
PHOBIC: Perfect Hashing With
Optimized Bucket Sizes and Interleaved Coding
Stefan Hermann #

Karlsruhe Institute of Technology, Germany

Hans-Peter Lehmann #

Karlsruhe Institute of Technology, Germany

Giulio Ermanno Pibiri #

Ca’ Foscari University of Venice, Italy
ISTI-CNR, Pisa, Italy

Peter Sanders #

Karlsruhe Institute of Technology, Germany

Stefan Walzer #

Karlsruhe Institute of Technology, Germany

Abstract
A minimal perfect hash function (or MPHF) maps a set of n keys to [n] := {1, . . . , n} without
collisions. Such functions find widespread application e.g. in bioinformatics and databases. In this
paper we revisit PTHash – a construction technique particularly designed for fast queries. PTHash
distributes the input keys into small buckets and, for each bucket, it searches for a hash function
seed that places its keys in the output domain without collisions. The collection of all seeds is then
stored in a compressed way. Since the first buckets are easier to place, buckets are considered in
non-increasing order of size. Additionally, PTHash heuristically produces an imbalanced distribution
of bucket sizes by distributing 60% of the keys into 30% of the buckets.

Our main contribution is to characterize, up to lower order terms, an optimal choice for the
expected bucket sizes, improving construction throughput for space efficient configurations both
in theory and practice. Further contributions include a new encoding scheme for seeds that works
across partitions of the data structure and a GPU parallelization.

Compared to PTHash, PHOBIC is 0.17 bits/key more space efficient for same query time and
construction throughput. For a configuration with fast queries, our GPU implementation can
construct an MPHF at 2.17 bits/key in 28 ns/key, which can be queried in 37 ns/query on the CPU.

2012 ACM Subject Classification Theory of computation → Data compression; Information systems
→ Point lookups

Keywords and phrases Compressed Data Structures, Minimal Perfect Hashing, GPU

Digital Object Identifier 10.4230/LIPIcs.ESA.2024.69

Related Version Full Version: https://arxiv.org/abs/2404.18497 [17]

Supplementary Material Software (CPU code): https://github.com/jermp/pthash/tree/phobic
archived at swh:1:dir:768316ce78cf600adb51747f53de4554f2810bf4

Software (GPU code): https://github.com/stefanfred/PHOBIC-GPU
archived at swh:1:dir:cc1a9df8d87fb54fced6653e4f95ae23b4c05772

Software (Comparison with competitors): https://github.com/ByteHamster/MPHF-Experiments
archived at swh:1:dir:ee4700d510c929f8acc0e49bdd256b3357d21d15

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
The project also received funding form the European Union’s Horizon Europe research and innovation
programme (EFRA project, Grant Agreement Number 101093026). This work was also partially
supported by DAIS – Ca’ Foscari University of Venice within the IRIDE program.

© Stefan Hermann, Hans-Peter Lehmann, Giulio Ermanno Pibiri, Peter Sanders, and Stefan Walzer;
licensed under Creative Commons License CC-BY 4.0

32nd Annual European Symposium on Algorithms (ESA 2024).
Editors: Timothy Chan, Johannes Fischer, John Iacono, and Grzegorz Herman; Article No. 69; pp. 69:1–69:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hermann@kit.edu
https://orcid.org/0000-0001-9183-2926
mailto:hans-peter.lehmann@kit.edu
https://orcid.org/0000-0002-0474-1805
mailto:giulioermanno.pibiri@unive.it
https://orcid.org/0000-0003-0724-7092
mailto:sanders@kit.edu
https://orcid.org/0000-0003-3330-9349
mailto:stefan.walzer@kit.edu
https://orcid.org/0000-0002-6477-0106
https://doi.org/10.4230/LIPIcs.ESA.2024.69
https://arxiv.org/abs/2404.18497
https://github.com/jermp/pthash/tree/phobic
https://archive.softwareheritage.org/swh:1:dir:768316ce78cf600adb51747f53de4554f2810bf4;origin=https://github.com/jermp/pthash;visit=swh:1:snp:ed3fc5cc849d532bffeeaa39d54aa3a54af71fa6;anchor=swh:1:rev:a404f0fcd2359c087a0a28c884daecace49122fe
https://github.com/stefanfred/PHOBIC-GPU
https://archive.softwareheritage.org/swh:1:dir:cc1a9df8d87fb54fced6653e4f95ae23b4c05772;origin=https://github.com/stefanfred/PHOBIC-GPU;visit=swh:1:snp:75b8bad356674e37ab5195eca21302890b767f47;anchor=swh:1:rev:6a7985333b0b539f341a96fba92ba07c4be303e5
https://github.com/ByteHamster/MPHF-Experiments
https://archive.softwareheritage.org/swh:1:dir:ee4700d510c929f8acc0e49bdd256b3357d21d15;origin=https://github.com/ByteHamster/MPHF-Experiments;visit=swh:1:snp:93728f1f0f5e874a2061d7de195c535a59f11a44;anchor=swh:1:rev:2bf7a519d8fc020cab58ea9a7952accf19e6cb15
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

Acknowledgements This paper is based on the Master’s thesis [16] of Stefan Hermann, which
contains a more detailed evaluation and description of the GPU implementation.

1 Introduction

A hash function maps a set S of n keys to a range of integers [m] := {1, . . . , m}, regardless
of whether multiple keys collide on the same output. A perfect hash function (PHF) on S is
a mapping without collisions. This requires m ≥ n. The function does not necessarily have
to store the keys explicitly. It only has to store enough information to prevent collisions,
which are more likely when m is close to n. In the extreme case of m = n, the mapping is
called a minimal perfect hash function (MPHF). For simplicity, we only consider the minimal
case in this paper. However, our contributions are applicable for the non-minimal case as
well. PHFs find widespread practical application e.g. in compressed full-text indexes [3],
computer networks [23], databases [8], prefix-search data structures [1], language models [29],
bioinformatics [11,26], and Bloom filters [7]. The three main performance attributes of an
MPHF are low space consumption, fast construction, and fast queries. Concerning space,
the lower bound is log2(e) ≈ 1.44 bits/key [24]. Practically viable approaches can get within
a few percent of the lower bound, but do so with some sacrifices in running time [19, 21].
This paper is concerned with a technique that is focused on achieving fast query times. For
example, this is very important when using perfect hashing to implement a static hash table
that is both space-efficient and allows fast search.

Perfect Hashing Through Bucket Placement. To achieve fast query time we ideally only
have to retrieve a single value from memory and directly obtain the result of the query by
combining this value and the key. Perfect hashing through bucket placement is an MPHF
technique which yields such a simple query algorithm. It takes the n keys and hashes them
to small buckets. The algorithm places the buckets one after another by searching for a
seed of a hash function that maps the keys to the output domain [n]. A seed is accepted if
none of the keys in the bucket collide with another key of a previously placed bucket. We
illustrate this in Figure 1. The first buckets are easier to place because the output domain is
less full. Therefore, the methods insert the buckets in order of non-increasing size. While
CHD [2] uses buckets of constant expected size, FCH [13] and PTHash [27, 28] set aside
30% of “heavy” buckets that receive 60% of the keys in expectation, while 70% of “light”
buckets receive only 40% of the keys in expectation. This imbalance in expected bucket

s0 = 2

%

s1 = 0

Place buckets in non-increasing size

s2 = ? s3 = ?

PI
OC

B M G FL

Try s1 = 1 next

011100...

PO

C
IL

M
FB G

Key set S

Hash keys
to buckets

Compress
seeds

O C BP IL

T
T

T

Figure 1 Example for perfect hashing through bucket placement.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:3

sizes improves construction speed by further decreasing the size of the last, hardest to place,
buckets. The resulting list of seed values are stored with various compression techniques,
resulting in a variety of trade-offs between space consumption and query speed.

Contribution. This paper aims at improving the space efficiency and construction speed
of PTHash, while maintaining its fast query speed. There are three ingredients. Our main
contribution (in Section 4) is to characterize, up to lower order terms, an optimal distribution
of expected bucket sizes, effectively taking the imbalance-trick used in FCH and PTHash to its
logical conclusion. The distribution is easy-to-implement and greatly improves construction
time and space efficiency in practice. Our second contribution (in Section 5.1) is to the
compression of seed values. We group the seed values such that all seeds within one group
follow the same statistical distribution. We can then tune a compressor for each group.
Finally, we contribute (in Section 5.2) an implementation for Graphics Processing Units
(GPUs) to speed up construction.

2 Related Work

Perfect hashing is an active area of research. In addition to perfect hashing through bucket
placement, which we describe in Section 1, we now provide an overview over state-of-the-art
approaches. For more details, refer to [28, Section 2].

Fingerprinting. Perfect hashing through fingerprinting [9, 25] is a technique aimed at fast
construction and queries at the cost of reduced space efficiency. The idea is to map the n keys
to γn positions using a hash function, where γ is a tuning parameter. A bit vector of length
γn indicates positions that received exactly one key. Keys that are involved in collisions are
handled recursively on another layer of the same data structure. A query operation descends
through the recursive layers until it finds a 1-bit, meaning that the queried key was the only
key mapping to that position. A rank operation on the bit vector for that position then gives
the final MPHF value. FMPH [4] and BBHash [22] are publicly available implementations
of this approach. FMPHGO [4] extends on this idea using a small number of brute-force
re-tries to reduce the number of colliding keys. Fingerprinting based approaches are fast to
construct but are outperformed in terms of space consumption and query time by PTHash.

Brute Force. RecSplit [12] first partitions the input into sets of equal expected size. It then
recursively splits the key set of each partition until sets of small constant size (usually ≤ 16)
are left. Within these sets, it finds a perfect hash function by brute force. RecSplit achieves
space usage of about 1.56 bits/key. The resulting splitting tree has to be traversed during
querying which implies considerably higher query costs compared to PTHash. The brute
force search was later improved in SIMDRecSplit [5], which also parallelizes the construction
on the GPU. To the best of our knowledge, RecSplit is the only other PHF construction
technique that has a GPU implementation.

Perfect Hashing Through Retrieval. In perfect hashing through retrieval, every key has
a number of candidate positions, determined by different hash functions. A retrieval data
structure then stores which of the choices should be used for each key. Note that this
implies some query overhead compared to PTHash. Early implementations include BPZ [6]
and GOV [14]. SicHash [20] reduces space consumption using a mix of different retrieval
data structures and some retries. ShockHash-RS [19,21] combines 1-bit retrieval with the
brute-force approach of RecSplit and currently is the most space-efficient approach to MPHFs
with as little as 1.49 bits/key [19].

ESA 2024

69:4 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

3 PHOBIC

In this section we present PHOBIC, a novel technique for perfect hashing through bucket
placement. Before we dive into the actual algorithm we take a closer look at the parameters
of perfect hashing through bucket placement.

3.1 Expected Bucket Sizes

It is known that larger average bucket sizes λ result in lower space consumption at the cost
of an increased construction time. This was previously shown in CHD [2] for the case in
which all buckets have the same expected size. However, it was previously not analyzed how
the distribution of expected sizes influences space consumption. It is a simple insight that
large λ already guarantees a space consumption close to the lower bound of log2 e bits per
key, without any assumptions on the distribution of expected sizes.

▶ Proposition 1. Any specialization of perfect hashing through bucket placement requires
between log2 e bits per key and log2 e +O(log λ

λ) bits per key in expectation.

Our goal therefore only needs to be to minimize construction time. Here we are faced with a
lower bound for our family of approaches.

▶ Proposition 2. Any specialization of perfect hashing through bucket placement has an
expected construction time of Ω(eλ) per bucket.

Propositions 1 and 2 are restated more formally and proved in the full version of this
paper [17]. It is intuitively clear (and proved in the full version) that buckets should be
processed in order from largest to smallest. The main remaining degree of freedom is to choose
the expected sizes of the buckets. However, previous work has addressed this optimization
problem only experimentally. Our main contribution (in Section 4) is to characterize, up
to lower order terms, an optimal distribution of expected sizes. We achieve a construction
time of eλ(1+ε) per bucket. Our distribution of expected sizes is easy-to-implement and
greatly improves construction time and space efficiency in practice when compared to the
distribution of expected sizes of related work.

3.2 The Algorithm

PHOBIC first splits the input set into disjoint partitions of expected equal size ρ using a
pseudo-random hash function. We construct an MPHF within each partition. The various
MPHFs are then logically “concatenated” into a single MPHF taking the prefix sum of the
partition sizes. Partitioning has also been applied on PTHash in PTHash-HEM [28]. Like
in PTHash-HEM, we use perfect hashing trough bucket placement to construct the MPHF
of each partition. Each partition uses the same number B := ⌈ρ/λ⌉ of buckets. To assign
the keys to buckets we first hash them uniformly into the range h ∈ [0, 1]. Each key is then
assigned to bucket ⌈Bγ(h)⌉, where γ : [0, 1] −→ [0, 1] may be any function for now. We refer
to γ as a bucket assignment function. Section 4 discusses how γ characterizes the expected
sizes of the buckets and how to choose γ in an optimal way.

We now have all the ingredients to give pseudocode for construction and query in
Algorithm 1. Our algorithm is implicitly parametrized by λ, ρ and b. We denote hX as a
pseudo-random hash function which uniformly maps into the set X.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:5

Algorithm 1 PHOBIC construction and query.

Function construct(S, P, B, γ):
for all k ∈ S

assign k to bucket B · γ(h[0,1](k))
of partition h[P](k)

offsets ← prefix sum of partition sizes
for all partitions part

size ← number of keys in part
free ← [True, ...] of size size
sort buckets in non-increasing size
for all bucket in part

keys ← keys of bucket
s← placeBucket(keys, size, free)
store seed s

return seeds, offsets

Function placeBucket(keys, size, free):
for s = 1, 2, 3, . . .

pos ← {h[size](k, s) : k ∈ keys}
if |pos| = size and ∀p ∈ pos : free[p]

free[p]← False for p ∈ pos
return s

Function query(key ∈ S, P, B, γ):
partition← h[P](key)
bucket← B · γ(h[0,1](key))
offset← offsets[partition]
size← offsets[partition + 1]− offset
s← seed of bucket in partition
return offset + h[size](key, s)

Our second contribution (in Section 5.1) is to improve the compression of seed values
when using partitioning. Seeds are searched independently for each partition, but compressed
together. We exploit that the seeds of the i-th bucket of each partition follow the same
statistical distribution. This allows us to tune a compressor for each such index i. We store
the seeds in an interleaved manner by consecutively placing the seeds for the i-th buckets
from all partitions.

The construction of each of the many but small partitions requires only a tiny amount of
memory. PHOBIC therefore naturally maps to the architecture of a Graphics Processing
Units (GPU). Our final contribution is a GPU implementation (in Section 5.2) to further
speed up construction compared to the CPU.

4 Optimizing Bucket Sizes

We first identify useful properties of any bucket assignment function in Section 4.1. We then
identify an optimal bucket assignment function in Section 4.2 and provide an intuitive reason
for its optimality. Proofs can be found in the full version [17].

4.1 Bucket Assignment Functions

Let w1, . . . , wB be the probability that a key hashes to bucket i for i ∈ [B]. We may assume
without loss of generality that these probabilities are given in decreasing order. An equivalent
view considers the prefix sums σi := w1 + · · · + wi. A key with (normalized) hash value
x ∈ (0, 1] is then assigned to bucket i if x ∈ (σi−1, σi].

We can conveniently represent this information using a bucket assignment function
γ : [0, 1] → [0, 1] that: interpolates the points {(σi, i/B) | 0 ≤ i ≤ B}, is increasing and
smooth on (0, 1), and has non-decreasing derivative. The bucket assigned to hash value
x ∈ (0, 1] is then ⌈γ(x) · B⌉. It is a non-trivial insight of this section that a single bucket
assignment function (not depending on B and n) can result in good construction times for
many values of B and n simultaneously.

ESA 2024

69:6 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized Hash

N
or

m
al

iz
ed

B
uc

ke
t

(a) The bucket assignment functions map a normal-
ized hash value x to a normalized bucket index γ(x).

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

Normalized Bucket

R
el

at
iv

e
E

xp
ec

te
d

Si
ze Uniform (CHD [2])

Skewed (PTHash [27])
Optimized (PHOBIC)

(b) The expected bucket sizes relative to the average
size λ are (γ−1)′(b) for normalized bucket index b.

Figure 2 Comparison of bucket assignment functions γ(x) of related work and PHOBIC (γ = β∗).

From now on, let λ := n/B. We summarize some useful intuitions about bucket assignment
functions. These intuitions are valid for large n and B (when γ, γ−1, and γ′ are approximately
constant on intervals of length 1

n and 1
B). For now, we neglect edge cases related to γ or γ−1

not being smooth at 0 or not being smooth at 1 (but just smooth on (0, 1)).

▶ Intuition 3. Let x ∈ (0, 1] be a normalized hash and b = γ(x) the normalized bucket index
of the bucket assigned to x. Then:

(i) The expected size of the bucket assigned to x is λ/γ′(x).
(Reason: In the vicinity of x and for infinitesimal δ, a δ-fraction of the hash range
(used by δn keys in expectation) is shared by a (γ′(x) · δ)-fraction of the B buckets. The
quotient is δn/(γ′(x)δB) = λ/γ′(x).)

(ii) The expected size of the bucket with normalized index b is λ/γ′(γ−1(b)) = λ(γ−1)′(b).
(Follows from (i) and the inverse function rule.)

(iii) The expected size of a bucket is decreasing in its normalized index.
(Follows from (ii) and monotonicity of γ′ and γ−1.)

(iv) The expected fraction of keys with normalized hash in (0, x] is x.
(v) If µ > 0 and xµ ∈ (0, 1) is such that λ/γ′(xµ) = µ then the expected fraction of keys in

buckets of size at least µ is xµ. (Follows from (i), (iii) and (iv).)

4.2 An Optimal Bucket Assignment Function
Intuitively, we identify the following bucket assignment function to be optimal, although our
precise result stated below is more subtle.

β∗(x) = x + (1− x) · ln(1− x) with derivative β′
∗(x) = − ln(1− x).

For comparison, Figure 2a shows β∗ as well as the bucket assignment functions used by CHD
and PTHash. In Figure 2b we see the distribution of expected bucket sizes, which is uniform
for CHD, imbalanced for PTHash, and even more imbalanced for β∗.

Recall that λ = n/B is the average bucket size. By Proposition 2 a lower bound for
the expected work is Ω(n · eλ/λ). We prove, firstly, that any bucket assignment function γ

that differs from β∗ leads to expected work exceeding n · e(1+ε)λ for some ε = ε(γ), provided
that λ is large enough. Conversely, we show that a slight perturbation βε of β∗ leads to
an expected work of essentially at most n · e(1+ε)λ for any ε > 0, provided that λ ≥ λ0(ε)
is large enough. Essentially, we can get arbitrarily close to a cost of eλ per key and only
functions close to β∗ can achieve this.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:7

Our results bound the work wn,λ(γ) associated with γ and involve a “coupon collector
term” wcoupon, which is the work required to place buckets of size 1.1 We will define these
more precisely below. Proofs are found in the full version [17]. We have reason to believe that
our results generalize for the non-minimal case of m > n, as explained in the full version [17].

▶ Theorem 4. Let γ : [0, 1] → [0, 1] be a continuous bucket assignment function that is
smooth on (0, 1) with non-decreasing derivative. If β∗ ̸= γ then

∃ε > 0 : ∀λ ≥ λ0(ε) : ∀n ≥ n0(λ, ε) : wn,λ(γ) ≥ n · eλ(1+ε) + wcoupon whp.

While this leaves the relationship between γ and ε(γ) open, our proof suggests that any
ε < supx∈(0,1)

β′
∗(x)

γ′(x) − 1 is a possible choice.

▶ Theorem 5. Let βε(x) := εx + (1− ε)β∗(x) for some ε > 0. Then

∀ε > 0 : ∀λ ≥ λ0(ε) : ∀n ≥ n0(λ, ε) : wn,λ(βε) ≤ n · eλ(1+O(ε)) + wcoupon whp.

By with high probability (whp) we mean probability 1−O(n−c) for some c > 0. Note that
both theorems are phrased such that we may assume that n is much larger than λ and λ is
much larger than 1/ε. We give implementation details concerning the use of βε in Section 4.3.

The work associated with a bucket assignment function. To place a bucket of size s ∈ N
into a hash table of size n that already has load factor α ∈ [0, 1 − s

n] we repeatedly try
seeds for a hash function mapping keys to [n], until all keys hash to free positions. The
expected cost cn(s, α) associated with this task under the simple uniform hashing assumption
is described precisely in the full version [17]. We have to take into account self-collisions,
i.e. while checking the keys one after the other, the load factor gradually increases and is
α′ = α + s−1

n for the last key. For our purposes, the following bounds on cn(s, α) suffice

(1− α)−s ≤ cn(s, α) ≤ s · (1− α′)−s. (1)

This uses that (1− α)−s and (1− α′)−s are lower and upper bounds on the number of seeds
that have to be tried and that, to test a seed, at least 1 and at most s keys have to be
considered. Now assume we are given a bucket assignment function γ as well as n ∈ N,
λ ∈ R+ and B = n/λ. By assigning keys to buckets according to γ and hash values in (0, 1]
we obtain buckets. Let s1 ≥ . . . ≥ sB be their sizes in decreasing order. As we show in the
full version of this paper [17] it is advantageous to process the buckets in this order. Defining
αi := 1

n

∑i−1
j=1 si, the total cost is then wn,λ(γ) =

∑B
i=1 cn(si, αi).

Note that while this describes the expected cost when given (si)i∈[B], overall wn,λ(γ) is
still a random variable because the numbers (si)i∈[B] are random. Assume now that there
are exactly k buckets of size 1 that are placed last (we may ignore buckets of size 0). For
these buckets, the upper and lower bounds in Equation (1) coincide so they incur a cost of

wcoupon :=
k∑

i=1
c(1, n−i

n) =
k∑

i=1

n

i
= n ·Hk.

1 The name is inspired by the famous coupon collector problem. Given an urn with n balls (or coupons),
the collector repeatedly draws a uniformly random ball from the urn and puts it back. The question
is how many draws are needed in expectation until each ball was drawn at least once. When placing
buckets of size 1, we are similarly just waiting for unused hash values to appear, when drawing them
one by one.

ESA 2024

69:8 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

Here Hk is the kth harmonic number, which satisfies Hk = Θ(log k). If n is sufficiently
large compared to λ then we have k ≥ nd whp for some constant d > 0, giving a cost of
Θ(n ·Hnd) = Θ(n log n). This dominates overall construction time if n is sufficiently large
compared to λ. Our theorems list this work for buckets of size 1 as a separate term because
there are techniques to mitigate the problem: The hash function may permit to directly
compute for a given key x and table position i a seed for which x is mapped to i. This is the
case if the seed includes an additive displacement term, as is the case in our implementation
and in FCH [13].

Intuition: What makes β∗ uniquely promising. For µ > 0 let xµ ∈ (0, 1) be such that
λ/β′

∗(xµ) = µ. By Intuition 3 (v), roughly an expected xµ-fraction of the keys (those with
hashes in [0, xµ]) land in buckets of expected size at least µ. Assume for now that a bucket of
expected size µ has actual size µ (ignoring the issue that µ may not be integer). Then, since
we process buckets in order of increasing size, we would process a bucket of size µ when the
load factor is xµ. The expected cost for this is, by Equation (1), around (1−xµ)−µ. Using that
β′

∗(x) = − log(1−x) gives µ = −λ/ log(1−x) and hence (1−xµ)−µ = (1−xµ)λ/ log(1−xµ) = eλ,
i.e. a cost independent of µ. The idea behind Theorem 4 is that any bucket assignment
function γ ̸= β∗ fails to balance bucket sizes in this way, leading to significantly higher costs.

The simplification we made seems adequate for large µ since a bucket of large expected
size typically has actual size close to its expectation. But consider µ = 1.5 and cease to
ignore rounding issues. If at load factor xµ we would process buckets of size 1 half the time
and buckets of size 2 half the time, the resulting costs are around e

2
3 λ and e

4
3 λ, respectively,

which does not average out to eλ. Luckily, things are more complicated. It turns out that for
small s ∈ N and assuming large λ, the expected number of buckets of size s is meaningfully
greater than the number of buckets of expected size in the range [s− 1, s + 1]. This means
that we get more small buckets than we seem to have called for, decreasing costs at high
load factors. It seems clear that the flipside of this beneficial effect must be a detrimental
effect for larger bucket sizes that a proof of Theorem 5 must quantify. When it comes to very
large bucket sizes, we bail ourselves out by using βε instead of β∗: since β′

ε is lower bounded
by ε, the expected bucket sizes are capped at λ/ε. It is buckets of intermediate sizes that
have to pay the price.

4.3 Details on the Bucket Assignment in Practice
Our implementation of bucket assignment functions differs from our theoretical results in
two minor ways.

Perturbation. Recall that β∗ : [0, 1]→ [0, 1] was, modulo certain qualifications, identified
as the optimal bucket assignment function in Section 4. One of the qualifications was that
we actually analyze a slightly perturbed function βε(x) := εx + (1 − ε)β∗(x). This limits
expected bucket sizes to λ/ε, which helped with bounding construction times of large buckets.
Limiting the bucket sizes is also useful in practice to reduce self-collisions inside the small
partitions. Concretely we choose ε = λ

5√
ρ , for an expected partition size of ρ. Thus, capping

the expected bucket sizes at 5√ρ. Without this perturbation (ε = 0), running times are
noticeably worse.

Tabulating values. The functions β∗ and γP involve expensive arithmetic operations such
as a logarithm. We achieve a significant speedup by tabulating γP (x) for 2048 discrete values
of x and interpolating linearly.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:9

5 Fine-Grained Partitioning

Any PHF construction can trivially be parallelized by hashing the keys into subsets of
expected equal size and building a PHF for each subset in parallel. The various PHFs are
then logically “concatenated” into a single PHF taking the prefix sum of the partition sizes.
The respective offsets have to be looked up when querying a key, imposing some query time
overhead. Partitioning is widely used for a variety of construction techniques. It was also
used by PTHash in the PTHash-HEM variant [28]. In this paper, we use partitions that
are several magnitudes smaller than the ones used in PTHash-HEM. In itself, reducing the
partition size results in only marginal construction time improvements. However, small
partitions enable a new, more efficient encoding scheme which we introduce in Section 5.1.
Additionally, they enable a fast GPU parallelization which we describe in Section 5.2.

Encoding the offsets of the partitions. The offsets and sizes of the many partitions require
a non-negligible amount of space. We mitigate this without incurring too much query
overhead by storing sizes only implicitly as the difference of two subsequent offsets. Offsets
are stored as the difference to their expectation.

Hash Function. The original PTHash hash function works by XOR-ing the hash value of
the key with the hash value of the seed. Although the technique works well on large-enough
partition sizes, it might fail for small sizes because of correlations in the hash values. Given
the small partition sizes we use here, we have to rely on a different technique. We use the
seed value p to store two numbers, namely p = s ·m + d, where m is the actual partition
size and d ∈ [m] is an additive displacement. The position of a key x is (h(x, s) + d) mod m.
While searching for a seed, we calculate h(x, s) for all keys of the bucket and then only have
to increment the values to obtain the positions for the next seeds. If no position is found
within d ∈ [m] we continue by incrementing s, re-calculating h(x, s) and setting d = 0. At
query time, we have to calculate the position of a key x using seed p. Note that we have
d = p mod m, so we can compute the position of the key x as (h(x, ⌊p/m⌋) + p) mod m.

5.1 Interleaved Coding of Seeds

Once the search has finished, the seeds found for each bucket have to be stored in some
compressed manner. Ideally, the seeds should be encoded such that they require little space
and are quickly accessible during querying. We mainly use Compact and Golomb-Rice
encoding as building blocks for our new technique. Compact encoding is also used in the
original PTHash implementation. In Compact encoding, all values are stored consecutively
by concatenating their binary representation. All values use the same bit length, allowing
for quick access. The bit length is chosen such that the highest seed can be accommodated.
Golomb-Rice [15, 30] encoding stores the b least significant bits of each seed using compact
encoding. The most significant bits are stored in unary representation. A selection structure
enables access to the unary part of the seeds in constant time. We apply the formula by
Kiely [18] to select b. A straightforward approach would be to encode all seeds using a single
encoder. However, the seeds do not follow the same statistical distributions across different
buckets, hence using the same encoder for all buckets is suboptimal. It is instead beneficial
to group seeds which follow the same distribution and encode them using the same encoder.
PTHash does this only partially by using two encoders – one for each expected bucket size
(the so-called “front-back” compression [27]).

ESA 2024

69:10 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

Encoder 1 Encoder 2

...

Encoder B

Partition 1

Partition P

...
... ...

...Partition P

Figure 3 Interleaved coding. Encoder i stores the seed of bucket i from all partitions.

We now introduce our new technique. For each partition we hash to the same number of
buckets B := ⌈ρ/λ⌉, based on the average partition size ρ and average bucket size λ. The
i-th bucket of a partition has the same expected size and the corresponding seed follows the
same statistical distribution as the i-th bucket of any other partition. Although the idea of
our optimized bucket assignment function is to give all buckets the same seed distribution,
this is not achievable in practice. At least one reason for this are the discrete bucket sizes.
This results in discrete jumps in the probability that a seed is found when processing one
bucket after another. In interleaved coding we therefore employ B encoders and the i-th
encoder stores the seeds of the i-th buckets of all partitions. Each encoder is tuned for its
specific distribution (e.g., different Rice parameters). Figure 3 illustrates interleaved coding.

It is also possible to mix different encoding techniques, similar to what PTHash does.
Larger buckets are accessed more often than smaller buckets because they contain more keys.
Hence, it is beneficial to use an encoding technique which is optimized for fast lookup time
(e.g., Compact) for the larger buckets. Conversely, the encoding for the seeds belonging to
smaller buckets should be tuned for space efficiency (e.g., Golomb-Rice). To conclude this
section, we point out that each of the B encoders introduces some metadata overhead (e.g.,
for storing its parameters). Using rather small partition sizes ρ decreases the number B of
encoders and therefore the constant overhead.

5.2 GPU Parallelization
We provide a GPU implementation for even faster construction. On a GPU, each workgroup
executes independently, typically with its own subset of data. Within each workgroup,
individual threads execute concurrently. Threads within the same workgroup can share
data and synchronize with each other through mechanisms like barriers and shared memory.
Thread level parallelism allows for fine-grained parallel execution of instructions within a
workgroup. However, only threads which follow the same control path and thus execute the
same instruction at the same time can be executed in parallel. It is therefore crucial to avoid
divergent control paths. As a first step, our parallel implementation transfers the keys to the
GPU, before partitioning them. Afterwards, we sort the buckets and start the search.

Search. Our fine-grained partitioning naturally maps to the architecture of a GPU. Each
partition is processed by one workgroup. The small partition sizes enable performing the
search entirely using fast but small shared memory. Bucket by bucket, all threads of the
workgroup cooperate to quickly find the smallest working seed. A CPU implementation
would usually do so using a nested loop. The outer loop would iterate over seed values and
the inner loop over keys. If a collision occurs, it would immediately leave the inner loop
and continue with the first key and the next seed. However, on a GPU, leaving the inner
loop would result in divergence because threads might encounter a collision after a different
number of keys. This is illustrated in the left of Figure 4.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:11

Algorithm 2 Seed search for one bucket.

shared sFound ←∞
shared sNext ← threadCount
seed ← threadId, keyIndex ← 0
while sFound =∞

isCollision ← coll(seed, keyIndex)
keyIndex ← keyIndex + 1
if isCollision

keyIndex ← 0
seed ← atomAdd(sNext, 1)

else if keyIndex = bucketSize
sFound ← atomMin(sFound, seed)

Threads

T
im

e

"

$

Threads

$

$

$

$

$

$

$ $

$

$ $

$

$

$

$

$

$

$$

$$

$

$

Figure 4 Each box represents one seed tested
by one thread. Left: Synchronized nested loop.
Right: Algorithm 2 where we continue with the
first key and the next seed after a collision.

Instead, we use the technique described in [31] to emulate the behavior of the nested loop
using a single loop to reduce divergence. Hence, our GPU implementation parallelizes over
partitions, seeds and keys. The inner loop is emulated by incrementing the key index in each
iteration. If a collision occurs, we reset the key index and emulate the behavior of the outer
loop by atomically incrementing a seed counter which is shared among all threads. If the last
key did not collide, we found a working seed. Multiple threads can find a seed in the same
iteration. To reduce entropy, we use an atomic minimum to identify the smallest of those
seeds. Note that this finds the smallest working seed overall because all threads finding a
working seed must have processed each key. Therefore, if there was a smaller working seed, it
would have been found in an earlier loop iteration. We give pseudocode in Algorithm 2 and
illustrate the behavior on the right in Figure 4. During search, we only access shared memory
and perform fast arithmetic operations. Specific optimizations for our additive displacement
hash function are not shown here.

6 Experiments

In Section 6.1, we gradually integrate our improvements to show the individual effects. Then
we compare our GPU and CPU implementation with the state of the art in Section 6.2.
We use a machine with an Intel Core i7-11700 CPU with 64 GiB of DDR4 RAM running
Ubuntu 22.04.1. Each core has 48 KiB L1 and 512 KiB L2 data cache. As a GPU, we use
an Nvidia RTX 3090 and use Vulkan 1.3.236 to interface with it. We compile using GCC
11.4.0 and compiler options -march=native and -O3. All benchmarks use random strings
of random length between 10 and 50 characters as input which is adopted from previous
work [5, 19, 20, 21]. Note that almost all competitors first generate master hash codes of
the input. This makes the construction largely independent of the input distribution. We
measure the query time by querying each key once in random order. All experiments use
n = 100 million keys, λ = 8 and an average partition size of ρ = 2 500 if not stated otherwise.
Our source code is public under the General Public License. You can find it through the
links on the title page of this paper.

ESA 2024

69:12 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

1.7 1.8 1.9 2 2.1 2.2

103

104

105 0.17 bits/key

Space (Bits/Key)

C
on

st
ru

ct
io

n
(n

s/
K

ey
)

PTHash
Partitioning
Part. + IC
Part. + OB
PHOBIC

Figure 5 Beginning with PTHash (mono-EF,
skewed bucketing), we add fine-grained partition-
ing (mono-R, skewed) with additive displacement
hashing. We then add interleaved coding (IC-R,
skewed) and optimized bucketing (mono-R, OB)
individually. Putting it all together we arrive at
PHOBIC. All single-threaded.

1.8 2 2.2 2.4 2.6 2.8 3

40

50 mono-R

IC-R

mono-CIC-C mono-D

IC-D

mono-EF

IC-EF

Space (Bits/Key)

Q
ue

ry
(n

s/
Q

ue
ry

)

Figure 6 Query time and space consumption
of Elias-Fano, Dictionary, Compact, and Rice
encoders. Points prefixed “mono” place all seeds
into a single encoder and those prefixed “IC” use
interleaved coding. The curve shows different
mixtures (see Section 5) of Compact and Rice
encoders. All points use optimized bucketing.

6.1 From PTHash to PHOBIC

We now gradually introduce our improvements to PTHash. As basic improvements, we
replace the initial hash function with xxHash [10] and implement faster parallel partitioning.
In all experiments, PTHash contains these changes as well to focus on our algorithmic
improvements. Figure 5 gives measurements for the different improvement steps and shows
them in different combinations.

Interleaved Coding. Partitioning of PTHash is already used in PTHash-HEM for paral-
lelization [28]. PTHash-HEM uses partitions of size ≈106. Smaller partitions only lead to
minor improvements, as we show in the full version [17]. However, smaller partition sizes
shine when used with our newly introduced interleaved coding (Section 5.1). Interleaved
coding uses ρ/λ encoders, where ρ is the expected partition size. Reducing the partition size
can significantly reduce constant space overheads, as we also show in the full version [17].
Figure 5 compares the technique of placing all seeds into a single Rice encoder (orange curve)
to placing the keys using interleaved Rice coding (black). Interleaved coding consistently
improves space efficiency by 0.06 bits/key. Figure 6 compares different combinations of
encoders, which were partially used in the original implementation. Interleaved coding allows
for mixing of different encoding techniques. If we use this to encode the keys using different
numbers of Compact and Rice encoders, we can cover the entire query time to space trade-off
in our configuration. Note that the construction performance is similar for all approaches
because the encoding is fast compared to the remaining construction.

Optimized Bucket Assignment. In Figure 5 we also show how using the optimized bucket
function affects construction speed and space. Our optimization of the bucket assignment
function is particularly helpful to construct very space efficient configurations. When
compared for same construction time, the optimized function is up to 0.14 bits/key more
space efficient relative to the original PTHash bucket assignment.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:13

105 106 107 108

102

103

Input size n

C
on

st
ru

ct
io

n
(n

s/
K

ey
)

PHOBIC
PHOBIC-GPU

(a) Construction performance on CPU and GPU for
λ = 8.0 and 8 threads, comparing different n. The
GPU requires large n to fully utilize its computing
resources.

4 5 6 7 8 9 10
0

200

400

Average bucket size λ

C
on

st
ru

ct
io

n
(n

s/
K

ey
)

Initial hashing
Input transfer
GPU preprocessing
GPU search
Result transfer
Encoding

(b) Different construction steps by values of average
bucket size λ.

Figure 7 GPU performance for different input sizes (left) and λ (right).

Further Remarks. With interleaved coding, another improvement originates from the sec-
ondary bucket ordering. Primarily the buckets are sorted in non-increasing size. Secondarily
sorting in increasing expected size reduces the space consumption by 0.044 bits/key compared
to decreasing expected size. The reason for this behavior remains an open problem.

Original PTHash observed significant performance improvements by first calculating a
non-minimal PHF and repairing the “gaps” afterwards. Refer to [27] for details. This trick
does not result in an improvement when using PHOBIC.

GPU Parallelization. Our final contribution is a GPU implementation to speed up con-
struction. Our implementation parallelizes over partitions, seeds and keys. The GPU
implementation is mainly useful for large average bucket sizes λ. This is well illustrated
in Figure 7b: For smaller values of λ, the construction time is dominated by the time to
transfer the input data to the GPU. We also compare CPU and GPU construction speed
for different input sizes in Figure 7a. The GPU requires a large number of input keys and
thus a large number of partitions before its computing resources are fully utilized. Overall,
the GPU outperforms the CPU for a sufficiently large λ and n. We use the GPU only to
accelerate construction, while measuring all queries on the CPU.

6.2 Comparison to Other Methods
We compare our new approach to several other methods from the literature. First and
foremost, we compare against the original PTHash [27,28] implementation. The comparison
also includes the fingerprinting approaches BBHash [22], FMPH [4], and FMPHGO [4]. We
also compare against RecSplit [12] and approaches based on it, such as SIMDRecSplit [5],
ShockHash-RS [21], and bipartite ShockHash-RS [19]. Finally, we also compare against
CHD [2] and SicHash [20].

Each method has a wide range of configurations that provide a trade-off between space,
construction time, and query time. To give an initial overview, we show a Pareto front for
each method in Figure 8. A configuration is on the Pareto front if no other configuration of
the same method is simultaneously faster and more space efficient. For this plot we use a
single thread (a multithreaded measurement would mainly show what method implemented
the partitioning step most efficiently instead of focusing on the algorithmic aspects). The

ESA 2024

69:14 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

BBHash [22] Bip. ShockHash-RS [19] CHD [2] FMPH [4]
FMPHGO [4] PTHash [27] RecSplit [12] SIMDRecSplit [5]
ShockHash-RS [21] SicHash [20] PHOBIC

1.5 2 2.5 3 3.5
0

10

20

Space (Bits/Key)

T
hr

ou
gh

pu
t

(M
K

ey
s/

s)

1.5 2 2.5 3 3.5

10

20

Space (Bits/Key)

T
hr

ou
gh

pu
t

(M
Q

ue
rie

s/
s)

Figure 8 Construction throughput (left) and query throughput (right) for various methods on
100 million keys and using a single processing thread.

figure shows that PTHash and PHOBIC are clear winners in terms of query performance.
Even though BBHash [22] and FMPH [4] are also focused on fast queries, they are significantly
slower than PTHash and PHOBIC. Figure 5 shows that PHOBIC consistently saves about
0.17 bits/key for a large range of different construction times while maintaining the good
query speed. We remark that this is a significant reduction in space considering the proximity
to the space lower bound. The competitors achieving even lower space consumption (i.e.
RecSplit [12], SIMDRecSplit [5], ShockHash-RS [21], and bipartite ShockHash-RS [19]) all
have a rather slow query performance. However, somewhat surprisingly, SIMDRecSplit
has the fastest construction even for less space efficient configurations. SicHash [20] takes
a middle ground with faster construction than PHOBIC and query performance between
PHOBIC and the RecSplit variants.

Table 1 gives a selection of configuration parameters for direct comparison, mostly taken
from the corresponding papers. The full version of this paper [17] gives the same table
measured on a large machine with 64 threads. Comparing configurations with the same
space consumption, PHOBIC is significantly faster to construct than the original PTHash
implementation. Comparing configurations that both need 1.86 bits/key and have a similar
query time, PHOBIC can be constructed 83 times faster than PTHash.

On the GPU, we compare against the only available GPU construction, RecSplit-GPU [5].
We give plots in the full version of this paper [17]. Basically, we achieve the same peak
construction throughput as RecSplit-GPU for the less space efficient configurations. The
queries of both approaches are done on the CPU, so the fact that PHOBIC offers much faster
queries applies here as well (see Figure 8). Comparing the multithreaded CPU implementation
and the GPU implementation of PHOBIC, we get a construction speedup of 62 for λ = 9 with
interleaved Rice coding. Note that with λ = 9, the GPU still spends a lot of its construction
time on transferring the input data (see Figure 7b), but much larger values of λ are not
feasible on the CPU.

Directly comparing the performance of CPU and GPU is always difficult because of the
different hardware architectures. Given that the power consumption is a major cost factor in
production environments, we measure it using a Voltcraft Energy Check 3000 wattmeter. For
CPU-only measurements, we dismount the GPU. The machine requires about 405 W during
the search step of the GPU version and 195 W for the multithreaded CPU implementation.

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:15

Table 1 Performance of various methods on 100 million keys.

Method Space Query Construction (ns/key)

(bits/key) (ns/query) 1 Thread 8 Threads Speedup

Bip. SH-RS, n=64, b=2000 1.52 160 5 756 1 218 4.7

CHD, λ=3 2.27 222 352 - -
CHD, λ=5 2.07 207 2 206 - -

FMPH, γ=2.0 3.40 100 69 17 4.0
FMPH, γ=1.0 2.80 134 99 24 4.0

SIMDRecSplit, n=8, b=100 1.81 124 109 20 5.2
SIMDRecSplit, n=14, b=2000 1.58 143 11 062 2 360 4.7

SicHash, α=0.9, p1=21, p2=78 2.41 72 129 25 5.0
SicHash, α=0.97, p1=45, p2=31 2.08 64 179 32 5.6

PTHash, λ=4.0, α=0.99, C-C 3.19 35 314 143 2.2
PTHash, λ=5.0, α=0.99, EF 2.11 54 525 252 2.1
PTHash, λ=10.5, α=0.99, EF 1.86 49 82 721 35 048 2.4

PTHash-HEM, λ=4.0, α=0.99, C-C 3.19 39 299 45 6.6
PTHash-HEM, λ=5.0, α=0.99, EF 2.11 58 582 86 6.7

PHOBIC, λ=3.9, α=1.0, IC-C 3.18 40 197 32 6.2
PHOBIC, λ=4.5, α=1.0, IC-R 2.11 57 254 40 6.2
PHOBIC, λ=6.5, α=1.0, IC-R 1.85 52 992 176 5.6
PHOBIC, λ=9.0, α=1.0, IC-R 1.74 50 9 171 1 781 5.1

GPU + 8 CPU Threads

PHOBIC-GPU, λ=9.0, IC-C 2.17 37 28
PHOBIC-GPU, λ=9.0, IC-R 1.76 52 27
PHOBIC-GPU, λ=13.0, IC-R 1.68 50 560
PHOBIC-GPU, λ=14.0, IC-R 1.67 49 1 470

RecSplit-GPU, ℓ=8, b=100 1.81 126 24
RecSplit-GPU, ℓ=14, b=2000 1.58 147 80
RecSplit-GPU, ℓ=18, b=2000 1.55 135 1 732

Thus, the above speedup of 62 translates to roughly 30 times lower energy consumption for
constructing an MPHF on the GPU. Single-threaded CPU construction requires 74 W which
is less energy efficient compared to multithreading.

7 Conclusion and Future Work

PHOBIC introduces optimized bucket sizes and interleaved encoding to PTHash. Our
improvements result in 0.17 bits/key better space efficiency when compared to PTHash for
similar construction and query speed. When compared for the same space consumption,
PHOBIC can be constructed up to 83 times faster than PTHash, while still having the same
query time. Finally, our GPU implementation improves the construction by a factor of up to
62 compared to the multithreaded CPU implementation.

Future work may explore combinations of time efficient approaches to perfect hashing
and space efficient approaches. Concretely, we are hopeful that a hybrid between PHOBIC
and ShockHash [21] puts further trade-offs between space and time into reach.

ESA 2024

69:16 PHOBIC: Perfect Hashing With Optimized Bucket Sizes and Interleaved Coding

References
1 Djamal Belazzougui, Paolo Boldi, Rasmus Pagh, and Sebastiano Vigna. Fast prefix search in

little space, with applications. In ESA (1), volume 6346 of Lecture Notes in Computer Science,
pages 427–438. Springer, 2010. doi:10.1007/978-3-642-15775-2_37.

2 Djamal Belazzougui, Fabiano C. Botelho, and Martin Dietzfelbinger. Hash, displace, and
compress. In ESA, volume 5757 of Lecture Notes in Computer Science, pages 682–693. Springer,
2009. doi:10.1007/978-3-642-04128-0_61.

3 Djamal Belazzougui and Gonzalo Navarro. Alphabet-independent compressed text indexing.
ACM Trans. Algorithms, 10(4):23:1–23:19, 2014. doi:10.1145/2635816.

4 Piotr Beling. Fingerprinting-based minimal perfect hashing revisited. ACM J. Exp. Algorith-
mics, 28:1.4:1–1.4:16, 2023. doi:10.1145/3596453.

5 Dominik Bez, Florian Kurpicz, Hans-Peter Lehmann, and Peter Sanders. High performance
construction of recsplit based minimal perfect hash functions. In ESA, volume 274 of LIPIcs,
pages 19:1–19:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023. doi:10.4230/
LIPICS.ESA.2023.19.

6 Fabiano C. Botelho, Rasmus Pagh, and Nivio Ziviani. Simple and space-efficient minimal
perfect hash functions. In WADS, volume 4619 of Lecture Notes in Computer Science, pages
139–150. Springer, 2007. doi:10.1007/978-3-540-73951-7_13.

7 Andrei Z. Broder and Michael Mitzenmacher. Survey: Network applications of Bloom filters:
A survey. Internet Math., 1(4):485–509, 2003. doi:10.1080/15427951.2004.10129096.

8 Chin-Chen Chang and Chih-Yang Lin. Perfect hashing schemes for mining association rules.
Comput. J., 48(2):168–179, 2005. doi:10.1093/COMJNL/BXH074.

9 Jarrod A. Chapman, Isaac Ho, Sirisha Sunkara, Shujun Luo, Gary P. Schroth, and Daniel S.
Rokhsar. Meraculous: De novo genome assembly with short paired-end reads. PLOS ONE,
6(8):1–13, August 2011. doi:10.1371/journal.pone.0023501.

10 Yann Collet. xxHash: Extremely fast non-cryptographic hash algorithm. URL: https:
//github.com/Cyan4973/xxHash.

11 Victoria G. Crawford, Alan Kuhnle, Christina Boucher, Rayan Chikhi, and Travis Gagie.
Practical dynamic de bruijn graphs. Bioinform., 34(24):4189–4195, 2018. doi:10.1093/
BIOINFORMATICS/BTY500.

12 Emmanuel Esposito, Thomas Mueller Graf, and Sebastiano Vigna. RecSplit: Minimal
perfect hashing via recursive splitting. In ALENEX, pages 175–185. SIAM, 2020. doi:
10.1137/1.9781611976007.14.

13 Edward A. Fox, Qi Fan Chen, and Lenwood S. Heath. A faster algorithm for constructing
minimal perfect hash functions. In SIGIR, pages 266–273. ACM, 1992. doi:10.1145/133160.
133209.

14 Marco Genuzio, Giuseppe Ottaviano, and Sebastiano Vigna. Fast scalable construction of
(minimal perfect hash) functions. In SEA, volume 9685 of Lecture Notes in Computer Science,
pages 339–352. Springer, 2016. doi:10.1007/978-3-319-38851-9_23.

15 Solomon W. Golomb. Run-length encodings (corresp.). IEEE Trans. Inf. Theory, 12(3):399–401,
1966. doi:10.1109/TIT.1966.1053907.

16 Stefan Hermann. Accelerating minimal perfect hash function construction using gpu
parallelization. Master’s thesis, Karlsruhe Institute for Technology (KIT), 2023. doi:
10.5445/IR/1000164413.

17 Stefan Hermann, Hans-Peter Lehmann, Giulio Ermanno Pibiri, Peter Sanders, and Stefan
Walzer. PHOBIC: perfect hashing with optimized bucket sizes and interleaved coding. CoRR,
abs/2404.18497, 2024. doi:10.48550/arXiv.2404.18497.

18 Aaron Kiely. Selecting the Golomb parameter in Rice coding. IPN progress report, 42:159,
2004.

19 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. Shockhash: Near optimal-space
minimal perfect hashing beyond brute-force (extended version). CoRR, abs/2310.14959, 2023.
doi:10.48550/arXiv.2310.14959.

https://doi.org/10.1007/978-3-642-15775-2_37
https://doi.org/10.1007/978-3-642-04128-0_61
https://doi.org/10.1145/2635816
https://doi.org/10.1145/3596453
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.4230/LIPICS.ESA.2023.19
https://doi.org/10.1007/978-3-540-73951-7_13
https://doi.org/10.1080/15427951.2004.10129096
https://doi.org/10.1093/COMJNL/BXH074
https://doi.org/10.1371/journal.pone.0023501
https://github.com/Cyan4973/xxHash
https://github.com/Cyan4973/xxHash
https://doi.org/10.1093/BIOINFORMATICS/BTY500
https://doi.org/10.1093/BIOINFORMATICS/BTY500
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1137/1.9781611976007.14
https://doi.org/10.1145/133160.133209
https://doi.org/10.1145/133160.133209
https://doi.org/10.1007/978-3-319-38851-9_23
https://doi.org/10.1109/TIT.1966.1053907
https://doi.org/10.5445/IR/1000164413
https://doi.org/10.5445/IR/1000164413
https://doi.org/10.48550/arXiv.2404.18497
https://doi.org/10.48550/arXiv.2310.14959

S. Hermann, H.-P. Lehmann, G. E. Pibiri, P. Sanders, and S. Walzer 69:17

20 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. SicHash – small irregular cuckoo tables
for perfect hashing. In ALENEX, pages 176–189. SIAM, 2023. doi:10.1137/1.9781611977561.
CH15.

21 Hans-Peter Lehmann, Peter Sanders, and Stefan Walzer. Shockhash: Towards optimal-space
minimal perfect hashing beyond brute-force. In ALENEX. SIAM, 2024. doi:10.1137/1.
9781611977929.15.

22 Antoine Limasset, Guillaume Rizk, Rayan Chikhi, and Pierre Peterlongo. Fast and scalable
minimal perfect hashing for massive key sets. In SEA, volume 75 of LIPIcs, pages 25:1–25:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPICS.SEA.2017.25.

23 Yi Lu, Balaji Prabhakar, and Flavio Bonomi. Perfect hashing for network applications. In
ISIT, pages 2774–2778. IEEE, 2006. doi:10.1109/ISIT.2006.261567.

24 Kurt Mehlhorn. On the program size of perfect and universal hash functions. In FOCS, pages
170–175. IEEE Computer Society, 1982. doi:10.1109/SFCS.1982.80.

25 Ingo Müller, Peter Sanders, Robert Schulze, and Wei Zhou. Retrieval and perfect hashing using
fingerprinting. In SEA, volume 8504 of Lecture Notes in Computer Science, pages 138–149.
Springer, 2014. doi:10.1007/978-3-319-07959-2_12.

26 Giulio Ermanno Pibiri. Sparse and skew hashing of k-mers. Bioinformatics,
38(Supplement_1):i185–i194, 2022.

27 Giulio Ermanno Pibiri and Roberto Trani. Pthash: Revisiting FCH minimal perfect hashing.
In SIGIR, pages 1339–1348. ACM, 2021. doi:10.1145/3404835.3462849.

28 Giulio Ermanno Pibiri and Roberto Trani. Parallel and external-memory construction of
minimal perfect hash functions with pthash. IEEE Trans. Knowl. Data Eng., 36(3):1249–1259,
2024. doi:10.1109/TKDE.2023.3303341.

29 Giulio Ermanno Pibiri and Rossano Venturini. Efficient data structures for massive N -gram
datasets. In SIGIR, pages 615–624. ACM, 2017. doi:10.1145/3077136.3080798.

30 Robert F Rice. Some practical universal noiseless coding techniques, 1979.
31 Peter Sanders. Emulating MIMD behaviour on SIMD-machines. In EUROSIM, pages 313–320.

Elsevier, 1994.

ESA 2024

https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1137/1.9781611977561.CH15
https://doi.org/10.1137/1.9781611977929.15
https://doi.org/10.1137/1.9781611977929.15
https://doi.org/10.4230/LIPICS.SEA.2017.25
https://doi.org/10.1109/ISIT.2006.261567
https://doi.org/10.1109/SFCS.1982.80
https://doi.org/10.1007/978-3-319-07959-2_12
https://doi.org/10.1145/3404835.3462849
https://doi.org/10.1109/TKDE.2023.3303341
https://doi.org/10.1145/3077136.3080798

	1 Introduction
	2 Related Work
	3 PHOBIC
	3.1 Expected Bucket Sizes
	3.2 The Algorithm

	4 Optimizing Bucket Sizes
	4.1 Bucket Assignment Functions
	4.2 An Optimal Bucket Assignment Function
	4.3 Details on the Bucket Assignment in Practice

	5 Fine-Grained Partitioning
	5.1 Interleaved Coding of Seeds
	5.2 GPU Parallelization

	6 Experiments
	6.1 From PTHash to PHOBIC
	6.2 Comparison to Other Methods

	7 Conclusion and Future Work

