

Stakeholders integration for MCDA sustainability assessment of energy technologies: a use case in energy storage

Laura Mesa Estrada, Christina Wulf, Manuel Baumann, Martina Haase

OR MUNICH 2024 3-6 September, Munich

Agenda

2

Motivation

Stakeholders integration in sustainability assessment

 High effort, resources: time, money, human capital.

2. More empirical research is needed to test which approach works best under some specific conditions¹

1. Dean, M. (2022). Including multiple perspectives in participatory multi-criteria analysis: A framework for investigation. *Evaluation*, *28*(4), 505-539. doi:10.1177/13563890221123822

What do we need?

- Model sustainability-related decision problems
- Reach a broad audience of stakeholders (onsite/online)
- Support dialogue among participants (consensus)
 - Minimize resources: time
- Include weights uncertainty on decision-making processes

Objectives

- 1. Real-time integration of stakeholder preferences for MCDA-sustainability assessment
- 2. Analyse the influence of **weights uncertainties** in decision-making processes

MCDA method selection

ELECTRE III (aggregation)

- Ordinal recommendation (ranking)
- 4 preference relations
- Pseudo-criteria
- Concordance and discordance

Criteria for selection	Desired properties			
Problem statement	Ranking			
Scale used by the method	Qualitative and quantitative			
Compensation level between criteria	Null/partial			
Weights of criteria	Yes			

MCDA method selection

ELECTRE III (aggregation)

- Ordinal recommendation (ranking)
- 4 preference relations
- Pseudo-criteria
- Concordance and discordance

Preference relations

Indifference

Strict preference

Weak preference

Incomparability

MCDA method selection

ELECTRE III (aggregation)

- Ordinal recommendation (ranking)
- 4 preference relations
- Pseudo-criteria
- Concordance and discordance

Discriminating thresholds

Imperfect knowledge of data

• Preference (p), indifference (q)

```
(1) \ g_{j}(a) - g_{j}(a') > p_{j}(g_{j}(a')) \qquad \Leftrightarrow \qquad aP_{j}a',
(2) \ q_{j}(g_{j}(a')) < g_{j}(a) - g_{j}(a') \qquad \Leftrightarrow \qquad aQ_{j}a' \text{ (hesitation between }
\leq p_{j}(g_{j}(a')) \qquad \qquad aI_{j}a' \text{ and } aP_{j}a'),
(3) - q_{j}(g_{j}(a)) \leq g_{j}(a) - g_{j}(a') \qquad \Leftrightarrow \qquad aI_{j}a'.
\leq q_{j}(g_{j}(a'))
```


10

Methodology

ELECTRE III (aggregation)

- Ordinal recommendation (ranking)
- 4 preference relations
- Pseudo-criteria
- Concordance and discordance

Reasons **FOR** and **AGAINST** an outranking situation

Concordance: "majority principle"

$$c_{j}(a,b) = \begin{cases} 1, & \text{if } g_{j}(a) + q_{j} \ge g_{j}(b) \\ 0, & \text{if } g_{j}(a) + p_{j} \le g_{j}(b) \\ \frac{p_{j} + g_{j}(a) - g_{j}(b)}{p_{j} - q_{j}}, & \text{otherwise} \end{cases}$$

$$C(a,b) = \frac{1}{k} \sum_{j=1}^{r} k_j c_j(a,b)$$
, where $k = \sum_{j=1}^{r} k_j$

kj = importance coefficient for criterion j

Discordance: "respect of minorities"

$$d_{j}(a,b) = \begin{cases} 0, & \text{if } g_{j}(a) + p_{j} \ge g_{j}(b) \\ 1, & \text{if } g_{j}(a) + v_{j} \le g_{j}(b) \\ \frac{g_{j}(b) - g_{j}(a) - p_{j}}{v_{j} - p_{j}}, & \text{otherwise} \end{cases}$$

Veto threshold (v)

MCDA method selection

SRF - deck of cards method (weighting)

$$G = \{g_1, g_2, g_3, g_4, g_5, g_6\}$$

- Set of cards
- Ranking

$$\{g_3\} \prec \{g_4, g_5\} \prec \{g_1\} \prec \{g_2\} \prec \{g_6\}$$

White cards

$$\{g_3\}\ [2]\ \{g_4,g_5\}\ [1]\ \{g_1\}\ [0]\ \{g_2\}\ [3]\ \{g_6\}$$

Ratio z

1. Non-normalized weights k(r)

$$k(r) = 1 + u(e_0 + \dots + e_{r-1})$$
 with $e_0 = 0$

$$\begin{cases} e_r = e'_r + 1 & \forall r = 1, \dots, \bar{n} - 1, \\ e = \sum_{r=1}^{\bar{n}-1} e_r, \\ u = z^{-1} \end{cases}$$

2. Normalized weights ki

$$\begin{cases} K' = \sum_{i=1}^{n} k'_i, \\ k_i^* = \frac{100}{K'} k'_i. \end{cases}$$

Figueira, J. R.& Roy, B. (2002). Determining the weights of criteria in the ELECTRE type methods with a revised Simos' procedure. *Eur. J. Oper. Res., 139*, 317-326.

Storage Research Infrastructure Eco-System

Key Research Priority:

Hybridisation of Energy Storage

Coordinator: KIT (DE)

Duration: 4 years (2021-2025)

Start: 1st November 2021

Budget: 7 Mio €

Beneficiaries: 47 organisations

Research Infrastructures: 64

Countries involved: 17

BENEFICIARIES Partners and RI provider follow us on

Main Objectives

- Foster a European ecosystem of industry and research on hybrid energy storage technologies
- Provide access to the most advanced scientific infrastructure in the field of energy storage

13

Problem structuring

- Stakeholders (categories)
- Association (e.g. trade or industry)
- Government Energy & Environmental Agencies
- Researcher/ Academia Engineering/manufacturing
- Researcher/ Academia Sustainability
- Researcher/ Academia Market integration
- Researcher/ Academia Policy Analysis
- Non-Governmental Organization (NGO)
- Energy supplier

14

40 participants approx.

Alternatives

	Short/medium-term energy storage				
Use case	4 hours/day	1000 hours/year			
Charged energy	Wind power	Wind power			
Alternatives	a1. Pumped Hydro storage (PHS) a2. Lithium Iron Phosphate battery (LFP) a3. All-Vandium Redox Flow Battery (VRFB)	 a4. Norwegian Pumped Hydro storage (NPHS) a5. Power-to-Hydrogen (PtH₂) a6. Power-to-Methane (PtCH₄) 			

Problem structuring

Criteria

- Literature review
- Interviews with 6 stakeholders (academia and industry)
- Value focus thinking protocol²
- Flat structure of criteria
- Relation to SDGs

2. Keeney, R. (2008). Applying Value-Focused Thinking. *Military Operations Research*, *13*, 7-17. doi:10.5711/morj.13.2.7

September 3, 2024

OR Munich 2024

Laura Mesa Estrada

Problem structuring

Criteria

- Literature review
- Interviews with 6 stakeholders (academia and industry)
- Value focus thinking protocol²
- Flat structure of criteria
- Relation to SDGs

2. Keeney, R. (2008). Applying Value-Focused Thinking. Military Operations Research, 13, 7-17. doi:10.5711/morj.13.2.7

17

Problem structuring

Evaluation matrix

	Climate change (g1)	Impact on human health (g2)	Impact on ecosystems quality (g3)	CAPEX (g4)	OPEX - Fixed cost (g5)	Safety risk (g6)	EU Manufacturing capacity (g7)	Resource efficiency and circularity (g8)	Efficiency (g9)	Durability (g10)
Unit	kg CO2 eq / kWh	Qualitative judgment (1-5)	Qualitative judgment (1-5)	€/kW	€/kW-yr	Qualitative judgment (1-5)	Qualitative judgment (1-5)	Qualitative judgment (1-5)	%	years
Preference	min	min	min	min	min	min	max	max	max	max
a1	0.0732	Very low (1)	Low (2)	1880	28	Very low (1)	Very high (5)	Very low (1)	77	75
a2	0.0781	Very high (5)	High (4)	1350	3.8	High (5)	Very low (1)	Very low (1)	87	20
а3	0.0649	Medium (3)	High (4)	1850	5.3	Low (2)	Medium (3)	Low (2)	75	25
						Visual impact (g11)				Ese of transportation (g12)
a4	0.115	High (4)	High (4)	7637	236	Low (2)	Very low (1)	High (4)	41	Very low (1)
a5	0.143	Very high (5)	Medium (3)	4852	635	High (4)	Low (2)	Low (1)	15	Very high (5)
a6	0.0891	Medium (3)	Very high (5)	4088	159	Very high (5)	High (4)	High (4)	64	Low (2)

Preference modelling

Interactive workshop:

"Setting up a common base for environmental, technoeconomic and socio-economic assessment to unlock the potential applications for hybrid ES systems" 6th of December 2023, Vienna

Experiment settings

- 1. Individual preferences (plenum)
 - **HELDA**
 - 1.1 Plenum: criteria reflection
 - 1.2 Plenum: weighting of criteria
- 2. Group preferences (5 groups)

Posters (direct weights)+ deck of cards (DCM)+ HELDA

- 2.1 Group work: weighting of criteria
- 2.2 Group work: criteria reflection

1st application of HELDA

Problem analysis: results

1.1 Plenum: criteria reflection

Fig 1. Distribution of stakeholders per category (n=37)

Fig 2. Total votes of criteria by stakeholders.

Problem analysis: results

1.2 Plenum: weighting

Fig 3. Distribution of stakeholders per category (n=37)

Fig 4. Weighting sets analysis

Problem analysis: results

2.1 Group preferences: weighting of criteria

Fig 1. DCM for every group

Fig 2. Weighting sets analysis by groups with DCM.

22

Karlsruhe Institute of Technology

Problem analysis: results

2.2 Group preferences: criteria reflection

Criteria added

- LCOS
- Reliability
- Maturity
- Peak capacity
- Number of suppliers of raw materials
- Novelty
- Capacity factor
- Transferability
- Supply chain security

Problem analysis: results

Indicative ranking: Long-term ES

Group 1 Group 2

Group 4 Group 3

Outlook

Further testing of the methodology

Sensitivity analysis, e.g.

- Discriminating thresholds
- Input data

24

- Uncertainty analysis, e.g.
 - Weight intervals within groups
 - Weighting methods

Thank you! ☺

25