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The commissioning and operation of future large-scale scientific experiments will challenge current tuning and
control methods. Reinforcement learning (RL) algorithms are a promising solution thanks to their capability of
autonomously tackling a control problem based on a task parameterized by a reward function. The conventionally
utilized machine learning (ML) libraries are not intended for microsecond latency applications, as they mostly
optimize for throughput performance. On the other hand, most of the programmable logic implementations are
meant for computation acceleration, not being intended to work in a real-time environment. To overcome these
limitations of current implementations, RL needs to be deployed on-the-edge, i.e. on to the device gathering
the training data. In this paper we present the design and deployment of an experience accumulator system in a
particle accelerator. In this system deep-RL algorithms run using hardware acceleration and act within a few
microseconds, enabling the use of RL for control of ultra-fast phenomena. The training is performed offline to
reduce the number of operations carried out on the acceleration hardware. The proposed architecture was tested
in real experimental conditions at the Karlsruhe research accelerator (KARA), serving also as a synchrotron
light source, where the system was used to control induced horizontal betatron oscillations in real-time. The
results showed a performance comparable to the commercial feedback system available at the accelerator, proving
the viability and potential of this approach. Due to the self-learning and reconfiguration capability of this
implementation, its seamless application to other control problems is possible. Applications range from particle
accelerators to large-scale research and industrial facilities.

I. INTRODUCTION

The tuning of future large-scale scientific experiments will
pose great challenges. Due to the sheer amount of parameters
that require adjustment, manual tuning will be an extremely
demanding task. This will in turn impact the budget of large
scientific endeavors as the resource requirements for commis-
sioning and operation of the facility will potentially become
unbearable. Automatic algorithms capable of finding an op-
timum in a parameter space, also known as optimizers, are a
possible solution and have already been successfully applied
to particle accelerators [1–3], with some attempts of creating
standardized interfaces and algorithm libraries [4]. Even for
these more refined techniques, the increase in the number of
variables involved in the task will reduce their performance, a
phenomenon known as the curse of dimensionality.

One of the possible solutions is the use of data-driven
machine learning (ML) techniques [5–7]. In the case of control
problems, a promising approach is the use of reinforcement
learning (RL), a paradigm where an agent is trained to learn
a policy in order to maximize a reward function, encoding a
control goal, acting on an environment based on a set of ob-
servations. RL algorithms have already been proven to be a
powerful tool through their application to control problems in
several large scale facilities [8–14].

Typically, a controller must operate within time scales com-
parable to those of the controlled dynamics. The fact that the
evaluation of a control policy needs to be performed in a sched-
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uled time frame is by definition a real-time constraint [15]. Fail-
ure to meet this kind of requirement means the controller could
be partially effective or even completely ineffective. As such,
when the inference time reaches the microsecond timescale,
the use of conventional CPUs becomes challenging, as the
several layers of abstraction and caching between the applica-
tion and hardware limit the achievable latency performance.
Specifically, the latency achieved can not only be higher than
the requirements, but its high variance could produce spurious,
unpredictable violations of these constraints. Different kinds
of computing hardware can circumvent these limitations by
combining a higher degree of parallelization with a system of
lower intrinsic overhead. Modern heterogeneous computing
platforms are a good candidate for this, combining conven-
tional CPUs with a field programmable gate array (FPGA) and
an artificial intelligence (AI) accelerator. An FPGA allows the
definition of custom programmable digital logic that can reach
levels of parallelism that are constrained only by the number
of programmable cells available on the device. Moreover, they
allow precise control over the timing of each operation. The AI
accelerator allows the efficient execution of more specific tasks
(e.g. floating point vector multiplication), for which FPGAs are
less suitable. These three components share memory, allowing
a customized and optimized data-flow architecture.

One of the main issues that prevent the application of RL
to many large-scale facilities is their sample efficiency, the
amount of interaction with an environment required to fully
train an agent. This means that the data necessary to train a suc-
cessful agent is usually difficult to obtain in the real world due
to their low repetition rates [16]. This issue can be mitigated by
pre-training on a simulation, with the risk that the agent might
perform sub-optimally in case the simulation differs signifi-
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cantly from the real world [9]. A different approach is to use
more sample efficient algorithms, but those tend to complicate
the tuning of the hyper-parameters [12]. The benefit of bring-
ing RL to facilities operating on microsecond timescales, like
numerous synchrotron light sources, MHz-rate free electron
lasers and circular colliders, is that sufficient training data can
be generated in real time, bypassing the need of training in
simulation. Conversely, the constraints on the time taken to
select an action require a more careful implementation of the
agent.

In this work, we developed a closed-loop RL feedback sys-
tem that was successfully deployed and commissioned at the
Karlsruhe research accelerator (KARA), an accelerator test fa-
cility and synchrotron light source. This novel scheme enables
direct RL online training in the microsecond time domain, set-
ting the precedent as the first implementation of its kind in
particle accelerators.

II. REAL-TIME REINFORCEMENT LEARNING

In RL the environment is modeled as a Markov decision
process (MDP), a 4-tuple (S,A,P,R) where S is the state space,
A is the action space, P are the transition dynamics, and R
is the set of all rewards. The environment provides a scalar
reward value R that encodes the goal of the control problem.
The goal of an RL agent is to maximize the expected return G,
defined as the cumulative reward in all future steps

Gt =
∞

∑
k=0

γ
kRt+k+1, (1)

where γ ∈ [0,1] is the discount factor, used to bound the cumu-
lative reward in infinite horizon problems, extending the MDP
to (S,A,P,R,γ).

This framework models decision-making in partially stochas-
tic control processes and incorporates the Markov property,
where the conditional probability distribution P of future states
depends only on the present state.

Often the full state of the environment is not directly accessi-
ble and needs to be constructed from observations, giving place
to partially observable Markov decision process (POMDP) de-
fined as (S,A,P,R,γ,O,ε), where O is the space of possible
observations and ε the probability of transitioning to a new
state st when ot is observed ε = P(st |ot).

Many modern RL algorithms are based on an actor-critic
architecture, where an actor function, responsible for choos-
ing the action, is paired with a critic function, estimating the
expected return of a given state. The critic can either imple-
ment a value function vπ : S→ R or action-value function
Qπ : S×A→ R, depending on whether it also takes into ac-
count the action that is going to be taken or not [17]. In modern
deep-RL both actor and critic are approximated with a neural
network (NN).

It is worth noticing that, given the interaction with an ac-
tive environment, most non-simulated RL agents are subject
to real-time constraints. Depending on the time scale of the

environment, this requirement could be addressed by simply
allocating enough computing power to the agent. When the
latency requirements become more demanding, the compound
overhead of transferring data and evaluating the agent can man-
date more adaptable computing architectures like FPGAs or
heterogeneous platforms, in order to better control the schedul-
ing of the data-processing pipeline.

A. Related work: RL on FPGA

A brief outline of the currently available implementations
of RL on FPGA is described below. A more comprehensive
review can be found in reference [18]. There are two main
classes of implementations, depending on the nature of the
value function and policy. Several works store the action-value
function in a tabular form, and based on this choose the ac-
tion with the maximum expected cumulative reward for each
state [19–23]. The main issue of this kind of system is that
its resource usage grows exponentially with the size of the
observation and action space, while being not directly appli-
cable to environments with continuous action and observation
spaces. These kind of environments are widely used in particle
accelerator applications and better fit the problem of this work.

A different approach is deep-RL, where the value function
and policies are approximated with a NN [24–30]. This ap-
proach scales better with increasing size of the observation
and action vector, but tends to have a more complex training
routine. These implementations lack the flexibility of choosing
different training algorithms and changing the NN topology
during operation. Distinct algorithms and their respective hy-
perparameter selections might exhibit different performances
based on the problem at hand. Therefore, the capability of flexi-
bly choosing these components greatly reduces the deployment
effort and expedites the development process. Moreover, the
policy NN implementations shown in the references [19–30]
do not have real-time applications in mind, and as such the
application to real-time particle accelerator controls would be
limited.

For these reasons, we have chosen to implement a deep-RL
system capable of performing such dynamic reconfiguration
and naturally fulfilling real-time constraints.

B. Experience accumulator architecture

In this study, the system is implemented by employing an
experience accumulator architecture. Depending on the com-
plexity of the algorithm, the training processes in modern
deep-RL can take a large amount of time compared to the time
required for inference of the policy. As such, it is not possible
to perform them at a microsecond level timescale. A possible
solution is to only implement a general real-time policy π(edge)

for inference, using cutting-edge low-latency computing plat-
forms. During application time, the real-time policy network
only needs to perform forward passes, i.e. predicting the next
action ai based on the observed signal oi. The interactions of
the policy NN with the environment are recorded, providing
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state-action-reward tuples {(si,ai,ri)i=1,...,T}, that can be used
for asynchronously training an emulated copy of the agent
π(CPU)← π(edge) on conventional computing platforms, such
as a CPU. As such it is possible to achieve a greater degree of
flexibility and abstraction (Figure 1). This comes at the expense
of higher overhead during training, while still maintaining low
inference latency. For the proximal policy optimization (PPO)
algorithm agent used in this work, only the actor NN is im-
plemented on hardware, while the critic can be evaluated at
training time.

A similar approach is presented in a previous work [31], de-
spite applying it to a system with less stringent latency require-
ment, thus not requiring heterogeneous computing platforms
but an off-the-shelf x86 processor. Additionally, in this study,
we further extend the capability of the experience accumulator
architecture by introducing a post-hoc reward definition. In
the definition of RL control problems, the reward is provided
on a step-by-step basis by the environment. In the case of a
high-speed feedback system, interacting with a real-time en-
vironment, it would then become necessary to perform this
computation at pace with the environment. The need for a real-
time reward function implementation increases the complexity
of the system, as it needs to be implemented in the FPGA or
AI accelerator, requiring specialized expertise.

In the experience accumulator architecture, a further simpli-
fication is possible. The rewards obtained by an agent are only
necessary during its training. If the reward is a function only of
the observation and action vectors, it is possible to skip its real-
time computation and perform it at training time based on the
stored observation-action tuples. This Training Time Reward
Definition technique reduces development efforts as it allows
the function to be implemented on a CPU, where the expertise
required is more commonly available. In the implementation
used in this work, the reward function is developed in Python
and specified by the experimenter before starting the training,
in this way simplifying the reward engineering.
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FIG. 1. Schematic drawing of the experience accumulator architecture
showing the partition between real-time or inference domain (on the
right) and training-time domain (on the left) on a heterogeneous
platform.

III. CLOSING THE RL LOOP: THE KINGFISHER SYSTEM

In order to simplify the deployment of RL policies in an
experience accumulator architecture, all the FPGA infrastruc-
ture necessary for interfacing with the particle accelerator and
storing the agent experience were implemented into an AMD-
Xilinx Extensible Platform called KINGFISHER [32]. This
approach has the effect of decoupling the low-level operations
allowing the development of the policy and feature extraction
algorithm in high-level programming languages, thanks to the
aid of tools like high level synthesis (HLS).

The device of choice is the AMD-Xilinx Versal
VCK190 [33], a novel heterogeneous computing platform com-
prising a FPGA and ARM processor in a system-on-chip archi-
tecture, with an AI engine (AIE) array capable of accelerating
multiplication intensive tasks, as, for instance, NN inference.

The KINGFISHER platform receives data via a 40Gbps
Aurora 64b/66b link [34]. This data can be used to create the
observation data-stream. The action data-stream is used to con-
trol a digital to analog converter (DAC) to produce an analog
control signal. For the purpose of future experiments special
digital output interfaces are also available. The observation-
action data-streams are written to the DDR memory, without
active intervention of the CPU, by means of a direct memory
access (DMA) block implemented in the FPGA. The ARM
processor in the Versal core then copies the data in the DDR
to a file that is made available over the network. Moreover, a
control server makes the parameters of the system available
via the EPICS [35] control system. A trigger input is available
to start the agent action at a precise time. Moreover, a counter
allows the interaction with the environment only for a limited
number of steps.

In order to guide the exploration of RL algorithms, a stochas-
tic component is usually needed. Thus an intellectual prop-
erty (IP) core implementing the permuted congruential gen-
erator (PCG) algorithm [36] produces a continuous stream of
32-bit floating pseudorandom-numbers uniformly distributed
between 0 and 1 at a rate of 125MSps.

For the control of the horizontal betatron oscillation (HBO)
the specific deployment configuration is shown in Figure 2. To
sample the fast-peaked signals with high MHz rates commonly
generated by diagnostic instrumentation at accelerator-based
light sources like synchrotrons, the KIT-developed KAPTURE
system [37] is utilized. This system functions as a digitizer,
enabling the sampling of four channels at a frequency equal to
the accelerator’s radio frequency (RF), with a selectable sam-
pling interval down to 3ps. The system utilizes an Highflex
card with the capability of performing transfers directly to a
GPU with the GPUDirect technology [38]. This setup provides
bunch-by-bunch and turn-by-turn data. In order to obtain the
bunch position relevant for the control of the HBO, this infras-
tructure is used to sample the horizontal position signal from
an analog Dimtel BPMH-20-2G hybrid [39] combining the
four signals from a button beam position monitor (BPM). The
action analog signal is fed into a broadband amplifier and then
applied to a stripline kicker used to influence the beam.
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FIG. 2. Drawing of the hardware infrastructure employed in this work. The bunch position in the beam pipe is measured by processing a BPM
signal with an analog hybrid. The produced analog signal is sampled with KAPTURE and then forwarded by an HighFlex 2 board through
high-speed links to a Versal device. The KINGFISHER system programmed on this Versal then connects this data stream into the RL controller,
while applying the output action to a stripline kicker. Every episode, comprised of 2048 interaction steps with accelerator, data is sent back to
the control room for training.

A. Implementing Reinforcement Learning Algorithms on
KINGFISHER

The algorithm used in the current work is PPO [40]. This
choice was dictated by its stability with respect to the change
of hyperparameters. The reduced sample efficiency compared
to off-policy algorithms like soft actor-critic (SAC) does not af-
fect the current application, as it is counterbalanced by the high
experience collection rate. Other RL algorithms are nonethe-
less easy to integrate thanks to the experience accumulator
architecture.

The actor network is implemented in the AIE. The employed
PPO algorithm implementation uses a NN to select the mean
value of a Gaussian distribution, from which the action applied
to the environment is chosen. The standard deviation of the
probability distribution is a trainable parameter, that is updated
together with the NN coefficients.

A schematic of the internal data processing within the actor
and the KINGFISHER platform is shown in Figure 3. The first
AIE tile implements a circular buffer and streams the latest

eight samples to the following kernel using the cascade stream
interface. These eight samples represent the observation vector,
the choice of which will be described more thoroughly in Sec-
tion IV B. The next kernel implements the linear layer of a NN
computing the values of the sixteen hidden neurons. A rectified
linear unit (ReLU) activation function is applied to the outputs.
Such an activation function was selected because of its simple
implementation. This function can also be turned off while the
system is still running in order to implement linear filters. The
output of the network is then computed with a final linear layer
and passed to the last output kernel. All these kernels keep for-
warding the eight input values. The last kernel takes 16 values
from uniformly-distributed random number data stream and
sums them, producing an approximately Gaussian-distributed
sample due to the central limit theorem. This is used to add a
Gaussian noise with a standard deviation selectable at run-time
to the output of the network. A final data vector containing the
eight input values, the random value, and the output of the net-
work previous to the noise addition is given to the experience
accumulator logic.
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FIG. 3. Schematic representation of the data path within the Versal VCK190 firmware. In the top part, the KAPTURE data stream coming from
HighFlex 2 is decoded by an Aurora IP from the protocol used for fiber-optic communication. The bunch of interest for the control experiment
is selected and gain/offset correction are applied. FPGA logic takes care of forwarding data and gracefully stopping the AIE. In the middle, a
buffer stores the latest eight samples and feeds them to the NN. The exploration noise is added and the action is then output to a DAC, for
control of the kicker. In the bottom side, a FPGA block takes the latest data from the inference and stores them in memory through a DMA for
later training.

Hyper-parameter Value

Learning rate η 0.0012
Discount rate γ 0.99
Number of steps 2048
Batch size 64
Number of epochs 1

TABLE I. Hyper-parameters used for the PPO algorithm.

A computer in the control room then fetches the data and
uses a modified version of the Stable-baselines3 library [41]
PPO [40] implementation to train the policy using the hyper-
parameters in Table I. The new parameters are then loaded onto
the AIE kernel at run-time and new data for training is gathered.
The whole inference loop has a latency of 2.8µs. For this work,
a number of 2048 action steps was chosen. This number has
been manually selected in such a way that the agent would not
have enough time to cause beam loss and disrupt operation.

The critic network was chosen to be identical to the actor
network. The remaining hyper-parameters are available in
Table I.

IV. DEMONSTRATION OF REAL-TIME RL CONTROL AT
THE ACCELERATOR

A. Task description: Horizontal betatron oscillations at KARA

The Karlsruhe research accelerator (KARA) is a ramping
electron storage ring with 0.5GeV injection energy, with vari-
ous operation modes between 0.5GeV and 2.5GeV. Its lattice
is based on four sectors of double-bend achromats, with a total
circumference of 110m.

In synchrotrons, the horizontal beam dynamics is dominated
at first order by the linear betatron motion. The bunch displace-
ment from the reference orbit x can be expressed with Hill’s
equation

d2x
ds2 +Kx(s)x = 0 (2)

where s is the length along the ring and Kx are the periodic
focusing functions.

The general solution to this equation is

x(s) = x0
√

βx(s)cos[θ(s)+θ0]

θ(s) =
∫ s

0

ds
βx(s)

(3)

where βx are the beta-functions and (x0,θ0) set the initial condi-
tions. The number of full oscillations per revolution is defined
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as the horizontal tune Qx. In injection mode, used for this
experiment, Qx ≈ 6.76. An observer fixed in a given position
of the accelerator will only observe the fractional part, corre-
sponding to an oscillation frequency in the order of 700kHz,
depending both on the operation mode, the beam current and
more generally the state of the machine. This oscillation fre-
quency sets the timescale at which the RL agent must be able
to act, in this case in the order of a few microseconds.

A stripline kicker, based on the design from [42], is capa-
ble of affecting the HBOs by applying a bunch-by-bunch and
turn-by-turn horizontal force to the beam based on the signal
provided into an analog input.

The injection in the KARA storage ring makes use of three
strong kicker and one septum magnet in order to properly
merge the beam already in the machine with the one that is
being injected. These kicker magnets can only activate at a
rate of 1Hz, for a few revolutions, and can move the beam
on a displaced orbit in the horizontal plane. When the kicker
switches back off, the displaced bunches will start performing
betatron oscillations around the reference orbit. The goal of
the RL agent is to damp this oscillation as quickly as possible.
Notably, the strength of the injection kickers is orders of mag-
nitude stronger than the stripline kickers used for feedback,
thus an agent cannot damp an oscillation in a single kick, and
turn-by-turn control is required.

A classical controller for this problem exists and is already
available in commercial solutions. These bunch-by-bunch
(BBB) feedback systems [43] are usually based on a finite
impulse response (FIR) filter that takes the input signal and
applies a π rad phase at the frequency of the instability. In this
way, a linear kick is produced with an opposite sign compared
to the displacement, in this way damping the oscillations. The
output of this kind of filter can be computed as

y(t) =
N

∑
i=0

cix(t− i) (4)

where ci are the coefficients of the filter, and N is its order. The
tuning of the filter coefficients directly impacts the performance
of the controller, as it defines its behavior with respect to
external noise and the bandwidth over which a suitable phase
offset is produced. So far this is usually hand-tuned. A review
on the topic is provided in [44].

B. Formulation as an RL task

For the current problem of controlling the HBO, the RL en-
vironment was modeled as follows. Given the HBO dynamics
at a fixed position in the storage ring can be approximated by
an harmonic oscillator, the position x and its derivative ẋ are
sufficient to have full knowledge of the state of the system. In
a discrete-time setting, the derivative can be computed from
the time difference of two consecutive samples.

ẋ(t) =
x(t)− x(t−1)

∆t
(5)

This in turn means that the two latest position samples, x(t)
and x(t−1), are also a full representation of the system’s state.

In practice, though, only having two values is subject to mea-
surement noise. Thus, the observation vector was defined as
the last eight positions ooot = (x(t),x(t−1), ...,x(t−7))T . The
signal is sampled at the revolution frequency, i. e. ca. 2.7MHz,
thus eight samples span roughly two periods of the betatron
oscillation.

The action is a force that is applied to the bunch through a
stripline kicker. In the harmonic oscillator model, this corre-
sponds to a driving force. Under this definition, the system is a
MDP.

Several different reward definitions were chosen, and the
respective performance of the final agents are compared in
Section IV E. All rewards studied in this paper penalize the
agent when the x position differs from zero, corresponding to
the reference orbit.

C. Simulation study

In order to study the interaction of an agent with the HBO,
an environment based on the Gymnasium library [45] was
developed. The dynamics was modeled as a damped harmonic
oscillator with user selectable undamped angular frequency ω0
and damping ratio Γ. The environment stores the actions ai
performed on the system and convolves this vector with the
Green’s function B(t, t ′) of the damped harmonic oscillator

B(t, t ′) = Θ(t− t ′)
e−Γ(t−t ′)

ω
sinω(t− t ′), (6)

with ω =
√

ω2
0 −Γ2. As such, the position x(t) is computed

as

x(t) = ∑
i

B(t,(i+∆τ)Trev)ai, (7)

where Θ(t) is the Heaviside step function and Trev is the revolu-
tion time of the accelerator. An additional user selectable delay
∆τ is added to the argument of the function to study the effect
of latency. Gaussian noise is added to the samples, reflecting
the behavior of real-life data. A kick of intensity one order of
magnitude higher than what the agent can perform is applied
at a random time to simulate the external kicker.

In order to guide the selection of an RL algorithm and agent
structure, the environment was used to test the training perfor-
mance with the algorithms available in the Stable-baselines3
library [41]. PPO and the observation vector definition of Sec-
tion IV B were thus validated in simulation before testing the
complete system on the accelerator. This is necessary in or-
der to disentangle a hardware platform failure from an issue
with the RL problem formulation, in the case control could not
achieved during the tests at KARA.

D. Reinforcement Learning Control

The system discussed in this study was allowed to interact
with the accelerator for 2048 revolutions (corresponding to
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784µs). During this period an external kicker excited the oscil-
lations as shown in Figure 4. After each of these episodes, a
training step was performed, updating the coefficients of the
NN. The new set of weights and biases were uploaded to the
agent and the operation was repeated.

In order to study the evolution of the oscillation amplitude,
the amplitude of the oscillation was obtained as the absolute
value of the Hilbert transform of the raw oscillation signal
x(t). As shown in Figure 4 an increase in the damping rate of
the oscillations is an indication that the agent in question is
achieving control of the environment. Moreover, it is possible
to examine the trend of the cumulative reward obtained during
each training episode as shown in Figure 5. A clear increase in
the obtained cumulative reward is visible as more episodes are
used for training. This clearly shows that the agent improves
with experience, as it is expected.

Several different training configurations were tested, each
one with a different reward definition and the number of neu-
rons in the hidden layer of the actor. This led to agents with
different performances. An example of training configuration
is L2, 12 N, meaning the L2 norm defined in Table II is used,
together with an actor having 12 neurons in the hidden layer.

E. Training Time Reward Definition

Figure 6 compares the performance of different reward func-
tions employed during training. To do so, the oscillation am-
plitude was fitted with an exponential function

f (t;A,λ ) = Ae−tλ (8)

and the damping rate λ was employed as a reward independent
metric. Provided x is the position obtained from the BPM, the
reward functions definitions are listed in Table II.

Reward name Definition

L1 −|x|
L2 −x2

Tanhsq − tanh
(
x2)

TABLE II. Definition of the different reward functions used experi-
mentally, where x denotes the transverse horizontal position of the
beam read by the BPM.

The agents trained with all of these three reward choices
reached a final performance better than the FIR controller and
the baseline with the untrained agents.

F. Online Network Structure Reconfiguration

In order to further increase the level of flexibility of the
system, the possibility of dynamically modifying the NN struc-
ture without the need of re-implementing or re-packaging the
firmware was implemented. This was achieved by embedding
a smaller network into one with a greater number of neurons
and layers by appropriately switching off different weights.

Additionally, maintaining the number of computations con-
stant allows to have identical latency between different training
trials, thus removing this variability when comparing different
agents.

Agents with several different layer sizes have been trained
and their performance is shown in Figure 6. The performance
of all agents increased with training, outperforming the tra-
ditional FIR controller. The best performing agent, with 12
neurons in the hidden layer and trained with an L2-norm re-
ward (in short notation: L2, 12 N; cf. also Table II), is used
throughout the rest of this work for comparison with classical
control techniques.

G. Training stability and robustness

The training procedure was repeated several times, with the
same setting but a different beam current, to study the stability
of the agents produced. One would expect an effect for two
reasons. First of all the BPM signal is not normalized, so
the amplitude will vary with current. Second of all the HBO
tune is current dependent [46]. Despite a 20% reduction in
beam current due to the natural decay of the beam, all resulting
agents achieve a very similar final reward, as shown in Figure 7.
This shows the robustness of the RL agent against variations
of current.

One of the main components of the KARA storage ring
injection line is the injection septum magnet. Its impulse ac-
tivation is necessary to guarantee the injection of the electron
bunch coming from the booster into the main ring. The leaking
magnetic field, though, also affects the beam that is already
in the storage ring. This effect is visible in Figure 8, which
corresponds to a shift in the position of the beam. Such an
effect was not present in the simulation, but it was nonethe-
less possible to train an agent capable of correctly handling
this new phenomenon. This is an example of the versatility
and adaptability of RL algorithms, that are sometimes able
to autonomously learn from situations they are not originally
designed for.

H. Improvement during cumulative reward plateau

As can be seen in Figure 7, the cumulative reward reaches
a plateau around step number 50. Nonetheless, if one studies
the trend of the damping rate measured at a BPM in a different
part of the ring, it is still possible to observe an increase of the
damping rate even around step 100 as shown in Figure 9. This
is due to the fact that noise in the input data adds an offset to
the cumulative reward that hides small improvements. Such a
phenomenon needs to be considered in future experiments as
it could potentially hinder further improvement of the agent.

V. DISCUSSION

We trained several working agents and their performance
can be compared and evaluated.
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FIG. 4. Smoothed envelope of oscillations measured by a BPM. The sharp increase around t = 150 revolutions is due to the injection kicker
emulating an instantaneous external excitation. Notice how at step 0 the randomly selected agent is destabilizing the beam, leading to an increase
of the oscillation amplitude. Moreover, the rate of damping increases with the number of training steps, i.e. with the agent experience.
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FIG. 5. Cumulative reward obtained by an agent as a function of the
number of training episodes. It can be seen how experience is gained
(i.e. more episodes are used for training) and eventually plateaus. The
colored points correspond to the episodes depicted in Figure 4.

As can be seen in Figure 6, the performance of the FIR con-
troller is not constant. This behavior is mainly due to variations
in the beam current that, due to its linear nature, affects the
action signal amplitude. This is not the case for the RL agent,
as it is able to automatically adapt to the variation in beam cur-
rent. Thus, the trained agent outperformed the FIR controller
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FIG. 6. Damping rates of an instantaneous external excitation that
is achieved for different kinds of training parameters. The y-axis
denotes the reward function used for the specific training according
to Table II and the number of neurons in the hidden layer. The trained
and untrained (baseline) RL agents are compared against an FIR
controller. Note that the negative baseline values are caused by the
agents with random coefficients actually exciting the instability. All
agents outperform the state-of-the-art FIR controller showing higher
damping rates.

in all of our evaluations. Additionally, the untrained RL agent
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current conditions, where the final agents achieve almost identical
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FIG. 8. Evolution of the horizontal position of the beam after an in-
stantaneous external excitation at time t ≈ 175revolutions, influenced
by an RL agent before and after training. The septum magnet was ac-
tive, inducing a baseline shift superimposed on the usual exponential
decay. Nonetheless, the trained agent (orange) is capable of damping
the oscillation compared to the untrained one (blue).
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FIG. 9. Damping rate (blue) measured with a different BPM system
as a function of the training step, compared with the reward function
(orange). Notice the absence of a plateau in the damping rate curve.

is shown as the baseline, with clearly inferior performances
when compared to the trained agent and the FIR controller.

Compared to the FIR controllers conventionally used, NN
agents are capable of exhibiting non-linear output response.
This allows the implementation of more complex policies. Par-
ticularly shallow NNs with ReLU activation functions have
been shown to behave linearly in some cases. When pure si-
nusoidal input is fed into a black-box, the non-linear behavior
produces harmonics of the fundamental sinusoidal input. The
total harmonic distortion plus noise (THD+N), is defined as

THD+N =

√
A2

N +∑
∞
i=2 A2

i

A1
, (9)

where Ai is the amplitude of the i-th harmonic, where i = 1 is
the fundamental, and AN is the noise amplitude. This metric
expresses the amount of non-linear components in the output
of a given device. For a linear controller, like a FIR filter, in
the case where noise is negligible, THD+N is approximately
zero. The THD+N was computed for different amplitudes of
a sinusoidal input at the betatron oscillation frequency. The
behavior for the L2, 12 N agent is shown in Figure 10. The
amount of non-linear harmonic content is consistent, with a
steep increase at a level compatible with the noise floor of
the signal provided to the agent. This might indicate that the
agent is learning to apply more complex actions in the case of
high-amplitude, and thus highly penalized, observations.

FIG. 10. Total harmonic distortion plus noise (THD+N) as a function
of the input signal amplitude for an (L2-norm, 12 neurons) agent.
Note that the FIR filter with negligible noise will have a (THD+N)
close to 0. In the bottom plot, a training signal is shown, allowing
to determine which part of the training episode employs a higher
non-linear behavior. The noise level is indicated with the black lines,
while an higher amplitude is shown with the yellow lines. Signals
above the noise level tend to produce more non-linear actions.

The trade-off between training through interaction with a
simulated or real-world environment is an important aspect of
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Training platform Interaction time Training time

Simulation CPU 17.6s 137s
Simulation GPU 17.6s 227s
Online CPU 0.076s 260s

TABLE III. Comparison of the time necessary to perform 100 training
steps for different training platforms.

the application of RL to large-scale facilities. A simulation-
driven approach is sometimes necessary to ensure safety, both
of the facility and its personnel, while in other cases, it is
dictated by the time necessary to obtain the training dataset.
One advantage of real-world training is that trained agents are
directly transferable into operation. This is not the case for
agents trained on simulation, as their transfer to the real world
is potentially hindered by non-modeled phenomena and, more
in general, differences between the training and real-world
environments. This work presents the opportunity to compare
these two approaches. To do so, the time necessary to train an
agent through interaction with the accelerator and simulation
is reported in Table III. It is important to consider that the
online case comprised waiting for a 1Hz trigger, controlling
the kickers. These numbers comprise the overhead of transfer-
ring training data, the time necessary for NN back-propagation
and the interaction time with the environment. Given both
approaches used the same model, the back-propagation time
can be assumed to be equal. The interaction time, on the other
hand, is 17.6s for the simulation, while the trial on the accel-
erator takes 0.076s or 76ms. It is relevant to notice how the
simulation being employed, and discussed in greater detail in
the method section, is lightweight while still performing two or-
ders of magnitudes slower than gathering data on the machine.
As such, approximately 50% of the real-world training time is
consumed by data-access overhead. This could be reduced in
future implementations of the system with several approaches:
using higher speed network links paired with lower overhead
network protocols, or by accelerating the training directly on
the FPGA and AIE array sharing memory with the experience
accumulator hardware. In conclusion, for systems with dynam-
ics that is computationally intensive to simulate, the techniques
described in this article will greatly improve the time necessary
for training. An environment-driven training procedure, i.e.
training directly on the real-world task, becomes thus not only
possible but also more flexible than a simulation study as the
total deployment time would be reduced.

In certain scenarios characterized by rapid dynamics
and computationally intensive simulations demanding high-
performance computing clusters, it may be conceivable that
training directly on the accelerator consumes less energy than
utilizing simulations. Such a possibility could significantly
influence the sustainability of ML methodologies.

VI. CONCLUSIONS

In this study, we introduced the experience accumulator ar-
chitecture and the training time reward definition, marking a
significant step in implementing real-world on-the-edge en-
vironment learning for RL-based controllers. Particularly in
scenarios where simulation costs are prohibitive and data gen-
eration rates are high, this methodology emerges as a promis-
ing solution, enabling the deployment of RL controllers. Our
application of this approach to real-time control of particle
accelerator dynamics yielded inference latency of a few mi-
croseconds.

Utilizing advanced heterogeneous computing platforms such
as KINGFISHER, our presented implementation facilitates
the deployment of plug-and-play RL systems operating at mi-
crosecond latency scales. This opens the door to intelligent
control of ultra-fast non-linear dynamics [47] in systems such
as particle accelerators and fusion experiments. The efficacy
of these capabilities was demonstrated through the control of
the HBO at the accelerator test facility KARA, resulting in a
functional controller comparable and outperforming state-of-
the-art FIR controllers used during standard operation phases
of synchrotron light sources.
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