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Comprehensive battery aging 
dataset: capacity and impedance 
fade measurements of a lithium-ion 
NMC/C-SiO cell
Matthias Luh    & Thomas Blank   

Battery degradation is critical to the cost-effectiveness and usability of battery-powered products. 
Aging studies help to better understand and model degradation and to optimize the operating strategy. 
Nevertheless, there are only a few comprehensive and freely available aging datasets for these 
applications. To our knowledge, the dataset1 presented in the following is one of the largest published 
to date. It contains over 3 billion data points from 228 commercial NMC/C+SiO lithium-ion cells aged for 
more than a year under a wide range of operating conditions. We investigate calendar and cyclic aging 
and also apply different driving cycles to cells. The dataset1 includes result data (such as the remaining 
usable capacity or impedance measured in check-ups) and raw data (i.e., measurement logs with two-
second resolution). The data can be used in a wide range of applications, for example, to model battery 
degradation, gain insight into lithium plating, optimize operating strategies, or test battery impedance 
or state estimation algorithms using machine learning or Kalman filtering.

Background & Summary
Batteries are vital for storing electrical energy in portable devices, electric vehicles (EVs), and electricity grids 
powered by a high share of renewable energy. In EVs and stationary energy storage systems, the cost and lifetime 
of the battery are critical factors for the economic viability and usability of the product. The performance of bat-
tery cells diminishes over time. This is manifested by a loss of capacity and an increase in electrical impedance. 
In many studies that consider the cost of battery degradation, the lifetime of a battery is estimated using simple 
assumptions about the lifetime and number of usable cycles. However, the aging type and rate strongly depend 
on operating conditions, such as the operating temperature, charging rate, and State of Charge (SoC) window. 
An in-depth understanding of the aging mechanisms and dependencies of the cells is vital to maximizing the 
lifetime of the battery through an appropriate operating strategy. This can not only save costs but also material 
resources.

Battery aging can be represented, for example, by (semi-)empirical, electrochemical/physics-based, or 
machine-learning-assisted / statistical / data-driven models2,3. In order to derive, calibrate, or train these models, 
measurement data from real battery cells is beneficial or even required. The dependencies of the aging mech-
anisms are manifold. For instance, solid electrolyte interphase (SEI) growth mainly depends on the SoC and 
temperature of the cell. The SEI continues to grow over time even if the cell is not in use. Therefore, it is often 
classified as “calendar aging”. On the other hand, lithium plating depends on the SoC, temperature, charging 
rate, and age of the cell4–7. It may take place while the cell is charged, particularly at cold temperatures, high 
C-rates, and high SoC. At a certain stage, it can rapidly degrade the cell even under moderate charging condi-
tions7. Since lithium plating only occurs when the cell is cycled, it is an example for an aging mechanism associ-
ated with the “cyclic aging” mode. If all of these dependencies and their typically nonlinear behavior should be 
considered in the degradation model, the dataset used for modeling has to be as extensive and diverse as possible 
since test conditions varying all of these dependencies should be included.

However, most battery aging datasets published in academia are relatively small since only a few operat-
ing conditions are tested due to cost or other resource constraints. Datasets collected by cell, battery, or EV 
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manufacturers are mostly confidential and not published at all. Moreover, many publications only present “result 
data”, e.g., the remaining usable capacity over time collected during check-ups (CUs) / reference performance 
tests (RPTs). Often, only selected figures showing results are shown, and no reusable data is provided for down-
load and further usage by other researchers and companies. Raw data with higher temporal resolution, e.g., 
the cell’s voltage, current, and temperature, is rarely provided, even though it can be vital for accurate mode-
ling. Besides, cells are often only aged until the remaining capacity reaches 70 or 80% of the nominal capacity. 
However, for second-life applications, a much lower capacity threshold would be beneficial to estimate the value 
of an aged battery and derive a suitable operating strategy in the subsequent application.

The most promising comprehensive battery aging studies we found are summarized in Table 1. The table 
lists the number of cells examined in the study, their cell chemistry (cathode/anode material), whether capacity 
(cap.), impedance (imp.), and raw log data are published, if the data and an accompanying publication (pub.) are 
available open-access (OA), how many test conditions were investigated, and which parameters were varied for 
the calendar (CAL) and cyclic (CYC) aging conditions. Investigated anode materials are lithium iron phosphate 
(LFP), nickel manganese cobalt (NMC), nickel cobalt aluminum (NCA), lithium manganese oxide (LMO), or 
blends of multiple materials. Cathodes may include graphite (C) or graphite with silicon (C-Si). Parameters 
varied include temperature (T), storage State of Charge (SoC), SoC window and Depth of Discharge (DoD), 
charge (Cc), discharge rate (Cd), general current rate (Cc/d), charging protocol (CP), pressure (p), and check-up 
interval (CU).

Moreover, battery aging data of different cell chemistries collected from various studies and online archives is 
available on batteryarchive.org. The raw cycling and result data can be visualized and compared online.

Since there are comparatively few freely available and comprehensive raw cell aging datasets that can be used 
to model battery degradation, we decided to collect a comprehensive dataset1 and make it available to the public. 
In our experiment, 228 cells were aged at 76 different operating conditions to generate a very diverse dataset. 
16 calendar aging, 48 cyclic aging, and 12 driving profile parameter sets were selected, using four different tem-
peratures between 0 and 40°C, various SoCs, and charging and discharging rates. Three cells were operated per 
condition to increase the statistical significance of the results and robustness of the experiment, for example, in 
case a single cell fails.

Among others, our dataset1 contains the remaining usable capacity and charged/discharged energy during 
cycling and the CUs, in which all cells are fully charged and discharged at room temperature. The results of 
an electrochemical impedance spectroscopy (EIS) measurement and a pulse pattern applied at different SoCs 
at operating and room temperature in the CUs are also included. Unlike in most previously published aging 
studies, raw log data collected every two seconds during the experiment is also published (compare Fig. 1). 
For example, it contains the cell voltage, current, temperature, charge, energy, and the estimated SoC and 
open-circuit voltage (OCV). Since both the result data (remaining capacity and impedance) and raw log data 
are included, possible usages of the dataset are very versatile. Among others, it is conceivable to use the battery 
aging dataset to derive degradation models based on semi-empirical or machine-learning approaches or to use 
the raw cycling data to test and validate SoC or cell impedance estimators.

While many studies only focus on battery degradation until 70 to 80% of the nominal capacity remains, we 
continue investigating aging until the cells only have 40 to 50% of the nominal capacity. This helps to understand 
battery degradation after the “knee point”, when the capacity drops significantly faster. In addition, it allows for 

Study
Cell 
count Cell chemistry

Cap. 
data

Imp. 
data

Raw 
data

OA 
data

OA 
pub. Number of test conditions: variation of parameters

Schimpe et al.19 111 LFP/C ✓ — — — ✓
• 54x CAL: T, SoC
• 30x CYC: T, Cc/d, CP
• 6x current profile: T

Mohtat et al.20,21 31 NMC/C ✓ ✓ ✓ ✓ ✓ • 27x CYC: T, DoD, Cc, Cd, p

EVERLASTING project22,23 70 NMC/C-Si ✓ — ✓ ✓ ✓
• 12x CAL: T, SoC
• 14x CYC: T, Cc, Cd
• 9x driving profile: T, profile, DoD

Uddin et al.24 63 NCA/C ✓ ✓ — — ✓
• 9x CAL: T, SoC
• 6x CYC: DoD, SoChigh, Cd
• 6x driving profile (dynamic conditions)

Batteries2020 project25–30 158 NMC/C ✓ (✓) — — ✓ • 10x CAL: T, SoC
• 36x CYC: T, DoD, SoCmid, Cc, Cd

MOBICUS project31–34 258 NMC/C, NMC-LMO/C ✓ ✓ — — ✓
• 16x CAL: T, SoC
•≥ 17x CYC: T, SoCmid, Cc, Cd
• 6x mixed aging: T, SoC, Cc, Cd, ratio

Naumann et al.35–39 114 LFP/C ✓ ✓ — ✓ — • 17x CAL: T, SoC
• 21x CYC: T, SoCmid, DoD, Cc, Cd, CP

Wildfeuer et al.9,14 196 NCA/C-Si ✓ ✓ ✓ ✓ —
•≥ 47x CAL: T, SoC, CU
•≥72x CYC: T, SoCmid, DoD, Cc, Cd
•≥68x dynamic/altering/random cond.

This study1 228 NMC/C-Si ✓ ✓ ✓ ✓ ✓
• 16x CAL: T, SoC
• 48x CYC: T, SoCmin/max, DoD, Cc, Cd
• 12x driving profiles: T, SoCmax, Cc, Cd

Table 1.  Overview of comprehensive battery aging datasets.
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a better determination of the residual value of an EV battery or the development of optimal operating strategies 
for Second Life applications.

Methods
In this chapter, the cell and test parameter selection, the test procedure, the experimental setup, and subsequent 
data processing will be explained in detail. This is particularly relevant to ensure good reproducibility of the 
results and to maximize the value of the dataset1 for various applications, such as accurate cell aging modeling 
(compare6, p. 701).

Cell selection.  The motivation for the study was to estimate and optimize the aging behavior of EV batteries 
in Vehicle-to-Grid (V2G) operation. Among the most common cell chemistries used in EVs nowadays are NMC, 
NCA, and LFP batteries8. The lifetime of modern LFP cells can exceed the lifetime of typical passenger cars8, and 
thus, the additional use for V2G is a minor concern for cell degradation. However, for NMC and NCA chemis-
tries, optimizing the operating strategy can have a relevant impact on battery aging and its associated costs. As 
mentioned, a comprehensive aging dataset of NCA cells was recently published by Wildfeuer et al.9. In contrast, 
our study focuses on an NMC cell chemistry.

We compared more than 150 lithium-ion cells from eight manufacturers available in 2021 and selected the 
LG INR18650HG2 as a suitable, commercially available candidate to represent cells typically used in EVs. Even 
though cells in EV usually have a higher capacity per cell, a cylindrical model with a smaller nominal capacity 
was used to decrease the cost and complexity of the experiment. According to the technical information of the 
cell10, its cathode consists of an NMC chemistry, and the anode contains graphite and silicon oxide (SiO). As can 
be seen in Table 2, the cell features a relatively high energy density, fast charging capability, and wide charging 
temperature range.

Parameter set selection.  Three different operating modes were considered: calendar aging cells, which 
are not cycled between check-ups; cyclic aging cells, which are continuously charged and discharged; and profile 
aging cells, which are discharged according to representative driving cycles.

The test matrix containing all selected operating conditions is summarized in Fig. 2. Further details are 
included in the “Cycling Experiment Cell Overview” Excel spreadsheet in the published dataset1. The parame-
ters were selected as a trade-off between a wide range of operating conditions typical for an electric car battery 
and a limited number of battery cells. All conditions were conducted at four different operating temperatures 
(0°C, 10°C, 25°C, 40°C). Three voltage ranges (2.5–4.2 V, 3.249–4.2 V, 3.249–4.092 V, corresponding to SoC 
ranges of approximately 0–100%, 10–100%, 10–90%) and four charging and discharging rate combinations were 
selected for cyclic aging. A focus of the study was the effect of different charging rates (+1/3 C, +1 C, +5/3 C) 
since attaining high charging speeds is usually a limiting factor for EVs and a concern regarding degradation, 
particularly lithium plating. On the other hand, the cell is specified for significantly higher discharging rates 
(6.67 C) than normally occurring in EV applications (typically less than 1–2 C), so it is anticipated that the varia-
tion of the discharging rate has a subordinate impact on degradation. Only two discharging rates (−1/3 C, −1 C)  
were investigated to reduce the number of cells in the experiment. Four voltages (3.3 V, 3.736 V, 4.089 V, 4.2 V,  

Test matrix: calendar / cyclic / driving profile aging Raw log data of 228 cells for up to 449 days

Electrochemical Impedance Spectroscopy (EIS)

Pulse pattern 
measurements

Capacity fade as a 
function of time / EFC

Cell
aging for
> 1 yearTest bench

Fig. 1  Graphical abstract of the battery degradation study and the generated datasets.
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corresponding to SoCs of approximately 10%, 50%, 90%, 100%) were used for calendar aging cells. For the pro-
file aging cells, the Worldwide Light-duty Test Cycle (WLTC) for Class 3b vehicles (typical passenger cars) of the 
Worldwide harmonized Light vehicles Test Procedure (WLTP)11 was used as a driving cycle. The applied battery 
cell power was calculated with the JRC Python Gearshift Calculation Tool12 and the assumptions about the EV 
and its battery listed in Table 3.

Two regular use cases, in which the EV charges with 1/3 C to 90% (4.092 V) or 100% (4.2 V), were selected. 
In a third case, only the “extra high” part of the Class 3b WLTC is applied, and the cell is charged with 5/3 C, 
representing an intense highway use of the vehicle.

The cyclic and profile aging cells are charged with a constant current (CC), constant voltage (CV) proto-
col. The cyclic aging cells are also discharged in this manner. During regular operation, the cut-off current is 
1/10 C (0.3 A) for cyclic and profile aging cells and 1/20 C (0.15 A) when recharging calendar aging cells. For the 
profile aging cells, the driving profile is repeated until the SoC estimated before the start of the next profile falls 
below 10%. The discharging power may be reduced dynamically so that the cell voltage does not fall below 2.5 V.

During a CU, the charging and discharging current rate for all cells is 1/3 C (1.0 A). The cut-off current for 
the capacity check is 1/20 C (0.15 A).

The cycler uses voltage limits instead of SoC limits since they can be determined more reliable and reproduc-
ible than the SoC, and aging is expected to depend on the voltage rather than the SoC. The corresponding idle 

Form factor 18650 (cylindrical) Nominal capacity 3000 mAh

Diameter ca. 18.3 mm Usable energy 11.0 Wh

Height ca. 65.0 mm Nominal voltage 3.60 V

Weight ca. 46 g Allowed voltage range 2.0–4.2 V

Anode material Graphite with SiO Used voltage range 2.5–4.2 V

Cathode material LiNixMnyCo1-x-yO2
(“H-NMC”10) Maximal current

6.0 A (charging)

20.0A (discharging)

Energy density
240 Wh/kg

Temperature range
− 20 to +75°C (operation)

640 Wh/l − 5 to +50°C (charging)

Table 2.  Properties of the selected cell (LG INR18650HG2)10,18 — please refer to the product specification 
provided by the manufacturer for details about the safe operating conditions allowed.
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Chg. rate +1/3 C +5/3 C

Profile aging
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Chg. rate*
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+1/3 C = +1.0 A
-1/3 C = -1.0 A

100%
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0%
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C
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3.300 V
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-
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4.200 V4.200 V
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3.736 V3.736 V
3.300 V3.300 V

2.500 V2.500 V
3.249 V3.249 V

--
4.092 V4.092 V
4.200 V4.200 V

0-100%CU SoC limits 0-100%CU SoC limits
Ichg/dischg,CU 1/3 C = 1.0 AIchg/dischg,CU 1/3 C = 1.0 A
Icut-off,cal/CU 1/20 C = 0.15 AIcut-off,cal/CU 1/20 C = 0.15 A
Icut-off,cyc/prf 1/10 C = 0.3 AIcut-off,cyc/prf 1/10 C = 0.3 A

Cyclic aging
Chg. rate
Dis. rate

+1/3 C = +1.0 A +1 C = +3.0 A +5/3 C = +5.0 A
-1/3 C = -1.0 A -1 C = -3.0 A

Vcyc,min
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3.249 V 3.249 V 2.500 V
4.092 V 4.200 V 4.200 V
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Vcal,idle 4.200 V4.089 V3.736 V3.300 V
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3.249 V
4.200 V

3.249 V
4.092 V
3.249 V3.249 V
4.092 V4.092 V

3.249 V
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Fig. 2  Test matrix for the battery aging study with 76 parameter sets for 228 cells (three cells are used per 
parameter set).
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voltages for the calendar aging cells (Vcal,idle) and end-of-charge or -discharge voltages for the cyclic and profile 
aging cells (Vcyc,lim) are listed in the test condition table in Fig. 2. They were defined so that the relaxed voltage of 
a new cell after CC-CV charging or discharging with the cut-off currents indicated in the test condition table in 
Fig. 2 matches the corresponding OCV of a new cell at the target SoC closely.

Test procedure.  We purchased 250 of the battery cells commercially and received them on August 30, 2022.  
Based on the codes lasered onto the cells (“DT331K262A_”, “_” = 1–9, B, C, or D), we conclude that the pro-
duction date was likely on November 26, 2020 (T = 2020, 331 = day of the year). Once the cabling of the 228  
cells used in the experiment was prepared, we measured their OCV at an ambient, steady-state temperature of 
17.6–18.6°C on September 19, 2022. The mean OCV was 3.5558 V (+0.0065 V/−0.0140 V) with a standard 
deviation of 0.0020 V (see Fig. 3). Using the SoC-OCV dependency in Table S1 in the Supplementary Information 
document, this translates to an SoC of about 26.8% (+0.6%/ − 1.15%).

The experiment began with the first CU on October 12, 2022. The second CU followed a week later. Every 
other CU is conducted at a three-week interval, as shown in Fig. 4. The dataset1 includes measurements for the 
first 449 days of the experiment.

The cyclic and profile aging cells are charged and discharged continuously in regular operation. Between all 
charging and discharge processes — in regular operation and during check-ups — rest periods of five minutes 
are inserted. The calendar aging cells remain at their idle voltage and are only recharged if their OCV deviates 
by more than 5 mV from the target voltage. A comparison of unused cells not connected to the test bench and 
unused cells that are connected to the cycler shows that a gradual, unwanted discharge of the cells is caused 
almost exclusively by the leakage current of the cycler’s measuring circuit and not by the self-discharge of the 
cell (which is <1%/year).

The CUs offer the opportunity to compare the estimated remaining usable capacity and the internal imped-
ance of all cells under comparable conditions. Before the CU starts, all cells complete their ongoing cycling 
activity and stop after they have been discharged to their lower SoC limit. The temperature of all cells is changed 
from operating temperature (OT, 0–40°C) to room temperature (RT, 25°C). The temperature change takes 
approximately 1 1/2 hours. Once the temperature of the cells is stable, the cells are discharged to 2.6 V using 
their operational current settings and then discharged to 2.5 V using the check-up current rate (1/3 C) with the 
check-up cut-off current (1/20 C). Next, the remaining capacity of the cell is determined by a complete CC-CV 
charge-discharge cycle from 2.5–4.2 V with 1/3 C and a cut-off current of 1/20 C. Afterward, while remaining 
at room temperature, the cells are charged to an SoC of 10%, at which an EIS is conducted with an amplitude of 
±1/6 C (±0.5 A) in a frequency range of 50 mHz to 14.7 kHz. The cell is charged or discharged to the nominal 
SoC of the EIS using the voltages shown in Table S1 in the Supplementary Information document. If the idle volt-
age is larger than Vchg before the EIS measurement, the cell is discharged to Vdischg. If, instead, it is smaller than 
Vdischg, it is charged to Vchg. If the voltage lies in between, the cell is charged or discharged to Vavg. This assures that 
the relaxed cell voltage is as close as possible to Vavg of the desired SoC.

Input for the Gearshift Calculation Tool

vmax 167 km/h

Prated 150 kW

nrated 11000 1/min

nidle 58 1/min

#g 6

mtest 1840 kg

f0 200 N

f1 0.35 N/(km/h)

f2 0.032 N/(km/h)2

p(n) min(n*0.04136 kW*min, Prated)

ndv 65.868 (1/min)/(km/h)

Calculation of the battery power

ηmotor 90% (constant)

ηinverter 95% (constant)

Pauxiliary 1 kW (constant)

vmin,recuperation 8 km/h

Pmax,recuperation 64 kW

Resulting WLTP consumption: 15.8 kWh/100 km

Calculation of the cell power

battery capacity 64 kWh

cell capacity 3 Ah

cells in series 96

cells in parallel 60

Table 3.  Assumptions to derive the WLTP cycle battery cell power.
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After the EIS, a current pulse pattern is applied to the cells, and the voltage response is captured. The pulse 
pattern contains rectangular current signals in the range of ±1/3 C (±1.0 A). The EIS and pulse pattern meas-
urement are repeated at 30, 50, 70, and 90%. Once all cells complete the tests, the temperature of all cells is 
changed back to their respective operating temperature. After the temperature reaches a steady state, the EIS 
and pulse pattern measurements are repeated at OT and the same SoC points in descending order. Cells that 
finished the last measurement will end the CU procedure by charging or discharging to the lower SoC limit of 
their operating condition (or idling SoC for calendar aging cells). The cycling and profile aging cells will then 
continue regular cycling, beginning with a charge procedure.

The check-up sequence is also shown in Figure S1 in the Supplementary Information document, in which 
selected measurement signals from the log dataset1 are annotated with the corresponding states of the scheduler 
that coordinates the CU.

The cells are operated until their estimated usable capacity falls below 40% of the nominal capacity during 
regular cycling or below 50% of the nominal capacity in the capacity check of a CU. This relatively low threshold 
for the capacity-based end-of-life (EOL) criterion was used to overcome the limitations of existing datasets and 
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Fig. 3  (a) OCV distribution over temperature during the OCV measurement of the pristine LG INR18650HG2 
cells before the experiment (including 228 cells used in the experiment and one extra cell for test purposes), (b) 
initial remaining usable capacity of the 228 cells in the experiment at the first CU.
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models, which often only consider aging up to 70% of the nominal capacity6, p. 701. Considering the development 
of capacity and impedance after this threshold allows, for instance, estimating the remaining value of an EV 
battery or understanding how it can be optimally operated in a Second Life application.

The estimated usable capacity is calculated after each sufficiently long charging or discharging process by 
dividing the actual charge difference ΔQ of this half-cycle through the SoC difference ΔSoC (see Equation (1)). 
The start SoC is determined just before the charging or discharging process starts. The end SoC is estimated after 
an idle time of five minutes after charging or discharging is finished. This also allows estimating the remaining 
capacity outside the CUs, e.g., for cells only operated in a 10–90% window.
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Experimental setup.  Cycling hundreds of cells over a period of months to years and measuring the capac-
ity and impedance change is a costly process. Since we did not have access to a testing facility covering all the 
required cycling channels for the desired duration, we developed a custom, cost-efficient yet highly accurate and 
flexible test bench to conduct the experiment (see Fig. 5).

The cells are cycled and measured by 19 custom battery cycling and measurement acquisition boards (com-
pare Figure S2 in the Supplementary Information document), each controlling 12 cells. An early prototype of this 
device was presented in more detail in a previous publication13. The basic operating principles and specifications 
of the cycling and the measurement hardware remained similar.

As shown in Fig. 6, the cycler board schedules the charging and discharging or dynamic operation modes of 
each cell. The cycling controller controls the respective DC/DC converter on the board to apply the desired cur-
rent/power and voltage to each cell. In steady state, we measured an unfiltered voltage and current ripple at the 
cell of less than 5 mV and 70 mA, respectively (including measurement noise of the oscilloscope). The 20 MHz 
bandwidth-limited ripples are below 1 mV and 15 mA. The voltage and current signals captured by the cycler 
are further filtered in the analog measurement circuit. The typical measurement accuracy is within ±0.05% 
for the cell voltage and ±5 mA for the current, corresponding to 0.1% at the maximum charging current13. A 
zero-current adjustment for the current measurements of the analog-to-digital converter (ADC) is conducted 
at the startup of the controller. Even after an uptime of over a year, the measured cell current offset for a resting 
cell (DC/DC converter turned off) was less than 2 mA, and the logged current fluctuated by less than ±3 mA.

The cell’s voltage, current, and temperature are measured and logged with a temporal resolution of two sec-
onds, along with states and derived variables such as the charge (ΔQ in Ah) and energy (ΔE in Wh) and the 
estimated SoC. The logging and publication of raw data with this relatively high resolution was used to overcome 
an additional limitation of existing datasets, which often only include result data or data at a significantly lower 
resolution. In contrast, our dataset1 allows for deriving battery degradation models with high temporal resolu-
tion (compare6, p. 701). The data is stored in a local SD card and forwarded to Raspberry Pi computers, where it is 
also stored and forwarded to a web server. On the server, the data is archived in an InfluxDB database. It can be 
visualized live with a Grafana web interface (compare Figure S1 in the Supplementary Information document). 
The master scheduler on one of the Raspberry Pi computers coordinates the CUs with all 19 cycler boards and 
the thermal management system.
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Each cell is connected to the cycler boards using separate wires and current collector tabs for the current 
flow and voltage measurement, as shown in Fig. 7. This assures that the terminal voltage of the cell itself and no 
voltage drops across the cables or current collectors are measured. Two negative temperature coefficient (NTC) 
temperature sensors are mounted onto the cell’s surface using a thermally conductive adhesive. One NTC is 
placed at the negative pole of the cell. A second one is fixed in the center of the side of the cell. Both temperatures 
are measured, but only the average value is logged. If the temperatures deviate by more than 3 K, the hotter of the 
two temperatures is used instead of the average temperature. The cells are inserted into a 3D-printed structure 
covering only a small part of the cell’s body.

The cells are placed inside metal containers filled with a thermally conductive but electrically isolating sili-
cone oil (Julabo Thermal H20S). A side view of one of these pools is shown in Fig. 8.

The oil temperature, measured using two NTC sensors on opposite sides of the pool, is regulated through 
a thermal management system. The oil is swirled in the pool to obtain a homogeneous temperature. Cells with 
high current rates are placed close to the circulating blade for improved temperature stability. A water-glycol 
mixture flows through a cold plate placed under the pools. As illustrated in Fig. 9, the cold plates of the three 
cold pools (0, 10, 25°C) are connected to a circulating chiller that cools the plates. The plate of the hot pool 
(40°C) is connected to a radiator so the pool can exchange heat energy with the environment. Peltier elements 
are connected between the plates and the pools with thermal grease. They are controlled by the thermal manage-
ment board and can either heat or cool the pools to reach the desired temperature.

The measured pool temperature is within ±0.5 K of the set temperature in regular operation. However, the 
surface temperature of individual cells can deviate by ±2 K in mild conditions, primarily due to the self-heating 
of the cells. The surface temperature of severely aged, fast-charging, cold cells can even reach temperature 
increase peaks of up to 11 K despite the liquid cooling. These individual fluctuating temperature deviations 
caused by the power dissipation or side reactions in the cell must be considered when the data is used to model 
battery aging accurately. This highlights the importance of the published raw log dataset1, which captures all 
measurements with a two-second resolution.
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Data post-processing.  The published data1, described in the Data Records section, is based on the data 
stored locally on the SD cards on the cycler and thermal management boards (compare Fig. 6) since this dataset is 
most complete as well as easy and fast to process. The SD card data was backed up manually during the transition 
from room to operating temperature in check-up 23 on January 4, 2024, while the cycler boards were inactive. The 
raw, densely packed data on the SD cards is unpacked and decoded by Python scripts. For example, bit fields are 
converted to integers, and physical values stored as integers are converted to floats in the desired (mainly SI) units.

The data stored on the SD cards has no timestamp but includes an uptime counter value of the main proces-
sor, which is incremented every 0.01048576 s. A Unix timestamp is assigned when the data arrives in the mini 
computers and is stored along with the data on their SSDs and in the InfluxDB database on the server. During 
post-processing of the data, a Python script compares characteristic values of the uptime counter between the 
SD and InfluxDB data to identify matching data uniquely and then assigns the according timestamps of the 
InfluxDB data to all data rows. Timestamps during Ethernet faults or in the first seconds after the cycler reboots 
are estimated based on the difference in uptime values, as indicated in the timestamp_origin column.

The following data corrections were conducted: 

•	 Due to a software bug, all PULSE data measurements stored on the SD card were incomplete. Therefore, the 
script extracts the unaffected PULSE data from the InfluxDB database instead of using the SD card record.

•	 Implausible values of the coulomb or energy efficiency (<10% or >200%) and the estimated remaining 
capacity (<0 Ah) are replaced with Not a Number (NaN) in the end-of-charge (EOC) dataset. They can occur 
if short transitional charging or discharging processes were mistakenly used to estimate these variables (e.g., 
during the preparation or follow-up of a CU).
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•	 The internal flash of the main processor of the cycler board stores and updates variables that need to be recov-
ered after reboots, such as the charge and energy that each cell processed in the current operation (ΔQ, ΔE) 
and since the beginning of life (Q/Etotal), the estimated remaining usable capacity (Cremaining) and internal 
impedances measured in the last check-up, the initial reference impedance (Zref,0), and the number of cycles 
and check-ups (Ncyc/CU). The flash is updated every five minutes and before a soft reboot is requested by 
the user or the software to avoid data loss. If there is a sudden power loss (e.g., during electricity outages 
or because of a reboot initiated by the auxiliary processor due to a communication issue), the cycler board 
may reboot itself and continue operation with the latest variables stored in the flash. This causes steps in the 
ΔQ/E and Q/Etotal data in the cell LOG and EOC dataset. They are eliminated in the post-processing script by 
shifting the values after reboot to the value just before reboot to repair the data as if there had been no reboot.
Manual power cycling during a flash update operation of the cycler board caused data loss in three instances. 
It occurred on slave 6 on October 19, 2022, around 17:00:00 UTC (included in the published dataset), as well 
as on slave 14 on January 4, 2024, 15:03:13 UTC, and slave 16 on January 4, 2024, 15:28:33 UTC (not included 
in version 1 of the published data). After the reboot, the cycler slave board continues operation according to 
the schedule of the master scheduler (i.e., a check-up is continued). However, the variables mentioned earlier 
are reset to zero or NaN. While the SoC and OCV estimation of the battery management system (BMS) of 
the cycler is impaired between the data loss and the next check-up, the variables stored in the EOC dataset 
(number of cycles, number of check-ups, total processed charging and discharging charge and energy) and 
the EIS dataset (impedance-based State of Health (SoH)) were repaired by the post-processing script without 
impairments using the data previously stored on the SD cards.

Several plausibility checks in the post-processing script were introduced to notify the user about potential 
issues with the data, as described in the Technical Validation section. They helped to detect and fix the issues 
mentioned before. In the final run, the script executed without error messages, i.e., all plausibility checks have 
been passed.

The datasets were extended or altered as described in the following: 

•	 The cell LOG and EOC datasets were extended by the ΔQchg, ΔQdischg, ΔEchg, and ΔEdischg columns, which 
only consider charged or discharged charge and energy during the current run. Further, the ΔdQchg, ΔdQdischg, 
ΔdEchg, and ΔdEdischg columns are introduced in the cell LOG dataset to provide the charge or energy differ-
ence since the last data point. The data was calculated using the ΔQ and ΔE columns of the cell LOG file. For 
a highly dynamic operation (e.g., because of EIS measurements or driving profiles), these values may slightly 
underestimate the actual charge or discharge charge (Ah) or energy (Wh) since they are based on data with 
only a two-second resolution. In contrast, the internal ΔQ variables of the BMS are updated with 1 kHz in 
the cycler.

•	 Similarly, Q/Etotal,CU-RT/CU-OT/others-RT/others-OT/sum,chg/dischg (20 columns) were added to the cell LOG and EOC 
datasets to easily contribute the total charge and energy to specific operating conditions (e.g., check-up and 
other transitional charging and discharging processes at room or operating temperature), which might assist 
battery degradation modeling.

•	 There are gaps in the dataset ranging from several seconds to about one day, caused mainly by Ethernet issues 
(particularly in the first two months of the experiment) but also because of local power outages. The cycler 
is configured only to cycle the cells if both the SD card and internet logging work. The cells rest during data 
gaps, and the pool temperatures are maintained. However, the last valid data point often contains a row where 
the cell is still cycled, i.e., the current and power are not zero. Simple interpolation using standard methods 
(e.g., with the pandas Python library) would not accurately reflect the behavior in this case. In order to pre-
vent this, a new artificial data point is inserted in the cell LOG dataset just after the last valid and just before 
the first valid measurement during a data gap. In these new data points, the cell current and power are set to 
zero, and the scheduler state is set to the pause state. The new data points are inserted for every gap lasting 
more than 60 seconds (or 20 seconds if the scheduler state at the first valid point is undefined, indicating a 
reboot).

•	 The published LOG data only includes measurements of the cell while it is still active in the experiment, which 
significantly reduces the size of the published data. If the cell was permanently disabled due to an EOL or 
another permanent fault condition, the raw log data is cut three days after the cell was active for the last time.

•	 Since the EIS measurement is based on a relatively low-cost circuit, the results are less accurate than with 
significantly more expensive commercial equipment. The measurement accuracy of EIS results captured by 
the cycler was compared to measurements from a BioLogic VSP device. The average absolute error between 
the two EIS measurements was 1.54% for the amplitude and 1.03° for the phase, with individual outliers of up 
to 13.17% for the amplitude and 4.3° for the phase error13.
Nevertheless, the EIS dataset clearly shows the development of the various components of the frequency- 
dependent impedance at different temperatures, SoCs, and over time under different aging conditions. The 
published dataset includes additional columns with compensated and filtered impedance values to improve 
the data quality. The compensation was necessary because the measurement method changes with decreas-
ing frequency. The measurement method used at frequencies above 100 Hz is hardware-based and experi-
ences a phase shift, which increasingly becomes apparent from 500 to 100 Hz. This phase shift is minimized 
through the compensation. The method used at 100 Hz and below is software-based and more robust for 
medium frequencies but also experiences inaccuracies, particularly at 100 Hz and frequencies below 0.5 Hz 
if the impedance is small. The frequency range, in which the data is most accurate is between 0.5 Hz and 
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5 kHz, excluding data points at 100 Hz and 208.3 Hz. Implausible values, in which the amplitude or phase 
difference to neighboring points is unusually high, are set to NaN. The point at 14.7 kHz is always set to 
NaN since it is visibly implausible most of the time, but this could not be detected well through the pro-
cessing script. The filtering conditions were intentionally chosen to be relatively relaxed to avoid removing 
unnecessarily many data points. This means that the published EIS measurements still contain individual 
data points with visibly higher inaccuracy, as can be seen in the published EIS plots included in the dataset. 
Please make sure the data quality of the EIS measurement is sufficient for your application and further filter 
implausible values according to your needs.

•	 A new LOG_AGE dataset is introduced, which only includes the most important columns of the cell LOG at a 
reduced time resolution (30 s for cyclic and calendar aging cells, 2 s for profile aging cells). Unlike the timestamp 
column of all other datasets, the timestamp is not a Unix timestamp but the time since the start of the experi-
ment in seconds (see Data Records section). Data gaps are interpolated, and the data is averaged to obtain data 
rows in uniformly spaced time steps. Moreover, three new columns are inserted, which include measurements 
of the CUs: The estimated remaining capacity Cremaining and the characteristic resistances R0 and R1. Cremaining 
(determined in the discharge capacity measurement of the CU) is simply copied from the EOC dataset and 
inserted into the LOG_AGE dataset at the corresponding time. R0 and R1 are derived using all EIS measurement 
results from a CU. They are calculated individually for each EIS measurement, averaged for all valid measure-
ments of the CU, and then added in the LOG_AGE data at the timestamp following the timestamp of the last 
EIS measurement of this CU. As demonstrated in Fig. 10, R0 is defined as the resistance from the origin to the 
intersection of the impedance curve with the real axis. R1 is the real part of the section between this intersection 
and the EIS measurement point around 2 Hz, which has the smallest absolute value of the phase.

•	 All NaN values in the OCV estimation (e.g., just after a cycler board reboot) are replaced with the measured 
terminal voltage in the LOG and LOG_AGE datasets.

Data Records
The data1 is freely accessible under the CC BY 4.0 license on RADAR4KIT (https://radar.kit.edu/radar/en/), a 
research data repository of the Karlsruhe Institute of Technology (KIT).

The formal start of the experiment was on October 12, 2022, at 16:45:00 UTC (Unix timestamp: 1665593100). 
Version 1 of the published dataset covers a test duration of 449 days, ranging from October 12, 2022, at 
18:20:00 UTC (Unix timestamp: 1665598800) to approximately January 4, 2024, 13:42 UTC (Unix timestamp: 
1704375720).

The following list gives a brief overview of the different datasets1. Detailed information about every column, 
the data type, precision, unit, and plausible minimum and maximum values are provided in the “Data Structure” 
Excel spreadsheet in the published dataset1. 

•	 Configuration files (CFG): Formal definition of the operating conditions and settings used for the cells 
(compare Fig. 2), pools, and slaves (cycler and thermal management boards). The configuration was stored on 

Fig. 10  Example of an EIS measurement at 25°C, 50% SoC with the two characteristic resistances R0 and R1 
of the LOG_AGE dataset (P047-2, S14:C04, Feb 2, 2023 at 00:25:41 UTC). As usual for EIS diagrams in the 
literature on battery cells, the imaginary axis is mirrored (−Im{Z}), which means that positive imaginary parts 
of Z (inductive behavior) are located on the lower half of the diagram.
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the SD cards before they were inserted into the slave boards. The boards read the configuration after booting 
and behave accordingly.

228 + 4 + 1 + 19 comma-separated values (CSV) files, total size: <1 MB, compressed: <1 MB.

•	 Cell configuration: 228 files, e.g., cell_cfg_P032_2_S07_C00.csv for parameter ID 32, nr. 2, slave 7, channel 0.
Columns (28): slave and cell ID; parameter ID and number; aging type, temperature, SoC, charging 
and discharging rate; maximum and minimum limits of charging and discharging voltages and (cut-off) 
currents during cycling, check-ups, and pulse patterns; …

•	 Pool configuration: 4 files, e.g., pool_cfg_T00_P1.csv for pool 1 of the thermal management board (slave 0).
Columns (7): slave and pool ID; operation and check-up temperature; …

•	 Slave thermal management configuration: slave_cfg_T00.csv for the only thermal management board 
in the system (slave 0).
Columns (6): slave ID and type, MAC and IP addresses, SD block location at which the configuration was stored

•	 Slave cycler configuration: 19 files, e.g., slave_cfg_S18.csv for cycler board slave 18.
Columns (17): slave ID and type, MAC and IP addresses, SD block location at which the configuration 
was stored, number and SoC of EIS points

•	 Post-processed end of charge data (EOC): Collected after each run (i.e., a charge, discharge, or driving pro-
file operation). Contains information about the operating condition and statistics of the last run.
228 CSV files, total size: 397 MB, compressed: 77.2 MB.
For example, cell_eocv2_P076_3_S17_C02.csv for parameter ID 76, nr. 3, slave 17, channel 2.
Columns (57): timestamp and origin; cycling and charging condition (regular operation, CU, other; charging, 
discharging); aging type, temperature, SoC, charging and discharging rate, profile; maximum charging or 
minimum discharging voltage and (cut-off) current; estimated remaining capacity and capacity-based SoH; 
ΔQ/E(chg/dischg) of last run and total processed charge or energy (for each operating condition) Q/Etotal, 

CU−RT/CU−OT/others−RT/others−OT/sum,chg/dischg; coulomb and energy efficiency; OCV, SoC, and temperature at the 
start and after the end of the run, cycling/run duration; number of cycles and CUs; …

•	 Post-processed electrochemical impedance spectroscopy measurements (EIS): Frequency-dependent 
impedance, collected at each CU for room (RT) and operating temperature (OT) at five different SoCs (10, 
30, 50, 70, 90%), in the range of 50 mHz to 14.7 kHz.
228 CSV files, total size: 139 MB, compressed: 9.4 MB.
For example, cell_eisv2_P047_2_S14_C04.csv for parameter ID 47, nr. 2, slave 14, channel 4.
Columns (22): timestamp and origin; charging and temperature condition; nominal SoC; valid flag; current 
and initial reference impedance (Zref, Zref,0); impedance-based SoH; average estimated OCV and temperature 
during the measurement; duration of the EIS; frequency and impedance amplitude and phase for each meas-
urement point (raw and compensated); real and imaginary part of the impedance (compensated); …

•	 Post-processed pulse pattern measurements (PULSE): Data of the pulse current pattern applied after com-
pletion of the EIS at each CU for room (RT) and operating temperature (OT) at five different SoCs (10, 30, 
50, 70, 90%).
228 CSV files, total size: 208 MB, compressed: 19.8 MB.
For example, cell_plsv2_P074_3_S19_C03.csv for parameter ID 74, nr. 3, slave 19, channel 3.
Columns (19): timestamp and origin; charging and temperature condition; nominal SoC; aging type, tempera-
ture, SoC, charging and discharging rate, profile; average temperature during the measurement; 10 ms and 1 s 
pulse resistance; voltage and current for each measurement point; …

•	 Post-processed extended cell log (LOG): Contains post-processed log data for every cell collected with a 
two-second resolution during the experiment and further extended by the columns described in the Data 
post-processing chapter.
228 CSV files, total size: 878 GB, compressed: 55.7 GB.
For example, cell_logext_P007_1_S06_C11.csv for parameter ID 7, nr. 1, slave 6, channel 11.
Columns (59): timestamp and origin; raw cell voltage, current, power, and temperature; ΔQ/E(chg/dischg) of 
current run; incremental ΔdQ/Echg/dischg since the last LOG entry; total processed charge or energy (for each 
operating condition) Q/Etotal,CU−RT/CU−OT/others−RT/others−OT/sum,chg/dischg; rough estimation of the OCV and SoC; 
measurement, BMS, voltage/current/temperature measurement state; scheduler state (raw and decoded into 
individual sub-states); overcharge, undercharge, and health flags indicating the capacity- or impedance-based 
EOL; …

•	 Compact cell log file with aging variables (LOG_AGE): Compressed version of the LOG dataset, contain-
ing only the most essential columns at a reduced, uniform time-resolution (interpolated and averaged data 
without gaps), extended by capacity and impedance aging data.228 CSV files, total size: 48.9 GB, compressed: 
5.1 GB.
For example, cell_log_age_30s_P035_2_S09_C04.csv for parameter ID 35, nr. 2, slave 9, channel 4 (cyclic ag-
ing, 30 second resolution) or cell_log_age_2s_P068_2_S07_C03 for parameter ID 68, nr. 2, slave 7, channel 3 
(profile aging, 2 second resolution).
Columns (11): timestamp; raw cell voltage, current, and temperature; rough estimation of the 
OCV and SoC; ΔQ of current run; total equivalent full cycles (EFC) of this cell in the experiment; estimated 
remaining capacity of the cell; estimated characteristic resistances R0/1 of the cell (compare Fig. 10)

•	 Raw pool log (POOL_LOG): Raw, unprocessed log data for every pool collected with a two-second 
resolution during the experiment.
4 CSV files, total size: 12.0 GB, compressed: 674 MB.
For example, pool_log_T00_P3.csv for pool 3 (40°C) of thermal management slave 0.
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Columns (46): timestamp and origin; scheduler state (raw and decoded into individual sub-states); pool set and 
measured temperature; cold plate temperature; Peltier currents and states; RT/OT, stable, and timeout flags; …

•	 Raw slave log (SLAVE_LOG): Raw, unprocessed log data for every slave (cycler and thermal management) 
collected with two-seconds resolution during the experiment.
1 thermal management + 19 cycler board CSV files, total size: 34.4 GB, compressed: 2.83 GB. 

•	 Slave thermal management log: slave_log_T00.csv.
Columns (47): timestamp and origin; last completed master scheduler state; slave scheduler and controller 
state; main power supply voltage, current, and power; auxiliary power supply voltage; main and auxiliary 
voltage (and current) states; emergency stop, DC link, and log states; SD card filling level; processor uptime; 
air valve, board and radiator fan, pump enable flag; circulating chiller set and measurement temperature 
and speed; pool isolation resistance measurement and state; coolant temperatures and states; ambient and 
“cold box” temperature, dew point, pressure, relative and absolute humidity; …

•	 Slave cycler log: 19 files, e.g., slave_log_S01.csv for cycler board slave 1.
Columns (21): timestamp and origin; last completed master scheduler state; slave scheduler and controller 
state; main power supply voltage, current, and power; auxiliary power supply voltage; main and auxiliary 
voltage (and current) states; emergency stop, DC link, and log states; SD card filling level; processor uptime; …

•	 Additional files: 

•	 Cycling Experiment Cell Overview: 1 Excel spreadsheet
Overview of the aging conditions, assignment of parameter set ID (Pxxx) + number (-x) to cycler slave 
boards (Sxx) and channels (:Cxx), position of the cells in the pools.

•	 WLTP cycle power profile: 1 Excel spreadsheet
Power profiles derived from the WLTP that were used in the experiment.

•	 Data Structure: 1 Excel spreadsheet
Formal definition of the structure of all datasets, e.g., names, data types, plausible limits, and descrip-
tion of each data column, as well as description of all state variables. The “help” tab of the spreadsheet 
provides an overview and brief description of the published data records. Similar data records are 
combined into one table, e.g., the cell, pool, slave cycler, and slave thermal management configuration 
are described in the “CFG” tab of the spreadsheet, and the slave cycler and slave thermal management 
log are shown in the “SLAVE_LOG” tab.

•	 Battery Aging Data Plausibility Check: 1 Excel spreadsheet
Python-generated summary table showing the minimum, maximum, and number of NaN values for 
each dataset column, as well as the number of values outside of the plausibility limits defined in the Data 
Structure spreadsheet.

•	 Result plot examples: interactive .html files visualizing various EIS, EOC, and PULSE result data col-
umns in different configurations (e.g., grouped by temperature or SoC, visualization of the development 
of the impedance over time, …) — the plots (for example, the figures shown in the section “Brief evalu-
ation of the measurement results”) were generated by the plot_result_data_comparison.py Python script 
(see Code availability section).
864 HTML files, total size: 8.44 GB, compressed: 148 MB

Most of the data records are published as compressed .zip files. However, large files are compressed in the 
.7z format since the compression is faster and the compressed files are significantly smaller. This .7z archive 
can be unpacked using the free and open-source software 7-Zip (available for Windows, Linux, and macOS on  
https://www.7-zip.org) or libraries such as the Python py7zr library (https://py7zr.readthedocs.io/).

Technical Validation
Data quality and inspection.  Although we did not use commercial battery cycler and measurement sys-
tems, our custom cycling system was tested and optimized at length before starting the experiment. Nevertheless, 
several minor problems emerged during the test period, such as sporadic Ethernet failures in the first two months 
of the dataset, which caused data gaps during which the cycler was automatically stopped to minimize the loss 
of relevant measurements. In order to ensure the high quality of this large dataset1, we continuously monitored 
samples of the data in Grafana, kept optimizing the system to minimize interruptions, and used Python scripts 
to analyze the final data for anomalies automatically. The impacts of the initial software bugs, such as partly 
incomplete data packets on the SD card, were fixed in the published data as described in the Data post-processing 
chapter so that the data quality is not affected.

Among others, the following checks were implemented on the battery cycler boards to ensure high data 
quality and safety: 

•	 All relevant measurements, such as the cell voltage, current, and temperature, are constantly monitored in a 
control loop executed with 10 kHz for safety and control purposes. The cell voltage is measured with a resolu-
tion of 69 μV and an accuracy of less than 0.05% in typical operating conditions. The current is captured with 
a resolution of 343 μA and an accuracy of typically less than 0.1%13. In the relevant operating range, the cell’s 
temperature is measured with a resolution of less than 0.05 K, and an estimated accuracy of 1 K. The tolerance 
of the crystals used to derive the processors’ clock signals (relevant for the processor uptime counter and the 
EIS frequency) is less than ±25 ppm, including frequency tolerance, frequency-temperature variation, and 
aging effects.

https://doi.org/10.1038/s41597-024-03831-x
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Derived values such as the OCV, SoC, ΔQ, and ΔE are monitored with a frequency of 1 kHz by the BMS 
(implemented on another core of the cycling processor) for safety purposes. If a safety-relevant value is NaN 
or surpasses critical upper or lower limits, or surpasses warning limits for a specified time, the cell will be 
temporarily disabled, i.e., left floating. After the fault is cleared and a resting period has passed, the cycler 
tries to re-enable the cell. After multiple faults during a defined time frame, the cell will be permanently 
disabled. If safety-critical fault states, such as an over-charge, occur, the cell will be immediately disabled 
permanently.

•	 The combined current and voltage controller operates in a closed loop, assuring that deviations are corrected 
within a time frame of typically less than 5 ms for the cell current and less than 30 ms for the voltage. If the 
controller cannot accurately set the desired current and the cell is not close to the end-of-charge or -discharge 
voltage, a controller error will be raised, which disables the cell channel. For example, this can occur if the cell 
fuse on the cycler board is blown.

•	 Every Ethernet data transfer between the slaves and the mini computers is acknowledged by the receiver of 
the data, and the successful storage of data on the SD card is also monitored. Failure to send or write the data 
will increment a fault counter. However, only one attempt is made to store LOG data (for slaves, cells, and 
pools) on the SD card and send it to the mini computers via Ethernet. All other data records generated by the 
cycler (EOC, EIS, PULSE) are sent and stored until a confirmation about the successful arrival/storage of the 
data is received to avoid result data loss.

•	 If a logging fault occurs for more than 20 seconds, the cycler stops operation so that no relevant cycling data 
is lost. The thermal management boards maintain their temperature when logging fails.

•	 As mentioned, three cells were tested per operating condition. The cells were distributed among the cycler 
boards to ensure that all three cells aging under a specific operating condition are connected to different 
cycler boards and controlled by different mini computers, so the measurement, data acquisition, and storage 
are independent.

In the Python scripts that decode the data, assign timestamps to every data row, and repair and analyze the 
data (also see Data post-processing chapter), the following checks are performed: 

•	 For each slave board, we programmatically and visually inspected all LOG timestamps on a semi-logarithmic 
scale to easily detect anomalies in the time difference between two data rows. Warnings are raised if times-
tamps are decrementing, or the difference between consecutive timestamps is unusually small or large (the 
latter is the case after data gaps).

•	 All values of all published CSV datasets are checked for NaN values and against plausible minimum and maximum 
thresholds, which are defined in the “Data Structure” Excel spreadsheet provided along with the data records. The 
resulting “Battery Aging Data Plausibility Check” spreadsheet is also included in the published dataset. While the 
analysis confirms that almost all values are valid and in a plausible range, the following exceptions exist.

NaN values can occur in the following instances: 

•	 in the EOC data in the cap_aged_est_Ah (estimated remaining usable capacity), soh_cap (capacity-based 
SoH), coulomb_efficiency, and energy_efficiency columns if the charging or discharging operation was too 
short,

•	 in the EOC data in the coulomb_efficiency and energy_efficiency columns if the charge-discharge cycle was 
asymmetric (e.g., in regular operation for the profile aging cells),

•	 in the EIS data in the z_ref_init column if the first EIS measurement of a condition, determined by the 
SoC (10/30/50/70/90%) and temperature (RT/RT), was invalid, i.e., the EIS measurement timed out, or 
the cycler was severely interrupted (which happened for several cells since the test bench was interrupted 
in the first EIS procedure) — in these cases, the next valid EIS measurement (second or third CU) is used 
as the reference for this measurement point,

•	 in the EIS data in the z_ref_now_mOhm and soh_imp columns for any invalid EIS measurement,
•	 in the EIS data in the z_amp_mOhm and z_ph_deg columns if individual measurement points (i.e., at a 

particular frequency) were not stable or could not be captured reliably enough,
•	 in the EIS data in the z_amp_comp_mOhm, z_ph_comp_deg, z_re_comp_mOhm, and z_im_comp_mOhm 

columns if the uncompensated z_amp_mOhm or z_ph_deg values are invalid or if the measured point is 
implausible (see Data post-processing chapter),

•	 in the LOG dataset in the v_raw_V, i_raw_A, p_raw_W, t_cell_degC, and ocv_est_V columns if just after 
boot, data is logged before valid measurements have been collected — if these NaN values shall be elimi-
nated, use the next valid measurement point as a replacement (backward filling) or remove the row (since 
it is the first after boot),

•	 in the LOG_AGE dataset in almost all cap_aged_est_Ah, R0_mOhm, and R1_mOhm columns — they are 
intentionally only filled with valid result data values from the EOC and EIS datasets in the LOG_AGE 
data row that follows the time at which the result data value was measured (if needed, these values could 
be spread across the whole dataset using linear interpolation or according to an aging model, depending 
on the application),

•	 in several fields in raw, unprocessed log datasets, such as the SLAVE_LOG and POOL_LOG of the ther-
mal management board and the SLAVE_LOG of the cycler boards (see “Data Structure” and “Battery 
Aging Data Plausibility Check” Excel spreadsheets for details).

https://doi.org/10.1038/s41597-024-03831-x
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Contrary to definitions often used in the literature, the capacity-based SoH in the dataset (soh_cap) is 100% 
if cap_aged_est_Ah equals the nominal cell capacity and 0% if it equals the minimum capacity threshold (40% 
of Cnom in regular operation, 50% of Cnom in CUs). Therefore, it can also be negative. Values that are smaller or 
larger than the specified plausible limits occur: 

•	 in the EOC data in the cyc_duration_s (duration of a charge or discharge operation) column if the cycler was 
interrupted for a longer period,

•	 in the LOG dataset in the sd_block_id (corresponding raw data position on the SD card for traceability) if syn-
thetic data was inserted (e.g., the pause flags marking gaps, as described in the Data post-processing section), 
the sd_block_id is set to 0,

•	 in the raw POOL_LOG and SLAVE_LOG (thermal management and cycler) datasets in the timestamp, sched-
uler_state_dec, and scheduler_state_phase columns during the first three hours of the dataset, since the boards 
were started before the formal start of the experiment, and the thermal management board initially operated 
in manual operating mode in this time,

•	 in the raw SLAVE_LOG datasets in the v_aux_V column if the auxiliary supply voltage measurement is not 
yet initialized after boot, but the first log data row is already written, the value is 0,

•	 in the raw SLAVE_LOG dataset of the thermal management board in the pump_hot_meas — replace values 
>100% (duty cycle measurement error) with NaN or use interpolation if needed,

•	 in the raw SLAVE_LOG dataset of the thermal management board in all columns from the combined temper-
ature, pressure, and humidity sensor (t_box_cold_degC to abs_hum_ambient_g_m3, 10 columns), since the 
measurement and the I2C communication to the sensor using a relatively long cable is prone to noise — sud-
den changes of these measured and derived physical values are unlikely, so values that significantly differ from 
neighboring values or are otherwise implausible can be replaced with NaN or interpolated values if needed.

Besides the data gaps, there was an issue with the temperature control between November 27, 2022, 10:40 PM 
UTC and November 29, 2022, 16:50 UTC. The air drying mechanism was impaired, which caused the dew point 
in the “cold box”, where the three colder pools are placed, to rise to approximately 8°C. The thermal management 
stopped cooling (and heating) the pools to prevent condensed water from entering them. During this period, the 
temperature in the three colder pools was between 9 and 13°C (instead of 0, 10, and 25°C), and the warm pool 
had around 32–33°C (instead of 40°C).

In addition, one of the Peltier element circuits of the 25°C pool failed on April 23, 2023, at around 11:47 AM. 
As a result of the lower heating power, the average temperature of the cells in the pool decreased by about 2.5°C, 
and the temperature variation inside the pool increased. The Peltier element was not replaced since this would 
have caused a long interruption of the experiment.

Brief evaluation of the measurement results.  The published data records1 include more than 3 billion 
data rows, each containing numerous measurement, derived, and state variables. The vast majority of data record 
size is attributed to the LOG files. The most relevant findings are summarized by the result data records (EOC/
EIS/PULSE), visualized in the “result plot examples” published among the data records using the Python scripts 
described in the Code availability section. Selected results shall be briefly summarized and put into context in the 
following.

Figures 11 to 13 show the estimated remaining discharge capacity measured in all CUs over time or the 
number of EFCs. They allow comparing the capacity loss caused by different aging conditions under comparable 
reference conditions (see Test procedure section). In all of the figures, the aging temperature is represented by 
the color of the trajectories. As expected for calendar aging (Fig. 11), the capacity fade is particularly dominant 
at high SoCs and high temperatures. Colder cells and cells resting at lower temperatures also face considerable 
capacity losses, but the change rate generally relaxes over time. However, for the cells aging at 40°C and 90% as 
well as at 25 and 40°C at 100%, the capacity loss rate increases again after the remaining capacity decreases past 
85% of the nominal capacity.

Fig. 11  Example plot for the EOC data record: estimated remaining usable discharging capacity over time, 
measured in the CUs at 1/3 C and 25°C, comparison of all calendar aging cells resting at an SoC of 10, 50, 90, 
and 100% (blue: aging at 0°C, cyan: 10°C, orange: 25°C, red: 40°C, gray (background): overlay of the capacity 
trajectories of all calendar aging cells with other SoCs for comparison).
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A considerable fraction of the capacity fade of all calendar aging cells might be caused by the cyclic aging 
caused during check-ups. After the last CU shown in the figure, the cells experienced between 43 and 63 EFCs, 
primarily due to the capacity checks, where the cell is charged and discharged between 0 and 100%.

A rather unexpected result is that the calendar aging at 40°C is higher at an SoC of 90% than at an SoC of 
100%. However, other authors have also reported similar behavior in the past14, p. 9, 15, p. 58, 16, p. 4. In our case, it is 
still unclear which fraction of the measured capacity losses are irreversible and which part is reversible and could 
thus be recovered with a suitable operating strategy.

In almost all cases of the cyclic aging cells (Fig. 12), the capacity loss rate in the first 200 cycles is relatively 
high and then reduces. The loss rate gradually increases again when the remaining capacity is less than 70 to 85% 
of the nominal cell capacity. In most instances, the capacity loss rate for cyclic aging cells at cold temperatures 
is significantly higher. However, at slow charging rates (e.g., +1/3 C,  −1/3 C, 10–100%), where calendar losses 
also have a high relative impact on aging, but lithium plating is less likely to occur at cold temperatures, there 
is no significant difference between the aging at 0 and 40°C. In this case, cells cycling at 25°C show the lowest 
aging rate since both the calendar and cyclic aging losses are low. The capacity losses for cold, fast-charging 
cells are particularly severe, especially when charging to 100%. Lithium plating is expected to be the dominant 
driver of the capacity losses in these cases. In the most extreme instance (1.67 C charging rate from 0–100% at 
0°C), the cells had less than 65% of the nominal capacity after just 132 EFCs. This highlights the importance of 
a good thermal management system and the preconditioning of an EV battery before fast charging, as well as 
limiting the charging rate to a value at which no plating occurs under the present conditions (e.g., by estimating 
the anode potential of the cell17). However, lithium plating can significantly drive capacity fade for severely aged 
cells, even at milder temperatures and lower charging rates7. This may explain the characteristic knee point in 
most of the investigated operating conditions, after which the aging is significantly accelerated. The published 
LOG data might help to better understand the characteristics of lithium plating and stripping processes in the 
cell and the dependence of the anode potential on temperature, C-rate, cell voltage, and impedance increase 
through aging. For example, an unusual increase in the charging current in the CV phase or the presence of an 
additional CC phase after a CV phase has already been reached can be seen in the LOG data (see Figure S3 in 
the Supplementary Information document). This behavior indicating lithium plating and lithium stripping is also 
discussed by Ringler et al.17, p. 7. In mild operating conditions, e.g., charging and discharging with 1/3 C from 
10 to 90% at 25°C, the cell still maintains more than 80% of the nominal capacity after more than 1500 EFCs 
(2083–2091 EFCs at the end of the experiment in May 2024).

The profile aging cells (Fig. 13) generally show a capacity loss behavior consistent with the cycling aging cells 
and also confirm qualitative findings known from the literature on calendar and cyclic aging. Limiting charging 
to an SoC of 90% instead of 100% has a positive effect on the lifetime of cells operated at 25°C and especially at 
40°C. Although not investigated with cyclic aging cells, the effect might even be higher at lower charging voltage 
limits, as indicated by the calendar aging results. This is particularly relevant for the operation of EVs in warmer 

Fig. 12  Example plot for the EOC data record: estimated remaining usable discharging capacity over the 
number of equivalent full cycles, measured in the CUs at 1/3 C and 25°C, comparison of all cyclic aging cells 
(blue: aging at 0°C, cyan: 10°C, orange: 25°C, red: 40°C, gray (background): overlay of the capacity trajectories 
of all cyclic aging cells (other SoC ranges, charging/discharging rates) for comparison).
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regions and in summer. At 40°C operating temperature, the fast-charging highway driving profile faces capacity 
losses almost similar to the slow-charging complete driving profile. However, at temperatures of 25°C and below, 
the fast charging rate affects aging severely.

The fastest aging occurs at the fast-charging highway profile at 0°C pool temperature: Less than 80% of the 
nominal capacity remains after just 132 EFCs (roughly 32,500 km of the highway profile). In contrast, the cell 
operating in the 40°C pool reaches 860 EFCs before it passes the 80% threshold (roughly 220,000 km) and 
around 1530 EFCs until only 70% of the nominal capacity remains (roughly 390,000 km) under otherwise sim-
ilar conditions.

The preliminary results of the cells aging under the full driving profile indicate that the cell aging at an SoC 
range of 10–100% at 25°C and 10–90% at 40°C face even fewer capacity losses.

It has to be mentioned that the selected cell model has already been on the market for a considerable time10,18 
and was selected due to its availability and the otherwise good performance indicators relevant to EVs. Newer 
NMC cell models suitable for automotive applications likely reach a significantly higher lifetime8.

Usage Notes
As already discussed, the published data1 is helpful for a wide range of applications. Although it is relatively 
size-inefficient, the CSV file format was chosen for the data records because it is very simple to read and pro-
cess independently of the software or programming language used. Sample code for reading and displaying the 
dataset with Python is freely available in a Git repository (see Code availability section). The read_dataframe_
example.py script is a minimal example for reading, selecting, and plotting data records. In contrast, plot_result_
data_comparison.py is a more complex script that generates interactive plots of the result data records (EIS, 
EOC, and PULSE). Further, user-defined plots can be added relatively easily by adjusting the PLOT_TASKS_
LIST structure, which defines a list of plots to be generated by the script.

In theory, the LOG data can also be plotted. However, due to the size of the data, this quickly reaches com-
putational limits with most libraries when visualizing data from several months. Adequate filtering, data resam-
pling to a significantly lower time resolution, or using the LOG_AGE dataset may facilitate visualization.

When using the data records for aging modeling, it is worth considering that the calendar aging cells do 
not only face calendar aging but also cyclic aging due to the relatively frequent CU, which may even dominate 
in their capacity fade. Conversely, the cyclic aging cells also face calendar aging since the cycling takes several 
months to years, depending on the charging and discharging rate.

Moreover, cyclic aging cells are not permanently exposed to the nominal charging and discharging cur-
rent due to the CC-CV charging protocol. The CV phase accounts for a considerable part of the charging 
time, particularly for the fast charging rates at cold temperatures and aged cells, i.e., high internal imped-
ances. In a severe case (P017-1: 0°C, +1.67 C/ −1.0 C, 0–100%), close to the end of the lifetime of the cell, 
the CC phase only lasts less than two minutes, while the CV phase until the cut-off current of 1/10 C was 
reached took more than one hour. While in the literature, simplified aging model functions are sometimes 
fit to experimental capacity fade result data using the nominal charging current as an input, it is recom-
mended to consider the variable operating conditions for modeling. This is possible using the published log 
data, such as the compact and easily reusable LOG_AGE dataset. This also allows considering the effect of 
the individual temperature increases that the cells face depending on their operating condition and degra-
dation state.

The SoC and OCV estimations are determined by comparatively simple algorithms and deliver inaccurate 
results for aged cells while charging or discharging. Therefore, they should not be used to validate SoC algo-
rithms without prior modification. At rest, the SoC in the dataset is estimated using the low-pass filtered meas-
ured cell voltage as the estimated OCV and a lookup table (LUT) for the relationship between the OCV and the 

Fig. 13  Example plot for the EOC data record: estimated remaining usable discharging capacity over number of 
equivalent full cycles, measured in the CUs at 1/3 C and 25°C, comparison of all profile aging cells (blue: aging 
at 0°C, cyan: 10°C, orange: 25°C, red: 40°C, gray (background): overlay of the capacity trajectories of all profile 
aging cells (other SoC ranges, charging rates and profiles) for comparison).
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(Ah-based) SoC (using the “avg” column in Table S1 in the Supplementary Information document). While the 
cell is operated with I ≠ 0 A, coulomb counting is used to estimate the SoC (see Equation (2)).

SoC t SoC SoC t SoC
Q t

C
( ) ( )

( )

(2)
start chg dischg start

remaining usable lastCU RT chg dischg
/

, , , , /
= + Δ = +

Δ

 The remaining usable charging and discharging capacities determined in the last CU at RT are used in Equation (2). 
In charging processes, the determined charging capacity is considered. For discharging or in dynamic operation 
(during EIS, pulse pattern measurement, or while applying the driving profiles), the estimated discharging capac-
ity of the last CU is used.

While the cell is charged or discharged, the OCV is estimated using the average of an SoC-based and a 
voltage-based approach. The SoC-based OCV is estimated with the estimated SoC and the OCV-SoC LUT 
determined for charging or discharging (“chg”/“dischg” columns in Table S1 in the Supplementary Information 
document). For the voltage-based OCV estimation, the measured terminal voltage minus the measured cell 
current multiplied by the estimated cell resistance is used. For this resistance, the 10 ms pulse resistance deter-
mined in the initial current pulse during the pulse pattern measurements at different SoCs (10/30/50/70/90%) 
and at RT or OT is used as a baseline. The RT or OT pulse resistances are selected depending on the intended 
cell temperature. Linear interpolation is used to determine the actual resistance value for an SoC between 10 and 
90%, and the values of the 10 or 90% measurements are selected outside of this SoC window. The OCV is capped 
by the measured terminal voltage if the estimated OCV would otherwise be greater than the measured voltage 
while charging or smaller than the measured voltage while discharging.

After a rest period of 4 minutes and 40 seconds (i.e., 20 seconds before the earliest start of the subsequent 
charging or discharging procedure), the OCV is determined using the filtered cell voltage again. However, for 
an accurate OCV estimation, the cell would have to relax for multiple hours or even days. After the OCV is 
updated, the SoC is adjusted using the new OCV and the SoC-OCV LUT. This assures that the voltage-based 
SoC method that is now in effect again is used for the SoCend value in the EOC dataset 20 seconds later (compare 
Equation (1)).

Fig. 14  Example plot for the EIS data record: frequency-dependent complex impedance Z, measured in the 
CUs at 50% SoC and 25°C, comparison of selected cyclic aging cells (aging at 25°C, 10–90% SoC range, at 
different charging rates: 1/3 C, 1 C, 5/3 C, overlay of the traces of all three cells aging at the respective condition 
over time — from purple (new) to yellow (highest number of EFCs).

Fig. 15  Example plot for the EIS data record: reference impedance Zref,0 (impedance amplitude average of 
the impedances measured at 0.2083, 0.5, 2.083, and 10 Hz) measured at SoC = 10% (red), 30% (orange), 50% 
(yellow), 70% (green), 90% (blue) at operating temperature (here: 0°C, opaque/upper colored traces) and room 
temperature (25°C, semi-transparent/lower colored traces) for cyclic aging cells operated an 0°C, 10−100% SoC 
range, and various charging- and discharging rates — overlay of the reference impedances for all other cyclic 
aging cells in gray.

https://doi.org/10.1038/s41597-024-03831-x


1 9Scientific Data |         (2024) 11:1004  | https://doi.org/10.1038/s41597-024-03831-x

www.nature.com/scientificdatawww.nature.com/scientificdata/

As mentioned in the Data post-processing section, the EIS measurements have a significantly lower quality 
than measurements that would have been collected using expensive commercial equipment. Nevertheless, clear 
aging trends can be seen from the EIS measurements (compare Fig. 14) and the derived reference impedance 
(shown in Fig. 15). If the EIS data is used, for example, to fit an equivalent circuit model (ECM), the data points 
might need additional filtering. For example, implausible data points could be removed prior to the usage.

In contrast, the PULSE measurements (compare Fig. 16) can be used for impedance estimation without fur-
ther modification, as the terminal voltage and cell current measurement in the time domain, as well as the tim-
ing points of the log data, are significantly more precise, and the current controller is very stable and accurate.

Information on issues that could negatively affect data usage (such as data gaps, anomalies, inaccuracies, or 
NaN values) is summarized in Table S2 in the Supplementary Information document.

Code availability
Example Python scripts facilitating the use of the published battery aging dataset1 are freely available on GitHub: 
https://github.com/energystatusdata/bat-age-data-scripts. The required and optional Python libraries are listed 
in the “requirements.txt” file in the GitHub repository.
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