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Abstract—Finite element analysis is frequently used to optimize
the characteristics of interior permanent magnet synchronous
motors throughout the design phase. The existing toolchains en-
able the full automation of simulating and optimizing a reference
motor by manipulating the input design parameters within the
feasible design space. However, for each motor design, a complete
simulation is required, implying a high computational burden and
time cost. Moreover, once the input design parameters undergo
variations, it becomes necessary to initiate the simulation process
from the beginning. The previously obtained simulation results
are not helpful for the new task. In this paper, a new method
using modular neural networks based on transfer learning (TL)
under dimensionally varying input space conditions is presented.
By transferring certain parts of the pre-trained neural networks
(NNs) of the old task to the new task’s NN, the previously
learned parameters can be applied as the initial weight for the
new network. Finally, the optimization process is completed by
combining this approach with multi-objective optimization. The
results show that the learning of the new NN is promoted with
the help of TL. In addition, highly flexible surrogate models
are achieved, enabling accurate prediction capabilities and a fast
optimization time of around 12 seconds.

Index Terms—permanent magnet motor, finite element anal-
ysis, modular neural network, transfer learning, multi-objective
optimization.

I. INTRODUCTION

Over the past few years, there has been an increasing

utilization of interior permanent magnet synchronous motors

(IPMSMs) in various domains due to several advantageous

characteristics, including high efficiency, compact construc-

tion, and a broad range of operating speeds [1], [2]. Nev-

ertheless, the motor optimization procedure in the design

phase is time-consuming, caused by the high complexity of

the input design parameters and the extensive computational

demands of the Finite element analysis (FEA). Hence, many

researchers adopt surrogate models to optimize electric motors

[3]. At present, neural networks (NNs) are being progressively

employed as surrogate models with the aim of forecasting the

performance parameters of electric motors [4], [5]. A previous

investigation applied a convolutional neural network (CNN)

to estimate average torque and torque ripple, resulting in a

significant acceleration of the optimization procedure with

guaranteed accuracy [6]. In [7], a CNN and a recurrent neural

network were employed in combination to handle the geomet-

ric and operating point variations. At the end, the predictive

efficiency map of the electrical machine is generated with this

approach. In [8], the exploration and comparison of image-

based NNs and parameter-based NNs were undertaken. It was

demonstrated that the image-based approach was more flexible

in the case of reparametrization. In contrast, parameter-based

networks performed better in terms of prediction accuracy

and had a lower computational burden. However, managing

various topologies is a challenge. In order to address this

issue, the paper [9] presented a surrogate model based on

the variational autoencoder (VAE), which mapped a high-

dimensional design parameters in a lower-dimensional latent

space. This approach enabled simultaneous optimization of

multiple topologies. In addition, a recent study [10] combined

the VAE and NNs with dropout to achieve faster optimization.

The VAE was applied to encode different motor shapes into the

latent space. However, the aforementioned methods involved

a large-scale prediction model and a huge amount of data.

To solve this problem, an automatic design system integrated

with the generative adversarial network (GAN) and CNN was

proposed in [11]. A applied machine learning method enabled

the rapid acquisition of an enormous amount of data through

the use of a small number of FE results. The proposed GAN

was used to design rotor topologies for three different IPMSMs

in latent space. Additionally, CNN demonstrated the capability

to quickly and precisely predict motor characteristics.

So far, the inputs for NN-based surrogate models can be

categorized into three groups: parameter-based (1D vector)

[8]–[10], image-based (2D or 3D matrix) [6], [8], [11], and

mixed input, which includes both vectors and images [7]. In

real-world scenarios, parameter-based datasets are more acces-

sible to obtain without additional storage of images. However,

when the reference motor is reparameterized, the NN that

was previously trained becomes incompatible for further usage

due to alterations in the feature composition of parameter

vectors. Retraining new NNs from scratch is demanded for

every alteration, thereby leading to the discarding of previously



trained parameters.

In this study, we propose parameter-based modular neural

networks (MNNs) through transfer learning (TL) to get over

the issue of the networks requiring to be retrained from scratch

after reparameterization. Transfer learning is an important

technique in the field of machine learning that facilitates the

training of NNs by transferring previously learned knowledge

to a new task [12]. One of the most common ways to reuse

knowledge is through the transfer of NNs. This method makes

it possible to save part of the old networks’ weights and use

them to help the new NN update its weights [13]. In the field

of design optimization of electrical motors, transfer learning-

based CNN has been employed in [14]. An advantage of this

proposed approach was that the CNN was effectively trained

with a limited amount of input data using TL. Nevertheless,

it relied on images but failed to address the issue of reparam-

eterization.

II. METHODOLOGY AND DATASETS

A. Modular Neural Network and Proposed Workflow

Assume we have a task Tt in the target domain Dt, and an

assistance can be obtained from a source task Ts coming from

the source domain Ds. By transferring latent knowledge from

Ts to the target task Tt, TL intends to boost the performance

of the prediction function Ft, where Ft is a representation of a

deep NN [12]. A workflow example for the proposed method

is depicted in Fig. 1. Assuming an initial learning task based

on three input design parameters (d1, d2, d3) and four output

performance parameters (o1, o2, o3, o4) is given. Subsequently,

the input space is expanded, and the whole process is described

as follows:

1) Stage I: A separate training session is performed for

each of the input design parameters. Every individual

multi-layer NN is called a base module, which consists

of m dense layers with n neurons in each layer.

2) Stage II: All the base modules are subsequently aggre-

gated to the target NN by transferring the respective

m − 1 dense layers, namely the layers with colors. A

multi-branched MNN was applied, with each branch rep-

resenting an independent input parameter. The quantity

of input design parameters directly matches the quantity

of branches in the target MNN.

3) Stage III: The input space is altered by eliminating the

design parameter d3 and introducing the new design

parameters d4 and d5. As the input space expands, the

NN’s architecture goes through an adjustment whereby

the layers associated with the branches of d1 and d2 stay

unchanged while the branch linked to d3 is removed.

Another two basic modules (pink and purple) with d4
and d5 as inputs are trained independently to provide

pre-trained models resembling Stage I. The required

layers are then transferred to various branches. Only the

first and last dense layers (white) necessitate retraining

from scratch.

A classic MNN consists of three parts: the task-dividing

layer, sub-network layer, and output-combining layer [15].
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Fig. 1. Proposed workflow for aggregating pre-trained NNs.

The idea of modularity is derived from biological inspiration.

Within a biological brain, distinct information is typically

processed in designated regions to carry out certain activities

[16]. In [17], [18], modularity-based ideas were applied, and

images were divided into segments and supplied to NNs for

processing. Inspired by the above approaches, every input

design parameter can be regarded as a distinct sub-task that

corresponds to a branch in our proposed MNN. Through this

method, the target MNN exhibited the capability to adapt in

response to variations in the input parameters. Meanwhile, the

knowledge learned from the previous task can be transferred

to the new task.

B. Dataset Generation

To conduct experiments based on the proposed workflow,

we created three main datasets that have slightly different

input design parameters and the same outputs. The sampling

procedure was carried out using Latin hypercube sampling

(LHS) [19] by a simulation toolchain based on Altair Flux. In

the first step, each sample model was built, and all unfeasible

designs were eliminated. Then we performed FEA based on

36 different current vectors to obtain the current-dependent

maps. Finally, we further acquired the speed-torque maps by

maximum torque per ampere optimization and obtained the

performance indicators for each design. The reference motor

is depicted in Fig. 2. Dataset I contains six design parameters

(d1, d2, d3, d4, d5, d6) and a total of 968 samples. Dataset II is

formed by removing one parameter from dataset I and adding

three new design parameters. As a result, dataset II includes
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Fig. 2. Reference IPMSM geometry and design parameters.

eight design parameters (d1, d2, d3, d4, d5, d8, d11, d12) and

2000 samples. Dataset III has 2951 samples and consists of

ten design parameters (d1, d2, d3, d4, d5, d6, d7, d8, d9, d10).

In the following, we only analyze dataset III. Table I

summarizes the details of all parameters. The upper and

lower boundaries for each design parameter are determined

empirically. The Pearson correlation coefficients among all

parameters can be calculated by:

r =

∑N

i=1
(xi − x̄)(yi − ȳ)

√

∑N

i=1
(xi − x̄)2

√

∑N

i=1
(yi − ȳ)2

(1)

where xi and yi denote different values of variables in a

sample. x̄ and ȳ represent sample means. The results are

visualized in Fig. 3. The correlation between the design input

parameters was generally low, except for the width of magnet

2 and the V-magnet angle. This is due to restrictions on their

feasible domains. The design parameters exhibited a strong

correlation with the indicators, suggesting a good sampling

process.

In order to obtain pre-trained NNs, we performed separate

experimental designs for each design parameter individually. A

group of small subdatasets was then generated, each containing

around 50 samples. Fig. 4 demonstrates rotor images in the

subdataset for the design parameters d1, d3, d4, and d5.

III. TRAINING OF NEURAL NETWORKS

A. General Settings

All the data were standardized by their sample mean and

variance before being fed to the NNs. All experiments, in-

cluding model comparison, were performed utilizing 5-fold

cross-validation, with loss computed by the mean squared error

(MSE) between prediction and ground truth. The entire dataset

was divided into five equal parts. We took four parts as training

data and one part for testing. Training was then conducted five

times. It should be noted that the model in III-C was analyzed

by selecting the fold with the lowest loss in cross-validation

TABLE I
DETAILS OF REFERENCE MACHINE PARAMETERS

Symbol Design parameter Min. Max. Unit

d1 Magnet 1 width 10.0 28.0 mm

d2 Magnet 1 height 2.0 8.0 mm

d3 Magnet 2 width 15.0 43.0 mm

d4 Magnet 2 height 2.0 8.0 mm

d5 Magnet inclination angle 15.0 60.0 deg

d6 Slot width 3.5 5.0 mm

d7 Flux barrier width 1.0 6.0 mm

d8 Width between magnet 2 and air gap 0.5 4.0 mm

d9 Slot depth 13.0 18.0 mm

d10 Air gap 0.5 2.0 mm

d11 Distance between magnets 1.0 4.0 mm

d12 Distance between poles 4.0 6.5 mm

Constant parameter Value

c1 Number of poles 6 -

c2 Number of stator slots 54 -

c3 Maximum rotational speed 16800.0 rpm

c4 Magnet temperature 75.0 ◦C

Indicator

o1 Maximum torque Nm

o2 Maximum power kW

o3 Torque ripple at maximum torque Nm

o4 Material cost Euro

Fig. 3. Correlation between design parameters and performance indicators
for dataset III.

for the results. To guarantee that comparisons between various

models were based on the same dataset divisions and to

make the findings reproducible, random seeds were set. In

addition, the early stopping method was implemented during

the training process to avoid overfitting, and its patience was

set to 10. In order to evaluate the quality of predictions,

three different evaluation metrics were employed: the mean

absolute error (MAE), symmetric mean absolute percentage

error (SMAPE), and coefficient of determination (R2). The

MAE enables the measurement of the absolute error between

the predicted value and the true value. The SMAPE aims to

address the problem of the mean absolute percentage error

producing overly large values when the real value is quite

small. The R2 measures how well the prediction model fits



Fig. 4. Example rotor images of subdatasets.

the data. They can be calculated as follows:

MAE =
1

N

N
∑

i=1

|yi − y∗i | , (2)

SMAPE =
100%

N

N
∑

i=1

|yi − y∗i |

(|yi|+ |y∗i |)/2
, (3)

R2 = 1−

∑N

i=1
(yi − y∗i )

2

∑N

i=1
(yi − ȳ)2

, (4)

where N represents the total number of test samples. y∗i
describes the prediction value. ȳ is the average true value of

test data.

B. Network Architecture and Training

As previously stated in II-A, the quantity of design input

parameters in the dataset is equivalent to the number of

branches in the MNN. Thus, the MNNs (MNN I, MNN II,

and MNN III) corresponding to the three main datasets had

6, 8, and 10 branches, respectively. We initially created six

individual NNs with three hidden layers (m = 3) and 128

neurons in each layer (n = 128) for every design parameter.

Each NN was then trained based on subdatasets. Subsequently,

the last two hidden layers of these six NNs were transferred

directly to the six branches in MNN I. The reason behind

selecting the last two layers is that the learning speed of

the hidden layer rises as the depth increases [20]. Regarding

transferred neurons, there are two options: freezing (learning

rate equal to 0), or fine-tuning (learning rate lower than that

of non-transferred neurons) [21]. The learning rate for the

first and last hidden layers (non-transferred layers) was set

to 0.001. A test of the learning rate of transferred neurons

regarding dataset III was then conducted, as shown in Fig.

5. The ranges for other hyperparameters were reduced firstly

Fig. 5. Evaluation of prediction performance based on learning rate of
transferred neurons under 10 sets of random seeds.

Fig. 6. Predictions for performance indicators based on dataset III.

by trial and error. The final optimized hyperparameters were

determined using random research to conserve optimization

time. such as optimizer (Adam), threshold of epoch (300),

activation function (ELU), and batch size (8) were established.

We added layer normalization (LN) [22] between each two

hidden layers. Since the proposed network contains several

branches and a large quantity of trainable parameters, the sta-

bility and convergence speed of the network can be improved

by this trick. Specifically, LN calculates the mean and standard

deviation of the input data for each layer and normalizes the

data:

µl =
1

H

H
∑

i=1

ali, σl =

√

√

√

√

1

H

H
∑

i=1

(ali − µl)2, (5)

where µl and σl denote the mean and standard deviation in

the lth hidden layer. ali is the input of the ith neuron, and H is



TABLE II
EVALUATION OF ALL DATASETS

Performance indicators
Dataset I Dataset II Dataset III

MAE R
2 MAE R

2 MAE R
2

o1(max. torque) 1.63 0.9969 1.60 0.9947 2.01 0.9944

o2(max. power) 0.98 0.9985 0.95 0.9972 1.04 0.9981

o3(torque ripple at max. torque) 1.17 0.9527 2.39 0.8580 3.19 0.6835

o4(material cost) 0.60 0.9991 0.58 0.9985 0.59 0.9987

the number of neurons in the lth hidden layer. The normalized

value can be computed:

ãl =
al − µl

√

(σl)2 + ϵ
, (6)

where ϵ is a very small value to prevent the denominator

from being 0. Two trainable parameters g (gain) and b (bias)

are included in the LN for the purpose of maintaining the

distribution of the original data as much as possible. Assuming

the activation function is f , the output of the LN is

hl = f(gl ⊙ ãl + bl), (7)

where ⊙ indicates element-wise multiplication.

The entire training process was accomplished through the

NVIDIA Quadro P4000 GPU and took approximately ∼3

minutes to complete a whole 5-fold cross-validation. Fol-

lowing cross-validation using ten distinct random seeds, we

selected the model with the minimum loss for qualitative

analysis. Subsequently, this model was also employed in the

optimization procedure.

C. Training Results

Table II summarizes the performance of the proposed

MNNs on three main datasets. Dataset III exhibited the lowest

prediction accuracy. This is because it possesses the largest

dimension of input design parameters and lacks sufficient

data. Since MNN III is constructed on top of MNN I and

MNN II, we only analyze the results of MNN III below. Fig.

6 provides evaluation details for each performance output.

Our proposed TL-based MNN demonstrated superiority in

predicting maximum torque, maximum power, and material

cost. The color bar indicates the density of test data. The error

in the predicted torque ripple is noteworthy. Insufficient sample

size could be a potential explanation for this phenomenon.

2956 samples are relatively few for a dataset containing ten

input parameters.

Fig. 7 demonstrates a comparison of the proposed MNN

III (multi-branched MNN with transferred layers), MNN III

without TL (the architecture is completely identical to the

former but without the transferred layers, so all the neurons

need to be trained from scratch), and traditional multi-layer

perceptron (MLP) based on dataset III. Ten random seeds

were employed to ensure that different models were compared

across ten different divisions of the dataset. It can be observed

that the MNN III outperformed the MNN III without pre-

trained transferred layers, which indicated transfer learning

was able to boost the network to obtain improved prediction

Fig. 7. Predictive performance comparison among MNN III, MNN III without
TL, and MLP.

performance. The primary rationale behind this is that the

network with transferred layers can leverage prior knowledge

to more effectively determine the optimum. Besides, the multi-

branched architecture offered superior predictive capability in

comparison to MLP. We additionally conducted a comparison

between MNN III with and without LN, and the outcome

showed a ∼31% improvement in prediction accuracy with the

inclusion of LN.

IV. OPTIMIZATION DESIGN

The proposed MNN III was applied to speed up the op-

timization process. We conducted a comparative experiment

with two common and widely used multi-objective optimiza-

tion (MOO) algorithms, namely NSGA-II [23] and NSGA-III

[24]. The implementation was carried out by the framework

Pymoo [25]. The objective functions were maximizing maxi-

mum torque and maximum power. The associated generalized

optimization problem is formulated as follows:

o1, o2 → max (8)

s.t. dLi ≤ di ≤ dUi , i = 1, · · · , ninput (9)

cj ≤ 0, j = 1, · · · , ncons (10)

where di indicates input design parameters and dLi and dUi are

predefined bounds. cj represents constraints for the optimiza-

tion process. The number of iterations (200), population size

(100), crossover probability (0.9), and polynomial mutation

(15) were included.

The obtained Pareto-fronts are displayed in Fig. 8. FEA

was performed by choosing a candidate solution from each

Pareto-front. The selected optimal designs are illustrated in

Fig. 9. Table III summarizes the FEA and predicted results

for the selected designs. It can be seen that the predictions

for o1, o2 and o4 were in high agreement with the FEA.

A minimum SMAPE of 0.01% can be achieved. However,

the prediction accuracy for torque ripple was relatively low

(over 20%). A possible reason is the low correlation between

the input parameters and this motor characteristic. At last,

we executed both optimization approaches 10 times each in

order to calculate the average optimization time. The results

indicated that it took approximately 12 seconds to perform

NSGA-III, whereas NSGA-II could be finished in only about

8 seconds.



Fig. 8. Pareto-fronts for maximum torque and maximum power based on two
different optimization algorithms.

a) Design A b) Design B

Fig. 9. Optimal designs.

TABLE III
EVALUATION OF THE OPTIMAL DESIGNS FROM PARETO-FRONTS

Indicator Unit
Optimal design A | B

FEA Prediction SMAPE

o1 Nm 368.66 | 347.47 380.80 | 347.12 3.24% | 0.10%

o2 kW 242.70 | 253.45 246.30 | 255.48 1.47% | 0.80%

o3 Nm 13.95 | 18.33 18.06 | 14.62 25.69% | 22.53%

o4 Euro 334.61 | 357.60 332.55 | 359.72 0.62% | 0.59%

V. CONCLUSION

In this paper, we proposed the application of the trans-

fer learning-based modular neural network for the design

optimization of the IPMSM. This approach can be adapted

dynamically in response to changes in the parameter-based

input space. By transferring the pre-trained neurons to the new

NN as initial weights, the previous knowledge was reused.

After reparametrization, it was no longer needed to retrain the

new NN from scratch. The experiments demonstrated that the

prediction accuracy of MNN was higher than classical MLP.

Furthermore, the TL-based MNN outperformed the normal

MNN, attributed to the employment of transferred neurons.

The MOO results showed high accuracy in predicting maxi-

mum torque, maximum power, and cost, with the optimization

completed in around 12 seconds. However, accurate estimation

of torque ripple is still a challenge. In future work, this method

will be employed for other motor types, such as reluctance

motors and electrically excited motors. Furthermore, it is

interesting to investigate the degree of confidence associated

with the predicted outcomes.
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