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Abstract—Machine learning metamodels have been frequently
used for predicting key performance indicators (KPIs) of elec-
trical machines because of their rapid and precise predicting
capabilities. However, the conventional procedure of data collec-
tion using finite element analysis is time-consuming. To shorten
data collection time and improve the prediction accuracy of
metamodels, we propose a semi-supervised learning approach
using self-training techniques. Initially, we utilize the labeled
samples to train a geometry classifier and a KPI predictor.
We employ the classifier to eliminate geometrically infeasible
designs from unlabeled data. For the remaining feasible designs,
the predictor is applied to predict their KPIs. Since not all
predictions of the trained metamodels are accurate and reliable,
we introduce a confidence score using Monte-Carlo dropout to
obtain trustworthy predictions as pseudo-labels for unlabeled
data. Finally, the generated pseudo-labels and original labeled
data are jointly used for metamodel retraining. The results show
that the original dataset can be iteratively expanded in a short
period of time, and the performance of both metamodels is
improved.

Index Terms—electrical machine, finite element analysis, prob-
abilistic machine learning, Monte-Carlo dropout, semi-supervised
learning, self-training.

I. INTRODUCTION

With the growth of the electric vehicle industry, the electri-

cal machine, which serves as one of the core parts of the drive

chain, has gained more attention [1]. Permanent magnet syn-

chronous machines (PMSMs) are frequently utilized because

of their excellent characteristics, including high efficiency,

high power density, and compact size [2], [3]. However, opti-

mizing PMSM has the challenge of lengthy computation time

caused by applying finite element analysis (FEA). Speeding

up the optimization process has become a key area of cur-

rent study. Hence, researchers are increasingly directing their

attention to metamodel-based optimization approaches [4].

The machine learning technique has become popular among

many metamodels for its high prediction accuracy and rapid

computation speed [5]. In [6], a convolutional neural network

(CNN) was trained to predict torque using a large amount

of cross-sectional images of a PMSM as input. This method

greatly decreased the computing cost of topology optimization

while ensuring the optimization’s reliability. In [7], the CNNs

were implemented combined with transfer learning to handle

small datasets and further accelerate the optimization process.

Since the dimensions of images as input are large, the study

[8] proposed to use simplified finite element models to reduce

computation time. To predict efficiency maps of electrical

machines, an approach using a CNN and a recurrent neural

network (RNN) was introduced [9]. The CNN was adopted for

flux linkage calculation, and the RNN was trained to predict

a sequence of efficiency values. Another work [10] provided

a comprehensive comparison between parameter-based and

image-based metamodels. The results showed that parameter-

based neural networks (NNs) possessed better prediction accu-

racy and less computational burden, while image-based NNs

were better able to handle reparametrization. Moreover, in

[11], different machine learning metamodels were employed

for high-speed electrical machine optimization considering

multiphysics coupling characteristics. During the optimization,

a geometry classifier was used to filter out invalid design

solutions. At present, an automatic design system for interior

PMSMs was proposed [12]. With the help of a generative

adversarial network, numerous rotor images were generated,

which were later fed to a trained CNN to predict magnet flux

linkage and d- and q-axis inductances.

So far, all of the above studies are based on supervised

learning [13]. It requires a large quantity of well-labeled sam-

ples to train the metamodel properly in order to obtain good

generalization ability. Nevertheless, in the field of design op-

timization for electrical machines, if a large dataset is desired

for metamodels, the time required to collect samples using

FEA is substantial. To solve this issue, we proposed a semi-

supervised method for generating more data from a relatively

small dataset obtained by FEA. Semi-supervised learning is a

recent type of machine learning technique developed over the

past decade. The idea aims to address the problem of reduced

performance in conventional supervised learning due to a lack

of training data by using unlabeled data during model training

with limited labeled data [14]. It has been widely used in

various fields of research, such as object detection [15], fault



diagnosis [16], medical diagnosis [17], and power engineering

[18]. Self-training is an important learning technique in semi-

supervised learning [19]. The main idea is to find a way to

augment the labeled dataset with unlabeled datasets. In [20],

a self-training framework was provided to iteratively produce

data samples for expanding the training set. The classifier was

then retrained after every iteration, and its performance was

improving progressively.

In this study, we present a self-training framework utilizing

semi-supervised learning to label unlabeled data to expedite

the sampling procedure. In the beginning, a classifier (geom-

etry checker) and a regression model (predictor) are trained

using initial data labeled by FEA. This classifier examines

design feasibility, while the regression model predicts the key

performance indicators (KPIs) of the feasible designs, such as

maximum torque and maximum power. Next, pseudo-labels

are created by applying a confidence score to filter out certain

predictions made by the trained models on unlabeled data, as

not all predictions are expected to be trusted. The probabilistic

metamodel, namely the Monte-Carlo (MC) dropout [21], is

introduced to offer uncertainty information. Subsequently, the

filtered pseudo-labels are integrated with the initial labeled

data, and retraining is conducted on the combined dataset. The

entire process can be repeated many times until convergence

is reached.

II. FRAMEWORK AND DATASET

A. Self-training Framework

The proposed self-training framework is illustrated in Fig.

1. First of all, Latin hypercube sampling (LHS) was utilized

to generate sample vectors due to its efficient coverage of

design parameter space. The samples were then identified as

geometrically valid and invalid designs. Valid designs were

calculated via FEA to obtain corresponding KPIs. All of the

above was accomplished through the simulation toolchain we

have developed. At this point, we had two initial datasets: one

containing only labels about whether the design was valid,

was used to train the classifier, and the other with simulated

KPIs was used to train the predictor that predicted KPIs for

valid samples. Subsequently, the detailed steps are described

as follows:

1) Train: We utilized the initial dataset to train a geometry

checker for the first time. The other dataset with simu-

lated KPIs was fed to a regression metamodel to predict

KPIs.

2) Classify: A large amount of data was generated via LHS.

The geometry checker was then employed to separate

these data into pseudo valid and invalid ones. Further

categorization was done based on the confidence scores

from probabilistic classifier. We discarded the data with

high uncertainty.

3) Select: Due to the fact that the initially trained classifier

had a certain number of classification errors, we applied

the Mahalanobis distance [22] to calculate the similarity

of the data with pseudo-labels to the initial dataset
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Fig. 1. Proposed self-training framework based on semi-supervised learning.
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Fig. 2. Difference between Mahalanobis distance and Euclidean distance.

in order to remove the outliers from the data. The

Mahalanobis distance can be seen as a modification

of the Euclidean distance, correcting the problem that

the dimensions are scale-inconsistent and correlated, as

shown in Fig. 2. It can be expressed as follows:

DM =
√

(xi − xj)S−1(xi − xj), (1)

where xi is the data point with pseudo-label and xj is

the data point from the initial dataset. S−1 describes the

covariance matrix for initial labeled samples.
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Fig. 3. Workflow of simulation toolchain.

4) Predict: The trained predictor was then adopted to

predict KPIs for the selected pseudo valid data. Up

until this point, we obtained new data with pseudo-labels

regarding predicted KPIs.

5) Add: Following the selection process, pseudo valid and

invalid data were incorporated into an initial dataset. In

addition, the data with predicted KPIs were added to the

other initial dataset.

6) Retrain: With the help of this new integrated dataset,

we retrained the classifier and predictor to achieve better

prediction performances.

This approach can be repeated iteratively until the metamodel’s

performance no longer improves with new joint dataset.

B. Initial Dataset Generation

In this study, the initial datasets were obtained through an

in-house automatic simulation toolchain. The workflow of this

simulation process is illustrated in Fig. 3. In the beginning,

the design parameters generated by LHS were integrated

with the machine template to construct 2D models in the

commercial software Altair FLUX. After eliminating all the

invalid designs, FEA was conducted on the remaining designs

based on 30 operating points (combination of armature current

Ia and current phase angle β). In the post-processing stage,

we obtained the current-dependent maps by interpolation. A

loss-based optimization was then performed to achieve speed-

torque maps. Finally, the KPIs for each design were extracted.

Our machine template was a PMSM with V-magnets, as

shown in Fig. 4. A total of 13 input design parameters and

four KPIs were included in the dataset. Table I shows the

parameters about the reference machine. The initial training set

for the classifier included 3002 samples (1637 valid designs,

1365 invalid designs), while the initial training set for the KPI

predictor contained 1473 samples. The number of samples in

two test sets was 166 and 82, respectively.

III. TRAINING OF NEURAL NETWORKS AND RESULTS

A. MC Dropout

Unlike traditional deterministic (point) prediction, proba-

bilistic metamodels provide additional information on pre-

diction uncertainty along with point prediction. In [23], it
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Fig. 4. Reference PMSM geometry with partial design parameters.

TABLE I
DETAILS OF REFERENCE MACHINE PARAMETERS

Symbol Design parameter Min. Max. Unit

d1 Distance from duct bottom to shift 2.0 24.0 mm

d2 Duct opening width 1.0 5.0 mm

d3 Magnet thickness 3.0 6.5 mm

d4 Magnet width 26.0 48.0 mm

d5 Duct thickness 2.0 5.5 mm

d6 Rib height 0.5 2.0 mm

d7 Slot wedge maximum width 3.8 7.0 mm

d8 Slot body bottom width 6.6 9.8 mm

d9 Rib width 1.0 15.0 mm

d10 Minimum distance between side magnets 1.0 22.0 mm

d11 Slot opening width 1.8 3.2 mm

d12 Slot opening height 0.3 1.6 mm

d13 Slot wedge height 1.5 4.2 mm

Constant parameter Value

c1 Number of poles 6 -

c2 Number of stator slots 36 -

c3 Inverter voltage 650.0 V

c4 Inverter current (RMS) 300.0 A

Indicator

k1 Maximum torque Nm

k2 Maximum power kW

k3 Torque ripple at maximum torque Nm

k4 Efficiency at corner point %

has been proven that a neural network with dropout layers

before each hidden layer is mathematically close to a Gaussian

process. Below is the key for implementing the MC dropout

method: Add a dropout layer with a suitable dropout rate

before each hidden layer, no matter if it is the first or last

hidden layer. The work [21] suggests using l2 regularization

when the objective is to enhance uncertainty as it moves away

from the data. It is also important to note that the dropout

layers in a traditional NN are activated during training and

deactivated during prediction. However, for a probabilistic NN

using MC dropout, the dropout layers remain active during

both the training and prediction phases, which means that
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Fig. 5. MC dropout neural network architecture with two residual blocks.

each forward pass yields a slightly different prediction. The

mean and standard deviation of n times prediction values can

be considered as the final point estimation and uncertainty

quantification, respectively [24].

B. NN Architecture and Training

In our work, we employed deep NNs with residual blocks

[25] for both the classifier and regression model. Fig. 5 shows

the architecture of the NN with two residual blocks. As the

depth of the network continues to increase, model training

becomes difficult, and the network degrades. Therefore, this

issue can be well solved by adding residual blocks [25]. Each

dense layer began with a dropout layer. We also applied layer

normalization after each dense layer and before the activation

function to enhance the stability and convergence speed of the

NN [26].

All the data from initial datasets were preprocessed using

z-score normalization to eliminate the effect of scale between

different feature data [27], which can be described as follows:

x
′

=
x− µ

σ
, (2)

where µ is the mean of data, and σ is the standard deviation

of data. The performance of NNs is greatly influenced by

the selection of hyperparameters, such as learning rate, the

quantity of neurons per dense layer, optimizer, and so on.

Furthermore, since we introduced dropout layers and residual

blocks, additional hyperparameters namely dropout rate and

the number of residual blocks, need to be determined before

training. To lessen the computational burden, trial and error

was performed at the beginning to reduce the range of each

hyperparameter. The random search optimization was then

TABLE II
DETAILS OF HYPERPARAMETERS

Hyperparameter
Optimized values

Classifier Predictor

Learning rate 1.0 · 10
−2

0.4 · 10
−2

Dropout rate 1.0 · 10
−1

0.5 · 10
−1

Activation function ELU ELU

Number of neurons 32 106

Number of residual blocks 1 2

Optimizer Adam Adam

TABLE III
CONFUSION MATRIX

Predicted

1 0

Actual
1 TP FN

0 FP TN

executed to determine the final hyperparameter values. The

5-fold cross-validation was utilized to ensure reliability. In

addition, we also applied early stopping techniques during

the training process to avoid overfitting. The determined

hyperparameters are summarized in Table II.

In order to evaluate the prediction accuracy of KPI predic-

tor, the evaluation metrics, namely symmetric mean absolute

percentage error (SMAPE) and coefficient of determination

(R2) were applied. SMAPE is a correction for mean absolute

percentage error, which better avoids the problem of the

calculation being too large due to small actual values. R2

measures how well the model approximates the actual data.

They are expressed as below:

SMAPE =
100%

N

N
∑

i=1

|yi − y∗i |

(|yi|+ |y∗i |)/2
, (3)

R2 = 1−

∑N

i=1
(yi − y∗i )

2

∑N

i=1
(yi − ȳ)2

, (4)

where N represents the number of test data. y∗i describes the

prediction value and ȳ is the average true value. To assess

the degree of uncertainty, the prediction interval normalized

average width (PINAW) was introduced, which assesses the

quality of predictive intervals. It can be calculated by:

PINAW =
1

N ·R

N
∑

i=1

(y∗Ui − y∗Li ), (5)

where R represents the range of point predictions. y∗Ui and y∗Li
are the predicted upper and lower bounds of the confidence

interval, respectively. To evaluate the quality of classification,

we calculated the true positive rate (TPR) and the false positive

rate (FPR):

TPR =
TP

TP + FN
, (6)

FPR =
FP

FP + TN
. (7)



TABLE IV
EVALUATION SUMMARY OF KPI PREDICTOR BASED ON DIFFERENT

DATASETS

Dataset KPI R
2 SMAPE PINAW

Initial

(1555 samples)

k1 0.971 2.053 0.263

k2 0.963 3.209 0.259

k3 0.823 10.37 0.344

k4 0.585 0.569 0.279

Iteration 1

(2503 samples)

k1 0.982 1.794 0.209

k2 0.971 2.879 0.192

k3 0.860 9.645 0.245

k4 0.614 0.539 0.226

Iteration 2

(4042 samples)

k1 0.991 1.605 0.167

k2 0.980 2.713 0.157

k3 0.876 9.237 0.194

k4 0.652 0.537 0.155

The meaning of TP , FN , FP , and TN are demonstrated in

Table III.

C. Training Results

After initially training the classifier and predictor, we uti-

lized LHS to create 10000 candidate designs for pseudo-

label generation. These 10000 candidates contained only the

input design parameters, i.e., they did not have any simulation

information. Moreover, they encompassed both feasible and

infeasible designs. The geometry checker initially eliminated

any infeasible designs. Next, the KPI predictor was used

to forecast the remaining feasible designs. A total of 2852

data points with low uncertainty were obtained after passing

through the classifier. The average of the largest and small-

est standard deviations in the predictions was taken as the

boundary to distinguish between low and high uncertainty.

Subsequently, 162 samples were further filtered out using

Mahalanobis distance. We obtained 2690 samples with valid or

invalid pseudo-labels, which were added to the initial dataset

for the classifier. Furthermore, the samples with valid pseudo-

labels were then fed to the KPI predictor. Finally, 948 samples

with low uncertainty were acquired with KPI pseudo-labels,

which were also integrated into the initial dataset for the

predictor. The prediction performance of the KPI predictor

based on the initial dataset and the expanded dataset after the

first iteration is demonstrated in Fig. 6. The commonly used

95% uncertainty intervals (UIs) were calculated. It can be seen

that the prediction accuracy of the metamodel obtained by

training on the extended dataset increased and the uncertainty

decreased. The specific values of the evaluation metrics are

shown in Table IV. Fig. 7 illustrates the receiver operating

characteristic (ROC) curves [28] based on different datasets.

The areas of the ROC curves, also known as area under curves

(AUC) [29], were calculated to evaluate the performance of

the classifier. In the case of the trained classifier based on the

expanded dataset after iteration 1, the AUC was larger, which

indicated better classification ability.

(a)

(b)

Fig. 6. Prediction performance of KPI predictor based on initial dataset and
expanded dataset after first iteration. (a) Initial dataset. (b) Expanded dataset.

Fig. 7. ROC curves of geometry classifier.

We did a second iteration to further confirm the effectiveness

of the self-training framework. The whole second iteration

procedure mirrored the first iteration. Following the selection
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algorithm, we obtained 4248 samples with low uncertainty for

the expanded classifier dataset. After the KPI prediction phase,

1539 samples with KPIs predicted by the metamodel were

added to the dataset. Based on the expanded dataset after the

second iteration, the classifier and the predictor were retrained

once more. The detailed predictor performance is listed in Ta-

ble IV. As the dataset size rose, the prediction accuracy of the

metamodel improved. Furthermore, the associated predictive

uncertainty diminished. The confusion matrix with specific

threshold 0.5 is displayed in Fig. 8. In this case, the classifier

trained based on the dataset obtained after the second iteration

had the best classification performance.

D. Limitations

Our proposed self-training framework could create more

training data through continuous iteration. This allowed us

to update the metamodels with a growing dataset, leading to

ongoing improvement in prediction accuracy. However, since

the new data were obtained through model predictions, they

deviated from the real data. We then added the new data to the

initial dataset, which could contaminate the original dataset.

As a result, we employed a two-step selection procedure to

eliminate as many unreliable predictions as possible. This

process involved initially assessing the predictions based on

their uncertainty, followed by applying Mahalanobis distance

to remove any remaining outliers. Nevertheless, it is im-

practical to completely ensure the elimination of all data

that drastically deviates from the ground truth. Hence, once

the extended dataset reaches a specific threshold of noise,

the metamodel’s performance will stop to increase and may

even decline. Additionally, the original dataset has to fulfill

certain requirements, namely, the initially trained metamodels

need to possess a certain level of prediction accuracy. If the

metamodel is initially inaccurate, the subsequent generated

data will progressively diverge more and more from the true

values.

IV. CONCLUSION

In this paper, we proposed a self-training framework based

on semi-supervised learning to enlarge initial datasets. Two

metamodels, namely the geometry classifier and KPI predictor,

collaborated to produce pseudo-labels for unlabeled samples.

We applied the probabilistic metamodel MC dropout to en-

hance the quality of the pseudo-labeled data. It not only

offered point predictions but also provided the uncertainty

associated with those predictions. The results showed that

each iteration of this approach quickly produced pseudo-

labeled samples to augment the original datasets. Increasing

the dataset size enhanced the performance of the classifier and

predictor. The uncertainty of the forecast outcomes was also

reduced. In future work, this method will be combined with

multi-objective optimization for various electrical machines.

Furthermore, it would be an important research direction to

partially replace FEA to generate sufficient data quickly.
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