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Kurzfassung

Aufgrund der stetig wachsenden Versandnachfrage für wertvolle Güter in den
nationalen und internationalen Lieferketten gewinnt die automatisierte Analyse
von Schäden und Manipulationsversuchen während des Transportprozesses stets
weiter an Bedeutung. Eine kontinuierliche und koordinierte Überwachung der
transportierten Pakete durch den Einsatz moderner Bildverarbeitungsmethoden
kann die rechtzeitige und effiziente Erkennung potenzieller Problemfälle erleich-
tern. Dies wiederum kann entscheidend dazu beitragen, die Unversehrtheit und
Integrität der Fracht innerhalb des Transportnetzwerkes zu gewährleisten.

In der vorliegenden Arbeit wird zunächst ein allgemeiner und detaillierter Li-
teraturüberblick über zahlreiche Anwendungsszenarien von Bildverarbeitungs-
algorithmen in der Transportlogistik und Lagerhaltung gegeben. Dieser dient
der Einordung des Standes der Technik sowie der Identifikation offener For-
schungsfragen. Anschließend wird der Fokus auf die Bewertung von Schäden und
Manipulationsversuchen für die Zustellung auf der letzten Meile gesetzt. Dieser
Anwendungsfall erfordert hochflexible Ansätze mit geringen Hardwareanforde-
rungen, da dem Kurier oder dem Endkunden in der Regel nur einfache portable
Geräte wie Smartphones zur Verfügung stehen. Im Gegensatz zu bestehenden
Arbeiten, die komplizierte multisensorische Setups und eine a-priori bekannte
Umgebung erfordern, basieren alle in dieser Arbeit präsentierten Ansätze auf
einem einzigen RGB-Bild als Eingabe.

Die zuverlässige Erkennung und Lokalisierung von Paketen in Bildern ist eine
wichtige Grundlage für nachgelagerte Aufgaben, die sich mit der Bewertung
von Schäden und Manipulationsversuchen befassen. Daher wird zunächst eine
vollautomatische Pipeline zur Erzeugung von Instanzsegmentierungsdatensätzen
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Kurzfassung

vorgestellt, welche das Training von Modulen zur gezielten Paketerkennung er-
möglicht. Aufgrund der Einfachheit desAnsatzes könnenDatensätze leicht erstellt
und aktualisiert werden, wodurch Robustheit gegenüber potenzieller Varianz im
Erscheinungsbild der Pakete (z.B. durch länderspezifische Unterschiede) erreicht
werden kann.

Anschließendwird eine Pipeline zur Erkennung vonManipulationsversuchen, wie
beispielweise das Öffnen undWiederverschließen eines Pakets zur unerlaubten In-
haltsentnahme, vorgestellt. Die neu entwickelte Pipeline prädiziert dabei zunächst
die Position der Paketeckpunkte und nutzt diese Information aus, um sichtpunkt-
invariante Frontalansichten für alle sichtbaren Seitenflächen des vorliegenden
Pakets zu errechnen. Unter der Annahme, dass eine Referenztextur vorhanden
ist, kann das Problem der Manipulationserkennung dann auf die Erkennung op-
tischer Oberflächenveränderungen je Paketseitenfläche reduziert werden. Solche
visuellen Unterschiede zwischen zwei Paketseitenflächen werden erkannt, indem
Bildhomogenisierungstechniken angewandt werden und anschließend Bildähn-
lichkeitsmetriken als Kriterium herangezogen werden.

Abschließend wird das Problem der bildbasierten Schadenserkennung und
-bewertung von Paketen behandelt, wobei ausschließlich Deformationsschäden
betrachtet werden. Es wird die neue, dedizierte neuronale Netzwerkarchitektur
CubeRefineR-CNNvorgestellt, welche die Prädiktion desminimalen umgebenden
dreidimensionalen Quaders eines Pakets mit einem iterativen Verfeinerungsansatz
zur Anpassung an Verformungen kombiniert. Der Ansatz prädiziert gleichzeitig
die aktuelle, potenziell deformierte Form des Pakets und seine ursprüngliche,
quadratische Form. Somit ermöglicht er eine detaillierte Schadensbewertung und
-quantifizierung durch den direkten Vergleich zweier 3D Dreiecksgitter. Darüber
hinaus wird Parcel3D vorgestellt: ein synthetischer Datensatz beschädigter und
intakter Pakete mit vollständigen 2D- und 3D-Annotationen.

Die Leistungsfähigkeit aller Ansätze wird anhand realer Datensätze quantita-
tiv und qualitativ bewertet. Zudem wurden die erstellten Datensätze und der
Quellcode veröffentlicht, um die Reproduzierbarkeit der vorgestellten Arbeit zu
gewährleisten.
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Abstract

Due to the steadily increasing amount of valuable goods in national and inter-
national supply chains, automated damage and tampering assessment during the
transportation process is continuously gaining importance. Steady and stream-
lined monitoring of the transported parcels through the application of modern
computer vision techniques can facilitate the timely and efficient detection of
potential problems. This, in turn, can play a decisive role in ensuring the safety,
security, and integrity of the cargo within the transportation network.

We first present a general and detailed literature review of computer vision app-
lications in transportation logistics and warehousing. This review classifies the
state-of-the-art and helps to identify open research questions. Afterwards, we
focus on damage and tampering assessment for the use-case of last-mile deliv-
ery. This use-case imposes the necessity for highly flexible approaches with low
hardware requirements, as the courier and end customer usually only have simple
handheld devices such as smartphones at their disposal. Thus, in contrast to
existing work that requires intricate multisensory setups and an a-priori known
environment, all our approaches rely solely on a single RGB image as input.

The reliable detection and localization of parcels in images serves as a crucial
foundation for downstream tasks dealing with damage and tampering assessment.
Therefore, we first present a fully automated instance segmentation dataset gene-
ration pipeline to facilitate the training of targeted parcel detection modules. Due
to the simplicity of the approach, datasets can be easily created and updated, and
thus, robustness against potential appearance differences, e.g. across countries,
can be achieved.
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Abstract

Subsequently, we present a novel pipeline for detecting tampering attempts, such
as opening and resealing a parcel for unauthorized content removal. The newly
developed pipeline first predicts the position of the eight parcel corner points
and exploits this information to compute viewpoint-invariant frontal views for all
visible side faces of the package at hand. By assuming that a reference texture
is available, we are then able to reduce the problem of tampering detection to
appearance change detection per parcel side surface. Appearance differences
between two parcel side surface textures are recognized by visually aligning them
through applying homogenization techniques and employing image similarity
metrics in combination with thresholding.

Finally, we tackle the problem of damage detection and assessment for parcels,
focusing on deformation damages only. We develop the novel targeted Artifi-
cial Neural Network (ANN) architecture CubeRefine R-CNN, which combines
estimating a 3D bounding box with an iterative mesh refinement to adjust to
deformations. Our approach simultaneously estimates the current, potentially
deformed shape of a parcel and its original, pristine version. Thus, it enables
a detailed damage assessment and quantification by directly comparing two 3D
meshes. Moreover, we introduce Parcel3D, a novel synthetic dataset of damaged
and intact parcels with full 2D and 3D annotations.

The performance of all approaches is evaluated quantitatively and qualitatively
on real-world datasets. Furthermore, the datasets and source code have been
published to ensure the reproducibility of our work.
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1 Introduction

Transportation logistics and warehousing are crucial parts of every supply chain
and play an important role in the Industry 4.0 era [TV19]. However, companies
working in the logistics sector are faced with a competitive environment and
several challenges: customers demand faster, cheaper, more reliable and more
precisely scheduled deliveries while shipping volumes can vary strongly. On top
of that, traffic volumes in congested cities pose a problem and environmental
concerns are becoming more relevant than ever. Due to the huge economic
impact of transportation logistics and warehousing, it is crucial to cope with these
challenges efficiently. Famously, FedEx founder Frederick W. Smith already
knew the importance of data when saying “The information about the package is
as important as the package itself” in the 1970s [Bal13]. While digitalization
has been adopted in the logistics sector for many years now [Her+21], recent
technological advancements, such as the broad availability of low-cost sensors, in
combination with tremendous progress in the area of computer vision unveil an
immense potential that might lift digitalization in the industry to a new level.

In the following, we motivate our problem setting in Section 1.1 and describe
the objectives and limitations in Section 1.2. Subsequently, we summarize our
contributions in Section 1.3 and present the outline of this thesis in Section 1.4.

1.1 Motivation

Process automation entails tremendous potential to tackle the challenges faced
in the logistics sector [WRZ20]. While processes in transportation logistics and
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1 Introduction

warehousing have increasingly been digitalized over recent years, many labor-
intensive, error-prone, and expensive tasks are still carried out manually or receive
limited attention. One prime example of such processes regards safety and secu-
rity considerations, which are of rising importance due to the increasing amount
of valuable goods within supply chains [NZO18]. Especially damage and tamper-
ing assessment are necessary to guarantee process integrity and, thus, customer
satisfaction. While it is not possible to reliably infer information on the state
of the freight by mere inspection of its packaging, damage detection is vital to
identify, analyze and prevent re-occurring patterns such as parcel deformations.
Tampering detection, on the other hand, helps to guarantee the integrity of the
freight by detecting potential manipulations (e.g. someone trying to hide that a
parcel was unlawfully opened). Both of these problems are difficult to tackle since
continuous visual monitoring along the supply chain is required. Within logistics
facilities such as warehouses, it is possible to use intricate multisensory setups to
address such issues. At the same time, however, companies deem the seamless in-
tegration into existing processes as vital to embrace novel technologies [NZO18].
To facilitate a broader industry adoption, it is thus, crucial to restrict additional,
potentially obstructive hardware requirements by focusing on leveraging existing
devices. In addition, in our considered scenario last-mile delivery, usually, only
simple handheld devices are employed. Consequently, developing non-disruptive
approaches for damage and tampering assessment in logistics and warehousing,
which rely on simple sensor data such as a single RGB image only, is desirable.

1.2 Objectives and Limitations

This work strives to develop vision-based information retrieval approaches that
help gather valuable information on the freight’s identity, integrity, and shape
for applications in transportation logistics and warehousing. Since in logistics,
packaging goods is a standard procedure to handle, transport, and store goods
safely and efficiently [Sag04], we focus on the arguably most common form
of packaging: cuboid-shaped parcels. We seek to develop a robust approach

2



1.2 Objectives and Limitations

for parcel localization that does not rely on manually annotated training data.
Using these localization capabilities, we aspire to design techniques for assessing
damages and tampering of parcels. In this pursuit, we focus on the use-case of
last-mile delivery, where only a simple handheld device is available. Thus, our
approaches should prioritize flexibility and only require a single RGB image as
input, which renders them applicable in various other scenarios as well.

The robustness of our parcel segmentation approach is considered w.r.t. the par-
cel’s visual appearance, i.e. its texture and design. These can vary between
countries and potentially evolve. Our approach strives to leverage image data
from online search engines to be able to adapt to such changes without the neces-
sity to manually label data. One limitation of relying on such data, however, is
that copyright might apply, which can render it unusable for certain (commercial)
applications.

Tampering assessment requires a two-step pipeline: we first need to reliably
identify a parcel before searching for appearance changes on the packaging. We
assume that parcel identification was performed in a previous step, e.g. by reading
out the shipping label or by parcel texture-basedmatching [Cla+19]. Furthermore,
we assume a database of the parcels’ textures before tampering is available as
a reference. Finally, we can only detect manipulation attempts that result in
appearance changes in the parcel texture. If, for example, a parcel is opened
carefully without damaging tape or packaging, our approaches will be unable to
recognize this.

When treating damage assessment, we focus on shape deformation and do not
consider other types of damages, e.g. caused by water. Also, only the packaging
itself is analyzed, from which no reliable deduction on the state of the transported
good is possible. Moreover, since we only rely on a single RGB input, we have
no information on the (self-)occluded parts of the parcel and, consequently, a
limited reconstruction accuracy. For the same reason, we can also not estimate
scale reliably. Thus, without relying on a-priori known landmarks in the image,
we cannot perform absolute volume estimations, which would be helpful for the
downstream optimization of vehicle capacity usage.
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1.3 Contributions

The main contributions of this thesis are:

• We review and categorize the literature regarding computer vision applica-
tions in transportation logistics and warehousing in depth.

• We present an approach for the automated generation of instance segmenta-
tion datasets, which leverages online image search engines. We investigate
the importance of image selection and blending methods by carrying out a
case study on parcel segmentation.

• Since no dataset of parcels with full 3D annotations is available, we in-
troduce Parcel3D. It consists of more than 13 000 synthetic images of
damaged and pristine parcels and provides 2D as well as 3D annotations.

• To treat tampering assessment, we propose a pipeline that combines parcel
corner point detection with change detection approaches. Information on
the parcel corners enables generating viewpoint-invariant parcel side surface
representations, which facilitates detecting appearance changes.

• We develop an approach for single image 3D shape reconstruction of po-
tentially damaged parcels, called CubeRefine R-CNN. Our approach si-
multaneously estimates an object’s current, potentially deformed shape as
well as its original pristine shape. Thus, we enable damage assessment by
comparing 3D meshes, which allows detailed damage quantification.

The source code and datasets from our contributions are publicly available, and
we provide an overview of all relevant resources in a separate Chapter, following
the discussion in Chapter 7.
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1.4 Outline

1.4 Outline

The remainder of this work is structured as summarized in Fig. 1.1 and outlined in
the following. First, we briefly introduce the required fundamentals of computer
vision and review the literature on computer vision applications in transportation
logistics and warehousing in Chapters 2 and 3, respectively. Subsequently, we
present an approach that leverages image data available online to increase the
robustness of parcel recognition without the necessity of manually gathering
and labeling training data in Chapter 4. We consider tampering assessment by
combining parcel corner detection with change detection in Chapter 5. Finally,
we treat damage assessment and quantification by lifting parcels from a single
RGB image into 3D by estimating their full 3D shape in Chapter 6. Our work
concludes with Chapter 7 by providing a discussion and outlining areas for future
research.
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1) Introduction

2) Fundamentals

3) Literature Overview

4) Robust Segmentation

5) Tampering Assessment 6) Damage Assessment

7) Conclusion

Figure 1.1: Visual overview of the structure of this thesis. [Sources of graphics: Chapter 3 from
[Nau+23b], Chapter 4 from [Nau+22] ©2022 IEEE, Chapter 5 from [Nau+24] ©2024
IEEE, Chapter 6 from [Nau+23a] ©2023 IEEE]
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2 Fundamentals

Nowadays, machine learning applications are ubiquitous and often utilize ap-
proaches that are categorized as deep learning. Machine learning intents to extract
patterns from raw input data. Since most input modalities, such as images or text,
are not trivial for machine learning algorithms to process, early works often relied
on hand-engineered input features. These feature extraction approaches imposed
a strong inductive bias towards what humans think could help the underlying
task. As the field progressed and the deep learning era emerged, hand-engineered
features were replaced by learned feature representations. These changes were
enabled by the increase in data availability and computing resources [Sev+22],
and advanced the state-of-the-art across many different tasks.

Since this work focuses on computer vision applications using deep learning in
the context of logistics, we briefly introduce the fundamentals of deep learning
and common computer vision tasks and metrics in Section 2.1 and Section 2.2,
respectively. Schmidhuber [Sch15] presents a detailed historical overview of
Artificial Neural Networks (ANNs) and we refer to Bishop [Bis06] for an in-
depth introduction focusing on classical machine learning and to Goodfellow et
al. [GBC16] for a detailed introduction into deep learning.

2.1 Introduction to Deep Learning

Artificial Intelligence (AI) has evolved from rule-based systems and classic ma-
chine learning to deep learning, which is nowheavily used in research and industry.
Apart from Reinforcement Learning, which is out of the scope of this work, the
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2 Fundamentals

literature broadly distinguishes between supervised and unsupervised learning.
While the former assumes that the input data is coupled with associated target
output values, the latter refers to approaches that do not rely on available target
output information. Another distinction can be made w.r.t. the data modality
that is used. While computer vision and Natural Language Processing (NLP)
are arguably the most active areas of research, also tabular data, time series, and
recommender systems are key applications of machine learning. It has also be-
come common to mix different modalities to improve existing approaches or to
enable tackling new types of problems [BAM19]. In the following, we focus on
supervised learning and computer vision applications.

Multi-Layer Perceptrons (MLPs) are the basic building block of deep learning
models and will be introduced in Section 2.1.1. Subsequently, we introduce
Convolutional Neural Networks (CNNs) that can efficiently exploit the inherent
structure of images in Section 2.1.2. Since this work aims to present novel models
for 3D mesh reconstruction, Graph Neural Networks (GNNs), which operate
over graphs, are introduced in Section 2.1.3. Finally, insights into the training
procedure of ANNs are outlined in Section 2.1.4.

The introduction of MLPs, CNNs and the training procedure is based on Good-
fellow et al. [GBC16]. Hamilton [Ham20] serves as the basis for the presented
insights into GNNs.

2.1.1 Multi-Layer Perceptron

MLPs are fundamental and quintessential models in deep learning. They are
frequently also called feedforward networks or feedforward neural networks and
are crucial to machine learning practitioners. The terminology neural stems from
the fact that they draw loose inspiration from neuroscience. An MLP tries to
learn the best parameters θ to approximate a function f∗ through the mapping
y = f(x;θ) it defines. Here, x is a given input, and y is the corresponding
desired output, which would correspond to a class label in the case of a classifier.
MLPs are commonly composed of different functions, which can be connected
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2.1 Introduction to Deep Learning

in a chain described by a directed acyclic graph. Exemplarily considering two
functions f (1) and f (2), and chaining them leads to an MLP

f(x) = f (2)(f (1)(x))

with one hidden layer f (1) and one output layer f (2). If the two functions
f (i), i ∈ {1, 2} were linear, this would limit the model’s capacity to represent
linear relationships only. To overcome this limitation, such linear models can be
extended by applying the linear output function to a transformed input ϕ(x), with
a nonlinear transformation. ϕ(x) provides a new set of features to describe the
input x and is learned during training. A simple model is then described by

y = f(x;θ1,θ2) = f (2)(ϕ(x;θ1)) = θT2 ϕ(x;θ1),

with parameters θ1 and θ2, which determine the novel representation of the input
x and their linear mapping to the desired output, respectively. For the novel
feature representation ϕ(x;θ1), it is common to apply a nonlinear function to an
affine transformation. The nonlinear function is called activation function and
is typically applied element-wise. The Rectified Linear Unit (ReLU), which is
defined as

g(z) = max(0, z)

is arguably the most common choice for the activation function, although other
nonlinear functions may be used. Finally, an MLP with one hidden layer, a ReLU
activation function and the previously omitted additive bias terms can be defined
as

f(x;θ1, b1,θ2, b2) = θT2 max (0,θT1 x+ b1) + b2

with parameters θ1, θ2, and bias terms b1, b2 for the hidden and output layer,
respectively.
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2 Fundamentals

2.1.2 Convolutional Neural Networks

CNNs are designed to operate on a known grid-like topology as for example
encountered in image and time-series data. We follow the convention of referring
to the operations utilized in CNNs by convolution, although it does not coincide
precisely with the definition used in other fields such as pure mathematics or
engineering. Commonly, the term convolution is used to refer to the related
cross-correlation function, which is denoted by ∗ and defined as

S(i, j) = (I ∗K)(i, j) =
∑
m

∑
n

I(i+m, j + n)K(m,n),

where I is a two-dimensional image andK a two-dimensional kernel with index
sets m and n. Such a discrete convolution can be represented by a matrix
multiplication, which makes computation efficient.

This design of CNNs is influenced by neuroscientific principles and leverages (1)
sparse intersections, (2) parameter sharing and (3) equivariant representations.
(1) Sparsity is achieved by using a kernel that is smaller than the input image.
This smaller kernel means that the output values of the convolution operation
only depend on a subset of the input values, as opposed to MLPs, where each
output is connected to all inputs. This, in turn, reduces the memory requirements
and enhances its statistical efficiency by storing fewer parameters. For practical
applications, well-performing kernel sizes are usually considerably smaller than
the image dimensions, thus, rendering efficiency improvements quite significant.
(2) In MLPs, each weight matrix element is used exactly once during the output
calculation. In contrast to that, parameter sharing, as used in CNNs, enables the
re-use of weights during the computation of the output of a layer by utilizing
each kernel entry at every input position. This again reduces the memory re-
quirements, however, the runtime of forward propagation remains unchanged. (3)
Finally, the convolution operation is equivariant w.r.t. translation, which means
that f(g(x)) = g(f(x)) holds for a convolution f and a translation g. Thus,
if an object is moved in the input image, its feature representation in the output
map of the convolution is moved by the same amount. This makes convolutions
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2.1 Introduction to Deep Learning

very useful to detect common features, such as edges, which appear throughout
the image. Note that convolutions are not equivariant w.r.t. other transformations
such as scaling and rotation, and that they enable operating on inputs of variable
size.

Apart from the convolutional operation, pooling layers are an integral component
of CNNs. Pooling layers apply a so-called pooling function, which replaces an
element with a 2D feature representation by summary statistics of nearby values.
One common example is max pooling [ZC88], which returns the maximum value
in a rectangular neighborhood.

For details on specific CNN architectures, we refer to the seminal works AlexNet
[KSH12], ResNet [He+16], Mask R-CNN [He+17] and Vision Transformer
[Dos+20] and to the review of Zhao et al. [Zha+19].

2.1.3 Graph Neural Networks

GNNs operate on graphs, which are a data structure that is encountered in numer-
ous applications such as biology and social networks. Since 3D meshes are also
naturally represented as graphs, GNNs are also important for 3D reconstruction,
which is tackled within this work.

A graph G = (V, E) is composed of a set of nodes V and a set of edges E ,
which describe the pairwise interactions between nodes. Each node v ∈ V and
each edge (u, v) ∈ E can also have associated attribute or feature information.
Tasks commonly tackled with a graph as the underlying data structure are node
classification, relation prediction, community detection, graph classification and
graph regression.

The key idea of GNNs is to exploit the graph structure and associated feature
information in order to compute improved feature representations for nodes and
edges. In contrast to images we discussed before, a graph has no predefined node
ordering and the number of edges per node can vary. This means, that neither
MLPs nor CNNs can operate on arbitrary graphs and thus, a novel type of deep

11



2 Fundamentals

learning architecture is necessary. GNNs take a graph G = (V, E) with node
features X ∈ Rd×|V| as input and update the node embeddings zu, ∀u ∈ V by
performing neural message passing, typically in an iterative fashion.

For a message passing step k, each node u ∈ V is considered and its hidden
embedding h

(k)
u is computed by aggregating information from its neighborhood

N (u):

h(k+1)
u = UPDATE(k)

(
h(k)
u , AGGREGATE(k)

(
{h(k)

v , ∀v ∈ N (u)}
))

= UPDATE(k)
(
h(k)
u ,m

(k)
N (u)

)
with arbitrary differentiable functions UPDATE and AGGREGATE (e.g. ANNs)
and the “message” m(k)

N (u). Since the AGGREGATE function operates on a set,
it is permutation equivariant. Furthermore, through iterative application of the
message passing, information from a larger neighborhood can be leveraged to
enhance the node embeddings.

To use message passing in practice, it is of course necessary to define concrete
instantiations for UPDATE and AGGREGATE. One very popular GNN archi-
tecture are Graph Convolutional Neural Networks (GCNs) [KW16], with the
message passing function

h(k)
u = σ

θ(k)
∑

v∈N (u)∪{u}

hv√
|N (u)||N (v)|


where σ is the activation function and θ(k) a trainable parameter matrix.

2.1.4 Training Procedure

Training ANNs relies on gradient-based optimization, where the goal is to find
the best set of parameters θ that result in a low cost function value J(θ). The
cost function — in contrast to pure optimization — helps to indirectly optimize

12



2.2 Computer Vision Tasks and Metrics

the machine learning algorithm w.r.t. the performance measure of interest P . In
practice, the cost function is usually defined as the average of some per-example
loss L (e.g. the Mean Squared Error (MSE)) over the training set, i.e.

J(θ) = E(x,y)∼p̂dataL(f(x;θ), y)

with inputx, ground truth output y, empirical data distribution p̂data and predicted
output f(x;θ). However, the final objective is tominimize the above cost function
not for the empirical data distribution p̂data, but for the data generating distribution
pdata. This corresponds to reducing the expected generalization error, also known
as risk. Since the true data generating distribution pdata(x, y) is not known, we
can only optimize for the empirical risk overm given training examples

E(x,y)∼p̂data [L(f(x;θ), y)] =
1

n

m∑
i=1

L(f(x(i);θ), y(i)).

This empirical risk minimization can be prone to overfitting if models have a
capacity high enough to enable the memorization of the training set. Furthermore,
in practical deep learning applications, the desired cost function can frequently
not be optimized directly and a surrogate is used instead. One common example
is the 0-1 classification loss, where the negative log-likelihood of the correct class
is used as a surrogate. Two additional differences to classical optimization are
that convergence criteria are used instead of halting at a local minimum and that
the objective function is usually specified as the sum over per-example objective
function values from the training set. The latter enables using only a subset of
the available training examples, referred to as batch, for iterative gradient-based
optimization.

2.2 Computer Vision Tasks and Metrics

Throughout this work, we will tackle several different tasks in computer vision.
Thus, we introduce each such task in the following and explain the relevant

13



2 Fundamentals

(a) Image Classification (b) Object Detection

(c) Instance Segmentation (d) Keypoint Detection

Figure 2.1: Overview of common 2D computer vision tasks.

evaluation metrics inspired by Szeliski [Sze22]. First, we focus on computer
vision tasks in 2D in Section 2.2.1, and subsequently, we introduce the relevant
tasks and metrics for 3D image understanding in Section 2.2.2.

2.2.1 2D Image Understanding

Images reduce our 3D world to a 2D representation. They are able to efficiently
capture information about our environments, which would be difficult to describe
by using other modalities, such as text. Analyzing images has a myriad of
applications, and can be categorized into different tasks, which we summarize in
Fig. 2.1 and introduce briefly below. For a more detailed introduction, we refer to
Szeliski [Sze22].
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2.2 Computer Vision Tasks and Metrics

Image Classification

Summarizing a whole image by assigning it a single class label is called image
classification. While images oftentimes do not only represent one single object,
the task is to identify the predominant class. We visualize an example in Fig. 2.1a.

Object Detection

Images can contain multiple objects and the object positions may vary strongly.
Object detection refers to the task of localizing an object by providing a 2D
bounding box and classifying it. An example output is visualized in Fig. 2.1b.

The Jaccard Index [Jac01] or pixel-wise Intersection over Union (IoU) is com-
monly used to assert the quality of a detected bounding box. It is defined as the
quotient between the intersection and the union of the predicted and the ground
truth bounding box. To compute a single metric over a set of images, and thus,
to assess the quality of an object detector, commonly Box AP is used. For its
calculation, an IoU threshold τ is chosen, and the Area under the Curve (AuC)
of the Precision-Recall curve is computed by iterating over all detections sorted
by detection confidence and classifying them as True Positive (TP) or False Pos-
itive (FP). Box AP50 refers to the Average Precision (AP) at an IoU of τ = 50%

and Box AP refers to the mean Box AP which is computed as the average over
Box APτ ∀τ ∈ [0.50, 0.55, 0.60, · · · , 0.95].

Instance Segmentation

Instance segmentation goes beyond bounding boxes and provides pixel-wise clas-
sification information on an instance basis. The result is a segmentation mask for
each object instance in the image, as visualized in Fig. 4.3c.

The primary metric to evaluate instance segmentation algorithms is Mask AP. Its
calculation is equivalent to Box AP, where the IoU is calculated by comparing
the predicted and the ground truth segmentation mask instead of bounding boxes.
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2 Fundamentals

Keypoint Detection

Many object categories can also be described by a set of important keypoints. A
common example are human faces, where the position of the eyes, nose, mouth,
etc. are relevant landmarks. In this work, we use the vertices of a 3D bounding
box as keypoints to describe parcels, as visualized in Fig. 2.1d.

A keypoint ki is defined as [xi, yi, vi], where xi and yi are the positions in the
image and

vi =


0 if keypoint is not labeled,
1 if keypoint is labeled and not visible,
2 if keypoint is labeled and visible

indicates the visibility. To evaluate the keypoint detectors Object Keypoint Simi-
larity (OKS) instead of IoU is used.1 OKS is defined as

OKS =
∑
i

exp
{
− d2i

2s2κ2
i

}
· δ (vi > 0)∑

i δ (vi > 0)

for all keypoints ki and the Dirac delta function δ. di is the Euclidean distance
between the predicted and ground truth keypoint position, s the square root of
the object’s area and κi = 2σi with per keypoint variance σ2

i = E(d2i /s2i ). Note
that the per keypoint variance is computed from redundant human annotations.
Finally, Keypoint AP is computed equivalently to Box AP andMask AP, however,
by setting an OKS instead of an IoU threshold.

1 We follow the definition from https://cocodataset.org/#keypoints-eval. [Last accessed on Sept.
20, 2024]

16

https://cocodataset.org/#keypoints-eval


2.2 Computer Vision Tasks and Metrics

(a) Input Image (b) 3D Bounding Box Detection

(c) 3D Reconstruction

Figure 2.2: Overview of common 3D computer vision tasks.

2.2.2 3D Image Understanding

Through the reduction of our 3D world to a 2D image, we loose valuable informa-
tion about object positions, sizes and shapes. In the following, we present tasks
that try to lift the available 2D image information back to three dimensions. More
precisely, we will introduce 3D bounding box detection and 3D reconstruction
from a single RGB image as input. An overview is presented in Fig. 2.2.

3D Bounding Box Detection

Equivalently to bounding box detection in 2D, finding the 3D bounding box is an
important task (cf. Fig. 2.2b). It is frequently tackled in the context of autonomous
driving [Ma+23], but also has applications in other domains [Nau+23a]. When
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considering the 2D projection of a parcel, the task closely relates to keypoint
detection.

To evaluate 3D bounding box detectors, we follow Brazil et al. [Bra+23] and
use the AP of the 3D IoU, called AP3D. This again corresponds to computing
Box AP, however, using the 3D bounding box IoU as metric. Since the IoU in
3D drops significantly faster than in 2D, AP3D is computed as the average over
AP3Dτ ∀τ ∈ [0.05, 0.10, 0.15, · · · , 0.50].

3D Reconstruction

Inferring the full 3D shape of an object (e.g. in the form of a mesh) is a common
task in computer vision and visualized in Fig. 2.2c. While we focus on approaches
using only a single RGB image, multiple RGB images or point clouds are also
common input modalities. Comparing shapes in 3D is difficult since 3D bounding
box or voxel IoU are often poor shape similarity indicators [Tat+19]. Instead,
independent of the shape representation, frequently point cloud-based metrics
are used. Chamfer distance is a common metric, which describes the general
alignment of two point clouds X, Y by comparing respective nearest points and is
defined as

d(X,Y ) =
1

|X|
∑
x∈X

min
y∈Y

∥x− y∥ 2
+

1

|Y |
∑
y∈Y

min
x∈X

∥x− y∥ 2
.

Furthermore, the normal consistency NC is a commonly employed metric and is
defined as

NC(X,Y ) = 1− 1

|X|
∑
x∈X

|nx · nargminy∈Y ∥x−y∥|

− 1

|Y |
∑
y∈Y

|nargminx∈X ∥x−y∥ · ny|
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2.2 Computer Vision Tasks and Metrics

where ni is the normal vector corresponding to point i.

Finally, Mesh AP [GMJ19] provides a metric summarizing the overall reconstruc-
tion quality, similar to Box AP and Mask AP in 2D. It is based on the F1-score,
i.e. the harmonic mean of precision and recall

F1 = 2 · Precision · Recall
Precision + Recall

.

When comparing a ground-truth pointcloudX with a predicted pointcloudY using
the F1-score, we need to define a distance thresholdψ, and F1ψ is computed using

Precisionψ =
1

|Y |
∑
y∈Y

δ

(
min
x∈X

∥x− y∥ 2 ≤ ψ

)

and

Recallψ =
1

|X|
∑
x∈X

δ

(
min
y∈Y

∥x− y∥ 2 ≤ ψ

)
with the Dirac delta function δ. Mesh APτ is then defined as the AP where F1ψ
is used as metric and τ as threshold. More precisely, a detection is TP when
F1ψ > τ , it is not a duplicate and the predicted label is correct [GMJ19].
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3 Literature Overview

The intersection of computer vision and logistics is and has been an active area of
research. We present a detailed overview of existing literature categorized from
an application-oriented view as summarized in Fig. 3.1 and available online at
https://a-nau.github.io/cv-in-logistics. We start in Section 3.1 by reviewing the
literature onmonitoring, where applications considering image-based information
retrieval from the environment are presented. Subsequently, in Section 3.2, ma-
nipulation applications are introduced, where in addition to information retrieval,
the interaction with the environment plays a key role. Next, in Section 3.3 the
literature is categorized from a computer vision point of view, and overviews of
datasets and industrial solutions are presented. Finally, we discuss the results of
our literature review w.r.t. the objectives of this thesis in Section 3.4.

Sections 3.1 to 3.3 have been previously published as a preprint and are direct
quotes from Naumann et al. [Nau+23b], including tables and figures. These
sections are marked with [Nau+23b] in the respective headline.

3.1 Monitoring [Nau+23b]

Monitoring refers to observing processes in order to retrieve valuable information.
The retrieval of information is based on visual perception. We distinguish two
different cases: (1) Documentation, where we only want to retrieve information
to document processes. Details are presented in Section 3.1.1 and summarized
in Table 3.1. In this context, data is collected and stored, but not used as the
basis for subsequent process automation. (2) Verification, where the retrieved
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3 Literature Overview

Figure 3.1: Overview of literature categorization. [Graphic from [Nau+23b]]

information is used to verify certain assumptions (e.g. by comparing with a
database of shipments). The relevant literature is discussed in Section 3.1.2
and summarized in Table 3.2. Note, that this application-oriented categorization
causes large overlaps w.r.t. the computer vision approaches that are used and a
separate categorization w.r.t. computer vision approaches will be presented in
Section 3.3.1.
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3 Literature Overview

3.1.1 Documentation

The documentation of business processes is very important, especially in com-
plex transportation networks, as frequently encountered in supply chains. To
simplify the documentation of logistics processes, such as verifying incoming
goods, several directions have been suggested in research. The emphasis lies on
automated vision-based information retrieval, and we present works on four dif-
ferent documentation tasks: label recognition (Section 3.1.1.1), item recognition
(Section 3.1.1.2), tracking and tracing (Section 3.1.1.3), and volume estimation
(Section 3.1.1.4). For each section, we first describe the task and present an
overview of the existing literature. Subsequently, we summarize the findings,
and briefly suggest further research directions. Additionally, an overview of the
literature reviewed in this section is presented in Table 3.1.

3.1.1.1 Label Recognition

Transport labels uniquely identify shipments and thus, are fundamental for the
organized management of goods. Especially at every intersection point of the
supply chain where goods are transferred, label detection is important to verify
the completeness of the shipment. Apart from transport labels, also other types
of labels can contain relevant information that should be retrieved. One such
example are dangerous goods labels, which are crucial for the safety of operators
and cargo.

Mishra et al. [Mis+19] present a low-cost embedded vision system for the detection
of 1D barcodes. They use traditional image processing to detect and rotate the
barcode. They do not present results on the accuracy of the detections, however,
focus on the execution time.

Dörr et al. [Dör+19] present different approaches to generate a targeted dataset for
logistics transport label detection. They take images of load carriers in realistic
environments, where the load carriers have a colorful and easy-to-segment sheet
of paper attached, where they would usually have a transport label. This enables
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them to easily paste real transport labels onto these colorful dummy labels. They
investigate the trade-off between realism and randomness and find that accurate
object detection models can also be trained on synthetic data only. Contrary
to human intuition, realism is not always advantageous, but using randomized
backgrounds can yield good results. The authors report Box APs between 0.65

and 0.92 for different scenarios.

Suh et al. [Suh+19] develop a label recognition pipeline that first detects barcodes
on the shipping label, and then uses this information for angle calibration. The
angle calibration horizontally aligns the barcodes, and thus also the whole visible
label. Afterwards, they go beyond label detection and use a second Convolutional
Neural Network (CNN) to detect the bounding box around the address. Finally,
Optical Character Recognition (OCR) is employed to extract the address as text.
The authors evaluate the barcode and address recognition accuracy and reach
94.7% and 93.62% respectively, while allowing random label rotation of up to
20◦.

Focusing onmaritime logistics, Shetty et al. [She+12] tackleContainerOCR. They
focus on port logistics and present a framework composed of a container detection
module, a decision engine, and a central risk management system. The container
detection module comprises an OCR module for container code retrieval which
can be fused with Radio-Frequency Identification (RFID) information of cranes
and other equipment to increase robustness. The paper suggests a framework and
does not present empirical results or concrete implementations for the modules.

Brylka et al. [BSB20] revise the problem of detecting barcodes in images. In con-
trast to prior approaches, they tackle multiple real-world issues at the same time,
such as poor illumination, noise, and motion blur. Their approach consists of
four consecutive steps: (1) localization, (2) segmentation and contour estimation,
(3) orientation estimation and contour refinement, and (4) decoding with optional
deblurring. Modern CNNs are used, which is the reason for generating synthetic
training datasets for each subtask. They present two datasets for barcode local-
ization, each comprising 25,000 images. For segmentation, they generate 60,000
images, and finally, for deblurring a dataset of 300,000 images. The evaluation
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is performed on a dataset of 400 real images, where each image contains several
of 30 different barcodes. The dataset is manually annotated and named AWB
dataset. They report a recall of 0.446 and a precision of 1.0 for the full approach.

Brylka et al. [BBS21] also tackle the problem of label detection, however, since
their focus is on dangerous good, we review their approach in Section 3.1.2.2 on
verifying guidelines and requirements.

Kamnardsiri et al. [Kam+22] perform a case study by analyzing five different
Artificial Neural Network (ANN) architectures for 1D barcode detection. They
present two new datasets: InventBar and ParcelBar with 527 and 844 images,
respectively. Additionally, the evaluation considers several existing datasets. Re-
sults show that YOLOv5 [Joc+22] performs best with anAP of 91.3whileYOLOx
[Ge+21] is the fastest model considering the average runtime for all experiments.

Summary Label recognition mostly focuses on barcodes [Mis+19; Suh+19;
BSB20; Kam+22], where also complex environments have been investigated. For
a more in-depth literature review of barcode detection, we refer to the survey of
Wudhikarn et al. [WCM22]. In addition, the detection of dangerous goods labels
[BBS21], transport label detection [Dör+19] and container OCR [She+12] have
been tackled.

Outlook Label detection requires object detection or semantic segmentation
algorithms. Both fields are very active areas of research [Zou+23; Min+22].
Advances in these areas can be leveraged to improve accuracy, train with less
data and increase robustness in difficult scenarios. Especially barcode detection
has been studied thoroughly and numerous datasets are publicly available. While
Kamnardsiri et al. [Kam+22] performed an analysis for a selection of algorithms,
it would be interesting to analyze more diverse scenarios similar to Brylka et al.
[BSB20]. Other fields, apart from barcode detection, lack the availability of
diverse datasets and the effective use of synthetic data can be investigated.
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3.1.1.2 Item Recognition

We use item recognition in this context to refer to localizing and classifying
relevant logistics objects or items in an image. Computer vision taxonomy distin-
guishes object detection (cf. Zhao et al. [Zha+19] and Zou et al. [Zou+23]) and
semantic segmentation [Min+22], however, in our application-oriented context
no such distinction is made. Recognizing items is very helpful for documentation,
e.g. to identify or count incoming or outgoing goods.

Mayershofer et al. [May+20] present the LOCO dataset which consists of 39,101
images in logistics environments, of which 5,593 images are annotated with
bounding boxes. Annotations are performed manually for five logistics-specific
object categories: small load carrier, pallet, stillage, forklift and pallet truck. The
annotations are very unbalanced, since there are roughly 120,000 annotations for
the class pallet, however less than 25,000 annotations for the secondmost frequent
class small load carrier. More specifically, the super-category load carrier, which
includes pallet, small load carrier and stillage has 43 times more annotations
than the super-category transportation vehicles, which includes pallet truck and
forklift. They report a Box AP50 of 20.2 using aResNet-50-FPN [He+16; Lin+17]
when fine-tuning on LOCO. Extensions to the dataset are planned, which include
annotating more objects, incorporating 3D data and also providing segmentation
masks.

Another logistics-specific dataset was presented by Mayershofer et al. [MGF20].
The dataset contains synthetic training data and an industrial evaluation dataset
that comprises 1460manually annotated images and focuses on five different types
of small load carriers, as they are standardized by theVDA1. The synthetic training
data is created by choosing a random image as floor and dropping distractor objects,
as well as the objects of interest onto this floor in a physics-based simulation.
Blender2 is used, and since small load carriers are often stacked also the relation

1 Verband der Automobilindustrie e.V., see https://www.vda.de/en [Last accessed on Sept. 20,
2024].

2 See https://www.blender.org [Last accessed on Sept. 20, 2024].
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between them is modeled. The synthetic dataset enables application for the real-
world use-case of small load carrier detection, however, the detection quality is
lower due to the domain gap. The authors train Yolov3 [RF18] report a recall of
0.42 and a precision of 0.4 at an Intersection over Union (IoU) of 50%.

Naumann et al. [Nau+20] tackle the problem of parcel segmentation and focus
on the segmentation of all its side surfaces. Additionally having plane-level seg-
mentation information facilitates the comparison of parcel photos that were taken
from different angles (e.g. for tampering detection) since it allows normalizing
each side surface view by applying a projective transformation. In contrast to
the other approaches, no task-specific dataset is needed. Their method combines
modern approaches for plane segmentation [Liu+19] that were trained on indoor
room data with approaches for contour detection [Can86; SRS20]. In this way,
the approach is conditioned to focus on the geometry information and is less in-
fluenced by appearance changes, e.g. through different parcel colors. The authors
report an average IoU over all segmentation masks of 85.2.

While the previous works only used RGB images, Fontana et al. [FZL21] present
an approach for parcel detection based on RGB-D data. They compare an ap-
proach that combines aMask R-CNN [He+17] with post-processing to a clustering
approach on the depth data. The clustering assumes prior knowledge of the box
sizes, which limits its generalizability. Both approaches show similar perfor-
mance (errors of around 5mm and 1◦), while the learned method is slightly
better.

Naumann et al. [Nau+22] present work on automated instance segmentation
dataset generation. They present a case study for parcels and automatically
scrape relevant image data from the internet. In the first step, only images with
a homogenous background are kept and a class agnostics background removal
technique is applied. Afterwards, three different image selection processes are
analyzed that are based on mask convexity, CNN inference, and manual selection.
Finally, the dataset is created by randomly pasting objects of interest together with
distractor objects onto random backgrounds, similar to Dwibedi et al. [DMH17].
Results show that for the case study, manual selection of relevant parcel instances
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is not superior to simple pre-processing based on mask convexity (Mask AP 81.5

vs 86.2).

Summary Item recognition has been investigated for parcels [Nau+20; FZL21;
Nau+22], small load carriers [MGF20; Dör+21] and general logistics objects such
as pallets and forklifts [May+20]. Note, that other approaches also rely on object
detection as part of their pipeline, however, this section focused on research where
object detection is the main point of interest.

Outlook Similar to Section 3.1.1.1 the computer vision tasks object detection
and instance segmentation are relevant. Both fields are very active areas of
research [Zou+23; Min+22], and advances can enable improvements in accuracy,
training with less data and increasing robustness in difficult scenarios. In general,
sufficient and high-quality data frequently is a limiting factor, which leaves an
opportunity for contributions. To improve the transfer from synthetic training data
to real-world applications, generative approaches such as Generative Adversarial
Networks [Goo+14] and diffusion models [Rom+22] can be used.

3.1.1.3 Tracking and Tracing

Logistics objects move along supply chains that usually comprise several parts.
Thus, in order to analyze the trajectory of specific items, it is necessary to be
able to track them across these stages. Tracking can refer to internal tracking
(e.g. within a facility) or global tracking (e.g. across companies and facilities).
Especially for dangerous goods or in case an item gets lost, the information on
the prior trajectory of an item is crucial to identify its whereabouts and thus, to
guarantee operator safety and customer satisfaction.

Weichert et al. [Wei+10] consider the continuous detection, localization, and
identification of parcels and bins in logistics processes. They consider roller
and conveyor belt systems as typical representatives for automated transportation
systems and suggest moving away from sensors such as light barriers and barcode
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readers and substituting them with low-cost cameras and RFID systems. The
combination of low-cost cameras and RFID systems allows one to identify an
item either by detecting the marker with image processing or by reading out the
data stored on the RFID tag. The authors present case studies on the influence of
the camera position, camera type, marker type and object distance on the marker
detection accuracy. They find a close camera position and high image resolution
beneficial, while there is no clear winner for the marker type.

Borstell et al. [Bor+14] present a system for pallet monitoring. They use a
heterogeneous sensor setup and a system architecture with subsystems for pallet
identification, pallet dimensioning, vehicle positioning and load change detection.

Clausen et al. [Cla+19] present an industry-scale approach for tracking parcels on
conveyor belts in a logistics facility. They use a Siamese network [Bro+93] for
parcel re-identification, to which they add a fully connected network with only
one layer consisting of 1024 neurons. A manually labeled dataset of 3,306 images
from 37 different cameras, which contain a total of 14,248 parcels was created.
In addition to that, they present a calibration approach. Instead of manually cal-
ibrating the multi-camera framework, a single drive-by of a calibration parcel is
enough for each conveyor belt. They present extensive evaluations, also compar-
ing to classical tracking approaches and show the superiority of their approach.
Currently, around 81% of parcels are tracked correctly, while they name human
interaction as a main cause of failure.

Noceti et al. [NZO18] also tackle the problem of tracking and tracing, however,
since their focus is on damage and tampering detection, we review their approach
in Section 3.1.2.3.

Hu et al. [Hu+21a] address the problem of tracking parcels inside a moving truck.
A multi-RGB-D camera setup is used to overcome the limited field of view and
occlusions of a single camera setup. They present a new calibration procedure
using a sphere. After calibration, their approach first creates a unified scene
by merging the available RGB-D information. On the resulting pointcloud, an
approach for segmenting rectangular planes is applied. These planes are used to
find and evaluate box candidates. To track a parcel, the position of its centroid,
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its size, and its rotation relative to the reference coordinate system is used. They
collect their own dataset with cuboids in different arrangements and report an
average detection rate of 0.976while enabling real-time usage.

Rutinowski et al. [Rut+21] tackle the problem of re-identification for chipwood
pallet blocks of Euro pallets. For this purpose, they create a dataset consisting
of 502 different pallet blocks and a total of 5,020 images. The authors compare
different architectures for the task and find a competitive algorithm for person
re-identification [Sun+18] as the most suitable. They report an AP of 98% and a
matching accuracy of 97%.

Klüttermann et al. [Klü+22] use the dataset from [Rut+21] and present first results
using anomaly-based re-identification of pallet blocks. The authors identify
anomalies by computing descriptive statistics of 16× 16 image patches. Detected
anomalies are combined into a graph, thus, reducing the size of pallet block
representation. These graphs are processed by a Siamese Graph Neural Network
(GNN) to map them into an embedding space. Finally, in order to retrieve the
matching pallet block for a given input, its nearest neighbor in the embedding
space is used. The accuracy of the approach is currently not competitive and is
reported with 27%.

Rutinowski et al. [Rut+22a] also tackle the problem of re-identification for Euro
pallets. They present a new dataset consisting of 32,965 pallet blocks. Of
each pallet block four images are taken, resulting in a total of 131,860 images.
The dataset was generated automatically by monitoring conveyor belts in the
warehouses of two German companies. Similar to [Rut+21], they apply a Part-
based Convolutional Baseline (PCB) network [Sun+18] and report an accuracy of
98%.

Summary Tracking and tracing have been investigated for parcels [Wei+10;
NZO18; Cla+19; Hu+21a], and pallets [Bor+14; Rut+21; Rut+22a; Klü+22].
Approaches are mostly vision-based, partially rely on RGB-D imagery [Hu+21a]
and leverage literature from person re-identification [Rut+22a]. Moreover, whole
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systems for automating such processes [Bor+14; Rut+22b] and the monitoring of
logistics road traffic [BTL19] have been investigated.

Outlook For the re-identification of parcels the approach of Rui et al. [Rui+20]
seems promising, as it is tailored towards cuboid-shaped objects. Moreover,
advances in feature matching [Sar+20] could be leveraged for re-identification.
For a review on re-identification, we refer to Khan et al. [KU19] and Ye et al.
[Ye+22].

3.1.1.4 Volume Estimation

Volume estimation refers to computing the volume of a single item or a set of items.
It is especially relevant to extract this information for optimizing downstream
tasks, such as container loading.

DHL developed two prototyped solutions for volume scanning using two MS
Kinect cameras in 2013 [Küc13; Bor+13]. The first solution is a gate approach
while the second mounts cameras directly on a forklift truck mast. The volume is
estimated by confining the overall pointcloud to a dedicated area and summing over
a discretized heightmap. Their systemonly needs 250ms for the capturing process
to minimize the idle time during measurement. Furthermore, they calibrate
their system to achieve more accurate results. They discretize the floor plane
into tiles and estimate the height for each of them. The final volume can then
easily be computed by summing up over all tiles. They analyze and compare
different configurations that vary w.r.t. the relevant area and the camera setup.
The accuracy of their extent estimation ranges between 10 and 13mm for the
considered scenarios.

Laotrakunchai et al. [LWP13] present an approach for estimating the volume of
a single parcel using a mobile device. Their approach utilizes two different data
modalities. They use the cell phone acceleration sensor to measure the parcel
extents by dragging the cell phone along its dimensions. This information is
complemented with two images (start and end of dragging) to enable measuring

34



3.1 Monitoring

parcel extends from a distance. For each image, the object region is selected
manually and SURF [Bay+08] keypoints and descriptors are used for feature
matching and subsequent disparity computation. The final result is retrieved by
applying a Gaussian weighted interpolation scheme. Four different datasets are
collected and the performance is analyzed for different object distances. The
average percentage error at distances of 1m, 1.5m, 2m, 2.5m and 3m is 10.2%,
while no clear trend on the dependence of the distance is present.

In addition to the detection of dangerous labels as will be presented in Sec-
tion 3.1.2.2, Brylka et al. [BBS21] also treat the problem of volume estimation.
They generate a dataset by using a setup with multiple depth cameras and fiducial
markers. This way, they automatically annotate 150 pallets with parcels that are
always brown boxes and have 10 different dimensions. They train BoNet [Yan+19]
and evaluate it on a separate validation dataset. No details on the validation dataset
or quantitative results are given. The presented qualitative results look promising.

Kucuk et al. [Kuc+19] develop a system for dimension estimation of static objects
for logistic applications. An RGB-D camera is employed to capture a pointcloud
of the object. Without going into details, the authors name spatial and temporal
filters as post-processing of the pointcloud and do not report on the method used
for finding the minimum bounding box for the object. They perform evaluations
on a range of objects, such as cylinders, tubes and cubes and report an error of
less than 0.5 cm in each dimension under good lightning conditions and a suitable
exposure time.

Further specialized approaches include [ST14], which heavily relies on manual
input and [Sun+20], which only evaluates on four different parcels.

Summary Volume estimation is mostly tackled using one [Kuc+19] or multi-
ple [Küc13; Bor+13; BBS21] RGB-D cameras. In addition to that, Laotrakunchai
et al. [LWP13] investigated the usage of cell phones leveraging their acceleration
sensor.
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Outlook Since RGB-D data is used frequently, studying the capabilities of
pointcloud classification and pointcloud segmentation algorithms, as reviewed
by Grilli et al. [GMR17] and Bello et al. [Bel+20], seems promising. New
applications that, to the best of the authors’ knowledge, have only been investigated
commercially, can be considered. Examples includemeasuring the load volumeon
a driving forklift. For applications in scenarioswith limited sensor availability, e.g.
during last-mile delivery, also approaches for single RGB shape reconstruction and
volume estimation are interesting. Related methodological literature is reviewed
in [Kha+22]. One very promising approach which has been used for shape
reconstruction [Nau+23a] is Cube R-CNN [Bra+23]. By providing suitable data
during training, it can also estimate scale and thus, volumes independent of
otherwise necessary scale landmarks.

3.1.2 Verification

Verification, in contrast to documentation, does not only encompass the mere
retrieval of information but at the same time compares it to existing data. In
the following, we analyze approaches for checking completeness and occupancy
(Section 3.1.2.1), checking guidelines and requirements (Section 3.1.2.2), de-
tecting damage and tampering (Section 3.1.2.3) and finally, document analysis
(Section 3.1.2.4). We present a full overview of the literature in Table 3.2.

3.1.2.1 Completeness and Occupancy

Checking for completeness, e.g. by counting the number of goods present, or
retrieving the occupancy status of transportation containers and areas can play an
important role to improve and speed up processes in logistics.

Li et al. [Li+12] tackle the problem of monitoring warehouse order picking. They
utilize a MS Kinect to detect the picked items and check if any picking errors
occur. They restrict themselves to static box-shaped objects placed in a static
basket and use 2D texture information as well as 3D geometric information to
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match recognized items to a database. More precisely, they use SCARF [TMS11]
descriptors and combine them with a volume estimation. The evaluation of the
approach yields a recognition accuracy close to 100% for most of the eight objects
that were tested in this limited scenario.

Özgür et al. [ÖAN16] compare two approaches to recognize the occupancy status
of the load handling device of forklift trucks. One approach is sensor-based
where an ultrasonic distance sensor is mounted onto the fork mast. A pallet
is recognized by monitoring the measured distance. The second approach is
camera-based, where the camera is mounted onto the ceiling to have a physically
stable environment. Fiducial markers are used to recognize the forklift and a
color pattern is applied to the fork. Finally, training data is gathered and a
Support VectorMachine (SVM) is trained. The authors do not present quantitative
results, however, mention that the sensor-based approach is superior since the
configuration effort and the cost for installation and maintenance are lower while
the accuracy is higher.

Dörr et al. [Dör+20b] develop a system for automated packaging structure recog-
nition, where the goal is the localization of uniformly packed pallets and the
analysis of their composition. They use a multi-step process: pallets are detected
and for each pallet, the side faces are segmented. The side face segmentation is
rectified using a projective transformation. On the rectified side face, a CNN is
used to count the number of parcels and finally, the full packaging structure is
determined. The training and evaluation dataset contains a total of 1267 images.
The inter-unit segmentation, i.e. the segmentation of the pallets is reported with
0.9943 precision and a recall of 1. The mean image error that takes all instances
in the image into account is 0.1564.

In follow-up work, Dörr et al. [Dör+21] present a novel approach for the side face
detection problem. They extend CornerNet [LD18] to support the detection of
arbitrary four-cornered polygons, instead of axis-aligned bounding boxes. Their
new model TetraPackNet shows significant improvements over a Mask R-CNN on
the dataset presented in [Dör+20b]. More precisely, the Mask AP increases from
58.7 to 75.5.
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Finally, Li et al. [Li+21] present an approach to recognize congestions on conveyor
belts. They use pre-processing steps in order to normalize the image of the
observed area and subsequently employ edge detection techniques. They separate
moving edges from static edges and use statistical information on static edges
to make a prediction. The evaluation is performed on 160, 000 videos that were
manually labeled, and they report Area Under the Curve of the Receiver Operating
Characteristic (ROC-AUC) of 0.9999, which outperforms deep learning baselines
they compare against.

Summary Occupancy has been analyzed for forklift masts [ÖAN16] and con-
veyor belts [Li+21]. Completeness checks have been investigated for pallets
[Dör+20b; Dör+21] and order picking [Li+12].

Outlook As the applicable computer vision techniques resemble those from
Section 3.1.1.2, we refer to the respective section. Further applications include
monitoring and verification of the complete packaging process of a pallet or truck.
By following the whole procedure, information is processed sequentially, which
alleviates the common issue of occlusion. Also, counting the number of pallets
within a truck or in a loading area is a relevant application.

3.1.2.2 Guidelines and Requirements

There are several guidelines and requirements when transporting dangerous goods
(cf. [Uni19]). These guidelines help to protect the personnel handling the goods
and the freight itself if they are recognized and followed carefully.

Brylka et al. [BBS21] work on identifying dangerous goods by detecting the
respective labels on parcels. They generate a dataset of 1,000 manually labeled
images and 50,000 synthetically generated images, which can be used for barcode
and label detection. The evaluation for barcodes is performed on a dataset, which
has over 400 images with 840 barcode instances. They improve upon Brylka
et al. [BSB20] by 5% in recall. For the detection of dangerous goods labels a
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new validation dataset is created by manually labeling 2,260 images with a total
of 5,820 labels. Since they consider passing under a camera arch, which yields
a sequence of images, they report the detection rate per sequence. The highest
observed detection rate per sequence is 96.2% at a recall of 0.385 and a precision
of 0.976. Note, that they also tackle volume estimation. The respective approach
and results are reported in Section 3.1.1.4.

Summary Literature on verifying guidelines and requirements is very limited
and focuses on classifying dangerous goods [BBS21].

Outlook In addition to dangerous goods labels, also transportation require-
ments regarding orientation and maximum load can be investigated. The former
refers to checking whether a package can be transported upside down, while the
latter refers to labels regarding sensible goods such as glass. Furthermore, trans-
portation units such as pallets might have special packaging requirements (e.g.
regarding the lid, foil or straps), that can be verified automatically.

3.1.2.3 Damage and Tempering

Logistics goods can be damaged or tampered with at any point in the supply
chain and due to the steadily increasing presence of valuable goods such security
considerations gain importance [NZO18]. In order to pinpoint the time and place
where such events occur, it is necessary to be able to recognize them automatically.
Damages can have several forms, such as water damage or deformation. Also,
tampering can be detectable in different ways: e.g. new tape can be applied after
opening a parcel or labels could be attached to or removed from a parcel.

Noceti et al. [NZO18] investigate damage and tampering detection in a postal secu-
rity framework by extracting 3D shape and appearance information (i.e. brightness
patterns) frommultiple cameras. The authors present their detectionmethod along
with use-cases and a database storage of collected data for future reference, how-
ever, we will focus our attention on the vision-based detection approach. Change
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detection [Sta+15] is used to fit parallelepipeds on binary masks of parcels. Dam-
age detection is then performed by comparing the obtained 3D shape with its
expected shape, while tampering is based on the comparison of the parcel’s side
surfaces [DT05]. Noceti et al. [NZO18] report, that they reach an overall damage
and tampering detection accuracy of over 90%.

Malyshev et al. [Mal+21] present a concept outlining the use of CNNs for damage
detection. They name deformation, rupture and moisture as possible categories
of damage to a package. Also examples of damages, which do not imply damage
to the cargo are visualized exemplarily.

Naumann et al. [Nau+23a] present a novel architecture for 3D shape reconstruction
of cuboid-shaped and damaged parcels from single RGB images. They combine
estimating a 3D bounding box [Bra+23] with an iterative mesh refinement branch
[Wan+18], to leverage the strong prior in form of the 3D bounding box while
at the same time being able to adjust to damaged parcels. Thus, their approach
estimates the 3D mesh of the current, potentially deformed parcel shape, as well
as its original pristine shape. This enables not only damage classification but also
damage quantification by directly comparing 3D meshes. Training and evaluation
are performed on Parcel3D, a novel synthetic dataset of intact and damaged
parcels in diverse environments. Their architecture CubeRefine R-CNN performs
best on intact parcels (Mesh AP50 of 92.8) and competitively for damaged ones
(Mesh AP50 of 70.7).

Summary Literature on damage and tampering detection is scarce and focuses
on parcels [NZO18; Nau+23a]. The most important requirement for such
systems, according to the results of the questionnaire by Noceti et al. [NZO18],
is easy integration into existing processes. More precisely, current processes
should not be slowed down significantly and hardware installation should be
easily possible within existing plants. This, however, is challenging since the
process and plant design can differ significantly within and across companies.
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Outlook Tampering detection approaches rely on generating viewpoint invari-
ant parcel side surface representations, which can be computed from the parcel
corner points. Thus, incorporating recent advances in keypoint detection seems
promising. Moreover, prior knowledge of the cuboid shape can be leveraged by
utilizing a vanishing point loss [Rui+20] or exploiting 2D/3D correspondences
[Li+20]. Damage pattern recognition, i.e. identifying and clustering damages to
recognize frequently occurring patterns is very interesting. In addition to that,
estimating the full 3D reconstruction of a parcel from RGB-D data has not been
studied yet and would be very interesting to investigate for enabling detailed dam-
age quantification. Finally, there is no dataset for analyzing different cases of
damages, such as water damage or ruptures in the packaging, and damages for
other objects such as pallets have not been investigated yet.

3.1.2.4 Document Analysis

Shipments are always accompanied by documents that provide additional insights
such as product types, product quantities, and product prices. Thus, to obtain de-
tailed information about the shipment, it is also necessary to automatically process
documents. The first step towards this goal is to unwarp and rectify documents
that might have been crumbled or warped during the transportation process. This
task is called document rectification and it has gained a lot of attention recently
[Ma+18; Xie+20; Mar+20; Fen+21; Xue+22; Das+22; Jia+22; Wan+22]. Once
the document is rectified, contents can be analyzed using OCR. We refer to re-
views for handwritten [Mem+20] and typed [Sub+21] OCR. Moreover, document
structure recognition plays an important role [Pin+03; Ria+17; Sub+21; Li+22].

Summary Approaches in the area of document analysis tackle the general
problem and we are not aware of literature focusing on logistics use-cases. Docu-
ment rectification [Ma+18; Xie+20; Mar+20; Fen+21; Xue+22; Das+22; Jia+22;
Wan+22] has gained a lot of attention recently. Moreover, OCR [Mem+20;
Sub+21] and document structure recognition [Pin+03; Ria+17; Sub+21; Li+22]
are important problems that are investigated in the literature.
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Outlook The above-mentioned techniques can be applied to documents that
are relevant to logistics processes, such as delivery notes. Especially detecting
and interpreting human annotations on such documents seems very promising.

3.2 Manipulation [Nau+23b]

While for monitoring the focus was on information retrieval, we now focus on
the interaction with the environment. We follow Borstell [Bor21] and divide this
section according to the degree of automation into two parts: machine-supported
tasks and fully autonomous manipulation. The former, also called assistance,
refers to providing helpful additional information to human operators and will be
treated in Section 3.2.1 and is summarized in Table 3.3. The final objective is
not to fully automate a process, but instead to ease the workload for operators.
Literature on fully autonomous manipulation will be presented in Section 3.2.2
and is summarized in Table 3.4. In contrast to the literature on assistance, the
focus here is not on providing additional information but on helping to solve the
task at hand autonomously. Note, that literature is categorized w.r.t. the goal that
is pursued and not the achieved degree of automation.

3.2.1 Assistance for Manual Manipulation

Nowadays, most logistics processes are still handled manually. To ease the work-
load for human operators, assistance systems can be developed. Note, that the
research presented here specifically strives towards assisting a human operator, as
opposed to aiming at fully automating a process. We identified literature focusing
on order picking, which is discussed in Section 3.2.1.1 and on the packaging
process, which is presented in Section 3.2.1.2. For a general overview of all
literature, we refer to Table 3.3.
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3.2.1.1 Order Picking

Orders commonly comprise several items, which need to be collected for shipping.
The process of assembling an order is also referred to as order picking, and it is
essential for the efficiency of warehouses.

Reif [Rei09] investigates the suitability of Augmented Reality (AR) for order
picking from an operator’s perspective. During order picking, static text with
product information as well as dynamic 3D information, e.g. , about the source
or target position, can be displayed. The authors perform a study that shows a
steep learning curve and an improvement in order picking time and error rate
in comparison to order picking with a paper-based list. Further, the subjective
workload is not higher when using AR, while the mental workload is lower due to
the provided helpful information. Nonetheless, they recommend further longtime
studies to analyze the effects and note that the learning curve depends on the
individuals.

Grzeszick et al. [Grz+16] present an approach to assist the picking process with
wearables. The picker is equipped with a smartwatch and a low-cost camera.
The camera is used for activity recognition, which triggers further processing
if determined that the current activity is picking an object. When the activity
recognition recognizes a picking process an image is taken and analyzed with
barcode detection and a CNN to check whether the correct item was picked. The
smartwatch is used to display the information relevant to the next pick and gives
tactile feedback regarding the success of the pick. The authors report 80.1%
accuracy for action recognition and 89% for the recognition of clearly visible
barcodes.

Summary Assistance solutions for order picking focus on using AR [Rei09]
and wearables [Grz+16]. In both cases, results suggest a steep learning curve and
a positive impact on the operator’s performance.
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Outlook In general, AR has a high potential for assistance during manual ma-
nipulation processes. Its usefulness for the area of logistics has been analyzed by
Stoltz et al. [Sto+17] and an industry perspective is provided by DHL [Glo+20].
Recent plane detection algorithms [Liu+19] can help to reduce sensor require-
ments to enable a broader acceptance of AR techniques. Furthermore, it would be
interesting to investigate the suitability of AR interfaces for different applications,
since for example glasses or a projector might not be feasible for some use-cases.
Finally, research on the utility of wearables in different logistics scenarios is an
interesting topic for research.

3.2.1.2 Packaging for Shipment

Once all items of an order have been assembled, they need to be stored safely
and efficiently inside a transport unit, such as a parcel. This process is crucial for
customer satisfaction since damaged items are a frequent cause for complaints.

Hochstein et al. [Hoc+16] develop an assistance system based on AR for quality
control during the packing process. They use one RGB camera and one time-
of-flight camera (ToF camera). Commercial software for object detection is used
for monitoring the packing process. Hochstein et al. [Hoc+16] do not recognize
all articles that are placed into a parcel but focus on the localization within the
box. As assistance, the packing list and other relevant information are projected
onto the workplace. The authors constructed a working prototype focusing on
ergonomics and privacy, however, no user study was conducted.

Mättig et al. [Mät+16] perform a study to analyze how the packaging process
can be improved by using AR. They name pressure on time, quality, and costs
as potential areas of improvement enabled by the usage of AR for packaging.
They perform a study with two groups of 10 people and the results confirm
the hypothesis that AR helps to improve time efficiency when packing order
suggestions are displayed. In addition, it helps optimizing costs, i.e. identifying
the best parcel size.
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Summary Literature on assistance during the packaging process focuses on
the usage of AR techniques [Hoc+16; Mät+16]. Overlaying digital information
with the visual perception of the world can help to improve efficiency and reduce
errors during the packaging process.

Outlook Since the same techniques as mentioned in Section 3.2.1.1 are rel-
evant, we refer to the respective outlook. In addition to that, further in-depth
studies of the performance and acceptance of such techniques are promising
research directions.

3.2.2 Autonomous Manipulation

While most tasks are still handed by humans or by Human-Computer-Interaction
(HCI), research is striving for fully autonomous solutions. In this section, we
present research that works towards this goal. Since we prioritize the long-term
objective of automation, works are presented independent of the current level of
automation that they achieve. First, literature on pallet handling is reviewed in
Section 3.2.2.1, and subsequently literature on depalletization in Section 3.2.2.2.
Afterwards, we present insights into logistics-related approaches for pick-and-
place in Section 3.2.2.3 and automated guided vehicles (AGVs) in Section 3.2.2.4
briefly. Moreover, we provide a general overview of the literature in Table 3.4.

3.2.2.1 Pallet Handling

Pallet handling refers to the task of automatically recognizing, localizing and
interacting with pallets. Due to the ubiquity of pallets in the context of material
handling, this is a crucial task that is frequently needed in logistics processes.

Varga et al. [VN14] present an approach for pallet detection and localization
for AGVs using a stereo camera. During the considered loading and unloading
operations, the AGV is assumed to stop at a distance of approximately 2.5m
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from the pallet. To engage with the pallet, the 3D position must be provided
accurately. Accuracy is defined as a deviation of at most 5 cm and 1◦. The
presented pipeline consists of first performing stereo image rectification and stereo
matching. Subsequently, pallet detection is applied to the left image. This result is
then employed for exterior reconstruction and plane fitting. They define a model
for a pallet, which consists of three legs that are separated by empty pockets. The
relative proportions of each area are assumed to be known and constant. They
use a sliding window approach and design features that represent the assumed
pallet model. These features are used to train an AdaBoost [FS95] classifier.
The datasets for training and testing were gathered manually for this work. The
detection rate for weak positives is reported as 94%, the one for strong positives
as 84%, while having a false positive rate of 1.5%.

Varga et al. [VCN15] follow up on their work [VN14] and again use a stereo
camera system to detect pallets for an autonomous forklift. Their approach is
based on a fixed-size sliding window, where multiple scales of the image are used
as input and a fixed aspect ratio of the pallet is assumed. They compute eight image
channels based on the camera input: a grayscale image, the gradient magnitude
and the oriented gradient magnitude at six different orientations. A random
forest (Adaboost [FS95]) is used to train a classifier. The training dataset Viano2
contains 7,124 images with 9,047 pallets and the test dataset Viano3-5 contains
467 images with 891 pallets. Their best model achieves 78.1% precise matches
on the test set. The authors also perform a test, during which all operations were
successful after fine-tuning for the new scenario. They name illumination as an
open challenge, which is tackled in their subsequent work [VN16].

Haanpaa et al. [HBC16] focus on the problem of pallet engagement in the context
of military logistics. Amulti-sensor setup is used that comprises two ToF cameras
and an RGB camera. They consider a pipeline consisting of different steps and
vary the type of input information. In addition to that, they resort to fiduciary
markers for certain tasks. The authors do not provide a quantitative analysis of
their results.
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Xiao et al. [Xia+17] present an approach for pallet recognition and localization
by using an RGB-D camera. A region-growing algorithm [Xia+13] is used to
segment the depth image into planar patches. A heuristic for pre-processing is
employed, and afterwards, pattern matching on the remaining segments is applied.
The pattern matching focuses on the pallet only and a set of five different pallet
base models is used. The pattern matching does not rely on any color information
but instead works on a binary image that belongs to a planar patch. The authors
present qualitative data to exemplary show howwell the approach works, however,
no quantitative results are presented. As failure cases, they mention that the pallet
could be too dark or that items obscuring the pallet can change the observed pallet
pattern.

Molter et al. [MF18] present an approach for pallet detection and localization
using a ToF camera. The camera is mounted on top of the back side of the fork of
a forklift. They remove the ground plane within the pointcloud using a RANSAC
[FB87] approach. Subsequently, a region-growing algorithm is used to determine
surface clusters. For each cluster, the centroid and normal vector are calculated,
and filtering for vertical planes is applied. Afterwards, centroid pairs and triple
pairs are computed and finally, a check using the geometrical information on the
pallet is performed to obtain a candidate. The authors report, that in the static
scenario, almost all pallets were detected correctly, while in the dynamic one only
55% were localized correctly. In a follow-up work, Molter et al. [MF19] present
an advanced driver assistance system for forklifts operated by humans. The driver
assistance system utilizes the pallet detection approach [MF18] and combines it
with trajectory planning and control for the forklift, as well as a user interface
inside the forklift.

Mohamed et al. [Moh+20] present an approach for pallet recognition and tracking
using only the onboard laser rangefinder of a forklift. The data from the laser
scanner is used to create top views of the occupancy of the floor. These top-
view images are then processed by a Faster R-CNN [Ren+17]. To enable robust
localization and tracking over time a Kalman filter [Kal60] is used. The authors
evaluate on a real-world dataset containing 340 labeled top-view images, which
is augmented by rotation and displacement to 1020 images. 714 samples are
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used for training and 306 are used for testing. An average accuracy of 99.58% is
reported.

Summary The problem of pallet localization has been tackled frequently in
literature. Most approaches employ classical computer vision techniques and fre-
quently pattern matching is part of the pipeline [VN14; VCN15; VN16; HBC16;
Xia+17; MF18]. Recently, deep learning has been used to identify pallets from
laser rangefinder data [Moh+20]. For details on earlier approaches, we refer to
the literature review on the pallet loading problem by Vargas-Osorio et al. [VZ16]
and to Mohamed et al. [Moh+20].

Outlook For pallet engagement, the usage of recent pointcloud classification
and segmentation algorithms (cf [GMR17; Bel+20]) has not yet been investi-
gated. Due to the high accuracy of state-of-the-art 2D object detection algorithms
[Xie+21] they are very well-suited for pallet detection, provided a sufficiently
large dataset is available.

3.2.2.2 Depalletization

In warehouses, hand-held scanners are still very common to verify that a pack-
age is on the correct pallet and to do inventory. Also the subsequent step of
depalletization involves a lot of human labor and can still be slow and error-prone.

Thamer et al. [Tha+13] develop a segmentation technique for pointclouds in
logistics applications. More precisely, they present a system for the automatic
unloading of containers. With the knowledge of the spatial relationship between
the sensor and the container, they filter out the background in a first step. The
pointcloud now only contains objects of interest and needs to be segmented.
They pursue a two-step approach inspired by [Sch+07; STU11] and start with
applying the graph-based segmentation technique by Felzenszwalb et al. [FH04].
To improve on these results, they additionally implement an iterative process for
region-growing. Subsequently, Thamer et al. [Tha+13] fit surface patches onto the
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segments of the pointcloud [Mor78]. In order to find objects within the surface
patches, they define models for boxes, cylinders and sacks which they try to fit.
The fitting process consists of a directed graph, where the surface patches are the
vertices and the edges save information on possible object matches. By employing
distance metrics, they find possible candidates for objects and check them against
themodels for their predefined shapes. The evaluation of the approach is donewith
54 different real-world packaging scenarios and further 51 synthetically generated
ones. They report better performance on the synthetic data, recognizing 83%

of the labeled graspable goods within the scene. The authors argue, that the
approach has high potential, however, was not capable to run in real-time in 2013.

Thamer et al. [Tha+14] is a subsequent work, which also tackles the problem of
detecting differently shaped logistics goods to enable automated processing by
robotic systems. The classes box, barrel and sack are considered and artificial
training data is generated for each class. Their approach does not operate on the
points directly, but instead uses Viewpoint Feature Histograms (VFH) [Rus+10].
As pre-processing steps, points belonging to the background are removed and
denoising techniques are applied. In addition, object candidates are separated by
applying clustering on their Euclidean distance. SVMs and ANNs are used for
the final classification and trained on 500 simulated training examples per shape
class. The authors report a classification accuracy above 90% on synthetic data,
while the performance on real data is significantly lower in most cases. Moreover,
SVMs seem to perform better on synthetic data, while the ANN seems more
robust and handles real data better.

In 2015, Prasse et al. [Pra+15] used a robot arm and low-cost 3D sensors to perform
the task of depalletization. They present two approaches: The first uses a Photonic
Mixing Device (PMD) sensor and a pre-determined model of loading situations,
while the second employs a 3D scanning approach by dynamically positioning a
structured light sensor with the robot arm. The loading units are assumed to have
a cuboid shape and are determined by employing a Random Sampling Consensus
(RANSAC) [FB87] algorithm. Prasse et al. [Pra+15] evaluate the PMD approach
on real data and report the deviation of package dimensions for 9 parcels. Since
the deviation in height is less than their threshold of 10mm, they argue that the

52



3.2 Manipulation

approach is suitable for application in logistics. The second approach is evaluated
on synthetic data only and the influence of the following factors on accuracy and
runtime are investigated: pointcloud size, number of iterations, parcel dimensions,
randomly transformed pointclouds, simulated Gaussian sensor noise, and number
of detected parcel faces.

Arpenti et al. [Arp+20] present an approach for depalletization using a single
RGB-D camera. The information from the RGB-D camera is supplemented by
a case database, which contains the product barcode, the number of boxes on a
pallet, their dimensions and one image of each textured face of the box. Since
they have an existing database, image segmentation is based onmatching the SIFT
[Low99] features of the textures. If sufficient matches are found, the homography
between the taken image and the one from the database is computed. Because this
only works for textured faces, the watershed transform [Mey92] is used for the
other cases. The segmentation is then used, in order to determine the 3D plane
of the face from the depth information and all points from the segmentation are
associated with it. The minimum area enclosing rectangle around this pointcloud
is then used as input for the geometrical module. The purpose of the geometrical
module is to find matching faces for the candidate faces in the database. This
is done by matching the visible dimensions to the database information and the
pose is estimated. For the evaluation, a database of nine cases that are organized
in ten different settings is considered. The authors report an accuracy of 98%.
The authors also perform a case study on the whole depalletizing process. Here,
a black tendon is placed behind the pallet to reduce reflections for the RGB-D
camera. One configuration was tested and all parcels from this configuration were
correctly depalletized.

Chiaravalli et al. [Chi+20] present an approach towards depalletizing using a
robot with a fixed ToF camera and an eye-in-hand RGB camera. The sizes of the
boxes as well as the plane through the top of the highest parcel are assumed to be
known. Canny edge detection [Can86] and the Hough transform [Hou62] are used
to determine the edges of the boxes. A connectivity graph is then used to generate
box hypotheses and an optimization problem is solved using a genetic algorithm
to identify the relevant boxes. Afterwards, their pipeline comprises the following

53



3 Literature Overview

steps: gap localization, gap alignment, insertion test, insertion complete, and
collection. Note, that the goal is not to grasp the parcel, but instead to pull it to a
desired position. The box detection and pose estimation is analyzed on 125 depth
images. The authors report an average standard deviation of 3.05mm for the box
position and a position error of 3.60mm. For evaluation, six boxes of equal size
are positioned in three rows of two parcels each, with no initial gap.

Summary All approaches use depth information for depalletization and rely
on base patterns. Most approaches operate on pointclouds [Tha+13; Pra+15;
Chi+20], while [Tha+14] rely on Viewpoint Feature Histograms (VFH) [Rus+10].
Currently, approaches do not use GNNs for this task and oftentimes additional
prior information is assumed.

Outlook Similar to the case of pallet handling, the usage of pointcloud clas-
sification and segmentation algorithms (cf. [GMR17; Bel+20]) has not yet been
investigated and suggests interesting future applications. Furthermore, the ap-
proaches work towards automated pallet handling, however, to enable reliable
real-world deployment higher robustness and end-to-end integration are neces-
sary.

3.2.2.3 Pick-and-Place

The importance of pick-and-place for logistics use-cases is manifested for example
in the Amazon picking challenge [Cor+18]. Since the applications of this task
reach far beyond logistics, we refer to existing literature reviews [BK00; Bai+20;
Kle+20; Du+21]. Works with a focus on logistics include [Ren+16; Zen+17;
BUE16; Sch+17; Wah+19; Pav+19].
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3.2.2.4 AGVs

AGVs are important in the logistics domain and beyond [CCW19; Fot+21]. Key
components of systems include visual SLAM [MHH19] and planning & control
[Fra+21]. Research with a particular focus on logistics includes [HM17; KTS18;
Sab+18; YS19; Zho+21]. Note, that also autonomous driving has a huge potential
for logistics [MV19], however, is not considered as part of this review.

3.3 Computer Vision Perspective [Nau+23b]

The goal of this section is to review the presented literature from a computer
vision perspective. We first present a categorization of the literature w.r.t. the
computer vision tasks they tackle in Section 3.3.1. Subsequently, we present
a brief overview of existing, publicly available datasets in Section 3.3.2 and of
industrial solutions in Section 3.3.3.

3.3.1 Methodological Categorization

We briefly categorize the reviewed literature according to the computer vision
task they solve. Approaches for 2D and 3D data are presented, and we refer to
Riestock et al. [Rie+19] for an overview of sensors commonly used in logistics.

Marker-based Detection: Fiducial markers are commonly used to facilitate visual
identification. Those markers include barcodes [Mis+19], ArUcos [HBC16] and
other markers [Gar+98; Rei09; Wei+10]. Using markers is still a valid and robust
approach, where the overhead of marking all necessary goods is feasible.

Edge Detection: Edge detection has been applied for interacting with pallets
[MF18] and parcels [Nau+20].

Object Detection: Several approaches [VN14; VN16; She+12; May+20; Mal+21]
tackle the problem of object detection, i.e. localizing and classifying an object in
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an image. Apart from RGB images, object detection has been applied to top-view
occupancy images of 2D laser range finders [Moh+20].

Instance Segmentation: Instance segmentation tackles the problem of identifying
each instance of a class separately by assigning pixel-wise correspondences. Re-
search in the area of logistics includes [ST14; Suh+19; Nau+20; MGF20; BBS21;
Li+21], where packing structure recognition [Dör+20b; Dör+21] exploits this
information to determine the pallet composition. Furthermore, [HM17; Sun+20]
use instance segmentation together with depth information.

Object Re-Identification and Tracking: The same object might occur multiple
times in images, e.g. at a different location for a different point in time. The goal
of object re-identification is to be able to find all images in which a target object is
visible. A very popular area of application for this task is person re-identification.
The existing literature considers boxes [Li+12], parcels [NZO18], and pallets
[Rut+21; Rut+22a; Klü+22]. Moreover, work on tracking parcels [Cla+19] has
been proposed.

Action Recognition: Identifying the activity currently pursued by a person can
be a very helpful task. For example, research has been done on determining if
a worker is currently picking an object, to use this information for order picking
[Grz+16].

3D Object Detection: Plane segmentation is used for detecting parcels [Hu+21a]
and pallets [Xia+17; MF18]. Moreover, clustering approaches [FZL21] and deep
learning-based pointcloud classification [BBS21] have been used.

3DShapeReconstruction: There are approaches for dataset generation that heavily
rely on fiducial markers [Mih+15]. Furthermore, digital measurement with RGB-
D cameras has been investigated in static scenes with traditional methods [Küc13;
Son+17a; Kuc+19]. Finally, Naumann et al. [Nau+23a] tackle single image 3D
reconstruction for assessing parcel damages.
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3.3.2 Datasets

The availability of freely available datasets is limited, as we can infer from
Tables 3.1, 3.2, 3.3 and 3.4. Datasets exist for instance segmentation of logistics
objects [May+20] and parcels [Nau+20; Nau+23a]. Furthermore, chipwood re-
identification [Rut+21; Rut+22a] datasets have been presented. Most of the
presented works, however, utilize datasets that are not available to the public and
are mostly described only briefly.

3.3.3 Industry Services

Due to the huge potential of computer vision applications in logistics and the mar-
ket potential of such solutions, numerous companies offer commercial products
and services in this area. We present an extract of relevant companies and selected
products in Table 3.5. This overview shows that companies are actively working
on solutions for all the areas mentioned in Section 3.1 and 3.2.

The overview presented here is not complete. We provide further details online
on our project website and invite the audience to use it and contribute.

3.4 Discussion

We presented a broad overview of computer vision applications in transportation
logistics and warehousing, targeted to introduce a diverse audience to the topic.
Since this work, however, focuses on a subset of the presented applications, we
briefly summarize the findings of the literature review w.r.t. the objectives of this
work.
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One goal of this thesis is to develop a robust parcel segmentation approach.
Naumann et al. [Nau+20] present an approach for robust parcel segmentation
without the necessity for task-specific training data. However, since their approach
does not rely on a unified backbone, it cannot be leveraged for downstream tasks.
In contrast to that, Clausen et al. [Cla+19] use manually annotated training data to
fine-tune a backbone that could be utilized for downstream tracking applications
such as keypoint detection or 3D reconstruction. Due to the reliance on manual
data annotation, their approach is not able to efficiently cope with potentially
occurring domain shifts. Thus, we tackle this open problem in Chapter 4.

Tampering detection for parcels has previously been tackled by Noceti et al.
[NZO18]. However, the authors use a multisensory setup and prescribe a prede-
termined environment. This significantly reduces the complexity of the task and
renders their approach inapplicable for scenarios such as last-mile delivery. We
work towards removing these constraints to enable flexible tampering detection
based on a single RGB image only in Chapter 5.

Finally, while volume estimation for pristine parcels using RGB-D cameras has
been investigated [Kuc+19; BBS21], Noceti et al. [NZO18] are the only ones
considering damage detection. Again, their approach relies on a multisensory
setup and an a-priori known environment. We strive to remove these restrictions
by presenting an approach for single image damage assessment in Chapter 6.
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Reliably identifying the object of interest in an image is crucial for downstream
tasks such as keypoint detection or 3D reconstruction. However, ready-to-use
datasets of sufficient size are available only for a limited number of domains in
practice. Since the generation of real-world datasets is time-consuming and expen-
sive, synthetic datasets have gained increasing attention [Nik21]. In this chapter,
we extend the simple, yet effective dataset generation approach by Dwibedi et al.
[DMH17]. The original work combines pasting objects of interest and distractors
onto random backgrounds with the application of different blending methods to
prevent Artificial Neural Networks (ANNs) from overfitting to potentially unre-
alistic and characteristic margins around the pasted object — the so-called local
pasting artifacts. By adding automated image scraping and selection, we extend
their approach to cover the entire dataset generation pipeline as summarized in
Fig. 4.1. Due to our approach’s simplicity, it is suitable for dataset creation and
updates, e.g. when a domain shift occurs. A case study on parcel detection and
segmentation is carried out to evaluate our approach. To summarize, the main
contributions in this chapter are:

• we extend the work of Dwibedi et al. [DMH17] by adding image scraping
and image selection, which results in a complete and easily usable pipeline
for dataset generation for instance segmentation,

• we investigate the influence of image selection and blending methods on
the performance for transfer learning,

• we introduce a novel real-world image dataset of parcels with 2D and 3D
annotations, and
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Image Composition
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Figure 4.1: Overview of the dataset generation pipeline: (1) We scrape relevant images from image
search engines. (2) These images are filtered by applying three different image selection
methods: basic pre-processing, manual selection and CNN-based selection. (3) We use
the resulting image pool to generate novel image compositions by pasting selected objects
onto random background images. (4) Four different blending methods are applied to
enable invariance to local pasting artifacts. [Graphic from [Nau+22], ©2022 IEEE]

• finally, our code is publicly available at https://a-nau.github.io/parcel2d to
facilitate generating instance segmentation datasets for the community.

The remainder of this chapter is organized as follows. Related literature is pre-
sented in Section 4.1. Subsequently, we introduce our dataset generation approach
in Section 4.2 and evaluate its performance in Section 4.3.

Sections 4.1 to 4.3 have been previously published and are direct quotes from
Naumann et al. [Nau+22], including tables and figures. These sections are marked
with [Nau+22] in the respective headline. For the evaluation in Section 4.3.2,
we reran our experiments to conduct five different training runs per scenario
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to increase the statistical meaningfulness. We adapted Table 4.1 to report the
updated results.

4.1 Related Work [Nau+22]

The idea of generating an artificial training dataset is widespread, due to the high
cost that incur for capturing and annotating a tailor-made dataset for a use-case.
We first present relevant literature regarding the creation of artificial datasets and
subsequently delve into the application area of logistics.

Artificial Dataset Generation. Artificial datasets can either be rendered or
composed. When rendering images, we can carefully choose a desired image
layout and easily generate a multiplicity of annotations - even the ones that
are very costly to obtain, such as 3D annotations. BlenderProc [Den+19] is
a procedural Blender1 pipeline that enables photorealistic renderings to create
synthetic datasets. Examples for popular rendered datasets include [Son+17b;
Zhe+20].

In contrast to that, image datasets can also be generated by composition. Im-
age composition is the task of seamlessly combining two images by cutting a
foreground object from one image and pasting it onto another image. This is
an important task in computer vision with a wide range of applications. Niu
et al. [Niu+21] present a comprehensive survey on the topic, and we refer to them
for details on applications and subtasks included in image composition. For our
work, we focus on simple image composition and neglect effects that might make
images look unrealistic to humans, as this has proven to be sufficient for training
the backbone of a neural network [Ghi+21]. More explicitly, inconsistencies in-
troduced by incompatible colors, unreasonable illumination, mismatching size of
objects, or their location are not considered.

1 See https://www.blender.org/ [Last accessed on Sept. 20, 2024].
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Dwibedi et al. [DMH17] present a procedure to generate a targeted dataset for
instance segmentation. As input, a set of images for each category, picturing solely
the object of interest with a modest background, is needed. They recommend
diverse viewpoints, in order to enable detection from diverse viewpoints as well.
A foreground background segmentation network is trained to obtain segmentation
masks for the foreground objects. In addition, suitable background images need
to be chosen. Afterwards, objects are cut out with their mask from the images and
pasted onto a background image. Dwibedi et al. ensure invariance to local artifacts
from pasting by applying a set of blending methods. The exact same images are
synthesized multiple times, where only the blending method varies. They show
that this method enables training a neural network for instance segmentation and
that combining the synthetic data with only 10% of the real training data surpasses
the performance compared to training on all real data. Ghiasi et al. [Ghi+21]
present a similar technique, however, they use existing annotated datasets as their
source for both the foreground and the background and found scale jittering to be
very efficient. First two images within a dataset are randomly chosen and their
scale is jittered. Subsequently, objects from one image are cut out by using their
given annotated mask and pasted randomly onto the second image. During this
process annotations within the second image are adjusted accordingly, i.e. adjusted
for occlusion. They do not use geometric transformations such as rotation and find
Gaussian blurring not to be beneficial. Ghiasi et al. conclude that their method
is highly effective and robust. Mensink et al. [Men+21] present a study on the
influence of several factors on the performance for transfer learning. They find
that the image domain is the most important factor and that the target dataset
should be contained in the source dataset to achieve best results.

In our work, we follow an approach similar to Dwibedi et al. [DMH17], however,
fully automate the foreground object image retrieval by using web scraping and a
pre-processing pipeline.

Applications in Logistics. Work on the plane-wise segmentation of parcels,
without the need for a custom training dataset was presented by Naumann et al.
[Nau+20]. Plane segmentation information is combined with contour detection
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to generate plane-level segmentations. Small load carriers have been targeted
using synthetic training data [MGF20]. Furthermore, the problem of packaging
structure recognition has been tackled [HM18; Dör+20b; Dör+21]. Packaging
structure recognition aims at localizing and counting small load carriers that are
stacked onto a pallet.

4.2 Dataset Generation [Nau+22]

Our dataset generation approach is based on Dwibedi et al. [DMH17]. We follow
a similar procedure, apart from the data acquisition approach. This section is
organized as follows: In Section 4.2.1, we explain the data acquisition through
web scraping. Subsequently, we present three different image selection methods
which yield three different datasets in Section 4.2.2. The image generation is
explained in Section 4.2.3 and finally we present our real dataset in Section 4.2.4.

4.2.1 Image Scraping

In order to generate a synthetic dataset, it is crucial to have a sufficiently large set
of images picturing the object of interest. We approach this problem by scraping
images from popular image search engines. We use four different search engines:

• Google Images: images.google.com,

• Bing Images: bing.com/images,

• Yahoo Images: images.search.yahoo.com and

• Baidu Images: image.baidu.com.

We scraped images for the object of interest, i.e. parcels, and for distractor objects.
The full source code, including a Dockerized web application is available at
https://a-nau.github.io/parcel2d.
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Objects of interest. For the objects of interest, i.e. the parcels, we chose 9
different search queries that all represent the same object category: parcel, parcel
package, parcel amazon, packet post, packing carton, packing box, carton box,
shipping box and pallet carton. In order to increase the diversity and quantity
of the image data, we translated the English language search queries to German
and Chinese. The parcel search was performed in English and German for the
search engines Google, Yahoo and Bing. Chinese was used for Baidu. In total,
we collected 21, 862 images of the object of interest.

Distractor objects. Since the distractors can be arbitrary objects, we ran-
domly sampled 100 category names from the ShapeNetSem dataset [SCH15] and
used these as search query. This gives us a wide range of object categories,
while simultaneously preventing the introduction of a strong bias towards certain
categories. Since it is easier to find suitable distractors, we only performed the
search in English and German and focused on Google Image search. In total we
downloaded more than 12,000 images for distractors.

Background Images. We did not scrape background images, but instead
used images from the SUN397 database [Xia+16]. We excluded the category
archive since parcels might be contained in the background, and sampled the
scene categories randomly otherwise. Our training, test, and validation split is
done across categories, not image instances, in order to prevent a leakage of
background image information.

4.2.2 Image Selection

Scraping images by merely a textual input can yield high quantities of data,
however, it is difficult to assess the suitability of each of the images for the
dedicated use-case. Desirable are images, where
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• the image quality is sufficiently high to enable high-quality image compo-
sitions,

• the image is a photograph of a real scene,

• the background is homogeneous and easy to remove, and

• the object of interest is the only object and not occluded.

To select such images, we started off by removing all tiny images, i.e. smaller
than 80 kb in size. This threshold was determined empirically, trying to prevent
the usage of low quality images. The next step is to analyze the backgrounds of
the images. Since we want to cut out objects automatically in the next step, we
discard images with inhomogeneous backgrounds. This is achieved by analyzing
the color variability of the outer frame of the images. More precisely, we compute
the variance of all pixels within a 2% outer margin of the image, and keep all
images where the mean of the variance of the three color channels is smaller
than 50. Subsequently, we apply the automated background removal tool Rembg2

that converts images into masked RGB-A images. The tool is based on U2-Net
[Qin+20] and is used to segment the objects of interest. Automated background
removal is a challenging task, since the pre-processing only removes images with
a strong background variance, however, the images might still contain a cluttered
scene with multiple objects. We noticed that especially for difficult images the
resulting segmentation masks contain large zones with a high transparency. This
leads to the foreground object smoothly transitioning into the background. Since
this is not desired, we filter out such examples by computing a mask transparency
score. The score is calculated as the percentage of non-zero pixels that have an
opacity value below a certain threshold. This threshold is chosen to be an opacity
of 95%, and we keep images with a mask transparency score smaller than 0.1.
These pre-processing steps are applied equally for all images we collected, i.e.
objects of interest and distractor objects. In the case of the object of interest, this
reduces our set of images from over 21, 000 to 2, 859.

2 See github.com/danielgatis/rembg [Last accessed on Sept. 20, 2024].
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In order to analyze the impact of the image selection on the quality of the resulting
dataset, we create three different datasets from the 2, 859 parcel image candidates.

Parcel2D Plain. This is the base dataset, where in addition to the above-
mentioned pre-processing a selection based on mask convexity is introduced. We
compute a mask convexity score, and discard all images with a mask convexity
score smaller than 95%. We compute the convexity score as the quotient of the
area of the biggest contour divided by its convex hull. It has a total size of 1, 321
instances of parcels.

Parcel2D CNN. We only use the annotations for the category "box" of the
OpenImages dataset [Kuz+20]3, in order to train a Mask R-CNN [He+17]. We
employ this Mask R-CNN to detect whether there is exactly one parcel in a
scraped image. The detection score threshold is set to 95% and we discard any
images with more or less than one detected parcel. In addition, we use the same
mask convexity as described for Parcel2D Plain. This dataset consists of 1, 066
instances.

Parcel2D Manual. We revised the 2, 859 candidate images manually, to only
select the ones we find suitable, i.e. photos of a single parcel with a homogeneous
background. The final dataset contains 854 instances.

4.2.3 Image Generation

For the generation of the final datasets, we always use the full set of distractor
objects and the respective set of parcel objects. To ensure fair comparability we
used the same configuration for all datasets: We sample between 1-4 objects of
interests and 2-4 distractor objects. We paste these objects at a random position

3 We use the updated dataset OpenImages V6 from https://storage.googleapis.com/openimages/we
b/index.html [Last accessed on Sept. 20, 2024].
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onto the background while maintaining the original size of the background and
introducing 2D rotations and scaling of the objects. In order to guarantee a suitable
size of the objects, we limit their scale such that their (relative to the background
image) longer side occupies between 15% and 40% of the image. In addition,
we allow a maximum upscaling by 20%, since otherwise the objects potentially
become overly blurry. We set a maximum Intersection over Union (IoU) of 0.5
between objects, and reattempt randomly pasting the objects onto the background,
if this threshold is crossed. When a suitable arrangement of objects and distractors
is found, we generate four different versions of the same image. This means, we
leave the background, the objects and their positions the same, and only adjust
the composition method. The following blending methods are used: no blending,
gaussian blending, motion blur and Poisson blending [PGB03]. Compared to
Dwibedi et al. [DMH17], we add motion blur. We generate 2, 000 training image
configurations and 500 for each, validation and testing. Note that the number of
images is four times that much, since we generate one image per blending method.

4.2.4 Evaluation Dataset: Parcel2D Real

In order to evaluate the usability of our approach in real world applications, we
collected a dataset of parcel photos in various environments. Our validation
dataset comprises 96 and the test dataset 297 images. We describe the data
acquisition and the automated annotation process in the following. Note, that
while our focus is on a dataset for instance segmentation, we decided to use
an automated approach for the dataset generation, which inherently yields 3D
annotations as well.

Data acquisition

We built a custom camera rig on which we mounted a Basler Blaze time-of-flight
camera and a Stereolab Zed2 stereo camera. The sensor of the Blaze and the
center of the Zed2 are aligned vertically. To allow the transferral of annotations
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from the depth image of the Blaze to the color images of the Zed2, we calibrated
the Blaze with each, the left and the right camera of the Zed2. For the acquisition
of the photos, we mounted the camera rig onto a tripod. For each image, we
additionally collected the background ID and the IDs of the parcels present in the
image. See Fig. 4.2 for exemplary images.

Figure 4.2: Exemplary images of the Parcel2D Real dataset. [©2022 IEEE]

Annotation generation

Starting from the captured RGB-D image as seen in Fig. 4.3a, we first applied a
plane segmentation approach [Fur+18; Gri+19] (see Fig. 4.3b). To identify the
ground plane, we assumed that it is close to the camera and, in comparison with
other planes, relatively large. Using the ground plane, we searched all candidates
for parcel top planes by computing the angle between the corresponding normal
vectors. To reliably identify parcels, we discard top plane candidates based on the
ground truth parcel dimensions. By projecting the remaining parcel top planes
onto the ground plane, and fitting the best 3D bounding box with ground truth
dimensions around the points using a RANSAC approach [FB87], we identify
the final parcel annotation as exemplary shown in Fig. 4.3c. These annotations
can then be projected onto the color images using the calibration information and
we obtain the annotated RGB images as in Fig. 4.3d. We manually revised the
dataset to not include erroneous detections.

70



4.3 Evaluation

(a) Raw Input (b) Plane Segmentation

(c) Annotated RGB-D image (d) Annotated RGB image

Figure 4.3: Visualization of the annotation generation process: (a) Raw input data from the depth
and stereo camera, (b) plane segmentation result for the RGB-D image, (c) resulting
annotation on the depth image, and (d) annotation that has been transferred onto the RGB
image (for one image and one parcel only). [©2022 IEEE]

4.3 Evaluation [Nau+22]

4[We present our model and training configuration in Section 4.3.1. Next, we
evaluate the importance of the image selection strategies in Section 4.3.2 and
finally present an ablation that analyzes the effect of using blending methods in
Section 4.3.3.]

4 The following paragraph has been added to improve the reading flow.
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4.3.1 Model Configuration

For all our experiments, we employ a ResNet-50-FPN [Lin+17] that was pre-
trained on theMicrosoft COCOdataset [Lin+14] as backbone. The same augmen-
tation techniques are used during training for all datasets. For all our experiments
we use Stochastic Gradient Descent with Momentum (SGD+M) with a batch size
of 16 and a frozen backbone. The learning rate schedule is a cosine learning rate
schedule [LH17] with an initial learning rate of 0.01 and a final learning rate of
0 after 15 000 iterations. Additionally, we apply a linear warm up during the first
1000 iterations. 5[We select the final model after 15 000 iterations and not the
one with the highest Mask AP on the validation set as done in [Nau+22].]

4.3.2 Comparison of Image Selection Strategies

We analyze the influence of the three presented image selection methods, by
training a ResNet-50-FPN on each of the created datasets, and subsequently
evaluating their performance on Parcel2D Real that was presented in Section 4.2.4.
Furthermore, we add a baseline to cover the special case when a domain-specific
dataset is available. For our baseline numbers, we train on real photographs of
boxes taken from the OpenImages dataset category “box”. This training dataset
contains 2086 instances. Note, that the OpenImages definition of box is broader
than the one used for our manual image selection. The results are summarized in
Table 4.1.

We see that all three methods for image selection, i.e. no image selection (Plain),
image selection by Mask R-CNN and manual image selection can be used to
generate suitable datasets. All resulting datasets allow a transfer from synthetic to
real data as indicated by the Box AP75, which is above 80 in all cases. For the case
of object detection, however, training on the relevant subset of the OpenImages
dataset yields the best results as implicated by the Box AP75. While for the

5 Note that this sentence has been altered from [Nau+22], to account for a slight difference in model
selection.
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Box Mask
AP AP50 AP75 AP AP50 AP75

Parcel2D Plain 68.5 (0.8) 96.0 (0.6) 85.6 (2.2) 82.4 (0.4) 96.4 (0.5) 93.6 (0.4)
Parcel2D CNN 66.3 (0.3) 94.9 (0.4) 84.6 (1.0) 81.1 (0.4) 94.9 (0.4) 92.9 (0.8)
Parcel2D Manual 65.7 (0.5) 92.9 (0.4) 84.3 (1.3) 78.4 (0.3) 92.7 (0.0) 90.2 (0.4)

OpenImages 72.9 (0.5) 96.7 (0.4) 94.2 (0.6) 83.2 (0.3) 96.7 (0.4) 95.2 (0.5)

Table 4.1: 6[Quantitative evaluation results for bounding box detection and instance segmentation on
Parcel2D Real. We repeated all training runs five times and report mean values with the
standard deviation in parentheses.]

Box AP50, results are comparable across the different datasets, OpenImages
clearly outperforms the other datasets on Box AP75. This might be due to the
broader and thus, more diverse definition of the category of interest, box. The
same argument can be applied to the comparison of the three image selection
methods: the Plain variant performs best for object detection and segmentation
and at the same time has the broadest definition of the category box, since no
object-specific filtering is applied. The fact that the image domain of the training
data should contain the one of the test data to get highest performance during
transfer learning, was analyzed by Mensink et al. [Men+21] and can be confirmed
for our application.The results for the task of image segmentation are different.
All datasets have a Mask AP75 above 90 and thus, perform very well on the test
dataset. Differences between training on the Plain dataset, the CNN dataset and
OpenImages are rather small, only the manually selected dataset performs worse.
The best dataset according to the Mask AP is the Plain dataset.

We cannot generalize these findings to arbitrary tasks, however, it is noteworthy
that contrary to human intuition, a cautious cherry-picking of instance examples

6 This table, including caption, has been updated from the original publication [Nau+22] by re-
peating all training runs five times to increase statistical meaningfulness. The performance is
generally slightly lower compared to [Nau+22], but the additional analysis confirms the previously
observed trends.
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does not always yield the best performance. Finally, we trained the ResNet-50-
FPN on both OpenImages and Parcel2D Plain combined. The results on the real
test dataset are a Box AP of 72.6 and a Mask AP of 86.5. Thus, training on the
combination of the two datasets is beneficial considering Mask AP.

4.3.3 Ablation Study

Since Dwibedi et al. [DMH17] and Ghiasi et al. [Ghi+21] do not agree on the
importance of blending methods, we performed an ablation study to check which
finding holds true in our use-case. Ghiasi et al. question the importance of
using blending methods, whereas Dwibedi et al. claim, that blending methods
are important for the quality of the dataset. We obtain a Box AP of 51.2 and a
Mask AP of 70.9, when training on Parcel2DManual, without using any blending
methods. Since this is a considerable drop in performance, compared to the case
with blending methods, we argue that blending methods are an important factor.
Further, the effect that Ghiasi et al. observed, probably stems from the fact that they
augment existing annotated images. These images inherently contain annotated
objects where no local pasting artifacts are present in addition to pasted objects
with local artifacts and thus, the model cannot focus on pasting artifacts as main
visual cues.
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Parcels

Automated tampering assessment is crucial due to the steadily rising amount of
valuable goods in supply chains. It guarantees the integrity of a parcel along
the supply chain and thus, can directly affect customer satisfaction. Automating
tampering detection requires two main steps: (1) we need to reliably (re-)identify
parcels along their way in the supply chain. This task is demanding since its unique
identifier such as a shipping label might not always be visible and distinguishing
parcels based on visual cues frequently is difficult due to their homogeneous
texture. (2) Appearance changes on the packaging that might stem from tampering
need to be detected. Especially differences in perspective and lighting conditions
of the images considerably increase the complexity associated with the task.

Since the re-identification of parcels has been studied by Clausen et al. [Cla+19],
we assume in the following that the parcel has already been identified and focus on
step (2), i.e. appearance change detection to identify signs of potential tampering.
In accordance with our use-case last-mile delivery, our approach only takes a
single RGB image as input which should be compared against a reference from a
database (cf. Fig. 5.1 (a)). By estimating the parcel corner points in the image and
applying a perspective transformation τ as visualized in Fig. 5.1 (b), the task can
be reduced to parcel side surface matching and change detection per side surface
pair (cf. Fig. 5.1 (c)). This alleviates the challenges arising from differences in
viewing angles across images, however, taking the variance in lighting into account
remains demanding. We evaluate different change detection approaches on our
newly collected tampering detection dataset TAMPAR and reach 81% accuracy
and an F1-Score of 0.83. Additional sensitivity analyses are presented to analyze
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Figure 5.1: Overview of the tampering detection pipeline: We assume that the full parcel texture
from a database (a) is given as a reference. We employ parcel corner point detection
to the input image to generate viewpoint-invariant parcel side surface representations by
applying a perspective transformation τ (b). Finally, to identify tampering we perform
appearance change detection for all matching parcel side surfaces (c). [Graphic from
[Nau+24], ©2024 IEEE]

the effects of tampering types, distortion and viewing angles. To summarize, the
main contributions of this chapter are:

• we present an effective keypoint definition for parcels which is evaluated
for parcel corner point detection,

• we introduce the novel dataset TAMPAR for TAMpering detection of
PARcels which comprises more than 900 real-world images of parcels with
bounding box, segmentation mask, keypoint and tampering type annota-
tions,

• we propose and evaluate a tampering detection pipeline that combines
keypoint and change detection, and

• we make our dataset and code publicly available at https://a-nau.github.io
/tampar.
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5.1 Related Work

We review related work in Section 5.1. Subsequently, we outline our approach
for parcel keypoint detection and for change detection in Section 5.2. Moreover,
TAMPAR, our novel dataset for tampering detection of parcels is introduced.
Section 5.3 presents the evaluation for our parcel keypoint detection approach, as
well as for the full tampering detection pipeline.

Sections 5.1 to 5.3 have been previously published and are direct quotes from
Naumann et al. [Nau+24], including tables and figures. These sections are marked
with [Nau+24] in the respective headline.

5.1 Related Work [Nau+24]

We review related literature in logistics applications, 3D bounding box detection,
keypoint estimation and change detection in the following.

Applications in Logistics. Karaca et al. [KA05] present an early approach
using a stereo camera and featurematching techniques to track parcels along a con-
veyor belt. Clausen et al. [Cla+19] present an approach for tracking parcels inside
a logistics facility. A Mask R-CNN-based [He+17] Siamese network [Bro+93]
complemented with their so-called feature improver head is used to re-identify
parcels. They create a manually labeled dataset of 3,306 images taken by 37
different cameras with a total of 14,248 parcels. The evaluation shows that cur-
rently around 81% of parcels are tracked correctly. For more details on literature
regarding re-identification we refer to Ye et al. [Ye+22] and Khan et al. [KU19].
Naumann et al. [Nau+20] work towards parcel side surface segmentation. By
combining plane segmentation [Liu+19] and contour detection [Can86; SRS20],
they present an approach to refine parcel side surface segmentation masks without
relying on any task-specific training data. Naumann et al. [Nau+23a] tackle the
problem of estimating the 3D shape of potentially damaged parcels from a single
RGB input. They extend Cube R-CNN [Bra+23] by an iterative mesh refine-
ment [GMJ19] and present Parcel3D, a dataset comprising over 13,000 images
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of cuboid-shaped and damaged parcels with full 3D annotations. Noceti et al.
[NZO18] present a multi-camera system for damage and tampering detection in
postal supply chains. Damages are detected by finding the parallelepiped which
best aligns with the captured images. For tampering detection a Histogram of
Oriented Gradients (HOG) [DT05] for the parcel side surfaces is used. Rotation
invariance is accomplished by considering all possible rotations with histogram
intersection as similarity measure. Tampering is reported when the similarity of
two feature vectors is below a certain threshold. Other works focusing on parcels
consider synthetic training data generation [Nau+22], tracking inside a moving
truck [Hu+21a] and depalletization [Arp+20; Chi+20]. Finally, Naumann et al.
[Nau+23b] present a detailed overview of computer vision applications in trans-
portation logistics and warehousing.

3D Bounding Box Detection. Dwibedi et al. [Dwi+16] present an early
deep learning-based approach to estimate the 3D bounding box of cuboid-shaped
objects. Generally, 3D bounding box detection is a common task for autonomous
driving [Arn+19]. Approaches often rely on only estimating yaw, since they can
exploit the fact that vehicles are driving on the road. Li et al. [Li+20] exploit
2D/3D correspondences by estimating keypoints of cars to improve 3D bounding
box detection. Rui et al. [Rui+20] introduce a framework for vehicle recognition
from a single RGB image. They estimate a 3D bounding box which is used to
compute normalized views for the front, side and roof view of a car by applying a
perspective transformation. This information is fused with region-aligned features
of the respective region of interest to estimate the vehicle model.

Keypoint Detection. Lots of research tackling keypoint estimation considers
monocular human pose estimation, which is reviewed by Chen et al. [CTH20]
and Chen et al. [Che+22]. Dörr et al. [Dör+21] treat the problem of packaging
structure recognition. The goal is to identify the number, type and arrangement
of small load carriers on a uniformly packed transport unit from a single RGB
image. They extend CornerNet [LD18] to leverage keypoint estimation to detect
objects based on four arbitrary corner points.
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Change Detection. To detect signs of tampering, after re-identification,
change detection is necessary. Change detection is most commonly applied
for remote-sensing and street views and reviewed by Shi et al. [Shi+20]. A dataset
for change detection in industrial environments has been presented by Park et al.
[Par+21]. Furthermore, Park et al. [Par+22] propose the novel change detec-
tion approach SimSaC which is targeted towards industrial use-cases. SimSaC
relies on dual task learning and exploits both, dense correspondence and mis-
correspondence to increase robustness when encountering imperfect matches.

While Noceti et al. [NZO18] also tackle the problem of tampering detection,
they focus on a constrained environment with calibrated background, constant
illumination and a multisensory setup. In contrast to that, our approach does
not have any such constraints and relies just on a single RGB image as input.
Consequently, ours is the only approach suitable for scenarios such as last-mile
delivery and cannot be fairly compared to the work by Noceti et al. [NZO18].
Furthermore, we rely on existing keypoint and change detection approaches and
strive to combine them efficiently, however, we do not aim to develop novel
approaches in these areas.

5.2 Approach [Nau+24]

We present our approach for parcel keypoint detection in Section 5.2.1 and for
change detection in Section 5.2.2. Details on our novel dataset TAMPAR are
given in Section 5.2.3.

5.2.1 Parcel Keypoint Detection

We use a Mask R-CNN [He+17] with keypoint head and a ResNet-50-FPN
[He+16; Lin+17] backbone for our experiments. This choice is motivated by
the fact, that we do not focus on improving keypoint detection techniques, but

79



5 Tampering Assessment for Parcels

rather want to demonstrate the usefulness of well-established baselines for the
use-case of parcel corner detection.
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Figure 5.2: Visualization of the consistent and unambiguous keypoint ordering for a cuboid without
well-defined front and back across different viewing angles. We highlight the front side
in green and the back side in yellow. [©2024 IEEE]

One key challenge for this use-case is to identify an unambiguous keypoint or-
dering which works well with Artificial Neural Networks since there are several
options for ordering keypoints of a parcel. In contrast to the common application
of 3D bounding box detection for autonomous driving, where vehicles have a
well-defined front and back side, there is no such notion for parcels. To have a
consistent, unambiguous keypoint ordering with explicit visual cues, we proceed
as follows. We assume, that three parcel side surfaces are visible in each image and
define the front of a parcel by choosing the visible parcel side surface whose nor-
mal aligns best with a left- and front-facing vector, i.e. (x, y, z) = (1, 0,−0.5).
From this, we derive our keypoint ordering definition, which is visualized in
Fig. 5.2 and described in the following. We denote the number of visible α and
invisible β parcel side surfaces that intersect in keypoint ki as ki=(α, β). On the
front side (highlighted in green in Fig. 5.2), we define the keypoints:
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• k0 = (3, 0): point of intersection of the three visible parcel side surfaces,
which is located inside the convex hull of the parcel.

• k1=(1, 2): joint point of the two invisible parcel side surfaces, where only
two visible parcel edges intersect.

• k2=(2, 1), leftmost: leftmost point of the remaining points, where three
visible parcel edges intersect.

• k3=(2, 1), rightmost: remaining point, which is the rightmost point that
belongs to two visible parcel side surfaces and one invisible one.

The backside (highlighted in yellow in Fig. 5.2) of the parcel is the one across
from the front side, and we define the keypoint order as follows:

• k4=(2, 1): point that is part of two visible parcel side surfaces and thus, at
this point three visible parcel edges intersect.

• k5=(0, 3): self-occluded keypoint, which is the point of intersection of the
three invisible parcel side surfaces.

• k6=(1, 2), leftmost: leftmost point of the remaining points, where two
visible parcel edges intersect.

• k7=(1, 2), rightmost: remaining point, which is the rightmost point where
two visible edges intersect.

This keypoint ordering is used for training and evaluating corner point detection
in the following. Note, that it is not invariant to horizontal, but only to vertical
flipping of the image. Furthermore, technically, estimating seven keypoints would
be sufficient to infer all eight, however, we want to show that the estimation even
works for the self-occluded keypoint k5. The information on the seven visible
keypoints can be utilized to compute viewpoint-invariant parcel side surface rep-
resentations by applying a perspective transformation. This, in turn, enables the
composition of parcel texture mappings as visualized in Fig. 5.1 (a).
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5.2.2 Change Detection

In our use-case, we assume that a postman takes a single image of a parcel
which seems suspicious of potential tampering. First, the parcel keypoints are
extracted and the viewpoint-invariant parcel side surfaces of size 400×400 pixels
are computed as described in Section 5.2.1 and visualized in Fig. 5.1 (b). By
exploiting this information, we can reduce the task of tampering detection of
parcels to comparing fronto-parrallel parcel side surface representations. If one
parcel side surface has been tampered with, the parcel is considered tampered.

While the usage of viewpoint-invariant representations alleviates the problem of
perspective distortion, change detection remains challenging since image align-
ment issues cannot fully be resolved, and additionally, the lighting might vary
significantly (cf. Fig. 5.1 (c)). To cope with these issues, we use SimSaC [Par+22].
SimSaC is a recent approach for robust change detection with imperfect matches.
It estimates scene flow using correspondence maps at the same time as change
masks by exploiting mis-correspondences. This enables robustness against geo-
metric transformations and differences in lighting.

We benchmark SimSaC against several baselines, each combining an image ho-
mogenization approach and a similarity metric. For image homogenization, we
utilize (cf. Fig. 5.3)

• DexiNed: Dense EXtreme Inception Network for Edge Detection [SRS20]

• Canny: Adaptive Canny edge detection [Can86; JN12]

• Laplacian: Laplacian filter

• Mean Channel: Per-channel mean alignment

As image similarity metrics, we consider

• Learned Perceptual Image Patch Similarity (LPIPS) [Zha+18],

• Structural Similarity (SSIM) [Wan+04],

• Multiscale Structural Similarity (MS-SSIM) [WSB03],
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• Complex Wavelet Structural Similarity (CW-SSIM) [Sam+09],

• HOG [DT05] feature similarity 1, and

• Mean Absolute Error (MAE).

(a) None (b) SimSaC (c) DexiNed (d) Canny (e) Laplac. (f)Mean Ch.

Figure 5.3: Examples of the different image homogenization methods before (top) and after (bottom)
tampering. Note that SimSaC [Par+22] is the only approach that localizes potential
tampering and directly outputs change maps. [©2024 IEEE]

A change is detected when the input and reference parcel side surface image after
applying the image homogenization to both, have a low image similarity. Suitable
thresholds for image similarity will be determined in Section 5.3.2.

5.2.3 Dataset

Our dataset resembles a use-case with multisensory setups within logistics facili-
ties and a simple cell phone camera during the last-mile delivery. More precisely,
we assume that multiple cameras are used to capture and segment all five visible
parcel side surfaces in logistics facilities. Note that we also suppose that the
side surface with the unique identifier is always visible, which means that the
opposing side surface is never visible. Subsequently, the parcel ID and texture
map, as visualized in Fig. 5.1 (a), are saved to a database. Finally, a single RGB

1 We use 9 orientation bins, 8 pixels per cell and 2 cells per block.
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image of a parcel with suspected tampering is taken during last-mile delivery and
compared against its high-quality reference texture.

To generate a suitable dataset for this use-case, we proceed as follows. We
use ArUco markers to uniquely identify parcels and the spatial relationships
between their side surfaces. The parcel textures for the database are generated
by taking several images of the parcel in its original state, i.e. without tampering.
By manually labeling the parcel corner points, we automatically generate the
full parcel texture by applying perspective transformations. Subsequently, we
apply different types of tampering to three out of the five relevant parcel side
surfaces. While real-world tampering attempts focus on a single parcel side
surface, our dataset design enables a more diverse analysis of tampering detection
by considering a larger number of tampering examples. As mentioned before,
transferring side surface tampering to the parcel level is straightforward. We
consider three different types of tampering flags, each with an easy and a hard to
detect variant:

• Label: Adding a new shipping label (easy) or transportation hints (hard)

• Tape: Adding new tape, which covers more than 50% of the longer side
(easy), or less than 25% of the shorter side (hard)

• Writing: Adding manually written text, using a pen with 5-15mm (easy)
or 1.5−3mm of width (hard)

Note that addingwritten text usuallywould not be considered tampering. However,
we strive to detect diverse appearance changes to reliably flag parcels for manual
inspection. In total, we collect and annotate 296 images of 10 parcels for the
training/validation and 614 images of 20 parcels for the test set. Since each
image contains three visible parcel side surfaces, TAMPAR comprises 888 images
for training/validation and 1842 images for testing change detection. The main
difference to existing datasets such as Parcel3D [Nau+23a] and Parcel2D Real
[Nau+22] is that we have paired images of the same parcel across different points
in time, i.e. before and after tampering.
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5.3 Evaluation [Nau+24]

We first evaluate keypoint detection for parcel corners separately in Section 5.3.1.
Subsequently, we evaluate the considered change detection approaches isolated
and in combination with keypoint estimation in Section 5.3.2. Furthermore, we
present a sensitivity analysis on the influence of the tampering type, lens distortion
and viewing angles.

5.3.1 Parcel Corner Point Estimation

For all experiments, we use a ResNet-50-FPN [He+16; Lin+17] that was pre-
trained on MS COCO [Lin+14] as backbone and freeze its weights at stage four.
We use Stochastic Gradient Descent with Momentum (SGD+M) with a batch size
of 16 and a cosine learning rate schedule [LH17]. The initial learning rate is set
to 0.001 and the final learning rate to 0 after 10 000 iterations. Moreover, a linear
warm-up during the first 1000 iterations is applied.

Training is always performed on the synthetic dataset Parcel3D [Nau+23a] which
contains cuboid-shaped and damaged parcel images. For the evaluation, we
consider synthetic and real-world data in the following. We evaluate bounding
box detection, instance segmentation and keypoint detection, and summarize the
quantitative results in Table 5.1.

For the evaluation of keypoint detection using Keypoint AP2, it is necessary
to define κi for each keypoint. This value is usually obtained by comparing
redundantly annotated images to infer each keypoints’ annotation precision. Since
no redundantly annotated images are available, we select κ5 = 0.1 for the self-
occluded and κi = 0.05, i ∈ {0, 1, 2, 3, 4, 6, 7} for the visible keypoints, which
is close to the κ for human hips (0.107) and human wrists (0.062), respectively
[Lin+14]. We argue that human wrists are a suitable approximation because the

2 See https://cocodataset.org/#keypoints-eval for details.
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5 Tampering Assessment for Parcels

keypoints for Parcel3D and Parcel2D Real are computed from 3D bounding boxes,
frequently leading to a misalignment between the parcel corners in the image and
the actual annotated keypoints. This misalignment is also present for damaged
parcels, where the keypoints correspond to the ones of the pristine version of the
parcel.

Box Mask Keypoint
Dataset AP AP75 AP AP75 AP AP75

Parcel3D 93.62 (0.1) 98.46 (0.2) 97.54 (0.2) 98.58 (0.3) 88.80 (0.2) 94.06 (0.2)
Parcel2D Real 84.88 (0.2) 97.28 (0.1) 85.02 (0.2) 96.92 (0.6) 75.76 (0.5) 85.36 (1.2)
TAMPAR (ours) 96.38 (0.2) 99.72 (0.5) 98.94 (0.2) 99.70 (0.5) 97.18 (0.5) 99.12 (0.4)

Table 5.1: Quantitative performance analysis of the ResNet-50-FPN for bounding box detection,
instance segmentation and keypoint detection. We repeated all trainings five times and
report mean (standard deviation).

5.3.1.1 Synthetic Data

The quantitative results from Table 5.1 indicate excellent performance for bound-
ing box detection and instance segmentation, with a Box AP of 93.62 and a
Mask AP of 97.54. Likewise, keypoint detection achieves strong results with a
Keypoint AP of 88.80.

Qualitative examples are presented in Fig. 5.4. For intact, i.e. cuboid-shaped,
parcels keypoint detection enables computing high-quality fronto-parallel views
of the parcel side surfaces as can be seen in Fig. 5.4a. Strong distortions of
parcel side surface views, however, cannot be recovered and lead to low-quality
representations, which are challenging to use for tampering detection. In the case
of damaged parcels, the representations’ quality strongly depends on the degree of
deformation (cf. Fig. 5.4b). Strong deformations also impede tampering detection.
Problematic cases can include imprecise or missing detections (cf. Fig. 5.4c).
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5.3.1.2 Real Data

Due to the fact that training was only performed on the synthetic training dataset
Parcel3D [Nau+23a], a domain gap occurs when evaluating on the two real-world
datasets Parcel2D Real [Nau+22] and TAMPAR. This domain gapmanifests itself
in the generally lower performance on Parcel2D Real compared to the evaluation
on synthetic data, as seen in Table 5.1. At the same time, performance on
TAMPAR is higher, presumably due to the simpler nature of the dataset - all
images are high-quality and show only a single parcel in the center. Performance
for bounding box detection and instance segmentation remains highwith aBox AP
of 84.88/96.38 and a Mask AP of 85.02/98.94, on Parcel2D Real and TAMPAR,
respectively. The same holds true for the performance of keypoint detection,
which reaches 75.76 and 97.18 Keypoint AP.

Quantitative inspection of the prediction results confirms the suitability of
Parcel3D and our proposed keypoint ordering. Especially for cuboid-shaped
parcels, as visualized in Fig. 5.5a, results look very promising for applications
in tampering detection. Furthermore, we evaluate our approach on images of
damaged parcels without ground truth annotations (cf. Fig. 5.5b). These qualita-
tive impressions also underpin the suitability of our approach, however, detecting
keypoints accurately for damaged parcels seems to be a more difficult task. Ex-
amples of failed detections include missing and imprecise keypoint localizations,
as visualized in Fig. 5.5c.

5.3.1.3 Sensitivity Analysis: Lens Distortion

We investigate the influence of barrel distortion according to

rsrc = rdist ·
(
A · r3dist +B · r2dist + C · rdist +D

)
with rsrc being the radial distance from the image center in the input image, and
rdist the one, in the distorted output. We analyze six different settings, which
are visualized in Fig. 5.6 by creating distorted dataset versions with parameter
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A ∈ [−0.08,−0.04,−0.02, 0.04, 0.08, 0.16], B = 0, C = 0, and D = 1.0.
Note that these datasets can be smaller in size, since we discard instances if
the distortion corrupted the annotations (e.g. keypoints lie outside the image)
or the ArUco detection. Results in Fig. 5.7 indicate that instance segmentation
performance is robust w.r.t. distortion effects. While keypoint detection only
degrades for pincushion distortions (A < 0), bounding box detection results are
also affected by strong barrel distortions (A > 0).

5.3.2 Tampering Detection

We evaluate change detection in isolation by using the ground truth keypoint
annotations, as well as in a combined system on our novel dataset TAMPAR
by using keypoint predictions from Section 5.3.1. Furthermore, we analyze the
influences of tampering types, lens distortion, and viewing angles.

5.3.2.1 Pipeline Evaluation

Considering the input and reference parcel we first perform marker-based side
surface matching. Subsequently, we apply the image homogenization to both
(input and reference side surface view) and compute their image similarity using
all metrics mentioned in Section 5.2.2. We denote the combination of image
homogenization Method A and similarity Metric B as (Method A, Metric B), and
seek to determine the best image similarity metrics and corresponding thresholds.
SimSaC [Par+22] poses a special case since it uses the input and reference image
to output change maps. This enables localization of tampering, which is advan-
tageous in practice, however, not evaluated in this work. Instead, we compare
the binary change map to a black image (i.e. the change map corresponding to no
changes) to compute image similarity. We summarize the evaluation results using
simple thresholding by training a decision tree of depth one per method using all
similarity metrics as input in Table 5.2.
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Method Metric Accuracy Precision Recall F1-Score ROC-AUC

None LPIPS/MS-SSIM 0.66/0.65 0.66/0.65 0.91/0.93 0.76/0.76 0.60/0.58
SimSaC LPIPS/MAE 0.81/0.80 0.91/0.93 0.76/0.72 0.83/0.81 0.82/0.82
DexiNed HOG/SSIM 0.60/0.62 0.60/0.63 1.00/0.91 0.75/0.74 0.48/0.54
Canny MS-SSIM/SSIM 0.60/0.60 0.62/0.61 0.91/0.91 0.74/0.73 0.52/0.52
Laplacian LPIPS/LPIPS 0.65/0.68 0.71/0.71 0.72/0.80 0.71/0.75 0.64/0.65
Mean Ch. LPIPS/MS-SSIM 0.63/0.65 0.62/0.65 0.99/0.94 0.76/0.77 0.53/0.58

Table 5.2: Quantitative performance analysis of the tampering detection using a decision tree with
depth one. The metric indicates the selection for thresholding during the training of the
decision tree. We report metric names and scores for predicted / ground truth keypoints.

Results in Table 5.2 using predicted keypoints show that (SimSaC, LPIPS) yields
the best performance and reaches 0.81 accuracy and an F1-Score of 0.83. The
by far highest precision is also achieved by (SimSaC, LPIPS), which indicates
cautious change detection for our use-case. The highest recall is reached by
(DexiNed, HOG) and (Mean Ch., LPIPS), however, at the cost of precision. Per-
formance differences between using predicted and ground truth keypoint positions
are comparatively small due to the high accuracy of the keypoint detection (cf.
Table 5.1).

5.3.2.2 Sensitivity Analysis: Tampering Types

The analysis of performance differences across tampering types in Table 5.3,
shows that labels can be detected most reliably, while tape and especially writing
(hard) are more difficult to recognize. Surprisingly, when detecting writing
performance deteriorates when using ground truth keypoint annotations. One
potential reason for this might be, that inaccurate keypoints enlarge the region of
interest unproportionally.
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Tampering Label Tape Writing
Type easy hard easy hard easy hard

Number of Samples 606 570 462 546 624 498
Recall (Pred. Keypoints) 1.00 1.00 0.58 0.48 0.87 0.52
Recall (GT Keypoints) 1.00 0.99 0.59 0.49 0.80 0.36

Table 5.3: Sensitivity analysis on the performance differences across tampering types using (SimSaC,
LPIPS).

5.3.2.3 Sensitivity Analysis: Lens Distortion

We analyze the influence of six different degrees of distortion (cf. Fig. 5.6) on
the tampering detection quality using predicted keypoints and (SimSaC, LPIPS).
These distortions imply that our simple perspective transformation cannot ac-
curately create normalized side surface views and the change detection approach
needs to handle these inaccuracies. The results in Fig. 5.8 suggest robustness w.r.t.
distortions, with a slight negative trend for distortions with distortion strength
A > 0. This is in line with the fact, that our approach can cope with lens distor-
tion effects across the two real-world dataset TAMPAR and Parcel2D Real, while
being trained on different, synthetic data.

5.3.2.4 Sensitivity Analysis: Viewing Angles

We approximate the viewing angle per parcel side surface by considering the
angle between the x- and y-axis, and the polygon spanned by the four side surface
corner points. No clear trend emerges from this analysis in Fig. 5.9, which suggests
that our approach is robust w.r.t. a reasonable spectrum of viewing angles. Note,
however, that TAMPARdoes not feature extreme viewing angles. Due to the strong
distortions under such viewing angles, we expect the performance of tampering
detection to degrade heavily.
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(a) Intact Parcels

(b) Damaged Parcels

(c) Problematic Cases

Figure 5.4: Exemplary qualitative results for synthetic parcels. [©2024 IEEE]
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(a) Intact Parcels

(b) Damaged Parcels

(c) Problematic Cases

Figure 5.5: Exemplary qualitative results for real parcels. [©2024 IEEE]
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Figure 5.6: Visualization of the investigated distortion effects with parameter A ∈
[−0.08,−0.04,−0.02, 0.04, 0.08, 0.16], B = 0, C = 0, and D = 1.0. [©2024
IEEE]
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Figure 5.7: Quantitative performance analysis of the ResNet-50-FPN under different types of lens
distortion. We repeated all trainings five times and report mean values with standard
deviations as error boundaries. [©2024 IEEE]
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Figure 5.8: Sensitivity analysis for tampering detection w.r.t. to the distortion strength A using pred.
keypoints and (SimSaC, LPIPS). [©2024 IEEE]
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Figure 5.9: Sensitivity analysis for tampering detection w.r.t. to the viewing angle per side surface
using predicted keypoints and (SimSaC, LPIPS). Tampering types are encoded with dif-
ferent geometries and the prediction correctness with color-coding. [©2024 IEEE]
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In this chapter, we tackle the task of damage assessment for parcels. We limit
ourselves to 3D shape reconstruction of parcels, and, thus, consider only shape
deformations. Other types of common damages, such as water damage, are not
treated in this work. Note that it is also not possible to reliably infer information
about the state of the transported item just from a detailed inspection of the
packaging.

We present our model CubeRefine R-CNN for damage assessment, which extends
the 3D bounding box detection approach Cube R-CNN [Bra+23] by an iterative
mesh refinement [Wan+18; GMJ19] (cf. Fig. 6.1). Since this approach only relies
on a single RGB image as input, it is suitable for dynamic environments such as
for postmen or clients during last-mile delivery. Moreover, as our approach simul-
taneously estimates the current, potentially deformed shape and the original shape
of the pristine parcel (in the form of the 3D bounding box), it enables a detailed
3D analysis of parcel deformations. Furthermore, the estimated 3D bounding
box could be leveraged to generate viewpoint-invariant parcel side surface views
for tampering detection as suggested by [Nau+24]. Due to the lack of suitable
datasets, we introduce Parcel3D: a novel synthetic dataset with over 13 000 im-
ages of intact (cuboid-shaped) and damaged parcels. The main contributions of
this chapter are

• we propose CubeRefine R-CNN, a novel architecture that combines 3D
bounding box detection with an iterative mesh refinement for single image
3D shape reconstruction,
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Figure 6.1: Overview of the CubeRefine R-CNN architecture: Using Cube R-CNN’s Cube Head
[Bra+23] we first estimate a 3D bounding box from the RGB input image. By converting
the 3D bounding box into a mesh and applying iterative subdivision, we obtain an initial
mesh reconstruction. This initial reconstruction is iteratively refined in three stages as
proposed by [Wan+18]. [Graphic from [Nau+23a], ©2023 IEEE]

• we present a novel dataset, called Parcel3D, comprising synthetic images
of intact and damaged parcels with full 2D and 3D annotations, and

• we make our dataset and code publicly available at https://a-nau.github.io
/parcel3d.

The remainder of this chapter is structured as follows. We present an overview
of the related literature in Section 6.1. Subsequently, we present details on the
dataset generation approach in Section 6.2. Section 6.3 outlines, the proposed
Artificial Neural Network (ANN) architecture CubeRefine R-CNN and finally,
Section 6.4 presents the evaluation on synthetic and real data.

Sections 6.1 to 6.4 have been previously published and are direct quotes from
Naumann et al. [Nau+23a], including tables and figures. These sections are
marked with [Nau+23a] in the respective headline.
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6.1 Related Work [Nau+23a]

To the best of our knowledge there is no prior work on shape reconstruction from
single images in transportation logistics and warehousing. We review literature
on applications in logistics, cuboid reconstruction from RGB images and finally,
3D reconstruction of arbitrary objects from single images in the following.

Applications in Logistics. There is work on 2D segmentation of parcels
[Nau+20; Nau+22], packaging units [MGF20; May+20] and packaging structure
recognition [Dör+20b; Dör+21]. Moreover, there has been research on 3D re-
construction from RGBD images [Li+12; Pra+15; Son+17a; Arp+20] and from
multiple views [NZO18]. 3D reconstruction by using RFID technology has been
explored in [Bu+17]. Damage and tampering detection has been tackled by No-
ceti et al. [NZO18] in a constrained multi-camera setup. Tampering is detected
by comparing normalized parcel side surfaces and damage detection by fitting a
parallelepiped across multiple views. For an in-depth review on computer vision
applications in logistics, we refer to Naumann et al. [Nau+23b].

Cuboid reconstruction. Cuboid reconstruction from single RGB images by
identifying its 8 corner points in 2D has been tackled in the literature. Approaches
are class agnostic, meaning that diverse object categories are considered as either
cuboid or not. Xiao et al. [XRT12] present such an approach in the pre-deep
learning era that leverages corner and edge detection techniques. After the rise of
deep learning, also cuboid reconstruction was tackled with ANNs. Dwibedi et al.
[Dwi+16] present an approach to estimate the position of the 8 cuboid keypoints
using deep learning. A similar line of work is concerned with 3D bounding box
estimation for cars [FZL19; LYL21; Kum+22], which is reviewed in-depth by Ma
et al. [Ma+23]. Note, that by assuming that cars are driving on the road, rotation
estimation can be reduced to yaw estimation. Approaches leverage geometric
priors by requiring consistent vanishing points [Rui+20] and by imposing 2D/3D
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consistency [Li+20]. Recently, Brazil et al. [Bra+23] introduced a large bench-
mark for 3D object detection, which combines several existing datasets. Moreover,
they present a simple and effective model for 3D object detection, called Cube
R-CNN.

Single RGB image 3D reconstruction. There are many approaches for
general image-based 3D reconstruction without a confinement to an object type.
While the input for many approaches is a single RGB image, the output varies:
representations based on voxels [Cho+16; Xie+19; Yan+21], meshes [Kan+18;
Wen+19; GMJ19] and pointclouds [FSG17; GWM18] are common. In addi-
tion to that, implicit representations [Mes+19; Zak+21] have been introduced.
Most reconstruction approaches focus on single instances, either by considering
only images with a single instance or by employing 2D segmentation. More re-
cently, also NeRFs [Mil+20] have been used to tackle single-view reconstruction
[Mul+22]. Apart from supervised approaches, there has been work on 3D recon-
struction from 2D supervision [Kan+18], unpaired image collections [DP22] and
unsupervised reconstruction [ID18; Nav+20; WRV20; Hu+21b], since training
data with ground truth 3D annotations is difficult and costly to obtain. Han et al.
[HLB21] present an overview of approaches from the deep learning era that lever-
age either single or multiple RGB images for 3D reconstruction. The reviews of
Fu et al. [Fu+21] and Khan et al. [Kha+22] focus explicitly on single image 3D
reconstruction.

We introduce the new dataset Parcel3D to enable research on image-based 3D
reconstruction in the domain of logistics. Furthermore, we leverage the existing
general 3D object detection architecture Cube R-CNN [Bra+23] and extend it by
an iterative mesh refinement. Adding the iterative mesh refinement is necessary,
since 3D object detection approaches are not suitable for damage detection and
analysis. In contrast to other 3D reconstruction approaches, CubeRefine R-CNN
directly enables comparing the original shape of a cuboid-shaped object with its
current state, which is crucial for damage quantification.
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6.2 Dataset [Nau+23a]

We present details on the generation of our synthetic dataset Parcel3D and start by
describing the automatic selection process for suitable Google Scanned Objects
(GSO) [Dow+22] object models in Section 6.2.1. Next, the approaches to generate
data for damaged parcels and for new textures are presented in Section 6.2.2
and Section 6.2.3, respectively. Finally, we present details on the rendering in
Section 6.2.4.

6.2.1 Model Selection

We use GSO as a base dataset, since it has a wide variety of realistic 3D models.
We create a new subset of the GSO dataset that is tailored towards our use-case
in transportation logistics and warehousing by automatically selecting relevant
models based on their shape. This filtering is done by evaluating each model’s
similarity with a surrounding cuboid. We initialize a template mesh from the
surrounding cuboid and use the Chamfer Distance tC and Normal Consistency
tN between this template mesh and the model mesh for comparison.
We divide the models in three categories using empirically determined thresholds
for both similarity metrics. Models with tC ≤ 0.1 and tN ≥ 0.9 are chosen as
cuboid models due to their high resemblance with the desired shape. We refer
to these picked models by GP. The second threshold of tC ≤ 0.5 and tN ≥ 0.8

identifies objects that are not closely related to a cuboid in shape, yet similar.
These models are denoted GR. All other models are referred to by GD. We use
models fromGD as distractor objects, which we also render into images to prevent
overfitting on rendering artifacts [DMH17]. The models from GR are not used as
distractors, since their resemblance in shape with a cuboid might be confusing.
The subsetGD contains 750 models,GR contains 71 models andGP contains 209
models. Exemplary instances for each of the three categories are visualized in
Fig. 6.2.
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Picked (GP) Removed (GR) Distractor (GD)

Figure 6.2: Samples of the three object model subsets of the GSO dataset [Dow+22] that were
generated based on the models’ similarity with a cuboid. [©2023 IEEE]

Since there are very similar models within GP, we combine the models into 66
groups. The grouping is done automatically by using brand and category names,
since the GSO dataset contains similar object models as seen in Fig. 6.3 for the
example of Pepsi cartons.

Figure 6.3: Visualization of the similarity between certain models. [©2023 IEEE]

6.2.2 Model Generation

Since we obtain only 209 suitable models from the GSO dataset, we generate
10 scaled versions for each of them. The scaling is done for each of the three
dimensions separately by sampling a scaling factor from a triangular distribution
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with lower limit 0.5, upper limit 2 and mode 1. These models make up the subset
of intact boxes.
This method for dataset generation is suitable for intact parcel recognition, how-
ever, automatically identifying suitable models for damaged boxes within the GSO
or other datasets such as ShapeNet [Cha+15], is difficult. Thus, we automatically
generate models for damaged boxes using physics-based simulation in Blender.
For each simulation, we start by randomly sampling a base model from the pre-
viously generated subset of intact boxes. The chosen model is then simulated to
be falling onto a rigid ground as seen in Fig. 6.4. Soft body simulation is used to
allow deformations during the collision. We sample falling height, angle and soft
body physics parameters randomly within empirically determined ranges to obtain
a wide variety of deformations. Only models from timesteps that have between
75% and 90% of their original volume are chosen as suitable models for damaged
parcels. These thresholds ensure that models have at least a certain degree of
deformation, while not allowing extreme changes in appearance. Furthermore,
we use a RANSAC algorithm [FB87] to find the best rigid transformation between
the original, cuboid-shaped model and the deformed model during simulation, to
track the position and rotation of the object. Note, that this is necessary, since
Blender does not incorporate the tracking of objects during a soft body simulation.
Using this information we are able to identify the area of impact with the strongest
deformation, which allows us to render damaged parcels such that the impacted
area is visible. Finally, we apply a smoothing filter in Blender to the selected
models.

Figure 6.4: Visualization of the collision for damaged parcels using soft body simulation in Blender.
[©2023 IEEE]
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6.2.3 Texture Generation

In order to obtain more variance in the textures of the models and to bias the
training data towards cardboard, we generate new textures. We use a cardboard
shader in Blender1, to generate a dataset of 230 cardboard textures. These textures
replace the original texture of the model with a probability of 0.6, and an example
is shown in Fig. 6.5a. When the original texture is used for a damaged parcel,
texture mapping is not trivial and we need to extrapolate the texture image.
This extrapolation is done using pixel-wise nearest neighbor averaging and an
exemplary result can be seen in Fig. 6.5b. In addition, we randomly add to each
texture

• 0-3 logos from the Large Logo Dataset (LLD) [Sag+17]

• 1 shipping label from a mix of 30 labels from [Dör+19] and 65 labels found
online, with a probability of 0.6

• 0-2 fragile labels from 16 labels found online, with a probability of 0.4

An example for a final cardboard texture with labels and logos is visualized in
Fig. 6.5c.

6.2.4 Rendering Details

We sample 200 models randomly for each of the 66 groups, yielding more than
13 000 scenes, which we render with 1080 × 720 resolution. Damaged models
and cuboid-shaped models, respectively, are sampled with a probability of 50%
and textures are generated as described before. We add 0-3 randomly sampled
distractor models from GD to the scene and use environment maps from Gardner
et al. [Gar+17] for realistic scene contexts. We permit an occlusion of up to 30%

1 See https://blendermarket.com/products/cardboard [Last accessed on Sept. 20, 2024].
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(a) Cardboard (b) Extrapolation (c) Labels & Logos

Figure 6.5: Examples for generated textures: (a) Plain cardboard texture, (b) extrapolation of existing
textures for damaged parcels and (c) cardboard texture with labels and logos. [©2023
IEEE]

of the model of interest and generate a new image composition if the criteria is
not met.

All assets that were used follow a 0.7, 0.15, 0.15 split between training, validation
and test data. These splits were respected in the generation of the rendered images.
To have realistic poses of the objects we restrict the elevation angle to lie between
20◦ and 60◦ degrees. The azimuth angle is sampled freely for intact and between
−30◦ and 30◦ degrees for deformed models, such that the damage is visible and
not self-occluded. We add small random rotations to the lookat configuration
resulting from azimuth and elevation angle and vary the focal length slightly at
random.

6.3 Approach [Nau+23a]

We present our novel model architecture CubeRefine R-CNN that is targeted
towards reconstructing potentially deformed cuboid objects such as parcels in
Section 6.3.1. Furthermore, we present details on our training procedure in
Section 6.3.2.
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6.3.1 Neural Network Architecture

Our model CubeRefine R-CNN extends Cube R-CNN [Bra+23] by adding an
iterative mesh refinement (cf. Fig. 6.1). Cube R-CNN is a general architecture
that combines 2D detection with 3D bounding box estimation. Its architecture
consist of a backbone network for feature extraction, which is followed by a
Region Proposal Network (RPN) [Ren+17]. We follow the original work and use
a DLA-34-FPN [Yu+18; Lin+17] as backbone. The generated region proposals
are then passed on to two different branches. The first branch is a Box Head,
which outputs a 2D bounding box and the category label. The second branch
estimates the 3D bounding box and is called Cube Head. It takes 7 × 7 feature
maps pooled from the region-aligned backbone features and passes them to two
fully connected layers with hidden dimension 1024. A final fully connected layer
predicts 13 parameters which represent the 3D bounding box. Note, that this
architecture could be easily extended to encompass a full Mask R-CNN [He+17]
by adding segmentation. For details, we refer to Brazil et al. [Bra+23].

For themesh refinement, we extend theCubeHead by subdividing its 8-pointmesh
triangulation output four times to obtain an initial mesh prediction of sufficient
granularity. Note, that without the iterative subdivision, the mesh representation
would be too coarse to accurately represent parcel deformations. The subdivided
mesh is then passed on to the mesh refinement stage. We follow Gkioxari et al.
[GMJ19], and use three refinement stages with three graph convolutions each. In
each stage, image features from the backbone are aligned with the vertices of the
current mesh version and graph convolutions are applied to compute a positional
offset for each vertex in the mesh. These mesh offsets should morph the current
mesh representation such that the mesh closely depicts the real parcel shape.
We experimented with different options for message passing within the graph
such as Residual Gated Graph Convolution [BL18], EG [Tai+22] and GATv2
[BAY22]. Since no significant improvements were observed, we stick to the
original architecture.

CubeRefine R-CNN leverages a cuboid prior, which is a valid assumption for both
cuboid-shaped and most damaged parcels. Compared to Mesh R-CNN, the Cube
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Head is more lightweight than the Voxel Head. Moreover, our model predicts
both, the original shape of the parcel and the possibly deformed current shape of
the parcel at the same time. We discuss the advantages of this in more detail in
Section 6.4.3.

6.3.2 Training Procedure

We follow the same training procedure for all our training runs. We choose a
batch size of 16, use Stochastic Gradient Descent with Momentum (SGD+M)
with a base learning rate of 0.02. The learning rate increases linearly from 0.002

over the first 1500 iterations. Subsequently, we divide the learning rate by four in
iterations 7500, 12 500 and 17 500. The maximum number of iterations is set to
20 000.

During our experiments, we consider two different backbones, namely a ResNet-
50 [He+16] and a DLA-34 [Yu+18], both in combination with a Feature Pyramid
Network (FPN) [Lin+17]. We freeze the backbone weights at stage four and
initialize them using pre-trained weights from Gkioxari et al. [GMJ19] and Brazil
et al. [Bra+23].

6.4 Evaluation [Nau+23a]

In the following, we present our evaluation of 2D bounding box detection, 3D
bounding box detection and shape reconstruction on synthetic and real data. Due
to the lack of annotated real data of damaged parcels, the quantitative real-world
evaluation only presents results on cuboid-shaped parcels. We benchmark our
model against Pix2Mesh [Wan+18]2, Mesh R-CNN [GMJ19] and Cube R-CNN
[Bra+23] by training and evaluating on the respective splits of Parcel3D. Unless

2 We use the implementation of Gkioxari et al. [GMJ19].
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6 Damage Assessment for Parcels

stated otherwise, we use the same DLA-34-FPN backbone and three mesh refine-
ment stages with three graph convolutions each, to enable a direct comparison
between approaches. We present results for the original version of Mesh R-CNN
with a ResNet-50-FPN backbone, however, focus on the comparable results in the
following.

All results are summarized in Table 6.1 and Table 6.2, and we present details on
the evaluation for synthetic data in Section 6.4.1 and for real data in Section 6.4.2.
Finally, we summarize the findings focusing on the real-world applicability in
Section 6.4.3.

6.4.1 Synthetic Data

Weconsider the case of intact parcels and damaged parcels separately by evaluating
only on the respective subsets of the Parcel3D test dataset. The performance for
2D bounding box detection is very high for all models on our presented synthetic
dataset Parcel3D with the lowest observed Box AP being 92.1 (cf. Table 6.1).

Considering 3D bounding box detection in the case of cuboid-shaped parcels,
Cube R-CNN and CubeRefine R-CNN perform best w.r.t. Mesh AP75, Chamfer
Distance and Normal Consistency, since they explicitly model cuboid-shaped
objects. Our additional mesh refinement increases performance compared to the
base model Cube R-CNN by 2.8 percentage points in Mesh AP75. Mesh R-CNN
still performs competitively, and the qualitative inspection (cf. Fig. 6.6) suggests
that differences mainly stem from difficulties in reconstructing the nonvisible,
(self-)occluded parts of objects. Cube R-CNN and CubeRefine R-CNN do not
suffer from this problem as much, since symmetry is imposed by the predicted
3D bounding box.

106



6.4 Evaluation

Bo
x

M
es
h

Ch
am

fe
r

N
or
m
al

M
od

el
D
at
as
et

A
P

A
P 5

0
A
P 7

5
A
P 5

0
A
P 7

5
D
ist
an
ce

(↓
)

Co
ns
ist
en
cy

Pi
x2

M
es
h
[W

an
+1

8]
In
ta
ct

96
.0

(0
.5
)

98
.9

(0
.5
)

98
.7

(0
.2
)

89
.6

(1
.0
)

48
.5

(1
.6
)

0.
31

1
(0
.0
86

)
0.
90

1
(0
.0
01

)
M
es
h
R-
CN

N
(R

N
50

)[
G
M
J1
9]

In
ta
ct

93
.2

(0
.4
)

98
.3

(0
.3
)

97
.9

(0
.3
)

82
.9

(1
.2
)

42
.6

(1
.1
)

1.
92

4
(1
.2
14

)
0.
88

6
(0
.0
01

)
M
es
h
R-
CN

N
[G

M
J1
9]

In
ta
ct

95
.9

(0
.5
)

98
.9

(0
.5
)

98
.7

(0
.2
)

92
.9

(1
.6
)

67
.0

(2
.8
)

0.
22

5
(0
.0
88

)
0.
91

4
(0
.0
01

)
Cu

be
R-
CN

N
[B

ra
+2

3]
In
ta
ct

97
.1

(0
.1
)

99
.0

(0
.0
)

99
.0

(0
.0
)

92
.0

(0
.3
)

74
.4

(2
.0
)

0.
15

9
(0
.0
16

)
0.
92

5
(0
.0
01

)
Cu

be
Re

fin
e
R-
CN

N
(o
ur
s)

In
ta
ct

97
.1

(0
.0
)

99
.0

(0
.0
)

99
.0

(0
.0
)

92
.8

(0
.2
)

77
.2

(1
.2
)

0.
12

8
(0
.0
02

)
0.
92

9
(0
.0
01

)

Pi
x2

M
es
h
[W

an
+1

8]
D
am

ag
ed

95
.1

(0
.6
)

99
.8

(0
.1
)

98
.8

(0
.2
)

84
.3

(1
.2
)

12
.4

(1
.4
)

0.
75

0
(0
.5
53

)
0.
86

6
(0
.0
02

)
M
es
h
R-
CN

N
(R

N
50

)[
G
M
J1
9]

D
am

ag
ed

92
.1

(0
.4
)

99
.6

(0
.1
)

98
.9

(0
.4
)

78
.8

(0
.7
)

9.
0
(0
.4
)

0.
59

9
(0
.3
22

)
0.
85

9
(0
.0
01

)
M
es
h
R-
CN

N
[G

M
J1
9]

D
am

ag
ed

94
.6

(0
.5
)

99
.2

(0
.5
)

98
.8

(0
.3
)

91
.1

(0
.5
)

26
.1

(1
.9
)

0.
86

0
(0
.4
36

)
0.
88

0
(0
.0
02

)
Cu

be
R-
CN

N
[B

ra
+2

3]
D
am

ag
ed

95
.0

(0
.2
)

99
.0

(0
.0
)

99
.0

(0
.0
)

32
.6

(0
.5
)

0.
1
(0
.0
)

0.
49

4
(0
.0
04

)
0.
80

6
(0
.0
00

)
Cu

be
Re

fin
e
R-
CN

N
(o
ur
s)

D
am

ag
ed

95
.2

(0
.1
)

99
.0

(0
.0
)

99
.0

(0
.0
)

70
.7

(0
.7
)

4.
1
(0
.2
)

0.
29

3
(0
.0
03

)
0.
86

1
(0
.0
00

)

Pi
x2

M
es
h
[W

an
+1

8]
Re

al
74

.4
(1
.9
)

93
.4

(1
.7
)

89
.3

(2
.4
)

27
.8

(2
.1
)

2.
3
(0
.6
)

2.
11

2
(0
.0
60

)
0.
74

4
(0
.0
06

)
M
es
h
R-
CN

N
(R

N
50

)[
G
M
J1
9]

Re
al

82
.1

(0
.7
)

99
.0

(0
.0
)

97
.8

(0
.1
)

32
.0

(0
.4
)

5.
0
(1
.0
)

1.
96

5
(0
.0
50

)
0.
75

6
(0
.0
02

)
M
es
h
R-
CN

N
[G

M
J1
9]

Re
al

70
.6

(5
.0
)

89
.2

(5
.9
)

84
.4

(5
.7
)

29
.4

(2
.7
)

4.
9
(1
.5
)

2.
15

3
(0
.0
73

)
0.
74

2
(0
.0
08

)
Cu

be
R-
CN

N
[B

ra
+2

3]
Re

al
43

.4
(6
.9
)

52
.8

(8
.3
)

49
.9

(7
.3
)

30
.1

(5
.8
)

13
.3

(4
.3
)

0.
87

5
(0
.0
41

)
0.
80

8
(0
.0
03

)
Cu

be
Re

fin
e
R-
CN

N
(o
ur
s)

Re
al

41
.5

(5
.8
)

50
.3

(6
.6
)

47
.6

(6
.5
)

32
.3

(4
.2
)

13
.1

(3
.0
)

0.
81

4
(0
.0
62

)
0.
82

8
(0
.0
06

)

Ta
bl
e
6.
1:

Q
ua
nt
ita

tiv
e
pe
rfo

rm
an
ce

an
al
ys
is
of

m
es
h
re
co
ns
tru

ct
io
n
on

di
ffe

re
nt

da
ta
se
ts.

Th
e
M
es
h
A
P
is
th
e
m
ea
n
ar
ea

un
de
rt
he

Pr
ec
isi
on

-
Re

ca
ll
cu
rv
e
fo
rF

1@
0.
3>

x
,a
si
n
[G

M
J1
9]
.W

e
re
pe
at
ed

al
lt
ra
in
in
gs

fiv
e
tim

es
an
d
re
po

rt
m
ea
n
va
lu
es

w
ith

sta
nd

ar
d
de
vi
at
io
ns

in
pa
re
nt
he
se
s.
Th

e
be
st
m
ea
n
pe
rfo

rm
an
ce

fo
re

ac
h
da
ta
se
tt
yp

e
is
hi
gh

lig
ht
ed
.

107



6 Damage Assessment for Parcels

Model Dataset AP3D AP3D15 AP3D25

Cube R-CNN [Bra+23] Intact 69.5 (0.8) 81.6 (1.1) 74.4 (1.4)
CubeRefine R-CNN (ours) Intact 69.3 (0.6) 80.9 (0.5) 74.1 (1.1)

Cube R-CNN [Bra+23] Damaged 86.6 (0.3) 94.4 (0.6) 89.9 (0.8)
CubeRefine R-CNN (ours) Damaged 86.5 (0.6) 94.6 (0.6) 89.7 (0.6)

Cube R-CNN [Bra+23] Real 53.3 (8.6) 53.8 (8.7) 53.8 (8.7)
CubeRefine R-CNN (ours) Real 50.6 (6.8) 51.1 (6.8) 51.1 (6.8)

Table 6.2: Quantitative performance analysis of 3D object detection for Cube R-CNN and CubeRefine
R-CNN on different datasets. The average precision for 3D IoU (AP3D) is computed as
in [Bra+23]. We repeated all trainings five times and report mean values with standard
deviations in parentheses.

Considering only damaged parcels, we observe that predicting a voxel occupancy
grid as done in Mesh R-CNN is advantageous. Mesh R-CNN performs best in
Mesh AP and Normal Consistency. Despite high-quality 3D object detection,
as suggested by the results in Table 6.2, CubeRefine R-CNN has difficulties
to adopt to the fine-grained meshes of damaged parcels. This is observed in the
considerably lowerMesh AP. However, the better Chamfer Distance suggests that
general alignment with the ground truth is very high for CubeRefine R-CNN. This
can also be observed in qualitative samples as visualized in Fig. 6.6 and might be
caused by the symmetry the 3D bounding box imposes for (self-)occluded object
parts. Cube R-CNN performs poorly, as it only predicts 3D bounding boxes and
thus, cannot take the damages into account.

6.4.2 Real Data

For the evaluation of the usability of our approach in real-world applications,
we use a dataset of parcels photos in various environments [Nau+22]. The
dataset was generated using a custom camera rig to capture images with a depth
and a stereo camera at the same time. The depth information is then used
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6.4 Evaluation

(a) CubeRefine R-CNN (ours) (b)Mesh R-CNN [GMJ19]

Figure 6.6: Exemplary qualitative results for synthetic intact (row 1, 2) and damaged parcels (row 3,
4) for (a) CubeRefine R-CNN and (b) Mesh R-CNN. Per model, the input image with
the detected 2D or 3D bounding box is shown on the left, and a 3 × 3 grid of mesh
reconstructions on the right. Each column of the grid shows a different viewing angle,
and the rows contain ground truth, 3D bounding box or voxelization (depending on the
model) and refined mesh, respectively. [©2023 IEEE]
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to automatically generate annotations, which can be projected onto the stereo
images. The validation dataset comprises 96 and the test dataset 297 images.
Note, that it contains only normal parcels, since the annotation generation process
was automated using the assumption of a cuboid shape.

Shape reconstruction on real images of cuboid-shaped parcels is more challenging
due to the reality gap, as can be seen from the generally lower performance in
Table 6.1. CubeRefine R-CNN performs best despite having a low 2D bounding
box detection precision compared toMesh R-CNN. Note, thatMesh AP, Chamfer
Distance and Normal Consistency were computed on meshes normalized within
a unit cube, due to the scale ambiguity. While Cube R-CNN is able to estimate
scale, our synthetic training data is generated randomly, and thus, does not allow
a scale transfer to the real world.

We present qualitative samples in Fig. 6.7 and observe accurate reconstructions,
when the object is localized correctly. However, common error cases include
not being able to distinguish nearby positioned parcels and inaccurate or missing
localizations (cf. Fig. 6.7b). Since there are no real-world datasets with full 3D
annotations, we focus on brief insights into our qualitative inspection of damaged
parcels. The simulated deformation process that was presented in Section 6.2.2
does not seem to represent the great variance of real-world deformations closely
enough. Thus, performance on real-world data is still limited as can be seen in
Fig. 6.7c.

6.4.3 Applicability Summary

We summarize the advantages and limitations of our approach, and present brief
insights into using damage quantification and tampering detection in practice.

Advantages. We argue, that while Mesh R-CNN performs best in the case of
damaged parcels, our approach is still advantageous for real-world application due
to the following reasons: (1) our approach is more lightweight and predicts both
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(a) Successful Reconstructions

(b) Problematic Cases

(c) Damaged Parcels

Figure 6.7: Exemplary qualitative results for real parcels using CubeRefine R-CNN. We show the
input image with the projected 3D bounding box on the left, and a 3 × 3 grid of mesh
reconstructions on the right. Each column shows a different viewing angle, and the rows
contain ground truth, 3D bounding box and refined mesh, respectively. Note, that for
damaged parcels no ground truth is available. [©2023 IEEE]

the current, potentially deformed shape of an object and its original shape at the
same time. This allows a direct 3D mesh comparison between the original and
the deformed shape for damage quantification. (2) The lower Mesh AP and better
Chamfer Distance compared to Mesh R-CNN suggest that our model represents
the overall damage pattern well, however, is not as detailed as Mesh R-CNN. We
argue, that this is sufficient for damage pattern recognition in 3D, which is only
enabled by our model. (3) 3D bounding box detection enables using viewpoint
invariant parcel side surface representations for tampering detection, as will be
explained in the respective paragraph.
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6 Damage Assessment for Parcels

Limitations. While CubeRefine R-CNN has important advantages for real-
world use-cases, enabling reliable deployment in real-world scenarios is still
challenging, presumably due to the constrained variance of deformations within
Parcel3D and the domain shift caused by our training on synthetic data. Fur-
thermore, it is important to note that we focus on deformations of the packaging
and do not treat other types of damages which frequently occur in practice (e.g.
water damage). It is also not possible to reliably infer the impact of packaging
deformations on the state of the transported good. This information is essential
to estimate economic damages.

Damage Quantification. To utilize our model for automated deformation
quantification and pattern recognition, metrics for 3D mesh comparison are nec-
essary. The change in volume between the original and current shape constitutes
a simple metric that can be readily computed and interpreted. However, mere
volume analysis does not take the deformation location into account. To rem-
edy this, extending the axis-aligned pointcloud representation of the original 3D
model by the per-point distance to the nearest neighbor of its potentially deformed
version, and clustering in this 4D space can help to identify areas that underwent
the strongest deformations. Further clustering across parcel instances can provide
insights into damage patterns. Moreover, normalized voxel grid occupancy dif-
ferences can be analyzed by considering the union of the voxelized meshes and
subtracting their intersection.

Tampering Detection. From the 3D bounding box output of CubeRefine
R-CNN we can infer the visible parcel side surfaces and project them back onto
the image. For each such parcel side surface, a perspective transformation can
be applied to obtain normalized fronto-parallel views. These representations
have already been successfully used for tampering detection [NZO18] and re-
identification [Rui+20]. For tampering detection, recent advances in change
detection [Shi+20] could be leveraged.
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In the following, we summarize the conclusions from our work in Section 7.1 and
present an outlook for future research ideas in Section 7.2.

7.1 Conclusion

In this work, we tackled the problem of vision-based damage and tampering as-
sessment for parcels in transportation logistics and warehousing. After motivating
the importance of process automation in logistics using computer vision with a
special focus on damage and tampering assessment in Chapter 1, we introduced
the necessary fundamentals in the area of computer vision in Chapter 2. Subse-
quently, we presented a detailed literature review on computer vision applications
in logistics based on [Nau+23b] in Chapter 3. From this review the necessity for
novel approaches for damage and tampering assessment that only rely on a single
RGB image as input was deducted.

InChapter 4, we treated the problemof robust parcel localization and segmentation
that is based on our prior publication [Nau+22]. This serves as the foundation
to tackle downstream tasks such as keypoint detection and 3D reconstruction,
which are crucial for damage and tampering assessment. We extended the dataset
generation pipeline of Dwibedi et al. [DMH17] by image scraping and selection to
enable fully automated and flexible instance segmentation dataset generation. To
analyze the effect of different image selection strategies, we presented a case study
for parcels. All evaluations were performed on our newly collected real-world
dataset of cuboid-shaped parcels with full 2D and 3D annotations. Results show

113



7 Discussion

that the detection accuracy for bounding boxes and segmentation masks is high,
as indicated by the Box AP of 68.5 and the Mask AP of 82.4. Furthermore, we
found that manually selecting relevant instances from the scraped image pool is
not superior to simple automated post-processing in the considered case study.

Tampering detection for parcels was analyzed in-depth in Chapter 5 based on
our prior work [Nau+24]. We focused on three different tampering types (tape,
writing, label), and proposed a pipeline that combines keypoint and change de-
tection. The knowledge of the eight parcel corner points is exploited to generate
viewpoint invariant parcel side surface representations by applying perspective
transformations. These representations alleviate difficulties arising from the dif-
ferent viewing angles of the images and enable the detection of appearance changes
per parcel side surface. To tackle change detection, we combined different image
homogenization approaches with image similarity metrics. Image homogeniza-
tion reduces the impact of lighting differences while the image similarity metrics
determine whether a parcel side surface has been tampered with or not by thresh-
olding. Our approach reached 81% accuracy and an F1-Score of 0.83, when
combining SimSaC [Par+22] with the Learned Perceptual Image Patch Similarity
(LPIPS) [Zha+18].

Based on our prior work [Nau+23a], we presented an approach for damage as-
sessment of parcels in Chapter 6. We extended CubeRefine R-CNN [Bra+23]
by an iterative mesh refinement [Wan+18; GMJ19] to leverage a cuboid prior
while at the same time being able to adapt to deformations. An added advantage
of this is that our approach estimates the current, potentially deformed shape
as well as the prior cuboid shape of the pristine parcel. This enables detailed
damage assessment and quantification by comparing full 3D meshes. Addition-
ally, we presented Parcel3D, a novel dataset of synthetic images of damaged and
intact parcels with full 2D and 3D annotations. CubeRefine R-CNN achieves
competitive performance in terms of Mesh AP, however, reliable deployment in
real-world scenarios remains challenging due to the large diversity of potential
parcel deformations.
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7.2 Future Work

We evaluated all our approaches on real-world test data. This allows us to
quantify the suitability of the approaches for real-world applications when there
is no domain gap between our test data and a specific industry use-case. Since in
practice, a domain gap will likely be present (e.g. new tampering types or damage
patterns), it is crucial to perform a quantitative analysis on the data distribution
of the specific industrial application, in order to obtain performance indicators
that help to assess the business case. Moreover, it is important to comment on the
different error types and their importance for practical applications, since common
machine learning metrics are frequently not well suited to analyze business cases.
For example, if the object detection from Chapter 4 is used for counting items
to automatically invoice them, it is crucial to get the number of items exactly
correct. At the same time, if our approach for damage detection from Chapter 6
would be used for inferring cargo volumes, overshooting the total volume would
be less problematic than underestimating it. Underestimating volume would
mean that the subsequent truck load planning will overestimate the capacity and
shipping for some items might have to be postponed. Regarding the tampering
detection approach fromChapter 5, many false positives can cause high workloads
for manual cargo revision. The occurring costs for manual inspection might
exceed the potential savings from identifying tampering in a timely and automated
manner, thus, rendering the business case impractical. Thus, it is evident that to
make business decisions that involve the machine learning approaches presented
in this work, it is essential to take into account potential domain gaps and to
determine and quantify themost relevant performancemeasures from the business
perspective.

7.2 Future Work

There are several promising research directions to further exploit advances in
computer vision for applications in transportation logistics and warehousing.

The presented approach on tampering detection can be extended by utilizing state-
of-the-art keypoint detection approaches and by incorporating prior geometric
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7 Discussion

information, such as the vanishing point loss [Rui+20] or 2D/3D correspondences
[Li+20]. Damage assessment would strongly benefit from the availability of
real-world datasets of damaged parcels with full 2D and 3D annotations. This
would allow a more in-depth performance analysis for real-world use-cases and
help to bridge the domain shift from synthetic to real data. Another extension
would be tackling the limitations of our work. For tampering detection, the
development of a robust parcel re-identification module that relies on reading
out labels while simultaneously taking visual cues into account seems promising.
Regarding damage detection, the consideration of ruptures and water damage
would be interesting.

While the focus of this work was on simple sensor setups, novel approaches using
multisensory setups and potentially constrained environments are important to
enable a reliable and continuous monitoring along the supply chain. Especially
congested conveyor belts with numerous overlapping parcels and plastic mailers
are a challenging industrial use-case, which has not been tackled yet by the
literature. The retrieval of freight volumes while simultaneously checking for
damage and tampering without the necessity for human intervention would also
be an interesting topic for future research.
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Resource Overview

We provide several online resources for our publications, such as project websites,
permissively licensed code and publicly available datasets. Per chapter, we list
the relevant papers including their resources in the following.

Chapter 3

Alexander Naumann et al. Literature Review: Computer Vision Applications
in Transportation Logistics and Warehousing. Preprint. Apr. 2023. arXiv:
2304.06009. URL: https://arxiv.org/abs/2304.06009 (Last accessed on Sept. 20,
2024) [Nau+23b]

• � Website: https://a-nau.github.io/cv-in-logistics

• � Code: https://github.com/a-nau/cv-in-logistics

Chapter 4

Alexander Naumann et al. “Scrape, Cut, Paste and Learn: Automated Dataset Ge-
neration Applied to Parcel Logistics”. In: Proceedings of the IEEE International
Conference on Machine Learning and Applications (ICMLA). Nassau, Bahamas,
Dec. 2022, pp. 1026–1031. DOI: 10.1109/ICMLA55696.2022.00171 [Nau+22]

• � Website: https://a-nau.github.io/parcel2d

• � Code:
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Resource Overview

– Image scraping: https://github.com/a-nau/easy-image-scraping

– Dataset generation: https://github.com/a-nau/synthetic-dataset-generation

– CNN training: https://github.com/a-nau/image-selection-and-cnn-
training

•  Dataset: https://zenodo.org/record/8031971

Chapter 5

Alexander Naumann et al. “TAMPAR: Visual Tampering Detection for Parcel
Logistics in Postal Supply Chains”. In: Proceedings of the IEEE/CVF Winter
Conference onApplications ofComputer Vision (WACV).Waikoloa, Hawaii, USA,
Jan. 2024, pp. 8076–8086 [Nau+24]

• � Website: https://a-nau.github.io/tampar

• � Code: https://github.com/a-nau/tampar

•  Dataset: https://zenodo.org/records/10057090

Chapter 6

Alexander Naumann et al. “Parcel3D: Shape Reconstruction from Single RGB
Images for Applications in Transportation Logistics”. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). Vancouver, Canada, June 2023, pp. 4402–4412. DOI: 10 . 1109 /
cvprw59228.2023.00463 [Nau+23a]

• � Website: https://a-nau.github.io/parcel3d

• � Code: https://github.com/a-nau/CubeRefine-R-CNN

•  Dataset: https://zenodo.org/record/8032204
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