KIT | KIT-Bibliothek | Impressum | Datenschutz

Uncertainty Quantification-Based Multi-Objective Optimization Design of Electrical Machines Using Probabilistic Metamodels

Chen, Nuo ORCID iD icon 1; Digel, Christian 1; Doppelbauer, Martin 1
1 Elektrotechnisches Institut (ETI), Karlsruher Institut für Technologie (KIT)

Abstract:

In the design optimization stage of an electrical machine, metamodeling has been widely used to calculate key performance indicators such as electromagnetic torque and torque ripple. It is a data-driven approach that replaces computationally expensive simulations by creating metamodels with lower computational costs. However, in practical scenarios, there exists inherent uncertainty in the modeling process. Current methods with metamodels offer deterministic estimations, thereby failing to provide further information to support the optimization. In this paper, an uncertainty quantification-based optimization design of electrical machines is proposed. First, the Bayesian neural network and Gaussian process regression as probabilistic metamodels are trained on a dataset generated by finite element analysis. Subsequently, the metamodel showing better performance is selected to aid in the following optimization process. At the end, we combine the acquired uncertainty information with multi-objective optimization and present two optimization strategies: 1) Separate optimizations using the confidence bound values or the point estimation value. ... mehr


Originalveröffentlichung
DOI: 10.1109/TEC.2024.3454755
Scopus
Zitationen: 2
Dimensions
Zitationen: 1
Zugehörige Institution(en) am KIT Elektrotechnisches Institut (ETI)
Publikationstyp Zeitschriftenaufsatz
Publikationsmonat/-jahr 06.2025
Sprache Englisch
Identifikator ISSN: 0885-8969, 1558-0059
KITopen-ID: 1000174541
Erschienen in IEEE Transactions on Energy Conversion
Verlag Institute of Electrical and Electronics Engineers (IEEE)
Band 40
Heft 2
Seiten 860–872
Schlagwörter Electrical machine, probabilistic metamodels, Bayesian neural network, Gaussian process regression, uncertainty quantification, design optimization
Nachgewiesen in OpenAlex
Scopus
Dimensions
KIT – Die Universität in der Helmholtz-Gemeinschaft
KITopen Landing Page