FPGA archi-
tectures. In some of the addressed topics, there are however opportunities
for further research:

Evaluation results depend heavily on the PVTA models. Whereas the SOI
model was derived from mature SPICE models, the RFET model was directly
extracted from measurement data. This data is not as mature as final SPICE
models, so the RFET model could be improved with better source data. For
scenario evaluations, more evaluations are possible. In addition, DSE could
be performed for more parameters: In this thesis, it was assumed that control
voltages can be set to arbitrary values. Further research could evaluate the
effect of discrete power levels and the number of levels required for efficient
power saving.

The RGATE ULMpresented in this work can be further improved as well. Such
improvements were shown in detail for the CNT-DR8F ULM, but could not be
implemented for the RGATE one because of time restrictions. The RGATE cell
has various benefits overCNT-DR8F : It is a static logic cell, similar to common
CMOS cells, and it is implemented in a technology for which detailed charac-
terization data is available. It also reduces the number of required configura-
tion inputs, which is crucial to reduce the FPGA configuration storage. For
example, due to the missing optimization, FPGAs needed three to four times
more CLBs to realize the evaluated benchmarks, than compared to the LUT
reference architecture. However, the RGATE ULM consists of only 5 RGATEs
with 2 bit configuration each, requiring 10 bit configuration storage in total.
The reference LUT on the other hand uses 64 bit of data storage. The RGATE
FPGA therefore needed less configuration storage, even though it was larger.
Increasing CLB numbers however also increase the global interconnect area,
which reduces the benefits of smaller storage. Future work therefore should
focus on introduction of more logic in CLBs, e.g. by doubling of the number
of RGATE ULMs in a FLE. For example, instead of using fracturable cells, both
outputs could be connected to full logic trees. This would enable doubling of
logic in a CLB without affecting the input or output interconnects. Also not
considered in this thesis was the topic of dynamic power, evaluation focused
largely on leakage current induced power loss.

Nevertheless, this thesis demonstrated the potential of power aware FPGA
architectures, more clever FPGA architectures that perform active power
management. Application of logic invasion has shown that fine-grain per-
formance measurement in FPGAs is possible with little additional resource

291

usage. In addition, an interdisciplinary approach has been used to evaluate
these power saving on novel RFET technology, even before detailed circuit
simulation models are available. The propagation delay models introduced
for RFET and SOI in this thesis are thoroughly described and can be easily
adapted for other circuit evaluations. Similarly, the developed simulation ap-
proach can be used to simulate arbitrary PVTA scenarios. All in all, this thesis
demonstrated that RFET based FPGA are feasible and the required changes
in toolflow and architecture are limited. RFET technology has been shown to
provide better compensation of PVTA effects due to the strong dependency of
device on-current on program gate voltage. On the other hand, the compari-
son SOI technology showed better improvements in leakage power reduction,
as the sensitivity of off-current on program gate voltage was limited for RFET.
For larger power savings, RFET technology research would have to focus on
improving this parameter. After writing of this thesis, improved RFET device
measurements with better control of 𝐼off have been researched in the PAR-
FAIT project. Updated evaluation results are intended to be published in late
2024. Besides that, the power management and PVTA compensation system
was shown to be technology independent, through evaluation in SOI and
RFET technologies. Such a power aware FPGA architecture could therefore
be implemented in any technology that allows for power and performance
trade-offs in some way.

This page intentionally left blank

Bibliography

[1] KRAUSS, Tillmann A.: “Planare elektrostatisch dotierte rekonfigurierbare
Schottky-Barriere FDSOI Feldeffekttransistor Strukturen”. Dissertation.
Darmstadt: Technische Universität Darmstadt, 2019 (cit. on pp. 3, 14–16, 161).

[2] GALDERISI, Giulio; BEYER, Christoph; MIKOLAJICK, Thomas and TROMMER,
Jens: “Insights into theTemperature Dependent Switching Behaviour of Three–
Gated Reconfigurable Field Effect Transistors”. In: physica status solidi (a)
(2023). DOI: 10.1002/pssa.202300019 (cit. on pp. 3, 6, 144–149, 152, 153, 227,
228, 241, 272, 288).

[3] ALTIERI SCARPATO, Mauricio: “Digital circuit performance estimation under
PVT and aging effects”. Thesis. Université Grenoble Alpes, 2017. URL: https:
//theses.hal.science/tel-01773745 (cit. on pp. 6, 12, 23, 32–35, 38–43, 133, 134,
137–140, 147).

[4] CLERC, Sylvain; DI GILIO, Thierry and CATHELIN, Andreia, eds.: The Fourth
Terminal: Benefits of Body-BiasingTechniques for FDSOI Circuits and Systems.
1st ed. 2020. Integrated Circuits and Systems. Cham: Springer International
Publishing and Imprint Springer, 2020 (cit. on p. 11).

[5] RANICA, R.; PLANES, N.; WEBER, O.; THOMAS, O.; HAENDLER, S.; NOBLET, D.;
CROAIN, D.; GARDIN, C. and ARNAUD, F.: “FDSOI process/design full solutions
for ultra low leakage, high speed and low voltage SRAMs”. In: 2013 Symposium
on VLSI Circuits (2013) (cit. on p. 12).

[6] HARTMANN, Joel: “FD-SOI Technology Development and Key Devices Charac-
teristics for Fast, Power Efficient, LowVoltage SoCs”. In: 2014 IEEE Compound
Semiconductor Integrated Circuit Symposium (CSICS). IEEE, 2014, pp. 1–4. DOI:
10.1109/CSICS.2014.6978554 (cit. on p. 12).

[7] SKOTNICKI, Thomas et al.: “Innovative Materials, Devices, and CMOS Tech-
nologies for Low-Power Mobile Multimedia”. In: IEEE Transactions on Electron
Devices 55.1 (2008), pp. 96–130. DOI: 10.1109/TED.2007.911338 (cit. on p. 12).

[8] SAKURAI, T. and NEWTON, A. R.: “Alpha-power law MOSFET model and its
applications to CMOS inverter delay and other formulas”. In: IEEE Journal of
Solid-State Circuits 25.2 (1990), pp. 584–594. DOI: 10.1109/4.52187 (cit. on
pp. 12, 23).

[9] DASDAN, Ali and HOM, Ivan: “Handling inverted temperature dependence in
static timing analysis”. In: ACM Transactions on Design Automation of Elec-
tronic Systems 11.2 (2006), pp. 306–324. DOI: 10.1145/1142155.1142158 (cit. on
pp. 12, 13).

https://doi.org/10.1002/pssa.202300019
https://theses.hal.science/tel-01773745
https://theses.hal.science/tel-01773745
https://doi.org/10.1109/CSICS.2014.6978554
https://doi.org/10.1109/TED.2007.911338
https://doi.org/10.1109/4.52187
https://doi.org/10.1145/1142155.1142158

294 Bibliography

[10] GHONEIM, H.; KNOCH, J.; RIEL, H.;WEBB, D.; BJORK, M. T.; KARG, S.; LORTSCHER,
E.; SCHMID, H. and RIESS, W.: “Interface engineering for the suppression of
ambipolar behavior in Schottky-barrier MOSFETs”. In: 2009 10th International
Conference on Ultimate Integration of Silicon. IEEE, 2009, pp. 69–72. DOI: 10.
1109/ULIS.2009.4897541 (cit. on p. 14).

[11] GHONEIM, H.; KNOCH, J.; RIEL, H.;WEBB, D.; BJÖRK, M. T.; KARG, S.; LÖRTSCHER,
E.; SCHMID, H. and RIESS,W.: “Suppression of ambipolar behavior in metallic
source/drain metal-oxide-semiconductor field-effect transistors”. In: Applied
Physics Letters 95.21 (2009), p. 213504. DOI: 10.1063/1.3266526 (cit. on p. 14).

[12] REENA MONICA, P.: “Seven Strategies to Suppress the Ambipolar Behaviour in
CNTFETs: a Review”. In: Silicon 14.16 (2022), pp. 10199–10216. DOI: 10.1007/
s12633-022-01813-5 (cit. on p. 14).

[13] LIN, Y.-M.; APPENZELLER, J.; KNOCH, J. and AVOURIS, P.: “High-Performance
Carbon Nanotube Field-Effect Transistor With Tunable Polarities”. In: IEEE
Transactions onNanotechnology 4.5 (2005), pp. 481–489. DOI: 10.1109/TNANO.
2005.851427 (cit. on pp. 14, 17).

[14] KRAUSS, Tillmann; WESSELY, Frank and SCHWALKE, Udo: “Fabrication and
simulation of electrically reconfigurable dual metal-gate planar field-effect
transistors for dopant-free CMOS”. In: 2017 12th International Conference on
Design & Technology of Integrated Systems In Nanoscale Era (DTIS). IEEE, 2017,
pp. 1–6. DOI: 10.1109/DTIS.2017.7930155 (cit. on p. 15).

[15] KRAUSS, Tillmann; WESSELY, Frank and SCHWALKE, Udo: “Electrostatically
Doped Planar Field-Effect Transistor for High Temperature Applications”. In:
ECS Journal of Solid State Science and Technology 4.5 (2015), Q46–Q50. DOI:
10.1149/2.0021507jss (cit. on pp. 15, 17).

[16] HUETING, Raymond J. E. and GUPTA, Gaurav: “Electrostatic Doping and De-
vices”. In: Springer Handbook of Semiconductor Devices. Ed. by RUDAN, Mas-
simo; BRUNETTI, Rossella andREGGIANI, Susanna. SpringerHandbooks. Cham:
Springer International Publishing, 2023, pp. 371–389. DOI: 10.1007/978-3-030-
79827-7_11 (cit. on p. 15).

[17] CARTER, R. et al.: “22nm FDSOI technology for emerging mobile, Internet-
of-Things, and RF applications”. In: 2016 IEEE International Electron Devices
Meeting (IEDM). IEEE, 2016, pp. 2.2.1–2.2.4. DOI: 10.1109/IEDM.2016.7838029
(cit. on pp. 15, 17).

[18] MIKOLAJICK, T.; HEINZIG, A.; TROMMER, J.; BALDAUF, T. and WEBER, W. M.:
“The RFET—a reconfigurable nanowire transistor and its application to novel
electronic circuits and systems”. In: Semiconductor Science and Technology
32.4 (2017), p. 043001. DOI: 10.1088/1361-6641/aa5581 (cit. on pp. 15, 17, 53,
54).

[19] KRAUSS, Tillmann;WESSELY, Frank and SCHWALKE, Udo: “Reconfigurable elec-
trostatically doped 2.5-gate planar field-effect transistors for dopant-free
CMOS”. In: 2018 13th International Conference on Design & Technology of
Integrated Systems In Nanoscale Era (DTIS). IEEE, 2018, pp. 1–4. DOI: 10.1109/
DTIS.2018.8368567 (cit. on p. 16).

https://doi.org/10.1109/ULIS.2009.4897541
https://doi.org/10.1109/ULIS.2009.4897541
https://doi.org/10.1063/1.3266526
https://doi.org/10.1007/s12633-022-01813-5
https://doi.org/10.1007/s12633-022-01813-5
https://doi.org/10.1109/TNANO.2005.851427
https://doi.org/10.1109/TNANO.2005.851427
https://doi.org/10.1109/DTIS.2017.7930155
https://doi.org/10.1149/2.0021507jss
https://doi.org/10.1007/978-3-030-79827-7_11
https://doi.org/10.1007/978-3-030-79827-7_11
https://doi.org/10.1109/IEDM.2016.7838029
https://doi.org/10.1088/1361-6641/aa5581
https://doi.org/10.1109/DTIS.2018.8368567
https://doi.org/10.1109/DTIS.2018.8368567

295

[20] WEBER,W. M.; HEINZIG, A.; TROMMER, J.; MARTIN, D.; GRUBE, M. and MIKO-
LAJICK, T.: “Reconfigurable nanowire electronics – A review”. In: Solid-State
Electronics 102 (2014), pp. 12–24. DOI: 10.1016/j.sse.2014.06.010 (cit. on p. 16).

[21] FEI,Wenwen; TROMMER, Jens; LEMME, Max Christian; MIKOLAJICK, Thomas
and HEINZIG, André: “Emerging reconfigurable electronic devices based on
two–dimensional materials: A review”. In: InfoMat 4.10 (2022). DOI: 10.1002/
inf2.12355 (cit. on p. 16).

[22] HEINZIG, André; SLESAZECK, Stefan; KREUPL, Franz; MIKOLAJICK, Thomas and
WEBER, Walter M.: “Reconfigurable silicon nanowire transistors”. In: Nano
letters 12.1 (2012), pp. 119–124. DOI: 10.1021/nl203094h (cit. on p. 17).

[23] WESSELY, Frank; KRAUSS, Tillmann and SCHWALKE, Udo: “Reconfigurable
CMOS with undoped silicon nanowire midgap Schottky-barrier FETs”. In:
Microelectronics Journal 44.12 (2013), pp. 1072–1076. DOI: 10.1016/j.mejo.
2012.08.004 (cit. on p. 17).

[24] KOO, Sang-Mo; LI, Qiliang; EDELSTEIN, Monica D.; RICHTER, Curt A. andVOGEL,
Eric M.: “Enhanced channel modulation in dual-gated silicon nanowire tran-
sistors”. In: Nano letters 5.12 (2005), pp. 2519–2523. DOI: 10.1021/nl051855i
(cit. on p. 17).

[25] COLLI, Alan; TAHRAOUI, Abbes; FASOLI, Andrea; KIVIOJA, Jani M.; MILNE,
William I. and FERRARI, Andrea C.: “Top-gated silicon nanowire transistors
in a single fabrication step”. In: ACS nano 3.6 (2009), pp. 1587–1593. DOI:
10.1021/nn900284b (cit. on p. 17).

[26] TROMMER, Jens; HEINZIG, Andre; BALDAUF, Tim; SLESAZECK, Stefan; MIKO-
LAJICK, Thomas andWEBER,Walter M.: “Functionality-Enhanced Logic Gate
Design Enabled by Symmetrical Reconfigurable Silicon Nanowire Transis-
tors”. In: IEEE Transactions on Nanotechnology 14.4 (2015), pp. 689–698. DOI:
10.1109/TNANO.2015.2429893 (cit. on pp. 17, 54, 55).

[27] TROMMER, J.; HEINZIG, A.; SLESAZECK, S.; MUHLE, U.; LOFFLER, M.;WALTER, D.;
MAYR, C.; MIKOLAJICK, T. andWEBER,W. M.: “Reconfigurable germanium tran-
sistors with low source-drain leakage for secure and energy-efficient doping-
free complementary circuits”. In: 2017 75th Annual Device Research Conference
(DRC). IEEE, 2017, pp. 1–2. DOI: 10.1109/DRC.2017.7999426 (cit. on p. 17).

[28] TROMMER, Jens et al.: “Enabling Energy Efficiency and Polarity Control in
Germanium Nanowire Transistors by Individually Gated Nanojunctions”. In:
ACS nano 11.2 (2017), pp. 1704–1711. DOI: 10.1021/acsnano.6b07531 (cit. on
p. 17).

[29] NAKAHARAI, Shu; IIJIMA, Tomohiko; OGAWA, Shinich; SUZUKI, Shingo; TSUK-
AGOSHI, Kazuhito; SATO, Shintaro and YOKOYAMA, Naoki: “Electrostatically-
reversible polarity of dual-gated graphene transistors with He ion irradiated
channel: Toward reconfigurable CMOS applications”. In: 2012 International
Electron Devices Meeting. IEEE, 2012, pp. 4.2.1–4.2.4. DOI: 10.1109/IEDM.2012.
6478976 (cit. on p. 17).

[30] NAKAHARAI, Shu; YAMAMOTO, Mahito; UENO, Keiji; LIN, Yen-Fu; LI, Song-Lin
and TSUKAGOSHI, Kazuhito: “Electrostatically Reversible Polarity of Ambipolar

https://doi.org/10.1016/j.sse.2014.06.010
https://doi.org/10.1002/inf2.12355
https://doi.org/10.1002/inf2.12355
https://doi.org/10.1021/nl203094h
https://doi.org/10.1016/j.mejo.2012.08.004
https://doi.org/10.1016/j.mejo.2012.08.004
https://doi.org/10.1021/nl051855i
https://doi.org/10.1021/nn900284b
https://doi.org/10.1109/TNANO.2015.2429893
https://doi.org/10.1109/DRC.2017.7999426
https://doi.org/10.1021/acsnano.6b07531
https://doi.org/10.1109/IEDM.2012.6478976
https://doi.org/10.1109/IEDM.2012.6478976

296 Bibliography

α-MoTe2 Transistors”. In: ACS nano 9.6 (2015), pp. 5976–5983. DOI: 10.1021/
acsnano.5b00736 (cit. on p. 17).

[31] LARENTIS, Stefano; FALLAHAZAD, Babak;MOVVA,HemaC. P.; KIM, Kyounghwan;
RAI, Amritesh; TANIGUCHI, Takashi;WATANABE, Kenji; BANERJEE, Sanjay K. and
TUTUC, Emanuel: “Reconfigurable Complementary Monolayer MoTe2 Field-
Effect Transistors for Integrated Circuits”. In: ACS nano 11.5 (2017), pp. 4832–
4839. DOI: 10.1021/acsnano.7b01306 (cit. on p. 17).

[32] RESTA, Giovanni V.; BALAJI, Yashwanth; LIN, Dennis; RADU, Iuliana P.;
CATTHOOR, Francky; GAILLARDON, Pierre-Emmanuel and MICHELI, Gio-
vanni de: “Doping-free complementary inverter enabled by 2D WSe2
electrostatically-doped reconfigurable transistors”. In: 2018 76th Device Re-
search Conference (DRC). IEEE, 2018, pp. 1–2. DOI: 10.1109/DRC.2018.8442152
(cit. on p. 17).

[33] PANG, Chin-Sheng and CHEN, Zhihong: “First Demonstration ofWSe2 CMOS
Inverter with Modulable Noise Margin by Electrostatic Doping”. In: 2018 76th
Device Research Conference (DRC). IEEE, 2018, pp. 1–2. DOI: 10.1109/DRC.
2018.8442258 (cit. on p. 17).

[34] WU, Peng; AMEEN, Tarek; ZHANG, Huairuo; BENDERSKY, Leonid A.; ILATIK-
HAMENEH, Hesameddin; KLIMECK, Gerhard; RAHMAN, Rajib; DAVYDOV, Albert
V. and APPENZELLER, Joerg: “Complementary Black Phosphorus Tunneling
Field-Effect Transistors”. In: ACS nano 13.1 (2019), pp. 377–385. DOI: 10.1021/
acsnano.8b06441 (cit. on p. 17).

[35] KOLODINSKI, S. et al.: “IPCEI subcontracts contributing to 22-FDX Add-On
Functionalities at GF”. In: ESSDERC 2019 - 49th European Solid-State Device
ResearchConference (ESSDERC). IEEE, 2019, pp. 74–77. DOI: 10.1109/ESSDERC.
2019.8901736 (cit. on p. 17).

[36] SIMON, Maik; MULAOSMANOVIC, Halid; SESSI, Violetta; DRESCHER, Maximil-
ian; BHATTACHARJEE, Niladri; SLESAZECK, Stefan;WIATR, Maciej; MIKOLAJICK,
Thomas and TROMMER, Jens: “Three-to-one analog signal modulation with
a single back-bias-controlled reconfigurable transistor”. In:Nature commu-
nications 13.1 (2022), p. 7042. DOI: 10.1038/s41467-022-34533-w (cit. on
p. 17).

[37] ZHANG, Jian; TANG, Xifan; GAILLARDON, Pierre-Emmanuel and MICHELI, Gio-
vanni de: “Configurable Circuits Featuring Dual-Threshold-Voltage Design
With Three-Independent-Gate Silicon Nanowire FETs”. In: IEEE Transactions
on Circuits and Systems I: Regular Papers 61.10 (2014), pp. 2851–2861. DOI:
10.1109/TCSI.2014.2333675 (cit. on pp. 17, 18).

[38] GAILLARDON, Pierre-Emmanuel; BEIGNE, Edith; LESECQ, Suzanne and
MICHELI, Giovanni de: “A Survey on Low-Power Techniques with Emerging
Technologies”. In: ACM Journal on Emerging Technologies in Computing
Systems 12.2 (2015), pp. 1–26. DOI: 10.1145/2714566 (cit. on pp. 17, 18).

[39] MARCHI, M. de; SACCHETTO, D.; FRACHE, S.; ZHANG, J.; GAILLARDON, P.-E.;
LEBLEBICI, Y. and MICHELI, G. de: “Polarity control in double-gate, gate-all-
around vertically stacked silicon nanowire FETs”. In: 2012 International Elec-

https://doi.org/10.1021/acsnano.5b00736
https://doi.org/10.1021/acsnano.5b00736
https://doi.org/10.1021/acsnano.7b01306
https://doi.org/10.1109/DRC.2018.8442152
https://doi.org/10.1109/DRC.2018.8442258
https://doi.org/10.1109/DRC.2018.8442258
https://doi.org/10.1021/acsnano.8b06441
https://doi.org/10.1021/acsnano.8b06441
https://doi.org/10.1109/ESSDERC.2019.8901736
https://doi.org/10.1109/ESSDERC.2019.8901736
https://doi.org/10.1038/s41467-022-34533-w
https://doi.org/10.1109/TCSI.2014.2333675
https://doi.org/10.1145/2714566

297

tron Devices Meeting. IEEE, 2012, pp. 8.4.1–8.4.4. DOI: 10.1109/IEDM.2012.
6479004 (cit. on p. 17).

[40] WESSELY, F.; KRAUSS, T. and SCHWALKE, U.: “Virtually dopant-free CMOS:
Midgap Schottky-barrier nanowire field-effect-transistors for high temper-
ature applications”. In: Solid-State Electronics 74 (2012), pp. 91–96. DOI:
10.1016/j.sse.2012.04.017 (cit. on p. 17).

[41] NI,Wangze; ZHANG, Yichi; HUANG, Bairun and CHEN, Zhuojun: “The Impact of
Temperature on Reconfigurable Field-Effect Transistor and Its Applications”.
In: 2021 9th International Symposium on Next Generation Electronics (ISNE).
IEEE, 2021, pp. 1–4. DOI: 10.1109/ISNE48910.2021.9493616 (cit. on p. 17).

[42] GALDERISI, Giulio; MIKOLAJICK, Thomas and TROMMER, Jens: “Robust Recon-
figurable Field Effect Transistors Process Route Enabling Multi-V T Devices
Fabrication for Hardware Security Applications”. In: 2022 Device Research Con-
ference (DRC). IEEE, 2022, pp. 1–2. DOI: 10.1109/DRC55272.2022.9855805
(cit. on pp. 18, 144, 145, 147, 227).

[43] ZHANG, Jian; MARCHI, Michele de; SACCHETTO, Davide; GAILLARDON, Pierre-
Emmanuel; LEBLEBICI,Yusuf andMICHELI, Giovanni de:“Polarity-Controllable
Silicon Nanowire TransistorsWith Dual ThresholdVoltages”. In: IEEE Transac-
tions on Electron Devices 61.11 (2014), pp. 3654–3660. DOI: 10.1109/TED.2014.
2359112 (cit. on p. 18).

[44] BAKER, Russel Jacob: CMOS circuit design, layout, and simulation. Fourth
edition. Vol. 22. IEEE Press series on microelectronic systems. Piscataway, NJ
and Hoboken, New Jersey: IEEE Press andWiley, 2019 (cit. on p. 20).

[45] WESTE, Neil H. E. and HARRIS, David Money: CMOSVLSI design: A circuits
and systems perspective. 4. ed. Boston, Mass.: Addison-Wesley, 2011 (cit. on
pp. 22, 23).

[46] KAHNG, Andrew B.; LIENIG, Jens; MARKOV, Igor L. and HU, Jin: VLSI Physical
Design: From Graph Partitioning to Timing Closure. Cham: Springer Interna-
tional Publishing, 2022. DOI: 10.1007/978-3-030-96415-3 (cit. on pp. 24–26, 65,
66).

[47] HUFF, Michael: “Review—Important Considerations Regarding Device Pa-
rameter Process Variations in Semiconductor-Based Manufacturing”. In: ECS
Journal of Solid State Science and Technology 10.6 (2021), p. 064002. DOI: 10.
1149/2162-8777/ac02a4 (cit. on pp. 28, 30).

[48] MAY, Gary S. and SPANOS, Costas J.: Fundamentals of semiconductor manu-
facturing and process control. Hoboken, NJ:Wiley-Interscience, 2006 (cit. on
p. 28).

[49] VAN ZANT, Peter: Microchip fabrication: A practical guide to semiconductor
processing. 6. ed. NewYork, NY: McGraw-Hill, 2014 (cit. on p. 28).

[50] GENG, Hwaiyu: Semiconductor Manufacturing Handbook, Second Edition.
2nd edition. NewYork, N.Y.: McGraw-Hill Education and McGraw Hill, 2017
(cit. on p. 28).

[51] BLAAUW, D.; CHOPRA, K.; SRIVASTAVA, A. and SCHEFFER, L.: “Statistical Timing
Analysis: From Basic Principles to State of the Art”. In: IEEE Transactions on

https://doi.org/10.1109/IEDM.2012.6479004
https://doi.org/10.1109/IEDM.2012.6479004
https://doi.org/10.1016/j.sse.2012.04.017
https://doi.org/10.1109/ISNE48910.2021.9493616
https://doi.org/10.1109/DRC55272.2022.9855805
https://doi.org/10.1109/TED.2014.2359112
https://doi.org/10.1109/TED.2014.2359112
https://doi.org/10.1007/978-3-030-96415-3
https://doi.org/10.1149/2162-8777/ac02a4
https://doi.org/10.1149/2162-8777/ac02a4

298 Bibliography

Computer-AidedDesign of Integrated Circuits and Systems 27.4 (2008), pp. 589–
607. DOI: 10.1109/TCAD.2007.907047 (cit. on pp. 29, 85).

[52] CHAMPAC,Victor and GARCIA GERVACIO, Jose: Timing Performance of Nanome-
ter Digital Circuits Under Process Variations. Vol. 39. Cham: Springer Inter-
national Publishing, 2018. DOI: 10.1007/978-3-319-75465-9 (cit. on pp. 29–
31).

[53] SARANGI, Smruti R.; GRESKAMP, Brian; TEODORESCU, Radu; NAKANO, Jun; TI-
WARI, Abhishek and TORRELLAS, Josep: “VARIUS: A Model of Process Variation
and Resulting Timing Errors for Microarchitects”. In: IEEE Transactions on
Semiconductor Manufacturing 21.1 (2008), pp. 3–13. DOI: 10.1109/TSM.2007.
913186 (cit. on pp. 31, 153).

[54] AGARWAL, A.; BLAAUW, D. and ZOLOTOV,V.: “Statistical timing analysis for intra-
die process variations with spatial correlations”. In: ICCAD-2003. International
Conference on Computer Aided Design (IEEE Cat. No.03CH37486). IEEE, 2003,
pp. 900–907. DOI: 10.1109/ICCAD.2003.159781 (cit. on p. 31).

[55] AGARWAL, A.; BLAAUW, D.; ZOLOTOV, V.; SUNDARESWARAN, S.; ZHAO, Min; GALA,
K. and PANDA, R.: “Statistical delay computation considering spatial correla-
tions”. In: Proceedings of the ASP-DAC Asia and South Pacific Design Automa-
tion Conference, 2003. IEEE, 2003, pp. 271–276. DOI: 10.1109/ASPDAC.2003.
1195028 (cit. on p. 31).

[56] KESHAVARZI, Ali et al.: “Measurements and modeling of intrinsic fluctuations
in MOSFET threshold voltage”. In: Proceedings of the 2005 international sym-
posium on Low power electronics and design - ISLPED ’05. Ed. by ROY, Kaushik
and TIWARI, Vivek. New York, New York, USA: ACM Press, 2005, p. 26. DOI:
10.1145/1077603.1077611 (cit. on pp. 31, 32, 153).

[57] FRIEDBERG, P.; CAO, Yu; CAIN, J.; WANG, Ruth; RABAEY, Jan and SPANOS,
C.: “Modeling Within-Die Spatial Correlation Effects for Process-Design
Co-Optimization”. In: Sixth International Symposium on Quality of Electronic
Design (ISQED’05). IEEE, 2005, pp. 516–521. DOI: 10.1109/ISQED.2005.82
(cit. on p. 31).

[58] PANG, Liang-Teck and NIKOLIC, Borivoje: “Measurements and Analysis of Pro-
cess Variability in 90 nm CMOS”. In: IEEE Journal of Solid-State Circuits 44.5
(2009), pp. 1655–1663. DOI: 10.1109/JSSC.2009.2015789 (cit. on p. 31).

[59] CHANG, Hongliang and SAPATNEKAR, S. S.: “Statistical timing analysis under
spatial correlations”. In: IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems 24.9 (2005), pp. 1467–1482. DOI: 10.1109/TCAD.
2005.850834 (cit. on p. 33).

[60] GHASEMZADEH MOHAMMADI, Hassan; GAILLARDON, Pierre-Emmanuel and
MICHELI, Giovanni de: “Efficient Statistical Parameter Selection for Non-
linear Modeling of Process/Performance Variation”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 35.12 (2016),
pp. 1995–2007. DOI: 10.1109/TCAD.2016.2547908 (cit. on pp. 33, 153).

[61] LANGE, Andre; SOHRMANN, Christoph; JANCKE, Roland; HAASE, Joachim;
CHENG, Binjie; ASENOV, Asen and SCHLICHTMANN, Ulf: “Multivariate Modeling

https://doi.org/10.1109/TCAD.2007.907047
https://doi.org/10.1007/978-3-319-75465-9
https://doi.org/10.1109/TSM.2007.913186
https://doi.org/10.1109/TSM.2007.913186
https://doi.org/10.1109/ICCAD.2003.159781
https://doi.org/10.1109/ASPDAC.2003.1195028
https://doi.org/10.1109/ASPDAC.2003.1195028
https://doi.org/10.1145/1077603.1077611
https://doi.org/10.1109/ISQED.2005.82
https://doi.org/10.1109/JSSC.2009.2015789
https://doi.org/10.1109/TCAD.2005.850834
https://doi.org/10.1109/TCAD.2005.850834
https://doi.org/10.1109/TCAD.2016.2547908

299

of Variability Supporting Non-Gaussian and Correlated Parameters”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
35.2 (2016), pp. 197–210. DOI: 10.1109/TCAD.2015.2459042 (cit. on pp. 33,
153).

[62] LANGE, Andre; SOHRMANN, Christoph; JANCKE, Roland; HAASE, Joachim;
LORENZ, Ingolf and SCHLICHTMANN, Ulf: “Probabilistic standard cell modeling
considering non-Gaussian parameters and correlations”. In:Design, Automa-
tion & Test in Europe Conference & Exhibition (DATE), 2014. New Jersey: IEEE
Conference Publications, 2014, pp. 1–4. DOI: 10.7873/DATE.2014.243 (cit. on
p. 33).

[63] KISHORE, Sajja Krishna; PATNALA,Tulasi Radhika;TIGADI, Arun S. and JAMSHED,
Aatif: “An On-chip Analysis of the VLSI designs under Process Variations”.
In: 2020 International Conference on Smart Electronics and Communication
(ICOSEC). IEEE, 2020, pp. 1273–1277. DOI: 10 . 1109 / ICOSEC49089 . 2020 .
9215244 (cit. on p. 33).

[64] SHAH, Nivana; HD, Nataraj Urs; GADHAWE, Akanksha and SAXENA, Ankit:
“Study of the Impact of Variations on Standard Cells”. In: Indian Journal of
Science and Technology 12.36 (2019), pp. 1–5. DOI: 10.17485/ijst/2019/v12i36/
147751 (cit. on p. 33).

[65] JIN, Leilei; FU,Wenjie; YAN, Hao and SHI, Longxing: “A Statistical Cell Delay
Model for Estimating the 3ςDelay byMatching Kurtosis”. In: IEEE Transactions
on Circuits and Systems II: Express Briefs 69.6 (2022), pp. 2932–2936. DOI: 10.
1109/TCSII.2022.3157981 (cit. on p. 33).

[66] WIRNSHOFER, Martin: Variation-aware adaptive voltage scaling for digital
CMOS circuits. Vol. 41. Springer series in advanced microelectronics. Dor-
drecht: Springer, 2013. DOI: 10 . 1007/978 -94 -007 -6196-4 (cit. on pp. 34,
35).

[67] BORKAR, Shekhar; KARNIK, Tanay; NARENDRA, Siva; TSCHANZ, Jim; KESHAVARZI,
Ali and DE, Vivek: “Parameter variations and impact on circuits and microar-
chitecture”. In: Proceedings of the 40th annual Design Automation Conference.
Ed. by GETREU, Ian; FIX, Limor and LAVAGNO, Luciano. New York, NY, USA:
ACM, 2003, pp. 338–342. DOI: 10.1145/775832.775920 (cit. on pp. 34, 36, 38).

[68] WONG, K. L.; RAHAL-ARABI, T.; MA, M. and TAYLOR, G.: “Enhancing Micropro-
cessor Immunity to Power Supply NoiseWith Clock-Data Compensation”. In:
IEEE Journal of Solid-State Circuits 41.4 (2006), pp. 749–758. DOI: 10.1109/
JSSC.2006.870925 (cit. on p. 34).

[69] GNAD, Dennis R. E.; OBORIL, Fabian; KIAMEHR, Saman and TAHOORI, Mehdi B.:
“An Experimental Evaluation and Analysis of Transient Voltage Fluctuations in
FPGAs”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Systems
26.10 (2018), pp. 1817–1830. DOI: 10.1109/TVLSI.2018.2848460 (cit. on pp. 34,
90, 104).

[70] KRAUTTER, Jonas: “Analysis and Mitigation of Remote Side-Channel and Fault
Attacks on the Electrical Level”. PhD thesis. 2022. DOI: 10.5445/IR/1000144660
(cit. on p. 35).

https://doi.org/10.1109/TCAD.2015.2459042
https://doi.org/10.7873/DATE.2014.243
https://doi.org/10.1109/ICOSEC49089.2020.9215244
https://doi.org/10.1109/ICOSEC49089.2020.9215244
https://doi.org/10.17485/ijst/2019/v12i36/147751
https://doi.org/10.17485/ijst/2019/v12i36/147751
https://doi.org/10.1109/TCSII.2022.3157981
https://doi.org/10.1109/TCSII.2022.3157981
https://doi.org/10.1007/978-94-007-6196-4
https://doi.org/10.1145/775832.775920
https://doi.org/10.1109/JSSC.2006.870925
https://doi.org/10.1109/JSSC.2006.870925
https://doi.org/10.1109/TVLSI.2018.2848460
https://doi.org/10.5445/IR/1000144660

300 Bibliography

[71] LARSSON, Patrik: “di/dt Noise in CMOS Integrated Circuits”. In: Analog Design
Issues in Digital VLSI Circuits and Systems. Ed. by BECERRA, Juan J. and FRIED-
MAN, Eby G. Boston, MA: Springer US, 1997, pp. 113–129. DOI: 10.1007/978-1-
4615-6101-9_10 (cit. on p. 35).

[72] GUPTA, Meeta S.; OATLEY, Jarod L.; JOSEPH, Russ;WEI, Gu-Yeon and BROOKS,
David M.: “UnderstandingVoltageVariations in Chip Multiprocessors using a
Distributed Power-Delivery Network”. In: 2007 Design, Automation & Test in
Europe Conference & Exhibition. IEEE, 2007, pp. 1–6. DOI: 10.1109/DATE.2007.
364663 (cit. on p. 35).

[73] KIAMEHR, Saman; EBRAHIMI, Mojtaba; GOLANBARI, Mohammad Saber and
TAHOORI, Mehdi B.: “Temperature-Aware DynamicVoltage Scaling to Improve
Energy Efficiency of Near-Threshold Computing”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 25.7 (2017), pp. 2017–2026. DOI:
10.1109/TVLSI.2017.2669375 (cit. on p. 36).

[74] MONDAL, S.; MUKHERJEE, R. and MEMIK, S. O.: “Fine-Grain Thermal Profiling
and Sensor Insertion for FPGAs”. In: 2006 IEEE International Symposium on
Circuits and Systems. IEEE, 2006, pp. 4387–4390. DOI: 10.1109/ISCAS.2006.
1693601 (cit. on p. 36).

[75] SUNDARARAJAN, Priya; GAYASEN, Aman;VIJAYKRISHNAN, N. andTUAN,T.: “Ther-
mal characterization and optimization in platform FPGAs”. In: Proceedings
of the 2006 IEEE/ACM international conference on Computer-aided design -
ICCAD ’06. Ed. by HASSOUN, Soha. NewYork, NewYork, USA: ACM Press, 2006,
p. 443. DOI: 10.1145/1233501.1233589 (cit. on p. 36).

[76] AMOURI, Abdulazim; AMROUCH, Hussam; EBI, Thomas; HENKEL, Jorg and
TAHOORI, Mehdi: “Accurate Thermal-Profile Estimation and Validation for
FPGA-Mapped Circuits”. In: 2013 IEEE 21st Annual International Symposium
on Field-Programmable Custom Computing Machines. IEEE, 2013, pp. 57–60.
DOI: 10.1109/FCCM.2013.48 (cit. on pp. 36, 37).

[77] AMOURI, Abdulazim;HEPP, Jochen andTAHOORI,Mehdi: “Built-In Self-Heating
Thermal Testing of FPGAs”. In: IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems 35.9 (2016), pp. 1546–1556. DOI: 10.1109/
TCAD.2015.2512905 (cit. on p. 36).

[78] AMROUCH, Hussam; EBI, Thomas; SCHNEIDER, Josef; PARAMESWARAN, Sridevan
and HENKEL, Jorg: “Analyzing the thermal hotspots in FPGA-based embedded
systems”. In: 2013 23rd International Conference on Field programmable Logic
and Applications. IEEE, 2013, pp. 1–4. DOI: 10.1109/FPL.2013.6645567 (cit. on
p. 36).

[79] AMOURI, Abdulazim: “Degradation in FPGAs: Monitoring, Modeling and Miti-
gation”. PhD thesis. 2015. DOI: 10.5445/IR/1000051435 (cit. on p. 36).

[80] LU,Weina; HU, Yu; YE, Jing and LI, Xiaowei: “TeSHoP: A Temperature Sensing
based Hotspot-Driven Placement technique for FPGAs”. In: 2016 26th Interna-
tional Conference on Field Programmable Logic and Applications (FPL). IEEE,
2016, pp. 1–4. DOI: 10.1109/FPL.2016.7577304 (cit. on p. 37).

https://doi.org/10.1007/978-1-4615-6101-9_10
https://doi.org/10.1007/978-1-4615-6101-9_10
https://doi.org/10.1109/DATE.2007.364663
https://doi.org/10.1109/DATE.2007.364663
https://doi.org/10.1109/TVLSI.2017.2669375
https://doi.org/10.1109/ISCAS.2006.1693601
https://doi.org/10.1109/ISCAS.2006.1693601
https://doi.org/10.1145/1233501.1233589
https://doi.org/10.1109/FCCM.2013.48
https://doi.org/10.1109/TCAD.2015.2512905
https://doi.org/10.1109/TCAD.2015.2512905
https://doi.org/10.1109/FPL.2013.6645567
https://doi.org/10.5445/IR/1000051435
https://doi.org/10.1109/FPL.2016.7577304

301

[81] SOLEIMANI, S.; AFZALI-KUSHA, A. and FOROUZANDEH, B.: “Temperature de-
pendence of propagation delay characteristic in FinFET circuits”. In: 2008
International Conference on Microelectronics. IEEE, 2008, pp. 276–279. DOI:
10.1109/ICM.2008.5393513 (cit. on pp. 37, 38).

[82] KUMAR, R. and KURSUN, V.: “Impact of temperature fluctuations on circuit
characteristics in 180nm and 65nm CMOS technologies”. In: 2006 IEEE Inter-
national Symposium on Circuits and Systems. IEEE, 2006, p. 4. DOI: 10.1109/
ISCAS.2006.1693470 (cit. on p. 38).

[83] KUMAR, R. and KURSUN, V.: “Reversed Temperature-Dependent Propagation
Delay Characteristics in Nanometer CMOS Circuits”. In: IEEE Transactions
on Circuits and Systems II: Express Briefs 53.10 (2006), pp. 1078–1082. DOI:
10.1109/TCSII.2006.882218 (cit. on p. 38).

[84] LANGE, André; GONZALEZ, Fabio A. Velarde; GIERING, Kay-Uwe; VERVANTIDIS,
Anastasios; HAHNE, Lukas; HEINIG, Andy and JANCKE, Roland: “A general ap-
proach for degradation modeling to enable a widespread use of aging simula-
tions in IC design”. In:Microelectronics Reliability 137 (2022), p. 114775. DOI:
10.1016/j.microrel.2022.114775 (cit. on pp. 38, 41).

[85] WANG, Xiaofei; TANG, Qianying; JAIN, Pulkit; JIAO, Dong and KIM, Chris H.: “The
Dependence of BTI andHCI-Induced FrequencyDegradation on Interconnect
Length and Its Circuit Level Implications”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 23.2 (2015), pp. 280–291. DOI: 10.1109/TVLSI.
2014.2307589 (cit. on p. 39).

[86] TYAGINOV, Stanislav; JECH,Markus; FRANCO, Jacopo; SHARMA, Prateek; KACZER,
Ben and GRASSER, Tibor: “Understanding and Modeling the Temperature Be-
havior of Hot-Carrier Degradation in SiON nMOSFETs”. In: IEEE Electron De-
vice Letters 37.1 (2016), pp. 84–87. DOI: 10.1109/LED.2015.2503920 (cit. on
p. 39).

[87] KHOSHAVI, Navid; ASHRAF, Rizwan A.; DEMARA, Ronald F.; KIAMEHR, Saman;
OBORIL, Fabian and TAHOORI, Mehdi B.: “Contemporary CMOS aging mitiga-
tion techniques: Survey, taxonomy, and methods”. In: Integration 59 (2017),
pp. 10–22. DOI: 10.1016/j.vlsi.2017.03.013 (cit. on pp. 39, 41, 42, 91).

[88] VELAMALA, Jyothi Bhaskarr; SUTARIA, Ketul; SATO,Takashi andCAO,Yu:“Physics
matters: Statistical aging prediction under trapping/detrapping”. In: Proceed-
ings of the 49th Annual Design Automation Conference. Ed. by GROENEVELD,
Patrick; SCIUTO, Donatella andHASSOUN, Soha. NewYork, NY, USA: ACM, 2012,
pp. 139–144. DOI: 10.1145/2228360.2228388 (cit. on p. 39).

[89] GUO, Xinfei; BURLESON,Wayne and STAN,Mircea: “Modeling andExperimental
Demonstration of Accelerated Self-Healing Techniques”. In: Proceedings of the
51st Annual Design Automation Conference. NewYork, NY, USA: ACM, 2014,
pp. 1–6. DOI: 10.1145/2593069.2593162 (cit. on p. 39).

[90] YE,Wei; ALAWIEH, Mohamed Baker; HSU, Che-Lun; LIN, Yibo and PAN, David
Z.: “Dealing with Aging and Yield in Scaled Technologies”. In: Dependable
Embedded Systems. Ed. by HENKEL, Jörg and DUTT, Nikil. Embedded Systems.

https://doi.org/10.1109/ICM.2008.5393513
https://doi.org/10.1109/ISCAS.2006.1693470
https://doi.org/10.1109/ISCAS.2006.1693470
https://doi.org/10.1109/TCSII.2006.882218
https://doi.org/10.1016/j.microrel.2022.114775
https://doi.org/10.1109/TVLSI.2014.2307589
https://doi.org/10.1109/TVLSI.2014.2307589
https://doi.org/10.1109/LED.2015.2503920
https://doi.org/10.1016/j.vlsi.2017.03.013
https://doi.org/10.1145/2228360.2228388
https://doi.org/10.1145/2593069.2593162

302 Bibliography

Cham: Springer International Publishing, 2021, pp. 409–429. DOI: 10.1007/978-
3-030-52017-5_17 (cit. on p. 40).

[91] ARNAUD, Lucile; TARTAVEL, G.; BERGER, T.; MARIOLLE, D.; GOBIL, Y. and TOUET,
I.: “Microstructure and electromigration in copper damascene lines”. In:Mi-
croelectronics Reliability 40.1 (2000), pp. 77–86. DOI: 10.1016/S0026-2714(99)
00209-7 (cit. on p. 40).

[92] LANGE, Andre: Aging Models: The Basis For Predicting Circuit Reliability. 2018.
URL: https://semiengineering.com/aging-models-the-basis-for-predicting-
circuit-reliability/ (visited on 04/25/2023) (cit. on p. 41).

[93] Open Model Interface Provides Standard for Advanced SPICE Capabilities.
URL: https://si2.org/open-model/ (visited on 04/25/2023) (cit. on p. 41).

[94] NAPHADE,T.; GOEL,N.;NAIR, P. R. andMAHAPATRA, S.: “Investigationof stochas-
tic implementation of reaction diffusion (RD) models for NBTI related inter-
face trap generation”. In: 2013 IEEE International Reliability Physics Sympo-
sium (IRPS). IEEE, 2013, XT.5.1–XT.5.11. DOI: 10.1109/IRPS.2013.6532120
(cit. on p. 41).

[95] KACZER, B.; GRASSER, T.; ROUSSEL, Ph. J.; FRANCO, J.; DEGRAEVE, R.; RAGNARS-
SON, L.-A.; SIMOEN, E.; GROESENEKEN, G. and REISINGER, H.: “Origin of NBTI
variability in deeply scaled pFETs”. In: 2010 IEEE International Reliability
Physics Symposium. IEEE, 2010, pp. 26–32. DOI: 10.1109/IRPS.2010.5488856
(cit. on p. 41).

[96] NUNES, Cícero; BUTZEN, Paulo F.; REIS, André I. and RIBAS, Renato P.: “BTI, HCI
and TDDB aging impact in flip–flops”. In:Microelectronics Reliability 53.9-11
(2013), pp. 1355–1359. DOI: 10.1016/j.microrel.2013.07.044 (cit. on p. 41).

[97] JAFARI, Atousa; RAJI, Mohsen and GHAVAMI, Behnam: “Impacts of ProcessVari-
ations and Aging on Lifetime Reliability of Flip-Flops: A Comparative Analysis”.
In: IEEE Transactions on Device and Materials Reliability 19.3 (2019), pp. 551–
562. DOI: 10.1109/TDMR.2019.2933998 (cit. on p. 41).

[98] LORENZ, Dominik; BARKE, Martin and SCHLICHTMANN, Ulf: “Aging analysis
at gate and macro cell level”. In: 2010 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD). IEEE, 2010, pp. 77–84. DOI: 10.1109/ICCAD.
2010.5654309 (cit. on p. 41).

[99] LU,Yinghai; SHANG, Li; ZHOU,Hai; ZHU,Hengliang;YANG, Fan and ZENG, Xuan:
“Statistical reliability analysis under process variation and aging effects”. In:
Proceedings of the 46th Annual Design Automation Conference. NewYork, NY,
USA: ACM, 2009, pp. 514–519. DOI: 10.1145/1629911.1630044 (cit. on p. 41).

[100] KIAMEHR, Saman; WECKX, Pieter; TAHOORI, Mehdi; KACZER, Ben; KUKNER,
Halil; RAGHAVAN, Praveen; GROESENEKEN, Guido and CATTHOOR, Francky:
“The impact of process variation and stochastic aging in nanoscale VLSI”. In:
2016 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2016,
CR-1-1-CR-1–6. DOI: 10.1109/IRPS.2016.7574590 (cit. on p. 41).

[101] OBORIL, Fabian and TAHOORI, Mehdi B.: “ExtraTime: Modeling and analysis
of wearout due to transistor aging at microarchitecture-level”. In: IEEE/IFIP

https://doi.org/10.1007/978-3-030-52017-5_17
https://doi.org/10.1007/978-3-030-52017-5_17
https://doi.org/10.1016/S0026-2714(99)00209-7
https://doi.org/10.1016/S0026-2714(99)00209-7
https://semiengineering.com/aging-models-the-basis-for-predicting-circuit-reliability/
https://semiengineering.com/aging-models-the-basis-for-predicting-circuit-reliability/
https://si2.org/open-model/
https://doi.org/10.1109/IRPS.2013.6532120
https://doi.org/10.1109/IRPS.2010.5488856
https://doi.org/10.1016/j.microrel.2013.07.044
https://doi.org/10.1109/TDMR.2019.2933998
https://doi.org/10.1109/ICCAD.2010.5654309
https://doi.org/10.1109/ICCAD.2010.5654309
https://doi.org/10.1145/1629911.1630044
https://doi.org/10.1109/IRPS.2016.7574590

303

International Conference on Dependable Systems and Networks (DSN 2012).
IEEE, 2012, pp. 1–12. DOI: 10.1109/DSN.2012.6263957 (cit. on p. 42).

[102] FIROUZI, Farshad; KIAMEHR, Saman; TAHOORI, Mehdi and NASSIF, Sani: “Incor-
porating the Impacts ofWorkload-Dependent RuntimeVariations into Timing
Analysis”. In: Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2013. New Jersey: IEEE Conference Publications, 2013, pp. 1022–1025.
DOI: 10.7873/DATE.2013.213 (cit. on p. 42).

[103] VANSANTEN,VictorM.; AMROUCH,Hussam;MARTIN-MARTINEZ, Javier;NAFRIA,
Montserrat and HENKEL, Jörg: “Designing guardbands for instantaneous aging
effects”. In: Proceedings of the 53rd Annual Design Automation Conference.
NewYork, NY, USA: ACM, 2016, pp. 1–6. DOI: 10.1145/2897937.2898006 (cit. on
p. 42).

[104] BROWN, S. and ROSE, J.: “FPGA and CPLD architectures: a tutorial”. In: IEEE
Design & Test of Computers 13.2 (1996), pp. 42–57. DOI: 10.1109/54.500200
(cit. on pp. 45, 46, 50, 51).

[105] PARANDEH-AFSHAR, Hadi; BENBIHI, Hind; NOVO, David and IENNE, Paolo:
“Rethinking FPGAs: elude the flexibility excess of LUTs with and-inverter
cones”. In: Proceedings of the ACM/SIGDA international symposium on Field
ProgrammableGate Arrays - FPGA ’12. Ed. byCOMPTON, Katherine andHUTCH-
INGS, Brad. NewYork, NewYork, USA: ACM Press, 2012, p. 119. DOI: 10.1145/
2145694.2145715 (cit. on pp. 46, 47, 75, 104).

[106] ZGHEIB, Grace; YANG, Liqun; HUANG, Zhihong; NOVO, David; PARANDEH-
AFSHAR, Hadi; YANG, Haigang and IENNE, Paolo: “Revisiting and-inverter
cones”. In: Proceedings of the 2014 ACM/SIGDA international symposium
on Field-programmable gate arrays. Ed. by BETZ, Vaughn and CON-
STANTINIDES, George A. New York, NY, USA: ACM, 2014, pp. 45–54. DOI:
10.1145/2554688.2554791 (cit. on p. 47).

[107] THUMMLER, Martin; RAI, Shubham and KUMAR, Akash: “Improving Technol-
ogy Mapping for And-Inverter-Cones”. In: 2022 Design, Automation & Test
in Europe Conference & Exhibition (DATE). IEEE, 2022, pp. 274–279. DOI: 10.
23919/DATE54114.2022.9774544 (cit. on p. 47).

[108] RAI, Shubham;NATH, Pallab; RUPANI, Ansh;VISHVAKARMA, SantoshKumar and
KUMAR, Akash: “A Survey of FPGA Logic Cell Designs in the Light of Emerging
Technologies”. In: IEEE Access 9 (2021), pp. 91564–91574. DOI: 10.1109/ACCESS.
2021.3092167 (cit. on pp. 47, 55).

[109] ZILIC, Z. and VRANESIC, Z. G.: “Using BDDs to Design ULMs for FPGAs”. In:
Fourth International ACM Symposium on Field-Programmable Gate Arrays.
IEEE, 1996, pp. 24–30. DOI: 10.1109/FPGA.1996.242252 (cit. on pp. 47, 48).

[110] PREPARATA, Franco P. and MULLER, David E.: “Generation of near-optimal
universal Boolean functions”. In: Journal of Computer and System Sciences 4.2
(1970), pp. 93–102. DOI: 10.1016/S0022-0000(70)80002-2 (cit. on p. 47).

[111] IIDA, Masahiro; AMAGASAKI, Motoki; OKAMOTO, Yasuhiro; ZHAO, Qian and
SUEYOSHI, Toshinori: “COGRE: A Novel Compact Logic Cell Architecture for

https://doi.org/10.1109/DSN.2012.6263957
https://doi.org/10.7873/DATE.2013.213
https://doi.org/10.1145/2897937.2898006
https://doi.org/10.1109/54.500200
https://doi.org/10.1145/2145694.2145715
https://doi.org/10.1145/2145694.2145715
https://doi.org/10.1145/2554688.2554791
https://doi.org/10.23919/DATE54114.2022.9774544
https://doi.org/10.23919/DATE54114.2022.9774544
https://doi.org/10.1109/ACCESS.2021.3092167
https://doi.org/10.1109/ACCESS.2021.3092167
https://doi.org/10.1109/FPGA.1996.242252
https://doi.org/10.1016/S0022-0000(70)80002-2

304 Bibliography

Area Minimization”. In: IEICE Transactions on Information and Systems E95-
D.2 (2012), pp. 294–302. DOI: 10.1587/transinf.E95.D.294 (cit. on p. 48).

[112] THAKUR, S. andWONG, D. F.: “On Designing ULM-Based FPGA Logic Modules”.
In: (1995), pp. 3–9. DOI: 10.1109/FPGA.1995.241856 (cit. on p. 48).

[113] HUTTER, M.: “Designing universal logic modules”. In: 9th International Con-
ference on Electronics, Circuits and Systems. IEEE, 2002, pp. 709–712. DOI:
10.1109/ICECS.2002.1046267 (cit. on p. 48).

[114] MICROSEMI: Axcelerator Family FPGAs. Revision 18. 2012. (Visited on
06/28/2023) (cit. on pp. 49, 50).

[115] KUON, Ian; TESSIER, Russell and ROSE, Jonathan: “FPGA Architecture: Survey
andChallenges”. In: Foundations andTrendsⓇ in ElectronicDesign Automation
2.2 (2007), pp. 135–253. DOI: 10.1561/1000000005 (cit. on p. 49).

[116] YANG, Haigang; ZHANG, Jia; SUN, Jiabin and LEYU: “Review of advanced FPGA
architectures and technologies”. In: Journal of Electronics (China) 31.5 (2014),
pp. 371–393. DOI: 10.1007/s11767-014-4090-x (cit. on pp. 50, 51).

[117] CHIN, Stephen Alexander; LUU, Jason; HUDA, Safeen and ANDERSON, Jason H.:
“Hybrid LUT/Multiplexer FPGA Logic Architectures”. In: IEEE Transactions on
Very Large Scale Integration (VLSI) Systems 24.4 (2016), pp. 1280–1292. DOI:
10.1109/TVLSI.2015.2451658 (cit. on p. 50).

[118] DEHON, André and HAUCK, Scott: Reconfigurable Computing: The Theory and
Practice of FPGA-Based Computation. 1. Aufl. Systems on Silicon. s.l.: Elsevier
professional, 2007 (cit. on pp. 50, 51, 57, 58, 64–66).

[119] CHIASSON, Charles and BETZ, Vaughn: “COFFE: Fully-automated transistor
sizing for FPGAs”. In: 2013 International Conference on Field-Programmable
Technology (FPT). IEEE, 2013, pp. 34–41. DOI: 10.1109/FPT.2013.6718327
(cit. on p. 51).

[120] AMANO, Hideharu, ed.: Principles and structures of FPGAs. Singapore: Spring-
er, 2018 (cit. on pp. 51, 58–60).

[121] RODRÍGUEZ-ANDINA, Juan José; LA TORRE-ARNANZ, Eduardo de andVALDÉS
PEÑA, María Dolores: FPGAs: Fundamentals, advanced features, and appli-
cations in industrial electronics. First issued in paperback. Boca Raton: CRC
Press, 2020 (cit. on p. 51).

[122] CHENG, Kevin; LE BEUX, Sebastien and O’CONNOR, Ian: “Hybrid Topologies
for Reconfigurable Matrices Based on Nano-Grain Cells”. In: 2017 IEEE Inter-
national Conference on Rebooting Computing (ICRC). IEEE, 2017, pp. 1–8. DOI:
10.1109/ICRC.2017.8123639 (cit. on pp. 53, 55).

[123] JABEUR, Kotb; YAKYMETS, Natalya; O’CONNOR, Ian and LE-BEUX, Sébastien:
“Fine-grain reconfigurable logic cells based on double-gate CNTFETs”. In:
Proceedings of the 21st edition of the great lakes symposium on Great lakes
symposium on VLSI. Ed. by ATIENZA, David; XIE, Yuan; AYALA, Jose L. and
STEVENS, Ken. NewYork, NY: ACM, 2011, p. 19. DOI: 10.1145/1973009.1973014
(cit. on pp. 53–55).

[124] CHENG, Kevin; LE BEUX, Sebastien and O’CONNOR, Ian: “Am/IDG-FET based
reconfigurable cells versus LUTs: Characteristics description and analysis”.

https://doi.org/10.1587/transinf.E95.D.294
https://doi.org/10.1109/FPGA.1995.241856
https://doi.org/10.1109/ICECS.2002.1046267
https://doi.org/10.1561/1000000005
https://doi.org/10.1007/s11767-014-4090-x
https://doi.org/10.1109/TVLSI.2015.2451658
https://doi.org/10.1109/FPT.2013.6718327
https://doi.org/10.1109/ICRC.2017.8123639
https://doi.org/10.1145/1973009.1973014

305

In: 2013 25th International Conference on Microelectronics (ICM). IEEE, 2013,
pp. 1–4. DOI: 10.1109/ICM.2013.6734987 (cit. on pp. 53, 55).

[125] GAILLARDON, Pierre-Emmanuel; AMARÙ, Luca Gaetano; BOBBA, Shashikanth;
MARCHI, Michele de; SACCHETTO, Davide and MICHELI, Giovanni de:
“Nanowire systems: technology and design”. In: Philosophical transactions.
Series A, Mathematical, physical, and engineering sciences 372.2012 (2014),
p. 20130102. DOI: 10.1098/rsta.2013.0102 (cit. on pp. 53, 55).

[126] RAI, Shubham;TROMMER, Jens; RAITZA,Michael;MIKOLAJICK,Thomas;WEBER,
Walter M. and KUMAR, Akash: “Designing Efficient Circuits Based on Runtime-
Reconfigurable Field-Effect Transistors”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 27.3 (2019), pp. 560–572. DOI: 10.1109/TVLSI.
2018.2884646 (cit. on pp. 54, 71).

[127] O’CONNOR, Ian et al.: “CNTFET Modeling and Reconfigurable Logic-Circuit
Design”. In: IEEE Transactions on Circuits and Systems I: Regular Papers 54.11
(2007), pp. 2365–2379. DOI: 10.1109/TCSI.2007.907835 (cit. on p. 54).

[128] LIU, J.; O’CONNOR, I.; NAVARRO, D. andGAFFIOT, F.: “Design of aNovel CNTFET-
based Reconfigurable Logic Gate”. In: IEEE Computer Society Annual Sympo-
sium on VLSI (ISVLSI ’07). IEEE, 2007, pp. 285–290. DOI: 10.1109/ISVLSI.2007.
39 (cit. on pp. 54, 177–179).

[129] KATO, Junki;WATANABE, Shigeyoshi; NINOMIYA, Hiroshi; KOBAYASHI, Manabu
and MIURA, Yasuyuki: “Circuit design of reconfigurable dynamic logic based
on double gate CNTFETs focusing on number of states of back gate voltages”.
In: Contemporary Engineering Sciences 7 (2014), pp. 39–52. DOI: 10.12988/ces.
2014.3952 (cit. on p. 54).

[130] KUMAR, T. Nandha; ALMURIB, Haider A. F. and LOMBARDI, Fabrizio: “A novel
design of a memristor-based look-up table (LUT) for FPGA”. In: 2014 IEEE Asia
Pacific Conference on Circuits and Systems (APCCAS). IEEE, 2014, pp. 703–706.
DOI: 10.1109/APCCAS.2014.7032878 (cit. on p. 55).

[131] GUO, Yanwen;WANG, Xiaoping and ZENG, Zhigang: “A Compact Memristor-
CMOS Hybrid Look-Up-Table Design and Potential Application in FPGA”. In:
IEEETransactions onComputer-AidedDesignof IntegratedCircuits andSystems
36.12 (2017), pp. 2144–2148. DOI: 10.1109/TCAD.2017.2681079 (cit. on p. 55).

[132] NINOMIYA,Hiroshi; KOBAYASHI,Manabu andWATANABE, Shigeyoshi: “Reduced
Reconfigurable Logic Circuit Design Based on Double Gate CNTFETs Using
Ambipolar Binary Decision Diagram”. In: IEICE Transactions on Fundamentals
of Electronics,Communications andComputer Sciences E96.A.1 (2013), pp. 356–
359. DOI: 10.1587/transfun.E96.A.356 (cit. on p. 55).

[133] YAKYMETS, N.; JABEUR, K.; O’CONNOR, I. and LE BEUX, S.: “Interconnect topol-
ogy for cell matrices based on low-power nanoscale devices”. In: 2011 Faible
Tension Faible Consommation (FTFC). IEEE, 2011, pp. 99–102. DOI: 10.1109/
FTFC.2011.5948929 (cit. on p. 55).

[134] BABU, Praveenkumar and PARTHASARATHY, Eswaran: “Reconfigurable FPGA
Architectures: A Survey and Applications”. In: Journal of The Institution of

https://doi.org/10.1109/ICM.2013.6734987
https://doi.org/10.1098/rsta.2013.0102
https://doi.org/10.1109/TVLSI.2018.2884646
https://doi.org/10.1109/TVLSI.2018.2884646
https://doi.org/10.1109/TCSI.2007.907835
https://doi.org/10.1109/ISVLSI.2007.39
https://doi.org/10.1109/ISVLSI.2007.39
https://doi.org/10.12988/ces.2014.3952
https://doi.org/10.12988/ces.2014.3952
https://doi.org/10.1109/APCCAS.2014.7032878
https://doi.org/10.1109/TCAD.2017.2681079
https://doi.org/10.1587/transfun.E96.A.356
https://doi.org/10.1109/FTFC.2011.5948929
https://doi.org/10.1109/FTFC.2011.5948929

306 Bibliography

Engineers (India): Series B 102.1 (2021), pp. 143–156. DOI: 10.1007/s40031-020-
00508-y (cit. on pp. 57, 59, 60).

[135] INTEL: IntelⓇ ArriaⓇ 10 Core Fabric and General Purpose I/Os Hand-
book. 2023. URL: https : / /www. intel . com/content/www/us/en/docs/
programmable/683461/ (visited on 07/22/2023) (cit. on p. 58).

[136] ZGHEIB, Grace and IENNE, Paolo: “Evaluating FPGA clusters underwide ranges
of design parameters”. In: 2017 27th International Conference on Field Pro-
grammable Logic and Applications (FPL). IEEE, 2017, pp. 1–8. DOI: 10.23919/
FPL.2017.8056826 (cit. on p. 58).

[137] BOUTROS, Andrew and BETZ, Vaughn: “FPGA Architecture: Principles and
Progression”. In: IEEE Circuits and Systems Magazine 21.2 (2021), pp. 4–29.
DOI: 10.1109/MCAS.2021.3071607 (cit. on p. 59).

[138] XILINX: UltraScale Architecture Configurable Logic Block: User Guide. 2017.
URL: https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb (visited on
07/22/2023) (cit. on p. 59).

[139] SMITH, Michael John Sebastian: Application-specific integrated circuits. VLSI
systems series. Reading, Mass.: Addison-Wesley, 1997 (cit. on p. 61).

[140] DEL SOZZO, Emanuele; CONFICCONI, Davide; ZENI, Alberto; SALARIS, Mirko;
SCIUTO, Donatella and SANTAMBROGIO, Marco D.: “Pushing the Level of Ab-
straction of Digital System Design: A Survey on How to Program FPGAs”. In:
ACM Computing Surveys 55.5 (2023), pp. 1–48. DOI: 10.1145/3532989 (cit. on
p. 63).

[141] LYKE, James C.; CHRISTODOULOU, Christos G.; VERA, G. Alonzo and EDWARDS,
Arthur H.: “An Introduction to Reconfigurable Systems”. In: Proceedings of the
IEEE 103.3 (2015), pp. 291–317. DOI: 10.1109/JPROC.2015.2397832 (cit. on
p. 63).

[142] LUU, Jason et al.: “VTR 7.0”. In:ACMTransactions onReconfigurable Technology
and Systems 7.2 (2014), pp. 1–30. DOI: 10.1145/2617593 (cit. on pp. 64, 180).

[143] SHAH, David; HUNG, Eddie; WOLF, Clifford; BAZANSKI, Serge; GISSELQUIST,
Dan and MILANOVIC, Miodrag: “Yosys+nextpnr: An Open Source Framework
fromVerilog to Bitstream for Commercial FPGAs”. In: 2019 IEEE 27th Annual
International Symposium on Field-Programmable Custom Computing Ma-
chines (FCCM). IEEE, 2019, pp. 1–4. DOI: 10.1109/FCCM.2019.00010 (cit. on
pp. 64, 66).

[144] BRAYTON, Robert and MISHCHENKO, Alan: “ABC: An Academic Industrial-
StrengthVerificationTool”. In:Computer Aided Verification. Ed. byHUTCHISON,
David et al. Vol. 6174. Lecture Notes in Computer Science. Berlin, Heidelberg:
SpringerBerlinHeidelberg, 2010, pp. 24–40. DOI: 10.1007/978-3-642-14295-6_5
(cit. on p. 64).

[145] SYNOPSYS: Liberty User Guides and Reference Manual Suite. 2017 (cit. on
p. 64).

[146] BETZ, Vaughn and ROSE, Jonathan: “VPR: a new packing, placement and rout-
ing tool for FPGA research”. In: 1304 (1997), pp. 213–222. DOI: 10.1007/3-540-
63465-7_226. (Visited on 04/04/2019) (cit. on pp. 65, 66).

https://doi.org/10.1007/s40031-020-00508-y
https://doi.org/10.1007/s40031-020-00508-y
https://www.intel.com/content/www/us/en/docs/programmable/683461/
https://www.intel.com/content/www/us/en/docs/programmable/683461/
https://doi.org/10.23919/FPL.2017.8056826
https://doi.org/10.23919/FPL.2017.8056826
https://doi.org/10.1109/MCAS.2021.3071607
https://docs.xilinx.com/v/u/en-US/ug574-ultrascale-clb
https://doi.org/10.1145/3532989
https://doi.org/10.1109/JPROC.2015.2397832
https://doi.org/10.1145/2617593
https://doi.org/10.1109/FCCM.2019.00010
https://doi.org/10.1007/978-3-642-14295-6_5
https://doi.org/10.1007/3-540-63465-7_226
https://doi.org/10.1007/3-540-63465-7_226

307

[147] GEREZ, Sabih H.: Algorithms for VLSI design automation. Chichester and
Weinheim: Wiley, 1999. URL: http://www.loc.gov/catdir/bios/wiley042/
98039574.html (cit. on p. 66).

[148] F4PGA: FPGA Assembly (FASM) documentation. 2023. URL: https://fasm.
readthedocs.io/en/latest/ (visited on 07/23/2023) (cit. on p. 66).

[149] VTR DEVELOPERS: FPGA Assembly (FASM) Output Support. 2023. URL: https:
//docs.verilogtorouting.org/en/latest/utils/fasm/ (visited on 07/23/2023)
(cit. on p. 67).

[150] SKYWATER TECHNOLOGY: SkyWater Open Source PDK. 2020. URL: https ://
github.com/google/skywater-pdk (visited on 08/01/2023) (cit. on p. 69).

[151] GLOBALFOUNDRIES: GlobalFoundries GF180MCU Open Source PDK. 2022.
URL: https://github.com/google/gf180mcu-pdk (cit. on p. 69).

[152] STINE, James E. et al.: “FreePDK: An Open-SourceVariation-Aware Design Kit”.
In: 2007 IEEE International Conference on Microelectronic Systems Education
(MSE’07). IEEE, 2007, pp. 173–174. DOI: 10.1109/MSE.2007.44 (cit. on p. 69).

[153] BHANUSHALI, Kirti and DAVIS,W. Rhett: “FreePDK15”. In: Proceedings of the
2015 Symposium on International Symposium on Physical Design. Ed. by
DAVOODI, Azadeh and YOUNG, Evangeline. New York, NY, USA: ACM, 2015,
pp. 165–170. DOI: 10.1145/2717764.2717782 (cit. on p. 69).

[154] MARTINS, Mayler; MATOS, Jody Maick; RIBAS, Renato P.; REIS, André;
SCHLINKER, Guilherme; RECH, Lucio and MICHELSEN, Jens: “Open Cell
Library in 15nm FreePDK Technology”. In: Proceedings of the 2015 Symposium
on International Symposium on Physical Design. Ed. by DAVOODI, Azadeh
and YOUNG, Evangeline. New York, NY, USA: ACM, 2015, pp. 171–178. DOI:
10.1145/2717764.2717783 (cit. on pp. 70, 71).

[155] RAI, Shubham; RAITZA, Michael; SAHOO, Siva Satyendra and KUMAR, Akash:
“DiSCERN: Distilling Standard-Cells for Emerging Reconfigurable Nanotech-
nologies”. In:2020Design,Automation&Test inEuropeConference&Exhibition
(DATE). IEEE, 2020, pp. 674–677. DOI: 10.23919/DATE48585.2020.9116216
(cit. on p. 71).

[156] KRINKE, Andreas; RAI, Shubham; KUMAR, Akash and LIENIG, Jens: “Exploring
Physical Synthesis for Circuits based on Emerging Reconfigurable Nanotech-
nologies”. In: 2021 IEEE/ACM International Conference On Computer Aided
Design (ICCAD). IEEE, 2021, pp. 1–9. DOI: 10.1109/ICCAD51958.2021.9643439
(cit. on p. 72).

[157] BEN-JAMAA, M. Haykel; MOHANRAM, Kartik and MICHELI, Giovanni de: “An
Efficient Gate Library for Ambipolar CNTFET Logic”. In: IEEE Transactions on
Computer-AidedDesign of Integrated Circuits and Systems 30.2 (2011), pp. 242–
255. DOI: 10.1109/TCAD.2010.2085250 (cit. on pp. 72, 74).

[158] RAI, Shubham; RUPANI, Ansh; WALTER, Dennis; RAITZA, Michael; HEINZIG,
Andre; BALDAUF, Tim; TROMMER, Jens; MAYR, Christian;WEBER,Walter M. and
KUMAR, Akash: “A physical synthesis flow for early technology evaluation of
silicon nanowire based reconfigurable FETs”. In: 2018 Design, Automation &

http://www.loc.gov/catdir/bios/wiley042/98039574.html
http://www.loc.gov/catdir/bios/wiley042/98039574.html
https://fasm.readthedocs.io/en/latest/
https://fasm.readthedocs.io/en/latest/
https://docs.verilogtorouting.org/en/latest/utils/fasm/
https://docs.verilogtorouting.org/en/latest/utils/fasm/
https://github.com/google/skywater-pdk
https://github.com/google/skywater-pdk
https://github.com/google/gf180mcu-pdk
https://doi.org/10.1109/MSE.2007.44
https://doi.org/10.1145/2717764.2717782
https://doi.org/10.1145/2717764.2717783
https://doi.org/10.23919/DATE48585.2020.9116216
https://doi.org/10.1109/ICCAD51958.2021.9643439
https://doi.org/10.1109/TCAD.2010.2085250

308 Bibliography

Test in Europe Conference & Exhibition (DATE). IEEE, 2018, pp. 605–608. DOI:
10.23919/DATE.2018.8342080 (cit. on pp. 72, 74).

[159] GORE, Ganesh; CADAREANU, Patsy; GIACOMIN, Edouard and GAILLARDON,
Pierre-Emmanuel: “A Predictive Process Design Kit for Three-Independent-
Gate Field-Effect Transistors”. In: 2019 IFIP/IEEE 27th International Conference
on Very Large Scale Integration (VLSI-SoC). IEEE, 2019, pp. 172–177. DOI: 10.
1109/VLSI-SoC.2019.8920358 (cit. on pp. 73, 74).

[160] GAUCHI, Roman; SNELGROVE,AshtonandGAILLARDON,Pierre-Emmanuel:“An
Open-source Three-Independent-Gate FET Standard Cell Library for Mixed
Logic Synthesis”. In: 2022 IEEE International Symposium on Circuits and Sys-
tems (ISCAS). IEEE, 2022, pp. 273–277. DOI: 10.1109/ISCAS48785.2022.9937590
(cit. on pp. 73, 74).

[161] KEYSER, Michael; GAUCHI, Roman and GAILLARDON, Pierre-Emmanuel: “An
Energy-Efficient Three-Independent-Gate FET Cell Library for Low-Power
Edge Computing”. In: 2022 IFIP/IEEE 30th International Conference on Very
Large Scale Integration (VLSI-SoC). IEEE, 2022, pp. 1–6. DOI: 10.1109/VLSI-
SoC54400.2022.9939636 (cit. on pp. 73, 74).

[162] QUIJADA, Jorge Navarro; BALDAUF, Tim; RAI, Shubham; HEINZIG, Andre; KU-
MAR, Akash;WEBER,Walter M.; MIKOLAJICK, Thomas and TROMMER, Jens: “A
Germanium Nanowire Reconfigurable Transistor Model for Predictive Tech-
nology Evaluation”. In: IEEE Transactions on Nanotechnology (2022), pp. 1–8.
DOI: 10.1109/TNANO.2022.3221836 (cit. on pp. 73, 74).

[163] GONCALVES, O.; PRENAT, G. and DIENY, B.: “Radiation Hardened MRAM-Based
FPGA”. In: IEEE Transactions on Magnetics 49.7 (2013), pp. 4355–4358. DOI:
10.1109/TMAG.2013.2247744 (cit. on pp. 75, 104).

[164] BEN JAMAA, M. Haykel; GAILLARDON, Pierre-Emmanuel; FRÉGONÈSE, Se-
bastien; MARCHI, Michele de; MICHELI, Giovanni de; ZIMMER, Thomas;
O’CONNOR, Ian and CLERMIDY, Fabien: “FPGA Design with Double-Gate
CarbonNanotubeTransistors”. In:ECSTransactions 34.1 (2011), pp. 1005–1010.
DOI: 10.1149/1.3567706 (cit. on pp. 75, 104).

[165] GAILLARDON, Pierre-Emmanuel; TANG, Xifan; KIM, Gain and MICHELI, Gio-
vanni de: “A Novel FPGA Architecture Based on Ultrafine Grain Reconfigurable
Logic Cells”. In: IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems 23.10 (2015), pp. 2187–2197. DOI: 10.1109/TVLSI.2014.2359385 (cit. on
p. 76).

[166] GAILLARDON, Pierre-Emmanuel; BEN-JAMAA, M. Haykel; CLERMIDY, Fabien
and O’CONNOR, Ian: “Ultra-fine grain FPGAs: A granularity study”. In: 2011
IEEE/ACM International Symposium on Nanoscale Architectures. IEEE, 2011,
pp. 9–15. DOI: 10.1109/NANOARCH.2011.5941477 (cit. on pp. 76, 104).

[167] PARK, Jun-Mo; BAE, Jong-Ho; EUM, Jai-Ho; JIN, Sung Hun; PARK, Byung-Gook
and LEE, Jong-Ho: “High-Density Reconfigurable DevicesWith Programmable
Bottom-Gate Array”. In: IEEE Electron Device Letters 38.5 (2017), pp. 564–567.
DOI: 10.1109/LED.2017.2679343 (cit. on pp. 76, 77, 178).

https://doi.org/10.23919/DATE.2018.8342080
https://doi.org/10.1109/VLSI-SoC.2019.8920358
https://doi.org/10.1109/VLSI-SoC.2019.8920358
https://doi.org/10.1109/ISCAS48785.2022.9937590
https://doi.org/10.1109/VLSI-SoC54400.2022.9939636
https://doi.org/10.1109/VLSI-SoC54400.2022.9939636
https://doi.org/10.1109/TNANO.2022.3221836
https://doi.org/10.1109/TMAG.2013.2247744
https://doi.org/10.1149/1.3567706
https://doi.org/10.1109/TVLSI.2014.2359385
https://doi.org/10.1109/NANOARCH.2011.5941477
https://doi.org/10.1109/LED.2017.2679343

309

[168] VIPIN, Kizheppatt and FAHMY, Suhaib A.: “FPGA Dynamic and Partial Recon-
figuration”. In: ACM Computing Surveys 51.4 (2019), pp. 1–39. DOI: 10.1145/
3193827 (cit. on pp. 77–79).

[169] VASSILIADIS, Stamatis, ed.: Fine- and coarse-grain reconfigurable computing.
Dordrecht: Springer, 2007 (cit. on p. 78).

[170] CARDONA, Luis Andres and FERRER, Carles: “AC_ICAP: A Flexible High Speed
ICAP Controller”. In: International Journal of Reconfigurable Computing 2015
(2015), pp. 1–15. DOI: 10.1155/2015/314358 (cit. on p. 78).

[171] STEIGER, C.;WALDER, H. and PLATZNER, M.: “Operating systems for reconfig-
urable embedded platforms: online scheduling of real-time tasks”. In: IEEE
Transactions on Computers 53.11 (2004), pp. 1393–1407. DOI: 10.1109/TC.2004.
99 (cit. on pp. 80, 81).

[172] DIESSEL, Oliver and ELGINDY, Hossam: “Run-time compaction of FPGA de-
signs”. In: Field-Programmable Logic and Applications. Ed. by GOOS, Gerhard;
HARTMANIS, Juris; VAN LEEUWEN, Jan; LUK,Wayne; CHEUNG, Peter Y. K. and
GLESNER, Manfred. Vol. 1304. Lecture Notes in Computer Science. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1997, pp. 131–140. DOI: 10.1007/3-540-
63465-7_218 (cit. on p. 80).

[173] WALDER, H.; STEIGER, C. and PLATZNER, M.: “Fast online task placement on
FPGAs: free space partitioning and 2D-hashing”. In: Proceedings International
Parallel and Distributed Processing Symposium. IEEE Comput. Soc, 2003, p. 8.
DOI: 10.1109/IPDPS.2003.1213329 (cit. on p. 80).

[174] SIDIROPOULOS, Harry; FIGULI, Peter; SIOZIOS, Kostas; SOUDRIS, Dimitrios and
BECKER, Jurgen: “A platform-independent runtime methodology for mapping
multiple applications onto FPGAs through resource virtualization”. In: 2013
23rd International Conference on Field programmable Logic and Applications.
IEEE, 2013, pp. 1–4. DOI: 10.1109/FPL.2013.6645564 (cit. on p. 80).

[175] DIESSEL, O.; ELGINDY, H.; MIDDENDORF, M.; SCHMECK, H. and SCHMIDT, B.:
“Dynamic scheduling of tasks on partially reconfigurable FPGAs”. In: IEE Pro-
ceedings - Computers andDigital Techniques 147.3 (2000), p. 181. DOI: 10.1049/
ip-cdt:20000485 (cit. on p. 81).

[176] STERPONE, Luca and BOZZOLI, Ludovica: “Fast Partial Reconfiguration on
SRAM-Based FPGAs: A Frame-Driven Routing Approach”. In: Applied Recon-
figurable Computing. Architectures, Tools, and Applications. Ed. by VOROS,
Nikolaos; HUEBNER, Michael; KERAMIDAS, Georgios; GOEHRINGER, Diana;
ANTONOPOULOS, Christos and DINIZ, Pedro C. Vol. 10824. Lecture Notes in
Computer Science. Cham: Springer International Publishing, 2018, pp. 319–
330. DOI: 10.1007/978-3-319-78890-6_26 (cit. on p. 81).

[177] DA SILVA, Bruno; BRAEKEN, An and TOUHAFI, Abdellah: “Probabilistic Perfor-
mance Modelling when Using Partial Reconfiguration to Accelerate Streaming
ApplicationswithNon-deterministicTask Scheduling”. In: 11444 (2019), pp. 81–
95. DOI: 10.1007/978-3-030-17227-5_7 (cit. on p. 81).

[178] STEIGER, C.;WALDER, H.; PLATZNER, M. and THIELE, L.: “Online scheduling
and placement of real-time tasks to partially reconfigurable devices”. In:

https://doi.org/10.1145/3193827
https://doi.org/10.1145/3193827
https://doi.org/10.1155/2015/314358
https://doi.org/10.1109/TC.2004.99
https://doi.org/10.1109/TC.2004.99
https://doi.org/10.1007/3-540-63465-7_218
https://doi.org/10.1007/3-540-63465-7_218
https://doi.org/10.1109/IPDPS.2003.1213329
https://doi.org/10.1109/FPL.2013.6645564
https://doi.org/10.1049/ip-cdt:20000485
https://doi.org/10.1049/ip-cdt:20000485
https://doi.org/10.1007/978-3-319-78890-6_26
https://doi.org/10.1007/978-3-030-17227-5_7

310 Bibliography

Proceedings. 2003 International Symposium on System-on-Chip (IEEE Cat.
No.03EX748). IEEE Comput. Soc, 2003, pp. 224–225. DOI: 10.1109/REAL.2003.
1253269 (cit. on p. 81).

[179] ISMAIL, Aws and SHANNON, Lesley: “FUSE: Front-End User Framework for O/S
Abstraction ofHardwareAccelerators”. In: 2011 IEEE 19thAnnual International
Symposium on Field-Programmable Custom Computing Machines. IEEE, 2011,
pp. 170–177. DOI: 10.1109/FCCM.2011.48 (cit. on p. 81).

[180] JANßEN, Benedikt;WINGENDER, Tim and HÜBNER, Michael: Hardware Accel-
erator Framework Approach for Dynamic Partial Reconfigurable Overlays on
Xilinx PYNQ. 2017. DOI: 10.18420/IN2017_44 (cit. on p. 81).

[181] JANßEN, Benedikt; KÄSTNER, Florian; WINGENDER, Tim and HUEBNER,
Michael: “A Dynamic Partial Reconfigurable Overlay Framework for Python”.
In: Applied Reconfigurable Computing. Architectures, Tools, and Applica-
tions. Ed. by VOROS, Nikolaos; HUEBNER, Michael; KERAMIDAS, Georgios;
GOEHRINGER, Diana; ANTONOPOULOS, Christos and DINIZ, Pedro C.Vol. 10824.
Lecture Notes in Computer Science. Cham: Springer International Publishing,
2018, pp. 331–342. DOI: 10.1007/978-3-319-78890-6_27 (cit. on p. 81).

[182] KORINTH, Jens; HOFMANN, Jaco; HEINZ, Carsten and KOCH, Andreas: “The
TaPaSCo Open-SourceToolflow for the Automated Composition of Task-Based
Parallel Reconfigurable Computing Systems”. In: Applied Reconfigurable Com-
puting. Ed. byHOCHBERGER, Christian; NELSON, Brent; KOCH, Andreas;WOODS,
Roger and DINIZ, Pedro.Vol. 11444. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, pp. 214–229. DOI: 10.1007/978-3-030-
17227-5_16 (cit. on p. 81).

[183] TRIMBERGER, S.; CARBERRY, D.; JOHNSON, A. andWONG, J.: A time-multiplexed
FPGA. Los Alamitos Calif.: IEEE Computer Society Press, 1997. DOI: 10.1109/
FPGA.1997.624601 (cit. on p. 82).

[184] LI, Z.; COMPTON, K. and HAUCK, S.: “Configuration caching management tech-
niques for reconfigurable computing”. In: Proceedings 2000 IEEE Symposium
onField-Programmable CustomComputingMachines (Cat.No.PR00871). IEEE
Comput. Soc, 2000, pp. 22–36. DOI: 10.1109/FPGA.2000.903390 (cit. on p. 82).

[185] COMPTON, K.; LI, Zhiyuan; COOLEY, J.; KNOL, S. and HAUCK, S.: “Configuration
relocation and defragmentation for run-time reconfigurable computing”. In:
IEEE Transactions on Very Large Scale Integration (VLSI) Systems 10.3 (2002),
pp. 209–220. DOI: 10.1109/TVLSI.2002.1043324 (cit. on pp. 82, 104).

[186] BREBNER, Gordon andDIESSEL, Oliver: “Chip-Based ReconfigurableTaskMan-
agement”. In: Field-Programmable Logic and Applications. Ed. by GOOS, Ger-
hard; HARTMANIS, Juris; VAN LEEUWEN, Jan; BREBNER, Gordon and WOODS,
Roger. Vol. 2147. Lecture Notes in Computer Science. Berlin, Heidelberg: Spri-
nger Berlin Heidelberg, 2001, pp. 182–191. DOI: 10.1007/3-540-44687-7_19
(cit. on pp. 83, 104).

[187] KOCH, D.; AHMADINIA, A.; BOBDA, C. and KALTE, H.: “FPGA architecture exten-
sions for preemptivemultitasking and hardware defragmentation”. In:Proceed-
ings. 2004 IEEE International Conference on Field- Programmable Technology

https://doi.org/10.1109/REAL.2003.1253269
https://doi.org/10.1109/REAL.2003.1253269
https://doi.org/10.1109/FCCM.2011.48
https://doi.org/10.18420/IN2017_44
https://doi.org/10.1007/978-3-319-78890-6_27
https://doi.org/10.1007/978-3-030-17227-5_16
https://doi.org/10.1007/978-3-030-17227-5_16
https://doi.org/10.1109/FPGA.1997.624601
https://doi.org/10.1109/FPGA.1997.624601
https://doi.org/10.1109/FPGA.2000.903390
https://doi.org/10.1109/TVLSI.2002.1043324
https://doi.org/10.1007/3-540-44687-7_19

311

(IEEE Cat. No.04EX921). IEEE, 2004, pp. 433–436. DOI: 10.1109/FPT.2004.
1393318 (cit. on p. 83).

[188] FIGULI, Peter; HUBNER, Michael; GIRARDEY, Romuald; BAPP, Falco;
BRUCKSCHLOGL, Thomas; THOMA, Florian; HENKEL, Jorg and BECKER, Jurgen:
“A heterogeneous SoC architecture with embedded virtual FPGA cores and
runtime Core Fusion”. In: 2011 NASA/ESA Conference on Adaptive Hardware
and Systems (AHS). IEEE, 2011, pp. 96–103. DOI: 10.1109/AHS.2011.5963922
(cit. on pp. 83, 84, 104).

[189] BOZZOLI, Ludovica and STERPONE, Luca: “ReM: A Reconfigurable Multipo-
tent Cell for New Distributed Reconfigurable Architectures”. In: 11444 (2019),
pp. 295–304. DOI: 10.1007/978-3-030-17227-5_21 (cit. on p. 84).

[190] ADETOMI, Adewale; ENEMALI, Godwin and ARSLAN, Tughrul: “Enabling Dy-
namic Communication for Runtime Circuit Relocation”. In: IEEE Transactions
on Very Large Scale Integration (VLSI) Systems 28.1 (2020), pp. 142–155. DOI:
10.1109/TVLSI.2019.2934927 (cit. on p. 84).

[191] DONGAONKAR, Sourabh; MUDANAI, Sivakumar P. and GILES, Martin D.: “From
Process Corners to Statistical Circuit Design Methodology: Opportunities and
Challenges”. In: IEEE Transactions on Electron Devices 66.1 (2019), pp. 19–27.
DOI: 10.1109/TED.2018.2860929 (cit. on p. 85).

[192] LIN, Yan; HUTTON, Mike and HE, Lei: “Placement and Timing for FPGAs Con-
sideringVariations”. In: 2006 International Conference on Field Programmable
Logic and Applications. IEEE, 2006, pp. 1–7. DOI: 10.1109/FPL.2006.311192
(cit. on p. 86).

[193] KAENEL, V. von; MACKEN, P. and DEGRAUWE, M.G.R.: “A voltage reduction
technique for battery-operated systems”. In: IEEE Journal of Solid-StateCircuits
25.5 (1990), pp. 1136–1140. DOI: 10.1109/4.62134 (cit. on pp. 87, 104).

[194] CHENG, Lerong; XIONG, Jinjun;HE, Lei andHUTTON,Mike:“FPGAPerformance
Optimization Via Chipwise Placement Considering Process Variations”. In:
2006 International Conference on Field Programmable Logic and Applications.
IEEE, 2006, pp. 1–6. DOI: 10.1109/FPL.2006.311193 (cit. on pp. 87, 104).

[195] GHOSH, Swaroop; BHUNIA, Swarup and ROY, Kaushik: “CRISTA: A New
Paradigm for Low-Power, Variation-Tolerant, and Adaptive Circuit Synthesis
Using Critical Path Isolation”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 26.11 (2007), pp. 1947–1956. DOI:
10.1109/TCAD.2007.896305 (cit. on pp. 87, 104).

[196] EBRAHIMI, Mohammad and NAVABI, Zainalabedin: “Selecting Representative
Critical Paths for Sensor Placement Provides Early FPGA Aging Information”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 39.10 (2020), pp. 2976–2989. DOI: 10.1109/TCAD.2019.2953174 (cit. on
p. 88).

[197] ELGEBALY, Mohamed and SACHDEV, Manoj: “Efficient adaptive voltage scaling
system through on-chip critical path emulation”. In: Proceedings of the 2004
international symposium on Low power electronics and design. Ed. by JOSHI,

https://doi.org/10.1109/FPT.2004.1393318
https://doi.org/10.1109/FPT.2004.1393318
https://doi.org/10.1109/AHS.2011.5963922
https://doi.org/10.1007/978-3-030-17227-5_21
https://doi.org/10.1109/TVLSI.2019.2934927
https://doi.org/10.1109/TED.2018.2860929
https://doi.org/10.1109/FPL.2006.311192
https://doi.org/10.1109/4.62134
https://doi.org/10.1109/FPL.2006.311193
https://doi.org/10.1109/TCAD.2007.896305
https://doi.org/10.1109/TCAD.2019.2953174

312 Bibliography

Rajiv; CHOI, Kiyoung; TIWARI, Vivek and ROY, Kaushik. New York, NY, USA:
ACM, 2004, pp. 375–380. DOI: 10.1145/1013235.1013325 (cit. on p. 88).

[198] FOJTIK, Matthew; FICK, David; KIM, Yejoong; PINCKNEY, Nathaniel; HARRIS,
David Money; BLAAUW, David and SYLVESTER, Dennis: “Bubble Razor: Elimi-
nating Timing Margins in an ARM Cortex-M3 Processor in 45 nm CMOS Using
Architecturally Independent Error Detection and Correction”. In: IEEE Journal
of Solid-State Circuits 48.1 (2013), pp. 66–81. DOI: 10.1109/JSSC.2012.2220912
(cit. on p. 88).

[199] MIRO-PANADES, Ivan; BEIGNE, Edith; BILLOINT, Olivier and THONNART, Yvain:
“In-situ Fmax/Vmin tracking for energy efficiency and reliability optimization”.
In: 2017 IEEE 23rd International Symposium on On-Line Testing and Robust
System Design (IOLTS), pp. 96–99. DOI: 10.1109/IOLTS.2017.8046240 (cit. on
p. 89).

[200] CHEN, Poki; SHIE, Mon-Chau; ZHENG, Zhi-Yuan; ZHENG, Zi-Fan and CHU,
Chun-Yan: “A Fully Digital Time-Domain Smart Temperature Sensor Realized
With 140 FPGA Logic Elements”. In: IEEE Transactions on Circuits and Systems
I: Regular Papers 54.12 (2007), pp. 2661–2668. DOI: 10.1109/TCSI.2007.906073
(cit. on p. 89).

[201] YU, Haile; XU, Qiang and LEONG, Philip H.W.: “Fine-grained characterization
of process variation in FPGAs”. In: 2010 International Conference on Field-
Programmable Technology. IEEE, 2010, pp. 138–145. DOI: 10.1109/FPT.2010.
5681770 (cit. on pp. 90, 104).

[202] FRANCO, John J. Leon; BOEMO, Eduardo; CASTILLO, Encarnacion and PARRILLA,
Luis: “Ring oscillators as thermal sensors in FPGAs: Experiments in low volt-
age”. In: 2010 VI Southern Programmable Logic Conference (SPL). IEEE, 2010,
pp. 133–137. DOI: 10.1109/SPL.2010.5483027 (cit. on pp. 90, 104).

[203] HAPPE,Markus; AGNE, Andreas andPLESSL, Christian: “Measuring andPredict-
ing Temperature Distributions on FPGAs at Run-Time”. In: 2011 International
Conference on Reconfigurable Computing and FPGAs. IEEE, 2011, pp. 55–60.
DOI: 10.1109/ReConFig.2011.59 (cit. on p. 90).

[204] AGARWAL,Mridul; PAUL, Bipul C.; ZHANG,Ming andMITRA, Subhasish: “Circuit
Failure Prediction and Its Application to Transistor Aging”. In: 25th IEEE VLSI
Test Symmposium (VTS’07). IEEE, 2007, pp. 277–286. DOI: 10.1109/VTS.2007.22
(cit. on p. 90).

[205] HUARD, V.; CACHO, F.; GINER, F.; SALIVA, M.; BENHASSAIN, A.; PATEL, D.; TORRES,
N.; NAUDET, S.; JAIN, A. and PARTHASARATHY, C.: “Adaptive Wearout Man-
agement with in-situ aging monitors”. In: 2014 IEEE International Reliability
Physics Symposium. IEEE, 2014, 6B.4.1–6B.4.11. DOI: 10 . 1109/ IRPS . 2014 .
6861106 (cit. on p. 90).

[206] SENGUPTA, Deepashree and SAPATNEKAR, Sachin S.: “Estimating Circuit Aging
Due to BTI and HCI Using Ring-Oscillator-Based Sensors”. In: IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems 36.10
(2017), pp. 1688–1701. DOI: 10.1109/TCAD.2017.2648840 (cit. on p. 90).

https://doi.org/10.1145/1013235.1013325
https://doi.org/10.1109/JSSC.2012.2220912
https://doi.org/10.1109/IOLTS.2017.8046240
https://doi.org/10.1109/TCSI.2007.906073
https://doi.org/10.1109/FPT.2010.5681770
https://doi.org/10.1109/FPT.2010.5681770
https://doi.org/10.1109/SPL.2010.5483027
https://doi.org/10.1109/ReConFig.2011.59
https://doi.org/10.1109/VTS.2007.22
https://doi.org/10.1109/IRPS.2014.6861106
https://doi.org/10.1109/IRPS.2014.6861106
https://doi.org/10.1109/TCAD.2017.2648840

313

[207] ZICK, Kenneth M. and HAYES, John P.: “Low-cost sensing with ring oscillator
arrays for healthier reconfigurable systems”. In: ACM Transactions on Recon-
figurable Technology and Systems 5.1 (2012), pp. 1–26. DOI: 10.1145/2133352.
2133353 (cit. on p. 90).

[208] ALAM, M.: “Reliability- and process-variation aware design of integrated cir-
cuits”. In: Microelectronics Reliability 48.8-9 (2008), pp. 1114–1122. DOI: 10.
1016/j.microrel.2008.07.039 (cit. on p. 91).

[209] GUPTA, Meeta S.; RIVERS, Jude A.; BOSE, Pradip;WEI, Gu-Yeon and BROOKS,
David: “Tribeca: Design for PVT Variations with Local Recovery and Fine-
grained Adaptation”. In: Proceedings of the 42nd Annual IEEE/ACM Interna-
tional Symposium onMicroarchitecture. Ed. by ALBONESI, David; MARTONOSI,
Margaret; AUGUST, David and MARTÍNEZ, José. NewYork, NY, USA: ACM, 2009,
pp. 435–446. DOI: 10.1145/1669112.1669168 (cit. on p. 91).

[210] MITTAL, Sparsh: “A Survey of Architectural Techniques for Managing Process
Variation”. In: ACM Computing Surveys 48.4 (2016), pp. 1–29. DOI: 10.1145/
2871167 (cit. on p. 91).

[211] RAHIMI, Abbas; BENINI, Luca and GUPTA, Rajesh K.: “Variability Mitigation in
Nanometer CMOS Integrated Systems: A Survey of Techniques From Circuits
to Software”. In: Proceedings of the IEEE 104.7 (2016), pp. 1410–1448. DOI:
10.1109/JPROC.2016.2518864 (cit. on p. 91).

[212] TSCHANZ, J.W.; KAO, J. T.; NARENDRA, S. G.; NAIR, R.; ANTONIADIS, D. A.; CHAN-
DRAKASAN, A. P. and DE, V.: “Adaptive body bias for reducing impacts of die-
to-die and within-die parameter variations on microprocessor frequency and
leakage”. In: IEEE Journal of Solid-State Circuits 37.11 (2002), pp. 1396–1402.
DOI: 10.1109/JSSC.2002.803949 (cit. on p. 92).

[213] TEODORESCU, Radu; NAKANO, Jun; TIWARI, Abhishek and TORRELLAS, Josep:
“Mitigating Parameter Variation with Dynamic Fine-Grain Body Biasing”. In:
40th Annual IEEE/ACM International Symposium onMicroarchitecture (MI-
CRO 2007). IEEE, 2007, pp. 27–42. DOI: 10 .1109/MICRO.2007 .43 (cit. on
p. 92).

[214] MAURICIO, Joan and MOLL, Francesc: “Local variations compensation with
DLL-based Body Bias Generator for UTBB FD-SOI technology”. In: 2015 IEEE
13th InternationalNewCircuits and SystemsConference (NEWCAS). IEEE, 2015,
pp. 1–4. DOI: 10.1109/NEWCAS.2015.7182005 (cit. on p. 93).

[215] MATSUSHITA, Yusuke; OKUHARA, Hayate; MASUYAMA, Koichiro; FUJITA, Yu;
KAWANO, Ryuta and AMANO, Hideharu: “Body bias grain size exploration for a
coarse grained reconfigurable accelerator”. In: 2016 26th International Confer-
ence on Field Programmable Logic and Applications (FPL). IEEE, 2016, pp. 1–4.
DOI: 10.1109/FPL.2016.7577346 (cit. on p. 93).

[216] CHOW, C.T.; TSUI, L.S.M.; LEONG, P.H.W.; LUK,W. andWILTON, S.J.E.: “Dynamic
voltage scaling for commercial FPGAs”. In:Proceedings.2005 IEEE International
Conference on Field-Programmable Technology, 2005. IEEE, 2005, pp. 173–180.
DOI: 10.1109/FPT.2005.1568543 (cit. on pp. 94, 99, 104).

https://doi.org/10.1145/2133352.2133353
https://doi.org/10.1145/2133352.2133353
https://doi.org/10.1016/j.microrel.2008.07.039
https://doi.org/10.1016/j.microrel.2008.07.039
https://doi.org/10.1145/1669112.1669168
https://doi.org/10.1145/2871167
https://doi.org/10.1145/2871167
https://doi.org/10.1109/JPROC.2016.2518864
https://doi.org/10.1109/JSSC.2002.803949
https://doi.org/10.1109/MICRO.2007.43
https://doi.org/10.1109/NEWCAS.2015.7182005
https://doi.org/10.1109/FPL.2016.7577346
https://doi.org/10.1109/FPT.2005.1568543

314 Bibliography

[217] NABAA, Georges; AZIZI, Navid and NAJM, Farid N.: An adaptive FPGA architec-
ture with process variation compensation and reduced leakage. NewYork, NY
and Piscataway, NJ: Association for Computing Machinery and IEEE Service
Center, 2006. DOI: 10.1145/1146909.1147069 (cit. on pp. 94, 95, 104).

[218] HIOKI, Masakazu; MA, Chao; KAWANAMI, Takashi; OGASAHARA, Yasuhiro; NAK-
AGAWA,Tadashi; SEKIGAWA,Toshihiro; TSUTSUMI, Toshiyuki and KOIKE, Hanpei:
“SOTB Implementation of a Field Programmable Gate Array with Fine-Grained
Vt Programmability”. In: Journal of Low Power Electronics and Applications 4.3
(2014), pp. 188–200. DOI: 10.3390/jlpea4030188 (cit. on pp. 95, 104).

[219] BURMESTER CAMPOS, Pedro: “Variability-Aware Circuit Performance Optimi-
sation Through Digital Reconfiguration”. PhD thesis. 2015 (cit. on p. 95).

[220] MARAGOS, Konstantinos; LENTARIS, George and SOUDRIS, Dimitrios: “A PVT-
AwareVoltage Scaling Method for Energy Efficient FPGAs”. In: 2021 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5. DOI:
10.1109/ISCAS51556.2021.9401622 (cit. on pp. 96, 104).

[221] EETIMES: Lattice unveils first FPGAs on FDSOI. 2019. URL: https : //www.
eetimes.com/lattice-unveils-first-fpgas-on-fd-soi/ (visited on 08/07/2023)
(cit. on p. 96).

[222] AKGUN, Gokhan; ALI, Muhammad and GOHRINGER, Diana: “Power-Aware
Computing Systems on FPGAs: A Survey”. In: 2021 31st International Confer-
ence on Field-Programmable Logic and Applications (FPL). IEEE, 2021, pp. 45–
51. DOI: 10.1109/FPL53798.2021.00016 (cit. on pp. 96, 97).

[223] SUTTER, G.; TODOROVICH, E.; LOPEZ-BUEDO, S. and BOEMO, E.: “Low-Power
FSMs in FPGA: Encoding Alternatives”. In: Integrated Circuit Design. Power
and Timing Modeling, Optimization and Simulation. Ed. by GOOS, Gerhard;
HARTMANIS, Juris; VAN LEEUWEN, Jan; HOCHET, Bertrand; ACOSTA, Antonio J.
and BELLIDO, Manuel J. Vol. 2451. Lecture Notes in Computer Science. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2002, pp. 363–370. DOI: 10.1007/3-
540-45716-X_36 (cit. on p. 97).

[224] SINGH, Amit; PARTHASARATHY, Ganapathy andMAREK-SADOWSKA,Malgorzata:
“Efficient circuit clustering for area and power reduction in FPGAs”. In: ACM
Transactions on Design Automation of Electronic Systems 7.4 (2002), pp. 643–
663. DOI: 10.1145/605440.605448 (cit. on p. 97).

[225] GAYASEN, A.; TSAI,Y.;VIJAYKRISHNAN,N.; KANDEMIR,M.; IRWIN,M. J. andTUAN,
T.: “Reducing leakage energy in FPGAs using region-constrained placement”.
In: Proceedings of the 2004 ACM/SIGDA 12th international symposium on Field
programmable gate arrays. Ed. by TESSIER, Russ and SCHMIT, Herman. New
York, NY, USA: ACM, 2004, pp. 51–58. DOI: 10.1145/968280.968289 (cit. on
p. 97).

[226] TUAN, Tim; RAHMAN, Arif; DAS, Satyaki; TRIMBERGER, Steve and KAO, Sean: “A
90-nm Low-Power FPGA for Battery-Powered Applications”. In: IEEE Transac-
tions on Computer-Aided Design of Integrated Circuits and Systems 26.2 (2007),
pp. 296–300. DOI: 10.1109/TCAD.2006.885731 (cit. on p. 97).

https://doi.org/10.1145/1146909.1147069
https://doi.org/10.3390/jlpea4030188
https://doi.org/10.1109/ISCAS51556.2021.9401622
https://www.eetimes.com/lattice-unveils-first-fpgas-on-fd-soi/
https://www.eetimes.com/lattice-unveils-first-fpgas-on-fd-soi/
https://doi.org/10.1109/FPL53798.2021.00016
https://doi.org/10.1007/3-540-45716-X_36
https://doi.org/10.1007/3-540-45716-X_36
https://doi.org/10.1145/605440.605448
https://doi.org/10.1145/968280.968289
https://doi.org/10.1109/TCAD.2006.885731

315

[227] BSOUL, Assem A. M.;WILTON, Steven J. E.; TSOI, Kuen Hung and LUK,Wayne:
“An FPGA Architecture and CAD Flow Supporting Dynamically Controlled
Power Gating”. In: IEEE Transactions on Very Large Scale Integration (VLSI)
Systems 24.1 (2016), pp. 178–191. DOI: 10.1109/TVLSI.2015.2393914 (cit. on
p. 98).

[228] BSOUL, Assem A. M. andWILTON, Steven J. E.: “An FPGA architecture support-
ing dynamically controlled power gating”. In: 2010 International Conference
on Field-Programmable Technology. IEEE, 2010, pp. 1–8. DOI: 10.1109/FPT.
2010.5681533 (cit. on p. 98).

[229] SEIFOORI, Zeinab; ASADI, Hossein and STOJILOVIC, Mirjana: “A Machine Learn-
ing Approach for Power Gating the FPGA Routing Network”. In: 2019 Interna-
tional Conference on Field-Programmable Technology (ICFPT). IEEE, 2019,
pp. 10–18. DOI: 10.1109/ICFPT47387.2019.00010 (cit. on p. 98).

[230] NABINA, Atukem and NUNEZ-YANEZ, Jose Luis: “AdaptiveVoltage Scaling in
a Dynamically Reconfigurable FPGA-Based Platform”. In: ACM Transactions
on Reconfigurable Technology and Systems 5.4 (2012), pp. 1–22. DOI: 10.1145/
2392616.2392618 (cit. on p. 99).

[231] NUNEZ-YANEZ, Jose Luis: “AdaptiveVoltage Scaling with In-Situ Detectors in
Commercial FPGAs”. In: IEEE Transactions on Computers 64.1 (2015), pp. 45–
53. DOI: 10.1109/TC.2014.2365963 (cit. on pp. 99, 100).

[232] AHMED, Ibrahim; ZHAO, Shuze; TRESCASES, Olivier and BETZ, Vaughn: “Mea-
sure twice and cut once: Robust dynamic voltage scaling for FPGAs”. In: 2016
26th International Conference on Field Programmable Logic and Applications
(FPL). IEEE, 2016, pp. 1–11. DOI: 10.1109/FPL.2016.7577342 (cit. on p. 99).

[233] AHMED, Ibrahim; ZHAO, Shuze; TRESCASES, Olivier and BETZ, Vaughn: “Auto-
matic Application-Specific Calibration to Enable DynamicVoltage Scaling in
FPGAs”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 37.12 (2018), pp. 3095–3108. DOI: 10.1109/TCAD.2018.2801222
(cit. on p. 99).

[234] LEVINE, Joshua M.; STOTT, Edward and CHEUNG, Peter Y.K.: “Dynamic voltage
& frequency scaling with online slack measurement”. In: Proceedings of the
2014ACM/SIGDA international symposiumonField-programmable gate arrays.
Ed. by BETZ,Vaughn and CONSTANTINIDES, George A. NewYork, NY, USA: ACM,
2014, pp. 65–74. DOI: 10.1145/2554688.2554784 (cit. on p. 99).

[235] ZHAO, Shuze; AHMED, Ibrahim; LAMOUREUX, Carl; LOTFI, Ashraf; BETZ,Vaughn
and TRESCASES, Olivier: “A universal self-calibrating Dynamic Voltage and
Frequency Scaling (DVFS) scheme with thermal compensation for energy
savings in FPGAs”. In: 2016 IEEE Applied Power Electronics Conference and
Exposition (APEC). IEEE, 2016, pp. 1882–1887. DOI: 10 . 1109/APEC .2016 .
7468125 (cit. on p. 100).

[236] TAKA, Endri; LENTARIS, George and SOUDRIS, Dimitrios: “Improving the perfor-
mance of RISC-V softcores on FPGA by exploiting PVT variability and DVFS”.
In: 2022 IEEE International Symposium on Circuits and Systems (ISCAS). IEEE,
2022, pp. 1595–1599. DOI: 10.1109/ISCAS48785.2022.9937320 (cit. on p. 100).

https://doi.org/10.1109/TVLSI.2015.2393914
https://doi.org/10.1109/FPT.2010.5681533
https://doi.org/10.1109/FPT.2010.5681533
https://doi.org/10.1109/ICFPT47387.2019.00010
https://doi.org/10.1145/2392616.2392618
https://doi.org/10.1145/2392616.2392618
https://doi.org/10.1109/TC.2014.2365963
https://doi.org/10.1109/FPL.2016.7577342
https://doi.org/10.1109/TCAD.2018.2801222
https://doi.org/10.1145/2554688.2554784
https://doi.org/10.1109/APEC.2016.7468125
https://doi.org/10.1109/APEC.2016.7468125
https://doi.org/10.1109/ISCAS48785.2022.9937320

316 Bibliography

[237] GAYASEN, A.; LEE, K.; VIJAYKRISHNAN, N.; KANDEMIR, M.; IRWIN, M. J. and
TUAN, T.: “A Dual-VDD Low Power FPGA Architecture”. In: Field Programmable
Logic and Application. Ed. by HUTCHISON, David et al. Vol. 3203. Lecture Notes
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 145–157. DOI: 10.1007/978-3-540-30117-2_17 (cit. on pp. 100, 200).

[238] ZUKOSKI, Andrew; YANG, Xuebei and MOHANRAM, Kartik: “Universal logic
modules based on double-gate carbon nanotube transistors”. In: Proceedings
of the 48th Design Automation Conference. Ed. by STOK, Leon; DUTT, Nikil and
HASSOUN, Soha. NewYork, NY, USA: ACM, 2011, pp. 884–889. DOI: 10.1145/
2024724.2024921 (cit. on p. 101).

[239] ANDERSON, Jason H. andWANG, Qiang: “Area-efficient FPGA logic elements:
Architecture and synthesis”. In: 16th Asia and South Pacific Design Automation
Conference (ASP-DAC 2011). IEEE, 2011, pp. 369–375. DOI: 10.1109/ASPDAC.
2011.5722215 (cit. on pp. 101, 102).

[240] LIN, Chih-Chang and MAREK-SADOWSKA, M.: “On designing universal
logic blocks and their application to FPGA design”. In: IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 16.5 (1997),
pp. 519–527. DOI: 10.1109/43.631214 (cit. on p. 101).

[241] CONG, Jason; HUANG, Hui and YUAN, Xin: “Technology mapping and archi-
tecture evalution for k/m -macrocell-based FPGAs”. In: ACM Transactions on
Design Automation of Electronic Systems 10.1 (2005), pp. 3–23. DOI: 10.1145/
1044111.1044113 (cit. on p. 101).

[242] HU, Yu; DAS, Satyaki; TRIMBERGER, Steve and HE, Lei: “Design, Synthesis and
Evaluation of Heterogeneous FPGA with Mixed LUTs and Macro-Gates”. In:
Proceedings of the 2007 IEEE/ACM International Conference on Computer-
Aided Design (2007), pp. 188–193 (cit. on p. 102).

[243] LUO, Tao; LIANG, Hao; ZHANG, Wei; HE, Bingsheng and MASKELL, Douglas:
“A Hybrid Logic Block Architecture in FPGA for Holistic Efficiency”. In: IEEE
Transactions on Circuits and Systems II: Express Briefs 64.1 (2017), pp. 71–75.
DOI: 10.1109/TCSII.2016.2551555 (cit. on pp. 102, 103).

[244] VTR DEVELOPERS: VTR Documentation: FPGA Assembly (FASM) Output Sup-
port. 2024. URL: https://docs.verilogtorouting.org/en/stable/utils/fasm/
(visited on 02/01/2024) (cit. on p. 127).

[245] VTR DEVELOPERS: VTR Documentation: Routing Resource Graph File Format.
2024. URL: https://docs.verilogtorouting.org/en/stable/vpr/file_formats/
#routing-resource-graph-file-format-xml (visited on 02/01/2024) (cit. on
p. 131).

[246] GALDERISI, G.; MIKOLAJICK, T. and TROMMER, J.: “The RGATE: an 8-in-1 Poly-
morphic LogicGateBuilt fromReconfigurable Field EffectTransistors”. In: IEEE
Electron Device Letters (2024). Early Access. DOI: 10.1109/LED.2023.3347397
(cit. on pp. 144, 227–229).

[247] FREELEY, Jennifer; MISHAGLI, Dmvtro; BRAZIL, Tom and BLOKHINA, Elena:
“Statistical Simulations of Delay Propagation in Large Scale Circuits Using
Graph Traversal and Kernel Function Decomposition”. In: 2018 15th Interna-

https://doi.org/10.1007/978-3-540-30117-2_17
https://doi.org/10.1145/2024724.2024921
https://doi.org/10.1145/2024724.2024921
https://doi.org/10.1109/ASPDAC.2011.5722215
https://doi.org/10.1109/ASPDAC.2011.5722215
https://doi.org/10.1109/43.631214
https://doi.org/10.1145/1044111.1044113
https://doi.org/10.1145/1044111.1044113
https://doi.org/10.1109/TCSII.2016.2551555
https://docs.verilogtorouting.org/en/stable/utils/fasm/
https://docs.verilogtorouting.org/en/stable/vpr/file_formats/#routing-resource-graph-file-format-xml
https://docs.verilogtorouting.org/en/stable/vpr/file_formats/#routing-resource-graph-file-format-xml
https://doi.org/10.1109/LED.2023.3347397

317

tional Conference on Synthesis, Modeling, Analysis and Simulation Methods
and Applications to Circuit Design (SMACD). IEEE, 2018, pp. 213–219. DOI:
10.1109/SMACD.2018.8434901 (cit. on p. 153).

[248] MANFREDI, Paolo and TRINCHERO, Riccardo: “A Probabilistic Machine Learn-
ing Approach for the Uncertainty Quantification of Electronic Circuits Based
on Gaussian Process Regression”. In: IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 41.8 (2022), pp. 2638–2651. DOI:
10.1109/TCAD.2021.3112138 (cit. on p. 153).

[249] TURKYILMAZ, Ogun; CLERMIDY, Fabien; AMARU, Luca Gaetano; GAILLARDON,
Pierre-Emmanuel and MICHELI, Giovanni de: “Self-checking ripple-carry
adder with Ambipolar Silicon NanoWire FET”. In: 2013 IEEE International
Symposium on Circuits and Systems (ISCAS2013). IEEE, 2013, pp. 2127–2130.
DOI: 10.1109/ISCAS.2013.6572294 (cit. on p. 169).

[250] BERNSTEIN, Daniel J.: ChaCha, a variant of Salsa20. 2008. URL: http://cr.yp.to/
chacha/chacha-20080120.pdf (visited on 04/25/2023) (cit. on p. 170).

[251] AHMED, Ibrahim; SHEN, Linda L. and BETZ, Vaughn: “Optimizing FPGA Logic
Circuitry for Variable Voltage Supplies”. In: IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 28.4 (2020), pp. 890–903. DOI: 10.1109/TVLSI.
2019.2962501 (cit. on p. 197).

[252] GOLOMB, SolomonW.: Shift register sequences: [secure and limited-access
code generators ; efficiency code generators ; prescribed property generators
; mathematical models]. Rev. ed. Laguna Hills, Calif.: Aegean Park Pr, 1982
(cit. on p. 221).

[253] XIPHERA LTD.: CHACHA20-POLY1305 PRODUCT BRIEF. 2019. URL: https :
//xiphera.com/product_brief/ChaCha20_Poly1305_MPSoC.pdf (visited on
04/16/2019) (cit. on p. 259).

[254] AT, Nuray; BEUCHAT, Jean-Luc; OKAMOTO, Eiji; SAN, Ismail and YAMAZAKI,
Teppei: “Compact Hardware Implementations of ChaCha, BLAKE, Threefish,
and Skein on FPGA”. In: IEEE Transactions on Circuits and Systems I: Regular
Papers 61.2 (2014), pp. 485–498. DOI: 10.1109/TCSI.2013.2278385 (cit. on
p. 259).

[255] STRÖMBERGSON, Joachim:Verilog 2001 implementation of the ChaCha stream
cipher. 2019. URL: https : / / github . com / secworks / chacha/ (visited on
04/16/2019) (cit. on p. 259).

[256] SILITONGA, Arthur; SCHADE, Florian; JIANG, Guanru and BECKER, Juergen:
“HLS-Based Performance and Resource Optimization of Cryptographic Mod-
ules”. In: Proceedings of the 16th IEEE International Symposium on Parallel
andDistributed Processingwith Applications (ISPA2018),Melbourne,Australia,
11th-13th December 2018. IEEE, 2018, pp. 1009–1016. DOI: 10.1109/BDCloud.
2018.00147 (cit. on p. 259).

[257] SOLTANI, Abolfazl and SHARIFIAN, Saeed: “An ultra-high throughput and fully
pipelined implementation of AES algorithm on FPGA”. In:Microprocessors and
Microsystems 39.7 (2015), pp. 480–493. DOI: 10.1016/j.micpro.2015.07.005
(cit. on p. 259).

https://doi.org/10.1109/SMACD.2018.8434901
https://doi.org/10.1109/TCAD.2021.3112138
https://doi.org/10.1109/ISCAS.2013.6572294
http://cr.yp.to/chacha/chacha-20080120.pdf
http://cr.yp.to/chacha/chacha-20080120.pdf
https://doi.org/10.1109/TVLSI.2019.2962501
https://doi.org/10.1109/TVLSI.2019.2962501
https://xiphera.com/product_brief/ChaCha20_Poly1305_MPSoC.pdf
https://xiphera.com/product_brief/ChaCha20_Poly1305_MPSoC.pdf
https://doi.org/10.1109/TCSI.2013.2278385
https://github.com/secworks/chacha/
https://doi.org/10.1109/BDCloud.2018.00147
https://doi.org/10.1109/BDCloud.2018.00147
https://doi.org/10.1016/j.micpro.2015.07.005

318 Bibliography

[258] YAZDANSHENAS, Sadegh and BETZ, Vaughn: “COFFE 2: Automatic Modelling
and Optimization of Complex and Heterogeneous FPGA Architectures”. In:
ACM Transactions on Reconfigurable Technology and Systems (TRETS) 12.1
(2019), p. 3. DOI: 10.1145/3301298 (cit. on p. 264).

https://doi.org/10.1145/3301298

This page intentionally left blank

This page intentionally left blank

Publications

This section contains a complete list of own publications. Publications [Pfa18,
Pfa19, Pfa20, Pfa21, Pfa22, Pfa23a, Pfa23b] have been authored by this thesis’
author and are listed first. Out of those, [Pfa18] focuses on FPGA-based signal
processing and [Pfa23a] on teaching of System-on-Chip (SoC) design. Both
arenot directly related to the content of this thesis. Thoseoriginal publications
are also available as open access preprints in the KITopen repository. The list
continues with publications to which this thesis’ author has contributed to.
PARFAIT publications [Reu19, Reu20, Reu21, Reu22] contain contributions
relevant to this thesis and are again listed first. All remaining publications are
not related to the thesis’ topic.

[Pfa18] PFAU, Johannes; FIGULI, Shalina Percy Delicia; BÄHR, Steffen and BECKER,
Jürgen: “Reconfigurable FPGA-Based Channelization Using Polyphase
Filter Banks for Quantum Computing Systems”. In: Applied Reconfig-
urable Computing. Architectures, Tools, and Applications. Ed. byVOROS,
Nikolaos; HUEBNER, Michael; KERAMIDAS, Georgios; GOEHRINGER, Diana;
ANTONOPOULOS, Christos and DINIZ, Pedro C. Vol. 10824. Lecture Notes
in Computer Science. Cham: Springer International Publishing, 2018,
pp. 615–626. DOI: 10.1007/978-3-319-78890-6_49.

[Pfa19] PFAU, Johannes; REUTER, Maximilian; HARBAUM, Tanja; HOFMANN, Klaus
and BECKER, Jürgen: “A Hardware Perspective on the ChaCha Ciphers:
Scalable Chacha8/12/20 Implementations Ranging from 476 Slices to
Bitrates of 175 Gbit/s”. In: 2019 32nd IEEE International System-on-Chip
Conference (SOCC). IEEE, 2019, pp. 294–299. DOI: 10.1109/socc46988.
2019.1570548289 (cit. on pp. 170, 173, 174, 254).

[Pfa20] PFAU, Johannes; REUTER, Maximilian; HOFMANN, Klaus and BECKER, Jür-
gen: “Designing Universal Logic Module FPGA Architectures for UseWith
Ambipolar Transistor Technology”. In: 2020 International Conference on
Field-Programmable Technology (ICFPT). IEEE, 2020, pp. 165–173. DOI:
10.1109/icfpt51103.2020.00031 (cit. on pp. 177, 180, 183).

https://doi.org/10.1007/978-3-319-78890-6_49
https://doi.org/10.1109/socc46988.2019.1570548289
https://doi.org/10.1109/socc46988.2019.1570548289
https://doi.org/10.1109/icfpt51103.2020.00031

322 Publications

[Pfa21] PFAU, Johannes; ZAKI, PeterWagih and BECKER, Jürgen: “Evaluation of
Different Manual Placement Strategies to Ensure Uniformity of the V-
FPGA”. In: Applied Reconfigurable Computing. Architectures, Tools, and
Applications. Ed. byDERRIEN, Steven;HANNIG, Frank;DINIZ, PedroC. and
CHILLET, Daniel. Vol. 12700. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2021, pp. 35–49. DOI: 10.1007/978-3-
030-79025-7_3 (cit. on p. 232).

[Pfa22] PFAU, Johannes; ZAKI, Peter Wagih and BECKER, Jürgen: “V-FPGAs: In-
creasing Performance with Manual Placement, Timing Extraction and
Extended Timing Modeling”. In: Journal of Signal Processing Systems 94.9
(2022), pp. 865–882. DOI: 10.1007/s11265-022-01786-z (cit. on pp. 232,
236).

[Pfa23a] PFAU, Johannes; LEYS, Richard; NEU, Marc; SERDYUK, Alexey; PERIC, Ivan
and BECKER, Jürgen: “A Unified SoC Lab Course: Combined Teaching of
Mixed Signal Aspects, System Integration, Software Development and
Documentation”. In: 2023 IEEE International Symposium on Circuits and
Systems (ISCAS). IEEE, 2023, pp. 1–5. DOI: 10.1109/ISCAS46773.2023.
10181679.

[Pfa23b] PFAU, Johannes; HERNANDEZ, Jiro; REUTER, Maximilian; HOFMANN, Klaus
and BECKER, Jürgen: “Co-Simulating Region-Based Dynamic Voltage
Scaling for FPGA Architecture Design”. In: 2023 IEEE Nordic Circuits
and Systems Conference (NorCAS). IEEE, 2023, pp. 1–7. DOI: 10.1109/
NorCAS58970.2023.10305486 (cit. on pp. 196, 245, 264).

[Reu19] REUTER, Maximilian; KRAUSS, Tillmann A.; MORADINASAB, Mahdi; PFAU,
Johannes; SCHWALKE, Udo; BECKER, Jürgen and HOFMANN, Klaus: “From
MOSFETs to Ambipolar Transistors: A Static DeFET Inverter Cell for SOI”.
In: 2019 IEEE Asia Pacific Conference on Circuits and Systems (APCCAS).
IEEE, 2019, pp. 113–116. DOI: 10.1109/APCCAS47518.2019.8953083 (cit.
on pp. 20, 21, 161).

[Reu20] REUTER, Maximilian; PFAU, Johannes; KRAUSS, Tillmann A.; MORADI-
NASAB,Mahdi; SCHWALKE,Udo;BECKER, JürgenandHOFMANN,Klaus:“To-
wards Ambipolar Planar Devices: The DeFET Device in Area Constrained
XOR Applications”. In: 2020 IEEE 11th Latin American Symposium on Cir-
cuits & Systems (LASCAS). IEEE, 2020, pp. 1–4. DOI: 10.1109/lascas45839.
2020.9069043 (cit. on pp. 3, 161, 163).

[Reu21] REUTER, Maximilian; PFAU, Johannes; KRAUSS, Tillmann A.; BECKER, Jür-
gen and HOFMANN, Klaus: “From MOSFETs to Ambipolar Transistors:
Standard Cell Synthesis for the Planar RFET Technology”. In: IEEE Trans-
actions on Circuits and Systems I: Regular Papers 68.1 (2021), pp. 114–125.
DOI: 10.1109/TCSI.2020.3035889 (cit. on pp. 3, 133, 134, 161–164, 175,
176, 253, 254, 256, 288).

[Reu22] REUTER, Maximilian; KRAMER, Andreas; KRAUSS, Tillmann; PFAU, Jo-
hannes; BECKER, Jürgen and HOFMANN, Klaus: “Reconfiguring an
RFET Based Differential Amplifier”. In: 2022 IEEE 40th Central Amer-

https://doi.org/10.1007/978-3-030-79025-7_3
https://doi.org/10.1007/978-3-030-79025-7_3
https://doi.org/10.1007/s11265-022-01786-z
https://doi.org/10.1109/ISCAS46773.2023.10181679
https://doi.org/10.1109/ISCAS46773.2023.10181679
https://doi.org/10.1109/NorCAS58970.2023.10305486
https://doi.org/10.1109/NorCAS58970.2023.10305486
https://doi.org/10.1109/APCCAS47518.2019.8953083
https://doi.org/10.1109/lascas45839.2020.9069043
https://doi.org/10.1109/lascas45839.2020.9069043
https://doi.org/10.1109/TCSI.2020.3035889

323

ica and Panama Convention (CONCAPAN). IEEE, 2022, pp. 1–6. DOI:
10.1109/CONCAPAN48024.2022.9997726 (cit. on p. 18).

[Pis16] PISTORIUS, Felix; LAUBER, Andreas; PFAU, Johannes; KLIMM, Alexander
and BECKER, Jürgen: “Development of a Latency Optimized Communica-
tion Device forWAVE and SAE BasedV2X-Applications”. In: SAE Technical
Paper Series. SAE Technical Paper Series. SAE International400 Common-
wealth Drive,Warrendale, PA, United States, 2016. DOI: 10.4271/2016-01-
0150.

[Nus22] NUSS, Benjamin; GROESCHEL, Patrick; PFAU, Johannes; BECKER, Juergen;
VOSSIEK, Martin and ZWICK, Thomas: “Broadband MIMO Testbed for
the Development and Research on 6G”. In: EuropeanWireless 2022; 27th
EuropeanWireless Conference. 2022.

[Kar22] KARLE, Christian Maximilian; KREUTZER, Marius; PFAU, Johannes and
BECKER, Jürgen: “A hardware/software co-design approach to prototype
6Gmobile applications inside theGNURadio SDREcosystemusing FPGA
hardware accelerators”. In: International Symposium on Highly-Efficient
Accelerators and Reconfigurable Technologies. NewYork, NY, USA: ACM,
2022, pp. 33–41. DOI: 10.1145/3535044.3535049.

[Chu23] CHU, Anqi et al.: “LETSCOPE: Lifecycle Extensions Through Software-
Defined Predictive Control of Power Electronics”. In: IEEE EUROCON
2023 - 20th International Conference on Smart Technologies. IEEE, 2023,
pp. 665–670. DOI: 10.1109/EUROCON56442.2023.10199076.

[Kar23] KARLE, Christian; NEU, Marc; PFAU, Johannes; SPERLING, Jan and BECKER,
Jürgen: “ReLoDAQ: Resource-Efficient, Low-Overhead 200 Gbits-1 Data
Acquisition System for 6GPrototyping”. In: 2023 IEEE 31st Annual Interna-
tional Symposium on Field-Programmable Custom Computing Machines
(FCCM). IEEE, 2023, p. 209. DOI: 10.1109/FCCM57271.2023.00037.

[Mar23] MARTEN, Johann Christian; YOUNIS, Marwan; KRIEGER, Gerhard; PFAU,
Johannes; UNGER, Kai and BECKER, Jürgen: “Design and Implementation
of Staggered-SAR Azimuth-Processing”. In: 2023 24th International Radar
Symposium (IRS). IEEE, 2023, pp. 1–10. DOI: 10.23919/IRS57608.2023.
10172405.

[Kre23] KREß, Fabian; PFAU, Johannes; KEMPF, Fabian; SCHMIDT, Patrick; HE,
Zhuofan; HARBAUM,Tanja and BECKER, Jürgen: “Automated Replacement
of State-Holding Flip-Flops to Enable Non-Volatile Checkpointing”. In:
2023 IEEE Nordic Circuits and Systems Conference (NorCAS). IEEE, 2023,
pp. 1–7. DOI: 10.1109/norcas58970.2023.10305469.

https://doi.org/10.1109/CONCAPAN48024.2022.9997726
https://doi.org/10.4271/2016-01-0150
https://doi.org/10.4271/2016-01-0150
https://doi.org/10.1145/3535044.3535049
https://doi.org/10.1109/EUROCON56442.2023.10199076
https://doi.org/10.1109/FCCM57271.2023.00037
https://doi.org/10.23919/IRS57608.2023.10172405
https://doi.org/10.23919/IRS57608.2023.10172405
https://doi.org/10.1109/norcas58970.2023.10305469

This page intentionally left blank

StudentTheses

This section contains a list of student theses which have been supervised by
this thesis’ author. Entries are sorted by year and author name. For [Den21,
Len21, He22b, Li23], this work’s author was the secondary supervisor. Thesis
[Cre19, Ste19, Len21] were external thesis, where this work’s author was the
institute’s supervising contact.

[Cre19] CRELL, Markus: “Implementation of a Data-Driven, Semi-Autonomous
Control for the KIT Prosthetic Hand”. Bachelor’s Thesis. Karlsruhe: Karl-
sruhe Institute of Technology, 2019.

[Ste19] STEINHILPER, Tobias: “Entwurf eines Interfaces als integrierte Hochspan-
nungs-CMOS Schaltung für Kfz-Generatorspannungsregler mit program-
mierbarer Funktion”. Master’s Thesis. Karlsruhe: Karlsruhe Institute of
Technology, 2019.

[Lai20] LAICHER, Gerit: “Entwurf einer dynamisch aktualisierbaren Filterarchitek-
tur für Digitales Beamforming mit hohem Datendurchsatz”. Master’s The-
sis. Karlsruhe: Karlsruhe Institute of Technology, 2020.

[Wag20] WAGIH ZAKI NAAM, Peter: “Design and Evaluation of Manual Placement
Techniques for V-FPGA Tiles on FPGA”. Bachelor’s Thesis. Karlsruhe: Karl-
sruhe Institute of Technology, 2020.

[Zha20] ZHANG, Haoliang: “Evaluation und Adaption von Open-Source FPGA-
Architektur Frameworks”. Bachelor’sThesis. Karlsruhe: Karlsruhe Institute
of Technology, 2020.

[Che21] CHENG, Shuohan: “Design und Evaluierung von FPGA Architektur-
erweiterungen zur Realisierung von Unum Arithmetik”. Master’s Thesis.
Karlsruhe: Karlsruhe Institute of Technology, 2021.

[Den21] DENG, Zihao: “An Emulation Framework to Evaluate NVM-based Flip-
flops in Processor Architectures”. Master’s Thesis. Karlsruhe: Karlsruhe
Institute of Technology, 2021.

[Her21] HERNANDEZ, Victor Eugene Jiro: “Designing a Framework to Evaluate
the Performance of Region-based FPGA Power Management UsingVPR”.
Master’s Thesis. Karlsruhe: Karlsruhe Institute of Technology, 2021.

[Len21] LENHARDT, Dirk: “Performance Comparison Between the SXP and PCI
Express Protocol with a Refinement Approach of SXP with Security”. Mas-
ter’s Thesis. Karlsruhe: Karlsruhe Institute of Technology, 2021.

[Mal21] MALLAT, Mirna: “Power Management Techniques in FPGA Architectures”.
Seminar Paper. Karlsruhe: Karlsruhe Institute of Technology, 2021.

326 StudentTheses

[Mar21b] MARTEN, Johann Christian: “Entwurf und Evaluation einer Azimut-
Prozessierung für Spaceborne SAR”. Master’s Thesis. Karlsruhe: Karlsruhe
Institute of Technology, 2021.

[Mül21] MÜLLER, Rasmus: “Design and Evaluation of Hard-Logic Adder Exten-
sions for Virtual FPGAs”. Bachelor’s Thesis. Karlsruhe: Karlsruhe Institute
of Technology, 2021.

[Ram21] RAMIREZ, Nicolas: “Ein Ko-Simulation Framework für dynamisches FPGA
Power Management”. Bachelor’s Thesis. Karlsruhe: Karlsruhe Institute of
Technology, 2021.

[He22a] HE, Xinnan: “Design and Evaluation of RFET In-Memory-Computing
Architectures and Programming Toolflow”. Master’s Thesis. Karlsruhe:
Karlsruhe Institute of Technology, 2022.

[He22b] HE, Zhuofan: “Entwicklung einer FPGA Synthese-Toolchain zur automa-
tisierten Integrierung hybrider Flip-Flops”. Master’s Thesis. Karlsruhe:
Karlsruhe Institute of Technology, 2022.

[Mor22] MORTAZAVI, Sayed Hadi: “Designing a RISCV based Audio Player System
for the ITIV System on Chip Lab”. Seminar Paper. Karlsruhe: Karlsruhe
Institute of Technology, 2022.

[Pri22] PRIESTER, Morris: “Open Source FPGAs und DesignTools Eine Übersicht”.
Seminar Paper. Karlsruhe: Karlsruhe Institute of Technology, 2022.

[Sil22] SILZ, Johannes: “Entwurf und Evaluation eines effizienten LSTM Beschle-
unigers für den NEORV32 Prozessor”. Master’s Thesis. Karlsruhe: Karl-
sruhe Institute of Technology, 2022.

[Li23] LI, Jingyi: “Design and Evaluation of a Data Generator for a SAR Satellite
Ground Demonstrator”. Master’s Thesis. Karlsruhe: Karlsruhe Institute of
Technology, 2023.

This page intentionally left blank

This page intentionally left blank

Figures

1.1 PARFAIT Architecture Overview 5

2.1 Bulk MOSFET Cross-Section 9
2.2 MOSFET Symbols . 10
2.3 Silicon on Insulator MOSFETVariants 11
2.4 Basic Ambipolar MOSFETs 14
2.5 PARFAIT RFET Cross-Section 16
2.6 RFET Symbols . 16
2.7 Inverter Realization using Complementary Transistors 20
2.8 Static Inverter Transfer Characteristic 21
2.9 Time Characteristic Definition for the Inverter 22
2.10 Static Timing Analysis Variables 24
2.11 Process Variation Effect on Parameter 28
2.12 Process Variation Taxonomy 29
2.13 Delay Increase Due To SupplyVoltage Drop 33
2.14 FPGATemperatureVariation Examples 36
2.15 NBTI Stress and Recovery . 39
2.16 Electromigration Effects . 40
2.17 Programmable Array Logic Structure 45
2.18 AND-Inverter Cone-3 Structure 47
2.19 ULM Implementation Examples 48
2.20 Microsemi Axcelerator C-Cell Logic Block 49
2.21 Transistor-Level LUT Implementation in COFFEE 51
2.22 Ambipolar Technology Based Reconfigurable Cells 54
2.23 Flip-Flop Used in Logic Elements 57
2.24 Logic Cluster in Intel Aria 10 FPGA 58
2.25 Island-Style FPGA Routing 59
2.26 FPGA Architecture Notation 60
2.27 FPGA EDA Flow . 63
2.28 Common FPGA EDATools . 66

3.1 TIGFET Standard Cell Design Flow 73
3.2 RFET Cell based MCluster . 76
3.3 Drain Current Variation using BG Charge 77

330 Figures

3.4 FPGA Multi-Context Configuration Memory 79
3.5 FPGATasks Implemented using PDR 80
3.6 A Time Multiplexed FPGA . 82
3.7 Row Based FPGA Defragmentation 82
3.8 FPGA Core Fusion . 83
3.9 Self-Reconfigurable FPGA ReM Cell 84
3.10 Variation Aware Chipwise Placement 87
3.11 Razor TimingViolation Detection 88
3.12 Fully Digital Temperature Sensor 89
3.13 Adaptive Body Biasing Test Chip 92
3.14 Body Biasing Islands . 93
3.15 Inverter Based Logic Delay Measurement Circuit 94
3.16 FPGA Block Characterizer . 95
3.17 Classification of Power Aware FPGA Systems 96
3.18 Fine Grained Power Gating for FPGAs 98
3.19 DynamicVoltage Scaling for FPGAs 100
3.20 LUT MUX Architecture by Anderson 101
3.21 EDA Flow for Hybrid FPGAs 103

4.1 VPR Reference Architecture k6_frac_N10_40nm 108
4.2 k6_frac_N10_40nm Architecture CLB 110
4.3 k6_frac_N10_40nm Architecture FLE 112
4.4 Power Regions for k6_frac_N10_40nm 115
4.5 PVTA Effects for k6_frac_N10_40nm 117
4.6 Region Controller Concept 118
4.7 Placement Grid Indices in FPGA Implementation 122
4.8 PARFAIT FPGA CB . 124
4.9 Programming Chain for PARFAIT FPGA 125
4.10 PROG Component FSM . 126
4.11 ProgController Block Diagram 126
4.12 ProgController Component FSM 126
4.13 PARFAIT FPGAToolflow . 127
4.14 Delay Extraction Test Circuit 135
4.15 Test Circuit Transients for XT018 Technology 136
4.16 𝑡PD Model For XT018 Technology 141
4.17 𝑡PD Model For XT018 Technology 142
4.18 𝑡PD Model For XT018 Technology 143
4.19 𝐼leak Model for XT018 Technology 144
4.20 𝑡PD Model For RFET Technology 150
4.21 𝑡PD Model For RFET Technology 151
4.22 𝑡PD Model For RFET Technology 152

Figures 331

4.23 𝐼leak Model for RFET Technology 153
4.24 Intra-Die Process Variation Scenario 154

5.1 RFET Device for Standard Cell Library 162
5.2 Standard Cell Schematics . 163
5.3 Standard Cell 𝑡r, 𝑡f and 𝑡PD Characterization 163
5.4 Combinational Test Circuits for Standard Cell Synthesis . . . 169
5.5 ChaCha Cipher Columns and Diagonals 172
5.6 ChaCha Quarter-Round Data Flow Graph 172
5.7 ChaCha ARX Cell . 173
5.8 ChaCha Accelerator System Architecture 176

6.1 FPGA Architecture for ULM Evaluation 179
6.2 ULM LE and Cluster Structure 181
6.3 Custom EDA Flow for ULMs 182
6.4 Custom EDA Flow for ULM FLEs 184
6.5 ULM2 Cluster Utilization Statistics 188
6.6 6-Input FLE Utilization Statistics 190
6.7 ULM ArchitectureVariants 191
6.8 Utilization of FF in Logic Clusters 192

7.1 Regions for k6_frac_N10_40nm 195
7.2 Static Region Assignment Examples 198
7.3 Static Region Assignment Flow 199
7.4 Dynamic Region Assignment Examples 200
7.5 Dynamic Region Assignment Flow 201

8.1 Benchmark Application Placement 205
8.2 High-Level Overview of Logic Invasion 207
8.3 CLB Modification for Logic Invasion 208
8.4 FF Modification for Logic Invasion 209
8.5 FSM Summarizing the Invasion Process 211
8.6 Modified CLB Bypass Example 213
8.7 CLB Modifications for Characterization 215
8.8 CLB Characterization FSM 217
8.9 CLB Characterization Register Initialization 219
8.10 CLB Characterization Ring Oscillator and Counter 221
8.11 CLB CharacterizationValue Readout 223
8.12 Region Controller Concept 224
8.13 Region Controller ProgController Connection 225
8.14 Final RGATE-based FLE . 228

332 Figures

9.1 VFPGA Architecture Details 232
9.2 VFPGA Vivado Standard Placement 237
9.3 VFPGA Floorplan with Nested PBlocks 238
9.4 VFPGA Manual Placement 239
9.5 Current Leakage Paths in RGATE 241
9.6 Logic Invasion and Characterization Test 243
9.7 Co-Simulation Flow . 245
9.8 Co-Simulation Framework for DVS Evaluation 246
9.9 Co-SimulationVHDL/C++ Interface 247
9.10 Example DVS Factors . 248
9.11 FPGA Region Slacks . 248

10.1 ChaCha Accelerator Throughput 255
10.2 ULM Logic Cluster Utilization 261
10.3 Tool Runtime for ULMToolflow 262
10.4 FPGA Size . 263
10.5 FLE Utilization with Advanced EDA Flow 264
10.6 Static Region Assignment Evaluation 265
10.7 Dynamic Region Assignment Evaluation 265
10.8 PARFAIT FPGA ULM Overhead 266
10.9 Process Variation for PARFAIT Evaluation 267
10.10Example Benchmark Placements 268
10.11Legend for Heatmaps . 269
10.12Power Reduction: arm_core, RFET 271
10.13Power Reduction vs. Region Size 272
10.14Power Reduction vs. Region Size with Process Variation . . . 274
10.15Power Reduction vs. Utilization with Process Variation 275
10.16Process Variation: arm_core, SOI 276
10.17Process Variation: arm_core, RFET 277
10.18Example BenchmarkVoltageVariation Maps 278
10.19VoltageVariation Compensation: arm_core, RFET 279
10.20Power Reduction vs. Region Size withVoltageVariation 280
10.21TemperatureVariation Compensation: arm_core, RFET . . . 281
10.22Example Benchmark Local Heating Map 282
10.23Power Reduction vs. Region Size with TemperatureVariation 282
10.24Aging Compensation: arm_core, RFET 284
10.25Power Reduction vs. Region Size with Aging 285

F.1 Benchmark Placements . 366
F.2 Target Factor Maps for SOI I 367
F.3 Target Factor Maps for SOI II 368

Figures 333

F.4 Target Factor Maps for RFET I 369
F.5 Target Factor Maps for RFET II 370
F.6 Delay Factor Maps for RFET I 371
F.7 Delay Factor Maps for RFET II 372
F.8 Power Maps for RFET I . 373
F.9 Power Maps for RFET II . 374
F.10 Delay Factor Maps with Process Variation for SOI I 375
F.11 Delay Factor Maps with Process Variation for SOI II 376
F.12 Power Maps with Process Variation for SOI I 377
F.13 Power Maps with Process Variation for SOI II 378
F.14 Delay Factor Maps with Process Variation for RFET I 379
F.15 Delay Factor Maps with Process Variation for RFET II 380
F.16 Power Maps with Process Variation for RFET I 381
F.17 Power Maps with Process Variation for RFET II 382
F.18 VoltageVariation Maps . 383
F.19 Delay Factor Maps withVoltageVariation for SOI I 384
F.20 Delay Factor Maps withVoltageVariation for SOI II 385
F.21 Delay Factor Maps withVoltageVariation for SOI I 386
F.22 Delay Factor Maps withVoltageVariation for SOI II 387
F.23 Power Maps withVoltageVariation for SOI I 388
F.24 Power Maps withVoltageVariation for SOI II 389
F.25 Delay Factor Maps withVoltageVariation for RFET I 390
F.26 Delay Factor Maps withVoltageVariation for RFET II 391
F.27 Power Maps withVoltageVariation for RFET I 392
F.28 Power Maps withVoltageVariation for RFET II 393
F.29 Delay Factor Maps withVoltageVariation for RFET I 394
F.30 Delay Factor Maps withVoltageVariation for RFET II 395
F.31 Power Maps withVoltageVariation for RFET I 396
F.32 Power Maps withVoltageVariation for RFET II 397
F.33 Delay Factor Maps with TemperatureVariation for RFET I . . 398
F.34 Delay Factor Maps with TemperatureVariation for RFET II . . 399
F.35 Power Maps with TemperatureVariation for RFET I 400
F.36 Power Maps with TemperatureVariation for RFET II 401
F.37 Delay Factor Maps with Aging for RFET I 402
F.38 Delay Factor Maps with Aging for RFET II 403
F.39 Power Maps with Aging for RFET I 404
F.40 Power Maps with Aging for RFET II 405
F.41 Delay Factor Maps with Aging for RFET I 406
F.42 Delay Factor Maps with Aging for RFET II 407
F.43 Power Maps with Aging for RFET I 408
F.44 Power Maps with Aging for RFET II 409

This page intentionally left blank

Tables

3.1 Common Standard Cell Library File Formats 70
3.2 Comparison of Ambipolar Device PPDKs 74
3.3 Overview of State-of-the-ArtWorks 104

4.1 Bitstream Format for the Programmable Switch Matrix 132
4.2 Bitstream Format for the Basic Logic Element 132
4.3 Bitstream Format for the Controllable Logic Block 132
4.4 Bitstream Format for the Connection Box 133
4.5 Layout Parameters for XT018 Inverter 133
4.6 Fitted Parameters for XT018 Nominal Conditions 137
4.7 XT018 Process Variation Parameters 138
4.8 Aging Model Parameters for XT018 140
4.9 Fitted Parameters for RFET Nominal Conditions 146
4.10 RFET Process Variation Parameters 148

5.1 Comparison ofWire Load Estimation Techniques 165

6.1 CNT-DR8F ULM Functions 178

10.1 RFET ChaCha Accelerator Critical Path 256
10.2 RFET ChaCha Accelerator Area 257
10.3 Delay of Full Adder RFET vs. SOI 257
10.4 Critical Path in Combinational RFET Circuits 258
10.5 ChaCha Resource and Speed Comparison 259

This page intentionally left blank

Listings

4.1 Reference Architecture Top-Level Description 108
4.2 Reference Architecture CLB Description 111
4.3 PARFAIT FPGA IOB Instantiation Template 123
4.4 PARFAIT FPGA IOB Instantiation Example 123
4.5 FASM Example Feature for LUT Data 127
4.6 FASM Metadata for LUTs . 129
4.7 FASM Derived from Architecture Description 129
4.8 VPR RRG ExampleWith FASM Metadata 130
4.9 FASM Derived from RRG . 130
4.10 Example of a Pin Map Generated by PBIT_RR 131

5.1 Wireload Concept for .lib File 166
5.2 Cell Concept for .lib File . 167
5.3 VHDL Black Box for XOR2 . 170
5.4 ChaCha Cipher Main Algorithm 171
5.5 ChaCha Cipher Quarter-Round Algorithm 171

7.1 VPR Region Description Example 196
7.2 VPR Region Based Timing Delays 197

8.1 𝑘slack Factor Calculation for Regions 204
8.2 CLB Characterization Register Initialization FASM 219
8.3 CLB Characterization Oscillator and Counter FASM 222
8.4 CLB Characterization FF Readout FASM 223
8.5 Region Controller VHDL for Simulation 226

9.1 VHDL LUT Implementation with Delay 244

B.1 Architecture Description of the IOB 349
B.2 Reference Architecture LUT6 Description 350
B.3 Reference Architecture LUT5 Description 351

C.1 VHDL for FO4 Delay Extraction 353

338 Listings

D.1 NO2 Cell Description for .lib File 355
D.2 Wireload Description for .lib File 357

E.1 CLB Characterization Register Initialization FASM 359
E.2 CLB Characterization Oscillator and Counter FASM 361
E.3 CLB Characterization FF Readout FASM 363

Acronyms

ABB Adaptive Body Biasing
AES Advanced Encryption Standard
AIC AND-Inverter Cone
AIG And-Inverter Graph
ALM Adaptive Logic Module
API Application Programming Interface
ARX Add Rotate XOR
ASIC Application Specific Integrated Circuit
ASIP Application Specific Integrated Processor

BB Body Biasing
BDD Binary Decision Diagram
BEOL Back End of Line
BG Back Gate
BLE Basic Logic Element
BLIF Berkeley Logic Interchange Format
BOX Buried Oxide
BTI Bias Temperature Instability

CAD Computer Aided Design
CB Connection Box
CBEW Connection Box East-West
CBR Read Connection Box
CBSN Connection Box South-North
CBW Write Connection Box
CGRA Coarse Grain Reconfigurable Array
CLB Controllable Logic Block
CMOS Complementary Metal Oxide Semiconductor
CMP Chemical Mechanical Polishing
CNTFET Carbon Nanotube FET
CPLD Complex Programmable Logic Device
CPU Central Processing Unit
CU Configuration Unit

340 Acronyms

CVD Chemical Vapor Deposition

DAC Digital to Analog Converter
DFG Data Flow Graph
DGCNTFET Dual Gate CNTFET
DOS Denial Of Service
DRAM Dynamic Random-Access Memory
DRC Design-Rule Check
DSE Design Space Evaluation
DSL Domain Specific Language
DSP Digital Signal Processing
DVFS DynamicVoltage and Frequency Scaling
DVS DynamicVoltage Scaling

EDA Electronic Design Automation
EM Electromigration

FASM FPGA ASM
FDSOI Fully Depleted SOI
FEOL Front End of Line
FET Field Effect Transistor
FF Flip-Flop
FG Front Gate
FIR Finite Impulse Response
FLE Fracturable Logic Element
FLI Foreign Language Interface
FPGA Field Programmable Gate Array
FSM Finite State Machine

HCI Hot Carrier Injection
HDL Hardware Description Language
HLS High Level Synthesis

IC Integrated Circuit
IO Input / Output
IOB Input-/Output-Block
IP Intellectual Property
ITD Inverted Temperature Dependence

LAB Logic Array Block
LE Logic Element

Acronyms 341

LER Line-Edge Roughness
LFSR Linear Feedback Shift Register
LI Logic Invasion
LUT Lookup Table
LVS Layout vs. Schematic

MIGFET Multiple Independent Gate FET
MLAB Memory LAB
MOS Metal Oxide Semiconductor
MOSFET Metal Oxide Semiconductor FET
MRAM Magnetoresistive Random-Access Memory
MUX Multiplexer

NBTI Negative Bias Temperature Instability
NLDM Non-Linear Delay Model
NMOS N-Channel MOSFET
NoC Network-on-Chip
nonce Number-used-Once
NTVO Near-ThresholdVoltage Operation

OPE Optical Proximity Effect
OS Operating System

PAL Programmable Array Logic
PARFAIT Power Aware Reconfigurable FPGA Architecture
PBTI Positive Bias Temperature Instability
PCB Printed Circuit Board
PCIe Peripheral Component Interconnect Express
PDK Process Design Kit
PDR Partial Dynamic Reconfiguration
PDSOI Partially Depleted SOI
PEX Parasitics Extraction
PG Program Gate
PLA Programmable Logic Array
PLE Physical Layout Estimation
PMOS P-Channel MOSFET
PPDK Predictive PDK
PROM Programmable Read Only Memory
PRR Partially Reconfigurable Region
PSM Programmable Switch Matrix
PVD Physical Vapor Deposition

342 Acronyms

PVT Process-, Voltage-, Temperature-Variation
PVTA Process-, Voltage-, Temperature-Variation and Aging

RDF Random Dopant Fluctuation
RFET Reconfigurable (Ambipolar) FET
RO Ring Oscillator
RRG Routing Resource Graph
RTL Register Transfer Level

SB Switch Box
SBFET Schottky Barrier FET
SIMD Single Instruction Multiple Data
SiNW Silicon Nanowire
SoC System-on-Chip
SOI Silicon on Insulator
SOP Sum-of-Products
SOTB Silicon on Thin BOX
SRAM Static Random-Access Memory
SSTA Statistical STA
STA Static Timing Analysis

TCAD Technology CAD
TDDB Time Dependent Dielectric Breakdown
TG Top Gate
TIGFET Three-Independent-Gate FET

ULM Universal Logic Module

VFPGA Virtual FPGA
VHDL Very High Speed Integrated Circuit Hardware Description

Language
VLSI Very Large Scale Integration
VPR Versatile Place and Route
VTC Voltage-Transfer-Characteristic
VTR Verilog to Routing

Glossary

ABC Open-Source logic optimization tool used in VTR.
ARC A timing ARC is a component of a timing path, an indivisi-

ble path from one pin to another. Cell ARCs start at a cell
input pin and end at an output pin of the same cell. For
net ARCs, the path starts at one cell’s output pin and ends
at another cell’s input pin.

BB Body Biasing, applying a voltage potential other than the
source potential to the body of a MOSFET.

BEOL Back End of Line, refers to the manufacturing of metalliza-
tion layers during IC fabrication.

BLIF File format used to store netlists. The BLIF file format is
commonly used by open source tools such as ODIN and
ABC.

FASM A textual format to represent FPGA bitstreams. Used in
the VPR tools.

FEOL Front End of Line, refers to the manufacturing of semicon-
ductor layers during IC fabrication.

FinFET FET where the gate electrode can be on multiple sides of
the channel or even wrap around the channel completely.

FO4 Fanout-four model. In this model, the cell’s output is con-
nected to the inputs of four instances of the same gate
type. This simulates output loads including dynamic ca-
pacitances similar to a circuit with a fanout of four.

genfasm Open-Source tool to generate FASM from VPR output files.
Part of VTR.

Genus Commercial digital synthesis tool by Cadence used for
ASICs.

Innovus Commercial digital implementation tool by Cadence used
for ASICs.

344 Glossary

LEF This file format is commonly used in commercial EDA
tools to describe the physical layout of gates.

LIB This file format is commonly used in commercial EDA
tools to encode timing information of gates.

LI Logic Invasion, a term coined in this thesis. Reusing re-
configurable logic originally used for user applications for
system management tasks.

LUA Scripting language designed to be embedded into pro-
grams. Used in this thesis to implement delay models.

LUT Lookup Table, a combination of memory and multiplexer
that allows deriving output values from a table according
to an input value. Most commonly used reconfigurable
LE in FPGAs.

nonce In cryptography, a number which must be used only once.
For example in many stream ciphers, if a counter value is
reused, cryptographic guarantees no longer hold.

ODIN II Open-Source digital synthesis tool for FPGAs and ASICs
used in VTR.

PARFAIT Research project where topics of this thesis originated
from. Also: Term covering all FPGA architecture exten-
sions introduced in this thesis.

pbit Tool to generate a bitstream for the PARFAIT architecture
from FASM. Developed as part of this thesis.

pbit_rr Tool to modify VPR RRGs to generate FASM for the PAR-
FAIT architecture. Developed as part of this thesis.

PDK Process Design Kit, a set of simulation models and library
files describing a technology. Usually provided by the tech-
nology vendors. A PDK usually does not contain tools, but
only configuration data for tools.

PPDK A PDK for a predictive technology, i.e. a technology that
is not actually available for fabrication. Used for early
evaluation of technologies not yet ready for large-scale
production.

RRG File format used by VPR to describe all possible routing
paths in an FPGA architecture.

Glossary 345

SPICE Analog electronic simulator. The original version is Open
Source with most EDA vendors providing custom, com-
mercial spin-offs.

TCAD Technology CAD, EDA tools commonly used to model
transistor devices using physical semiconductor models.

TECH File format used in VPR to model power requirements of
FPGAs depending on the used technology.

ULM Reconfigurable LE usually realized using logic gates in-
stead of memory as used in LUT. Strictly speaking, ULMs
cover only circuits that can realize any function of 𝑁 in-
puts. The term is however also commonly used to refer to
circuits that can only realize a selected subset of functions.

Vivado Commercial digital synthesis, implementation and simu-
lation tool for FPGAs by Xilinx.

VPR Open-Source tool realizing placement, packing and rout-
ing EDA steps. Part of the VTR tool suite.

VTR A suite of tools for FPGA architecture design. It combines
of a set of benchmarks for evaluation with a full tool flow
based on ODIN II, ABC and VPR.

XML Generic file format used to describe structured data. In
this thesis, it is primarily used for VPR to describe FPGA
architectures.

Yosys Open-Source digital synthesis tool for FPGAs and ASICs
optionally usable with VTR.

This page intentionally left blank

Appendix A

Research Data Archive

Some data used in this thesis can not be published as Open-Source, as it
uses parts of commercial PDK or was partially derived from source code from
previous institute members with unclear licensing. Nevertheless, all code
which was developed as part of this thesis as well as all the raw evaluation
data has been stored in the Research Data Archive. The filename for the thesis
data is johannes_pfau_thesis.tar.zst and the SHA256 checksum of the
file is bf8192cbd243af405b845f2aa5c95d856c37a0ae43cebdb2747b8f89
9e8fb728.

https://www.rda.kit.edu/

This page intentionally left blank

Appendix B

FPGA Architecture Descriptions

1 <pb_type name="io" capacity="8" area="0">
2 <input name="outpad" num_pins="1"/>
3 <output name="inpad" num_pins="1"/>
4 <clock name="clock" num_pins="1"/>
5
6 <!−− IOs can operate as either inputs or outputs.
7 −−>
8 <mode name="inpad">
9 <pb_type name="inpad" blif_model=".input" num_pb="1">

10 <output name="inpad" num_pins="1"/>
11 </pb_type>
12 <interconnect>
13 <direct name="inpad" input="inpad.inpad" output="io.

↪ inpad">
14 <delay_constant max="4.243e−11" in_port="inpad.inpad"

↪ out_port="io.inpad"/>
15 </direct>
16 </interconnect>
17 </mode>
18
19 <mode name="outpad">
20 <pb_type name="outpad" blif_model=".output" num_pb="1">
21 <input name="outpad" num_pins="1"/>
22 </pb_type>
23 <interconnect>
24 <direct name="outpad" input="io.outpad" output="outpad.

↪ outpad">
25 <delay_constant max="1.394e−11" in_port="io.outpad"

↪ out_port="outpad.outpad"/>
26 </direct>
27 </interconnect>
28 </mode>
29

350 Appendix B FPGA Architecture Descriptions

30 <fc in_type="frac" in_val="0.15" out_type="frac" out_val="
↪ 0.10"/>

31
32 <pinlocations pattern="custom">
33 <loc side="left">io.outpad io.inpad io.clock</loc>
34 <loc side="top">io.outpad io.inpad io.clock</loc>
35 <loc side="right">io.outpad io.inpad io.clock</loc>
36 <loc side="bottom">io.outpad io.inpad io.clock</loc>
37 </pinlocations>
38
39 <power method="ignore"/>
40 </pb_type>

Listing B.1: Full description of the IOB used in the k6_frac_N10_40nm reference
architecture.

1 <mode name="n1_lut6">
2 <pb_type name="ble6" num_pb="1">
3 <input name="in" num_pins="6"/>
4 <output name="out" num_pins="1"/>
5 <clock name="clk" num_pins="1"/>
6
7 <pb_type name="lut6" blif_model=".names" num_pb="1" class=

↪ "lut">
8 <input name="in" num_pins="6" port_class="lut_in"/>
9 <output name="out" num_pins="1" port_class="lut_out"/>

10 </pb_type>
11
12 <pb_type name="ff" blif_model=".latch" num_pb="1" class="

↪ flipflop">
13 <input name="D" num_pins="1" port_class="D"/>
14 <output name="Q" num_pins="1" port_class="Q"/>
15 <clock name="clk" num_pins="1" port_class="clock"/>
16 <T_setup value="66e−12" port="ff.D" clock="clk"/>
17 <T_clock_to_Q max="124e−12" port="ff.Q" clock="clk"/>
18 </pb_type>
19
20 <interconnect>
21 <direct name="direct1" input="ble6.in" output="lut6[0:0

↪].in"/>
22 <direct name="direct2" input="lut6.out" output="ff.D">
23 <pack_pattern name="ble6" in_port="lut6.out" out_port=

↪ "ff.D"/>
24 </direct>

351

25 <direct name="direct3" input="ble6.clk" output="ff.clk"/
↪ >

26 <mux name="mux1" input="ff.Q lut6.out" output="ble6.out"
↪ ></mux>

27 </interconnect>
28 </pb_type>
29 <interconnect>
30 <direct name="direct1" input="fle.in" output="ble6.in"/>
31 <direct name="direct2" input="ble6.out" output="fle.out[0

↪ :0]"/>
32 <direct name="direct3" input="fle.clk" output="ble6.clk"/>
33 </interconnect>
34 </mode>

Listing B.2: LUT6 mode of the FLE XML architecture description used by the VTR
framework and VPR.

1 <mode name="n2_lut5">
2 <pb_type name="lut5inter" num_pb="1">
3 <input name="in" num_pins="5"/>
4 <output name="out" num_pins="2"/>
5 <clock name="clk" num_pins="1"/>
6
7 <pb_type name="ble5" num_pb="2">
8 <input name="in" num_pins="5"/>
9 <output name="out" num_pins="1"/>

10 <clock name="clk" num_pins="1"/>
11
12 <pb_type name="lut5" blif_model=".names" num_pb="1"

↪ class="lut">
13 <input name="in" num_pins="5" port_class="lut_in"/>
14 <output name="out" num_pins="1" port_class="lut_out"/>
15 </pb_type>
16
17 <pb_type name="ff" blif_model=".latch" num_pb="1" class=

↪ "flipflop">
18 <input name="D" num_pins="1" port_class="D"/>
19 <output name="Q" num_pins="1" port_class="Q"/>
20 <clock name="clk" num_pins="1" port_class="clock"/>
21 </pb_type>
22
23 <interconnect>
24 <direct name="direct1" input="ble5.in[4:0]" output="

↪ lut5[0:0].in[4:0]"/>

352 Appendix B FPGA Architecture Descriptions

25 <direct name="direct2" input="lut5[0:0].out" output="
↪ ff[0:0].D">

26 <pack_pattern name="ble5" in_port="lut5[0:0].out"
↪ out_port="ff[0:0].D"/>

27 </direct>
28 <direct name="direct3" input="ble5.clk" output="ff[0:0

↪].clk"/>
29 <mux name="mux1" input="ff[0:0].Q lut5.out[0:0]"

↪ output="ble5.out[0:0]"></mux>
30 </interconnect>
31 </pb_type>
32 <interconnect>
33 <direct name="direct1" input="lut5inter.in" output="ble5

↪ [0:0].in"/>
34 <direct name="direct2" input="lut5inter.in" output="ble5

↪ [1:1].in"/>
35 <direct name="direct3" input="ble5[1:0].out" output="

↪ lut5inter.out"/>
36 <complete name="complete1" input="lut5inter.clk" output=

↪ "ble5[1:0].clk"/>
37 </interconnect>
38 </pb_type>
39
40 <interconnect>
41 <direct name="direct1" input="fle.in[4:0]" output="

↪ lut5inter.in"/>
42 <direct name="direct2" input="lut5inter.out" output="fle.

↪ out"/>
43 <direct name="direct3" input="fle.clk" output="lut5inter.

↪ clk"/>
44 </interconnect>
45 </mode>

Listing B.3:Dual LUT5 mode of the FLE XML architecture description used by the VTR
framework and VPR.

Appendix C

Delay Model Extraction

1 library ieee;
2 use ieee.std_logic_1164.all;
3
4 entity tpd is
5 port (
6 a: in std_logic;
7 y: out std_logic_vector(3 downto 0)
8);
9 end;

10
11 architecture xt018 of tpd is
12 signal inv0_out, inv1_out: std_logic;
13 begin
14
15 inv0: entity work.INHDX0
16 port map (
17 A => a,
18 Q => inv0_out
19);
20
21 inv1: entity work.INHDX0
22 port map (
23 A => inv0_out,
24 Q => inv1_out
25);
26
27 inv2_0: entity work.INHDX0
28 port map (
29 A => inv1_out,
30 Q => y(0)
31);
32
33 inv2_1: entity work.INHDX0

354 Appendix C Delay Model Extraction

34 port map (
35 A => inv1_out,
36 Q => y(1)
37);
38
39 inv2_2: entity work.INHDX0
40 port map (
41 A => inv1_out,
42 Q => y(2)
43);
44
45 inv2_3: entity work.INHDX0
46 port map (
47 A => inv1_out,
48 Q => y(3)
49);
50
51 end;

Listing C.1: VHDL codeused inCadenceGenus synthesiswith theXT018 PDK toextract
FO4 inverter delay. The model is used with different corner files to extract
differences caused by process variation.

Appendix D

Standard Cell Library Excerpts

1 /*
2 * cell_description : 2-Input NOR
3 */
4
5 cell (NO2HDX1) {
6 area : 10.0352;
7 cell_footprint : NO2;
8
9 pg_pin (gnd) {

10 voltage_name : gndCommon;
11 pg_type : primary_ground;
12 }
13 pg_pin (vdd) {
14 voltage_name : vddInt;
15 pg_type : primary_power;
16 }
17
18 pin (A) {
19 direction : input;
20 related_ground_pin : gnd;
21 related_power_pin : vdd;
22 rise_capacitance : 0.006461898799178912;
23 fall_capacitance : 0.005618442917028880;
24 }
25 pin (B) {
26 direction : input;
27 related_ground_pin : gnd;
28 related_power_pin : vdd;
29 rise_capacitance : 0.006480533990037019;
30 fall_capacitance : 0.005240246832871408;
31 }
32 pin (Q) {
33 direction : output;

356 Appendix D Standard Cell Library Excerpts

34 function : "!(A+B)";
35 max_capacitance: 0.015;
36 max_fanout : 10;
37 related_ground_pin : gnd;
38 related_power_pin : vdd;
39 power_down_function : "!vdd + gnd";
40
41 timing () {
42 timing_sense : negative_unate;
43 related_pin : A;
44 rise_transition (delay_template_3x3) {
45 index_1 ("0.060000, 0.300000, 0.540000");
46 index_2 ("0.003000, 0.009000, 0.015000");
47 values (\
48 "0.205750, 0.241829, 0.277907", \
49 "0.329676, 0.356424, 0.383173", \
50 "0.453601, 0.471020, 0.488439");
51 }
52 fall_transition (delay_template_3x3) {
53 index_1 ("0.060000, 0.300000, 0.540000");
54 index_2 ("0.003000, 0.009000, 0.015000");
55 values (\
56 "0.270651, 0.305638, 0.340626", \
57 "0.384688, 0.406597, 0.428506", \
58 "0.498726, 0.507556, 0.516386");
59 }
60 cell_rise (delay_template_3x3) {
61 index_1 ("0.060000, 0.300000, 0.540000");
62 index_2 ("0.003000, 0.009000, 0.015000");
63 values (\
64 "0.250443, 0.271110, 0.291777", \
65 "0.339382, 0.364643, 0.389904", \
66 "0.428321, 0.458176, 0.488031");
67 }
68 cell_fall (delay_template_3x3) {
69 index_1 ("0.060000, 0.300000, 0.540000");
70 index_2 ("0.003000, 0.009000, 0.015000");
71 values (\
72 "0.235192, 0.321403, 0.407613", \
73 "0.312413, 0.392071, 0.471729", \
74 "0.389633, 0.462739, 0.535844");
75 }
76 }
77 timing () {

357

78 timing_sense : negative_unate;
79 related_pin : B;
80 rise_transition (delay_template_3x3) {
81 index_1 ("0.060000, 0.300000, 0.540000");
82 index_2 ("0.003000, 0.009000, 0.015000");
83 values (\
84 "0.205300, 0.252093, 0.298886", \
85 "0.329448, 0.366706, 0.403964", \
86 "0.453595, 0.481319, 0.509043");
87 }
88 fall_transition (delay_template_3x3) {
89 index_1 ("0.060000, 0.300000, 0.540000");
90 index_2 ("0.003000, 0.009000, 0.015000");
91 values (\
92 "0.158357, 0.193715, 0.229073", \
93 "0.272944, 0.298892, 0.324839", \
94 "0.387532, 0.404069, 0.420605");
95 }
96 cell_rise (delay_template_3x3) {
97 index_1 ("0.060000, 0.300000, 0.540000");
98 index_2 ("0.003000, 0.009000, 0.015000");
99 values (\
100 "0.183191, 0.207483, 0.231776", \
101 "0.272849, 0.306402, 0.339955", \
102 "0.362508, 0.405321, 0.448134");
103 }
104 cell_fall (delay_template_3x3) {
105 index_1 ("0.060000, 0.300000, 0.540000");
106 index_2 ("0.003000, 0.009000, 0.015000");
107 values (\
108 "0.160941, 0.223859, 0.286777", \
109 "0.236255, 0.303522, 0.370789", \
110 "0.311569, 0.383185, 0.454801");
111 }
112 }
113 }
114 }

Listing D.1: Full description of theNO2 gate in the RFET .lib file.

1 wire_load_table (0_1k) {
2 fanout_area (1, x.xx);
3 fanout_capacitance (1, x.xx);
4 fanout_length (1, x.xx);

358 Appendix D Standard Cell Library Excerpts

5 fanout_resistance (1, x.xx);
6 fanout_area (5, x.xx);
7 fanout_capacitance (5, x.xx);
8 fanout_length (5, x.xx);
9 fanout_resistance (5, x.xx);

10 fanout_area (20, x.xx);
11 fanout_capacitance (20, x.xx);
12 fanout_length (20, x.xx);
13 fanout_resistance (20, x.xx);
14 fanout_area (10000, x.xx);
15 fanout_capacitance (10000, x.xx);
16 fanout_length (10000, x.xx);
17 fanout_resistance (10000, x.xx);
18 }

Listing D.2:Wireload description in the RFET .lib file.

Appendix E

FASM for Logic Invasion

1 # This is the fasm file is used to initialize the LFSR counter
↪ . LUTs always set the registers to a constant value.

2 # To compile: ./src/sw/pbit −−single CLB src/fasm/
↪ clb_counter_init.fasm

3
4 # Pass through FLE0 LUT0 input 0 from external input
5 BLK_X[000]Y[000]Z[000].CLB.FLE[0].CB.I[0]="ext[0].I"
6 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[0].FF.ENABLE
7 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
8
9 # Configure BLE0 LUT 1 as constant 1

10 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[1].FF.ENABLE
11 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11111111111111111111111111111111
12
13 # All other LUTs as constant 0
14 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[0].FF.ENABLE
15 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
16 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[1].FF.ENABLE
17 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
18
19 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[0].FF.ENABLE
20 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
21 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[1].FF.ENABLE
22 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
23
24 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[0].FF.ENABLE

360 Appendix E FASM for Logic Invasion

25 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[0].LUT5.INIT[31:0]=32'b
↪ 00000000000000000000000000000000

26 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[1].FF.ENABLE
27 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
28
29 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[0].FF.ENABLE
30 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
31 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[1].FF.ENABLE
32 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
33
34 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[0].FF.ENABLE
35 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
36 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[1].FF.ENABLE
37 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
38
39 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[0].FF.ENABLE
40 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
41 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[1].FF.ENABLE
42 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
43
44 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[0].FF.ENABLE
45 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
46 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[1].FF.ENABLE
47 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
48
49 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[0].FF.ENABLE
50 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
51 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[1].FF.ENABLE
52 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000
53
54 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[0].FF.ENABLE
55 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000

361

56 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[1].FF.ENABLE
57 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00000000000000000000000000000000

Listing E.1: FASM representing the register initialization for measurement in
section 8.3 on page 214.

1 # This is the fasm file used to build an oscillator for logic
↪ invasion

2 # To compile: ./src/sw/pbit −−single CLB src/fasm/clb_ring.
↪ fasm

3
4 # We build a ring oscillator in the LUT0s of BLE 0−9 and LUT1

↪ of BLE10
5 # Oscillator input is I0, so an inverter/NAND of I0 is used
6 # The counter / LFSR is implemented in LUT1s of BLE0−8.
7 # I1 is counter input, I2 optional second input when using an

↪ xor for the first tap.
8 # For non−first tap, use a pass−through of I1
9

10 # Externally gated inverter (invert fle[9].O[1] if ext[0].I is
↪ 1)

11 BLK_X[000]Y[000]Z[000].CLB.FLE[0].CB.I[0]="fle[9].O[1]"
12 BLK_X[000]Y[000]Z[000].CLB.FLE[0].CB.I[3]="ext[0].I"
13 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[0].FF.BYPASS
14 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 01010101000000000101010100000000
15 # x9 + x5 + 1
16 BLK_X[000]Y[000]Z[000].CLB.FLE[0].CB.I[1]="fle[8].O[1]"
17 BLK_X[000]Y[000]Z[000].CLB.FLE[0].CB.I[2]="fle[4].O[1]"
18 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[1].FF.ENABLE
19 # The XOR of I1 and I2
20 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 00111100001111000011110000111100
21
22 # All following ring elements are buffers
23 BLK_X[000]Y[000]Z[000].CLB.FLE[1].CB.I[0]="fle[0].O[0]"
24 BLK_X[000]Y[000]Z[000].CLB.FLE[1].CB.I[1]="fle[0].O[1]"
25 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[0].FF.BYPASS
26 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
27 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[1].FF.ENABLE
28 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100

362 Appendix E FASM for Logic Invasion

29
30 BLK_X[000]Y[000]Z[000].CLB.FLE[2].CB.I[0]="fle[1].O[0]"
31 BLK_X[000]Y[000]Z[000].CLB.FLE[2].CB.I[1]="fle[1].O[1]"
32 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[0].FF.BYPASS
33 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
34 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[1].FF.ENABLE
35 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100
36
37 BLK_X[000]Y[000]Z[000].CLB.FLE[3].CB.I[0]="fle[2].O[0]"
38 BLK_X[000]Y[000]Z[000].CLB.FLE[3].CB.I[1]="fle[2].O[1]"
39 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[0].FF.BYPASS
40 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
41 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[1].FF.ENABLE
42 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100
43
44 BLK_X[000]Y[000]Z[000].CLB.FLE[4].CB.I[0]="fle[3].O[0]"
45 BLK_X[000]Y[000]Z[000].CLB.FLE[4].CB.I[1]="fle[3].O[1]"
46 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[0].FF.BYPASS
47 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
48 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[1].FF.ENABLE
49 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100
50
51 BLK_X[000]Y[000]Z[000].CLB.FLE[5].CB.I[0]="fle[4].O[0]"
52 BLK_X[000]Y[000]Z[000].CLB.FLE[5].CB.I[1]="fle[4].O[1]"
53 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[0].FF.BYPASS
54 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
55 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[1].FF.ENABLE
56 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100
57
58 BLK_X[000]Y[000]Z[000].CLB.FLE[6].CB.I[0]="fle[5].O[0]"
59 BLK_X[000]Y[000]Z[000].CLB.FLE[6].CB.I[1]="fle[5].O[1]"
60 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[0].FF.BYPASS
61 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
62 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[1].FF.ENABLE
63 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[1].LUT5.INIT[31:0]=32'b

363

↪ 11001100110011001100110011001100
64
65 BLK_X[000]Y[000]Z[000].CLB.FLE[7].CB.I[0]="fle[6].O[0]"
66 BLK_X[000]Y[000]Z[000].CLB.FLE[7].CB.I[1]="fle[6].O[1]"
67 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[0].FF.BYPASS
68 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
69 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[1].FF.ENABLE
70 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100
71
72 BLK_X[000]Y[000]Z[000].CLB.FLE[8].CB.I[0]="fle[7].O[0]"
73 BLK_X[000]Y[000]Z[000].CLB.FLE[8].CB.I[1]="fle[7].O[1]"
74 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[0].FF.BYPASS
75 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
76 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[1].FF.ENABLE
77 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100
78
79 BLK_X[000]Y[000]Z[000].CLB.FLE[9].CB.I[0]="fle[8].O[0]"
80 BLK_X[000]Y[000]Z[000].CLB.FLE[9].CB.I[1]="fle[9].O[0]"
81 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[0].FF.BYPASS
82 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[0].LUT5.INIT[31:0]=32'b

↪ 10101010101010101010101010101010
83 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[1].FF.BYPASS
84 # Pass−Through I1
85 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[1].LUT5.INIT[31:0]=32'b

↪ 11001100110011001100110011001100

Listing E.2: FASM representing the counter and oscillator for measurement in
section 8.3 on page 214.

1 # This is the fasm file is used to output the register values
↪ to the LUT0 output.

2 # All registers are on, so they are available on the CB
3 # To compile: ./src/sw/pbit −−single CLB src/fasm/

↪ clb_counter_init.fasm
4
5 # This selects the register routed to the 0 input of the first

↪ LUT,
6 # which is then emitted to LUT0. This is just a placeholder,

↪ the actual
7 # value is substituted in gen_clb_read_bitstream

364 Appendix E FASM for Logic Invasion

8 BLK_X[000]Y[000]Z[000].CLB.FLE[0].CB.I[0]="fle[0].O[0]"
9

10 # LUT0 just forwards its input 0. The CB must route the wanted
↪ register to this input.

11 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[0].LUT5.INIT[31:0]=32'b
↪ 10101010101010101010101010101010

12 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[0].FF.ENABLE
13 BLK_X[000]Y[000]Z[000].CLB.FLE[0].5BLE[1].FF.ENABLE
14
15 # Enable all FFs
16 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[0].FF.ENABLE
17 BLK_X[000]Y[000]Z[000].CLB.FLE[1].5BLE[1].FF.ENABLE
18
19 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[0].FF.ENABLE
20 BLK_X[000]Y[000]Z[000].CLB.FLE[2].5BLE[1].FF.ENABLE
21
22 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[0].FF.ENABLE
23 BLK_X[000]Y[000]Z[000].CLB.FLE[3].5BLE[1].FF.ENABLE
24
25 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[0].FF.ENABLE
26 BLK_X[000]Y[000]Z[000].CLB.FLE[4].5BLE[1].FF.ENABLE
27
28 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[0].FF.ENABLE
29 BLK_X[000]Y[000]Z[000].CLB.FLE[5].5BLE[1].FF.ENABLE
30
31 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[0].FF.ENABLE
32 BLK_X[000]Y[000]Z[000].CLB.FLE[6].5BLE[1].FF.ENABLE
33
34 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[0].FF.ENABLE
35 BLK_X[000]Y[000]Z[000].CLB.FLE[7].5BLE[1].FF.ENABLE
36
37 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[0].FF.ENABLE
38 BLK_X[000]Y[000]Z[000].CLB.FLE[8].5BLE[1].FF.ENABLE
39
40 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[0].FF.ENABLE
41 BLK_X[000]Y[000]Z[000].CLB.FLE[9].5BLE[1].FF.ENABLE

Listing E.3: FASM representing the FF readout configuration for measurement in
section 8.3 on page 214.

Appendix F

PARFAIT FPGA Evaluation Results

This chapter contains additional figures for the evaluation in chapter 10 on
page 253. The evaluation chapter contains detailed instructions on how these
figures can be interpreted. It also provides examples and interpretations for
selected benchmarks. Thefigures in this appendix cover eight of the evaluated
benchmarks. In addition, not all RFET and SOI evaluations are shown, due to
space limitations.

This appendix first shows power evaluation figures, followed by process varia-
tion, voltage variation, temperature variation and aging figures. Aggregated
statistics, which summarize average values, are given in the evaluation chap-
ter. Appendix figure figure F.1 on the following page provides placements
for all FPGA. Figure F.2 on page 367 to figure F.9 on page 374 provide eval-
uations for power management without PVTA. Figure F.10 on page 375 to
figure F.17 on page 382 show the simulations with process variation. Fig-
ure F.18 on page 383 gives an overview of all voltage variation maps used
in the voltage evaluation. The voltage variation evaluation itself is given in
figure F.19 on page 384 to figure F.32 on page 397. Temperature evaluation
maps follow in figure F.33 on page 398 to figure F.36 on page 401. The appendix
concludes with aging evaluations in figure F.37 on page 402 to figure F.44 on
page 409.

There’s one aspect to be noted in the achieved delay graphs: Even for regions
in low-power modes, such as unused regions, the achieved delay can be lower
than thenominal delay. This is causedbyprocess variation causing someareas
to have better than typical delay and results in graphs having a mostly blue
shade. For larger region sizes and the same benchmark, the amount of such
high-performance regions can seem to be smaller: The reason for this being
that the current delay is showing the delay as it is known by the compensation
algorithm. This algorithm always uses the worst value in a region, causing
the whole area to show higher delay. The real delay can however be lower for
most CLBs in the region.

366 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure F.1: Placements for the benchmarkswhich are evaluated on the PARFAIT FPGA
architecture. Placements were obtained using the ULM VPR flow intro-
duced in section 6.2 on page 180. (a) to (h): Benchmarks arm_core, bgm,
blob_merge, diffeq2, ch_intrinsics, LU64PEEng, mkSMAdapter4B and
stereovision0.

367

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.2: PARFAIT target factor maps evaluated using the SOI delay model in-
troduced in section 4.6. Benchmarks top to bottom: arm_core, bgm,
blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25, 50x50.

368 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.3: PARFAIT target factor maps evaluated using the SOI delay model in-
troduced in section 4.6. Benchmarks top to bottom: ch_intrinsics,
LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to right:
5x5, 10x10, 25x25, 50x50.

369

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.4: PARFAIT target factor maps evaluated using the RFET delay model in-
troduced in section 4.6. Benchmarks top to bottom: arm_core, bgm,
blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25, 50x50.

370 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.5: PARFAIT target factor maps evaluated using the RFET delay model in-
troduced in section 4.6. Benchmarks top to bottom: ch_intrinsics,
LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to right:
5x5, 10x10, 25x25, 50x50.

371

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.6: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6. Benchmarks top to bottom: arm_core, bgm,
blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25, 50x50.

372 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.7: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6. Benchmarks top to bottom: ch_intrinsics,
LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to right:
5x5, 10x10, 25x25, 50x50.

373

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.8: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6. Benchmarks top to bottom: arm_core, bgm, blob_merge,
diffeq2. Region size left to right: 5x5, 10x10, 25x25, 50x50.

374 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.9: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6. Benchmarks top to bottom: ch_intrinsics, LU64PEEng,
mkSMAdapter4B, stereovision0. Region size left to right: 5x5, 10x10,
25x25, 50x50.

375

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.10: PARFAIT delay factor maps evaluated using the SOI delay model intro-
duced in section 4.6 with process variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50.

376 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.11: PARFAIT delay factor maps evaluated using the SOI delay model intro-
duced in section 4.6 with process variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50.

377

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.12: PARFAIT power maps evaluated using the SOI delay model introduced in
section 4.6with process variation. Benchmarks top to bottom: arm_core,
bgm, blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25,
50x50.

378 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.13: PARFAIT power maps evaluated using the SOI delay model introduced
in section 4.6 with process variation. Benchmarks top to bottom: ch_in-
trinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size
left to right: 5x5, 10x10, 25x25, 50x50.

379

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.14: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6 with process variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right: 5x5,
10x10, 25x25, 50x50.

380 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.15: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with process variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50.

381

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.16: PARFAIT power maps evaluated using the RFET delay model intro-
duced in section 4.6 with process variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50.

382 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.17: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with process variation. Benchmarks top to bottom: ch_in-
trinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size
left to right: 5x5, 10x10, 25x25, 50x50.

383

(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure F.18: Voltage Variation Maps for the benchmarks which are evaluated on
the PARFAIT FPGA architecture. Placements were obtained using the
ULM VPR flow introduced in section 6.2 on page 180. (a) to (h):
Benchmarks arm_core, bgm, blob_merge, diffeq2, ch_intrinsics,
LU64PEEng, mkSMAdapter4B and stereovision0.

384 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.19: PARFAIT delay factor maps evaluated using the SOI delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝜖 = 0.1.

385

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.20: PARFAIT delay factor maps evaluated using the SOI delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.1.

386 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.21: PARFAIT delay factor maps evaluated using the SOI delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝜖 = 0.3.

387

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.22: PARFAIT delay factor maps evaluated using the SOI delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.3.

388 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.23: PARFAIT power maps evaluated using the SOI delay model introduced in
section 4.6 with voltage variation. Benchmarks top to bottom: arm_core,
bgm, blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25,
50x50. 𝜖 = 0.3.

389

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.24: PARFAIT power maps evaluated using the SOI delay model introduced
in section 4.6 with voltage variation. Benchmarks top to bottom: ch_in-
trinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size
left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.3.

390 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.25: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6 with voltage variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right: 5x5,
10x10, 25x25, 50x50. 𝜖 = 0.1.

391

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.26: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.1.

392 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.27: PARFAIT power maps evaluated using the RFET delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝜖 = 0.1.

393

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.28: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with voltage variation. Benchmarks top to bottom: ch_in-
trinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size
left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.1.

394 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.29: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6 with voltage variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right: 5x5,
10x10, 25x25, 50x50. 𝜖 = 0.3.

395

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.30: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.3.

396 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.31: PARFAIT power maps evaluated using the RFET delay model intro-
duced in section 4.6 with voltage variation. Benchmarks top to bot-
tom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝜖 = 0.3.

397

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.32: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with voltage variation. Benchmarks top to bottom: ch_in-
trinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size
left to right: 5x5, 10x10, 25x25, 50x50. 𝜖 = 0.3.

398 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.33: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6 with temperature variation. Benchmarks top to
bottom: arm_core, bgm, blob_merge, diffeq2. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝑇 = 100K.

399

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.34: PARFAIT delay factor maps evaluated using the RFET delay model in-
troduced in section 4.6 with temperature variation. Benchmarks top to
bottom: ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0.
Region size left to right: 5x5, 10x10, 25x25, 50x50. 𝑇 = 100K.

400 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.35: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with temperature variation. Benchmarks top to bottom:
arm_core, bgm, blob_merge, diffeq2. Region size left to right: 5x5,
10x10, 25x25, 50x50. 𝑇 = 100K.

401

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.36: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with temperature variation. Benchmarks top to bottom:
ch_intrinsics, LU64PEEng, mkSMAdapter4B, stereovision0. Region
size left to right: 5x5, 10x10, 25x25, 50x50. 𝑇 = 100K.

402 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.37: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with aging. Benchmarks top to bottom: arm_core,
bgm, blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25,
50x50. 𝑡 = 1 year.

403

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.38: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with aging. Benchmarks top to bottom: ch_intrin-
sics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to
right: 5x5, 10x10, 25x25, 50x50. 𝑡 = 1 year.

404 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.39: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with aging. Benchmarks top to bottom: arm_core, bgm,
blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25, 50x50.
𝑡 = 1 year.

405

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.40: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with aging. Benchmarks top to bottom: ch_intrinsics,
LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝑡 = 1 year.

406 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.41: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with aging. Benchmarks top to bottom: arm_core,
bgm, blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25,
50x50. 𝑡 = 10 years.

407

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.42: PARFAIT delay factor maps evaluated using the RFET delay model intro-
duced in section 4.6 with aging. Benchmarks top to bottom: ch_intrin-
sics, LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to
right: 5x5, 10x10, 25x25, 50x50. 𝑡 = 10 years.

408 Appendix F PARFAIT FPGA Evaluation Results

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.43: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with aging. Benchmarks top to bottom: arm_core, bgm,
blob_merge, diffeq2. Region size left to right: 5x5, 10x10, 25x25, 50x50.
𝑡 = 10 years.

409

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure F.44: PARFAIT power maps evaluated using the RFET delay model introduced
in section 4.6 with aging. Benchmarks top to bottom: ch_intrinsics,
LU64PEEng, mkSMAdapter4B, stereovision0. Region size left to right:
5x5, 10x10, 25x25, 50x50. 𝑡 = 10 years.

This page intentionally left blank

Index

– A –
Activity Factor 22
Adaptive Body Biasing 91
Aging . 38

BEOL Effects40
BTI .39
EM. 40
FEOL Effects 39
HCI . 39
Model 157
Modeling 41
TDDB 40

Alpha-Power Model23
Ambipolar

Reconfigurable Cells 177
Standard Cells 161
Transistor 14

Ambipolar Standard Cells 161
Cell Characterization . . . 162
Evaluation.253
Liberty File 165
Library 161
Test Circuits168, 170
Timing Extraction.163
Wire Load 164

Ambipolar ULMs. 53, 177
Basic Cells 177
Cluster 184, 186
EDA.180
Evaluation.260

Analog and RF Circuits 18
And-Inverter Logic 46

ARC . 25
Arithmetic Circuits 168
ASIC . 64

– B –
Back Gate . 11
Benchmarks 249
Bitstream . 66

Generation 66
Body Biasing 11
Body Contact 10
Body Silicon.10
BOX . 10
Bulk MOSFET 10

– C –
Carrier Freeze-Out.15
ChaCha Accelerator 170
Charge Carrier 10, 11
CMOS . 20

Compatibility 18
Cosimulation 245
Critical Path 25, 87

Device Characterization . . 89
Identification 87, 118

– D –
Delay Characterization 89

Architecture 214
Design Capture.63
Device Polarization 14
Doping . 10

412 INDEX

Drain . 10
Dynamic Power 21
DynamicVoltage Scaling 99

– E –
EDA . 101, 127

FASM 127
Hybrid Architectures 102
Logic Invasion 210
Metadata 128
PBIT 129
ULM 101
ULMs 180
VPR . 128

Electrostatic Doping 15
Evaluation 253

Ambipolar ULMs 260
Power Management.266
Standard Cells 253

– F –
Fall Time . 23
FDSOI . 12
FET Symbols 10
Five-Terminal Device 16
Four-Terminal Device 10
FPGA . 57

Ambipolar 74
Architecture 59
Logic Clusters 58
Logic Elements 57
Programming 60
Reconfiguration 77
Storage 60
Synthesis 63

Front Gate 11
Fully Depleted 12

– G –
Gate . 10

– H –
Hold Time 25

– I –
Implementation 63

Packing 65
Placement 65
Routing 66

Inverter . 20

– L –
Load Capacitance 22
Logic Invasion 206

Concept 206
FPGA Architecture 208
Steps 210
Toolflow.210

Logic Matrices 45
PAL . 46
PLA . 45
PROM. 45

Lookup Tables 50

– M –
Manufacturing Process 17
Multiplexer Logic 49

– O –
On- / Off-Currents 11
Oxide . 10

– P –
Packing . 65
PARFAIT Architecture 107

BLE . 111
CLB . 110
Compensation.203
Connection Box 109, 124
EDA. 127
Hard IP 112

INDEX 413

Implementation 120
Interconnect 121
IO Block 110
Logic Invasion 208
Power Awareness 227
Power Controller 224
Power Modification 120
Programming.125
Regions 114
Switch Box 109
Top Level 107
ULMs 113

PARFAIT RFET 15
Partially Depleted 12
PDSOI . 11
Placement 65
Power Gating 97
Power Management 96

Classification 97
Dual-VDD. 100
DVFS . 99
DVS . 99
EDA Support 97
Gating 97

Power Regions 114, 195
Dynamic Assignment . . . 199
EDA.196
Evaluation.264
Management 118
Static Assignment 198
Top Level 114
VPR . 196

PPDK . 69
Standard Cells 72

Process Variation 27
Global 29
Local . 29
Model 153
Modeling 30
Random. 29
Systematic29

Process Variation Sources 28
Etching28
LER . 28
Material Deposition 29
OPE . 28

Propagation Delay 23
Pulldown-Network 20
Pullup-Network 20
PVTA . 85

ABB Compensation 91
Compensation 85, 91
Modeling 152

PVTA Compensation .85, 117, 203
Chip Characterization. . .214
Corner-based Design.85
Evaluation.266
FPGA Applicability 85
FPGA Architecture 227
Logic Invasion 206
Logic Moving 119
Management Controller . 224
PARFAIT 118
Requirements 203
Simulation 119
Slack Factor 204
Speed Binning 85
SSTA . 85
Static117

PVTA Modeling.152
Aging 157
Process Variation 153
Temperature 156
Voltage 154

– R –
Random Dopant Flucatuation .30
Reconfiguration 77

Fine Grain 81
Task Based 79
Task Fusion 84

414 INDEX

RFET . 15
Technologies 16

RFET Configuration 15
Dynamic 17
Static . 15

Rise Time . 23
Routing . 66

– S –
SBFET . 14
Scarpato Model 32
Schottky Junction 14
Setup Time 24
Short Circuit Power 22
Silicide .17
Silicon Oxide 10
Silicon Semiconductors 9
Simulation 231

Benchmarks 249
Cosimulation 245
Functional 243
Static Power 240
Technology Model 133
Virtual FPGA 231

Slack Factor 204
SOI MOSFET 10
SOTB MOSFET 10
Source . 10
SSTA . 85
Standard Cells 72
Static Timing Analysis 24

Substrate . 10
Subthreshold Leakage 22
Switching Power 22
Synthesis 63, 101

Design Capture 63
Technology Mapping 64

– T –
Technology Mapping 64
Technology Modeling 133

RFET 144
SOI . 134

Temperature Range 15, 17
TemperatureVariation 35

Model 156
Modeling 37

Thin BOX . 10
Three-Terminal Device10
ThresholdVoltage.11

Adjustment 18

– U –
Universal Logic Modules 47

Ambipolar 53

– V –
VARIUS Model 31
Voltage Transfer Characteristic 21
VoltageVariation 33

Model 154
Modeling 35

	Cover
	Abstract
	Kurzfassung
	Acknowledgements
	ToC
	Notation
	Symbols
	I Prologue
	1 Introduction
	2 Fundamentals
	2.1 Classic Silicon Semiconductors
	2.2 Ambipolar Silicon Semiconductors
	2.3 CMOS Circuit Technology
	2.4 PVT Variation and Aging
	2.5 FPGA Logic Generators
	2.6 Ambipolar Reconfigurable Cells
	2.7 FPGA System Architecture
	2.8 Synthesis and Implementation

	3 Related Work
	3.1 Ambipolar Standard Cell Libraries
	3.2 Ambipolar FPGA Architectures
	3.3 Dynamic Reconfiguration
	3.4 PVTA Compensation
	3.5 Power Management Techniques
	3.6 Synthesis for Reconfigurable Cells
	3.7 Summary

	II PARFAIT Architecture
	4 Overall System
	4.1 FPGA Base Architecture
	4.2 FPGA Power Regions
	4.3 PVTA Compensation
	4.4 FPGA Implementation
	4.5 FPGA Toolflow
	4.6 Technology Modeling
	4.7 PVTA Scenario Modeling
	4.8 Upcoming Aspects

	5 Ambipolar Standard Cells
	5.1 Standard Cell Library
	5.2 Application in Arithmetic Units
	5.3 Application in Cryptographic Accelerators

	6 Ambipolar Reconfigurable Cells
	6.1 Basic Logic Cells
	6.2 Electronic Design Automation
	6.3 Design Methodology
	6.4 Logic Clusters

	7 Power Management Regions
	7.1 Region Modelling in VPR
	7.2 Static Mode Assignment
	7.3 Dynamic Mode Assignment

	8 PVT- and Aging Compensation
	8.1 Performance Requirement Determination
	8.2 Transparent Logic Invasion
	8.3 Chip Performance Characterization
	8.4 Power Management Controller
	8.5 Power-Aware FPGA Architecture

	9 System Simulation and Evaluation Methodology
	9.1 Virtual FPGA Evaluation
	9.2 Static Power Analysis
	9.3 Functional Runtime Simulation
	9.4 Co-Simulating DVS
	9.5 Benchmark Applications

	III Final Remarks
	10 Evaluation
	10.1 Ambipolar Standard Cell Application
	10.2 Ambipolar Reconfigurable Cells
	10.3 Power Management Regions
	10.4 Power Management and Compensation

	11 Conclusion and Outlook

	Bibliography
	Publications
	Student Theses
	Figures
	Tables
	Listings
	Acronyms
	Glossary
	Appendix
	A Research Data Archive
	B FPGA Architecture Descriptions
	C Delay Model Extraction
	D Standard Cell Library Excerpts
	E FASM for Logic Invasion
	F PARFAIT FPGA Evaluation Results

	Index

