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Vorwort

Bildverarbeitung spielt in vielen Bereichen der Technik und des Alltags
eine wichtige Rolle zur Informationserfassung. Sie ist eine etablierte
Technologie u. a. in der Mess- und Automatisierungstechnik, der Ro-
botik, der Fahrzeugtechnik und der Unterhaltungselektronik. Wichti-
ge Vorteile von Bildverarbeitungssystemen gegenüber anderen senso-
rischen Prinzipien bestehen u. a. darin, dass Bilder berührungslos ge-
wonnen werden können und dass Bildsensoren inzwischen vergleichs-
weise günstig sind. Besonders spannend an der Bildverarbeitung ist
aber, dass die Sensorik weitgehend dem menschlichen Leitsinn – dem
Sehen – entspricht, aber nicht an die Beschränkungen des Menschen
gebunden ist. Dies betrifft etwa die nutzbaren Spektralbereiche, die
quantitative Interpretierbarkeit der Bilder, die gleichbleibende Auf-
merksamkeit und Reproduzierbarkeit oder die Möglichkeit zur Erfas-
sung hochdynamischer Prozesse. Auch wenn die Bildverarbeitung als
Teil mehrerer Fachdisziplinen – u. a. Mess- und Automatisierungstech-
nik, Systemtheorie, Mathematik, Informatik, Optik, Lichttechnik, Mi-
krosystemtechnik – eine gewisse Reife erreicht hat, gibt es immer noch
spannende neue Erkenntnisse. Gerade die Bildverarbeitung profitiert
enorm von neuen Technologien wie z. B. dem maschinellen Lernen
oder neuen Sensorprinzipien wie etwa Event-Based Vision.

Das ”Forum Bildverarbeitung / Image Processing Forum“ hat das
Ziel, über solche aktuellen Trends und neuartige Lösungen in der Bild-
verarbeitung zu berichten und zum fachlichen Austausch zwischen
Wissenschaft und Anwendung beizutragen. Es findet in jedem zweiten
Jahr seit 2010 statt und wird inzwischen gemeinsam vom Geschäftsfeld
Inspektion und Optronische Systeme des Fraunhofer-Instituts für Op-
tronik, Systemtechnik und Bildverarbeitung IOSB und dem Institut für
Industrielle Informationstechnik IIIT des Karlsruher Instituts für Tech-
nologie KIT organisiert. Dem Aufruf zur Einreichung von Beiträgen
sind erfreulich viele Autoren gefolgt. Aus den Einreichungen konn-
te der Programmausschuss nach einer eingehenden Begutachtung 24
hochwertige Beiträge auswählen und den Schwerpunkten
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Vorwort

• Messtechnische Anwendungen,
• Robotik,
• Bildgewinnung,
• Bildverarbeitung,
• Unsicherheiten bei maschinellem Lernen,
• Wahrnehmung von Personen,
• Künstliche Intelligenz als Mess- und Prüfmittel, sowie
• Fahrzeuge

zuordnen. Zur überwiegenden Zahl der Beiträge wurden Aufsätze er-
stellt, die im vorliegenden Tagungsband enthalten sind. Wir danken
den Autoren für ihre Beiträge, den Mitgliedern des Programmaus-
schusses für die Ansprache von Autoren und ihre wertvolle Expertise
bei der Begutachtung der Einreichungen und allen, die durch ihre An-
wesenheit zum Gelingen des ”Forums Bildverarbeitung / Image Pro-
cessing Forum“ beitragen. Für die Organisation der Veranstaltung und
die technische Unterstützung bei der Erstellung des Tagungsbands be-
danken wir uns bei Britta Ost, Felix Lehnerer, Florian Steigleder, Lukas
Dippon und Jürgen Hock.

November 2024 Thomas Längle
Michael Heizmann
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Automated image-based parameter
optimization for single-pulse laser drilling

Manuel Klaiber1,2,3, Mathias Hug1,2,3, Lukas Schneller1,3, Ömer Can1,
Andreas Jahn2, Axel Fehrenbacher2, Peter Reimann1,4, and Andreas

Michalowski3

1 Graduate School of Excellence advanced Manufacturing Engineering
(GSaME), University of Stuttgart, Nobelstraße 12, 70569 Stuttgart

2 TRUMPF Laser SE, Aichhalder Straße 39, 78713 Schramberg
3 Institut für Strahlwerkzeuge (IFSW), University of Stuttgart,

Pfaffenwaldring 43, 70569 Stuttgart
4 Institute of Parallel and Distributed Systems (IPVS), University of Stuttgart,

Universitätsstraße 28, 70569 Stuttgart

Abstract A significant challenge in laser drilling is the optimiza-
tion of process parameters and drilling strategies to achieve high-
quality holes. This is further complicated by the fact that qual-
ity assessment is a manual and time-consuming task. This pa-
per presents a methodology designed to significantly reduce the
manual effort required in optimizing parameters for single-pulse
laser drilling of 0.3 mm thick stainless steel. The objective is to
precisely drill holes with an entry diameter of 70 µm and an exit
diameter of 20 µm, achieving high roundness. The features of the
drilled holes were extracted automatically from the raw data us-
ing a combined approach that utilizes deep learning and image
processing techniques. The outcomes were compared against
manual measurements. Results indicate that the mean devia-
tions between automated and manual measurements for both
inlet and outlet diameters are less than one micrometer. We em-
ployed a Bayesian optimization algorithm to efficiently explore
the parameter space without the need for incorporating expert
knowledge. The approach rapidly identified optimal drilling pa-
rameters after only a few iterations, significantly expediting the
optimization process and considerably reducing manual labor.

Keywords Laser drilling, semantic segmentation, feature extrac-
tion, Bayesian optimization
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1 Introduction

The manufacturing industry is constantly searching for advanced
methods to improve the precision and efficiency of laser drilling pro-
cesses [1]. Various strategies have been employed, including traditional
methods such as Design of Experiments (DoE) and Response Surface
Methodology (RSM), as well as advanced computational techniques.
For example, Gupta et al. [2] used DoE and RSM to optimize the hole
quality in ms-pulsed laser drilling, while Wang et al. [3] applied ar-
tificial neural networks to predict optimal drilling parameters for ns-
pulsed laser drilling in stainless steel. Chatterjee et al. [4] used neuro-
fuzzy systems and genetic programming to predict drilling outcomes,
showing reasonable accuracy. However, these strategies often require
extensive experimental setups or training data and cannot efficiently
navigate complex parameter spaces to search for optimal drilling pa-
rameters.

Recent advances in computational techniques, particularly ap-
proaches to Bayesian optimization (BO), provide a promising alter-
native that can predict multi-dimensional parameters spaces in laser
processes with significantly fewer iterations and less manual interven-
tion [5]. Yang et al. [6] applied BO to improve taper and drilling time in
spiral drilling of stainless steel, achieving suitable results with few iter-
ations. Bamoto et al. [7] optimized a femtosecond laser micro-drilling
process and Menold et al. [8] demonstrated the versatility of BO in op-
timizing laser cutting, laser welding and laser polishing and showed
that less experiments are needed than with traditional approaches.

In addition to the actual optimization of drilling parameters, the ex-
traction of the features required by the optimization approaches repre-
sents a significant challenge in process optimization. In previous stud-
ies on laser drilling, the quality measurements were predominantly
assessed through manual measurements [2]. Feuer et al. [9] propose
an automated approach to extract the drilling geometry as features.
Approaches to automated feature extraction and quality control for a
laser welding process using semantic segmentation are presented by
Hartung et al. [10].

This paper presents an approach that incorporates sophisticated fea-
ture extraction techniques that employ a combination of deep learning
models and conventional image processing methods to accurately ex-
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Image-based parameter optimization

tract quality features of single-pulse drilled holes. Subsequently, this
study investigates the potential of BO with the aim of determining op-
timal laser parameters including pulse power, pulse length, and focus
position to ensure high-quality holes in terms of diameter and round-
ness.

2 Materials and Methods

This section describes the experimental setup for single-pulse laser
drilling of thin metal sheets. Furthermore, it gives an overview of the
feature extraction and parameter optimization methods utilized. The
procedure of the iterative optimization process is shown in Figure 1.
For the first n=6 optimization steps, the parameter sets are generated
using a sobol sequence to ensure that the points are evenly distributed
in the parameter space. Subsequent parameter sets are suggested by
the BO.

Cost 
function fc

Bayesian
optimizer

Evaluation of 
bore hole

Quality 
para-

meters
dI, dO, 
R

Image data

Iterative
process

Drilling 
process

Feature 
extraction

Suggests new
para-

meters P
P , tP , z

f Cost value

Start para-

meters by a 

sobol sequence

Figure 1: Optimization process with a Bayesian Optimizer.

2.1 Experimental Setup

Figure 2 shows the experimental setup of the single-pulse laser drilling
process. In this study, a continuous wave (cw) single mode fiber laser
(TRUMPF TruFiber 2000) was used to perform the single-pulse laser
drilling experiments. The emission wavelength of the unpolarized laser

3
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Figure 2: Left: Experimental Setup. Right: Borehole cross section with images of an
a) inlet with diameter dI and b) outlet with diameter dO.

was specified as 1075 nm in conjunction with a beam propagation fac-
tor of M2<1.2. The laser beam was positioned onto the stainless steel
sample with a galvanometer scanner. A telecentric F-Theta lens with a
focal length of 163 mm was used, resulting in a focus diameter (1/e2)
of df= 20µm. The pulsed operation mode of the laser source enables
the generation of pulses with a peak power PP up to 1400 W. This al-
lows for the adjustment of the pulse duration between values from 1 to
25µs. The setup was equipped with linear stages (x,y) for the sample
and a linear drive (z) for the process optics to adjust the focus posi-
tion. The focus position can thus be positioned with an accuracy of
one micrometer.

The materials used for the experiments are stainless steel (1.4310)
substrates. The substrates, with a thickness h of 0.3 mm, were cut to
a size of 100 mm× 50 mm. An optical microscope (Zeiss Axio Imager)
was used to evaluate the borehole criteria, such as inlet (Figure 2 a) and
outlet (Figure 2 b). A 20× magnification was used for optical micro-
scopic observation, where one pixel is equivalent to 0.172 × 0.172µm2.
The evaluation criteria include the diameter of the inlet dI and of the
outlet dO, as well as the roundness R of the outlet. We drilled and ana-
lyzed i=3 holes per parameter set to reduce the influence of side effects
from the inherent noise of laser processing and other uncertainties.

2.2 Feature Extraction

The objective is to automatically extract the features that are required
for the parameter optimization directly from the microscope images.
The features include the borehole’s inlet diameter dI and outlet diame-
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(a) (b)

dmin,enc

dmax,ins

Contour of 

borehole

(c)

Figure 3: (a) Inlet of a borehole with breakthrough. (b) Segmented classes by the neu-
ral network: melt (blue), burr (red) and borehole with breakthrough (green).
(c) Contour of the borehole (green) from which the diameter of the maximum
inscribing circle dmax,ins (red) and the diameter of the minimum enclosing circle
dmin,enc (yellow) were derived.

ter dO, the borehole’s roundness R, the area of the melt deposits around
the borehole, and a classification of whether a breakthrough has oc-
curred. Initial attempts to perform feature extraction based solely on
conventional image processing methods have not delivered satisfac-
tory results. Due to the divergent surface properties of the materials
to be processed, there is a high degree of variance in the captured
images, e.g., due to reflections and mirroring. This variance requires
great efforts to manually adjust the algorithm parameters of conven-
tional image processing methods. Deep learning methods represent
another viable approach to address natural deviations in images like
reflections and mirroring. Nevertheless, a method based exclusively
on deep learning that directly determines quality characteristics is in-
tricate and challenging for the operator to comprehend. A combined
approach, comprising semantic segmentation models and conventional
image processing methods, enables a more robust and understandable
extraction of features. In our study, we employ two semantic segmen-
tation models, each with a neural network architecture modified from
the SDU-net [11]. These models are used to segment images from the
top (inlet) and bottom (outlet) of the borehole. The inlet model classi-
fies the image into the following classes, as partly shown in Figure 3(b):
burr, melt, and one of the classes borehole with breakthrough or borehole
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without breakthrough. The outlet model segments the image into: back-
ground, melt, borehole with breakthrough, and borehole without breakthrough.
To train the inlet model, 68 labeled images were used, while the outlet
model was trained with 44 images. The discrepancy in the number of
training images is due to the fact that only continuous boreholes are in-
cluded in the outlet dataset. The models are initialized randomly with-
out any pre-training. Both models use Categorical Focal Loss [12] as loss
function. The classes segmented by the models are further analyzed
using conventional image processing methods. Figure 3(c) shows, how
the borehole diameter dI was calculated using the contour (green) of
the segmented borehole class borehole with breakthrough. This calcula-
tion involves averaging the diameters of two specific circles: the min-
imum enclosing circle, dmin,enc (shown in yellow), determined using
the method proposed by Welzl et al. [13], and the maximum inscribing
circle, dmax,ins (shown in red), as described by Xia et al. [14].

The roundness R of the borehole is defined by the ratio of the bore-
hole area Aborehole (Figure 3(b) green) to the area of the minimum en-
closing circle Amin,enc [15]. The melt deposition area is calculated as
the sum of the segmented burr and melt area classes. In order to as-
certain whether breakthrough is present, the areas belonging to the
borehole with breakthrough and borehole without breakthrough classes are
compared. The classification of breakthrough is dependent on the class
from which the larger area was segmented.

2.3 Bayesian Optimization

To optimize the single-pulse laser drilling process, we used the ex-
tracted data in a Bayesian Optimization framework. The goal was to
find laser parameters that yield high-quality holes with defined ge-
ometries. The AX Service API [16] was used, with a Gaussian Process
as a surrogate model [17], and the default squared exponential kernel
for the optimization. This approach efficiently explored the parameter
space, aiming to optimize the drilling process with minimal experi-
mental effort. As acquisition function Expected Improvement [18] was
used. More detailed explanations and applications of the BO for other
laser processes were given by Menold et al. [8]. Table 1 shows the pro-
cess parameters that were varied and the quality parameters that result
from the feature extraction process described in Section 2.2. The area
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of the melt was excluded from the BO to concentrate on enhancing the
accuracy of the diameters and roundness.

Table 1: Parameters and variables for the process.

Category Parameter/Variable Symbol Value Range, Target

Process Parameters Pulse Power PP 300 W ... 1400 W
Pulse Length tP 1µs ... 25µs
Focal Position zf -200µm ... 200µm

Quality Variables Inlet Diameter dI dI,target = 70µm
Outlet Diameter dO dO,target = 20µm
Roundness R 0 ... 1, Rtarget=1

For each parameter set, i=3 holes were drilled and evaluated with an
optical microscope. The image data was analyzed by feature extraction
to obtain the inlet and outlet diameters dI, dO and the roundness R of
the outlet. The cost function

C(x) = wd,I · |dI(x)− dI,target|+ wd,O · (dO(x)− dO,target)
2

+ wR · (1 − R(x)) + wE · EP
(1)

with the process parameters x=(PP, tP, zf) and the weights wd,I=1µm−1;
wd,O=4µm−1; wR=200; wE=2 mJ−1 calculates the cost C of each bore-
hole, with lower costs indicating higher quality. Determining the ap-
propriate weights w requires domain-specific expertise and is inher-
ently subjective. These weightings are contingent upon the optimiza-
tion objectives and the relative magnitude of the associated process
parameters. Given the significant impact of these weightings on the
optimization outcomes, it may be necessary to adjust them prior to
initiating the optimization process. C(x) is formulated to achieve a
target inlet and outlet diameter with maximum roundness of the out-
let. Pulse length and pulse power were summarized as pulse energy
EP=PP · tP, which is to be minimized to encourage a short drilling
duration and lower heat input. If no breakthrough occurs, the cost
C becomes high due to the quadratic influence of the outlet diam-
eter term wd,O · (dO(x) − dO,target)

2. In addition, the roundness R is
set to zero, which leads to maximum costs of the roundness term
wR · (1 − R(x))=200.

7
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3 Results and Discussion

This section discusses the results obtained from the feature extraction
techniques, which are divided into two parts: The evaluation of the
training of the segmentation networks and the evaluation of the feature
extraction methods based on the segmentation results. Subsequently,
we explore the findings from the BO process.

3.1 Results of the Feature Extraction

To evaluate the effectiveness of the feature extraction process, 80 im-
ages of borehole openings, captured from 40 laser-drilled boreholes (40
images of inlets and 40 images of outlets), have been labeled by experts
and are available for analysis. These images were not included in the
training data set. We employ the Intersection over Union (IoU) [19] as
evaluation metric to assess the model predictions:

IoU(A, B) =
|A ∩ B|
|A ∪ B| (2)

Where A is the segmentation mask used for training and B is the pre-
diction of the segmentation network. During the evaluation, the inlet
model achieved an IoU value of 0.97 for the borehole classes, while the
outlet model achieved an IoU value of 0.95 for this class. However,
the melt and burr classes exhibit a decline in performance, with each
reaching an IoU value of 0.75. This is primarily attributable to the dis-
tinctive characteristics of the melt, which also manifests as a maximum
IoU value of 0.78 for these two classes during training.

After the image segmentation, the diameters are calculated based
on the prediction of the borehole models. To assess the precision of
the measurement techniques with respect to representative data, the
inlets and outlets of 40 additional boreholes, drilled in identical exper-
imental conditions as illustrated in Figure 2, were evaluated. Figure 4
shows the diameters based on automatic feature extraction dfeat. extr. (x-
axis) and manual measurements dman. (y-axis) of the inlet (blue) and
outlet (green). The manual measurements were conducted using an
optical microscope. The right side of Figure 4 shows the deviation be-
tween the feature extraction diameter and the manual measurement.
The mean deviation is -0.5µm for the inlet and 0.34µm for the outlet,
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Figure 4: Comparison of the results of automatic feature extraction (x-axis) with manual
measurements (y-axis) of inlet and outlet diameters.

which is within the expected accuracy and tolerance limits for bore-
hole measurements. These low deviations, typical between automated
and manual measurement techniques, validate the effectiveness of fea-
ture extraction in determining inlet and outlet diameters. The methods
outlined enable automated borehole measurement, facilitating the use
of the extracted features for parameter optimization and significantly
reducing manual effort.

3.2 Results of the Bayesian Optimization

Figure 5 shows the evolution of the process parameters (left) and qual-
ity variables (right) during the optimization process. During the ini-
tialization process (orange) with parameters chosen by the sobol se-
quence, a wide range of process parameters is covered, resulting in
a high cost value (red curve). In the start sequence, three parameter
sets n=3, 4, 5 did not lead to through holes, because the pulse duration
was too short. In the following optimization steps the BO suggested
only one more parameter set at n=26, where no breakthroughs were
achieved. In the bottom right of Figure 5 the inlet and outlet of the
borehole with the minimum cost value C12=86.00+13.57

−20.83 after n=12 iter-
ations with process parameters zf=-79.0µm, PL=898 W and tP=17µs is
shown. This led to an inlet diameter of dI=68.0+0.5

−0.8 µm, an outlet diam-
eter of dO=18.03+0.57

−0.43 µm and a roundness of R=0.84+0.6
−0.4 µm which are

close to the targeted values.
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50 µm 50 µma) b)

Figure 5: Evolution of the process parameters (left) and quality variables (right) of the
drilled holes and the value of the cost function during optimization (red). The
error bars are min/max values of three experiments for each parameter set.
a) inlet and b) outlet of borehole n=12.

4 Conclusion

The aim of this work was to reduce the manual effort in parameter
search for single-pulse laser drilling. By employing a combination of
deep learning techniques for the segmentation of microscope images
and conventional image processing methods for the measurement of
segmentations, it is possible to perform a robust and rapid determina-
tion of the quality features of a borehole, particularly in challenging
imaging situations, such as those caused by reflections. The results
demonstrate that the mean deviations between manual measurements
and feature extraction for both inlet and outlet diameters are less than
one micrometer. Furthermore, BO has been demonstrated to be an
effective approach for achieving target hole characteristics with a min-
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imal number of iterations. In an optimization experiment compris-
ing 30 iterations, the parameters conducive to drilling with the de-
sired characteristics were identified after just 12 iterations. This signif-
icantly reduces the need for traditional full-factorial experimental de-
signs, simplifying the laser drilling optimization process and increasing
efficiency in industrial applications.
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Release 4.1 of the EMVA standard 1288:
A universal concept to characterize

modern image sensors

Bernd Jähne

Interdisciplinary Center for Scientific Computing (IWR)
Heidelberg University

Berliner Straße 43, 69120 Heidelberg

Abstract In order to illustrate the broad application range of the
new version of the EMVA standard 1288, its basic concepts will
be outlined and illustrated with measurements from standard
monochrome industrial cameras, VIS-SWIR cameras and an au-
tomotive HDR camera with a dynamic range of 120 dB.

Keywords Image sensors, system theory, standardization,
EMVA 1288

1 Introduction

The standard 1288 of the European Machine Vision Association
(EMVA) is used worldwide for objective characterization of the quality
parameters for industrial cameras [1–5]. It is the oldest standard ac-
tivity of the EMVA, celebrating its twenties anniversary this year. The
standard has been elaborated by a consortium of industry leading sen-
sor and camera manufacturers, distributors, and research institutes.

A first version was published in 2005 [6], release 3.1 went into ef-
fect end of 2016 [7] with a standardized summary data sheet. This
release still could only be applied to cameras with a linear characteris-
tic curve. Furthermore, no preprocessing was possible which changes
the temporal noise, except for simple operations such as binning or
time-delayed-integration (TDI).

The next major progress was release 4.0 in 2021 [8], which added an
additional general model to be applied to any camera with a defined
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exposure time and known pixel size. At first glance it appears that
the standard has now split into two variants. This is not the case,
because still the same measurements are taken. Subsequent work on
release 4.1 — which is still ongoing — made it clear that the addition
of the general model put the focus on the parameter which is really
important for signal quality, namely the signal-to-noise and the signal-
to-nonuniformity. This is what a user should really should look at in
first place and not parameters, such as the quantum efficiency and the
standard deviation of the noise of the dark signal.

The paper takes this approach. In other words, it asks the simple
question which effects limit the quality of the signal of an image sensor.
These are

• the temporal noise, which expresses the uncertainty of each mea-
surement,

• the nonuniformity, which says that each pixel of an image sensor
responds to the exposure slightly different,

• the dark current, which represents the effect that there is a signal
even without light, which is increasing with the exposure time,
and

• the saturation capacity, which limits the maximum exposure that
can be measured by an image sensor.

A more detailed presentation can be found in the textbook [9, Sec. 4.5].

2 A general system theoretical approach

A general system theoretical concept is the base of the standard 1288.
which requires This means that the camera can be regarded as a black
box as shown in Fig. 1 and that no measurements from within the
camera are required. Only the input/output relation is considered.

The input signal is the mean number of photons µp hitting each
pixel during the exposure time. In order to obtain the input signal
three pieces of information are required. Firstly, the irradiation E at the
sensor plane must be measured using an absolutely calibrated photo-
diode. Secondly, the integration time must be known, which is nor-
mally the exposure time texp set in the camera. Thirdly, the pixel size
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Figure 1: Black box camera model, from [10].

must be known. This is not the light-sensitive area of the pixel, but
the whole pixel area A computed by the horizontal and vertical pixel
pitch, because the whole pixel is irradiated homogeneously. Thus the
pixel-related input signal in units of photons is given by

Hin = µp = EAtexp. (1)

It is important to note here that the input signal exhibits temporal noise.
Due to the laws of quantum mechanics the input signal follows a Pois-
son distribution. Therefore the variance of the input signal is equal to
its mean:

σ2
p = µp. (2)

The output signal is the digital signal y (units DN) with mean µy, the
temporal variance σ2

y and the variance of the spatial nonuniformity s2
y.

The mean of this signal and its variances can be measured for any cam-
era with a digital output. The temporal variance of the output signal
includes the variance of the input signal and all further noise sources
from the components within the images sensor and signal processing
circuits within the camera.
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3 Key parameters signal-to-noise ratio and
signal-to-nonuniformity (SNR)

According to the discussion in the previous section, the quality of
a camera signal is simply given by the relation of the mean output
signal versus the standard deviations of the temporal noise and spa-
tial nonuniformity. This results in the signal-to-noise and signal-to-
nonuniformity ratios:

SNRout =
µy − µydark

σy
and SNRout.nu =

µy − µydark

sy
(3)

These two rations can be combined to the total SNR

SNRout.total =
µy − µydark√

σ2
y + s2

y

==
µ′

y√
σ2

y + s2
y

. (4)

In this way, the SNR can be measured for any camera with a digital
output. Only care must be taken that the quantization is not too coarse.
Otherwise, the standard deviations would be biased [9, Sec. 5.6.2].
However, one important fact must be considered. This is unusual, be-
cause normally only linear systems are considered. In a linear system
noise and signal are amplified in the same way. This means that the
SNR at the input and the output is the same. The SNR of interest is
actually not the output SNR but the input SNR, because the quantity
of interest is the measured exposure H. It gives the certainty with
which the pixel exposure can be measured. In a non-linear system, it
is necessary to differentiate between input and out SNR. Therefore, it
is required to find a way to compute the input SNR from the measured
output SNR.

Because the characteristic curve µy(µp) is also measured, it is possi-
ble to compute the input SNR from the output SNR via inverse error
propagation. The two quantities are related to each other by the slope
of the characteristic curve:

σy =
dµy

dµp
σp ; SNRin =

µp

σp
=

µp

σy

dµy

dµp
=

µp

µ′
y

dµy

dµp
SNRout (5)
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In this way, the input SNR can be computed from the measured quan-
tities, a) the slope of the characteristic curve, b) the applied mean expo-
sure, µp, and c) the measured mean output signal minus the mean dark
signal, µ′

y. From Eq. 5, it can also be inferred that input and output SNR
are equal only for a linear characteristic curve. It is further important
to note that the standard deviation σp does not only include the tem-
poral noise of the incoming stream of photons (shot noise) but also all
other noise sources within the non-linear camera — back-projected to
the input signal.

It is also easy to specify the input SNR for an ideal general sensor
with no noise reduction processing and no additional noise sources.
Then only the photon noise remains. Therefore the ideal input SNR is
given by

SNRin.ideal(µp) =
√

µp. (6)

From the above considerations, we can draw three important conclu-
sions, which emphasize the importance of the SNR approach for gen-
eral image sensor and camera quality assessment. Firstly, very different
types of cameras can be compared with each other by compareing the
input SNR. Secondly, it is possible to specify how much worse a real
camera (5) is in comparison with an ideal one (6). Without a more
detailed camera model, it is not possible to determine the quantum
efficiency1 of the sensor. However, this is not a significant disadvan-
tage. Derived camera performance parameters really of importance
for applications such as the absolute sensitivity threshold, the dynamic
range, and the maximum SNR can be derived from the input SNR with-
out knowing the quantum efficiency.

4 Discussion of examples

In this section, we show several examples to illustrate the power and
usefulness of the discussion in the previous sections. Double logarith-
mic plots of the SNR are shown, in which derived quality parameters
are marked, such as the absolute sensitivity threshold, the saturation
capacity, the dynamic range, and the maximal SNR, SNRmax.

1 The quantum efficiency relative to a maximum response can still be measured by
performing measurements over the whole range of wavelengths.
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Figure 2: SNR of a typical high-end linear industrial camera in the visible range, mea-
sured with a wavelength of 532 nm (top) and a SWIR camera (bottom).
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The first case is a typical high-end linear industrial camera with
a maximum SNR of about 100 and almost negligible nonuniformity
(Fig. 2 top). The camera has also a low temporal noise of the dark
signal, because the measured SNR runs parallel to the ideal sensor
without any additional noise sources for almost the whole saturation
range.

The second example shows the SNR of a typical SWIR camera (Fig. 2
bottom) with quite different properties. The camera has a saturation
capacity which is more than a decade higher than the camera in the
visible range. Therefore, the maximal SNR is with a value of about
400 four times higher. Two other significant differences are obvious
from the direct comparison. Firstly, the quality of the SWIR camera
is limited over almost the entire saturation range by the much higher
dark noise. Therefore, the absolute sensitivity threshold is also more
than 200 photons instead of about 4 for the standard silicon image
sensor. Secondly, the nonuniformity is at least as large as the temporal
noise. Therfore the total SNR is about a factor of two lower at almost
all saturation levels. Close to the maximum saturation level it is even
almost a lower by a factor of four.

The last examples shows a linear 24-bit HDR camera (Fig. 3). It
illustrates that the standard 1288 is also capable to characterize cameras
over a dynamic range of more than 120 dB.

5 Conclusions and outlook

It has been shown, that the EMVA standard 1288 can characterize and
compare a wide range of cameras/sensors. Despite the diversity, the
central tool is the SNR and total SNR. From the SNR, a minimum set of
application-oriented quality parameters can be derived. It is possible
to characterize and compare a) simple linear cameras without prepro-
cessing that changes the noise, b) linear cameras with proprocessing,
and c) linear and nonlinear HDR cameras. It could also be shown how
different the properties of SWIR cameras with a lower band gap are
from standard silicon semiconductor cameras.

With the concept of computing the input SNR for nonlinear cameras
from the output SNR it will also be possible to apply the analysis to any
parameters derived from several channels of a multimodal image sen-
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Figure 3: Characteristic curve (top) and SNR (bottom) of a linear 24-bit HDR camera.
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sor. Examples include color hue, color saturation, polarization anygle
and polarization.

Not yet covered is an entirely different class of image sensors, so-
called event-based or neuromorphic sensors. Research to extend the
EMVA standard 1288 also for this class of sensors has already started
[11], see also the contribution of Manakov et al. in this volume.
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Beitrag zur robusten Parameterschätzung
Iteratively reweighted least squares revisited

Bastian Erdnüß

Fraunhofer-IOSB (Institut für Optronik, Systemtechnik und Bildverarbeitung)
Fraunhoferstr. 1, D-76131 Karlsruhe

Zusammenfassung Die Kleinste-Quadrate-Schätzung ist opti-
mal für normalverteilte Messfehler, jedoch anfällig gegenüber
groben Messfehlern. M-Schätzer können eine endlastigere Feh-
lerverteilung berücksichtigen, was sie robuster gegenüber gro-
ben Messfehlern macht. In diesem Beitrag wird eine in der No-
tation einfachere Beschreibung der klassischen Theorie der ro-
busten M-Schätzer vorgestellt und für den Fall von gleichver-
teilten Ausreißer durchgesprochen. Darüber hinaus wird eine
Familie bekannter robuster Verlustfunktionen in diese Notati-
on übersetzt und Verbindungen zu einer Kernel-Lifting-Methode
aufgezeigt, die als Alternative zum üblichen IRLS-Algorithmus
zur Berechnung von M-Schätzern verwendet werden kann.

Schlüsselwörter Kleinste Quadrate, Robuste Schätzung, IRLS

Abstract The least squares estimator is optimal for normally dis-
tributed measurement errors, but it can break down under gross
measurement errors. M-estimators can take fat-tailed error dis-
tribution into account, which makes them more robust to gross
measurement errors. In this paper, a simpler description of the
classical theory of robust M-estimators is presented and used to
describe M-estimators for uniformly distributed outliers. In ad-
dition, a family of well known robust loss functions is presented
in this notation and connections to a kernel lifting method are
shown, which can be used as an alternative to the usual IRLS
algorithm for calculating the M-estimators.

Keywords Least squares, robust estimation, IRLS
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1 Der Kleinste-Quadrate-Schätzer

Der Kleinste-Quadrate-Schätzer ergibt sich als Maximum-Likelihood-
Schätzer der Normalverteilung. Sind Beobachtungen y ∈ RN N-
dimensional normalverteilt mit Erwartungswert µ ∈ RN und Kova-
rianzmatrix Σ ∈ RN×N (geschrieben: y ∼ NN(µ, Σ)), so entspricht die
Likelihood gegeben der Beobachtungen y der Wahrscheinlichkeitsdichte
von y:

l(µ, Σ | y) = p(y | µ, Σ) =
1√
|2πΣ|

exp(−1
2
∥y − µ∥2

Σ−1) . (1)

Hierbei steht | · | für die Determinante und ∥x∥A =
√

xTAx für die
Norm bzgl. einer Metrik A. Die Likelihood ist maximal, wenn die ne-
gative Log-Likelihood

λ(µ, Σ | y) = − log
(
l(µ, Σ | y)

)
=

1
2

log(|2πΣ|) + 1
2
∥y − µ∥2

Σ−1 (2)

minimal ist.
Ein paar Spezialfälle werden nun genauer betrachtet. Liegen N

unabhängig identisch eindimensional normalverteilte Beobachtungen
yi ∼ N (µ, σ2) vor (also µ = µ1 der mit dem Faktor µ ∈ R skalierte
Konstant-1-Vektor und Σ = σ2 I die mit dem Faktor σ2 skalierte Ein-
heitsmatrix), so ist

λ(µ, σ2 | y) = C +
N
2

log(σ2) +
1

2σ2 ∑
i
(yi − µ)2 (3)

mit der Konstante C = N
2 log(2π). Unabhängig von der Wahl von σ2

ist ∑i(yi − µ)2 minimal, wenn µ = y = 1
N ∑i yi der Mittelwert der Be-

obachtungen yi ist. Dies ist der Maximum-Likelihood-Schätzer des Er-
wartungswerts µ der Beobachtungen yi. Da µ = y die Summe der Qua-
drate ∑i(yi − µ)2 minimiert, wird er auch als Kleinste-Quadrate-Schätzer
bezeichnet.

Im zweiten betrachteten Fall ist y ∼ NN(µ(x), s2Q) mit linearem
µ(x) = a + Ax, sowie a ∈ RN , x ∈ RM, A ∈ RM×N , Q ∈ RN×N

symmetrisch positiv definit und s2 > 0. x ist ein zu schätzender Pa-
rametervektor und a, A, Q beschreiben das als bekannt vorausgesetzte
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stochastische Modell der Beobachtungen. In dem Fall ist

λ(x, s2 | y) = C +
N
2

log(s2) +
1

2s2 ∥y − µ(x)∥2
Q−1 (4)

mit der Konstante C = 1
2 log(|2πQ|), wobei ∥y − µ(x)∥2

Q−1 unabhängig

von s2 minimal wird, wenn

x = (ATQ−1 A)−1 ATQ−1(y − a) (5)

ist. (5) ist der Schätzer des linearen Gauß-Markoff-Modells, vgl. [1,
Gl. (4.41)], und stellt gewissermaßen die Basis der Ausgleichsrechnung
dar.

Schließlich wird noch ein dritter Fall betrachtet, in dem die Beobach-
tungen y = (yi)i in n-dimensonale stochastisch unabhängige Beobach-
tungsgruppen yi ∼ Nn(µi(x), s2Qi) mit µi(x) = ai + Aix zerfallen. In
dem Fall ist

λ(x, s2 | y) = C +
N
2

log(s2) +
1

2s2 ∑
i
∥yi − µi(x)∥2

Q−1
i

(6)

mit der Konstante C = 1
2 ∑i log(|2πQi|), wobei N die Gesamtdimensi-

on aller Beobachtungen ist. ∑i ∥yi − µi(x)∥2
Q−1

i
wird dann unabhängig

von s2 minimal, wenn

x =
(
∑

i
AT

i Qi Ai
)−1 ∑

i
AT

i Qi(yi − ai) (7)

ist. Häufig wird (5) intern mit (7) berechnet, um die üblicherweise vor-
handene Block-Diagonal-Struktur vor Q algorithmisch effizient zu nut-
zen. Im Folgenden wird sich diese Darstellung jedoch auch methodisch
als sinnvoll erweisen.

2 Robuste Schätzung

Problematisch am Kleinste-Quadrate-Schätzer ist seine Anfälligkeit
ggü. Ausreißern. Ein einziger grob falscher Messwert kann den Mit-
telwert beliebig weit verschieben. Huber hat daher in [2] vorgeschla-
gen, statt wie in (3) die Summe ∑i r2

i der Quadrate der Residuen
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ri = yi − µ, die Summe ∑i ρ(ri) anderer Verlustfunktionen ρ der Re-
siduen zu minimieren, um dadurch robustere Schätzer zu erhalten,
die er als M-Schätzer bezeichnet. Bspw. führt die Minimierung der
Summe der Absolutresiduen mit ρ(r) = |r| auf den bekannterma-
ßen robusten Medianschätzer µ = medi(yi). Huber basiert viele sei-
ner Untersuchungen auf die Einflussfunktion ψ(r) = ρ′(r). Passend zu
den Ergebnissen von Huber gibt es den IRLS-Algorithmus (iterative-
ly reweighted least squares, vermutlich auf unveröffentlichte Arbeiten
von Tukey zurückgehend, vgl. [3]), der mithilfe der Gewichtsfunktion
w(r) = ψ(r)/r Summen vom Typ ∑i ρ(ri) mit oft nur wenigen Itera-
tionen minimieren kann. Eine derartige Darstellung der Theorie findet
sich z. B. in [1, Kap. 4.7.4].

In diesem Artikel wird eine andere Darstellung näher an [4, Kap. 3.3]
präsentiert, bei der ρ statt in den Residuen ri in den halben quadrier-
ten Residuen Ωi =

1
2 r2

i parametrisiert wird. Dies erlaubt eine einfache-
re Darstellung der Theorie bei mehrdimensionalen Beobachtungsgrup-
pen.

2.1 Die Verteilung Ww,n

In dieser Darstellung werden Verteilungen mit einem gewissen Grad
an Symmetrie um ihr Zentrum µ betrachtet. Diese Verteilungen sollen
durch die halbe quadratische Mahalanobisdistanz

Ωµ,Σ(y) =
1
2
∥y − µ∥2

Σ−1 (8)

faktorisieren. Dazu wird eine n-dimensionale Verteilung Ww,n(µ, Σ)
mit Lageparameter µ ∈ Rn und Skalenparameter Σ ∈ Rn×n auf Ba-
sis einer integrierbaren Gewichtsfunktion w : R≥0 → R≥0 definiert.
Diese soll die Wahrscheinlichkeitsdichte

pWw,n(µ,Σ)(y) =
Γ( n

2 )√
|2πΣ|

· pw,n
(
Ωµ,Σ(y)

)
(9)

mit der Eulerschen Gammafunktion Γ(k) =
∫ ∞

0 exp(−t) tk−1 dt und

pw,n(Ω) =
exp

(
−ρw(Ω)

)

Γw(
n
2 )

mit ρw(Ω) =
∫ Ω

0
w(ω)dω (10)
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sowie der Normierungskonstante

Γw(k) =
∫ ∞

0
exp

(
−ρw(t)

)
tk − 1 dt (11)

haben. Dieser Zugang unterscheidet sich von [4, Kap. 3.3] nur dahin-
gehend, dass ρ in 1

2∥y − µ∥2
Σ−1 parametrisiert ist statt in ∥y − µ∥2

Σ−1

(ohne dem Vorfaktor 1
2 ). Dieses Vorgehen bring deutliche Vorteile in

der Notation mit sich, u. a. den auch in [5, Gl. (2)] angedeuteten ein-
fachen Zusammengang ρ′w(Ω) = w(Ω) zwischen Verlustfunktion ρw
und zugehöriger Gewichtsfunktion w.

Nicht für alle Gewichtsfunktionen w ist Ww,n(µ, Σ) eine Wahrschein-
lichkeitsverteilung. w(Ω) · Ω ist die gewichtete halbe quadratische Ma-
halanobisdistanz, an deren Grenzwert Ωw = limΩ→∞ w(Ω) · Ω sich ab-
lesen lässt, ob das Integral Γw(n/2) konvergiert und Ww,n(µ, Σ) da-
mit zu einer echten Wahrscheinlichkeitsverteilung macht. Existiert der
Grenzwert Ωw und gilt für diesen Ωw > n/2 (inkl. Ωw = ∞), so kon-
vergiert Γw(n/2). Gilt für den Grenzwert dagegen Ωw < n/2, so diver-
giert Γw(n/2). Für Ωw = n/2 oder falls Ωw nicht existiert, ist eine ge-
nauere Untersuchung notwendig. Divergiert Γw(n/2), kann mit der un-
eigentlichen Wahrscheinlichkeitsdichte h exp

(
−ρw

(
Ωµ,Σ(x)

))
mit un-

bestimmtem Skalierungsfaktor h gearbeitet werden oder mit der auf
Ωµ,Σ(x) ≤ Ωmax eingeschränkten Wahrscheinlichkeitsdichte, die ent-
steht, in dem man die Gewichtsfunktion formal mit w(Ω) = ∞ für
Ω > Ωmax anpasst, wodurch ρw(Ω) = ∞ und damit pw,n(Ω) = 0
für Ω > Ωmax werden. Der Normierungsfaktor Γw(n/2) in pw,n kann
dann auch durch das unvollständige Integral γw(n/2, Ωmax) mit der
ursprünglichen Gewichtsfunktion w ohne Anpassung ab Ωmax ersetzt
werden, für das gilt:

γw(k, T) =
∫ T

0
exp

(
−ρw(t)

)
tk − 1 dt . (12)

Ist Ωw > (n + 1)/2 existiert der Erwartungswert der Ww,n(µ, Σ)-
Verteilung und ist µ. Ist Ωw > (n + 2)/2 existiert auch die Kovarianz-
matrix der Verteilung und ist s2

w,nΣ mit dem Skalierungsfaktor

s2
w,n =

Γw
( n

2 + 1
)

n
2 Γw

( n
2
) , bzw. s2

w,n =
γw
( n

2 + 1, Ωmax
)

n
2 γw

( n
2 , Ωmax

) . (13)
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Ist Ωw > (n + 3)/2 existieren die 3. Zentralmomente der Verteilung
und verschwinden, d. h. die Verteilung ist symmetrisch. Ist Ωw exakt
(n + 1)/2, (n + 2)/2 oder (n + 3)/2 ist jeweils eine genauere Untersu-
chung notwendig, ob die entsprechenden Momente existieren. Ist Ωw
dagegen kleiner, existieren sie nicht.

Die Verteilungen Ww,n(µ, Σ) haben ihren Modus in µ und fallen
um diesen herum symmetrisch ab. Dadurch ist zu erwarten, dass
die Maximum-Likelihood-Methode auf diesem Verteilungstyp sinnvol-
le Ergebnisse liefert, da sich Fehler in alle Richtungen symmetrisch
ausgleichen können.

Für die konstante Gewichtsfunktion w(Ω) = s−2 ist Γw(
n
2 ) = sn Γ( n

2 )

und Ww,n(µ, Σ) = Nn(µ, s2 Σ) die n-dimensionale Normalverteilung
mit Erwartungswert µ und Kovarianzmatrix s2 Σ. Insbesondere ist
Ww,n(µ, Σ) = Nn(µ, Σ) für die konstante Gewichtsfunktion w(Ω) = 1.
Für die konstante Gewichtsfunktion w(Ω) = 0 ergibt sich die uneigent-
liche Gleichverteilung oder die Gleichverteilung auf Ω < Ωmax, wenn
sie mit w(Ω) = ∞ für Ω > Ωmax bei Ωmax abgeschnitten wird.

2.2 Iteratively Reweighted Least Squares (IRLS)

Mit µ = µ(x) und Σ = s2Q ist die negative Log-Likelihood von (9)

λWw,n(µ(x),s2Q)(x, s2 | y) = C +
n
2

log(s2) + ρw
(
s−2 Ωµ(x),Q(y)

)
(14)

mit C = log
(

Γw(n/2)
Γ(n/2)

√
|2πQ|

)
. Für die n-dimensionalen Beobach-

tungsgruppen yi ∼ Ww,n(µi(x), s2Qi) ergibt sich analog zu (6) die zu
minimierende negative Log-Likelihood

λ(x, s2 | y) = C +
N
2

log(s2) + ∑
i

ρw(s−2 Ωi) (15)

mit C = ∑i log
(

Γw(n/2)
Γ(n/2)

√
|2πQi|

)
und Ωi = Ωµi(x),Qi

(yi). Die Beob-
achtungsgruppen yi könnten auch unterschiedliche Dimensionen ni
und unterschiedliche Gewichtsfunktionen wi haben, z. B. wenn unter-
schiedliche Beobachtungstypen wie 2D-Featurepunkte und 3D-GNSS-
Messungen miteinander kombiniert werden, oder wenn die Beobach-
tungen gegen qualitativ unteschiedliche Ausreißer anfällig sind. In
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dem Fall ist N = ∑i ni in Formel (15) die Gesamtdimension aller Beob-
achtungen.

Damit (15) minimal in x ist, muss

0 =
∂

∂x
λ(x, s2 | y) = s−2 ∑

i
ρ′w(s

−2 Ωi)
∂

∂x
Ωi (16)

= s−2 ∑
i

w(s−2 Ωi)(yi − µi(x))TQ−1
i

∂

∂x
µi(x) (17)

sein, und mit Ωi = Ωµi(x),Qi
(yi) und wi = w(Ωi/s2) ist das im linearen

Gauß-Markoff-Modell µi(x) = ai + Aix erfüllt, wenn

x =
(
∑

i
wi AT

i Q−1
i Ai

)−1 ∑
i

wi AT
i Q−1

i (yi − ai) (18)

ist. Abgesehen von den Gewichten wi entspricht diese Formel gerade
(7). Jedoch ist zu beachten, dass hier die wi selbst sowohl von x als auch
von s2 abhängen. Dennoch können startend von Näherungswerten
x und s2 iterativ die Gewichte wi berechnet werden und damit ei-
ne verbesserte Lösung für x berechnet werden. Dies ist der IRLS-
Algorithmus.

Um s2 robust zu schätzen, gibt es mehrere Möglichkeiten, z. B.
[1, Kap. 4.7.3] oder den mit leichtem Bias versehenen Maximum-
Likelihood-Schätzer, der entsteht, wenn (15) nach s2 abgeleitet und des-
sen Nullstelle berechnet wird. Das führt auf

s2 =
2
N ∑

i
wi Ωi (19)

wobei zu beachten ist, dass wi = w(Ωi/s2) selbst von s2 abhängt und
(19) aufgefasst als Fixpunktgleichung v = f (v) = 2

N ∑i w(Ωi/v)Ωi mit
v = s2 nicht zwingend konvergieren muss.

2.3 Bekannte Gewichtsfunktionen

Barron [6] hat eine Funktionsfamilie aufgezeigt, die viele der in der Li-
teratun bekannten Schätzer umfasst. In der hier gewählten Darstellung
hat sie die Form

wβ,s2,k(Ω) =
k
s2 wβ,1,1

(
Ω
s2

)
mit wβ,1,1(Ω) =

(
1 +

Ω
β

)−β

(20)
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für 0 < β < ∞ mit den Grenzwerten w0,1,1(Ω) = 1 und w∞,1,1(Ω) =
exp(−Ω). Die Familie umfasst die Normalverteilungen w0,1,s−2 , den
geglätteten Huber-Schätzer w1/2,s2,s2 , die n-dimensionale Cauchy-Ver-
teilung w1,s2/2,(n+1)/2, den Geman-McClure-Schätzer w2,s2,1 und den
Welsch-Schätzer w∞,s2,s2 . Es gilt

ρw
β,s2,k

(Ω) = k ρwβ,1,1

(
Ω
s2

)
(21)

ρwβ,1,1(Ω) =
β

1 − β

((
1 +

Ω
β

)1−β

− 1
)

(22)

mit den Grenzwerten ρw0,1,1(Ω) = Ω und ρw∞,1,1(Ω) = 1− exp(−Ω)
und dem Sonderfall ρw1,1,1(Ω) = log(1 + Ω).

wβ,s2,k führt für β < 1 auf eine Wahrscheinlichkeitsverteilung, zu
der alle Momente existieren. Für β > 1 lässt sich die entstehende
Verteilung dagegen nicht normieren und nur als uneigentliche oder
abgeschnittene Wahrscheinlichkeitsverteilung verwenden. Für β = 1
hängt die Situation von dem Wert von k ab. Für k > n

2 entsteht ei-
ne n-dimensionale Wahrscheinlichkeitsverteilung zu der nur genau die
Momente kleiner als 2k − n existieren. Für k ≤ n

2 lässt sich die entste-
hende n-dimensionale Verteilung dagegen wieder nicht normieren.

[6] schlägt vor, startend von β = 0 schrittweise β → ∞ laufen
zu lassen, wodurch Ausreißer zunehmend abgewertet werden. In der
hier gewählten Darstellung zeigt sich ein auffälliger Zusammenhang
der Funktionsfamilie (20) zur bekannten Approximation exp(x) =
limn→∞(1 + x

n )
n der Exponentialfunktion in wβ,1,1.

2.4 Mischungen von Wwi ,n

Die Mischung zweier Zufallsvariablen y0 und y1 ist die Zufallsvariable
y = yI mit dem zufälligen Index I ∼ B(ε), der mit Wahrscheinlichkeit
ε ∈ [0, 1] den Wert 1 annimmt und mit Wahrscheinlichkeit 1 − ε den
Wert 0. Die Wahrscheinlichkeitsdichte py von y ist

py(y) = (1 − ε) py0
(y) + ε py1

(y) , (23)

wobei pyi
für i = 0, 1 jeweils die Wahrscheinlichkeitsdichte von yi ist.

Sind yi ∼ Wwi ,n(µ, Σ), so ist auch y ∼ Ww,n(µ, Σ) mit

pw,n(Ω) = (1 − ε) pw0,n(Ω) + ε pw1,n(Ω) . (24)
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Aus (10) folgt p′w,n(Ω) = −pw,n(Ω) · w(Ω) und leitet man (24) nach Ω
ab, erhält man nach Multiplikation mit −1

pw,n(Ω) w(Ω) = (1− ε) pw0,n(Ω) w0(Ω) + ε pw1,n(Ω) w1(Ω) . (25)

Löst man das nach w(Ω) auf und ersetzt darin pw,n(Ω) mit (24), so
folgt

w(Ω) =
(1 − ε) pw0,n(Ω) w0(Ω) + ε pw1,n(Ω) w1(Ω)

(1 − ε) pw0,n(Ω) + ε pw1,n(Ω)
. (26)

Folgt y0 der Wahrscheinlichkeitsverteilung der Inlier und y1 der
Wahrscheinlichkeitsverteilung der Ausreißer, so folgt y der Wahr-
scheinlichkeitsverteilung, die entsteht, wenn man Inlier mit einem An-
teil von ε an Ausreißern kontaminiert.

2.5 Gleichverteilte Ausreißer

Es wird angenommen, dass die Inlier einer Normalverteilung mit Er-
wartungswert µ und Kovarianzmatrix Σ folgen, dass also konstant
w0(Ω) = 1 ist. [4, Kap. 3.3] und [1, Fig. 4.13] schlagen beide die Gleich-
verteilung für die Ausreißer vor, geben jedoch nicht die dafür notwen-
dige Gewichtsfunktion

w(Ω) =
(
1 + k exp(Ω)

)−1 (27)

an. Diese lässt sich aus (26) mit w0(Ω) = 1 und w1(Ω) = 0 durch
kürzen des Zählers ermitteln, wobei sich pw1,n(Ω) = 1/γw1(

n
2 , Ωmax) =

n
2 Ω−n/2

max ergibt und k = ε/(1 − ε) · Γ( n
2 + 1) · Ω−n/2

max substituiert wurde.
Für große k kann die Gewichtsfunktion (27) durch w∞,1,1/k(Ω) =

exp(−Ω)/k angenähert werden, wobei k insbesondere dann groß wird,
wenn der Ausreißeranteil ε groß ist. Diese Annäherung ist proportional
zur Gewichtsfunktion des Welsch-Schätzers und liefert zu vorgegebe-
nem s2 daher im Grenzwert dieselben Ergebnisse.

Für (27) ergibt sich durch dividieren von (25) durch w(Ω) wegen
w0(Ω) = 1 und w1(Ω) = 0

pw,n(Ω) =
(1 − ε)pw0,n(Ω)

w(Ω)
=

1 − ε

w(Ω)
·

exp(−Ω)

Γ( n
2 )

. (28)
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Ist Ii das Ereignis, dass es sich bei der i. Beobachtung um einen Inlier
handelt, mit a-priori Wahrscheinlichkeit P(Ii) = 1− ε, so ist mit (28) die
a-posteriori Wahrscheinlichkeit zu gegebenem yi nach Bayes,

P(Ii | yi) =
P(yi | Ii)P(Ii)

P(yi)
=

pw0,n(Ωi)(1 − ε)

pw,n(Ωi)
= w(Ωi) (29)

mit Ωi = Ωµ,Σ(yi). Dadurch lassen sich die Summen der Form ∑i wiTi
in (18) und (19) als empirische Erwartungswerte über die mit den In-
lierwahrscheinlichkeiten wi = P(Ii|yi) gewichteten Beobachtungen yi
auffassen. Diese Interpretation ist nur für die Gewichtsfunktion (27)
möglich, denn für andere Gewichtsfunktionen gilt im Allgemeinen
P(Ii | yi) ̸= w(Ωi).

W = ∑i P(Ii | yi) = ∑i wi ist die a-posteriori zu erwartende Anzahl
an Inliern, gegeben der Beobachtungen yi. Da diese mit der Anzahl
M der n-dimensionalen Beobachtungen yi a-priori erwartungsgemäß
E[W] = (1 − ε)M ist, ist bei gleichverteilten Ausreißern zu vorgegebe-
nem k

1 − ε =
1
M ∑

i
wi = w (30)

ein Schätzer für den Inlieranteil.
Analog zu dem Vorgehen in [6] bietet es sich an, k startend von 0

schrittweise zu erhöhen, wodurch Ausreißer zunehmend abgewichtet
werden. Mit (30) in (27) ist deren negative Log-Likelihood

λ(k | y) = C − M log(w) + ∑
i

log(wi) (31)

mit von k unabhängigem C minimal in k, wenn

1
M ∑

i
log(wi)− log(w) = log(w)− log(w) (32)

minimal in k ist. Grundsätzlich lässt sich k durch Ableiten von (32)
nach k und berechnen der Nullstellen bestimmen, jedoch führt das auf
komplizierte Formeln. Stattdessen ist es einfacher, k wachsen zu lassen,
solange (32) fällt und aufzuhören, sobald es zu steigen beginnt.
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3 Zusammenhang zur Lifting Methode

In [7, Kap. 3.4] weist Zach auf eine Lifting-Methode hin, die mit einer
geeigneten Kernelfunktion dieselben Ergebnisse wie IRLS liefern kann,
jedoch teilweise einen größeren Konvergenzbereich aufweisen soll. In
etwas angepasster Notation wird dazu

min
x ∑

i
ρw(Ωi) = min

x,w ∑
i

(
wiΩi + φΩ(wi)

)
(33)

mit Ωi = Ωµi(x),Σ(yi) minimiert, wobei die linke Seite hier für die
Lösung des IRLS-Algorithmus steht (ohne Berücksichtigung eines Ska-
lenparameters s2 oder Parameter der Gewichtsfunktion w) und die
rechte Seite die ersatzweise zu minimierende Funktion der Kernelme-
thode darstellt. Damit die beiden Lösungen übereinstimmen muss die
Kernelfunktion φΩ zur Gewichtsfunktion w auf der linken Seite pas-
sen. Für monoton fallende w ist dies in der hier gewählten Darstellung
besonders einfach, denn mit der Umkehrfunktion Ω(w) von w(Ω) und
w0 = w(0) = maxΩ w(Ω) ist

φΩ(w) =
∫ w0

w
Ω(ω)dω . (34)

Für gleichverteilte Ausreißer ist bspw. Ω(w) = log
( 1−w

kw
)

durch
auflösen von (27) nach Ω und durch integrieren ergibt sich hierfür

φΩ(w) = (1 − w) log
(1 − w

kw

)
+ log(w) . (35)

Analog lassen sich die Gewichtsfunktionen (20) nach Ω auflösen und
integrieren, was mit elementaren Mitteln machbar ist, allerdings zu et-
was sperrigen Ausdrücken führt.

4 Zusammenfassung

In diesem Artikel wurden die auf Huber [2] zurückgehenden M-
Schätzer und der IRLS-Algorithmus (iteratively reweighted least squa-
res) zu deren Berechnung betrachtet. Es wurde ein alternativer Zu-
gang dazu gegeben, der die Verlustfunktionen und Gewichtsfunktio-
nen im halben quadratischen Fehler parametrisiert. Dadurch entfal-
len viele der sonst notwendigen Zwischenschritte und die Darstellung
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wird schlanker. Auch werden Querverbindungen sichtbar, die in der
üblichen Darstellung verborgen bleiben. Diese ist zum einen ein Zu-
sammenhang zur eulerschen Gammafunktion über (11), der auch z. B.
in (13) bemerkbar wird; zum anderen ein Zusammenhang einer Familie
bekannter robuster Gewichtsfunktionen [6] zur Approximation der Ex-
ponentialfunktion über (20); und schließlich ein Zusammenhang einer
Kernel-Lifting-Methode [7], in dem die Verlustfunktion ρw des IRLS-
Algorithmus auf symmetrische Weise mit der Kernelfunktion φΩ der
Lifting-Methode über die Umkehrfunktion Ω(w) der Gewichtsfunkti-
on w(Ω) zusammenhängt.

Des Weiteren wurde mit gleichverteilten Ausreißern eine sehr gut
interpretierbare Gewichtsfunktion (27) durchgesprochen, die zwar
an mehreren Stellen insbesondere zur anschaulichen Argumentati-
on angeschnitten wird, aber deren Eigenschaften scheinbar nirgends
ausführlich behandelt werden.
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Abstract Machine learning by means of neural networks has de-
veloped an indispensable method to solve intricate challenges in
optical quality control for manufacturing. When the technology
became usable for inline inspection tasks first, neural network
architectures themselves were at focus. However, it has become
increasingly obvious that the degree of success in implementing
vision AI systems is highly dependent on a well-structured and
reliable infrastructure. These aspects are commonly summarised
under the terms of machine learning operations (MLOps) and
human centered design (HCD). Our experiments are conducted
using the industrial AI software Neuralyze®, which has served
as a basis for several research projects starting in 2019 to test
new approaches to machine learning in manufacturing. In our
research, we introduce approaches on how to ideally integrate
those methods into AI software concepts to derive an optimum
benefit. It is a key goal to retain standardized handling semantics
despite the variety of model architectures and use cases.

Keywords Machine vision, industrial imaging, image process-
ing, image analysis, machine learning, deep learning, machine
learning operations, user centered design, human centered de-
sign, context analysis, quality assurance
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1 Introduction

As the applied counterpart to computer vision, machine vision has
been putting academic knowledge of image processing into practice
almost continuously for over 40 years. This is also the case for ma-
chine learning based on convolutional neural networks (CNNs), which
emerged as a novel approach to analyze camera data in actual applica-
tions about a decade ago. The discipline, usually referred as DL/ML
(Deep Learning / Machine Learning) developed into a major research
topic since then.

The related transfer into practical application however was subject to
significant obstacles in its early phase - it’s primary reason being the
lack of computing power to be of any value in industrial production
use cases. This barrier successively lowered by the fast development of
GPU hardware and the related increase of GPU power. It also benefited
from the growing interest of the scientific community, going along with
the implementation of libraries offering abstractions for fundamental
mathematical operations as well as transparent access to computing
resources from high level programming languages, like Keras [1].

2017 marks a change with the release of Keras 2.0 as a hugely im-
proved toolset to enable easy access for experimentation with CNNs.
The top-level-library TensorFlow [2] added additional capabilities to
the point of automated image set downloads. It further decreased the
threshold to access deep learning technology, also for non-computer
scientists. This also marks about the point where desktop GPU power
had developed accordingly to enable first machine vision applications,
yet still on very small image sizes.

Since then, major model architectures have evolved which focus on
image analysis [3]. Their constant development has lead to a number
of core applications that have emerged in the process. The central cate-
gories comprise classification, object detection and semantic segmenta-
tion, with a number of distinctive forms such as anomaly detection or
combinations as in instance segmentation. In the majority of cases, the
descendants of these architectures are capable of solving even the most
complex machine vision problems when used appropriately.

This suggests that in terms of technical feasibility, as of 2024 almost
any conventional image analysis task can be solved fast enough for
inline processing in industry. This holds even more true as machine
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vision also encompasses the entire vertical design of the image acquisi-
tion and processing pipeline, and thus also has control over data gen-
eration.

However, experience in industry-grade development of those sys-
tems shows that the exclusive focus on the technical solution leaves key
aspects of the deployment unaddressed. This can lead to poorly per-
forming and and unsustainable vision AI solutions in the field. From
a practice-oriented point of view, it becomes apparent that a consistent
and well-structured development environment has a crucial impact on
the operational success of machine learning systems. Our research
seeks to explore ways to standardize these methods and make them
more accessible.

2 Related work

Several prior works have already addressed the importance of a unified
approach to cope with the complexity of AI applications. In general,
the accuracy and performance of ML systems and in particular Vision
AI systems depends on three main factors

1. the chosen model type

2. the model implementation

3. as well as the quality of the input data,

which implies a high complexity of these systems [4]. The interde-
pendence of these three factors requires a high level of care already in
the development phase with respect to versioning and reproducibility
of the entire ML pipeline. During operations (MLOps), the data qual-
ity and quality of the models must also be continuously monitored in
order to detect malfunctions at an early stage.

One particular challenge is the large landscape of tools for specific
tasks, often developed on a small scale by start-ups or communities.
The widely different operating paradigms encountered turned out to
be an obstacle in constructing seamless workflows. In addition, the
market for MLOps software is currently very dynamic due to the per-
manent release of new solutions. As one example, ”Tensorflow Ex-
tended” offers a generic platform for the development of ML systems
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that maps the complete ML lifecycle ”end-to-end” [5]. However, spe-
cially trained personnel such as data scientists, ML engineers and in-
frastructure teams are required to set up and operate such platforms.

In order to simplify access to ML systems for domain experts with-
out AI expertise, first technical steps are already being taken by devel-
oping explanation methods to understand ML model predictions. Yet
these methods are still mainly aimed at data scientists. In addition,
”best practices” from classical software development are increasingly
being adopted and adapted to increase confidence in the development
process [6] [7].

Due to the often probabilistic nature of ML systems, a key factor
of good usability, expectation conformance according to ISO 9241-
110:2020, is not given. This means that a system does not always be-
have similarly, and in particular predictably, even in repeated, identical
interactions [8]. This complicates user experience (UX) design in the
context of AI systems, since different misbehavior in particular can-
not be predicted before model implementation is complete. Here, the
use-case-specific development of ”AI playbooks” for designers and de-
velopers, which collect typical errors in the operation of ML systems
can provide a remedy [8]. In addition, a comprehensive meta-study on
guidelines for the development and design of AI systems has already
summarised initial guidelines for the design of human-AI interaction.
The derived 18 core design principles for human-centered design of AI
systems are bundled in the Microsoft HAX Toolkit [9]. However, both
of the described guidelines have been evaluated only on publicly avail-
able AI products for end users, but not yet on ”critical” applications as
found in industry.

Finally, to further democratize ML, recent research suggests the no-
tion of ”human-centric machine learning.” AI systems are now con-
ceived as a symbiosis between humans and machines, and a shift in
perspective from ”human-in-the-loop” to ”ML-in-the-loop” is called
for [10] [11] [12].

3 Methodology

The initial ideas of the methods we target do not originally arise from
a machine learning context. They evolved from good practice in ad-
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jacent fields, like Development Operations (DevOps) as a practice to
unify and streamline all processes that are necessary to manage and
build software code. Based on this ideal, MLOps emerged to achieve
something analogous for the development of machine learning appli-
cations. Human Centered Design (HCD) originated from experimental
psychology in the first half of the last century, expanding to a large
range of fields since then. [13].

3.1 Machine Learning Operations (MLOps)

Organizations are confronted with many obstacles when optimizing
machine learning systems within their technical lifecycles. Version-
ing of models, result repeatability, and preserving constant perfor-
mance across different environments are among the key operational
concerns [14]. Cross-functional cooperation, handling a variety of tools,
and incorporating ML workflows with current procedures are organi-
zational hurdles [14]. Issues with data quality, resource constraints,
and model deployment challenges are the main concerns in industrial
settings. We have devised a general method to address these problems
in the beforementioned sectors.

We illustrate our efforts with Neuralyze®, a software framework
developed by senswork for AI-based image analysis, which puts the
above tasks into practice. Figure 1(a) shows the general overview of a
project in Neuralyze®. It serves as an informational entry point to pro-
vide any user in cross-functional collaboration projects with insights
into the development process. This is of high importance for all in-
volved personas of a vision AI project.

Figure 1(b) shows the data management step in the annotation tab.
Users are provided with tools to handle data, which includes data
cleaning, sorting, and tagging, gaining insights on the metadata, la-
beling the data, and finally creating datasets.

The subsequent step in an MLOps cycle is model development. The
availability of ready-to-use datasets on sites like Kaggle [15] causes
a significant change in focus toward model development. Many aca-
demic articles similarly emphasize getting high performance scores on
benchmark datasets, with the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) being one of the most well-known examples [16].
Industrial experience has however shown that a more balanced strategy
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that incorporates data-centric strategies frequently produces superior
long-term results.

(a) The setup tab gives an overview of a
complete AI project.

(b) The annotation tab provides tools to
work on data.

(c) The training tab offers facilities to train
computer vision models.

(d) The inference tab enables model test-
ing and evaluation based on metrics.

Figure 1: Human centered interface of Neuralyze® Desk.

Neuralyze® follows the paradigm of data-centric AI (DC-AI). Data-
centric AI is an emerging paradigm that emphasizes enhancing data
quality and quantity to improve AI systems, complementing the tradi-
tional model-centric approach [17, 18].

Figure 1(c) shows the training tab in Neuralyze®. In this working
area, users can develop a machine vision model based on the dataset
created before. Users have the option to select predefined model archi-
tectures like ResNet [19]. The focus of this selection is put on model
architectures that have proven effective in the field. Combined with
a data-centric AI approach, this allows for the efficient and rapid de-
velopment of models ready for production. Furthermore, the most
important hyper-parameters, with default values based on empirical
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experience from industrial practice, are accessible to the user. Among
them are the input size, batch size, number of epochs, learning rate,
and a predefined selection of loss functions.

Figure 1(d) shows how models are evaluated in Neuralyze®. Vari-
ous performance indicators and error metrics have been proposed for
both regression and classification algorithms in engineering and sci-
ences [20]. These metrics are often dependent on the dataset and the
specific application of the model [21]. In Neuralyze® we have imple-
mented the most important metrics for this task. These metrics are
visualized in Neuralyze® so that users can easily evaluate the trained
models based on them.

3.2 Human Centered Design (HCD)

Human-Centered Design (HCD) is an interdisciplinary approach that
focuses on optimizing products towards user-friendlyness. As the
design and implementation of engineering software is generally pro-
found, and these systems are often highly complex, they require seam-
less interaction between humans and technology. We will outline the
critical role of HCD in creating effective, efficient and satisfying engi-
neering software solutions in relation to the scope of our work.

HCD places users at the center of the design process by iteratively in-
volving them through prototyping, testing, and feedback collection at
every stage of development [22]. In engineering software, usability is-
sues can lead to reduced productivity or costly mistakes in high-stakes
environments like aerospace, healthcare, and manufacturing [23].

In order to create engineering software with optimum usability, it is
necessary to align the design with user needs. This requires knowl-
edge of their characteristics, goals, tasks, environment and resources.
The findings are collected by means of a user context analysis. The ex-
amination of these findings leads to requirements for the information
architecture, system design and interaction design.

The industry-grade systems investigated in the research project rep-
resent processes that involve both manual activities, e.g. in production,
and pure information work. This results in a wide range of potential
requirements. Their identification requires the participation of various
groups of stakeholders. Stakeholders in industry (quality assurance,
production, technology deployment planning) as well as domain ex-
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perts in relation to machine learning and AI applications must be in-
volved.

Both in-depth and contextual interviews were used to collect data
that served as the basis for the creation of proto-personas and task
models. These easily understandable and communicable artefacts have
been iteratively discussed and adapted with the respective stakehold-
ers. For the DeKIOps project, 12 interview partners from both the
industrial context and machine vision experts were surveyed.

It went apparent that tasks within the field of data exploration and
feature engineering, belonging to the domain of data experimentation
are difficult to define and cannot be fully mapped by engineering soft-
ware. It is likely that these tasks have to be further performed by hu-
man experts in the future, using auxiliary tools that are closely tailored
to the tasks. For machine learning on image data (vision AI), tasks re-
lating to the creation and continuous, iterative improvement of neural
models (training, retraining, monitoring) have been identified as key
topics.

4 Discussion

MLOps frameworks are becoming more and more necessary as the
complexity of implementing machine learning models in industrial
systems increases. This is particularly important in machine vision,
where productivity expectations require tasks like segmentation, clas-
sification, and object recognition to be improved. In this work, we uti-
lized a prototype platform to show how MLOps concepts, such as au-
tomated monitoring and continuous integration/discovery, might sim-
plify model construction for users who are technically inclined but may
not be machine learning experts. This technique covers critical difficul-
ties including model versioning, scalability, and performance monitor-
ing [4].

4.1 Findings and Interpretation

Academically trained data scientists have historically been key roles in
industrial AI model development. Our prototype, however, seeks to
transfer this accountability to users who have received technical voca-
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tional training. The system enables such users to iteratively update and
upgrade models as new product features or flaws develop. Though it
was intended to someday be usable by non-academic users, those with
an academic background now dominate the platform.

The platform’s user-friendly interface effectively promotes commu-
nication and interaction among the various stakeholders in an orga-
nization, such as technicians, project managers, sales staff, and even
non-technical personnel. This significantly increases the number of
people who can enhance, manage, and optimize AI systems without
requiring traditional AI development experts like data scientists. This
type of cross-disciplinary collaboration is absolutely necessary to en-
sure that AI systems function reliably under various constraints, such
as real-time processing, strict compliance with safety regulations, and
scalability for large-scale operations [5].

The integration of Human-Centered Design (HCD) principles en-
sures that users without deep ML knowledge can interact effectively
with the platform via simplified interfaces. This inclusion of HCD en-
sures that the system not only performs technically but is also usable
and efficient for the end-users [22].

4.2 Limitations and Future Work

Even while the platform makes model construction easier, data scien-
tists and machine learning experts are still needed for specialized solu-
tions when dealing with demanding tasks. Furthermore, it is still dif-
ficult to define a terminology that unites ML experts and non-experts.
Subsequent investigations will concentrate on creating a common lexi-
con and verifying how successfully non-technical users can utilize the
system, finding difficulties they encounter.

An interesting question is whether the methods and processes of
HCD can be applied for machine learning and AI systems on a general
basis. Analysing the context of use in the DeKIOps project, it became
clear that some HCD methods pose new challenges. The extension of
HCD towards the scope of machine learning is a field of research to be
further explored in the future.
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5 Conclusion

In conclusion, scalable and dependable machine learning model de-
ployment in industrial contexts requires the integration of MLOps
frameworks, as the Neuralyze® platform demonstrates. Through the
prioritization of data-centric AI and the facilitation of cross-functional
cooperation, MLOps guarantees that models are resilient, replica-
ble, and condition-adaptive. Simultaneously, an adoption of Human-
Centered Design principles improves the platform’s usability, making
it accessible to both AI professionals and non-experts. The success-
ful use of MLOps and HCD in difficult operational situations will be
crucial for industrial AI systems as they develop further.
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Abstract This paper addresses the problem of calibrating mul-
tiple visual sensors mounted on a robotic manipulator, a task
critical for accurate robot perception and interaction. We present
a novel approach to hand-multiple-eyes calibration that incorpo-
rates closed-loop constraints to ensure consistency between the
sensors’ poses. Unlike traditional hand-eye calibration methods
that handle individual sensor pairs independently, our method
leverages a unified optimization framework that simultaneously
optimizes the relative poses of all sensors while enforcing a loop
closure constraint to each pose triplet. The core of our approach
is a least squares approach to solve multiple hand-eye matrix
equations of the form AX = XB, further enhanced with the
method of Lagrangian multipliers to account for loop-closure
constraints. We apply this idea to a minimal setup involving one
hand and two eyes and demonstrate its effectiveness in improv-
ing the accuracy of pose estimation for various levels of noisy
measurements.

Keywords Hand-eye calibration, multi-sensor-robot calibration,
pose-graph optimization, constrained optimization

1 Introduction

The spatial relationship between a robot’s end-effector (hand) and its
visual sensor (eye) is critical for achieving synchronization in task ex-
ecution [1]. In certain robotic applications, the use of multiple visual
sensors is necessary for robust and reliable estimations, often requiring
precise calibration.
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A hand-eye calibration outputs the relative pose X ∈ SE(3) be-
tween a sensor (eye) and the robot end-effector (hand) comprising ro-
tation R and translation t. Using N pairs of measured pose changes
{Ai, Bi}N

i=1 and minimizing the nonlinear least squares loss L(X) =
1

2N ∑N
i=1 ||AiX − XBi||2 subject to X via a gradient descent approach re-

sults in a very accurate estimate for the unknown pose X (see also
Fig. 1) outperforming non-iterative classical methods [2]. This idea has
been extended to multi-sensor setups comprising K sensors by several
authors [3–5] that all share the same basic idea: Simply optimizing
the overall loss LK = ∑K

j=1 L(Xj), whereas {Xj}K
j=1 are the fixed rela-

tive poses between each possible pair of sensors. This is equivalent to
optimizing each pair of sensors separately because the constrained ge-
ometric relations between the relative poses are not taken into account.
In [4] the constraint of equivalent rotations of the measured poses Ai
and Bi are considered but no loop-closure constraint on the estimates
Xj. There are also solutions that increase accuracy for the special case
of hand-cameras calibration by directly optimizing the reprojection er-
ror and considering the uncertainties of the different measures using a
Gaussian-Helmert model [4, 6].

2 Proposed Method

Our work follows the idea of gradient based nonlinear least squares op-
timization but includes additional closed loop pose-graph constraints
to fulfill physical world reality for the estimates of all relative sensor
poses. Here, we explore the minimal multi-sensory setup consisting
of two sensors S1 and S2 rigidly attached to the end-effector EE of a
serial manipulator, as illustrated in Figure 1. Here, {Ai, Bi, Ci}N

i=1 are
all measured pose changes of the two sensors and the end-effector ac-
quired by moving the robot arm accordingly. This sensory setup results
in three unknown relative poses X, Y and Z. These three relative poses
form a closed pose-graph loop at any time. Hence, we can formulate an

additional least squares loop closure constraint Lc = 1
2 ||XY − Z||2 !

= 0
and add it to the hand-multiple-eyes loss L3 for K = 3 frames via a
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Figure 1: Schematic representation of the configuration of the robot end-effector (EE) and
sensors (S1 and S2) for robot-multiple-eyes calibration. The figure illustrates
two states of the robot’s motion (represented by black and gray outlines) used
to measure pose changes {Ai , Bi , Ci}. Additionally, the unknown relative poses
{X, Y, Z} between the sensors and the end-effector need to form a closed pose-
graph loop, where the constraint: XY = Z holds in the physical real world.

Lagrangian Multiplier λ as follows: L = L3 + λLc, which reads

L =
1

2N

N

∑
i=1

(
∥AiX − XBi∥2 + ∥BiY − YCi∥2 + ∥AiZ − ZCi∥2

)

+
1
2

λ∥XY − Z∥2 , i ∈ [1, ..., N] . (1)

This objective is optimized with a gradient descent approach apply-
ing constrained differential optimization [7] and the angle-axis repre-
sentation for rotations.

2.1 Optimization of Rotations

We propose an optimization for estimating rotations and translations
separately by decoupling the poses of the measurements and estimates
from Eq. (1) into rotation matrices and translation vector components.
Additionally, we incorporate the closed-loop constraint into the objec-
tive function using a Lagrange multiplier, as shown in Eqs. (3), where
LRX , LRY, LRZ, and LRC represent the rotational components of the
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objective function corresponding to the transformations X, Y, Z, and
the constraint, respectively. The rotation matrices are parameterized
in terms of their rotation axes s = [s0, s1, s2]

⊤ and denoted as RX(sX),
RY(sY), and RZ(sZ). The rotation objective reads

LR(sX , sY, sZ, λ) = LRX(sX)+LRY(sY)+LRZ(sZ)+λLRC(sX , sY, sZ) ,
(2)

LR =
1

2N

N

∑
i=1

(
∥RAiRX − RXRBi∥2 + ∥RBiRY − RYRCi∥2

+∥RAiRZ − RZRCi∥2
)
+

1
2

λ∥RXRY − RZ∥2 . (3)

We derive the gradients of the rotational objective function with respect
to the axis parameters and the Lagrange multiplier, as follows:

∂LR
∂sXk

=
∂LRX(RX(sX))

∂sXk
+

∂LRC(RX(sX), λ)

∂sXk

=
1
N ∑

i

{
tr
([

2RX − R⊤
AiRXRBi − RAiRXR⊤

Bi

]⊤ ∂RX(sX)

∂sXk

)}

+ λ tr
([

RX − RZR⊤
Y

]⊤ ∂RX(sX)

∂sXk

)
, (4)

∂LR
∂sYk

=
∂LRY(RY(sY))

∂sYk
+

∂LRC(RY(sY), λ)

∂sYk

=
1
N ∑

i

{
tr
([

2RY − R⊤
BiRYRCi − RBiRYR⊤

Ci

]⊤ ∂RY(sY)

∂sYk

)}

+ λ tr
([

RY − R⊤
X RZ

]⊤ ∂RY(sY)

∂sYk

)
, (5)
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∂LR
∂sZk

=
∂LRZ(RZ(sZ))

∂sZk
+

∂LRC(RZ(sZ), λ)

∂sZk

=
1
N ∑

i

{
tr
([

2RZ − R⊤
AiRZRCi − RAiRZR⊤

Ci

]⊤ ∂RZ(sZ)

∂sZk

)}

+ λ tr
(
[RZ − RXRY]

⊤ ∂RZ(sZ)

∂sZk

)
, (6)

∂LR
∂λ

=
1
2
∥RXRY − RZ∥2 = LRC . (7)

Compact formulas for partial derivatives of 3D rotation matrices in
exponential coordinates can be found in [8]. The gradients were instru-
mental in the gradient descent optimization, where the update rules for
the optimization parameters - rotation axes elements sXk, sYk and sZk
for k ∈ {0, 1, 2} and the Lagrange multiplier λ —are given like follows:

si+1
Ek = si

Ek − α
∂LR

∂si
Ek

, E ∈ {X, Y, Z}, k ∈ {0, 1, 2} . (8)

λi+1 = λi + β
∂LR

∂λi = λi + β
1
2
∥RX(si

X)RY(si
Y)− RZ(si

Z)∥2 . (9)

Here, α and β are the step sizes and i representing the iteration index.
It should be noted that a gradient descent is performed to find the op-
timum rotation parameters sEk, whereas a gradient ascent is performed
to find the optimum λ [7].

2.2 Optimization of Translations

Next, we optimize Eq. (1) for the translation vectors tX , tY and tZ as-
suming the rotations RX , RY and RZ to already been optimal. This
leads to the following objective:

Lt = LtX + LtY + LtZ + λtLtC , (10)
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=
1

2N

N

∑
i=1

(
∥((RAi−I)tX−RXtBi+tAi)∥2+∥(RBi−I)tY−RYtCi+tBi∥2

+ ∥(RAi − I)tZ − RZtCi + tAi∥2
)
+

1
2

λt ∥RXtY + tX − tZ∥2 .

(11)

The gradients for the different translation vectors read

∂LtX
∂tX

=
1
N ∑

i

(
[RAi−I]⊤ [(RAi−I)tX−RXtBi+tAi]

)
+λt(tX+RXtY−tZ) ,

(12)

∂LtY
∂tY

=
1
N ∑

i

(
[RBi−I)]⊤[(RBi−I)tY−RYtCi+tBi]

)
+λt

(
tY+R⊤

X [tX−tZ]
)

,

(13)

∂LtZ
∂tZ

=
1
N ∑

i

(
(RAi−I)⊤

[
(RAi−I)tZ−RZtCi+tAi

])
+λt(tZ−tX−RXtY) .

(14)

These gradients lead to the update rules for the translation parame-
ters with step sizes γ and δ as follows

ti+1
E = ti

E − γ
∂Lt

∂ti
E

, E ∈ {X, Y, Z} , (15)

λi+1
t = λi

t + δ
∂Lt

∂λi
t
= λi

t + δ
1
2

∥∥∥RXti
Y + ti

X − ti
Z

∥∥∥
2

. (16)
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3 Evaluation

The gradient descent approach derived in Section 2 was implemented
in Matlab and tested using synthetic data. Robot and sensor poses were
generated using RoboDK [9] and then perturbed with Gaussian noise
to simulate real-world conditions. For all experiments the number of
measurements is set to N = 20, the step sizes are fixed to α = 0.8,
β = 0.01, γ = 0.3 and δ = 10−7 and the number of iterations is i =
1, . . . , 5000. Each optimization run is initialized using the Tsai and Lenz
method [10].

3.1 Pose-Graph Loop Closure

Our method enforces a solution for hand-multiple-eyes calibration,
achieving a closed-loop pose graph by pushing the closed-loop con-
straints LRC and LtC close to zero, as shown in Figure 2 (a) and (b)
(green lines). In contrast, the unconstrained optimization fails to meet
the loop closure constraint (orange lines). The inclusion of constraints
also enhances the convergence rate for both rotational and translational
errors (green lines), resulting in more precise relative pose estimates
(see Fig. 3) that stabilizes at a lower error level.

(a) (b)

Figure 2: Rotational and translational errors for constrained (green) and unconstrained
(orange) optimization. (a) Error

√LRC when optimizing LR including (green)
or excluding LRC (orange). (b) Error

√LtC when optimizing Lt including
(green) or excluding LtC (orange).
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3.2 Improved Rotation and Translation Estimates

We compared the rotation and translation estimates against the ground
truth using the metrics ER = ∥Rest − RGT∥ for rotational deviation and
Et = ∥test − tGT∥ for translational deviation. Figure 3 demonstrates
the impact of applying the loop-closure constraints during the opti-
mization process by comparing the total rotational and translational
errors against ground truth with and without constraints. As can be
seen the inclusion of loop-closure constraints not only enforces pose
estimates that form a closed pose loop but also enhances the overall
calibration accuracy, resulting in a better sensor alignment that is geo-
metrically consistent. In contrast, the unconstrained method achieves
less accurate results and does not provide a fully closed pose loop (see
also Fig. 2). Additionally, we analyzed the evolution of the accuracy
of the relative poses of the sensors during optimization: Sensor 1 with
respect to the end effector (X), sensor 2 with respect to sensor 1 (Y),
and sensor 2 with respect to the end effector (Z), as shown in Figure
4. Improvements relative to the ground truth were observed across all
system components but the improvements vary between the sensors.

(a) (b)

Figure 3: Rotation and translation estimates versus ground truth during unconstrained
(orange) and constraint (green) optimization. (a) Overall rotation errors ER.
(b) Overall translation errors Et.

3.3 Effect of Noise

We conducted 100 simulation runs per noise level, following [11], with
noise sampled from a Gaussian distribution. The histograms in Fig-
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(a) (b)

Figure 4: Individual rotation and translation estimates versus ground truth during con-
straint optimization. (a) Rotation errors ERX, ERY and ERZ. (b) Translation
errors EtX, EtY and EtZ .

ure 5 present the results for four different noise levels (NL1 to NL4). In
the rotation error histograms (top row), the noise follows a Gaussian
distribution with standard deviations from 0.5 to 2.0 degrees, while in
the translation error histograms (bottom row), the noise has standard
deviations from 1 to 4 mm, as per [12]. As the noise levels increase
(NL1 to NL4), the spread of both rotation and translation errors broad-
ens, indicated by the larger standard deviations (green dashed lines).
These results demonstrate the system’s sensitivity to increasing noise
in both rotation and translation estimates.

4 Summary

We present a new extension to hand-multiple-eyes calibration by
adding closed-loop constraints to ensure geometrical consistency be-
tween the poses of multiple visual sensors mounted on a robotic ma-
nipulator. Unlike traditional hand-eye calibration methods that ad-
dress sensor pairs independently, our approach simultaneously opti-
mizes the relative poses of all sensors.

First experimental results indicate that the inclusion of closed loop
pose-graph constraints in the optimization process leads to estimates
that form closed pose loops and each of these estimates are more accu-
rate than if the optimization is done without adding the loop closure
constraint. We have experienced that the results and the convergence
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Figure 5: Histograms of rotation errors (ER, top row) and translation errors (Et, bottom
row) for four different noise levels (NL1 to NL4). The orange bars show the
error distribution from 100 simulation runs per noise level. The red vertical
lines represent the mean errors, while the green dashed lines mark the standard
deviations.

properties strongly depend on the choice of suitable step sizes. Next,
an adaptive step size control should be added to take this problem into
account. Further on, the dependency on the number of measurements
and imbalances in the noise levels between the sensors need to be eval-
uated.

The Langrangian Multiplier method allows a straight forward exten-
sion to a calibration of more than three relative poses. Also a direct
optimization of the reprojection error for multiple-camera setups in-
cluding the loop-closure constraints is some future work to do.
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Abstract This paper presents an analysis of various autoencoder
methods for automated anomaly detection. Prototype image
datasets of battery foils, used as anode (copper foil) and cathode
(aluminum foil) in lithium-ion batteries, are generated using a
line-scan camera system with different illumination setups. The
objective is to design and evaluate unsupervised learning meth-
ods for surface inspection of the foils. Additionally, the impact
of different illumination geometries on the classification perfor-
mance of the implemented models and their inference times is
investigated and analyzed. Another objective is to accelerate
model inference by integrating a DPU-based architecture, focus-
ing on optimizing runtime performance for real-time anomaly
detection. Using the DPU, an approach achieved a speedup by a
factor of 40 compared to computations on the CPU.

Keywords Autoencoder, unsupervised machine learning,
anomaly detection, DPU acceleration, hardware acceleration

1 Introduction

The detection of defects in industrial production is crucial as product
anomalies can lead to increased costs, delays, and quality issues. In
recent years, the production of lithium-ion batteries has significantly
expanded due to the rising demand for electronic devices and electric
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vehicles. Quality assurance plays a vital role in ensuring that the pro-
duced batteries meet performance standards. This includes the quality
of the battery electrode foils, the anode, and the cathode, which are
later used in batteries. Early detection of anomalies in these foils is es-
sential to identify potential production errors or quality problems. This
is where anomaly detection using machine learning methods, such as
the autoencoder, comes into play. The autoencoder is a special type of
neural network that can be used for unsupervised or semi-supervised
anomaly detection [1]. Unsupervised methods are particularly suitable
for industrial anomaly detection because labeled defect data are often
scarce, expensive, or difficult to obtain.
For this reason, the following study investigates various methods for
automated anomaly detection in the context of anode and cathode bat-
tery foils. To ensure a comprehensive analysis of autoencoder meth-
ods, these will be compared with methods based on similarities be-
tween data points extracted from pre-trained neural networks. Fur-
thermore, the implemented methods will be compared with state-of-
the-art approaches in industrial anomaly detection, like Patchcore [2]
and PaDim [3].

Another objective includes examining the impact of different lighting
conditions on the application-specific properties of the foils. For this
purpose, datasets will be created under various lighting conditions,
including both defect-free training data and defect anomaly data. The
goal is to find a suitable lighting geometry and a method appropriate
for the respective applications of the cathode and anode.

As the complexity of machine learning models increases, the de-
mand for computational resources becomes more stringent. Tradi-
tional CPU and GPU implementations may struggle to meet the strict
real-time processing requirements of industrial applications. There-
fore, achieving real-time anomaly detection in industrial environments
requires not only effective detection methods but also optimized in-
ference speed to meet operational demands. To address this issue,
the study also explores accelerating model inference using DPU-based
hardware architectures. By deploying anomaly detection models on a
DPU, inference speed and runtime performance can be significantly en-
hanced, enabling the real-time deployment of complex machine learn-
ing models and bridging the gap between advanced detection tech-
niques and practical industrial applications.
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2 Materials and Methods

2.1 Data Acquisition and Preprocessing

A line-scan-system (Figure 1) is used to create the datasets for anode
and cathode. The foils are illuminated using different geometries: one
brightfield and two darkfields. A bright field lighting technique makes
reflecting surfaces appear bright since the angle at which the light is
incident and the angle at which the camera is aimed are equal. Con-
versely, dark field illumination involves observing the light that has
been dispersed or refracted from the sample. The goal is to identify
different types of anomalies.

The line-scan system records image information line by line (8192
pixels per line), and the foils movement over a roller enables the assem-
bly of these lines into a complete surface image. Each line is captured
three times, with the different lighting geometries each time. This setup
allows capturing the same area under varied lighting conditions, and
through a line shift called deinterlacing, the images are separated into
three distinct ones for further processing.

Initially, images of undamaged foils are captured to serve as the base-
line for training sets. Subsequently, anomalies such as dust, scratches,
and moisture are introduced to create test datasets. The influence of
the three lighting setups is demonstrated in Figure 2.

Figure 1: Line-scan-vision platform while scanning the cathode.
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(a) Anode

(b) Cathode

Figure 2: Images of same sample material under different illumination geometries (dark
field back, bright field, dark field front).

The preprocessing strategy is based on the assumption that differ-
ent defects are visible under different lighting conditions. Images from
each lighting condition are split into patches (256x256x3), transformed
into grayscale (256x256x1), and combined into a multi-flash image
(256x256x3). This combination stores relevant information from each
lighting condition in separate color channels, facilitating the recogni-
tion of various anomaly types in a single image.

2.2 Solution Approach 1: Reconstruction-Based Methods

To classify the anomalies in the generated datasets, two autoencoder
methods were initially tested: Convolutional Autoencoder (CAE) [4]
and Variational Autoencoder (VAE) [1]. Autoencoders learn to recon-
struct an image from error-free data that closely resembles the origi-
nal. During inference, images with errors are reconstructed by the
model as if they had no anomalies. By comparing the original input
image with the reconstruction, such as using the Mean Squared Error
(MSE), anomalies can be classified. For the reconstruction-based meth-
ods, Mean Squared Error (MSE) and Structural Similarity Index (SSIM)
are used as classification metrics. MSE is widely used and quickly
computed, making it suitable for high-speed applications. However, it
can be sensitive to noise. SSIM, on the other hand, considers bright-
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ness, contrast, and structure, providing robustness against noise [5] .
Both metrics help determine anomaly scores and set thresholds for bi-
nary classification based on F1-score (harmonic mean of presision and
recall) maximization.

2.3 Solution Approach 2: Similarity-Based Embedding Methods

This approach involves using pre-trained neural networks (backbones)
to extract features from error-free training data, forming embeddings
that are then reduced using Principal Component Analysis (PCA). Classi-
fication methods such as k-Nearest Neighbors (kNN) and Kernel Density
Estimation (KDE) compare the similarity of these embeddings to detect
anomalies.

ResNet-50 and MobileNet are chosen as backbones. ResNet-50 is suited
for extracting complex features and structures in image data, making
it ideal for patterned surfaces like the anode foil. MobileNet is selected
for its efficiency and suitability for resource-constrained environments.

The extracted feature embeddings of the error-free images are stored
as vectors after dimensionality reduction. During inference, the Eu-
clidean distance to the k-nearest neighbors in the embeddings is cal-
culated. The features of anomalous images are further away from the
stored features of error-free images. The mean of the calculated dis-
tances then forms the anomaly score for this method.

The choice of these classifiers is motivated by the need for efficiency
and the generally low complexity of the image structures involved.
These approaches are based on state-of-the-art methods such as Patch-
core [2], PaDim [3], and a method from the TKH Group (TKH-AD) 4,
which are also compared in the evaluation. Figure 3 shows the pro-
cess of the Similarity-Based Embeddings approach. All approaches were
implemented in Python using TensorFlow and Keras.

2.4 DPU acceleration Solution

To meet the demanding processing speeds required in the battery foil
industry, the Xilinx Deep Learning Processing Unit (DPU) [6] IP core
was selected for hardware acceleration. The DPU, integrated into the

4 https://www.tkhgroup.com/
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Figure 3: Testing or inference procedure of the similarity-based KNN method.

Xilinx ZCU102 FPGA platform, is designed to accelerate Convolutional
Neural Network (CNN) computations using dedicated hardware opti-
mized for parallel processing and high throughput. The architecture
is configurable, supporting up to four cores [7], with a maximum of
three cores used on the ZCU102 due to resource constraints. Each core
independently handles deep learning tasks, maximizing resource uti-
lization through multi-core and multi-threaded processing.

The DPU’s specialized instruction set efficiently manages CNN oper-
ations such as convolutions and activation functions, making it suitable
for real-time applications. Models must be quantized and compiled
using Xilinx’s Vitis AI tools to optimize them for the DPU, with un-
supported operations offloaded to the ARM CPU. This study focused
on deploying a quantized Convolutional Autoencoder (CAE) model on
different DPU configurations, analyzing the impact of multi-threading
on inference speed and how quantization affects the model’s accuracy,
using the cathode dataset.

3 Results and discussion

3.1 Performance Evaluation under Different Illumination Geometries

This section presents the evaluation of model performance by analyz-
ing their Receiver Operating Characteristic (ROC) curves and Area Under
the Curve (AUC) values. The ROC curve illustrates the true positive rate
against the false positive rate at various threshold settings, while the
AUC value provides a single measure of overall model performance by
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quantifying the area under the ROC curve. The models were trained
with 300 good samples per dataset, and the evaluation metrics were
calculated on a test set with 200 good and 200 bad samples. Initially,
we evaluated the implemented approaches using combined illumina-
tion geometries (Multi-Flash).

Figure 4 show the ROC curves for the cathode and anode, respec-
tively, under Multi-Flash illumination. The ROC curves for the anode
are significantly lower than those for the cathode. To examine the im-
pact of the individual illuminations, the best models for each illumi-
nation category were tested and summarized in Figure 5. The results
indicate that the combined illumination (Multi-Flash) does not enhance
performance for the anode, with the best performance achieved using
dark field back illumination alone, where MobileNet with KNN classi-
fier reached 97% AUC. For the cathode, multiple approaches achieved
99% AUC under both Multi-Flash and bright field illumination.

For a comprehensive comparison with state-of-the-art methods, Fig-
ure 6 presents the AUC values and F1 scores for the anode data under
dark field back illumination. With this Dataset the MobileNet KNN
approach achieved a slightly higher AUC (97%) compared to Patch-
core and PaDim (both 94%). However, Patchcore achieved the best per-
formance under Multi-Flash illumination with 88% AUC, while PaDim
performed best under dark field front illumination with 97% AUC for
the anode data.
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Figure 4: ROC-Curves with combined Multi-Flash images.
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Figure 5: Comparison of the best approaches per illumination geometry.
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Figure 6: Comparison of the classification performance for the anode in the dark field
back with state-of-the-art methods.

3.2 Speed evaluation

The inference speed (time for predicting, if one patch is normal or
anormal) of the implemented methods is measured across the entire
test dataset. The measurements were taken on a NVIDIA GeForce RTX
3090 GPU and averaged over all test samples to relate speed to classi-
fication performance (AUC). The best time was achieved by the CAE
and corresponds to a line rate of 0.076 kHz. The measurements in-
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Figure 7: Inference speed of the implemented models at the anode in the darkfield front.

clude the predictions or reconstructions made by the autoencoder and
the feature extraction from the pre-trained networks (calculated on the
GPU), as well as the computation of the post-processing on the CPU
(Intel Core i7).

3.3 Performation Evaluation of Hardware acceleration

Figure 8 is a performance comparison line chart that illustrates the time
efficiency of three different configurations, labeled as 1DPU, 2DPU,
and 3DPU, across various thread counts while processing a single
frame. In studying the impact of DPU core count and thread count
on acceleration performance, it was found that performance improve-
ments are not linear as the number of DPU cores and threads increases.
When the thread count reaches a certain level, the performance of a
single DPU core tends to saturate, and adding more threads may ac-
tually lead to a decline in performance. In multi-core configurations,
although increasing the number of cores can enhance performance, the
complexity of coordinating multiple cores and resource contention lim-
its the extent of these improvements.

For the CAE model used in this study, the optimal configuration,
identified through optimization analysis, is a combination of two DPU
cores with four threads. Under this configuration, model inference
achieved a line rate of 2.65 KHz (32 Patches). This result demonstrates
the significant performance improvement in model inference within a
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Figure 8: Thread-based performance analysis of single and multi-DPU Configurations.

DPU-accelerated environment.
Quantization was found to degrade the reconstruction accuracy of

the models, particularly for MSE-based approaches due to their sensi-
tivity to pixel-level variations, whereas SSIM-based models maintained
greater robustness, demonstrating better tolerance to the effects of re-
duced precision.

4 Conclusions and outlook

This work developed and evaluated unsupervised machine learning
methods for detecting anomalies in battery foils under various light-
ing conditions. Additionally, by using Xilinx’s DPU IP core and Vitis
AI tools for hardware acceleration, we achieved significant improve-
ments in the model’s speed and efficiency. This highlights the ben-
efits of FPGA-based solutions for industrial applications that require
fast and power-efficient performance. The investigations showed that
combining different illumination geometries into a single image proved
effective for the cathode, while the anode did not benefit from this ap-
proach. The best results for the anode were achieved using only the
dark field back illumination. Here, the best approach (MobileNet-KNN)
delivered slightly better results compared to established state-of-the-art
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methods such as PatchCore and PaDim. For datasets containing more
structure (anode, multi-flash), PatchCore achieved higher results com-
pared to MobileNet-KNN.

To obtain the most realistic results from the models, annotation by
an expert would be necessary. Furthermore, saturation of AUC values
was observed for several approaches in the cathode datasets. A future
approach would be to generate and annotate datasets with even more
subtle anomalies to better compare the approaches.

The findings have also demonstrated the significant improvements
in processing speed and efficiency afforded by DPU acceleration, mak-
ing these systems suitable for scenarios where rapid data analysis is
critical.

For future advancements, focusing on further reducing latency in
data processing and optimizing the entire computational pipeline will
be crucial. This includes not only enhancing the model inference stages
but also streamlining data input/output operations, preprocessing,
and postprocessing. Real-time applications often involve continuous
data streams, necessitating systems that can maintain high processing
speeds without bottlenecks.

The concept of Whole Application Acceleration(WAA) is particularly
promising. Considering the substantial improvements in processing
times and efficiency achieved through DPU acceleration in this study,
future research could further expand the scope of acceleration. By em-
ploying FPGA or High-Level Synthesis (HLS) not only for model infer-
ence but also for preprocessing and postprocessing, the entire com-
putational pipeline, from data acquisition to final output, could bene-
fit from hardware acceleration. Implementing WAA would lead to a
more comprehensive utilization of FPGA capabilities, minimizing CPU
dependencies and alleviating the bottlenecks observed in the current
setup.
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Abstract It is crucial to identify defective machine components
in production to ensure quality. Some components generate heat
when defective, so automating the inspection process with a
thermal imaging camera can provide qualitative measurements.
This work aims to use computer vision methods to locate these
components in thermal images. Since there is currently no
comparison of object detection and semantic segmentation al-
gorithms for this use case, this study compares different archi-
tectures with the goal of localising these components for further
defect inspection. Moreover, as there are currently no datasets
for this use case, this study contributes a novel annotated dataset
of thermal images of combine harvester components. The differ-
ent algorithms are evaluated based on the quality of their pre-
dictions and their suitability for further defect inspection. As
semantic segmentation and object detection cannot be directly
compared with each other, custom weighted metrics are used.
The architectures evaluated include RetinaNet, YOLOV8 Detec-
tor, DeepLabV3+, and SegFormer. Based on the experimental
results, semantic segmentation outperforms object detection re-
garding the use case, and the SegFormer architecture achieves
the best results with a weighted MeanIOU of 0.853.

Keywords Thermal images, object localisation, deep learning
architectures, industrial quality assurance
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1 Introduction

Identifying defective components in production is crucial for quality
management. Some components generate heat when defective and can
be identified by this. Currently, this is either done manually or not
done at all. An automatic inspection using a thermal imaging camera
that captures temperature in a 2D image could enable objective and re-
producible measurements, improving quality and supporting workers.
To achieve this, the location of each component in the thermal image
must be known. A naive approach is to use fixed areas. However,
in modern production lines, there are often different machine variants
with changing layouts, and some components can be very close to each
other or even overlap. Thus, this simple approach does not provide the
accuracy needed to evaluate components separately. To address this
issue, the components have to be localised in each image individually
based on computer vision algorithms, such as those from the fields of
object detection and semantic segmentation.

Therefore, in this work, different object detection and semantic seg-
mentation architectures are compared in an industrial production use
case, specifically the localisation of combine harvester components dur-
ing assembly as illustrated in Fig. 1. This use case is chosen due to the
high number of product variants and component layouts. A main con-
tribution of this work is a novel annotated dataset of thermal images
of combine harvester components intended for object detection and
semantic segmentation tasks. Moreover, this work provides a compre-

(a) Color image (b) Thermal image of a
non-defective machine

(c) Thermal image of a de-
fective main engine

Figure 1: Images of combine harvesters in side view in different variants with the rele-
vant components motor, main engine and shredder.
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hensive performance evaluation of different object detection and se-
mantic segmentation architectures on this novel dataset with the objec-
tive of localising the components for further defect inspection.

The remainder of this paper is structured as follows: First, existing
approaches related to the topic and the architectures and backbones
used for this study are presented. Then, the image acquisition and
dataset generation process, the custom metric and the experimental
setup are covered. Finally, the results of the comparison are discussed.

2 Related Work

There are already concepts for defect detection on thermal images [1],
[2], [3]. However, most of these approaches localise the defect based
on thermal information instead of localising the objects first. To ensure
that each component is inspected separately, it is necessary to localise
the components first. For object localisation on thermal images using
object detection or semantic segmentation, there are already existing
approaches, e.g. Mukherjee et al. [4] compare different versions of
YOLO to localise humans and objects in disaster scenes. Ulhaq et al. [5]
optimize YOLO to detect small objects for animal detection in thermal
images. Moreover, Ippalapally et al. [6] detect objects for autonomous
vehicles in the FLIR dataset, and Li et al. [7] propose a new architecture
for semantic segmentation on thermal images. However, none of these
approaches match this specific use case involving machine components
of combine harvesters, which is especially challenging due the wide
range of variants and component layouts.

There are also approaches that localise objects with the intention of
further inspection. For example, Gong et al. [8] use YOLO as a base to
localise electrical equipment and detect rotation to create a fitting area.
Madura Meenakshi et al. [9] localise the eye region using YOLOV2 on
infrared thermal images, while Kakileti et al. [10] use convolutional
and deconvolutional neural networks on greyscale thermal images to
segment areas for breast cancer detection. However, these works do not
compare different object detection or semantic segmentation methods
on thermal images with a focus on a subsequent inspection, which is
necessary to select an optimal neural network architecture for compo-
nent localisation.
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3 Architectures and Backbones

To compare different object detection and semantic segmentation meth-
ods, four state-of-the-art neural network architectures are selected. Seg-
Former [11] is a transformer-based architecture for semantic segmen-
tation that uses mix transformer (MiT) backbones. It can be compared
to the DeepLabV3+ [12] architecture, which is also designed for se-
mantic segmentation. DeepLabV3+ is a deep convolutional neural net-
work (DCNN) and will be evaluated with common backbones, namely
MobileNetV3, EfficientNetV2, ResNet, ResNetV2, DenseNet, and the
YOLOV8 backbone. YOLO models are commonly used in object de-
tection applications. For this study, the YOLOV8 Detector [13] is used
and combined with the YOLOV8 backbones. It will be compared with
RetinaNet [14], a popular one-stage object detection architecture that
uses the same backbones as DeepLabV3+.

4 Image Acquisition, Preprocessing and Dataset

For the dataset of combine harvester components, thermal images were
collected over 49 production days. The thermal camera captured an
image every 10 to 20 seconds with a resolution of 382 by 288 pixels.
Per day, there are five to ten measurement cycles, with each cycle test-
ing one combine harvester. The data contains both defective and non-
defective machines, with non-defective machines being more prevalent.
The relevant components captured are the motor in the top left corner,
the main engine in the top right and the shredder on the right side
as illustrated Fig. 2 . The temperature ranges from 30 ◦C to 60 ◦C
for non-defective combine harvesters (see Fig. 2(a)) and from 30 ◦C to
125 ◦C for defective machines (see Fig. 2(b)). Due to the large number
of variants, there are also machines without a shredder as depicted in
Fig. 2(c). In total, this dataset comprises 19 different machine variants.

The acquired thermal images are first converted to RGB images to
utilize common neural network architectures designed for colour im-
ages and pre-trained weights of large-scale image datasets. The tem-
perature is clipped at 55 ◦C to account for inconsistent colouring due
to higher temperatures in defective machines. To create the dataset, the
measured data is split into measurement cycles. Then, three images per
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(a) non-defective machine (b) defective main engine (c) without shredder

Figure 2: Thermal images of different combine harvester variants.

cycle with a temperature above 45 ◦C are randomly chosen. This en-
sures that each machine variant is present in the dataset and different
temperatures are represented. As there are significantly fewer images
of defective combine harvesters, images with a temperature of 70 ◦C
or above are added to the dataset. Segmentation masks and bounding
boxes are then manually added to the data. The final dataset consists
of 1200 images, including 253 images of defective machines and 69 im-
ages of machines with only two components. This dataset is split into
720 training images and 240 validation and test images each.

The thermal images of defective combine harvesters have some dif-
ferences in colouring and contrast. For the machines with two compo-
nents, there is only a small number of images. To identify weaknesses
in the models and highlight missing training data, additional datasets
are needed. Separate test datasets for defective machines (DM) and
non-defective machines (NDM), each containing 250 images, and a test
dataset for machines with two components (TCM), containing 69 im-
ages, are created from images of the original dataset.

5 Custom Metric

For comparison of the performance of object detection models among
each other and semantic segmentation models among each other, the
Mean Intersection over Union (MeanIOU) is used. However, for ob-
ject detection, MeanIOU does not provide a direct comparison for our
specific use case, as the bounding boxes cannot accurately represent
the components. To address this issue, the ground truth segmentation
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masks are used for evaluation. However, bounding box predictions nat-
urally include pixels that do not belong to the component. To ensure
a fair comparison, non-heat generating parts of the machine, which do
not pose a problem for defect inspection, need to be weighted differ-
ently compared to heat-generating parts.

For this purpose, a temperature threshold value τ = 70 ◦C is de-
fined, which is specific to the components in this use case. The number
of false negative pixels is denoted as FN. The false positive pixels are
split into two groups using the temperature threshold τ. The number
of pixels falsely classified as belonging to the component and with a
temperature above the threshold τ is denoted as FPt≥τ . The number of
pixels falsely classified as belonging to the component with a temper-
ature below the threshold τ is denoted as FPt<τ . Each group is given
a separate weight. For one component, the weighted absolute error is
defined as follows:

wAE = λ1 · FPt<τ + λ2 · FPt≥τ + λ3 · FN (1)

As mentioned before, non-heat-generating parts of the machine do
not pose a problem but are often included in the prediction of ob-
ject detection models. Therefore, λ1 should be much smaller than the
other weights. For this study, the false positives under the temperature
threshold will be weighted with λ1 = 0.1. Since the false positives over
the temperature threshold τ and the false negatives influence the re-
sults of the final defect inspection, they will be weighted with λ2 = 1
and λ3 = 1.

The intersection over union (IOU) is a common metric to evaluate
object detection and semantic segmentation, but it is not well suited for
comparing predicted bounding boxes with ground truth segmentation
masks. As the wAE evaluates the FP and FN, a weighted union wU
can be calculated as the sum of the intersection and the wAE. For
the weighted MeanIOU, the arithmetic mean over all components is
calculated, with n representing the number of components. We define
the weighted IOU and the weighted MeanIOU as follows:

wIOU =
I

wU
=

TP
TP + wAE

(2)

wMeanIOU =
1
n

n

∑
i=1

wIOUi (3)
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The precision can be weighted using the same concept as the other
metrics, grouping the FP based on their temperature. Therefore, it is
defined as follows:

wPrecision =
TP

TP + λ1 · FPt<τ + λ2 · FPt≥τ
(4)

Since λ3 = 1, the regular recall does not need to be modified. As
with the previous metrics, the arithmetic mean over all components is
calculated for recall and weighted precision.

6 Experimental Setup

The experiments are conducted on a computer with Windows 11,
equipped with a 12th Gen Intel Core i7 processor running at a base
speed of 3.60 GHz, 32 GB of RAM, and an NVIDIA GeForce RTX 3060
graphics card with 12 GB of VRAM. The implementation is based on
TensorFlow (2.16.1), Keras (3.0.5) and KerasCV (0.8.2).

All models are trained for 150 epochs using pre-trained weights from
ImageNet or COCO dataset. At the end, the best weights based on the
validation dataset are restored. The stochastic gradient descent (SGD)
optimizer is used, with a global clipnorm of 10 and an exponential
decay learning rate scheduler starting with a learning rate of 0.001.
For each epoch, the model is trained on 360 images, which is half of
the training dataset, and evaluated on the validation dataset. From
each of the mentioned backbone types for DeepLabV3+ and RetinaNet
in Sect. 3, one backbone, preferably of medium size, is selected. The
YOLOV8 Detector and SegFormer are trained on all feasible backbones.

After training, the models are evaluated on the test dataset. Since
the final goal is to classify objects as defective or non-defective, the
most important metrics for the comparison are the weighted MeanIOU,
weighted Recall, and weighted Precision. The MeanIOU is very suit-
able for comparing the performance of object detection and semantic
segmentation models among each other.
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7 Results

The results of the three models with the best MeanIOU from each ar-
chitecture are presented in Tab. 1, and an example prediction of the
best model from each architecture is shown in Fig. 3. The DeepLabV3+

(a) SegFormer,MeanIOU = 0.805, wMeanIOU = 0.870 (b) RetinaNet,
MeanIOU = 0.915,
wMeanIOU = 0.56

(c) DeepLabV3+,MeanIOU = 0.805, wMeanIOU = 0.850 (d) YOLOV8 Detector,
MeanIOU = 0.944,
wMeanIOU = 0.589

Figure 3: Example predictions of the best models from each architecture. Ground truth
on the left and prediction on the right for (a) and (c). Blue and yellow boxes rep-
resent the ground truth and model predictions, respectively, and the model’s
confidence score is visualized next to the bounding boxes for (b) and (d).

architecture achieves the best MeanIOU with the YOLOV8 M back-
bone and the second-best MeanIOU with the large MobileNetV3 back-
bone. For RetinaNet, the YOLOV8 M backbone achieves the best re-
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sults, and the large MobileNetV3 reaches the second-best results. For
the YOLOV8 Detector models, the medium-sized backbone achieves
the best results.

Table 1: Results of the three best models from each architecture on the test dataset.

Architecture Backbone Pre-trained Mean- wMean- Re- wPre-
weights IOU IOU call cision

SegFormer MiT B0 ImageNet 0.8 0.853 0.861 0.988
DenseNet169 ImageNet 0.755 0.804 0.812 0.971

DeepLabV3+ MobileNetV3
large ImageNet 0.76 0.807 0.815 0.962

YOLOV8 M COCO 0.803 0.838 0.844 0.99
DenseNet169 ImageNet 0.879 0.448 0.498 0.472

RetinaNet MobileNetV3
large ImageNet 0.901 0.513 0.579 0.534

YOLOV8 M COCO 0.914 0.682 0.766 0.704
YOLOV8 XL COCO 0.936 0.631 0.707 0.651

YOLOV8 D. YOLOV8 XS COCO 0.939 0.644 0.726 0.662
YOLOV8 M COCO 0.942 0.686 0.771 0.704

Compared by the MeanIOU, DeepLabV3+ with the YOLOV8 M
backbone pre-trained on COCO performs the best for semantic seg-
mentation. The second best performs SegFormer with the MIT-B0
backbone pre-trained on ImageNet. For the weighted MeanIOU, the
SegFormer model performs better than the DeepLabV3 model. As the
MeanIOU and the weighted MeanIOU are similar, there seems to be
no significant difference between a transformer-based architecture and
a DCNN for this use case. It is noticeable that colder parts of the
component are not always detected, resulting in missing parts of pre-
dicted components. For object detection, compared by the MeanIOU,
the YOLOV8 Detector performs better than the RetinaNet architecture.
For the weighted MeanIOU both models perform similar. Both models
use the YOLOV8 M backbone, pre-trained on the COCO dataset. The
architectures sometimes miss components, especially in images with
only two components.

Compared with the semantic segmentation models, the object de-
tection models perform better for the MeanIOU. However, the seman-
tic segmentation models perform better for the weighted MeanIOU.
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Table 2: Models with the best MeanIOU from each architecture tested on the additional
test datasets: non-defective machines (NDM), defective machines (DM) and ma-
chines with two components (TCM).

Architecture Backbone weighted MeanIOU
All NDM DM TCM

RetinaNet YOLOV8 M 0.682 0.65 0.529 0.793
YOLOV8 D. YOLOV8 M 0.686 0.721 0.778 0.639
DeepLabV3+ YOLOV8 M 0.838 0.898 0.904 0.753
SegFormer MiT B0 0.853 0.888 0.864 0.871

The semantic segmentation model with the best weighted MeanIOU,
SegFormer with the MiT-B0 backbone, achieves a weighted MeanIOU
of 0.853, while the best object detection model, the YOLOV8 Detector
with the YOLOV8 M backbone, only reaches a weighted MeanIOU of
0.686. It is interesting to note that the best models from DeepLabV3+,
YOLOV8 Detector, and RetinaNet all use the YOLOV8 M backbone
pre-trained on the COCO dataset.

The results of the best model from each architecture on the additional
test datasets can be seen in Tab. 2. For the additional test datasets, the
YOLOV8 Detector and DeepLabV3+ perform worse on images with
only two components than on images of defective machines. In con-
trast, RetinaNet and SegFormer perform better on images with two
components than on images of defective machines.

8 Conclusions and Future Work

This study aimed to compare different object detection and semantic
segmentation models with the objective of localising machine compo-
nents in thermal images for further defect inspection. For this pur-
pose, the specific use case of combine harvester components coming
in a wide range of variants and layouts was selected. Based on the
evaluation, semantic segmentation models provide the best results for
the weighted MeanIOU, and the SegFormer architecture with MiT-B0
backbone achieves the best results. For the object detection architec-
tures, the YOLOV8 M backbone performed best.

Additionally, the results show that the novel dataset presented chal-
lenges for the models. For images of defective machines, the colouring
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differs from that of non-defective machines, resulting in less accurate
predictions on these images. Additionally, images of machines with
only two of the three components posed a problem. Both groups re-
quire better representation in the training dataset to address this issue.
Overall, the dataset is quite small with 1200 images and could benefit
from more data from additional measurement cycles. To overcome this
problem, additional images could be artificially generated. This could
be a promising area for future research, such as using stable diffusion
techniques. For further investigation, it would be valuable to assess the
performance of the models on data from non-harvesting machinery
with different characteristics. Another potential study could explore
the use of thermal data directly as a one-channel image with a modi-
fied architecture instead of converting it to an RGB image. Overall, this
topic has a lot of potential for application in industrial production and
quality assurance.
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Noise analysis of a synthetically rendered
scene in sensor-realistic image simulation
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Abstract This paper investigates how the noise characteristics of
synthetically generated camera images correspond to those of a
real camera. We determine the photon transfer curve from a set
of rendered images of a static scene. Furthermore, we present
a method to identify the regions with high temporal noise, i.e.,
rendering noise, in synthetically generated data from a single
rendered image. Finally, we present a strategy on how a param-
eterization of the rendering can be achieved that minimizes the
noise while also minimizing the rendering time.

Keywords Synthetic data generation, sensor-realistic simula-
tion, noise analysis, EMVA 1288

1 Introduction

The advances in detecting and classifying defects that we might expect
from machine learning (ML) approaches have often been stymied by
lack of data. To train the AI models, they would need to be fed with
a large number of examples of good products, but also supplied with
precisely labeled bad ones. There are simply not enough of those, if
any at all, which is why we turned the focus of our efforts on synthetic
image generation as it has been performed in various visual inspection
applications [1–8]. The idea is to simulate the entire testing and inspec-
tion environment – specimen geometry, material properties, lighting,
sensor technology – to produce images that are synthetic, but still suf-
ficiently realistic. And then we can use data of defects that we have
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Figure 1: Mathematical camera model of a single pixel (source: EMVA Standard 1288
[9]).

gathered in the past to add synthetic defects as well and vary them
in various ways. This might help us solve the “chicken or egg” prob-
lem. ML-based reproduction of images with defects requires that there
are at least some images available, so it still depends on the quantity
and quality of the input data. We can also build in any kind of defect
we want, and, of course, the synthetic images created in this way are
always labeled perfectly.

In the following, we analyze the noise characteristics of such a syn-
thetic scene and how it resembles the linear camera model according to
the standard EMVA 1288 [9]. Furthermore, we are developing strate-
gies on how the noise characteristics can be improved so that they more
closely resemble those of a real camera.

2 Fundamentals

2.1 Image Formation

We assume the transmission system to be a linear, shift invariant sys-
tem. A standard digital industrial camera provides a linear photo re-
sponse characteristic: the digital signal increases linearly with the num-
ber of photons received. These assumptions describe the properties of
an ideal camera or sensor as described by the EMVA Standard 1288 (cf.
Fig. 1) [9, 10].

When a mean number of photons µp reaches the pixel area during
exposure time, the fraction η is absorbed and creates a mean number
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of photo electrons

µe = ηµp. (1)

The dark current µd is the mean number of electrons present without
light. It is added to the mean number of electrons µe. Together they
form a charge, which is converted by a capacitor to a voltage and am-
plified by the system gain K. Then the voltage is digitized resulting in
a digital gray value µy:

µy = K(µe + µd) = Kµe + µy.dark. (2)

The mean photon flux fluctuates randomly according to the Poisson
probability distribution [11]. Therefore, the variance of the electron
noise is equal to the mean number of electrons:

σ2
e = µe. (3)

All noise sources related to the sensor read out and amplifier circuits
can be described by a signal independent normally distributed noise
source with variance σ2

d. The final analog-to-digital conversion adds
another noise source that is uniformly distributed with variance σ2

q =
1/12. Because the variances of all noise sources add up linearly, the
total temporal variance of the digital signal µy is given according to the
laws of error propagation by

σ2
y = K2(σ2

d + σ2
e ) + σy. (4)

After plugging (3) into (4), we get

σ2
y = K2(σ2

d + µe) + σy. (5)

The mean number of photo electrons µe cannot be measured. From (2)
we get

µe = (µy − µy.dark)/K. (6)

Now plugging (6) into (5) yields

σ2
y = K2σ2

dσ2
q + K(µy − µy.dark). (7)
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Figure 2: Photon transfer function of a real camera. The graph draws the measured
variance σ2

y versus the mean photo-induced gray values µy − µy.dark and the
linear regression line used to determine the overall system gain K. The red
dots mark the 0—70% range of saturation that is used for the linear regression.

Now the unknown parameters from Fig. 1 (red color) can be deter-
mined using the so called photon transfer method [12]: The system
gain K is determined from the slope of (7), and the dark noise variance
σ2

d from its offset.
So in summary, for a linear camera, the temporal noise with vari-

ance σ2
y shows a linear dependence on the mean signal µy. In order to

verify whether a camera or a (synthetically generated) dataset exhibits
this linear characteristic, one simply has to apply the photon transfer
method and analyze the linearity of the graph. A real camera has the
characteristics as shown in Fig. 2.

2.2 Ray Tracing

Ray tracing is a rendering technique that simulates the behavior of
light to create realistic images using geometric optics. At its core, the
process begins by sending rays from a virtual camera into a scene.
When a ray encounters an object, the algorithm evaluates how light
interacts with the surface at that point. This involves calculating surface
normals, material properties, and the angle of incidence, which inform
how much light is reflected, refracted, or absorbed by the material.
Finally, after processing all rays for each pixel, the results are combined
to form the final image. The accumulated energy values, influenced by
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lighting and surface properties, create a 2D image representation of
the scene. During the rendering, the render equation is approximately
solved using a monte carlo approach. The render equation

Lo(p, ωo) = Le(p, ωo) +
∫

Ω

BRDF(p, ωi, ωo)Li(p, ωi)(ω
⊺
i n)d ωi (8)

describes the propagation of light through the scene with Lo(p, ωo)
representing the outgoing radiance from point p in the direction ωo,
Le(p, ωo) being the emitted radiance from point p in the direction
ωo, BRDF(p, ωi, ωo) denoting the bidirectional reflectance distribution
function (BRDF), which indicates how light is reflected from the di-
rection ωi to the direction ωo at point p, Li(p, ωi) representing the
incoming radiance to point p from the direction ωi, the cosine ω⊺

i n of
the angle of incidence between the incoming light direction ωi and the
surface normal n and the positive hemisphere Ω above point p.

3 Setup

The pipeline for image synthesis consists of several steps, which are
described subsequently. First, the setup for the real world image ac-
quisition is virtually recreated using 3D models. The open source 3D
software Blender [13] makes it possible to either model the required
objects manually or import existing models from CAD data and other
sources. In Blender the visual inspection system setup is recreated in
detail and the positions of sensors and lighting can be defined in the 3D
scene. To generate images from the 3D scene, ray tracing is used as a
rendering method. Ray tracing physically simulates light rays to create
photo-realistic images by following the path of light rays and analyzing
their interaction with surfaces to calculate effects such as shadows and
reflections. Mitsuba 3 [14] is used as the rendering engine. To render
the scene created in Blender with Mitsuba, all objects in the scene are
exported and the Mitsuba Blender Add-On is used to generate an XML
scene description. This scene description contains a textual description
of the recreation of the measuring setup including all the information
required for rendering with Mitsuba 3. The rendering is followed by
a denoising process using Intel Open Image Denoise [15]. This open
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source library offers high-quality and high-performance denoising fil-
ters. The rendering and denoising process is automated through script-
ing. In the process of rendering an image using the Mitsuba rendering
tool, each generated pixel value represents the energy received at that
pixel. This energy is linearly assigned to the pixel values. Similar to the
saturation in CCD sensors, the pixel values are clipped at a maximum
value of one. Before saving the images, a gamma correction of 2.2 is
applied in accordance with the sRGB color space, and the images are
quantized into 8-bit formats.

The image generation in ray tracing algorithms is dependent on ran-
dom variables. Therefore, the seed of the random number generator is
changed to produce statistically independent images.

The stochastic nature of the rendering process leads to local devia-
tions from the perfect scene, which can be interpreted as spatial noise.
Less noise can be achieved by increasing the rendering parameter sam-
ples per pixel (SPP) but at the cost of higher rendering times. In prac-
tice, the maximum allowed time to render an image sets an upper
boundary for the maximum SPP.

Especially in dark field setups the noise is very strong. Fig. 3 depicts
the test object as seen by the virtual camera, with the effects of different
SPP and the denoiser turned off or on.

4 Experiments

The scene is a dark field setup and consists of several components,
with the base being a housing made of aluminum profiles and black
cover plates that ensure controlled imaging conditions on the inside.
An area light is installed at the bottom of the housing, above which a
movable shutter is fitted to shade the light. Additional lights are po-
sitioned above the mount on the rear wall and on both sides, whereby
these area lights illuminate the test object from three directions. The
camera is positioned above the test object. The object under con-
sideration is a two-component injection molded part for which CAD
data is provided. The top layer consists of transparent polymethyl
methacrylate (PMMA), under which symbols with varying degrees of
transparency are arranged. The next layer represents a deformed film,
while the base consists of a thermoplastic base body. Fig. 4 visualizes
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(a) 64 SPP (b) 2500 SPP

(c) 64 SPP, denoised (d) 2500 SPP, denoised

Figure 3: Scene rendered with different samples per pixel (SPP) and denoiser turned off
or on.

the composition of the inspected object. For the simulation of image
data, suitable materials for all components are defined using surface
scattering models. The Mitsuba 3 renderer provides a principled bidi-
rectional scattering distribution function (BSDF) model that can cover a
wide range of materials and is used to simulate all materials contained
in the scene. The individual parameters are adjusted, as far as possible,
according to the real material properties, such as the refractive index
of PMMA. Where it is not possible to transfer the material properties
directly to the simulation model, the parameters are selected in such a
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Figure 4: Composition of the modeled product.

way that the visual impression of the rendered images closely matches
the real appearance.

For the evaluations, 50 images each with 64 SPP and 2500 SPP are
generated using the pipeline described in Sec. 3.

The rendering noise (cf. Sec. 3) is not detectable from a single im-
age, because any rendered image is only an approximation but we
would need a perfectly rendered scene against which we could com-
pare. Therefore, we render the same scene multiple times (50 in this
paper). It is important to set a random seed. As a result, the imperfec-
tions, i.e., the spatial noise, occurs in different pixels for each rendered
image. By looking at the rendered images (cf. Fig. 3) as a temporal
sequence, like in a video, the noise now appears as temporal noise
between the rendered images. Fig. 5 depicts the variance along the
temporal axis of the rendered images. As can be seen, the noise de-
creases significantly with higher SPP as well with the denoiser turned
on.
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(a) 64 SPP (b) 2500 SPP

(c) 64 SPP, denoised (d) 2500 SPP, denoised

Figure 5: Variance along the temporal axes of the rendered images. Note the different
scales.

5 Results

In this section we analyze how the rendering noise compares to the
linear camera model.

To compute the photon transfer curve, we make use of the fact that
the rendered data does not contain spatial non-uniformities as com-
pared to a real camera sensor. Hence we do not have to apply the
method described in the EMVA1288 standard and simply compute the
average and variance along the temporal axis of the image sequence.
We then quantize the average in bins with width one and average the
variance at all pixels where the average has equal values.
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Finally we plot the variance against the average yielding the graphs
as shown in Fig. 6. They are very noisy compared to the photon transfer

(a) 64 SPP (b) 2500 SPP

(c) 64 SPP, denoised (d) 2500 SPP, denoised

Figure 6: Photon transfer curve with different samples per pixel (SPP) and denoiser
turned off or on.

curved of a real camera, cf. Fig. 2. They are non-linear and not even
monotone. Therefore we conclude that the characteristic of rendering
noise does not conform to the linear camera model according to the
EMVA1288 standard.

It is very insightful to note that the variance is high near edges, i.e.
where there are strong brightness changes in the image. Fig. 7 de-
picts the Sobel-filtered images for the four different rendering settings;
besides the scaling they look quite similar to Fig. 5. As expected, it ap-
pears that the noise is particularly high in regions with complex light
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propagation.

(a) 64 SPP (b) 2500 SPP

(c) 64 SPP, denoised (d) 2500 SPP, denoised

Figure 7: Sobel-filtered images with different samples per pixel (SPP) and denoiser
turned off or on.

6 Proposed Method

A straight forward approach to minimize the noise is to render a scene
multiple times and compute its variance along the temporal axis (cf.
Fig. 5). We set for each pixel an individual SPP based on the targeted
rendering time. It must be chosen in such a manner that the overall
noise is minimal, i.e., low in regions with low temporal variance and
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vice versa. However, to render a scene multiple times (50 to 100) be-
forehand is extremely time consuming.

Therefore, we make use of the similarities between the variance im-
ages (cf. Fig. 5) and the Sobel images (cf. Fig. 7): The regions with
strong edges can be extracted from a single rendered scene by edge
detection, e.g. by using a Sobel-filter (cf. Fig. 7). This serves as an
approximation for the variance but can be computed much faster.

If the photon transfer curves are now calculated without the regions
with strong edges, the signal variance σ2

y is significantly reduced or
even almost below 2. Here, the rendered image is practically noise
free; to resemble the image of a real camera we can now add photon
noise and dark current noise by simple parameterization based on the
pixel gray values in compliance with the linear camera model [9].

7 Summary

Synthetically generated data contains temporal noise that does not cor-
respond to the photon noise of real cameras, but rather correlates with
the complexity of the scene. The rendered image is less accurate and
therefore more susceptible to noise in regions with edges or strong
brightness transitions and in places that exhibit diffuse volume scatter-
ing.

Based on these findings, a fast method was derived to identify the
regions with high rendering noise from a single rendered image. These
regions must be sampled with a higher SPP-setting, while the average
SPP-setting is based on the targeted rendering time.
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(a) 64 SPP (b) 2500 SPP

(c) 64 SPP, denoised (d) 2500 SPP, denoised

Figure 8: Photon transfer curve of filtered data with different samples per pixel (SPP)
and denoiser turned off or on. The graph in (a) is discontinuous because some
mean signal values µy no longer exist in the filtered data.
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Abstract Event-based sensors asynchronously measure pixel
brightness changes, and output a stream of events that encode
the time, location and sign of the brightness changes instead
of capturing images at a fixed rate, as conventional area-scan
sensors do. Advantages of event-based sensors include: high
temporal resolution and dynamic range (120 dB), low power
consumption, and a compressed output stream. Comparison
methodology between the two types of sensors is not available,
therefore choosing between event-based and conventional area-
scan camera for a given machine vision application is a chal-
lenge. We extended the dynamic range for the irradiance of the
test equipment to 120 dB, characterized the performance in rela-
tion to irradiance (photon/(pixel s)), emulated event-based sen-
sor functionality with conventional area-scan sensor and thus en-
abled a comparison. Normal EMVA 1288 standard measurement
suffice for emulation, provided the irradiance series is dense
enough. Area-scan cameras which meet the linear model of the
EMVA 1288 standard, require no measurements, because it is
possible to compute the emulated performance analytically. The
comparison covers several area-scan cameras and three event-
based cameras with different sensors.

Keywords Sensor characterisation, event-based, area-scan, per-
formance, comparison
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1 Introduction

State-of-the-art image sensors suffer from limitations imposed by their
frame-based operation. The sensors acquire the visual information as
a series of “snapshots” recorded at a predetermined frame rate. Biol-
ogy does not know the concept of a frame. Biological vision systems
outperform the best state-of-the-art artificial vision devices. Frames
are not the most efficient form of encoding visual information. Firstly,
the world, the source of the visual information, unlike frames, works
asynchronously and in continuous time. Classical machine vision ap-
proach faces a dilemma loosing information between the frames or
choosing high frame-rate. The latter requires more complex acquisi-
tion and processing hardware, with large bandwidth connection be-
tween them. Secondly, each recorded frame conveys the information
from all pixels, regardless of whether this information, or a part of it,
has changed since the last frame had been acquired. Two frames ad-
jacent, dynamic contents of the scene, contain redundant information.
Acquisition and handling of these dispensable data consume valuable
resources and translate into high transmission power dissipation, in-
creased channel bandwidth requirements, increased memory size, and
processing power demands. An engineering solution inspired by the
biological pixel-individual, frame-free approach may be more efficient
than a traditional one.

The most advanced bioinspired vision sensors today [1] follow the
natural, event-driven, frame-free approach, capturing transient events
in the visual scene. Pixel analogue electronics stores a reference bright-
ness level, and continuously compares it to the current brightness level.
If the difference in brightness exceeds a threshold, that pixel resets its
reference level and generates an event: a discrete packet that contains
the pixel address, timestamp and polarity (increase or decrease) of a
brightness change. Some sensors of these type do instantaneous mea-
surement of the illumination level [2]. These type of sensors are called
even-based sensors.

Choosing between cameras equipped with event-based and conven-
tional area-scan sensors for a given machine vision application is a
challenge, since the comparison methodology between the two types
of sensors is not available. A first step in this direction was performed
by Manakov and Jähne [3], who established the main concepts of event-
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based sensors in extend to EMVA1288 characterization standard. Man-
akov et al [4] proposed the setup, data acquisition procedure and first
measurement results. They also propose propose key performance in-
dicators: event-delay and an analogous to signal-to-noise ratio defined
for conventional area-scan cameras.

In this work we show the first direct performance comparison of
event-based cameras with traditional are-scan cameras. The measuring
equipment covers an extended irradiance range of 120 dB in order to
cover the dynamic range of event-based cameras and also HDR area-
scan cameras. In addition, we modified the characterization procedure
to measure the performance not in relation to exposure (photon/pixel)
as in the EMVA 1288 standard but to irradiance (photon/(pixel s)),
because event-based cameras cannot be characterized by an exposure
time. These changes enabled emulation the functionality of event-
based sensor with conventional area-scan sensor. We demonstrate that
for area-scan cameras which meet the simple linear model of the EMVA
1288 standard, no measurements are required, since their performance
can be computed analytically. Thus, there is an additional advantage:
it is possible to compute the best possible performance of an ideal area-
scan camera with a quantum efficiency of one and no dark noise. Mea-
surements of area-scan cameras require only normal EMVA 1288 mea-
surements, provided the irradiance series is dense enough so that these
measurements can be used to determine with which probability an in-
tensity change can be detected, given a fixed exposure time with the
corresponding frame rate.

2 Event-based sensor characterization basics

Sensitivity to small temporal contrasts, the response relation to the
event-based sensor settings and its uniformity across the array are cru-
cial performance parameters for the asynchronous, event-driven sen-
sors. The minimum detectable temporal contrast or simply noise equiv-
alent contrast is barely detectable by an event-based pixel step change of
the irradiation level. Noise equivalent contrast sensitivity corresponds
to the signal-to-noise ratio property of a conventional image sensor.

The simplest way of experimentally determining the irradiation con-
trast ∆E necessary for generating one event for given mean irradiance
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level E and event threshold settings is gradually increase the stimulus
step until an event is generated. In an ideal noise-free world, minimal
found stimulus amplitude always results in an event when applied. In
the real world conditions, the very same pixel will react differently to
the same stimulus due to its, possibly different, initial condition, elec-
tronic noise, etc. Therefore, for event-based sensor characterization it
has been proposed to operate with ”event probability” instead [2, 3]. It
is defined for a given as ratio between the number of event responses
M and the number of applied stimuli N, while background irradiance
level and all the sensor settings remain unchanged.

p =
M
N

(1)

Plotting the ”event probability” vs. stimulus amplitude, in an ideal
noise-free world, would yield a step function. In reality, such curve
would have an ”S”-shape, and is therefore named S-curve. Analysis
of an S-curve provides crucial information about the performance of
event-based sensor at the background irradiation levels and tempo-
ral contrasts the S-curve was acquired for. The contrast at 50% event
probability point of an S-curve is the barely sensible contrast, simi-
lar to conventional area-scan cameras [5]. The slope at this point of
an S-curve indicates the amount of noise. High slopes make S-curve
closer to a step function, the influence of noise is small, low slopes in-
dicate significant influence of noise on event probability. Vertical offset
of an S-curve, as shown in Fig.1 for irradiation levels around 102 and
103, indicate the presence of events in absence of temporal contrast.
In the next section we describe the S-curve acquisition procedure in
detail, present the results for three different event-based sensors and
introduce a metric, which enables area-scan and event-based sensor
comparison.

3 Measures S-curves and change detectability

3.1 S-curves acquisition

The acquisition of S-curves presented in this section has been done
on an EMVA1288 Standard conform setup, which consists of an in-
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tegrating sphere, 4 LED modules, filter wheel with neutral density
filters and a calibrated photo-diode. The LED modules are electron-
ically controlled to generate background irradiation level and generate
irradiation impulse with a controlled length. The neutral density fil-
ters allow to extend the dynamic range of the system, reaching very
low irradiation levels and sample the irradiation space densely. The
calibrated photo-diode provides the reference for the background ir-
radiation levels E and the impulse amplitude ∆E. The acquisition of
an S-curve is conducted with fixed sensor settings, namely biases and
event-thresholds. The acquisition is performed for various background
irradiation levels, varied by more than 6 orders of magnitude using
neutral density filters. Each background irradiation level yields an S-
curve. The sensor is stimulated by many impulses of various ampli-
tudes are acquired for each background irradiation level. Thus, every
sample of an S-curve corresponds to a pair (background irradiation;
impulse amplitude). The measurement for each pair is repeated sev-
eral hundred times for computing per-pixel event-probability. Three
different event-based sensors were used in our measurements:

• Prophesee, gen. 3.1 (resolution 640x480, pixel 15µm x 15µm)

• Prophesee, gen. 4.1 (resolution 1280x720, pixel 4.86µm x 4.86µm)

• DAVIS 346, (resolution 346x260, 18.5µm x 18.5µm)

All the measurements were conducted with factory sensor settings, de-
fault bias values. There are 16 S-curves acquired, one for each neutral
density filter, which determine the background irradiation level. The ir-
radiation impulse amplitude is set by controlling LED module current.
There are 128 different impulse logarithmically scaled amplitudes used
for stimulating the sensors. Both Prophesee sensors were measured
without a lens, limiting a region of active pixels to an area of 64x64
pixels around the center of the sensor. This was done in order to make
sure, that the bandwidth of the sensor is not overloaded. Davis 346
sensor was measured with optics, which allowed to irradiate a small
portion of the sensor. Davis the sensor does not provide the possibil-
ity to deactivate the pixels, therefore without the optics the bandwidth
of the sensor is overloaded. The acquired S-curves are presented in
figures 1 and 2.
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3.2 S-curves analysis

All the three sensors demonstrate high dynamic range, aver 6 orders
of magnitude, see Fig. 1. The S-curves of both Prophesee sensors in
the lowest irradiation range are flat, namely the pixels did not produce
any event for this background-impulse pairs. Davis 346 is more sensi-
tive at this irradiation levels and produces events with over 60% and
probability. Prophesee generation 3.1 sensor starts producing events at
irradiation levels of 10 photons per second, unlike the Prophesee, gen-
eration 4.1 sensor. Sensors with larger light-sensitive part of the pixels
have higher sensitivity at low background irradiation levels.

Vertical displacement the S-curves of the Prophesee sensors in the
irradiation range from 20 to 100 photons per second is caused by the
noise events sensors produce without stimulation. In case of the Davis
346 sensor the effect is less prominent. The slope of S-curves around
50% event probability, which can be observed from the distance be-
tween the samples on an S-curve, grows prominently and steadily from
lower irradiation range to higher for Prophesee, generation 3.1 sensor.
This means that for higher irradiation levels the influence of noise be-
comes less significant as S-curves’ shape gets more similar to step func-
tion. Davis 346’s S-curve slopes also grow not as fast and steady as in
case of Prophesee, generation 3.1. The slope growth in case of Proph-
esee generation 4.1 sensor barely noticeable. The latter indicates, noise
influence on the temporal contrast detection performance of the sensor
is low.

3.3 Change detectability

S-curve is a useful performance indicator of an event-based sensor,
but enable the comparison of contrast detection performance between
area-scan and event-based sensors. Therefore, change detectability θ is
introduced. It enables quantitative characterization of event-based im-
age sensors and enabling their comparison to area-scan sensors. It is
defined as the mean irradiance E at 50% event probability, E50%, di-
vided by a measure for the “width” of the S-curve, which indicates the
amount of noise mixed in with the signal. As a measure for the width
of the S-curve, the inverse slope at 50% event probability is taken. This
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Figure 1: S-curves. Left - Prophesee sensor, generation 4.1; Right - Prophesee sensor,
generation 3.1.

Figure 2: Left - S-curves for the Davis 346 sensor; Right - Change detectability compari-
son for the Prophesee and Davis sensors.

results in the following definition:

θ = E50%
dS(E)

dE
. (2)

The higher θ is, the lower contrast is required to detect an event.
Change detectability for the three sensors under test was computed

and presented in Fig 2. The contrast detection performance of all the
sensors in lower irradiation levels is low, but grows with the back-
ground irradiation. The peak of change detectability for all the three
sensors coincides with the maximum of event noise in absence of stim-
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uli, as if the noise would help the sensor reaching the 50% event-
probability threshold. Further growth of the background irradiation
levels leads to gradual decrease of the change detectability. That is,
for these irradiation levels higher contrasts/impulse amplitudes are re-
quired to generate an event. In the highest irradiation levels the metric
becomes constant.

4 Event-based sensor emulation

In this section we emulate an event-based sensor with an area-scan
sensor having a linear response. Namely, we theoretically investigate
the event-probability response of an area-scan sensor, which is used for
temporal contrast detection.

4.1 Basic approach

In order to detect an event, two frames must be taken after each other.
Thus the maximum frame rate of an area-based image sensor deter-
mines the rate and temporal resolution with which events can be de-
tected. An event can be detected if the difference in the gray values is
larger than a given threshold τ. The proper stetting of the threshold
depends on the temporal noise. If the threshold is set too low, events
will also be generated if there is no generated if there is no gray value
change. It is therefore required to compute the probability density
function (pdf) of the difference signal with a given noise level.

The goal is to compute the event probability and the resulting S-
curves analytically. Therefore it was decided to use a normal dis-
tribution. Photon shot noise is Poisson distributed, but the normal
distribution is a sufficiently good approximation. Standard industrial
image sensors have saturation capacities in the order of 10,000 elec-
trons. The normal distribution is already a good approximation for
mean values of just 30 electrons [6]. In the following computations we
neglect nonuniformities. This is justified because differences of two
only slightly different gray values are subtracted from each other so
that the stationary inhomogeneity is canceled out.

It is assumed that the standard deviation of the temporal noise
changes with the gray value without assuming a special dependency.
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With this flexible approach, it is possible to emulate any area sensor.
Therefore two random variables with the distributions N(µ1, σ1) and
N(µ2, σ2) must be subtracted. This results in

N(µn, σn) =
1√

2πσn
· e

− (g−µn)2

2σ2
n with n = 1, 2 (3)

The distribution of the difference signal ∆g = g2 − g1 is given by the
convolution of the two distribution and also normally distributed with

a mean ∆µ = µ2 − µ1 and with added variances (σ =
√

σ2
1 + σ2

2 ):

N∆(µ, σ) =
1√
2πσ

· e−
(∆g−∆µ)2

2σ (4)

4.2 Computation of the S-curve

As it is implemented in the event-based sensor a non-zero threshold
τ is defined. In order to detect an event at a pixel, the difference ∆g
must be larger than τ in order for the sensor to generate an event. This
means that N∆(µ, σ) must be integrated from τ to ∞ resulting in

S(τ, ∆µ, σ) =
1
2

erf(
τ − ∆µ√

2σ
). (5)

The Gaussian error function has S-curve shape. There is a consequence
which follow from Equation 5: if τ = ∆µ, then the event-probability
S(τ, ∆µ, σ) = 1/2. The slope of the S-curve S(τ, ∆µ, σ) is given by

dS(τ, ∆µ, σ)

d∆µ
= − e−

(τ−∆µ)2
4σ

2
√

πσ
. (6)

The slope of S(τ, ∆µ, σ) is a non-linear function. In order to find its
maximum we compute the second order derivative of S(τ, ∆µ, σ).

d2S(τ, ∆µ, σ)

d∆µ2 = − (τ − ∆µ) · e−
(τ−∆µ)2

4σ2

2
√

πσ3 . (7)

The right side of the Equation 7 is equal to zero an the point where
∆µ = τ. Therefore, the S-curve’s maximum values is at ∆µ = τ, where
the value of the event probability is 1/2. The slope is independent of
the chosen threshold τ and is equal to 1/(2

√
πσ).

107



A. Manakov et al.

4.3 Signal-to-noise ratio (SNR) and chance detection

Characterization of the conventional image sensors is a well known
procedure. With respect to temporal noise the essential parameter is
the signal-to-noise ratio, or short SNR as a function of the exposure per
pixel in photons Np:

SNR(Np) =
µ

σ
, (8)

where µ and σ are the mean and standard deviation of the digital out-
put signal.

The SNR can be measured using the measuring and evaluation tech-
niques described by the EMVA standard 1288 using an irradiation se-
ries from dark to saturation [5]. For a simple linear image sensor with-
out any noise changing preprocessing, the SNR can be related to the
quantum efficiency η and the temporal variance of the dark signal σ2

d :

SNR(Np) =
ηNp√

σ2
d + ηNp

, SNRideal(Np) =
√

Np (9)

In case of event-based sensor the SNR cannot be defined the same
way. The definition proposed by Manakov et al [4] can be used for
comparing event-based sensor between each other, but does not estab-
lish the relation to area-scan cameras. This can be established using
the definition of change detectability in eq. 2, because the slope of the
S-curve in known from eq. 6:

θ =
µ50%

2
√

πσ
=

SNR(µp)

2
√

π
, (10)

As follows, the contrast detectability θ is 2
√

π ≈ 3.54 times smaller
than the SNR of an are-scan sensor. For a direct comparison with event-
based cameras, not the exposure Np must be used, but the irradiance
E. In this way the exposure time texp is introduced: Np = Etexp and the
final result is

θ =
SNR(Etexp)

2
√

π
. (11)

108



Performance comparison area-scan and event-based camera

Figure 3: Change detectability comparison for event-based and an ideal area-scan sensor.

This can be applied to the SNR of a linear and ideal camera according
to eq. 9 and results in

θ(E) =
ηEtexp

2
√

π
√

σ2
d + ηEtexp

, θideal(E) =
√

Etexp

2
√

π
(12)

The used exposure time of an area image sensor thus determines
which contrast is required to detect an event. In Fig. 3 the change
detectability of an ideal area sensor with exposures times of 0.1, 1, and
10 ms is compared with measurements from event-based cameras

5 Conclusion and outlook

In this work the change detectability metric was introduced. It en-
ables quantitative characterization of contrast detection performance of
event-based cameras. Change detectability metric and the conducted
theoretical investigation on the event-probability response of an area-
scan sensor, which is used for temporal contrast detection was con-
ducted, establish the comparison link between area-scan and event-
based cameras. Moreover, it has been demonstrated that the metric can
be calculated for any area-scan sensor with non-linear response, char-
acterized in terms of EMVA 1288 standard. S-curve measurements per-
formed over high dynamic range of irradiance levels was performed
for three different event-based sensors. Change detectability for the
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measurements was calculated and presented together with the S-curve
analysis. The theoretical investigations with area-scan image sensors
emulating event-based sensors will be complemented in the future by
the measurements performed with linear and high dynamic range area-
scan sensors.
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Abstract Exploring the potential of quantum hardware for en-
hancing classical and real-world applications is an ongoing
challenge. This study evaluates the performance of quantum
and quantum-inspired methods compared to classical mod-
els for crack segmentation. Using annotated gray-scale im-
age patches of concrete samples, we benchmark a classical
mean Gaussian mixture technique, a quantum-inspired fermion-
based method, Q-Seg a quantum annealing-based method, and
a U-Net deep learning architecture. Our results indicate that
quantum-inspired and quantum methods offer a promising al-
ternative for image segmentation, particularly for complex crack
patterns, and could be applied in near-future applications.

Keywords Quantum computing, quantum image segmentation,
quantum optimization, image processing, disordered systems

1 Introduction

Quantum computing has emerged as one of the leading technologies
to improve the efficiency and solvability of complex problems. Still,
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the bridge between fundamental and applied research is very narrow
and under construction. Unsupervised learning emerges as a partic-
ularly promising avenue for the adoption of quantum computing in
machine learning. Classical algorithms often struggle to efficiently de-
tect patterns in unlabeled data, a common scenario in many practical
applications. Recent advancements have showcased the potential of
quantum optimization techniques in addressing unsupervised segmen-
tation tasks [1, 2]. Furthermore, combining quantum computing with
classical methods have led to quantum-inspired (QI) and hybrid mod-
els like quantum transfer learning, which have been used for example
for crack detection [3].

In this paper, we want to build on these developments, and further-
more evaluate how quantum effects in QI methods can be harnessed to
advance classical algorithms as well as benchmarking current state-of-
the-art approaches. As a use case we have chosen crack-segmentation,
a real world problem, which we consider a tremendous important task
to evaluate for example the quality of current roads and infrastruc-
ture, see Fig. 1 (a). By conducting a systematic comparison between
four approaches, where two benefit from quantum, we seek to identify
specific areas where non-classical approaches offer advantages. This
research not only contributes to the understanding of quantum com-
puting’s practical applications but also guides future developments in
algorithm design and implementation within the field.

2 Segmentation Techniques

This section examines four methodologies for segmenting concrete
cracks: Mean Gaussian Mixture (MGM), QI Hamiltonian, Q-Seg, and
U-Net. Using a dataset of 32 × 32 pixel images annotated with ground
truth crack locations, each method processes input images to generate
segmentation masks that delineate detected cracks. The approaches
differ in complexity and computational demands, reflecting advance-
ments in classical and quantum techniques. Figure 1 (c) provides a
comparative overview of these workflows.

112



Quantum vs. classical approach for crack segmentation

Figure 1: Overview of crack segmentation motivation and methodology: (a) Cracks on
roads illustrating real-world infrastructure challenges, (b) Results from the
QI approach, accurately identifying crack locations using localized states tied
to negative eigenvalues, and (c) Comparative pipeline of crack segmentation
methods.

2.1 Mean Gaussian Mixture

The Gaussian mixture model is a fundamental image segmentation
technique known for its simplicity and efficiency, especially when ob-
jects of interest, like pores, have distinct intensity levels. This clas-
sical method is computationally inexpensive and versatile, making it
ideal for preliminary segmentation tasks. In our study, we adapt Otsu
Thresholding [4] to segment cracks in concrete images. Otsu’s method
determines the optimal threshold that maximizes between-class vari-
ance, effectively separating the foreground (cracks) from the back-
ground. To ensure consistent intensity across all samples, each image
is normalized to a range of [0, 255], addressing ambient lighting vari-
ations. Otsu method is applied to 30 images, calculating the optimal
threshold for each. For consistency in our comparative analysis, we use
the mean threshold across these images as a global threshold, allow-
ing us to benchmark different segmentation methods. This approach
balances individual image optimization and comparative consistency
across the dataset.
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2.2 Quantum-Inspired Hamiltonian

Due to the rise of quantum computing also QI-techniques have become
more prominent in image processing [5]. In the original context, QI
refers to the idea to evaluate classically how quantum effects like super-
position, entanglement or wave function collapse (measurements) may
change an algorithm of interest [6,7], and in the best case how to benefit
from it. Simulating general many-body quantum systems and circuits
becomes exponentially difficult as the number of particles or qubits in-
creases. However, many problems can be reduced to polynomial com-
plexity. For example, single-particle Hamiltonians allow each particle
to be evaluated separately, with the combined dynamics described as
presented here by Fermi-Dirac statistics [8]. We refer to [9] and [10]
for a deeper discussion of the underlying physical effect, fitting in the
context of this work. In this paper, we show in a proof-of-concept that
the single-particle effect of Anderson Localization (AL) [11, 12] can be
efficiently used for image- and especially crack-segmentation. Initially
used to explain electron behavior in disordered lattices, this model in-
troduces randomness into the potential energy landscape, leading to
the localization of wave functions, see Fig.1 (b). Effects of AL and dis-
order have been found suitable for image and signal processing tasks
such as image representation and denoising [10], augmentation [9, 13]
and signal transfer in optical fibre [14]. Embedding an image in a
Hamiltonian yield a simple matrix form N × N, where N correspond to
lattice sites or qubits. To formulate our Hamiltonian matrix, we slightly
adjust the adaptive signal decomposition presented in [10]. The key QI
idea is that the embedding of the images themselves will self-induce
AL due to their disordered landscape, i.e. rough surfaces and cracks
which seem like random disordered potentials. Thus, the eigenstates of
the Hamiltonian will be close to a unit vector (hot encoded one), only in
the strongly disordered areas, and rather extended in areas of weaker
disorder. In our study, we embed the image on a 2D lattice. Here it
is known that the localization length scales exponentially with disor-
der strength as well as energy. Thus leading to strong dependence on
disorder effects, as particles will mostly localize in areas of the cracks
and holes. The embedding works as follows. First, the m × n images
are flattened m · n, such that a pixel value at Aij → al with l = j + ni.
The corresponding single-particle Hamiltonian of N × N size where
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N = m · n reads

Hi,j =





ai if i = j
G(ai, aj) if |i − j| = 1 and

i, j mod n ̸= 0
G(ai, aj) if |i − j| = n
0 otherwise

, G(ai, aj) = exp

(
−
(ai − aj)

2

2σ2

)
(1)

The G(ai, aj) is the Gaussian difference only for nearest-neighboring
pixels and σ2 is the Gaussian variance. The diagonal elements of the
Hamiltonian matrix ai correspond to the pixel values (potentials), while
the off-diagonal G(ai, aj) elements represent the Gaussian weights be-
tween nearest-neighboring pixels (kinetic terms). The Hamiltonian in
its diagonal form can already be considered as a thresholding tech-
nique, however, inferior to the MGM explained in Sec. 2.1. Only due to
the kinetic terms we will get extended states which do not contribute
significantly to the density of the crack or the whole picture at all.
However, we have to be careful to construct kinetic terms for nearest
neighbours, as otherwise we might generate extended states again [15].
Furthermore, we have found the Gaussian distance better than constant
kinetic terms in [10]. The final mask shows the elementwise summation
of magnitudes of all eigenstates (localized particles), tied only to neg-
ative eigenvalues. The sum of all negative eigenvalues corresponds to
the many-body ground state energy and thus is the minimal energy of
the system. This method shows surprising good results and efficiently
finds the crack, see Fig.1 (b).

2.3 Q-Seg: Unsupervised Quantum Algorithm

Q-Seg is an innovative image segmentation method that utilizes quan-
tum annealing [16, 17]. Initially developed for Earth observation im-
ages [2], Q-Seg adapts to detect cracks in concrete by efficiently solving
the Maxcut problem using a D-Wave quantum annealer.

The segmentation procedure begins by converting the input image
into a lattice graph where each pixel is a node, preserving spatial con-
nectivity. Edges are weighted based on pixel similarity, calculated as
squared differences in our case to enhance contrast to gray-scale crack
images. The segmentation task becomes a graph cut problem, aiming
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to find a maximum cut that best partitions the vertices based on edge
weights. To overcome the computational challenges of finding maxi-
mum cuts, Q-Seg reformulates the problem into a Quadratic Uncon-
strained Binary Optimization (QUBO) formulation, suitable for quan-
tum annealing [18]. The QUBO problem is mapped onto the Pegasus
architecture [19] of the D-Wave quantum annealer, where the system
starts in a superposition of all possible states and gradually evolves to-
ward the lowest energy state that represents the optimal solution. The
D-Wave quantum annealer iteratively adjusts system parameters and
annealing cycles. This iterative adjustment increases the probability of
reaching the global minimum.

The final result of the quantum annealing process is a binary string
corresponding to the segmented image, providing a direct solution to
the image segmentation problem. This unsupervised segmentation ap-
proach proved effective beyond its original Earth observation applica-
tion in adapted scenarios such as crack detection in concrete structures,
demonstrating Q-Seg’s versatility and robustness in various image seg-
mentation tasks.

2.4 U-Net

U-Net is a deep-learning architecture designed for biomedical image
segmentation [20], renowned for its performance in tasks with limited
annotated data. Its versatility extends to various applications, includ-
ing medical imaging, satellite imagery, and material defect detection.
This study focuses on utilizing U-Net for crack detection in concrete,
leveraging its strength in producing detailed segmentation masks.

The U-Net architecture features a U-shape consisting of an encoder
and a decoder. The encoder reduces the spatial dimensions of the input
image using convolutional and max-pooling layers, creating a lower-
resolution representation. The decoder upsamples the image, restoring
lost spatial dimensions. A notable advantage of U-Net is its skip con-
nections between encoder and decoder layers, which allow access to
high-resolution feature maps, improving segmentation accuracy. For
binary segmentation tasks like crack detection, a sigmoid activation
function classifies each pixel as a crack or background.

In this study, U-Net architecture is modified to handle 32 × 32 pixel
crack images, trained on a dataset of 456 labeled patches. The model,
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Images Masks

Figure 2: Sample images of cracks with corresponding masks.

with approximately 21.7 million trainable parameters, generates a bi-
nary mask indicating crack presence. The training utilized a batch size
of 16 over 50 epochs, completed in about 13 minutes on a local machine
with an Intel Core i7 CPU and 16GB of RAM. U-Net’s ability to capture
detailed features makes it a valuable tool for precise and reliable crack
segmentation.

3 Dataset and Metrics for Segmentation Analysis

This study utilizes grayscale images of concrete for crack segmenta-
tion using four different methods. The original images measure ap-
proximately 16, 000× 32, 000 pixels, with cracks only 1− 3 pixels wide,
making detection challenging for the human eye and machine learning
algorithms. To accommodate the limitations of the D-Wave quantum
annealer, including the restricted number of qubits and limited run-
time, we divide the images into smaller 32 × 32 pixel patches. Our
complete dataset consists of 456 manually annotated patches, split into
70% for training and 30% for validation of the U-Net model. We evalu-
ate the performance of the segmentation methods—MGM, QI Hamilto-
nian, Q-Seg, and U-Net on an unseen test dataset of 30 patches. Figure
2 presents example patches with manually annotated masks highlight-
ing the cracks, which are used as ground truth for performance com-
parison.

3.1 Evaluation Metrics

To evaluate the segmentation methods, we use the confusion matrix,
F1 score, and Intersection over Union (IoU). The confusion matrix pro-
vides four key metrics: True Positives (TP), False Positives (FP), False
Negatives (FN), and True Negatives (TN), which assess the accuracy of
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crack predictions. The F1 score combines precision and recall, while
IoU measures the overlap between predicted and ground truth masks,
providing a comprehensive evaluation of segmentation performance.

F1 Score = 2 × Precision × Recall
Precision + Recall

IoU =
TP

TP + FP + FN
. (2)

3.2 Boundary Proximity Metric

In traditional segmentation tasks, evaluation metrics such as the confu-
sion matrix may not adequately reflect performance when slight devia-
tions in boundary prediction occur. In crack segmentation tasks, where
cracks are typically thin structures with irregular boundaries, these mi-
nor deviations should be tolerated to some extent. The Boundary Prox-
imity Metric (BPM) addresses this by adjusting the boundary around
the cracks in both the predicted segmentation IP and the ground truth
IGT , allowing for more lenient evaluation in cases of minor misalign-
ment. The process starts by skeletonizing both the ground truth S(IGT)
and predicted segmentation results S(IP). Skeletonization reduces each
crack to its core structure, which helps in focusing only on the most
critical regions. After skeletonization, both the ground truth and the
predicted results are dilated using flat disk structuring element Br by
a radius of r pixels. This dilation adjusts the boundary, expanding it
to account for small deviations. Any predicted crack pixels that were
previously identified as false positives or false negatives but fall within
this dilated boundary (i.e., within r pixels of the ground truth) are then
reassigned as true positives. This re-calibration of TP, TN, FN and FP
are mathematically formulated as follows

IT̃P = [S(IGT)⊕ Br] ∩ S(IP), IF̃P = [[S(IGT)⊕ Br] ∩ S(IP)]− S(IP),

IF̃N = [[S(IP)⊕ Br] ∩ S(IGT)]− S(IGT), IT̃N = Iones − ∑
(

IT̃P + IF̃P + IF̃N

)
,

(3)

where Iones is n × n matrix with all entries equal to 1 and n is the
size of the crack image. The new counts for true positives T̃P, false
positives F̃P, false negatives F̃N, and true negatives T̃N are calculated
by applying Eq. 3 and

X̃ =
∥∥IX̃

∥∥
1 = ∑

i
∑

j
Ix̃(i, j) where X̃ ∈

[
T̃P, F̃P, F̃N, T̃N

]
. (4)
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Figure 3: Crack segmentation results from four different techniques: MGM, the QI
Hamiltonian method, U-Net, and Q-Seg.

Using this boundary proximity metric makes the evaluation more for-
giving towards minor misalignment that would otherwise result in a
higher count of false positives and false negatives. This approach is es-
pecially beneficial in crack segmentation, where small discrepancies in
boundary prediction are often unavoidable due to the irregular shapes
of cracks.

4 Results and Discussion

We have benchmarked MGM, QI Hamiltonian, Q-Seg, and U-Net using
standard evaluation metrics and prediction time for segmenting 30 im-
ages. Additionally, we employ the BPM to refine the evaluation by con-
sidering slight deviations in the predicted crack boundaries compared
to the ground truth. Each segmentation method shows distinct results
in detecting cracks, as illustrated in Figure 3. This figure underscores
the strengths and limitations of each approach in capturing fine de-
tails and improving prediction accuracy. Furthermore, Figure 4 demon-
strates the visual comparison of the segmentation results, showing both
the standard confusion matrix and the one after applying BPM. An
overlay diagram illustrates the alignment between the predicted crack
masks and the actual cracks. This comparison emphasizes the impact
of BPM in improving segmentation accuracy, particularly in challeng-
ing cases where the cracks are faint or unclear. Table 1 provides a de-
tailed comparison of the segmentation methods, both with and without
BPM adjustments, highlighting their effectiveness in crack detection.
The table includes average F1 scores and IoU values for each segmenta-
tion technique, allowing for a comprehensive performance assessment.
We also present the corresponding prediction times to provide insight
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Figure 4: Visual comparison of segmentation results, including the standard confusion
matrix (a), the confusion matrix post-BPM application (b), and an overlay of
predicted crack masks against actual cracks before (c) and after BPM (d).

Table 1: Performance comparison of four crack segmentation techniques with and with-
out boundary proximity metric (BPM) using standard evaluation metrics.

Segmentation Methods Metrics without BPM Metrics with BPM Prediction Time (s)Avg IoU Avg F1 Score Avg IoU Avg F1 Score
MGM 0.5783 ± 0.1611 0.7197 ± 0.1449 0.7454 ± 0.1836 0.8439 ± 0.1781 0.032 ± 0.007
QI Hamiltonian 0.6218 ± 0.178 0.7478 ± 0.1766 0.9447 ± 0.1241 0.9693 ± 0.1016 156 ± 10
U-Net 0.6159 ± 0.1440 0.7522 ± 0.1145 0.8945 ± 0.1834 0.9395 ± 0.1697 2.292
Q-Seg 0.5728 ± 0.1687 0.7079 ± 0.1735 0.8014 ± 0.1431 0.8753 ± 0.1357 2.277 ± 0.250

into the computational efficiency of each segmentation task. From Ta-
ble 1, we observe that the QI Hamiltonian method delivers the best
overall segmentation performance, with the highest average IoU and
F1 score using BPM. Without BPM, it performs within the same error
bounds as U-Net, showcasing its robustness. However, its prediction
time is significantly longer, which limits its efficiency for real-time ap-
plications, especially on larger datasets. U-Net, while slightly behind
the QI Hamiltonian method in segmentation accuracy with BPM, is still
highly competitive, especially without BPM. However, it demands con-
siderable computational resources, and its training time of 13 minutes
for 456 (32 × 32) samples is not included in the prediction time. Q-Seg
has a prediction time similar to U-Net, which includes only the Quan-
tum Processing Unit (QPU) access and qubit embedding time. Though
it is not as accurate as QI Hamiltonian or U-Net, presents a compet-
itive alternative with balanced performance and does not require la-
beled data for training, making it practical for scenarios where training
data is limited. The MGM model performs comparably to Q-Seg but
slightly worse with BPM. However, it is the fastest method, avoiding
any training phase like U-Net. Despite its speed, this method lacks
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segmentation accuracy and is unlikely to perform well with a single
mean threshold on larger, more complex datasets. Overall, the out-
comes suggest that while U-Net and the Hamiltonian method offer the
highest accuracy, Q-Seg provides a balanced alternative with moderate
performance and no training requirements.

Future work could focus on testing these approaches on larger
datasets to assess their effectiveness in realistic scenarios. Optimizing
the Hamiltonian method for GPU parallel processing could yield a 20x
speedup [21] and exploring quantum simulations using ultra-cold gas
setups [22, 23]. Additionally, exploring Q-Seg on gate-based quantum
computing [24] and identifying other challenging domains for anno-
tated data can enhance the application of quantum methods.
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Abstract In this contribution small semantic segmentation
CNNs are evaluated against traditional segmentation ap-
proaches and state of the art segmentation CNNs. The CNNs
are optimized for the implementation on frame grabber FPGAs.
A dataset of industrial burner flames and a dataset of transpar-
ent plastic granules is used to assess the segmentation perfor-
mance of the models. VisualApplets by Basler AG is used to
implement the models on an FPGA. The implemented models
reach foreground IoU values of up to 96.7 %. The inference of a
552 x 552 pixel image takes slightly more than 1 ms. The latency
between the start of an input line to the output of the line is 0.1
to 1.9 ms for streaming an 8192 pixel wide image.

Keywords Image signal processing, FPGA, CNN, segmentation

1 Introduction

Segmentation is a common task in image processing. There are many
methods of segmentation available, from simple global thresholds to
deep neural networks. One common use case in industrial image pro-
cessing is to combine semantic segmentation with a Binary Large Ob-
ject (BLOB) analysis to form an object detection algorithm. There are
many more applications, often dependent on segmentation: measure-
ment of objects in images, classification of objects, motion detection and
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tracking, etc. Semantic segmentation may be seen as pixel-wise classifi-
cation in an image. With semantic segmentation an image’s pixels may
be classified into various classes. Semantic segmentation with neural
networks (NNs) recently gained big attention for complex tasks like
autonomous driving and many other tasks with high variance regard-
ing the imaging scene. any networks for semantic segmentation use
convolutional filters, they are called Convolutional Neural Networks
(CNN). In our work, we only refer to a binary segmentation, thus the
classification in foreground and background.

Our former work on hybrid image processing with Field Pro-
grammable Gate Arrays (FPGAs) for low latency and high throughput
applications ([1], [2]) was concentrated on balancing the computing
load between CPUs, GPUs and FPGAs for optimized real time capa-
bility and image resolutions in sensor-based sorting. In our current
architecture the FPGA is used for object detection and tracking and the
GPU for object classification. The semantic segmentation in the object
detection stage is realized by a global threshold operation. With this
concept we are able to reduce the load on the PC host which allows
low latencies and high raw image data throughput. Prior investigation
and the correspondence with potential customers showed that simple
rule-based approaches are often not powerful enough to fulfill the task.
Employing CNNs for segmentation in a GPU would break our system
architecture and running the whole raw image data through an NN
would break the tight latency constraints (5 ms camera to actuator).

In our system design a frame grabber with an FPGA is always
present. The approach is to develop simple yet sophisticated enough
NNs to fit on this FPGA hardware as a drop-in replacement for the cur-
rently used global threshold. Many NNs are designed to fulfill more
complex tasks than most of those in sensor-based sorting or industrial
image processing in general. We seek to fill this gap. In industrial im-
age processing, the imaging scene can be well controlled, which should
allow the usage of simpler models in terms of parameters and opera-
tions, than the common state of the art ones. We want to optimize them
for line scan cameras under low latency and high throughput demands.
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2 Resources and Methods

Compared to GPU or CPU based development, on an FPGA the de-
fined operations are configured in hardware instead of being broken
down into machine code and being executed sequentially. Therefore
all operations and parameters must fit into the FPGA’s resources. The
FPGA design is built with VisualApplets (VA), a proprietary platform
by Basler AG for their frame grabbers [3]. Due to its exclusive use for
the FPGA implementations at MSTVision GmbH, the set of possible
operations is limited to the ones available in VA. The absolute hard-
ware constraints lead to the unusual development strategy: ”Which
operations can be used and how many of them”. We seek to find a
sweet spot between model accuracy, hardware occupation and through-
put/latency.

All currently available Basler frame grabber FPGA hardware is lim-
ited to integer arithmetics, forcing us to use quantized models. We
use the Basler imaFlex CXP-12 Quad frame grabber for our experi-
ments [4]. It is equipped with a Xilinx Ultrascale+ KU3P FPGA and
1.5 GB DRAM [5]. It has 160679 lookup tables (LUTs), 323224 flip flops
(FFs), 720 block ram (BRAM) cells with 18 KiB each and 1368 48 bit
digital signal processing (DSP) units.

For quantization aware training of our networks, QKeras [6] in con-
junction with Keras [7] and TensorFlow [8] is used. The models are
trained on an Nvidia RTX3080 GPU.

2.1 Available operations and limitations

The operator set of VA is limited to basic image and signal processing
operations. These include: base arithmetics, convolution, image up-
scaling, lookup tables (LUTs), histograms, counters, BLOB detector, etc.
Additionally there are many operations for data flow control like first
in first out (FIFO) buffers, pipeline synchronisation, etc. Common op-
erations in CNNs like matrix multiplication, activation functions, pool-
ing, etc. are missing. If needed, they have to be implemented from
scratch using the available operations. A complete list of available op-
erators can be retrieved from [9].
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2.2 Proposed models

Due to the limitations in hardware resources, implemented operations
in VA and possible computation latency, we aim to build the models
as simple and lightweight as possible. Our models need to be able to
be trained from scratch to avoid legal problems with foreign datasets
prohibiting industrial usage. For example the ImageNet dataset is re-
stricted to non-commercial use [10].

Our most simple model (fig. 1) is a two layer convolutional model:

1. Convolution with 5x5 kernel, from 1 channel to 16 channels

2. Quantized ReLu

3. Convolution with 5x5 kernel, from 16 channel to 1 channel

4. Quantized ReLu

This forms the baseline of complexity and parameter count.
All other models are simple convolution only encoder-decoder-

structures (fig. 2(a) and 2(b)). They consist of 2D convolutions, ReLu
activations, max pooling, 2D transposed convolutions and upsampling
with nearest neighbor interpolation. All models are quantized to 8 bit
integer representation. The various tested models have varying filter
sizes and encoder/decoder layer count. One part of the networks runs
upsampling before transposed convolution, the other part after. Us-
ing upsampling after transposed convolution reduces the bandwidth
to be processed in transposed convolution. Using smaller filter sizes
reduces the amount of parameters. Tuning these parameters allows
greater depth. The models, except the baseline model, use 8 channels
and pooling/upsampling by the factor of 2 in the intermediate layers.
All models are listed with their parameters in tab. 1. The model shown
in fig. 2(a) consists of the following operations:

1. Convolution block with 5x5 kernel, 1 input and 8 output channels

a) Convolution with 8 bit integer mask and input

b) Offset with 16 bit values

c) Rounding to 8 bit integers

d) ReLu
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2. Max pooling

3. Convolution block with 5x5 kernel and 8 channels

4. Max pooling

5. Upsampling

6. Transposed convolution block with 5x5 kernel and 8 channels

7. Upsampling

8. Transposed convolution block with 5x5 kernel and 1 channel

To save FPGA resources, all convolutions except the first and last
layer of a model are carried out sequentially. This should pose only
a minor impact on throughput and latency due to the reduced data
rate after the max pooling operation. Other common operations like
skip connections, fully connected layers, etc. were not considered due
to their hardware requirements and/or implementation complexity.

Table 1: The models evaluated. ”Type” denotes the structure of the model with the ab-
breviations : ”c” for convolution, ”e” for encoder layer, ”d” for decoder layer
and ”d (c)” for a decoder layer with convolutions instead of transposed con-
volutions. ”K” denotes the kernel size, e.g. 5 by 5. ”Ups.” denotes the order
of upsampling operations: before the transposed convolution or after it. ”Para
Cnt” denotes the number of model parameters.

Model Type K. Ups. Para Cnt
Base 2 Conv. 5 - 817
4 layer 5 a 2 e, 2 d 5 before 3625
4 layer 5 b 2 e, 2 d 5 after 3625
6 layer 5 a 3 e, 3 d 5 before 6841
6 layer 3 a 3 e, 3 d 3 before 2489
6 layer 5 b 3 e, 3 d 5 after 6841
6 layer 3 b 3 e, 3 d 3 after 2489
6 layer 3 a c 3 e, 3 d (c) 3 before 2489
6 layer 3 b c 3 e, 3 d (c) 3 after 2489

127



S. Wezstein et al.
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Figure 1: 2 layer baseline network. Generated with [11].

2.3 Data

We use two industrial datasets to compare the proposed model’s per-
formances. The first dataset is the refined industrial burner dataset
published in [12], [13]. It contains images with a resolution of 552 × 552
pixels. We use the dataset without augmentation to compare our re-
sults with theirs. They provide two datasets, ”DataA” and ”DataB”,
we use the first for our experiments, see fig. 3 for an example image.
We swapped the test (160 images) and train (40 images) folder as they
seem to be accidentally swapped.

The dataset has no predefined test subset, we use the validation set
for testing.

The second dataset is a transparent plastic granule dataset based
on our own data. The raw data was generated with a 16384 pixel
wide line scan camera in a transmitted light setup. The granules to
scan were poured on a slide while the camera was triggered at a line
rate of 100 kHz. The raw data was filtered with a global threshold to
remove most of the empty images. Segment Anything Model (SAM)
[14] was used to generate masks for the granules. The masks were
manually refined, the objects cropped to single 256 x 256 pixel images
and randomly stitched to 512 x 512 pixel images (fig. 4). For training
we use a 60/20/20 percent split. The stitched dataset, which is used
for training, consists of 1004 images.
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(a) 4 layer encoder-decoder-architecture with up-
sampling before transposed convolution.
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(b) 4 layer encoder-decoder-architecture with
upsampling after transposed convolution.

Figure 2: 4 layer examples of the proposed encoder-decoder-architecture. The evaluated
models vary in convolution kernel and pooling/upsampling sizes and in layer
count. Generated with [11].

2.4 Evaluation workflow

For both datasets, each model is trained 10 times to gain statistics about
the reached model performance. The models are trained from scratch
with their default initialization defined by QKeras.

Training parameters:
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(a) Industrial burner dataset im-
age data example. Resolution:
552 x 552 pixel.

(b) Industrial burner dataset
ground truth example. Resolu-
tion: 552 x 552 pixel.

Figure 3: Example image pair of the industrial burner dataset. [13, ”DataA”, image/mask
172]

(a) Image data example, consist-
ing of four cropped granule
samples. Resolution: 512 x 512
pixel.

(b) Segmentation ground truth
example, consisting of four
cropped granule samples.
Resolution: 512 x 512 pixel.

Figure 4: Example image pair of our granule dataset.

• Batch size: 32

• Epoch count: 1500 for granules, 5000 for burner flames
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• Optimizer: Adam

• Loss function: Binary Cross Entropy

Based on the captured statistics and the estimated performance, the
best performing parameters are picked and implemented with Visu-
alApplets. Timing measurements are implemented, too. The FPGA
simulation results are compared to the results of QKeras. After syn-
thesis, a 8192 x 512 pixel test image is uploaded to the FPGA and pro-
cessed. The timing data is then evaluated.

3 Results

The test results of the best training run for each model are shown in
table 2. All models perform better than the global threshold experi-
ment, which yielded a foreground class intersection over union (IoU)
of 81.4 % (test set of ”Data A”) and 80.2 % (test set of ”Data B”) for the
burner flames and 51.5 % for the granules, except the baseline model
which is below for the burner flames. We perform a grid search like [12]
did. We consider our result of ”Data B” for our comparison, because
of the same result in [12, tab. 1].

Due to problems in the implementation of transposed convolutions
with VA, all models were trained with normal convolutions in the de-
coder layers. The models which were not implemented for the FPGA
use transposed convolutions and are listed for comparison. The results
for the FPGA implementations are listed in table 3.

Our best model on the burner dataset is ”6 layer 3 b c” with a mean
IoU of 92.8 % and a foreground class IoU of 89.7 %. We implemented
this architecture on the FPGA, see tab. 3. Our best model on the gran-
ules dataset is ”6 layer 5 a” with a mean IoU of 97.9 % and a foreground
class IoU of 96.5 %. The best model which we could implement on the
FPGA is ”6 layer 3 b c” with a mean IoU of 96.7 % and a foreground
class IoU of 94.7 %. In comparison to the reference results of [12, tab.
1], most of our models perform better than their traditional machine
learning models, with 86.6 % at best for an MLP. Our models perform
worse compared to their neural networks with their worst results at
91.9 % (U-Net (MN)) and their best at 92.3 % (DL3+ (RN101)). We only
consider their results for training from scratch as we did. The results
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for the granule dataset show even better IoU values compared to the
burner dataset results. This shows the potential of our models for seg-
mentation in granule sorting.

In terms of inference time, the baseline model and the two 6 layer
models take roughly 1 ms while the others take more time. This is
due to the sequential calculation of the 8 channels while the amount
of data is only reduced to 1/4 of the input bandwidth. The inference
of the big image drops the throughput to around half the bandwidth.
This behavior requires further investigation. Performing the upsam-
pling operation after the convolution has positive effects for the IoU
and for throughput. The simulation shows small differences between
PC inference and FPGA inference. We suspect rounding problems as
root case.

Table 2: The intersection over union (IoU) results of the models segmentation perfor-
mance. ”B” denotes the industrial burner dataset. ”G” denotes the granule
dataset. ”FG” denotes the foreground class, ”Mean” the mean IoU of back-
ground and foreground class. All values in %.

Model Mean IoU B IoU FG B Mean IoU G IoU FG G
Global Threshold 86.3 80.2 69.8 51.5
Base 87.7 82.4 79.7 67.4
4 layer 5 a 92.2 88.8 93.7 89.9
4 layer 5 b 92.7 89.5 96.1 93.6
6 layer 5 a 92.6 89.4 97.9 96.5
6 layer 3 a 92.3 89.0 94.8 91.5
6 layer 5 b 92.6 89.5 97.7 96.3
6 layer 3 b 92.7 89.6 96.8 94.8
6 layer 3 a c 92.5 89.3 95.5 92.6
6 layer 3 b c 92.8 89.7 96.7 94.7

4 Conclusion

We showed the potential of low parameter models for the usage in
semantic segmentation with FPGAs. The models perform better than
initially expected, superseding the traditional machine learning meth-
ods of [12] while having more throughput and lower latencies. Having
an additional latency between 0.105 ms and 1.904 ms, the models and
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Table 3: The throughput/latency and resource occupation results of the FPGA imple-
mentations. ”L2L” denotes the time between processing the first pixel of a line
and retrieving the first processed pixel of that line using the 8192 pixel wide test
image. ”Time B” denotes the inference time for a single 552 x 552 pixel image of
the burner dataset. ”LUT, FF, DSP and BRAM” show the relative resource con-
sumption of the model on the FPGA.

Model L2L Time B LUT FF DSP BRAM
[ms] [ms] [%] [%] [%] [%]

Base 0.105 ± 2.3e-3 1.041 48.83 32.33 2.41 37.78
4 layer 5 a 1.780 ± 0.14 2.755 28.29 31.27 85.31 78.89
4 layer 5 b 1.904 ± 0.16 2.074 28.41 31.3 85.31 61.25
6 layer 3 a c 1.393 ± 0.13 1.067 65.46 40.89 37.79 38.61
6 layer 3 b c 1.669 ± 0.17 1.058 65.68 40.68 37.79 32.5

implementations are considerable candidates for line scan applications.
Future work will target the rounding problems in the FPGA implemen-
tation. Because of the usage of quantization aware training, we suspect
the FPGA to have exactly the same output as computed on the PC. In
addition the throughput decrease for large images needs will be in-
vestigated, too. We expect to be able to increase the throughput and
parameter count further with bigger FPGAs, hopefully available in the
near future. Future work will target the implementation of more so-
phisticated CNN-operations, too.
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Abstract Vision Transformers (ViTs) have recently achieved
state-of-the-art performance in semantic segmentation tasks.
However, their deployment in critical applications necessitates
reliable uncertainty quantification to assess model confidence.
To tackle this challenge, we combine a state-of-the-art ViT with
the popular uncertainty quantification method Monte Carlo
Dropout (MCD) to predict both segmentation and uncertainty
maps. We focus on an industrial machine vision setting and
carry out the experiments on the T-LESS dataset. The evaluation
is carried out with regard to both the segmentation accuracy and
the predicted uncertainties using appropriate metrics.

Keywords Semantic segmentation, uncertainty quantification,
vision transformers

1 Introduction

In computer vision, deep-learning-based approaches like convolutional
neural networks (CNNs) have proven their success at solving the fun-
damental task of semantic segmentation of (RGB) images. Recently,
Vision Transformers (ViTs) have been applied to this task and have
gained much attention. The prediction of pixel-wise class labels in
images is relevant for applications such as autonomous driving, and
quality assurance in industry. These applications involve safety-critical
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and high-risk scenarios. Therefore, it is important to not only pre-
dict the class labels correctly but also to determine the prediction’s
reliability [1–4]. Estimating uncertainty of predictions allows to make
informed decisions and to identify potentially inaccurate predictions.

Most classification and segmentation tasks use softmax to estimate
class-wise pseudo probabilities to quantify the confidence in the pre-
dictions. It is well-known that softmax predictions tend to be over-
confident, especially in cases where the input data of the model is out-
of-domain [5, 6]. One popular method to quantify uncertainty in deep
learning is Monte-Carlo Dropout (MCD) [7] that uses dropout at in-
ference time. Multiple forward passes are used to sample from the
posterior distribution of the predictions and approximate it, e.g., with
a Gaussian distribution. The final segmentation map is determined by
assigning each pixel the class with the highest average softmax out-
put across all classes. The corresponding uncertainty map is either its
standard deviation (STD) over the samples or the entropy of the mean
values over the classes.

In this contribution, we combine a state-of-the-art ViT, the Seg-
Former [8], with MCD for semantic segmentation with uncertainty
quantification (UQ). We choose SegFormer as our ViT baseline because
of its efficient design and good performance, which both are relevant
criteria in industry. Our goal is to quantify the quality and reliability of
the SegFormer’s predicted semantic segmentation maps as well as the
corresponding uncertainty maps for industrial applications. Therefore,
we train the model on the T-LESS [9] dataset that consists of various
scenes of parts with characteristics that are typical for industry. As
part of the Benchmark for 6D Object Pose Estimation (BOP) [10], the
T-LESS training set can be augmented with physically-based rendered
(PBR) synthetic training data. While the real training images show
systematically captured and isolated views of each object respectively,
the PBR subset consists of cluttered scenes with varying image acqui-
sition conditions, scene backgrounds, and occlusions by both T-LESS
objects and those of other BOP datasets. Figure 1 shows two examples
of the T-LESS dataset from both a simple as well as a cluttered scene to-
gether with the corresponding segmentation and uncertainty maps that
our trained uncertainty-aware SegFormer model predicted. We use the
mean Intersection over Union (IoU) and the expected calibration error
(ECE) [11] as metrics to measure the segmentation quality and model
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Input image Ground truth Prediction STD map Entropy map

Scene 1, image 236.

Scene 18, image 206.

Figure 1: Example predictions of segmentation and uncertainty maps for images from a
simple (top row) and a complex scene (bottom row) of the T-LESS test dataset,
using the MCD with a dropout rate of 30 % and 20 samples. In the uncertainty
maps, brighter pixels represent higher uncertainty values.

calibration and the Patch Accuracy versus Patch Uncertainty (PAvPU),
p(accurate|certain), and p(uncertain|inaccurate) [12] for the uncer-
tainty evaluation.

After giving a short overview over the state-of-the-art approaches for
semantic segmentation with ViTs and uncertainty quantification in Sec-
tion 2, we explain our training and evaluation methodology in Section
3. In Section 4, we describe our experiments and present our results,
which are discussed in Section 5. Section 6 concludes our paper.

2 Related Work

Due to the success of ViTs for image classification, many publica-
tions have been dedicated to applying the method to the task of
semantic segmentation. Next to SegFormer, notable approaches in-
clude Segmenter [13], SETR [14], MaskFormer [15] and its successor
Mask2Former [16] as well as general ViT approaches for dense predic-
tions like Swin Transformer [17], DPT [18], and HRFormer [19].

Regarding UQ in RGB image-based semantic segmentation tasks,
many works have successfully integrated MCD in their workflows,
including applications like landcover prediction from remote sensing
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images [20], medical imaging [21], autonomous driving, and robotics
[22–24]. To overcome the disadvantage of the additional runtime of
sample-based UQ methods, knowledge distillation can be applied [25].

Recently, successful efforts have been made to combine SegFormer
with UQ. While Chen et al. [26] propose their own UQ approach and
compare its performance against MCD and ensembling using Seg-
Former, Landgraf et al. [27] add monocular depth estimation and and
UQ with MCD to the SegFormer architecture. Both works conduct their
experiments in the context of autonomous driving.

3 Methodology

Our methodology aims to achieve two main goals: i) Training and
testing a SegFormer model to achieve the best possible segmentation
performance on T-LESS, and ii) combining SegFormer with MCD for
UQ. Both the segmentation and the uncertainty results are evaluated
by their respective metrics (see below). The first goal provides a ba-
sic training setup, including suitable hyperparameters such as learning
rate, model backbone, dataset settings, and data augmentations. This
also leads to a baseline model without UQ. Next to testing the segmen-
tation quality of the baseline model, it also includes the evaluation of
the mean segmentation maps of the trained MCD models and the influ-
ence of performing dropout at inference time. For this, the mean IoU
and the ECE metrics are used. The second goal that focuses on the UQ
with SegFormer includes model training with different dropout rates
for MCD and the evaluation of the predicted uncertainty maps with
different sample sizes.

The uncertainty evaluation metrics proposed by Mukhoti and Gal
(2018) [12] are computed based on the confusion matrix that includes
four categories of pixel counts: accurate and certain (nac), accurate and
uncertain (nau), inaccurate and certain (nic), and inaccurate and uncer-
tain (niu). To determine whether a prediction is certain or uncertain,
an uncertainty threshold has to be defined. Here, we use the mean
uncertainty over all pixels across the T-LESS test dataset. Based on
the estimated counts, two metrics are computed that are defined as
p(accurate|certain) = nac/(nac + nic) and p(uncertain|inaccurate) =
niu/(nic + niu). The former returns higher values if predictions are ac-
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curate when the model is certain. The latter returns higher values if
the model is uncertain when the predictions are inaccurate. Conse-
quently, meaningful uncertainty values lead to large values for both
metrics. Furthermore, the third metric PAvPU = (nac + niu)/(nac +
nau + nic + niu) combines the first two metrics and, hence, presents an
equivalent UQ metric to an overall accuracy. In the following, the met-
rics p(accurate|certain) and p(uncertain|inaccurate) are abbreviated
as pac and pui.

4 Experiments

To address our first goal described in Section 3, we test different com-
binations of hyperparameters and training settings. We find that the
best model performance in terms of mean IoU on the BOP test dataset
of T-LESS is achieved by combining both real and PBR training data,
a SegFormer-B5 backbone, and a learning rate of 6 · 10−5. The combi-
nation of real and synthetic training data increases the mean IoU by
roughly 50 %. Thus, we train all models in our experiments on both
training data subsets. Similarly, a subsequent increase in the size of
the backbone from B1 to B5 leads to increasing mean IoU scores and
decreasing ECE values. For instance, replacing the smaller SegFormer-
B1 architecture with the larger SegFormer-B5, which has the highest
parameter count, leads to a 19.23 % increase in mean IoU and a 5.38 %
reduction in ECE, as shown in Table 1. Thus, we select SegFormer-
B5 for testing different subsets of data augmentation techniques of
the AugSeg [28] framework. AugSeg includes geometric augmenta-
tions (random flip, random scale, and random crop) as well as a list of
intensity-based augmentations (e.g., blurring, brightness and contrast
modifications). The hyperparameter k denotes how many intensity-
based augmentation techniques are randomly selected for each train-
ing instance. The results in terms of mean IoU and ECE are shown in
Table 1.

We find that a combination of the geometric augmentations and the
random intensity-based augmentations with a random selection pa-
rameter k = 3 works best, both in terms of highest mean IoU of 79.40 %
and lowest ECE value of 4.29 %. We also test different learning rates
where a learning rate of 1 · 10−4 achieves the best results of a mean
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IoU of 80.70 % and an ECE of 2.88 %. As learning rates higher than
2 · 10−4 lead to model divergence during in our experiments at training
time, we adopted the learning rate of 6 · 10−5 of the original SegFromer
publication to guarantee a stable training procedure. For a better com-
parison, all models are trained for 100 epochs on a NVIDIA H100 hard-
ware.

Table 1: Ablation study using different model backbones and geometric and intensity-
based data augmentation techniques with different values of the random selec-
tion parameter k from AugSeg [28].

Augmentations Metrics in %
Model Geometric Intensity-based Mean IoU ↑ ECE ↓
SegFormer-B1 - - 44.69 9.92

- - 63.92 8.92
✓ - 74.81 6.65

SegFormer-B5 ✓ k = 1 76.35 6.07
✓ k = 3 79.40 4.29
✓ k = 5 79.22 5.30

In order to incorporate MCD for the second goal of UQ, we activate
the implemented but dormant dropout layers in the SegFormer archi-
tecture. We train the models with dropout rates of 10 %, 20 %, 30 %,
and 50 % resulting in four different models. In contrast to dropout
regularization, the dropout layers remain active for MCD at test time
to obtain samples. We evaluate each model with sample sizes of
N = {2, 5, 10, 20, 100} respectively and compare them using both mean
IoU and ECE for segmentation quality and pac, pui, and PAvPU for
uncertainty quality. The results are summarized in Table 2.

Our evaluations show that smaller dropout rates lead to a higher
mean IoU but not necessarily to lower ECE values. With regard to
UQ metrics, all models achieve similar scores. Furthermore, increasing
values for N result in increasing values in pac and pui, as expected.
However, they surprisingly also result in slightly lower PAvPU scores.
This is caused by decreasing counts of nac with increasing N. Never-
theless, these changes in PAvPU as well as in mean IoU and ECE are
not substantial as they are all smaller than 3 %. In terms of required
runtime, the minimum sample size of N = 2 takes around 89 ms while
N = 100 results in 3711 ms runtime. Therefore, in time-critical appli-
cations, it should be possible to decrease N in order to speed-up the
application without sacrificing too much predictive quality. For exam-
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ple, an uncertainty-aware prediction with N = 20 takes less than a
second at 751 ms.

Table 2: Performance of SegFormer-B5 with MCD. Tested were different dropout rates
and sample sizes N. The results were evaluated in terms of both the segmenta-
tion and uncertainty quality using the respective metrics described in Section 3.
The subscript ”std” indicates that the metrics are based on standard deviation,
while the subscript ”en” indicates that the metrics are based on entropy. All
metrics are in %.

N pac,std ↑ pui,std ↑ PAvPUstd ↑ pac,en ↑ pui,en ↑ PAvPUen ↑ Mean IoU ↑ ECE ↓
dropout rate = 10 %

2 98.88 ± 0.01 74.09 ± 0.15 92.41 ± 0.03 99.49 ± 0.01 88.14 ± 0.08 90.48 ± 0.03 76.93 ± 0.08 5.75 ± 0.13
5 99.28 ± 0.01 81.76 ± 0.11 91.74 ± 0.02 99.53 ± 0.01 88.60 ± 0.07 90.25 ± 0.02 77.13 ± 0.06 5.68 ± 0.11

10 99.34 ± 0.01 83.00 ± 0.07 91.42 ± 0.02 99.55 ± 0.01 88.83 ± 0.05 90.14 ± 0.02 77.24 ± 0.06 5.64 ± 0.10
20 99.38 ± 0.01 83.64 ± 0.07 91.17 ± 0.02 99.56 ± 0.01 88.96 ± 0.04 90.07 ± 0.02 77.25 ± 0.05 5.62 ± 0.09

100 99.43 ± 0.00 84.44 ± 0.03 90.82 ± 0.01 99.57 ± 0.00 89.12 ± 0.03 90.01 ± 0.01 77.25 ± 0.03 5.63 ± 0.02
dropout rate = 20 %

2 98.25 ± 0.02 73.16 ± 0.20 91.57 ± 0.05 99.09 ± 0.01 87.94 ± 0.11 89.68 ± 0.04 75.51 ± 0.12 6.09 ± 0.13
5 98.78 ± 0.01 81.70 ± 0.15 90.78 ± 0.05 99.19 ± 0.01 88.77 ± 0.09 89.35 ± 0.04 75.95 ± 0.09 6.12 ± 0.14

10 98.93 ± 0.01 83.27 ± 0.11 90.37 ± 0.03 99.24 ± 0.01 89.11 ± 0.08 89.17 ± 0.03 76.10 ± 0.07 6.10 ± 0.10
20 99.01 ± 0.01 84.14 ± 0.08 90.02 ± 0.02 99.27 ± 0.00 89.32 ± 0.05 89.03 ± 0.02 76.16 ± 0.07 6.06 ± 0.07

100 99.12 ± 0.01 85.23 ± 0.03 89.50 ± 0.02 99.30 ± 0.00 89.55 ± 0.02 88.93 ± 0.01 76.27 ± 0.04 6.00 ± 0.04
dropout rate = 30 %

2 98.49 ± 0.02 74.39 ± 0.28 91.54 ± 0.04 99.28 ± 0.01 89.02 ± 0.13 89.58 ± 0.04 74.52 ± 0.17 5.57 ± 0.20
5 98.04 ± 0.01 83.35 ± 0.17 90.56 ± 0.04 99.39 ± 0.01 89.95 ± 0.09 89.15 ± 0.04 75.00 ± 0.15 5.51 ± 0.17

10 98.20 ± 0.01 85.09 ± 0.09 90.03 ± 0.03 99.45 ± 0.01 90.42 ± 0.08 88.90 ± 0.02 75.24 ± 0.11 5.45 ± 0.13
20 99.28 ± 0.01 86.09 ± 0.10 89.62 ± 0.03 99.48 ± 0.01 90.70 ± 0.07 88.75 ± 0.03 75.34 ± 0.09 5.42 ± 0.14

100 99.39 ± 0.01 87.36 ± 0.07 88.96 ± 0.02 99.51 ± 0.00 90.99 ± 0.04 88.61 ± 0.02 75.41 ± 0.04 5.43 ± 0.06
dropout rate = 50 %

2 95.84 ± 0.03 66.93 ± 0.33 88.12 ± 0.04 97.48 ± 0.03 83.34 ± 0.13 86.93 ± 0.03 68.66 ± 0.22 7.78 ± 0.16
5 96.86 ± 0.05 77.47 ± 0.36 87.17 ± 0.08 97.70 ± 0.03 85.02 ± 0.18 86.40 ± 0.07 69.54 ± 0.12 8.05 ± 0.18

10 97.17 ± 0.03 80.04 ± 0.18 86.53 ± 0.07 97.81 ± 0.02 85.80 ± 0.13 86.08 ± 0.06 69.84 ± 0.12 8.17 ± 0.17
20 97.37 ± 0.02 81.65 ± 0.09 85.99 ± 0.04 97.89 ± 0.01 86.32 ± 0.07 85.87 ± 0.04 70.06 ± 0.11 8.15 ± 0.10

100 97.67 ± 0.02 83.99 ± 0.11 85.14 ± 0.04 97.96 ± 0.01 86.85 ± 0.06 85.77 ± 0.03 70.24 ± 0.04 8.17 ± 0.06

Figure 2 shows some qualitative results for different dropout rates
and with N = 20 on an example image of a complex scene in the T-
LESS test dataset. Next to the predicted segmentation and uncertainty
maps, the accuracy and the binary uncertainty maps are shown. For
the binary uncertainty maps, we applied the same mean uncertainty
threshold mentioned in Section 3 that is used for the estimation of the
UQ metrics. Overall, it shows that accurate pixel predictions corre-
spond to low uncertainty patches and vice versa. Increasing dropout
rates lead to higher uncertainty values, which can be seen in the bi-
nary uncertainty maps. In case of the 10 % dropout model, the falsely
segmented object in the lower right part of the image and background
pixels exhibit high uncertainties.
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Dropout 10 % Dropout 20 % Dropout 30 % Dropout 50 %

Predictions.

Binary accuracy maps.

Standard deviation maps.

Binary uncertainty maps based on standard deviation.

Entropy maps.

Binary uncertainty maps based on entropy.

Figure 2: Comparison of uncertainty maps for the image from a complex scene (Scene 17,
image 50) across different dropout rates. Predictions and uncertainties are gen-
erated with 20 samples. In uncertainty maps, brighter pixels represent higher
uncertainty. In accuracy/uncertainty binary maps, white pixels represent ac-
curate/uncertain pixels.
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5 Discussion

Our experiments demonstrate that increasing the sample size generally
improves the segmentation accuracy and calibration in terms of mean
IoU and ECE, while also enhancing the reliability of uncertainty es-
timation, as indicated by higher pac and pui scores. However, PAvPU
decreases with larger sample sizes due to an increase in accurately clas-
sified but uncertain pixels, nau, suggesting a more cautious model that
flags more pixels as uncertain. It has to be noted that the UQ metrics
depend on the chosen uncertainty threshold used to generate the un-
derlying confusion matrix as described in Section 3 and may therefore
vary with different thresholds.

Lower dropout rates result in better segmentation accuracy and
model calibration, with the best performance observed when dropout
is deactivated. However, a 30 % dropout rate optimizes pui, which is
critical for detecting potentially incorrect predictions while reducing
the calibration and segmentation quality only by 1.19 % ECE and 4.30 %
mean IoU on average compared to the baseline model of our first goal.
Thus, a 30 % dropout rate balances accurate segmentation and effective
uncertainty estimation, making it optimal for practical applications.

Entropy is identified as a more suitable uncertainty metric than stan-
dard deviation, as it provides higher pui, indicating a better capacity
to flag incorrect predictions. Although entropy-based metrics slightly
reduce PAvPU, the trade-off is justified by a significant improvement
in detecting uncertain inaccuracies.

Overall, the results suggest that using 20 samples, a 30 % dropout
rate, and entropy as the uncertainty metric provides an optimal con-
figuration for balancing segmentation accuracy, calibration, and uncer-
tainty quantification quality in the SegFormer model with MCD.

6 Conclusion

In this contribution, we successfully trained SegFormer, a ViT variant,
on the T-LESS dataset for the task of semantic segmentation with UQ
in an industrial application. In combination with MCD, SegFormer is
able to effectively handle challenging objects in varying complex scenes
while producing meaningful uncertainty estimates. In future work, we
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want to extend the methodology for instance segmentation, which al-
lows the integration of an ViT model in a deep-learning-based 6D object
pose estimation pipeline. In the evaluation, we want to include addi-
tional UQ metrics like UCS [29,30]. While MCD is easy to implement, it
does not capture the full uncertainty in the predictions [23]. Therefore,
in future work, we aim to combine SegFormer with other state-of-the-
art UQ methods like the recently proposed Deep Deterministic Uncer-
tainty (DDU) [31] approach to produce robust uncertainty estimates
even under data shift.
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Abstract Deep neural networks achieve outstanding results in
perception tasks such as semantic segmentation and monocular
depth estimation, making them indispensable in safety-critical
applications like autonomous driving and industrial inspection.
However, they often suffer from overconfidence and poor ex-
plainability, especially for out-of-domain data. While uncer-
tainty quantification has emerged as a promising solution to
these challenges, multi-task settings still need to be investigated
in this regard. In an effort to shed light on this, we evaluate
Monte Carlo Dropout, Deep Sub-Ensembles, and Deep Ensem-
bles for joint semantic segmentation and monocular depth esti-
mation. Thereby, we reveal that Deep Ensembles stand out as
the preferred choice and show the potential benefit of multi-task
learning with regard to the uncertainty quality in comparison to
solving both tasks separately.

Keywords Deep learning, uncertainty quantification, multi-task
learning, semantic segmentation, monocular depth estimation

1 Introduction

Deep neural networks are increasingly being used in real-time and
safety-critical applications like autonomous driving [1], industrial in-
spection [2], and automation [3]. Although they achieve incomparable
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performance in fundamental perception tasks like semantic segmenta-
tion [4] or monocular depth estimation [5], they still suffer from prob-
lems like overconfidence [6], lack explainability [7], and struggle to
distinguish between in-domain and out-of-domain samples [8].

In order to tackle these critical challenges and prevailing shortcom-
ings of deep neural networks, a number of promising uncertainty quan-
tification methods [9–12] have been proposed. Surprisingly, however,
quantifying predictive uncertainties in the context of joint semantic seg-
mentation and monocular depth estimation has not been thoroughly
explored yet [13]. Since many real-world applications are multi-modal
in nature and, hence, have the potential to benefit from multi-task
learning, this is a substantial gap in current literature.

To this end, we conduct a comprehensive series of experiments to
study how multi-task learning influences the quality of uncertainty es-
timates in comparison to solving both tasks separately. Our contribu-
tions can be summarized as follows:

• We combine three different uncertainty quantification methods -
Monte Carlo Dropout (MCD), Deep Sub-Ensembles (DSE), and
Deep Ensembles (DE) - with joint semantic segmentation and
monocular depth estimation and evaluate how they perform in
comparison to each other.

• In addition, we reveal the potential benefit of multi-task learning
with regard to the uncertainty quality compared to solving se-
mantic segmentation and monocular depth estimation separately.

2 Related Work

2.1 Joint Semantic Segmentation and Monocular Depth Estimation

Semantic segmentation and monocular depth estimation are both es-
sential tasks in image understanding, requiring pixel-wise predictions
from a single input image. Due to the strong correlation and comple-
mentary nature of these tasks, several previous works have focused on
addressing them jointly [14–18].

Notably, almost all previous works employ out-of-date architectures
and require complex adaptations to either the model, the training pro-
cess, or both. Instead of following this trend, we adapt a modern
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Vision-Transformer-based architecture similar to Xu et al. [18], achiev-
ing competitive predictive performance while maintaining simplicity
and transparency of the results.

2.2 Uncertainty Quantification

In order to address the shortcomings of deep neural networks, a variety
of uncertainty quantification methods [9–12] and studies [19–21] have
been proposed. The predictive uncertainty can be decomposed into
aleatoric and epistemic uncertainty [22], which can be an essential for
applications like active learning and detecting out-of-distribution sam-
ples [23]. The aleatoric component captures the irreducible data un-
certainty, such as image noise or noisy labels from imprecise measure-
ments. The epistemic uncertainty accounts for the model uncertainty
and can be reduced with more or higher quality training data [22, 24].

Remarkably, quantifying uncertainties in joint semantic segmenta-
tion and monocular depth estimation has been largely overlooked [13].
Therefore, we compare multiple uncertainty quantification methods for
this task and show how multi-task learning influences the quality of the
uncertainty quality in comparison to solving both tasks separately.

3 Evaluation Strategy

3.1 Baseline Models.

To explore the impact of multi-task learning on the uncertainty quality,
we conduct our evaluations with three models:

1. SegFormer [25] for the segmentation task,

2. DepthFormer for the depth estimation task,

3. SegDepthFormer for joint semantic segmentation and monocular
depth estimation.

SegFormer. For solving the semantic segmentation task by itself, we
use SegFormer [25], a modern Transformer-based architecture. Due to
its high efficiency and performance, it is particularly suitable for real-
time applications that might rely on uncertainty quantification. We

149



S. Landgraf et al.

train all SegFormer models with the categorical Cross-Entropy loss

LCE = − 1
N

N

∑
n=1

C

∑
c=1

yn,c · log(p(z)n,c) (1)

for a single image, where N is the number of pixels in the image, C
is the number of classes, yn,c is the corresponding ground truth label,
and p(z)n,c is the predicted softmax probability.

To obtain a measure for the aleatoric uncertainty [24] of the baseline
model, we compute the predictive Entropy

H(p(z)) = −
C

∑
c=1

p(z)c · log(p(z)c) . (2)

DepthFormer. Highly inspired by the efficiency and performance of
SegFormer [25], we propose DepthFormer for monocular depth esti-
mation. We use the same hierarchical Transformer-based encoder and
all-MLP decoder. In contrast to SegFormer, the output layer differs by
having two output channnels: one for the predictive mean µ(z) and
one for the predictive variance s2(z) [26]. The first output channel uses
a ReLU output activation function, while the second output channel
applies Softplus activation, which is a smooth approximation of the
ReLU functon with the advantage of being differentiable at z = 0. We
found Softplus to work better than ReLU for the predictive variance,
following the work of Lakshminarayanan et al. [11].

For all DepthFormer models we follow Nix and Weigend [27] and
treat the output of the model as a sample from a Gaussian distribution
with the predictive mean µ(z) and a corresponding predictive variance
s2(z). Based on this, we can minimize the Gaussian Negative Log-
Likelihood (GNLL) loss

LGNLL =
1
2

(
(y − µ(z))2

s2(z)
+ log(s2(z))

)
, (3)

where y is the the ground truth depth.
Through GNLL minimization, DepthFormer inherently learns corre-

sponding variances, which can be interpreted as the aleatoric uncer-
tainty [24, 26].
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Figure 1: A schematic overview of the SegDepthFormer architecture. It combines the
SegFormer [25] architecture with a lightweight all-MLP depth decoder.

SegDepthFormer. To jointly solve semantic segmentation and
monocular depth estimation, we propose SegDepthFormer. The ar-
chitecture, which is shown in Figure 1, combines SegFormer [25]
and DepthFormer. It comprises three modules: a hierarchical
Transformber-based encoder, an all-MLP segmentation decoder, and
an all-MLP depth decoder. Both decoders fuse the multi-level features
obtained through the shared encoder to solve the joint prediction task.

SegDepthFormer is trained to minimize the weighted sum of the
two previously described objective functions: L = LCE + w1LGNLL,
where w1 is a weighting factor, which we set to w1 = 1 for the sake of
simplicity and because both loss values are of similar magnitude.

The respective aleatoric uncertainty is obtained by computing the
predictive entropy H(p(z)) for the segmentation task or by the predic-
tive variance s2(z), which is learned implicitly through the optimiza-
tion of LGNLL.

3.2 Uncertainty Quantification

We evaluate Monte Carlo Dropout (MCD) [10], Deep Ensembles (DEs)
[11], and Deep Sub-Ensembles (DSEs) [12], motivated by their simplic-
ity, ease of implementation, parallelizability, minimal tuning require-
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ments, and state-of-the-art performance.
Monte Carlo Dropout. MCD depends on the number and place-

ment of dropout layers and particularly the dropout rate. We adopt
the original SegFormer [25] layer placement and consider two dropout
rates , 20% and 50%. We sample ten times to obtain the prediction and
predictive uncertainty [10, 28].

Deep Ensemble. DEs achieve the best results if they are trained
to explore diverse modes in function space, which we accomplish by
randomly initializing all decoder heads, using random augmentations,
and by applying random shuffling of the training data points [11, 29].
We report results of a DE with ten members, following the suggestions
of previous work [11, 29, 30].

Deep Sub-Ensemble. Consistent with DEs and MCD, we train the
DSE with ten decoder heads for each task on top of a shared en-
coder [12]. During training, we only optimize a single decoder head
per training batch and alternate between them. Thereby, we aim to in-
troduce as much randomness as possible, analogous to the training of
DEs. For inference, we utilize all decoder heads.

4 Experimental Setup

Predictions. Regardless of the uncertainty quantification method, we
report the results of the mean prediction.

Uncertainty. For the segmentation task, we compute the predictive
entropy based on the mean softmax probabilities as a measure for the
predictive uncertainty [31]. For the depth estimation task, however,
we calculate the predictive uncertainty based on the mean predictive
variance and the variance of the depth predictions of the samples [26].

Datasets. We conduct all experiments on Cityscapes [32] and NYUv2
[33].

Data Augmentations. Regardless of the trained model, we apply
random scaling with a factor between 0.5 and 2.0, random cropping
with a crop size of 768 × 768 pixels on Cityscapes and 480 × 640 pixels
on NYUv2, and random horizontal flipping with a flip chance of 50%.

Implementation Details. For all training processes, we use AdamW
[34] optimizer with a base learning rate of 6 · 10−5 and employ a poly-
nomial rate scheduler. Besides, we use a batch size of 8 and train for
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250 epochs on Cityscapes and for 100 epochs NYUv2, respectively.
Metrics. For semantic segmentation, we report mean Intersection

over Union (mIoU) and Expected Calibration Error (ECE) [35]. For
monocular depth estimation, we use root mean squared error (RMSE).
The uncertainty is evaluated using the following metrics proposed by
Mukhoti and Gal [31]:

1. p(accurate|certain): The probability of accurate predictions given
low uncertainty.

2. p(uncertain|inaccurate): The probability of high uncertainty
given inaccurate predictions.

3. PAvPU: The combination of both cases, i.e. accurate|certain and
inaccurate|uncertain.

Although these metrics have originally been proposed for semantic
segmentation [31], we also use them to evaluate the depth uncertainty.
We use the following formula to determine whether a depth prediction
is accurate:

max
(

µ(z)
y

,
y

µ(z)

)
= δ1 < 1.25 , (4)

where µ(z) is the predicted depth value of a pixel and y is the corre-
sponding ground truth depth.

For the sake of simplicity and to simulate real-world employment,
we set the uncertainty threshold to the mean uncertainty of a given
image for all evaluations.

5 Results

In this section, we describe the results of our joint uncertainty eval-
uation quantitatively. Tables 1 and 2 contain a detailed comparison,
primarily focusing on the uncertainty quality.

Single-task vs. Multi-task. Looking at the differences between
the single-task models, SegFormer and DepthFormer, and the multi-
task model, SegDepthFormer, the single-task models generally de-
liver slightly better prediction performance. However, SegDepth-
Former exhibits greater uncertainty quality for the semantic segmen-
tation task in comparison to SegFormer. This is particularly evident for
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Table 1: Quantitative comparison on the Cityscapes dataset [32] between the three base-
line models paired with MCD, DSE, and DEs, respectively. Best results are
marked in bold.

Semantic Segmentation Monocular Depth Estimation

mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ Inference Time [ms]

Baseline SegFormer 0.772 0.033 0.882 0.395 0.797 - - - - 17.90 ± 0.47

DepthFormer - - - - - 7.452 0.749 0.476 0.766 17.59 ± 0.82

SegDepthFormer 0.738 0.028 0.913 0.592 0.826 7.536 0.745 0.472 0.762 22.04 ± 0.27

MCD (20%) SegFormer 0.759 0.007 0.883 0.424 0.780 - - - - 177.13 ± 0.64

DepthFormer - - - - - 7.956 0.749 0.555 0.739 139.32 ± 0.78

SegDepthFormer 0.738 0.020 0.911 0.592 0.803 7.370 0.761 0.523 0.757 202.23 ± 0.39

MCD (50%) SegFormer 0.662 0.028 0.883 0.485 0.760 - - - - 176.98 ± 0.53

DepthFormer - - - - - 21.602 0.181 0.366 0.431 139.81 ± 1.20

SegDepthFormer 0.640 0.021 0.906 0.616 0.782 8.316 0.733 0.558 0.723 203.82 ± 0.81

DSE SegFormer 0.772 0.037 0.890 0.456 0.797 - - - - 132.30 ± 3.16

DepthFormer - - - - - 7.036 0.762 0.467 0.772 91.82 ± 2.01

SegDepthFormer 0.749 0.009 0.931 0.696 0.844 7.441 0.751 0.463 0.766 212.11 ± 8.44

DE SegFormer 0.784 0.033 0.887 0.416 0.798 - - - - 667.51 ± 2.89

DepthFormer - - - - - 7.222 0.759 0.486 0.771 626.79 ± 2.05

SegDepthFormer 0.755 0.015 0.917 0.609 0.828 7.156 0.763 0.493 0.773 743.23 ± 32.95

Table 2: Quantitative comparison on the NYUv2 dataset [33] between the three baseline
models paired with MCD, DSE, and DEs, respectively. Best results are marked
in bold.

Semantic Segmentation Monocular Depth Estimation

mIoU ↑ ECE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ RMSE ↓ p(acc/cer) ↑ p(inacc/unc) ↑ PAvPU ↑ Inference Time [ms]

Baseline SegFormer 0.470 0.159 0.768 0.651 0.734 - - - - 18.09 ± 0.41

DepthFormer - - - - - 0.554 0.786 0.449 0.610 17.51 ± 0.87

SegDepthFormer 0.466 0.151 0.769 0.659 0.733 0.558 0.776 0.446 0.594 22.31 ± 0.23

MCD (20%) SegFormer 0.422 0.102 0.767 0.706 0.724 - - - - 222.67 ± 0.61

DepthFormer - - - - - 0.605 0.741 0.478 0.568 139.58 ± 052

SegDepthFormer 0.433 0.093 0.771 0.710 0.725 0.610 0.731 0.450 0.560 251.25 ± 0.81

MCD (50%) SegFormer 0.273 0.083 0.705 0.722 0.713 - - - - 223.25 ± 0.82

DepthFormer - - - - - 0.978 0.516 0.492 0.526 139.27 ± 0.69

SegDepthFormer 0.272 0.084 0.702 0.721 0.711 0.837 0.576 0.473 0.525 251.98 ± 0.60

DSE SegFormer 0.469 0.092 0.776 0.681 0.726 - - - - 180.42 ± 3.93

DepthFormer - - - - - 0.547 0.782 0.423 0.596 91.66 ± 0.26

SegDepthFormer 0.461 0.077 0.776 0.692 0.723 0.584 0.738 0.403 0.573 261.69 ± 5.10

DE SegFormer 0.486 0.125 0.782 0.675 0.734 - - - - 715.97 ± 7.55

DepthFormer - - - - - 0.524 0.808 0.475 0.613 624.30 ± 2.07

SegDepthFormer 0.481 0.122 0.783 0.682 0.733 0.552 0.785 0.453 0.590 788.76 ± 2.00

p(uncertain|inaccurate) on Cityscapes. For the depth estimation task,
there is no significant difference in terms of uncertainty quality.

Baseline Models. As expected, the baseline models have the low-
est inference times, being 5 to 30 times faster without using any un-
certainty quantification method. While their prediction performance
turns out to be quite competitive, only beaten by DEs, they show poor
calibration and uncertainty quality for semantic segmentation. Sur-
prisingly, the uncertainty quality for the depth estimation task is very
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decent, often only surpassed by the DE.
Monte Carlo Dropout. MCD causes a significantly higher inference

time compared to the respective baseline model. Additionally, leav-
ing dropout activated during inference to sample from the posterior
has a detrimental effect on the prediction performance, particularly
with a 50% dropout ratio. Nevertheless, MCD outputs well-calibrated
softmax probabilities and uncertainties, although the results should be
interpreted with caution because of the deteriorated prediction quality.

Deep Sub-Ensemble. Across both datasets, DSEs show compara-
ble prediction performance compared with the baseline models. No-
tably, DSEs consistently demonstrate a high uncertainty quality across
all metrics, particularly in the segmentation task on Cityscapes.

Deep Ensemble. In accordance with previous work [28], DEs emerge
as state-of-the-art, delivering the best prediction performance and
mostly superior uncertainty quality. At the same time, DEs suffer from
the highest computational cost.

6 Conclusion

By comparing uncertainty quantification methods in joint semantic seg-
mentation and monocular depth estimation, we find Deep Ensembles
offer the best performance and uncertainty quality, albeit at higher
computational cost. Deep Sub-Ensembles provide an efficient alter-
native with minimal trade-offs. Additionally, we reveal the potential
benefit of multi-task learning with regard to uncertainty quality of the
semantic segmentation task compared to solving both tasks separately.
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Abstract This paper addresses the need for reliable person de-
tection systems in public spaces by developing a novel dataset
tailored for solid-state 3D-LiDAR sensors and evaluating vari-
ous neural network architectures. The dataset was created using
a Blickfeld solid-state 3D-LiDAR, capturing 265 point clouds in
a controlled test environment modeled on a three-lane pedes-
trian crossing. The neural network architectures evaluated in-
clude VoxelNeXt, PillarNet, SECOND, PointPillar, CenterPoint,
Voxel-R-CNN, PointRCNN, PartA2, and PV-RCNN. The eval-
uation methodology follows the KITTI benchmark metric for
performance analysis. Key results indicate that voxel-based ap-
proaches like SECOND and VoxelNeXt achieve inference speeds
of 10.3 FPS and 9.8 FPS on an NVIDIA Jetson AGX platform,
respectively, with mean Average Precision (mAP) scores of 95%
and 90%. In contrast, the hybrid approach PV-RCNN, which
combines voxel-based and point-based methods, achieves a mAP
of 92% but a slower inference speed of 2.5 FPS. These results un-
derscore the trade-offs between speed and accuracy in person
detection using solid-state 3D-LiDAR, highlighting the potential
of voxel-based methods for real-time applications. The results
contribute to the advancement of person detection technologies
in public security and smart city initiatives.

Keywords 3D-LiDAR, person detection, edge computing
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1 Introduction

The increasing demand for robust and reliable person detection sys-
tems in public spaces has driven advancements in sensor technology
and machine learning algorithms. Accurate detection is crucial for ap-
plications like public security, traffic management, and smart city ini-
tiatives. In the domain of public space surveillance, these systems must
accurately localize and classify objects in real-time and operate under
challenging conditions such as fog, snow, and rain, while complying
with the General Data Protection Regulation (GDPR) in the European
Union. Existing systems use various sensors like PIR, laser barriers,
radar, and cameras. However, each technology has drawbacks. For
example, PIR sensors struggle with detecting groups due to lack of a
classical field of view, while cameras, although effective with AI for de-
tection and classification, raise privacy concerns under EU-GDPR [1].

In contrast, solid-state 3D-LiDAR technology shows great potential
by generating precise 3D point clouds for privacy-preserving and reli-
able detection [2]. This makes 3D-LiDAR ideal for applications requir-
ing accuracy, real-time operation, environmental resilience, and data
privacy. Currently, 3D-LiDAR is extensively used and researched in
autonomous driving systems [3]. However, the available datasets for
training neural networks focus on automotive use and may not encom-
pass the broader range of potential applications. They are captured
with rotating 3D-LiDAR sensors, whose characteristics, such as res-
olution, range, and field of view, differ significantly from solid-state
3D-LiDARs. Transferring an existing dataset to the characteristics of a
solid-state 3D-LiDAR is challenging. Consequently, there is no suffi-
cient dataset for independent analysis using solid-state 3D-LiDAR sen-
sors. This necessitates the creation of new datasets targeting the spe-
cific hardware characteristics of solid-state 3D-LiDAR to achieve opti-
mal performance in people detection with deep learning approaches.
Furthermore, there has been no comprehensive comparison of neural
network architectures with respect to the specific requirements for per-
son detection in public spaces using solid-state 3D-LiDAR sensors and
edge computing. Therefore, this paper contributes by developing a
novel dataset for solid-state 3D-LiDAR sensors and performing a thor-
ough comparison of various neural network architectures addressing
the requirements for person detection systems in public environments.
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The rest of this paper is organized as follows: Section II reviews re-
lated work focusing on 3D-LiDAR datasets. Section III describes the
generation of the novel dataset based on a design flow and a person
classification scheme. In Section IV, the approach is applied within
a case study by creating a dataset used to train different CNN archi-
tectures. Section V presents the results of the evaluation, and finally,
Section VI concludes the paper.

2 Related Work

3D-LiDAR technology has become crucial for advanced driver assis-
tance systems, primarily used for detecting obstacles [4]. Current im-
plementations mainly utilize rotating 3D-LiDARs, as demonstrated by
datasets like KITTI, which is a standard benchmark in this field [5].
Several other datasets have been created (refer to Tab. 1), all based on
rotating 3D-LiDARs. These datasets are primarily designed for auto-
motive applications, potentially limiting their broader applicability.

Table 1: Overview of various LiDAR datasets.

Dataset LiDAR Type LiDAR System Licensing
KITTI [6] Rotating Velodyne HDL-64E Non-commercial
Waymo Open Dataset [7] Rotating In-house development Non-commercial
nuScenes [8] Rotating Velodyne HDL-32E Non-commercial
PandaSet [9] Rotating Hesai Pandar64 Commercial
Argoverse 2 [10] Rotating Velodyne VLP-32C Non-commercial
ONCE [11] Rotating 40-Beam LiDAR Non-commercial

Solid-state LiDARs, however, offer several advantages over rotat-
ing LiDARs, such as being more compact, lighter, more energy- and
cost-efficient. Additionally, without mechanical components, they are
maintenance-free and have a longer lifespan [12]. Recent studies sug-
gest that solid-state LiDARs can also be used effectively for tasks be-
yond obstacle detection, like pedestrian recognition. For example, Peng
et al. [13] explored using solid-state LiDAR and cameras for pedestrian
detection. However, using camera data raises privacy concerns as it
can capture identifiable personal information.

Sprute et al. [14] address the challenge of achieving high-resolution
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spatial coverage with solid-state LiDAR without cameras, focusing on
detecting people using deep learning techniques. 3D-LiDAR sensors
capture point clouds, which are then converted into depth images
through clustering techniques. Afterwards, they are processed with
a ResNet-based neural network for object classification. This method is
computationally intensive, limiting real-time processing on embedded
systems. While it improves spatial coverage and detection accuracy, it
does not offer direct real-time processing of point clouds, which can be
a limitation in scenarios requiring immediate feedback.

Several points from current research highlight the need for further
investigation. First, detecting people using solid-state LiDAR and deep
learning is feasible, but existing datasets are designed for rotating Li-
DAR systems, limiting their applicability. A new dataset for solid-state
LiDAR is needed.

Second, direct processing of point clouds for person detection is
rarely explored. Most studies convert point clouds into depth images
before classification, which is computationally demanding and unsuit-
able for real-time applications.

Third, embedded systems have not been sufficiently considered.
Mapping deep learning architectures onto embedded systems could
enhance efficiency and applicability, especially for compact, energy-
efficient use cases.

This work develops a new dataset for solid-state LiDAR and evalu-
ates deep learning architectures for direct point cloud processing. The
aim is to identify effective deep learning models for implementation on
embedded systems for efficient person detection.

3 Novel dataset for person detection

Since there are currently no publicly available datasets specifically tai-
lored to the requirements for person detection using solid-state LiDAR,
a custom dataset for model training is required.

A solid-state 3D-LiDAR sensor system is employed to capture data,
mapping the surroundings as a 3D point cloud. The orientation and
position of the sensor remain static throughout the data collection pro-
cess, ensuring consistent raw data acquisition.

To create a dataset, several processing steps must be carried out. The
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raw data has to be stored, followed by storing the raw data in individ-
ual frames. These frames then have to be normalized and converted
into a point cloud format. Subsequently, the LiDAR coordinate data
has to be adjusted to meet the specific requirements for training. After
this, the data has to be annotated, and labels have to be created. Finally,
the dataset has to be split into training, validation and test subsets.

The sensor setup was established in a specially designed test envi-
ronment on the premises of the Fraunhofer IOSB-INA Institute, ensur-
ing unobstructed visibility. The setup is based on previous work of
Sprute et al. [15]. The LiDAR sensor was installed at a height of four
meters with a 16° tilt to ensure optimal coverage of the entire area.
The setup was focused on a distance of 9 meters and was directed to-
wards a three-lane pedestrian crossing at an intersection. The data was
captured using a solid-state 3D LiDAR sensor from the company Blick-
feld [16]. The sensor was configured with a field of view of 72° x 30°, a
framerate of 2.4 Hz, and 200 scan lines.

The dataset is collected from the recorded raw data, where different
individuals passed by the LiDAR within a range of up to 30 meters.
For the training of the deep learning algorithms, a single class ’Person’
with different variations was considered. This ensured that the model
could detect and analyze various person types and their movement
patterns. The manual annotation of the single objects was carried out
carefully, as it directly impacts the quality of the detection results after
training. The entire dataset consists of 265 different point clouds. An
example of the classes annotated in the dataset can be seen in Fig. 1.

To ensure the versatility and robustness of the proposed recognition
system, various classes of people based on their relevance in public
space have to be provided [15]. The following classes are used to extend
the dataset: 1) individuals without physical disabilities, 2) individuals
with forearm crutches, 3) individuals with rollators, 4) individuals with
mobile phones, 5) groups of people, and 6) individuals with walking
sticks.

These annotations reflect common situations in public areas, cap-
turing a wide range of human activities and interactions. Recogniz-
ing such diverse scenarios is particularly relevant for surveillance and
public safety applications, enhancing the model’s ability to detect in-
dividuals accurately in various contexts. This variety of annotated
classes ensures that the developed model is capable of recognizing and
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correctly classifying different situations and groups of people.

Figure 1: Examples from the custom dataset of manually annotated people.

4 Case Study

4.1 Neural Network

There are various approaches of deep learning architectures for the
direct processing of point clouds, which can be categorized into voxel-
based, point-based, and hybrid methods.

Voxel-Based Approaches

Voxel-based approaches partition the point cloud into small 3D cubes
(voxels) and extract features from each voxel using a Voxel Feature En-
coding (VFE) layer. These methods convert the irregular point cloud
data into a regular grid, which can then be processed using sparse con-
volutional neural networks (CNNs) [17]. Advantages of these methods
include fast inference times and reduced computational load. How-
ever, there are drawbacks, such as information loss due to the choice
of voxel size [18]. Examples of voxel-based approaches used in this
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study include: (1) SECOND [17], (2) PointPillars [19], (3) PillarNet [20],
(4) CenterPoint [21], (5) VoxelNeXt [22], (6) PartA2 [23], (7) Voxel-R-
CNN [24].

Point-Based Approaches

Point-Based approaches directly process the point cloud . These
method use PointNet++ [25], to learn features directly from the raw
points, achieving a higher level of detail. However, they often incur
higher computational costs due to the unstructured nature of the data,
increased memory usage, and slower inference speeds [26]. Example
of a point-based approach used in this study is PointRCNN [27]

Hybrid-Based Approaches

The hybrid method is an extension that combines voxel- and point-
based approaches to point cloud processing, combining the strengths
of each. Voxel-based methods are faster but can lose information, while
point-based methods retain all information but are slower to process.
This hybrid approach attempts to combine efficient computation with
comprehensive data representation. An example of a hybrid-based ap-
proach used in this study is PV-RCNN [28]

4.2 Training

The open-source framework Point Cloud Detection (OpenPCDet) [29]
was employed for training and execution of the deep learning architec-
tures described in Section 4.1. The deep learning architectures were
trained on a Windows system with the following specifications: 64
GB of DDR4 RAM, an AMD Ryzen 9-3900X 12-core processor, and an
RTX2080 graphics card with 8 GB of memory. To ensure the reliability
of the results, the dataset was randomly divided into two distinct sets:
70% for training and 30% for validation. To enhance the performance
of the trained model, data augmentation techniques were employed to
artificially expand the dataset [30]. These techniques included rotation,
scaling, and mirroring of the point cloud, as well as the generation of
additional bounding boxes and their point data based on the training
dataset through the introduction of artificial elements.
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The extended Adam algorithm, OneCycleLR [31], was employed for
all architectures for the optimization of the neural network’s weights
mentioned in Section 4.1, wherein a variable learning rate was utilized
during training. A maximum learning rate of 10−4 was selected, with
a momentum of 0.95–0.85. The training process was performed with
batch sizes of 6 point clouds over 120 epochs.

5 Results

The calculation to analyze performance is based on the KITTI bench-
mark procedure [5]. Nine distinct neural network architectures were
trained on our novel dataset and subsequently evaluated in terms of
their performance, including measures such as average precision (AP)
and inference time. In Tab. 2, the results of the conducted investigation
of the evaluated deep learning architectures with the custom dataset
for AP and the measured inference time on an edge computing device
Nvidia Jetson AGX system are presented.

The results demonstrate that voxel-based approaches, such as SEC-
OND, VoxelNeXt, or Voxel-R-CNN, achieve notable performance in
both AP and inference time, offering a suitable balance between speed
and accuracy when compared to point-based and hybrid approaches.
These results are significantly better when compared to the perfor-
mance of a point-based approach, such as PointRCNN and a hybrid
approach, such as PV-RCNN. Some qualitative detection results are
shown in Fig. 2.

Table 2: Comparison of architecture performance.

Type Architecture AP (IoU = 0.5) Inference time (FPS)
Voxel CenterPoint 0.92 7.7
Voxel Part-A2 0.95 5.0
Voxel PillarNet 0.91 7.2
Voxel PointPillar 0.89 9.1
Voxel SECOND 0.95 10.3
Voxel Voxel-R-CNN 0.97 7.2
Voxel VoxelNeXt 0.90 9.8
Point PointRCNN 0.92 1.6

Voxel/Point PV-RCNN 0.90 2.5
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Figure 2: Exemplary person detection based on SECOND architecture. The blue rectan-
gles represent the reference bounding boxes, while the green rectangles indi-
cate the predicted bounding boxes from the neural network.

6 Conclusions and Future Work

The study employing the newly created dataset demonstrates that
voxel-based methods, particularly SECOND, achieved the best results,
reaching 10.3 FPS with an average precision (AP) of 95%. This indicates
that classification and localization using point clouds collected with
solid-state 3D-LiDAR sensor are possible with an embedded system
like the Nvidia Jetson AGX. The evaluation of nine deep learning algo-
rithms for processing 3D point clouds with a solid-state 3D-LiDAR sen-
sor on an edge computing system revealed that single-stage methods
based on voxel preprocessing are most effective. Specifically, SECOND,
VoxelNeXt, and PointPillar showed high classification and localization
performance with real-time processing capabilities. These results con-
firm that appropriate voxel-based deep learning architectures exist to
implement a person detection system on an edge computing platform
with a solid-state 3D-LiDAR sensor, enabling efficient real-time person
detection and visualization of 3D point clouds.

Future work will focus on refining the dataset to include more di-
verse and realistic point cloud scenes, addressing variations in weather
conditions and background objects. Class separation and the inclusion
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of new classes, such as people with bicycles and strollers, will be inves-
tigated to enhance the system’s robustness and flexibility. Finally, the
approach will be integrated into an embedded smart sensor system,
designed for usage in public spaces.
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Abstract Fatigue during assembly tasks can have a negative
effect on subjective as well as objective quality of work. We
recorded a novel dataset for the purpose of detecting fatigue
in assembly scenarios. Participants were instructed to assemble
and disassemble model cars with the help of a robot arm. The
recordings consist of video, depth video, EEG and eye tracking
data as well as questionnaires on the participants’ fatigue. The
dataset can be provided to researchers on demand. In addition
to recording a dataset, we implemented a proof of concept sys-
tem to detect fatigue solely on image data. In our approach the
eye tracking data was used to label the participants’ fatigue. Af-
terwards, a graph neural network was trained on poses extracted
from the video data and the generated labels. The classifications
of the model are made transparent through the use of explain-
able AI using saliency maps and GradCAM. This work can have
a positive impact on human-machine interaction and assistance
systems. Through explainability, we aim to increase the accep-
tance of such systems by workers and industries.

Keywords GNN, XAI, GradCAM, saliency maps, fatigue detec-
tion, dataset

1 Introduction

As the pace of industrial work intensifies, understanding and mitigat-
ing the effects of fatigue on human performance has emerged as a
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challenge. Fatigue can significantly impair cognitive and physical ca-
pabilities, leading to reduced productivity, increased error rates and
potentially hazardous working conditions. Therefore, detecting fatigue
is essential for enhancing productivity and improving the safety and
comfort of workers. The goal of this work is to develop a system that
can accurately detect fatigue levels in workers during assembly tasks
and provide simple explanations for the decisions made by the system.
By doing so, we aim to contribute to the development of more adap-
tive and worker-friendly industrial environments that are optimized
for both efficiency and safety.

To explore this issue, we recorded a dataset where participants per-
formed assembly tasks in a controlled environment. We used two
modalities of the dataset: eye tracking and video data. The eye track-
ing data is employed to generate fatigue labels for each timestamp with
pupil diameter variability (PDV) as the indicator, which has been em-
pirically validated as a reliable marker of overall fatigue [1]. For the
fatigue detection we only use video data. Video data does not disrupt
the worker as opposed to wearable sensors and is often already avail-
able as it is needed for many assistance systems. On the video data,
pose estimation is performed using Mediapipe [2], a tool that extracts
human poses from video frames. The resulting pose data is then used
to train a Graph Convolution Network (GCN), which is designed to
predict fatigue levels based on body posture.

Incorporating transparency into the decision-making process of AI
systems is critical, particularly in industrial contexts where the accep-
tance and trust in assistance systems are paramount. Furthermore,
the European AI Act demands transparency if AI systems are used
in ”work-related relationships [...] to allocate tasks” and ”monitor
and evaluate the performance and behaviour of persons” (Annex III,
4 b) [3]. To address this, our system integrates Explainable artificial
intelligence (XAI) techniques to provide local explanations for its deci-
sions.

The primary contribution of this research is the development of a
fatigue detection system that integrates deep learning methodologies
with XAI techniques while operating only on camera data. This work
has the potential to enhance the quality of work environments by fos-
tering transparency and trust in AI-driven assistance systems and In-
dustry 4.0.
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2 Related work

Fatigue detection has become an area of increasing interest due to its
wide-ranging applications, from workplace safety to medical diagnos-
tics. Various techniques have been employed to capture and assess fa-
tigue levels, each offering unique advantages depending on the domain
and context of usage. In this section, we explore different approaches
to fatigue detection, from conventional methods like eye tracking to
more recent advancements involving pose detection and XAI.

One of the widely used methods for fatigue detection is eye track-
ing, particularly in domains like automotive safety and air traffic con-
trol. By measuring parameters such as blink rate, saccadic movement,
and gaze patterns, researchers have been able to infer levels of cogni-
tive and physical fatigue. Benedetto et al. [4] demonstrated the cor-
relation between eye blink frequency and driver fatigue in simulated
driving environments. Di Stasi et al. [5] leveraged saccadic velocity to
evaluate cognitive load and fatigue. Lengenfelder et al. [6] observed
mental fatigue from eye tracking while performing interactive image
exploitation. Sirois et al. [7] showed that pupil dilation responds to
task difficulty and cognitive effort, reinforcing the role of pupil diam-
eter variability (PDV) in fatigue detection. However, these methods,
while effective, are often constrained by environmental factors and re-
quire specialized, obtrusive hardware, limiting their adaptation and
applications.

Opposed to eye trackers, which are highly specialized, nearly any
camera can be used for facial recognition and pose detection. Facial
recognition techniques leverage the subtle changes in facial expres-
sions and muscle movements that occur as fatigue sets in. For instance,
Haque et al. [8] argued that features like drooping eyelids, yawning
frequency, and overall facial muscle relaxation can serve as strong indi-
cators of fatigue. In driver monitoring systems, facial recognition has
been applied to track drowsiness and fatigue by detecting changes in
eye closure duration, blink frequency, and facial muscle slackness, as
demonstrated in studies by Bergasa et al. [9], Ji et al. [10] and Garcı́a et
al. [11]. Similarly, Sikander et al. [12] and Liu et al. [13] explored the
use of facial landmarks in real-time monitoring systems to detect early
signs of cognitive and physical fatigue in drivers.

Pose detection has traditionally been used in fields such as sports
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science [14] and rehabilitation [15], but its recent application in health
monitoring has gained traction. The rise of pose estimation libraries
like OpenPose [16] and Mediapipe [2] have made this approach more
accessible, enabling the detection of joint coordinates in real-time using
just standard cameras. Hawley et al. [17] demonstrated using machine
learning that postural sway and joint angle deviations could be used
as indicators of physical fatigue in lifting tasks. Similarly, Wang et
al. [18] used pose estimation in athletic assistance system by incorpo-
rating deep learning methods. Strain and fatigue are detected for risk
analysis by Papoutsakis et al. [19] in an industrial environment using
pose estimation. This paper aims to provide a feedback system to in-
dustry workers on safe and unsafe poses while working. Pose-based
methods offer the advantage of being non-invasive and relatively in-
expensive making them attractive for broader deployment [20]. There
exist many more techniques for fatigue detection like EEG, body-borne
sensors of physiological markers. They do however require specialized,
wearable hardware for every worker.

XAI’s role in fatigue detection is particularly crucial because of the
need for trust and validation in AI-driven decisions. Rivera et al. [21]
detect mental fatigue using EEG data and deploy XAI techniques to in-
terpret the results. They argue that applying deep learning techniques
to detect fatigue levels is of limited use and a thorough XAI technique
needs to be implemented. Hussain et al. [22] demonstrated how XAI
could be used in cognitive fatigue detection using EEG to highlight the
importance of specific brainwave patterns, allowing healthcare profes-
sionals to validate the AI’s interpretation of EEG signals. The potential
for XAI in fatigue detection systems is growing, but research is still in
its infancy, with most efforts focused on improving prediction accuracy
rather than interpretability. As fatigue detection systems are increas-
ingly integrated into workplaces and healthcare, ensuring that their
decisions are explainable will become essential for achieving broader
acceptance and fulfilling regulatory requirements.

3 Dataset

We started our work by recording a novel dataset for fatigue detec-
tion in assembly tasks. The dataset is multimodal, containing EEG, eye
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Figure 1: Setup of the assembly table during recording.

tracking, video and depth video data. Additionally, we gathered data
from questionnaires that participants had to fill out before and after
the experiment. These include the NASA-TLX [23] after the experi-
ment and participants’ fatigue on the rating of fatigue (ROF) scale [24]
before and after the experiment. The ROF scale is a scale from 0-10
with 0 indicating no fatigue at all and 10 indicating total fatigue and
exhaustion.

We invited 30 participants to the recordings. 5 of them participated
3 times each resulting in 40 total recordings. During the experiment,
the participants wore an EEG-headset, eye tracking glasses and were
recorded with a regular RGB and a stereoscopic depth camera. Pupil
Labs Core1 was used as the eye tracker. To simulate an assembly task
participants were asked to first assemble and then disassemble 3 model
cars form 3D-printed components. A monitor showed step by step

1 https://pupil-labs.com/products/core
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instructions which the participants could control via buttons. Help was
also provided by a robot arm that held the partly assembled model cars
in place. The setup of the assembly table can be seen in Figure 1.

The dataset will not be publicly available but can be provided to
researchers on demand.

4 Explainable Fatigue Detection

Our approach to fatigue detection, once trained, relies only on cam-
era data to predict fatigue levels. It builds on the existing research in
fatigue detection and pose estimation, but it introduces a novel com-
bination of these fields using XAI. We begin by extracting key labels
from the eye tracking data. While several features are available from
eye tracking systems, PDV has been selected as our feature of choice
due to its established correlation with cognitive load and fatigue. PDV
offers an intuitive measure of how the eye’s pupil reacts to changes
in focus and brightness, which is often a strong indicator of mental
fatigue.

The PDV is calculated using standard algorithms that compute the
pupil diameter based on frames obtained from the eye tracker. These
frames are timestamped, and the change in pupil size over time is mea-
sured to yield the PDV. When labeling the data for fatigue detection, a
rolling window approach was utilized, assigning fatigue scores based
on a 0-5 scale to reflect varying fatigue intensities.

For extracting human poses, RGBD data from our dataset was used.
We used Mediapipe, a state-of-the-art library for pose estimation,
which provides 33 3D skeletal keypoints of the participants. Each joint
comes with X, Y, Z coordinates (representing spatial location) and a vis-
ibility score (indicating how clearly the joint was visible in the frame).
As the participants were recorded from the front while standing at an
assembly table their legs were not visible. Therefore, we removed joints
below hips during preprocessing to avoid noisy data.

Once the pose data was extracted, we aligned them with the pre-
viously calculated labels. This allowed us to use supervised learning
using Graph Convolutional Networks (GCNs). The GCN consisted of
three convolutional layers. It was tasked with predicting the fatigue
level of a participant based on their pose. To improve the model’s ro-

176



Explainable fatigue detection

bustness, we experimented with several preprocessing steps, such as
balancing the dataset using SMOTEENN, which addressed the issue
of class imbalance by combining oversampling of minority classes and
under-sampling of majority classes. This technique has proven useful
in ensuring that the model does not overfit to the dominant classes
while maintaining sufficient samples for the minority classes [25].

To make the model explainable we applied two XAI techniques:
saliency maps and Grad-CAM. These methods provided insights into
which keypoints (joints) and indirectly which skeletal connections
were most influential in determining fatigue levels. These XAI tech-
niques were instrumental in validating that the model was focusing on
anatomically relevant areas, aligning with known indicators of physical
fatigue [26] [27].

We developed a comprehensive system for detecting fatigue based
on video data. By integrating pose estimation, graph-based learning
models and leveraging XAI techniques, our method enables better in-
terpretability, which is crucial for identifying key factors contributing
to fatigue prediction. Our model lays a strong foundation for future
improvements that could enhance its practical applicability with fur-
ther optimization.

5 Results and discussion

In this section, we will provide a detailed analysis of the outcomes
from our experiments, starting with model performance improve-
ments, followed by XAI applications to interpret model predictions us-
ing saliency maps and Grad-CAM. Finally, we will demonstrate our
XAI techniques in skeletal visualizations with heatmaps, showing how
various nodes and skeletal joints contribute to the fatigue prediction.

We started with a baseline model, consisting of three convolution
layers, which was trained using a stationary window of 30ms, relying
solely on x, y, and z coordinates as features. This model achieved a 54%
testing accuracy. To improve performance, we introduced a rolling win-
dow of 1.5 seconds, added visibility as a fourth feature, incorporated
a dropout layer for regularization and a learning rate scheduler for
dynamic optimization. This raised the testing accuracy to 67%.

The next steps involved increasing the convolution layers to five,

177



V. Vishwesh et al.

which further pushed the accuracy to 70%. Early stopping is added
to monitor and prevent overfitting and ensure better generalization to
test data. Further, we introduced a preprocessing step on the skeleton
by removing joints below the hips as they often were often hidden by
the assembly table which reduced the skeleton from 33 to 24 joints.
When the model was trained on this data, a testing accuracy of 77%
was achieved.

Figure 2: Heatmap of correctly predicted label 0 on depth image.

Figure 3: Heatmap of correctly predicted label 5 on depth image.
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We initially trained with ten labels (1-10) but reduced them to 6 (0-
5). By reducing the number of fatigue labels from 10 to 6, the model
achieved an accuracy improvement from 77% to 80%. By reducing
the number of classes, the impact of label noise is reduced, particu-
larly in cases where subjective assessments of fatigue might be incon-
sistent between adjacent levels. Additionally, simpler categorizations
can be more easily understood by non-technical users, leading the user
to make better decisions that are more aligned with practical applica-
tion [28].

As mentioned in the previous chapter we incorporated XAI tech-
niques in the form of saliency maps and Grad-CAM to make our ap-
proach more transparent. The saliency maps highlighted the impor-
tance of joints such as the shoulders and elbows, which tend to show
signs of fatigue during manual tasks. Grad-CAM, on the other hand,
visualized the influence of broader skeletal regions, showing how pos-
tural deviations in the upper body contributed to the model’s predic-
tions. The combined saliency and Grad-CAM visualizations offer a
detailed insight into how different parts of the body contribute to fa-
tigue prediction. Figure 2, representing a correctly predicted label of
0 (low fatigue), shows a higher importance around the hands, partic-
ularly in the wrist and elbow regions, showing that these regions are
indicative of low fatigue levels. Figure 3, which was correctly classified
as a 5 (high fatigue), shows a broader spread of important regions, with
higher intensity around both the upper body and shoulders, suggest-
ing some reliance on the upper limbs as fatigue increases. However the
most important regions are still the hands. In future, we plan to en-
hance the fatigue prediction model by integrating additional features,
such as temporal data from video streams. We also aim to explore ad-
vanced explainability techniques to gain deeper insights into the factors
influencing fatigue levels.

6 Conclusion

Recognising fatigue in assembly environments is an issue of work
safety. We presented an explainable fatigue detection system that
works only on image data. Workers do not have to wear any addi-
tional devices or sensors hindering them in their work. The video data
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for our system can stem from cameras that are often already present
for assistance systems. Additionally, we incorporated explainability
into our system through the use of saliency maps and Grad-CAM. This
makes our system more transparent and helps to comply with the Eu-
ropean AI Act which demands transparency when monitoring people
in work environments. We would like to build on our existing system
and develop it into a real-time assistance system.
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Abstract Recent advancements in machine learning, particularly
in deep learning and object detection, have significantly im-
proved performance in various tasks, including image classifi-
cation and synthesis. However, challenges persist, particularly
in acquiring labeled data that accurately represents specific use
cases. In this work, we propose an automatic pipeline for gen-
erating synthetic image datasets using Stable Diffusion, an im-
age synthesis model capable of producing highly realistic im-
ages. We leverage YOLOv8 for automatic bounding box detec-
tion and quality assessment of synthesized images. Our contri-
butions include demonstrating the feasibility of training image
classifiers solely on synthetic data, automating the image gen-
eration pipeline, and describing the computational requirements
for our approach. We evaluate the usability of different modes
of Stable Diffusion and achieve a classification accuracy of 75%.

Keywords Image synthesis, image classification, computer vi-
sion car brand classification, traffic monitoring, synthetic train-
ing data

183



J. Lippemeier et al.

1 Introduction

In the last twelve years advancements in machine learning, deep learn-
ing and object detection achieved remarkable results in performance.
The deep learning revolution in image classification started with the
publication of AlexNet [1] in 2012. Further performance enhance-
ments have been achieved in the following years with models such
as ResNet [2]. Object detection has achieved significant success with
models like YOLO (You Only Look Once) [3], which have produced
high-accuracy results.

Transfer learning which uses pre-trained existing models is a com-
mon approach for solving image classification tasks [4]. Although this
approach needs less data than training a model from ground up, it
still requires large amounts of labeled data. Existing publicly available
datasets can only be successfully used for training if they actually re-
semble the use case. Even if large amounts of data from the actual use
case can be acquired, labeling this data remains time consuming and
therefore expensive, as this is often a manual task. Biases within the
data present a challenge as there is a compromise to be made, either
in the form of potentially keeping the bias, reducing the dataset size
to balance classes or oversampling underrepresented classes. In most
cases this leads to small available datasets and consequently overfit-
ting. Another common challenge is a low variance within the available
data.

Solving computer vision tasks when only limited data is available, is
a common major challenge in practice. Limited datasets often lead to
overfitted or poorly performing models, endangering the success of a
project. We face this challenge by illustrating an adaptable approach.
For this approach we synthesize images on demand that are tailored
to the respective use case. This leads us to posing our abstract main
research question: Is it possible to use image synthesis in an automated
manner to create suitable datasets for computer vision tasks with oth-
erwise limited existing data? We evaluate this general approach on a
specific real-world application.

Our real-world image classification task is to visually predict the
brand of a car as an unequivocal visually determinable feature (see
Figure 1). We recorded and labeled data that represents the German
automotive traffic; this data was recorded by traffic cameras in Lemgo
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VW Ford BMW Audi Opel Mercedes Renault Skoda

Figure 1: The selected brands we aim to classify. These eight brands occur the most in
our recorded footage.

- a medium sized town in Germany. However, we are limited by the
traffic volume and the capacities for human labeling. Even if unlimited
gathering of real labeled data from the German traffic was possible,
the data would still include the biases of the real world. Filtering these
out and labeling the images would still remain a time consuming task.
Existing related datasets such as the Stanford Car Dataset [5] tend to
resemble the North American market. Some car brands common in
Germany such as Skoda are normally not even present within existing
datasets. With limited data from the actual application and no usable
existing dataset this problem is a prime example for our main research
question.

With the emergence of image synthesis models that create highly re-
alistic images with correct proportions and details we propose the us-
age of synthetic images as training data for image classification tasks.
In theory image synthesis models are a prompt-guided way to synthe-
size an image of a desired object. Stable Diffusion is an open source
model that allows for programmatic image synthesis [6]. The creation
of images therefore becomes a question of time and computing power.

We create an automatic pipeline for image dataset creation using Sta-
ble Diffusion as a tool to synthesize images. We are able to control the
distribution of the generated images by controlling the distribution of
the used prompts. By using YOLO we automatically determine the
bounding boxes of a car inside a generated image. YOLO also allows
us to estimate whether the synthetic image is suitable by giving a con-
fidence score, the bounding box and the class of the detected object.

Although we can avoid class distribution bias by balancing the num-
ber of generated images per manufacturer, image synthesis models
may still introduce inherent biases. If there are biases within the train-
ing data of the image synthesis model it might pass this bias on to the
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generated images. In regards to cars the data used in the training of
Stable Diffusion could be unbalanced, for example, by favoring new
over old, famous over unfamous, and popular over unpopular cars.
Further it is not automatically confirmable whether a synthetic image
actually matches the desired output encoded by the prompt. Also the
perspective, illumination, contrast and other photographic properties
might differ from the actual task.

Our main contributions are: We automate an image generation
pipeline that also includes labels, bounding boxes and a quality as-
sessment for the synthetic images. We show that training on purely
synthetic data from our image generation pipeline is sufficient to train
an image classifier that can visually predict the car brand on a real
photograph. We describe the required amount of and necessary com-
putation time for synthetic images in our use case. We include and
compare different modes of Stable Diffusion for synthesizing images
in our pipeline.

2 Related Work

Large-scale text-to-image diffusion models can be fine-tuned to aug-
ment the ImageNet training set [7] leading to significant improvements
in ImageNet classification accuracy [8]. Moreover, the authors of [9]
investigate using synthetic images produced with Stable Diffusion [6]
when training models for ImageNet classification. Whether and how
synthetic images generated from text-to-image generation models can
be used for image classification in data-scarce settings and in large-
scale model pre-training for transfer learning is considered in [10] us-
ing the GLIDE diffusion model [11].

Synthetic data has been successfully used to improve identification
and classification tasks in other applications such as lung edema iden-
tification in chest X-ray images [12] and the diagnosis of skin dis-
eases [13]. In the latter two references Stable Diffusion was used to
generate the corresponding synthetic image datasets. Introducing syn-
thetic test data has been proposed as a means to improve model evalu-
ation on diverse and underrepresented population subgroups [14].

In the field of vehicle type classification, or, more specifically, car
brand and model identification, mainly models trained on real-world
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data have been investigated so far. Examples are the extension of mod-
els trained on limited-size datasets to handle extreme lighting condi-
tions [15], balanced sampling to address the challenge of classifying
imbalanced data from visual traffic surveillance sensors [16], improv-
ing accuracy of car type classification through the adaptation of spe-
cific CNN architecture models [17], as well as adapting deep learning
techniques for vehicle color classification [18] and vehicle logo recogni-
tion [19]. The detection, recognition, and counting of vehicles based on
their car types using a combination of YOLOv5 and ResNet has been
investigated in [20].

3 Method

The goal of this work is to develop a pipeline (illustrated in Figure 2),
which can generate a balanced dataset for a computer vision task with
otherwise limited available labeled data.

I Dataset Input For this work we used the official car registra-
tions [21] from the Federal Motor Transport Authority of Germany
(Kraftfahrt-Bundesamt). They provide data for registered car models
in Germany. The features are the vehicle class, the brand, the model
name, the build years and the registered number of cars in each cate-
gory. An example for a car model is the Skoda Karoq, a SUV of the
brand Skoda produced in the years 2017, 2018 and 2020. However we
ruled out production years earlier than 1990 as they rarely occur in
everyday traffic.

Figure 2: The scheme of the developed pipeline consisting of dataset creation and train-
ing. The illustrated pipeline produces a dataset of synthetic images with corre-
sponding labels and bounding boxes. The dataset can be used to automatically
train an image classification model.
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While it might be possible to generate suitable data even for rare
brands we limit our approach to the brands shown in Figure 1. By
focusing on these brands we aim to include the often occurring brands
such as Volkswagen and Ford but also more rarely occurring brands
such as Skoda and Renault.

II Label Generation In order to balance the dataset we use a multi-
step hierarchical uniform probability distribution. In the first hierarchy
step each brand has the same probability. For each brand the proba-
bility of the respective car models is also uniformly distributed. The
same principle applies to the construction years for each model as well
as the most common colors.

III Image Synthesis In this pipeline step we sample from the labels
created in the previous step and create a prompt for each sample as
shown in Figure 3. We create two datasets, one for Text-to-Image and
one for Image-to-Image using Stable Diffusion XL Turbo. If not other-
wise noted we use the standard parameters set by the Python Diffusers
library [22]. For Text-to-Image we use four inference steps with one
image per prompt and a guidance scale of zero. This guidance scale is
recommended in the documentation for the usage of this model [23].
For Image-to-Image we use ten inference step with a guidance scale
of 0.4 and a strength of 0.6. These parameters are manually tuned to
subjectively fit the desired output.

When using Stable Diffusion in Image-to-Image mode we also have
to provide a base image in conjunction with a prompt as the input for
the model. To create these base images we use real photographs of
cars at different positions on the road cropped to the car with padding.
With these base images we intend to implicitly give the desired per-
spective so that the generated images strongly resemble the real im-
ages. The input base image for this mode is scaled up to 720x720 pixels

" Realistic photo of a gray Volkswagen Golf VII 2015, centered,
photographed from slightly above, from the front, frontside,

photography, headlights, front, license plate "

Figure 3: The prompt used to generate the images with Stable Diffusion alongside a
generated image using Text-to-Image. The substring ”gray Volkswagen Golf VII
2015” is changed accordingly for different car models.
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Real Photographs Text-to-Image Image-to-Image

Figure 4: Illustration of differences between real images and modes of image generation.
Text-to-Image tends to encompass more perspectives contrary to the narrow
range of perspectives with Image-to-Image.

as this is the minimal size for Stable Diffusion XL. Figure 4 illustrates
real photographs compared to images generated by Text-to-Image and
Image-to-Image.

IV Quality Assessment The output of image synthesis models such
as Stable Diffusion normally matches the expected output. In most
of the cases there is exactly one car as the main subject of the image.
The location and the size of the image’s subject differs. Therefore an
object detection model such as YOLOv8x has to be used to automat-
ically determine the bounding boxes (see Figure 5). However, we
observe that in rare cases Stable Diffusion produces something other
than the desired output of a singular car (see Figure 5). Therefore, we
use YOLOv8x in object detection mode on each image. This allows us
to automatically confirm that there is exactly one car in the image. It
further assesses the quality of the generated image as YOLO provides
a score for the certainty of a detected bounding box. We then crop the
image to the bounding boxes of the detected car.

V Image Preprocessing Stable Diffusion models allow to specify the
dimensions of the resulting image. However, the subject of the images
vary in size so that the images cropped to their subjects’ bounding
boxes differ in aspect ratios and sizes. We transformed the images to

Figure 5: Bounding Boxes detected with YOLOv8x. This allows to crop the image and
provides a confidence score for the presence of a car. It also allows to automat-
ically sort out the two undesired images on the right where more than one car
is detected.
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64x64 pixels. The small resolution is chosen as the traffic cameras in
our use case record in HD and cars at different positions in the image
may therefore have a similar resolution. Random Rotation as a classical
data augmentation method is also applied to the dataset.

VI Model Training We then use the generated and pre-processed
image dataset to train image classifiers. In using the model Resnet-18
that is pre-trained on ImageNet [7], we apply the principle of transfer
learning [4]. For adapting this model we replace the last fully con-
nected layer by a new fully connected layer with the same input size
and an output size of eight which encodes the classes we want to clas-
sify. We do not lock any pretrained layer.

VII Evaluation The performance of the model is validated against
real-world data recorded by traffic cameras mounted in Lemgo, Ger-
many. These images were manually labeled. Images of the same car
at different positions can exist in the datasets as the cars are moving
forward. The split between validation and test dataset is therefore per-
formed based on location of the respective camera and the time of
recording. Due to the biases in the real world and the described split
the classes are unevenly distributed.

4 Experiments and Results

The time for generating images with Stable Diffusion depends on out-
put size and the number of inference steps. In the following we
consider the performance for the parameters described in Section 3
(Method) when run on a Nvidia RTX 3060. When using Text-to-Image
(four inference steps) it took 0.85 seconds, for Image-to-Image (ten in-
ference steps) 2.33 seconds. These durations account for image synthe-
sis, bounding box detection, automatic quality assessment and storing
of the image.

We retrain Resnet-18 on varying datasets. The model is trained on
the images in random order with an exponentially decaying learning
rate starting at 0.01 and the stochastic gradient descent optimizer. An
epoch for training the Resnet-18 on 100.000 images takes approximately
18 seconds on a Nvidia RTX 3060.

We evaluate the performance of this model regarding the different
modes of image synthesis and the required amount of data. As we
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Figure 6: Training Results for Resnet-18 trained on the different dataset sizes. Model
performance and dataset size correlate. The experiments were performed five
times per dataset size and Stable Diffusion mode. The graph shows a confi-
dence interval of one standard deviation.

use real world photographs of cars in traffic in Lemgo, Germany, we
have an unbalanced dataset. To illustrate the unbalanced distribution:
VW occurs the most with 976 images in contrast to Renault with only
165 images. The split, described earlier, results in a validation dataset
consisting of 1503 images and a test dataset consisting of 1317 images.

Figure 6 shows the training results for different dataset sizes and
datasets generated by Image-to-Image mode, Text-to-Image mode and
a combination of these modes. These results show that we are able to
train a model on the generated images that can exceed the primitive
baseline by far, even reaching up to 75% in accuracy on the given eight
classes.

We observe that the performance of the retrained Resnet-18 model
has a reliable and stable performance on both modes of image gen-
eration and both modes combined. The performance of this model
in regards to the mode of image generation does not differ signifi-
cantly. The Resnet-18 model clearly benefits from using images from
both modes combined leading to a score of 75% at maximum with a
dataset size of 400.000 images. We can see that the model performance
correlates with the dataset size and the variety in images, as the perfor-
mance when trained on images from both modes combined surpasses
the performance when trained only on images from one mode.

191



J. Lippemeier et al.

The retrained models are typically biased towards predicting Volk-
swagen which is the most common brand in the photographs of the
real traffic. We also observe a difference in accuracy per brand. Volk-
swagen, Ford, BMW, Audi and Mercedes achieve a performance of at
least 70% while Opel, Renault and Skoda are only correct in about half
of the cases.

5 Conclusion

We are able to train image classifiers for real world data solely on syn-
thetic images that require no human labeling. The images we evaluate
the classifiers on are taken in real moving traffic. Therefore, we face
challenges such as a large variety of objects, image artifacts, different
lighting, low resolution and motion blur. The generated data is suffi-
cient to exceed the primitive baseline by far. These results are achieved
whilst needing human work only for engineering the pipeline, tweak-
ing hyperparameters and labeling the validation and test images. Thus
the engineered pipeline may illustrate a potential approach to over-
come challenges associated with traditional data acquisition methods.

On average the Resnet-18 performs better when retrained on the
combined images instead of the same amount from just one mode of
image generation. This may result from the fact that both modes com-
bined cover a broader variety regarding the characteristics of the im-
ages. We assume that using varying prompts and varying parameters
for the Stable Diffusion model could increase the variation in images
and could therefore be beneficial.

To illustrate one possibility of this pipeline: With our pipeline we are
able to create a perfectly balanced dataset of 100.000 images by using
both modes combined. We can directly train a Resnet-18 model on this
generated dataset. The time to perform this consecutively on a singular
Nvidia RTX 3060 without further optimizations sums up to about two
days. This provides a solid baseline model on short term with very
little human work required.

There are significant differences in performance of the retrained
Resnet-18 per class. These differences may be explained by biases in-
side of the Stable Diffusion models as they are more likely trained on
more images of Volkswagen than images of Skoda. Another may be

192



Visual car brand classification using synthetic images

that, on one hand, brands like Volkswagen, Mercedes, BMW and Audi
have very prominent visual features that are easy recognizable for hu-
mans. On the other hand, earlier models of Renault have very small
logos and Skoda has a dark radiator grill with only a small logo as
an identifier. This also can attribute to a lower performance for these
brands.

The pipeline introduced in this work is possible as we can automat-
ically assess and crop the output of the Stable Diffusion model with
YOLO. For other computer vision tasks with classes that are a subset
of the classes YOLO can predict, we can adapt the pipeline easily. How-
ever, for completely other classes one would have to engineer another
way to implement the fourth step of the pipeline. As this presents a
challenge, the possible use cases of the introduced pipeline are limited
by the capabilities of object detection models like YOLO. Another limi-
tation lies within the capability of Stable Diffusion as it is unlikely that
these models can generate usable images for every situation.
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Zusammenfassung In dieser Arbeit präsentieren wir eine in
Deutschland auf öffentlichen Straßen erfolgreich erprobte Sys-
temarchitektur, um robust Haltelinien zugeordnete Ampeln
wahrzunehmen und den resultierenden Freigabezustand zu fil-
tern. Ampeldetektionen werden mit Ampeln aus einer HD-Karte
[1] assoziiert, um sie der Haltelinie zuzuordnen die das Fahrzeug
betrifft. Somit kann die in der Karte hinterlegten Beziehung zwi-
schen Ampeln und Haltelinie genutzt werden, ohne auf eine feh-
leranfällige Rückprojektion angewiesen zu sein. Wir evaluieren
das Gesamtsystem anhand ausgewählter Szenarien in Karlsru-
he und Sindelfingen und zeigen damit die Einsatzbereitschaft in
realen automatisierten Fahrzeugen.

Schlüsselwörter Deep learning, autonomes Fahren, Ampeln,
Detektion, Assoziation

Abstract In this work, we present a system architecture that has
been successfully tested on public roads in Germany to robustly
perceive traffic lights assigned to stop lines and filter the result-
ing release state. Traffic light detections are associated with traf-
fic lights from an HD map [1] to assign them to the stop line
relevant to the vehicle. This allows the use of the relationship be-
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tween traffic lights and stop lines stored in the map, without re-
lying on an error-prone back-projection. We evaluate the overall
system using selected scenarios in Karlsruhe and Sindelfingen,
demonstrating its readiness for deployment in real automated
vehicles.

Keywords Deep learning, autonomous driving, traffic lights,
detection, association

1 Einleitung

1.1 Stand der Technik

Ermöglicht durch die hochgenaue 3D Kartierung und Lokalisierung
haben automatisierte Fahrzeuge den für Sie relevanten Ampelzustand
bereits vor der Entwicklung von Deep-Learning-basierter Objektdetek-
toren erfolgreich durch die Rückprojektion und anschließender Klassi-
fizierung geschätzt [2]. Moderne Ansätze verwenden Deep-Learning-
Detektoren, trainiert auf speziellen Ampeldatensätzen [3]. Arbeiten die
das gesamte System und nicht nur die Wahrnehmung im Rahmen des
hochautomatisierten kartenbasierten [1] Fahrens entwerfen und evalu-
ieren gibt es in deutlich geringerem Umfang [2].

1.2 Ziel der Arbeit

Die Rückprojektion von in 3D kartierten Ampeln in das Kamerakoordi-
natensystem und anschließende Klassifikation des Ampelzustandes ist
sehr anfällig für Lokalisierungs-, Kalibrierungs- oder Kartierungsfeh-
ler. Der Beitrag dieser Arbeit ist der Entwurf und die Umsetzung eines
robusten Systems zur Freigabe von durch Ampeln geregelten Halteli-
nien.

2 Methode

Die Systemarchitektur wird in die Module Detektion, Klassifikation, 3D
Erweiterung, Assoziation, und Filterung der Sektionen 1-5 unterteilt. Der

196



Robuste Ampeldetektion und Haltelinienfreigabe

Detektion Ampelassoziation Haltelinien 
Filter

Tiefeninformation

Detektor

Klassifikator

Bildausschnitt Detektierte Ampeln
mit Zustand

Gefilterte 
Haltelinienfreigabe

Kartierte Ampeln

Daten

Module

Kombiniertes Modul

Bild

Abbildung 1: Die Systemarchitektur eines robusten Freigabesystems für Ampelhalteli-
nien.

Datenfluss von Eingabe-Bildern bis zu den gefilterten Haltelinienfrei-
gaben der HD-Karte wird in Abb. 1 in Relation zu den Funktionsmo-
dulen gesetzt um eine Meta Architektur zu bilden.

2.1 Ampeldetektion

Um die instabile Rückprojektion von kartierten Ampeln zur Bestim-
mung des Ampelzustands zu umgehen ist eine Ampeldetektor mit aus-
reichend hoher Genauigkeit und Trefferquote notwendig. Wir verwen-
den einen Faster-RCNN [4] Detektor mit einem ResNet50 [5] Rückgrad,
trainiert auf dem Microsoft COCO Datensatz [6], welcher Ampeln in
ausreichend hoher Anzahl annotiert hat. Dieser zweistufige Box De-
tektor liefert gute Detektionsergebnisse auch für kleine Objekte bei Bil-
dern mit Auflösungen von über 3000 Pixel Bildbreite. Die Inferenzzeit
beträgt 70 ms bei Nutzung von PyTorch [7] und einer RTX 6000 Ada
GPU. Die Boxen der Ampeldetektionen werden an den feingranula-
ren Typ- und Zustandsklassifikator innerhalb des kombinierten Mo-
duls Detektion im selben Prozess überreicht.

2.2 Klassifikation

Wir generieren Bildausschnitte für jede detektierte Ampel basierend
auf den Detektionen. Diese Bildausschnitte werden durch ein dop-
pelköpfigen Klassifikator in Zustand und Typ eingeordnet, entspre-
chend der pictogram und state Attribut-Klassen des DriveU Traffic Light
Dataset (DTLD) [8]. Der Klassifikator basiert auf einem modifizierten
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Abbildung 2: Die in Typ und Zustand klassifizierten Ampeldetektion. Die Farbe der Box
entspricht dem Ampelzustand. Unbekannte Zustände sind in pinker Farbe
gekennzeichnet. Am besten digital zu betrachten.

EfficientNet [9] Modell welches auf den Bildausschnitten der annotier-
ten Boxen des DTLD Datensatzes trainiert wurde.

Tabelle 1: Die durch den doppelköpfigen Klassifikator eingeordneten Zustand- und Typ-
klassen.

Ampelzustand Ampeltyp

off circle
red arrow left
yellow arrow right
red yellow arrow straight
green arrow straight left
unknown arrow straight right

tram
bicycle
pedestrian
pedestrian bicycle
unknown

2.3 Erweiterung in den 3D Raum

Die Boxen der Ampeldetektionen werden durch Tiefeninforma-
tionen in den 3D Raum erweitert. Die Tiefeninformationen
können dabei dynamisch von verschieden Sensorquellen und Tie-
fenschätzungsmethoden gewonnen werden. Wenn genügend Lidar-
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Abbildung 3: die Ampeln der HD-Karte werden mit den in den 3D Raum erweiterten
Detektionen assoziiert (türkise Verbindungslinie). Die Ampeln der HD-
Karte werden zur Visualisierung des Lokalisierungsfehlers in das Kame-
rabild rückprojiziert (Pink).

punkte in die Box der Detektion fallen, werden aus der Menge der
Lidarpunkte durch Gewichtung und Clustering ein skalarer Tiefen-
wert berechnet. Wenn die Box ausserhalb des Lidarstrahlbereichs liegt,
kann eine dichte Tiefenkarte geschätzt werden, basierend auf Stereo-
kameras oder Monokularen Kameras um den skalaren Tiefenwert der
Box zu bestimmen. Durch Ausnutzung der normierten Ampeldimen-
sionen haben sich heuristische Methoden zur Tiefenschätzung der Am-
pel als möglich erwiesen. Wenn fehlende Lidardaten und eine gerin-
ge Rechenleistung das System einschränken, kann eine objektbedingte
Tiefenschätzung direkt durch einen 2D Detektor gelernt werden [10].
In dem evaluierten System kommt ein 128 Zeilen Lidar zum Einsatz
mit einer heuristischen Tiefenschätzung für den vom Lidar nicht abge-
deckten extremen Nahbereich.

2.4 Assoziation

Die nun in den 3D Raum erweiterten Detektion werden den kartierten
Ampeln in einem bipartiten Graph zur Assoziation gegenübergestellt.
Wir formulieren das Assoziationsproblem als Minimum Cost Flow
Problem [11, 12]. Gegenüber der weiter verbreiteten Lösung mit dem
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Hungarian Algorithmus für optimale 1 zu 1 Assoziation, stellt das Mi-
nimum Cost Flow Problem eine Verallgemeinerung dar. Es ist hiermit
auch die Assoziation von meheren Detektionen zu einem Kartenele-
ment oder umgekehrt möglich. Dies erlaubt es Doppeldetektionen
robust abzufangen, welche die Ergebnisse bei herkömmlicher 1 zu 1
Assoziation stark beeinträchtigen. Weitere Vorteile sind die intuitive
Einführung eines Assozationskostenmaximums und die Möglichkeit,
beispielsweise die global besten 5 Assoziationen zu liefern,formuliert
in einem einzigen Optimierungsproblem.

Die Kostenfunktion berücksichtigt den Ampeltyp, die Dimensionen
der Ampel und ihre 3D Position. Der bipartite Graph wird, wie bei
dem Minimum Cost Flow Problem üblich, als Flussgraph einer Quelle
zu einer Senke dargestellt, der dabei die bipartiten Knoten der detek-
tierten und kartierten Ampeln passieren muss. Der Quellfluss kann als
die Anzahl der kartierten Ampeln in einem Suchradius, die Anzahl der
Detektionen oder das geringere von beiden gewählt werden, wobei wir
in unseren Versuchen letztere Option verwenden. Ein Kostenmaximum
filtert Assoziation mit zu hohen Kosten. Die Typen bicycle, pedestrian
aus Tabelle 1 und deren Kombination werden nicht mit Fahrzeugam-
peln der Karte assoziiert. Als tram klassifizierte Typen werden wei-
terhin verwendet, aber mit höheren Assozationskosten verbunden, da
abgeschaltete Fahrzeugampeln häufig fälschlicherweise dem Typ tram
zugeordnet werden.

2.5 Filter

Für jede kartierte Haltelinie werden die assozierten Zustände aller
der Linie zugehörigen Ampeln durch einen gleitenden Fensterfilter
geglättet. Dies sorgt für eine robuste Haltelinienfreigabe auch bei Ver-
deckungen oder instabilen Detektionen und Klassifizierungen durch
schlechte Sichtbedingungen. Wenn nicht genügend aktuelle green oder
off Zustände im Fenster vorhanden sind wird die Haltelinie geschlos-
sen. Durch den robusten Entwurf können auch instabile Wahrneh-
mungsergebnisse zu korrekten Haltelinienfreigaben führen, indem bei
unbekanntem und somit geschlossenem Freigabezustand das Fahrzeug
verzögernd in bessere Sichtverhältnisse rückt.
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3 Ergebnisse

Das System wurde im realen Strassenverkehr in Karlsruhe und Sindel-
fingen im automatisierten Testbetrieb eines Versuchsfahrzeugs evalu-
iert. Die präsentierte Versuchsreihe zeigt ein korrekte Freigabe in über
96% der Haltelinienüberfahrungen der Erprobungsstrecken, auch bei
Erprobungen in Regen oder der Dämmerung.

3.1 Klassifikationsergebnisse

Der gewählte Detektor erziehlt auf dem COCO Validierungsdatensatz
eine mAP von 46.7. Diese Detektionsperformance ist die Basis für alle
weiteren Teile des Systems. Der auf Boxendetektionen aufbauende dop-
pelköpfige Klassifikator wurde auf dem DTLD [8] Datensatz trainiert.
Die initialen Gewichte für das Modell wurden auf dem ImageNet-1k
Datensatz [13] vortrainiert. Die Hyperparameter des Modells und des
Trainingregimes sind in Tabelle 2 aufgeführt.

Parameters Value
Model Efficient Net [9]
Optimierer ADAM [14]
Kostenfunktion Kreuzentropie
Lernrate 1e−3

Epochen 60
Bildgröße 2242

Batch size 64
Tabelle 2: Die Hyperparameter des Klassifikators.

Mit diesen Parametern erreicht das Netzwerk eine Zustandsklassifi-
kator eine Genauigkeit von 96% auf dem DTLD Datensatz. Das Netz-
werk wurde besonders wegen der schnellen Trainingszeit und der effi-
ziente Inferenzzeit von unter 30ms ausgewählt.

3.2 Systemevaluation im Strassenverkehr

Wir befahren in einem automatisierten Versuchsfahrzeug eine wie in
Abb. 4 und Abb. 5 zu sehende kartierte Route in Karlsruhe und Sin-
delfingen innerhalb von vier Monaten mehrfach ab um die System-
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Abbildung 4: Die Evaluierte Route in Karlsruhe mit einer Länge von über 7 km. Luftbilder
von Bing Maps © 2024 Microsoft Corporation

funktion zu bewerten. Dabei zählen wir die korrekten Ampelhaltelini-
enzustände bei An- und Überfahrung der Haltelinie und die entspre-
chend inkorrekten Ampelhaltelinienzustände. Die Befahrungen haben
an sonnigen Tagen, an bewölkten Tagen und auch bei Dämmerung und
Starkregen stattgefunden. folgende Probleme haben dabei zu System-
fehlern geführt:

• Regen und schlechte Sicht sorgen für fehlende Detektionen von
insbesondere abgeschalteten (off ) Ampeln und damit zu einem
unbekannten Zustand der Ampeln oder falschen Assoziationen
mit leuchtenden Ampeln.

• hoch montierte, rot leuchtende Ampeln die teilweise wie in
Abb. 6 abgeschnitten werden, werden detektiert, jedoch als off
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Abbildung 5: Die Evaluierte Route in Sindelfingen mit einer Länge von über 4 km.Luftbilder
von Bing Maps © 2024 Microsoft Corporation

Abbildung 6: hoch montierte (links oben), rot leuchtende Ampeln die teilweise im Bild
abgeschnitten werden. Detektiert aber fälschlicherweise als off klassifiziert,
da keine rote Leuchte zu sehen ist. Die Haltelinie wird durch zwei Ampeln
geregelt, bei einer von zwei falsch klassifizierten Ampeln kann der Filter
falsche Ergebnisse liefern.
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klassifiziert.

• Ampeln die Aufgrund der Fahrzeugausrichtung nicht in das
Frontkamerabild fallen, können durch diese nicht beobachtet
werden.

Route korrekt inkorrekt # Haltelinien Präzision (%)
KA 155 5 160 96.88
SiFi 49 2 51 96.08
Gesamt 204 7 211 96.68

Tabelle 3: Anzahl korrekter und inkorrekter Haltelinienzustände entlang der Routen in
Karlsruhe (KA) und Sindelfingen (SiFi).

Eine falsche Ausrichtungen des Fahrzeugs kann durch Erweiterung
der Detektion und Assoziation auf das 360 Grad Ringkamera System
des Fahrzeugs ausgeglichen werden. Die Problematik abgeschnittener
Ampeln kann durch einen angepassten Sensoraufbau, wie vertikale
Orientierung der vorderen Kameras oder durch eine angepasste Hal-
tedistanz zu Ampeln und deren Haltelinien durch die Trajektorienpla-
nung gelöst werden. Den Einfluss der Trainingsdaten auf die Detekti-
onsrate bei schlechten Sichtbedingungen muss weiter untersucht wer-
den. Eine aktive Lernstrategie kann hier angewandt werden um fehlen-
de Bedingungen in den Trainingsdatensätzen auszugleichen.

4 Zusammenfassung

Der vorgeschlagene Entwurf und dessen Umsetzung eines robus-
ten Systems zur Freigabe von durch Ampeln geregelten Haltelini-
en konnte den Haltelinienzustand in 96% der 211 evaluierten Hal-
telinienüberfahrungen in Karlsruhe und Sindelfingen schätzen und
hat den automatisierten Betrieb eines Versuchsfahrzeugs ermöglicht.
Das System zeigt ein robustes Verhalten gegenüber Lokalisierungs-,
Kalibrierungs- oder Kartierungsfehlern und die verbleibenden beob-
achteten systematischen Schwachstellen des Systems wurden erörtert.
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AI scratching your car:
Using diffusion models for training data

generation in automotive damage detection
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Abstract Demand for reliable data remains a major issue in
training machine learning models in computer vision. Fre-
quently, datasets are of insufficient scale, imbalanced, not di-
verse, and of poor quality, potentially resulting in biased, inaccu-
rate, non-robust, and badly generalizing models. Moreover, real-
world training data can raise privacy concerns or be extremely
expensive to gather, necessitating alternative solutions.
This paper investigates the use of diffusion models for generative
data augmentation in semantic image segmentation, specifically
in the domain of vehicle damage detection. We propose a new
approach that utilizes an existing diffusion model ControlNet to
generate useful synthetic data depicting realistic vehicles with
damages such as scratches, rim damages, dents and etc. Based
on this we provide an analysis and show how such a generative
data augmentation may help in scenarios where training data is
scarce and of low quality.

Keywords Generative data augmentation, diffusion models,
ControlNet, damage detection

1 Introduction

A major challenge in Deep Learning for Computer Vision persisting is
the scarcity and quality of training data, which is crucial for training
robust and generalizing models. Acquiring a large quantity of detailed
and balanced images for training is often time-consuming, expensive,
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Conditional Control Sample 1 Sample 2

a)

b)

Figure 1: Edge detection maps with color patches as labels used as conditional control
input and respective generated images from our trained ControlNet. With a)
rim damages (yellow), b) deformations (blue), scratches (pink), and rim dam-
ages (yellow).

and sometimes impossible. This paper aims to address the challenge
of limited training data in the domain of vehicle damage detection by
investigating the use of ControlNet [1] for Generative Data Augmen-
tation (GDA) [2] in scarce and low-quality data scenarios. We trained
ControlNet based on StableDiffusion (SD) to generate synthetic images
of damaged cars from labeled edge-detection maps and use these gen-
erated images to train segmentation models for damage detection (see
fig. 1).

In automotive damage detection, semantic segmentation models may
be used to recognize various types of exterior damages on images
for efficient vehicle inspection. In practical industrial setting usually
images of passing cars are taken autonomously from multiple angles
by vehicle scanners and sent to cloud processing, to recognize several
damage classes. Due to the nature of the damages it is quite impracti-
cal, even impossible in some cases to collect such data manually.

Guiding this are the questions about (1) how synthetic training data
transfers to real-world evaluation, (2) its capacity to tackle challenges
of scarcity, quality, and bias in training data, and (3) the effect on model
generalizability. In the process, we evaluate parameters, design deci-
sions, and training data compositions in extensive ablation studies and
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experiments. The use of GDA has not been explored yet on this prob-
lem and may increase the potential of synthetic data in vehicle damage
detection scenarios.

2 Related Work

Data augmentation addresses challenges like data scarcity, lack of di-
versity, and overfitting by creating new label-preserving examples from
existing datasets [3]. Common augmentation approaches include im-
age manipulation, image erasing, image mixing, auto-augment, feature
augmentation, and neural style transfer [3]. GDA involves supplement-
ing training data with synthetic examples to improve model perfor-
mance, especially when only little training data is available and overfit-
ting is of concern [2]. Classic methods in computer vision include CGI
placement [4], model renderings [5–7], and degrading techniques [8].
Training data generation may help increase diversity, generalization ca-
pabilities, and robustness including to adversarial attacks.

Synthetic data from Denoising Diffusion Probabilistic Models
(DDPM) [9] prove to be effective for GDA in ImageNet [10] classifi-
cation [11], even achieving new state-of-the-art scores using supple-
mented real training data [12]. Synthetic data is also employed to fight
representation bias [13, 14] and privacy concerns [15] in medical im-
age data, with curation of synthetic data proving important [14]. For
segmentation model training, mostly Generative Adversarial Networks
(GANs) [16] have been employed to generate samples, using a decoder
to extract pixel-wise annotations from latent space [17, 18], and show-
ing performance gains mainly in out-of-domain data. Only recently
DDPMs have been explored for GDA, mostly following a similar ap-
proach, extracting labels from attention-maps [19] or training a ground-
ing model to align pixels with textual representations [20]. Apart from
their superior sample quality [21], DDPMs for GDA face challenges in-
cluding dataset memorization [22], diversity [23] and do not generally
outperform GANs from scratch [24].

ControlNet is a neural network structure aimed to further condition
the output of DDPMs [1]. ControlNet is a copy of an arbitrary neural
network block, running in parallel to the original network, incorpo-
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rating an encoding of additional control input and feeding its guided
output back to the main structure. During training of ControlNet, the
original model is locked to preserve its distilled knowledge, only the
parallel, duplicated blocks are trained for guidance. Using this archi-
tecture we can control DDPMs to exactly match input conditions, like
edge detection maps, human poses, or drawings, even with compara-
bly low training data available.

3 Methodology

The core part of this paper is the implementation of ControlNet gener-
ating pre-labeled data as GDA for segmentation model training for
damage detection. We consider four commonly occurring damage
classes: deformation, dent, rim damage and scratch.

In this section, we discuss how to guide and train ControlNet to
generate pre-labeled samples for semantic segmentation training.

Conditional Control We utilize ControlNet’s conditional control fea-
ture to generate precise images representing specific views of cars and
damage positions. Edge detection maps, identifying image boundaries,
serve as the control input. This approach offers a balance between de-
tailed output descriptions and the freedom to generate varied results
and has proven to work well with ControlNet [1].

For pre-labeled sampling, we need to include detailed label infor-
mation in the conditional control. We propose to include the labels
using color patches on the black-and-white edge detection maps (see
fig.1). This approach of labeling the conditional control to generate
pre-labeled training data has, to our knowledge, never been evaluated
before.

It has the following advantages: (1) Efficient placement and gen-
eration from existing labels, (2) effective guidance for ControlNet, (3)
easily differentiable by eye, (4) covering edge detection maps on rel-
evant positions, and (5) referenceable in text prompts by naming the
respective color.

Text prompts play a crucial role in text-to-image generation, func-
tioning as fundamental guidance, and imparting context and semantic
information to the generative process. When using ControlNet, the
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textual prompt introduces background information guiding the inter-
pretation of the conditional control. The integration of semantically
relevant textual information to image generation results in more pre-
cise and sophisticated outcomes, potentially improving its capability
for GDA.

Text prompts are generated following a specific prompting schema:
(1) The applying short description of the relevant damage: Rim damage
at the yellow marking, Scratch at the pink marking, Dent at the green mark-
ing, Deformation at the blue marking, (2) a background prompt to define
the image, context, and style: side of a car in a workshop, high quality,
detailed, and professional image.

Training Generative Model We train the generative model on the
available real-world training data, to generate damaged cars match-
ing the conditioning. Apart from its comparably low requirements
on training data, ControlNet training is exhibiting a sudden conver-
gence phenomenon [25], which we take into account asjusting the vir-
tual batch size using gradient accumulation to reach around 10k steps
during training.

Fine-Tuning In visual evaluation, samples of different damage classes
showed significant deviations in image quality, suggesting that the gen-
erative model might be improved by fine-tuning it on specific damage
classes. We filtered the 17k dataset to include only images containing
instances of the respective class and trained a generative model for each
one. We name these fine-tuned models (damage-class-) specific.

4 Experiments

Experiments have been split into (1) tuning and evaluating the image
generation process and (2) optimizing training of segmentation mod-
els from (partly) synthetic data. The used dataset includes 17k hand-
labeled images from a vehicle scanner containing from 1k to 9k in-
stances per damage class (see appendix).
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4.1 Image Sampling

Firstly, we conducted experiments to evaluate the quality of synthetic
images for different parameters and ablations. To measure improve-
ments, we employ an existing segmentation model, trained on the ex-
isting real17k dataset and evaluate it on our generated datasets. We
expect correlation between sample quality and the model’s ability to
recognize synthetic damages, measured by the evaluation F-Scores.

We evaluated the prompting schema defined in section 3: As the
models had been trained with the fixed schema, additional background
and negative text prompts, as well as no prompts at all resulted in
worse samples. This suggests that our prompts need to stick to the sce-
nario or have to be trained on a more diverse prompt landscape. We
also evaluated a pre-trained ControlNet from a large edge detection
dataset on damage generation, which was not able to extract meaning-
ful results from the guidance input, though.

4.2 Training Data Compositions

Evaluating a model trained from synthetic data on the real evaluation
dataset, a first approach showed a significant domain gap between real
and synthetic images, with F-Scores of less than 0.1. In the second
part of our experiments, we therefore evaluate (only partly) synthetic
training data compositions to train segmentation models based on their
downstream performance on real evaluation data.

Damage-Specific Training Data To evaluate samples from damage
specific generative models, we combined 2k samples for each class with
2k samples from a general model to a new dataset - specific10k - for seg-
mentation model training. Compared to 10k samples from the general
model, we seem to slightly improve F-Scores on average, reflecting the
the results from class-specific sample evaluation. Furthermore, we are
able to improve over real17k training data in the deformation class, rep-
resenting the most scarce and low-quality training data, increasing the
F-Score by ∼ .03 when using specific training data.

We also supplemented fake training data to real17k, instead of us-
ing it isolated, and employed a quality filter to curate the samples for
training. We used an IOU threshold of 25% per image from evaluating
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Figure 2: Left: F-Scores of segmentation models trained using different (synthetic)
datasets evaluated on real test data. Specific10k refers to samples from damage-
specific generative models, with real17k referring to the original training data as
reference. Filtered referencing to a quality threshold. Right: Generalization IOU
values of trained segmentation models (synthetic and limited training data) on
out-of-domain data in proportion to the same reference model.

the images by a pre-trained segmentation model as in image sampling
experiments (section 4.1). Using both supplementation and filtering
greatly reduced the synthetic-to-real-data gap, resulting in only .04 dif-
ference in macro average scores. This was primarily due to a further
improvement in deformation accuracy (see fig. 2), where we increased
the existing lead over real training data. Notably, we still decrease
overall performance by supplementing fake data to our training, espe-
cially in well-represented classes. This suggests a key difference in data
distribution regardless of the visual quality of samples, but we show
potential application and benefit of GDA for very scarce classes.

Comparison on limited data To find a threshold of data availability
where synthetic samples outperform real training data, we limit avail-
able real training data (to 25, 100, 250, and 1000 examples per class). As
expected, limiting the availability of real training data negatively im-
pacts overall segmentation performance. Decrease differs from class to
class, with scarce classes (dent and deformation) benefiting from more
balanced training data. Synthetic data outperforms very limited real
datasets (25 samples per class) across all damage classes and enhanced
datasets are competitive to larger real datasets (up to 1k), especially in
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rim damage.
In this damage detection scenario, the targeted threshold seems to

be between 25 and 100 images per class.

Generalizability To assess generalizability, we evaluate models
trained with GDA on a new dataset of 250 labeled samples from un-
seen locations and vehicle scanners (out-of-domain dataset) and com-
pare them to limited real datasets. Especially in the deformation class,
the GDA-trained model (filtered, specific, and supplemented samples)
significantly outperforms the reference model in the out-of-domain set-
ting by 25 % (see fig. 2). Even on average, filtered supplemented data
outperforms real training data, with even non-filtered outperforming
up to 1k real samples per class, and generated samples only still sig-
nificantly dominating over 100 real samples. Synthetic data improves
generalization performance compared to limited datasets, particularly
outperforming the original training data in scarce classes. This un-
derlines the potential of synthetic data especially when it comes to
generalization, where GDA shows more competitiveness than during
in-domain evaluation.

5 Discussion

We show how ControlNet with StableDiffusion can be effectively used
to generate pre-labeled, high-fidelity images for GDA in image seg-
mentation tasks. In the context of vehicle damage detection the model
demonstrates the ability to accurately place damages on vehicles.

Our experiments and ablation studies have revealed several key fac-
tors that can contribute to optimizing ControlNet generative perfor-
mance. Parameter tuning and input specifications significantly im-
proved sample fidelity. The ablation studies further provided valu-
able insights into the role of various techniques guiding and training
ControlNet: We discovered the necessity of fine-tuning and additional
text prompts, incorporating quality guidance. Finally, tuning damage-
class-specific generative models for specific damage classes is benefi-
cial, compared to a general multi-class generative-model. We showed
how our synthetic data can be effectively used to train segmentation
models for damage detection: Synthetic data alone can enhance seg-

214



AI scratching your car

mentation performance for very scarce classes and generally outper-
form limited real data when only a few samples (less than 50) are
available. Especially scarce classes can benefit from additional synthetic
training data. Furthermore, GDA can, with some limitations, be used
to increase the generalization capabilities of our segmentation models,
where supplemented fake data is outperforming the real dataset, espe-
cially limited to a few hundred examples only. Key findings from this
study align with prior research GDA.

As a key takeaway we note that filtered, specific generated datasets
supplementing real data can increase in-domain and especially out-
of-domain performance significantly for scarce data classes. However,
synthetic-only data remains no match to real large scale datasets, due
to a significant distribution shift between real and fake samples. This
is emphasized by a significant performance drop when GDA-trained
models are evaluated on real-world test data, indicating how synthetic
data may not fully capture the nuances and variations present in real-
world data. We show that GDA in this use-case is mostly not effective
for well represented data classes.

Future Work To guide effective utilization of GDA we suggest em-
ploying synthetic data when real data is very scarce. When using Con-
trolNet for GDA, stronger guidance and increased steps benefit sample
fidelity. Furthermore, analyzing the characteristics of synthetic com-
pared to real samples and employing inpainting for GDA might be
promising directions.
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6 Appendix

Labeled Edge Detection Sample 1 Sample 2

1

2

3

Figure 3: Sampled images of different damage classes from shown labeled edge detection
maps as conditional control input for ControlNet.

Segmentation Model We use a U-Net [26] from the segmentation
model library [27]. The reference model is trained on the real17k train-
ing data and does not represent the performance of similar models in
production. ControlNet version 1.0 with StableDiffusion 2.1 is trained
on the same T4 for 15 epochs on a virtual batch size of 32 for about
8,000 steps, taking around 100 hours per model. Virtual batch size is
reached by using gradient accumulation of 32.
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6.1 Datasets

The used dataset - real17k - contains 17467 manually labeled images
of cars with different damages (9234 rim damages, 8685 scratches, 1803
dents, 972 deformations). The test dataset contains 739 images of which
177 include rim damages, 168 scratches, 104 dents, and 11 deforma-
tions. The in-domain images are taken from an automatic vehicle scan-
ner at entry points to a workshop. They all come from the same loca-
tion, taken with the same equipment, lighting conditions, background,
and surroundings. The weather is similar with only a few images con-
taining rainy or snowy conditions.

The limited datasets real4*x with x ∈ 25, 100, 250, 1000 contain a ran-
dom sample from the real17k dataset. They are used to simulate a sce-
nario, where only a limited but balanced amount of data is available.

The out-of-domain dataset to test generalization contains 170 im-
ages, with some being from different locations and types of vehicle
scanners. The dataset contains 169 images of which 31 deformations,
32 dents, 0 include rim damages, and 128 scratches.

Synthetic Datasets The specific10k dataset of generated synthetic
data contains 2k images per class generated from class-specific genera-
tive models and 2k images from a general model. The filtered dataset
contains all images from specific10k, that passed a quality threshold
established as an IOU greater than .25 in evaluation using a real-world
pre-trained segmentation model: Deformation 339 (from 2940 samples
containing instances in total), Dent 392 (3095), Rim Damage 876 (3804)
& Scratch 490 (5164).
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Data Augmentation for Skin Disease Classification: Impact Across Original
Medical Datasets to Fully Synthetic Images,” Jan. 2023, publication Title:
arXiv e-prints ADS Bibcode: 2023arXiv230104802A. [Online]. Available:
https://ui.adsabs.harvard.edu/abs/2023arXiv230104802A

15. S. Ghalebikesabi, L. Berrada, S. Gowal, I. Ktena, R. Stanforth, J. Hayes,
S. De, S. L. Smith, O. Wiles, and B. Balle, “Differentially Private Diffusion
Models Generate Useful Synthetic Images,” Feb. 2023, arXiv:2302.13861
[cs, stat]. [Online]. Available: http://arxiv.org/abs/2302.13861

16. I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proceedings of the 27th International Conference on Neural Information Process-
ing Systems - Volume 2, ser. NIPS’14. Cambridge, MA, USA: MIT Press,
Dec. 2014, pp. 2672–2680.

17. Y. Zhang, H. Ling, J. Gao, K. Yin, J.-F. Lafleche, A. Barriuso, A. Torralba,
and S. Fidler, “DatasetGAN: Efficient Labeled Data Factory with Minimal
Human Effort,” in 2021 IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), Jun. 2021, pp. 10 140–10 150, iSSN: 2575-7075.

18. D. Li, H. Ling, S. W. Kim, K. Kreis, S. Fidler, and A. Torralba,
“BigDatasetGAN: Synthesizing ImageNet with Pixel-wise Annotations,”
in 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). New Orleans, LA, USA: IEEE, Jun. 2022, pp. 21 298–21 308.
[Online]. Available: https://ieeexplore.ieee.org/document/9878775/

19. W. Wu, Y. Zhao, M. Z. Shou, H. Zhou, and C. Shen, “DiffuMask:
Synthesizing Images with Pixel-level Annotations for Semantic Segmenta-
tion Using Diffusion Models,” Mar. 2023, arXiv:2303.11681 [cs]. [Online].
Available: http://arxiv.org/abs/2303.11681

20. Z. Li, Q. Zhou, X. Zhang, Y. Zhang, Y. Wang, and W. Xie, “Guiding
Text-to-Image Diffusion Model Towards Grounded Generation,” Jan.
2023, arXiv:2301.05221 [cs]. [Online]. Available: http://arxiv.org/abs/
2301.05221

21. P. Dhariwal and A. Nichol, “Diffusion Models Beat GANs on
Image Synthesis,” in Advances in Neural Information Processing Systems,

219



J. Strietzel et al.

M. Ranzato, A. Beygelzimer, Y. Dauphin, P. S. Liang, and J. W. Vaughan,
Eds., vol. 34. Curran Associates, Inc., 2021, pp. 8780–8794. [Online].
Available: https://proceedings.neurips.cc/paper files/paper/2021/file/
49ad23d1ec9fa4bd8d77d02681df5cfa-Paper.pdf

22. M. U. Akbar, W. Wang, and A. Eklund, “Beware of diffusion models
for synthesizing medical images – A comparison with GANs in terms of
memorizing brain tumor images,” May 2023, arXiv:2305.07644 [cs, eess].
[Online]. Available: http://arxiv.org/abs/2305.07644

23. M. F. Burg, F. Wenzel, D. Zietlow, M. Horn, O. Makansi, F. Locatello,
and C. Russell, “A data augmentation perspective on diffusion models
and retrieval,” Apr. 2023, arXiv:2304.10253 [cs]. [Online]. Available:
http://arxiv.org/abs/2304.10253

24. M. U. Akbar, M. Larsson, and A. Eklund, “Brain tumor segmentation
using synthetic MR images – A comparison of GANs and diffusion
models,” Jun. 2023, arXiv:2306.02986 [cs, eess]. [Online]. Available:
http://arxiv.org/abs/2306.02986

25. L. Zhang and M. Agrawala, “ControlNet/docs/train.md at main
· lllyasviel/ControlNet.” [Online]. Available: https://github.com/
lllyasviel/ControlNet/blob/main/docs/train.md

26. O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Net-
works for Biomedical Image Segmentation,” in Medical Image Computing
and Computer-Assisted Intervention – MICCAI 2015, ser. Lecture Notes in
Computer Science, N. Navab, J. Hornegger, W. M. Wells, and A. F. Frangi,
Eds. Cham: Springer International Publishing, 2015, pp. 234–241.

27. P. Iakubovskii, “Segmentation Models,” 2019, publication Title: GitHub
repository. [Online]. Available: https://github.com/qubvel/segmentation
models

220



Image stitching using gradual image warping
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Abstract To improve object recognition and tracking in au-
tonomous driving, we first create a seamless panorama. Object
recognition can benefit from image stitching, especially at the
borders of individual images when an object is only partially
visible. This also prevents duplicate detection of the same ob-
jects in overlapping image areas that are to be filtered for track-
ing. In this process, a homography is determined for the over-
lapping image area, whereby the entire image is transformed
using classical image stitching methods. As a result, the defor-
mations propagate to further images that are to be added to the
panorama. To avoid this problem, we integrated a step-by-step
image warping approach into our existing stitching pipeline.
This ensures that after attaching one image to another, the out-
ermost right and left borders of the panorama are no longer de-
formed. Furthermore, the panorama width remains constant re-
gardless of the calculated homography. We have evaluated our
approach on the nuScenes dataset and the Waymo Open Dataset
for perception. In addition to a qualitative assessment, we eval-
uate the resulting panoramas in terms of the deformation of the
individual images as well as the deformation of labeled object
instances.

Keywords Autonomous driving, panorama, image stitching,
homography, warping, deformation

Acknowledgements This research is accomplished within the
project UNICARagil (FKZ 16EMO0287). We acknowledge the
financial support for the project by the Federal Ministry of Edu-
cation and Research of Germany (BMBF).

221



C. Kinzig et al.

1 Introduction

The UNICARagil [1,2] project, in which four autonomous vehicles were
built entirely from scratch, investigated how and whether camera im-
ages should be stitched together to form a panorama before object
recognition. One of the resulting articles [3] shows that object recogni-
tion performs just as well on panoramic images as on individual im-
ages without the need for retraining. In addition, in another article [4]
we demonstrate that object detection on panoramic images improves
compared to single images after retraining in this domain.

To stitch two images together, in a simple procedure, a homography
is determined between pairs of feature matches in the overlapping im-
age area to transform one of the images. However, this procedure for
stitching images has the disadvantage that the resulting deformations
increase with each additional images added to the panorama. For this
reason, we have implemented a gradual image warping method based
on the approach in [5]. Our main contribution is the elimination of
deformations at the outermost right and left borders of the panorama,
allowing any number of images to be stitched together horizontally. In
this way, the transformations of all individual images can be calculated
independently of each other. At the same time, the resulting panorama
has a constant image width, which makes it more suitable as training
data, as less zero padding needs to be applied. Furthermore, we de-
cided to realize the local alignment not as a grid but as vertical image
slices in order to reduce the computational effort.

2 Related Work

In the work by Zaragoza et al. in [6], a global homography between
two images is first estimated, then equally sized grid cells in the image
are transformed by local homographies to improve the alignment of the
images to each other. In contrast, Chang et al. introduced a three-step
process to preserve perspective by combining transformations from
homography and similarity transformation in [7]. Based on this, Xi-
ang et al. achieve smoother transitions by using weighted combinations
of homography and similarity transformation in [5]. Chen and Chuang
specifically aim for natural image stitching in [8] by using APAP [6] in
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combination with a global similarity transformation to adjust scale and
rotation for each image to be stitched. In [9], Zhang et al. developed a
method specifically designed to return a rectangular panoramic image
to reduce deformations in the images.

3 Implementation

The presented approach extends our image stitching method presented
in [3] and [4]. Our image stitching pipeline is shown in Fig 1, with
the modifications highlighted in blue. Thus, the deformation of the
panorama towards the outermost right and left borders is gradually
eliminated. The core components for gradual image warping can be
divided into three consecutive steps, where first a homography in over-
lapping image areas is determined. In the second step, we divide the
camera image into vertical sections and determine a transformation for
each part of the image from the resulting homography. In the last step,
we apply the resulting transformations to each image section and com-
bine them to create a panorama.

3.1 Homography Estimation

The homography between two individual images p and q is determined
by features in the overlapping image area. Consequently, the transfor-
mation of a feature point in a camera image p into another image q is
given by (1).

H




up
vp
1


 = s




uq
vq
1


 , s ∈ R (1)

H stands for the homography and s for the scaling factor. As in [3],
we do not perform feature extraction as well as subsequent feature
matching. Instead, we use depth information as in a LiDAR point
cloud, which we project into the overlapping image areas. Compared to
image features, however, we have the disadvantage that an error occurs
when projecting into cameras due to the parallax and the rotation of
the LiDAR. This error can be reduced if the cameras are triggered as
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soon as the LiDAR points in their direction. The Waymo Open Dataset
for perception [10] also provides synchronized LiDAR data regarding
the movement of the ego vehicle and the movement of other traffic
participants. To calculate the homography, we use a method based on
the RANSAC algorithm. In addition, learned methods as in [11] to
determine a homography between two images would also be possible.

Raw Images Image Preprocessing

Overlapping Image
Area Estimation

Homography
Estimation

Image Warping

Weighted Transformations
Calculation

Gradual
Image Warping

Seam Carving

Vignetting and
Exposure Correction Panoramic View

Figure 1: Workflow of our modifications shown in blue to the image stitching pipeline
in [3] and [4] by integrating gradual image warping. Consequently, the image
warping module shown in red is replaced.

3.2 Weighted Transformations Calculation

Using the homography determined in 3.1, the respective overlapping
area is transformed. The opposite overlapping image area adjacent to
the next camera image is not transformed. If there is no further camera
image to be stitched, we assume a quarter of the image width that
is not transformed. The remaining image area in between is warped
gradually. First, a configurable parameter k, is used to define how
many vertical image sections the center image area is divided into. This
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determines how well the individual sections merge into one another.
Similar to the approach in [5], we determine weighted transformations
for each image section from two individual transformations, as shown
in (2).

T = αH + βI3 (2)

However, we use the homography H determined in 3.1 and the iden-
tity matrix I3. For the first vertical image section adjacent to the over-
lapping image area associated with the homography, α = 1 − 1

k+1 and
β = 1

k+1 . As the horizontal distance to the overlapping area increases,
β gradually increases and α gradually decreases, so that the last vertical
image section matches the overlapping area at the far end of the im-
age. This allows any number of camera images to be stitched together
horizontally without the deformations in the panorama becoming pro-
gressively larger towards the outside. In addition, the identity means
that smoother video sequences can be created from the panoramas with
a constant image width.

3.3 Gradual Image Warping

Once the transformation matrices have been determined for each indi-
vidual image section, the image can be warped gradually. However, the
transformations are still in image coordinates (u, v). In order to pro-
cess smaller amounts of data and thus improve the runtime, we first
transform each matrix T into the coordinate system of the respective
image section (ui, vi) and denote the resulting transformation matrix
as Ti. The transformation into the vertical image sections can be de-
scribed by a translation ∆u. Finally, each transformation Ti is applied
to the corresponding image section. These are subsequently projected
onto the overall panoramic image.

4 Evaluation

First, we qualitatively compare our approach of gradual image warp-
ing with our previous approach as baseline described in [3] and [4].
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Furthermore, we evaluate our approach also in comparison to our pre-
vious method using a quantitative measure of image deformation. In
addition, we separately compare the deformations of labeled object
instances. The two publicly available datasets nuScenes [12] and the
Waymo Open Dataset for perception [10] are used in our evaluation.

(a) Individual images from which the panorama is composed using a
spherical camera model.

(b) Image stitching using the method in [3] and [4].

(c) Image stitching with gradual image warping.

Figure 2: Comparison on image stitching using data from the nuScenes dataset [12].

4.1 Qualitative Comparison

To give an first impression of how our method performs, we use the
two panoramas in Fig. 2 and 3 to show the comparison with the use
of a homography per overlapping area. Fig. 2 compares both methods
using an example from the nuScenes dataset [12] whereas Fig. 3 uses
data from the Waymo Open Dataset for perception [10]. Both figures
show that gradual image warping can better compensate for strong de-
formations. This applies in particular to the images from the outermost
cameras. The curvature at the top and bottom of the images is due to
the use of a spherical camera model, which can be seen in Fig. 2(a)
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and 3(a). Particularly with video sequences, strong deformations are
noticeable as jumps in the panoramas, as these do not remain constant.
Gradual image warping ensures that the deformations are substantially
smaller and more consistent. This could improve object tracking, espe-
cially if it is assumed that a detected object is in a similar position in
the subsequent panoramic image.

(a) Individual images from which the panorama is composed using a
spherical camera model.

(b) Image stitching using the method in [3] and [4].

(c) Image stitching with gradual image warping.

Figure 3: Comparison on image stitching using data from the Waymo Open Dataset [10].

4.2 Image Deformation Evaluation

To quantitatively evaluate gradual image warping, we determine the
deformations in the warped images compared to the original images.
In this case, the term original image refers to images that have already
been processed but not warped for image stitching. Pre-processing
consists of compensating for lens distortion and converting the image
from a pinhole camera model to a spherical camera model.

To measure the deformation, we analyze points pi evenly distributed
over the images with a distance of 20 pixels. Then these points are
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deformed to pwarped,i by image warping either with a single homogra-
phy or with gradual image warping. First, we determine the average
displacement d between all N points in the deformed image and those
in the original image, since a constant translation has no influence on
the deformation. Accordingly, the average displacement d is calculated
separately for the directions u and v in (3).

d =

(
du
dv

)
=

1
N

N

∑
i=1

pi − pwarped,i (3)

We then calculate the displacement between the points in the origi-
nal images and in the warped images, taking into account the average
displacement. This results in our error metric Ei in (4).

Ei =

(
Eu,i
Ev,i

)
=
∣∣∣pi − pwarped,i − d

∣∣∣ (4)

The evaluation of the image deformation is performed on 10 se-
quences of the nuScenes dataset [12] and on 6 sequences of the Waymo
Open Dataset for perception [10]. This results in an evaluation of
404 panorama images for nuScenes and 551 for Waymo. The results
are displayed as two-dimensional box plots in Fig. 4 for the nuScenes
dataset [12] and in Fig. 5 for Waymo Open Dataset for perception [10].
Both graphs clearly show that the deformations for gradual image
warping are much smaller compared to the use of a single homog-
raphy. The difference in deformation is most noticeable in the u di-
rection. The smaller parallax in the Waymo Open Dataset results in
significantly reduced warping on average. However, the outliers to
the maximum are also higher in this case. The reason for this are the
motion-compensated lidar point clouds. With high ego velocity or fast
moving objects in the overlapping image area, significantly fewer point
correspondences are available to calculate a homography.

4.3 Object Instances Deformation Evaluation

Especially in object recognition with machine learning, it is crucial that
the results obtained on datasets can also be reproduced in the real
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Figure 4: Image deformation analysis over 10 sequences of the nuScenes dataset [12]. 2D
box plot of the deformations of the individual images in u- and v-direction in
pixels with the method in [3] and [4] (red) compared to gradual image warping
in (blue).
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Figure 5: Image deformation analysis over 20 sequences of the Waymo Open Dataset for
perception [10]. 2D box plot of the deformations of the individual images in
u- and v-direction in pixels with the method in [3] and [4] (red) compared to
gradual image warping in (blue).
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Figure 6: Deformation analysis of the object instances over 10 sequences of the nuScenes
dataset [12]. 2D box plot of the deformations of the object bounding boxes in
u- and v-direction in pixels with the method in [3] and [4] (red) compared to
gradual image warping in (blue).
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Figure 7: Deformation analysis of the object instances over 20 sequences of the Waymo
Open Dataset for perception [10]. 2D box plot of the deformations of the object
bounding boxes in u- and v-direction in pixels with the method in [3] and [4]
(red) compared to gradual image warping in (blue).
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world. Object recognition based on panoramic images has already
been investigated in [4], where the network used was pre-trained on
raw camera images. Consequently, it is not desirable for the objects
in the panoramas to be deformed. For this reason, we run the same
evaluation as in section 4.2 for the deformation of all object instances
separately. In this case, an average displacement is determined for each
object instance and not for each individual image. In the nuScenes
dataset [12], the 2D bounding boxes are evaluated with the object
classes car, truck, bus, construction, cycle, trailer, pedestrian and cyclist. In
the Waymo Open Dataset for perception [10], we evaluate the panoptic
labels with the classes car, truck, bus, other large object, trailer, pedestrian,
pedestrian object, bicycle, motorcycle, cyclist, motorcyclist. The results are
shown analogously as two-dimensional box plots for both evaluated
datasets in Fig. 6 and 7. As in 4.2, a comparable reduction in image
deformations due to gradual image warping can be recognized for the
object instances.

5 Conclusion

In this article, we presented a method for improved image stitching
using gradual image warping in autonomous driving. To achieve this,
the images are warped in vertical sections to gradually compensate
for the initial deformation caused by the estimated homography. In
the evaluation, we were able to show successfully that the deforma-
tions in the panoramic images are significantly compensated for with
our approach. We demonstrated this effect not only qualitatively but
also quantitatively by evaluating deformations in 955 images from the
nuScenes dataset [12] and the Waymo Open Dataset for perception [10].
Since our approach is primarily designed for improving object detec-
tion, we specifically measured deformations of object instances labeled
in the data. Also in this case, gradual image warping shows clearly re-
duced image deformations. As a positive side effect, the image width of
the resulting panoramas now remains constant. In upcoming research,
we plan to investigate object detection capabilities on panoramic im-
ages created with gradual image warping.
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Bildverarbeitung ist definitionsgemäß die Wissenschaft von der Verarbeitung 
von Bildern. Damit verknüpft das Fachgebiet die Sensorik von Kameras  
– bildgebender Sensorik – mit der Verarbeitung der aufgenommenen Sen-
sordaten – den Bildern. Aus dieser Verknüpfung resultiert der besondere 
Reiz dieser Disziplin. Bildern begegnet der Mensch ständig, schon weil das 
Sehen die wichtigste Informationsquelle als Handlungsgrundlage für den 
Menschen bildet.
Der vorliegende Tagungsband des „Forums Bildverarbeitung“, das am 21. 
und 22. November 2024 in Karlsruhe als gemeinsame Veranstaltung des 
Instituts für Industrielle Informationstechnik am KIT und des Fraunhofer-
Instituts für Optronik, Systemtechnik und Bildauswertung stattfand, enthält 
die schriftlichen Aufsätze der eingegangenen Beiträge. Darin wird über 
aktuelle Trends und Lösungen der Bildverarbeitung in den methodischen 
Schwerpunkten Messtechnische Anwendungen, Robotik, Bildgewinnung, 
Bildverarbeitung, Unsicherheiten bei maschinellem Lernen, Wahrnehmung 
von Personen, Künstliche Intelligenz als Mess- und Prüfmittel, Fahrzeuge 
berichtet.
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