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A B S T R A C T

The analysis of bubbly two-phase flows is challenging due to their turbulent nature and the need for intrusive
phase-detection probes. However, accurately characterizing these flows is crucial for safely designing critical
infrastructure such as dams and their appurtenant structures. The combination of dual-tip intrusive phase-
detection probes with advanced signal processing algorithms enables the assessment of pseudo-instantaneous
1-D velocity time series; for which the limitations are not fully fathomed. In this investigation, we theoretically
define four major sources of error, which we quantify using synthetically generated turbulent time series,
coupled with the simulated response of a phase-detection probe. Based on the analysis of 1010 simulated
bubble trajectories, our findings show that typical high-velocity flows in hydraulic structures hold up to 15%
error in the mean velocity estimations and up to 35% error in the turbulence intensity estimations for the
most critical conditions, typically occurring in the proximity of the wall. Based on thousands of simulations,
our study provides a novel data-driven tool for the estimation of these baseline errors (bias and uncertainties)
in real-word phase-detection probe measurements of bubbly flows (air concentrations 𝑐 < 40%).
1. Introduction

Bubbly flows are relevant in many engineering applications, such
as nuclear power reactors (Vernier and Delhaye, 1968), industrial
pipe flows (Beggs and Brill, 1973) or self-aerated flood spillways of
dams (Straub and Anderson, 1958). In the latter, flows can reach
very high Reynolds numbers (Cain, 1978; Hohermuth et al., 2021a),
with very high energy levels and severe consequences when poorly
designed (Vahedifard et al., 2017; Wahl et al., 2019). Those flows
require careful assessment of their properties and are typically studied
under laboratory conditions, due to difficulty of access and violent flow
conditions in prototypes.

Measuring self-aerated flow properties is complicated since classic
instrumentation is typically limited to air concentrations (𝑐) smaller
than a few percents (Chanson, 2013). Pitot tubes (Matos et al., 2002) or
Acoustic Doppler Velocimetry (ADV) (Nikora and Goring, 1998; Matos
et al., 2002) are adversely affected by the presence of air bubbles, es-
pecially at higher concentrations. Other instrumentation such as Laser
Doppler Velocimetry (LDV) (Jones and Delhaye, 1976) and Particle
Image Velocimetry (PIV) (Hornung et al., 1995), or photography are
typically limited to just a few centimetres close to side walls due
to limited visual accessibility (Bung and Valero, 2016; Zhang and
Chanson, 2018; Kramer and Valero, 2020).
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The most commonly used instrumentation – applicable over a wide
range of void fractions – are dual-tip phase-detection probes, com-
prising conductivity (CP) or fibre optic (OF) probes. The former syn-
chronously samples the flow resistivity (different for air and water),
while the latter does the same for the light refraction, likewise different
for air and water. Both probe types lead to very similar results, with
OF probes offering improved detectability for smaller bubble sizes at
the cost of more fragile probes (Felder and Pfister, 2017; Felder et al.,
2019). Over the last few decades, dual-tip phase-detection probes with
varying probe geometries have been applied in a large range of flow
conditions by numerous studies, a selection of which is given in Table 1.

With both probe types, the cross-correlation of sampled signals can
yield the time-averaged velocity estimation through:

𝑢 = 𝛥𝑥∕𝜏, (1)

with 𝛥𝑥 being the streamwise tip separation and 𝜏 the time-lag cor-
responding to the maximum cross-correlation between leading and
trailing tip signal (e.g. Chanson, 2013).

Recently, Eq. (1) has been extended to allow multiple, pseudo-
instantaneous velocity estimations by prior segmentation of the sig-
nal into small windows containing a pre-defined number of particles
(𝑁𝑝). This so-called Adaptive-Window Cross-Correlation (AWCC) algo-
rithm (Kramer et al., 2019, 2020), has enabled improved turbulence
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Table 1
Selected studies with application of dual-tip phase-detection probes in aerated, high-velocity chute or tunnel flows, including key parameters of
flow conditions (time-averaged velocity 𝑢, turbulence intensity T𝑢) and of air–water flow instrumentation (streamwise and lateral tip separations
𝛥𝑥 and 𝛥𝑦, and sampling frequency 𝑓𝑠).
Reference 𝑢 T𝑢 𝛥𝑥 𝛥𝑦 𝑓𝑠 Comment

[ms−1] [−] [mm] [mm] [kHz]

Cain (1978) 12–22 n/a 101.6 0 8 Smooth spillway (prototype)
Chanson and Toombes (2002) 1–3.5 n/a 8 0 20 Stepped spillway
Boes and Hager (2003) up to 7 n/a 1.2–2.1 0 ≤ 800 Stepped spillway
Felder and Chanson (2015) n/a 1.2 7.2 2.1 1–40 Stepped spillway
Bung (2011) ≈ 3.5 n/a 5.1 1 25 Stepped spillway
Meireles et al. (2012) ≈ 4.5 n/a n/a n/a n/a Stepped spillway
Felder and Chanson (2016) ≈ 2–4 n/a 7.2 2.1 20 Stepped spillway
Zhang and Chanson (2016) ≈ 3.5 n/a n/a n/a 20 Stepped spillway
Felder and Chanson (2017) 2–5 1-1.4 7.2 0 20 Stepped spillway
Felder and Pfister (2017) up to 7.5 0.8–4 1.77–5.17 0–1.05 500 Stepped spillway
Felder et al. (2019) 4–22 n/a 5.06 0.97 500 Tunnel chute
Kramer et al. (2019) 2–6 0.1–0.5 4.7 n/a 20 Stepped spillway
Kramer and Valero (2020) 2–12 0.05–0.25 5.06 0.97 n/a Tunnel chute
Hohermuth et al. (2021a) 23–38 n/a 2 n/a 500 Tunnel chute (prototype)
Hohermuth et al. (2021b) 0.2–12 n/a 4.07–5.36 1–1.41 500 Tunnel chute
Nina et al. (2022) 4 0.25–2 6.2 1.35 500 Stepped spillway
Cui et al. (2022) up to ≈ 4 n/a 8.104 n/a 40 Grass-lined spillway
Felder et al. (2023) 4 n/a 4.85 1.1 20 Micro-rough spillway
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estimations compared to full signal cross-correlation (FSCC) based tech-
niques (Kramer et al., 2021). This is supported by a recent comparison
of the FSCC and AWCC approaches to a manual bubble identification
(MBI) approach for estimating time-averaged velocities and turbulence
intensities in a hydraulic jump (Wang et al., 2021). In the lower jet-
shear region, Wang et al. (2021) reported median relative errors of
6% for mean velocities and underestimations of turbulence intensities
by 32% when estimated with AWCC (𝑁𝑝 = 15), compared to the

BI approach. The FSCC approach resulted comparable mean velocity
rrors of 4%, but substantially larger turbulence intensity errors if
90%.

Considering the substantial amount of manual data processing as-
ociated with MBI, AWCC presents an expedient alternative for mean
elocity and turbulent intensity estimations in highly aerated flows
ith dual-tip phase-detection probes. However, careful assessment of
iases, errors and limitations is required to shed light on measurement
ncertainties and baseline errors.

Hohermuth et al. (2021b) and Pagliara et al. (2023) found that
stimated velocities might be underestimated due to surface-tension
ffects that can cause a deceleration of bubbles during the interaction
ith the probe tips, with typical errors in the range of 5%–10%. This
ias can be reduced to errors below 2% with a proposed correction
cheme (Hohermuth et al., 2021b; Pagliara et al., 2023). Additional
ncertainties may arise from an implicit smoothing of the true turbulent
elocity time series introduced by the AWCC algorithm by processing
he signal in segments containing 𝑁𝑝 particles, as addressed by Kramer
t al. (2020) and later discussed by Chanson (2020) and Kramer et al.
2021). The magnitude of the smoothing depends on the time scale
f the turbulent fluctuations  , the bubble detection frequency, and
he number of bubbles per window. While reducing 𝑁𝑝 reduces the

smoothing effect, it also increases the probability of wrongly matching
phase-change events (Kramer et al., 2021). To overcome the smooth-
ing effect for turbulence estimations, Kramer et al. (2020) suggest a
method to extrapolate turbulence intensities to single particle statistics.
However, this method requires calibration to the given flow conditions.

Additional uncertainties emerge from the one-dimensional flow as-
sumption, despite frequently measuring in flows characterized by three-
dimensional turbulence. Based on Monte Carlo simulations, Wang et al.
(2018) found non-negligible uncertainty of dual-tip probes for bub-
bly flow measurement related to three-dimensional turbulence, probe
geometry, and bubble properties (size, aspect ratio, and orientation).
Since Wang et al. (2018) compared velocity estimations based on
single-event detection to ground truth velocities, those results are not
directly transferable to velocity estimations obtained with the AWCC
 i

2 
algorithm, which is a well established methodology for high-velocity,
highly aerated spillway flows.

In this study, we produce synthetic signals by using synthetic tur-
bulent velocity time series generated based on the Langevin equation,
which features power-law spectra with −6/3 slope (Bibbona et al.,
008), and adapted to laboratory-scale spillway flow properties sam-
led in Bürgler et al. (2023a,b) with LDA, while covering a wide
ange of flow conditions encompassing also prototype measurements.
e simulate the response of phase-detection probes by reproducing

ynthetic voltage signals, which can thereafter be processed with the
WCC algorithm. By doing so, we have full access to the generated
ignal properties and the sampled true flow properties, both in terms of
ir concentrations and turbulent velocity statistics. This allows to inves-
igate the effect of flow properties and instrumentation characteristics
n measurement uncertainty and to identify key mechanism resulting in
ias or random errors of estimated flow properties. Building on dozens
f thousands of synthetic turbulence and instrumentation response
imulations, we expand on previous simpler error analysis (Kramer
t al., 2019, 2020; Chanson, 2020; Kramer et al., 2021; Wang et al.,
018, 2021) and provide a novel tool to estimate uncertainty of future
ir–water flow studies.

. Methods

Stochastic velocity time series are well suited to investigate accu-
acy and limitations of air–water flow instrumentation, such as phase-
etection probes (e.g. Bung and Valero, 2017; Valero et al., 2019;
ramer, 2019; Kramer et al., 2019; Bürgler et al., 2022). In this study,
e develop an open-source software for simulating phase-detection
robe measurements within bubbly flows (Bürgler et al., 2024b). The
oftware allows to generate stochastic velocity time series representa-
ive of turbulent flows. The trajectories of randomly generated bubbles
re determined using the stochastic velocity time series, while neglect-
ng phase-slip. The bubbles are tracked relative to the tips of a virtual
ual-tip phase-detection probe, while recording any intersection in the
orm of synthetic voltage signals.

The synthetic signals are then post-processed using the AWCC al-
orithm of Kramer et al. (2019), including latest filtering methods
y Kramer et al. (2020), to recover various flow properties, such
s the pseudo-instantaneous velocity time series, the time-averaged
elocity, the turbulence intensity, or the air concentration. Since phase-
etection probes sample the dispersed phase (e.g. Crowe, 2005), the
easurement error is quantified between recovered flow properties and
mposed bubble flow properties.
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Fig. 1. Workflow to generate stochastic velocity time series and synthetic phase-
detection probe signals, as well as signal post-processing. Input parameters are the
mean (time-averaged) fluid velocity 𝐮𝑓 , turbulence intensity 𝐓𝑢, integral time scale  ,
bubble diameter 𝑑𝑏, air concentration 𝑐, probe tip locations 𝐏𝑗 , sampling frequency 𝑓𝑠,
number of particles per window 𝑁𝑝, and cross-correlation based filtering threshold .

Bubble-probe interaction effects are not included in this method-
ology (see Hohermuth et al., 2021b, and Pagliara et al., 2023), at
the expenses of allowing results independent of the dual-tip probe
diameter; or, in other words, assuming that the tip diameter is small
enough compared to the bubble size.

This workflow is depicted in Fig. 1. For the workflow presented
herein, we assume that the main flow direction is aligned with the 𝑥
coordinate axis, the 𝑦 coordinate axis represents the transversal and 𝑧
the wall-normal direction.

2.1. Stochastic velocity time series

The stochastic 3-D velocity time series of the fluid 𝑢𝑖,𝑓 (𝑡) for 𝑖 =
𝑥, 𝑦, 𝑧 is generated with the Langevin equation in finite difference
form (Pope, 2000):

𝑢𝑖,𝑓 (𝑡 + 𝛥𝑡𝑟) = 𝑢𝑖,𝑓 (𝑡) −
(

𝑢𝑖,𝑓 (𝑡) − 𝑢𝑖,𝑟𝑒𝑎𝑙
) 𝛥𝑡𝑟
𝑖,𝑟𝑒𝑎𝑙

+ 𝑢𝑟𝑚𝑠,𝑖,𝑟𝑒𝑎𝑙

√

2𝛥𝑡𝑟
𝑖,𝑟𝑒𝑎𝑙

𝜉𝑖(𝑡), (2)

here 𝑢𝑟𝑚𝑠,𝑖,𝑟𝑒𝑎𝑙 = 𝑢𝑖,𝑟𝑒𝑎𝑙T𝑢,𝑖,𝑟𝑒𝑎𝑙 is the root mean square (RMS) velocity
fluctuation, 𝑢𝑖,𝑟𝑒𝑎𝑙 the mean (time-averaged) velocity, T𝑢,𝑖,𝑟𝑒𝑎𝑙 the turbu-
lence intensity, 𝑖,𝑟𝑒𝑎𝑙 the integral time scale, and 𝛥𝑡𝑟 is the discrete time
step. 𝜉𝑖(𝑡) ∼  (0,1) are the respective components of a standardized
multi-variate Gaussian random variable with zero mean. The diagonal
elements of the covariance matrix are equal to 1 and the off-diagonal
elements are zero with exception of 𝜌𝑥𝑧,𝑟𝑒𝑎𝑙 = −0.45, taking into account
the velocity covariance typically defining the shear stress in boundary
layer flows (Pope, 2000).

2.2. Synthetic signal generation

We assume a control volume with edge lengths 𝐿𝑖 = max(𝛥𝑃𝑖,𝑗 ) +
2𝑑 , with max(𝛥𝑃 ) being the maximum distance in 𝑖-direction
𝑏,𝑟𝑒𝑎𝑙 𝑖,𝑗

3 
between the 𝑗th probe tips, and 𝑑𝑏,𝑟𝑒𝑎𝑙 being the bubble diameter. The
virtual phase-detection probe is located at the centre of the control
volume. Then, a finite number of bubbles is defined as 𝑁𝑏 = 𝑓𝑏 ⋅ 𝑇 ,
where 𝑇 is the duration of the stochastic velocity time series and
𝑓𝑏 = 1.5𝑐𝑟𝑒𝑎𝑙 ||𝐮𝑟𝑒𝑎𝑙|| ∕𝑑𝑏,𝑟𝑒𝑎𝑙 is the bubble count rate, with |

|

𝐮𝑟𝑒𝑎𝑙|| being the
agnitude of the time averaged velocity. For each bubble 𝑘, an arrival

time 𝑡𝑎,𝑘 is defined assuming equal inter-arrival times 𝑡𝑖𝑎𝑡 = 𝑇 ∕𝑁𝑏.

𝑎,𝑘 = 𝑘 ⋅ 𝑡𝑖𝑎𝑡 (3)

At the arrival time 𝑡𝑎,𝑘, bubble 𝑘 is then placed at random arrival
ocation in the 𝑦-𝑧 plane at the beginning of the control volume:

𝑘(𝑡𝑎,𝑘) =

⎛

⎜

⎜

⎜

⎝

−𝐿𝑥∕2
[−𝐿𝑦∕2,𝐿𝑦∕2]
[−𝐿𝑧∕2,𝐿𝑧∕2]

⎞

⎟

⎟

⎟

⎠

(4)

The trajectory of the 𝑘th bubble inside the control volume is ob-
tained by applying the first-order Euler method to the differential
equation 𝑢𝑖,𝑘(𝑡) = 𝜕𝑥𝑖,𝑘∕𝜕𝑡, yielding:

𝐱𝑘(𝑡 + 𝛥𝑡𝑟) = 𝐱𝑘(𝑡) + 𝐮𝑘(𝑡)𝛥𝑡𝑟 (5)

Therefore, we assume that the slip ratio between the bubble velocity
nd fluid velocity 𝐾 = 𝐮𝑏,𝑘∕𝐮𝑓 is equal to one. This is a typical

assumption for the prediction of velocities in aerated flows using phase-
detection probes (e.g. Cain, 1978; Chanson, 1988; Hohermuth et al.,
2021b).

To take into account the finite sampling frequency 𝑓𝑠 of the virtual
probe, the bubble trajectory time series 𝐱𝑘(𝑡) is resampled to a time step
𝛥𝑡𝑠 = 1∕𝑓𝑠 by linear interpolation. For each time 𝑡𝑠 of the 𝑘th bubble
trajectory, we evaluate whether bubble 𝑘 is pierced by probe tip 𝑗 based
on the inequality:

(𝑃𝑥,𝑗 − 𝑥𝑥,𝑘(𝑡𝑠))2 + (𝑃𝑦,𝑗 − 𝑥𝑦,𝑘(𝑡𝑠))2 + (𝑃𝑧,𝑗 − 𝑥𝑧,𝑘(𝑡𝑠))2

(𝑑𝑏∕2)2
< 1 (6)

The synthetic signal takes values of 1, if the sensor 𝑗 lies inside the
bubble (Eq. (6) satisfied), and 0 otherwise.

2.3. Signal processing algorithm

The AWCC algorithm breaks the synthetic signal into 𝑁 small
segments, each segment covering a group of 𝑁𝑝 particles detected
by the leading tip. Extending Eq. (1), the pseudo-instantaneous 1-D
velocity of the 𝑙th window is then estimated as:
[

𝑢𝑥,𝑙,𝑎𝑤𝑐𝑐
]𝑡𝑙+𝑇 ,𝑙
𝑡𝑙

= 𝛥𝑥∕𝜏𝑙 , (7)

where 𝑡𝑙 is the start time of the 𝑙th window, 𝑇 ,𝑙 is the window
duration, 𝛥𝑥 is the streamwise tip separation, and 𝜏𝑙 is the travel time of
particles within the 𝑙th window, estimated as 𝜏𝑙 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑅12,𝑙), where
𝑅12,𝑙 is the cross-correlation function between the leading and trailing
tip signals contained in the 𝑙th window.

A window is rejected if (Kramer et al., 2019, 2020):

𝑅12,𝑙,𝑚𝑎𝑥∕(𝑆𝑃𝑅2
𝑙 + 1) < , (8)

where 𝑅12,𝑙,𝑚𝑎𝑥 is the maximum cross-correlation coefficient, 𝑆𝑃𝑅𝑙 the
secondary peak ratio of window 𝑙 and the parameter  = 0.4, as
recommended by Kramer et al. (2020). Further, the measured velocity
time series are filtered iteratively until no more outliers are rejected,
using a robust outlier cutoff (ROC) filter (Valero et al., 2020) based on
the median (MED) and the median absolute deviation from the median
(MAD) as estimators of location and scale, based on the recommen-
dations of Wahl (2003). Rejected values are replaced by NaN values
(i.e., Not a Number), which do not contribute to statistical inference
of turbulence properties. To eliminate a sampling velocity bias due to

more particles passing the probe at large velocities, window duration
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weighted mean velocity and root mean square velocity fluctuations are
calculated as (Buchhave et al., 1979):

𝑢𝑥,𝑎𝑤𝑐𝑐 =
∑𝑁

𝑙=1 𝑤𝑙𝑢𝑥,𝑙,𝑎𝑤𝑐𝑐
∑𝑁

𝑙=1 𝑤𝑙

, (9)

nd:

𝑟𝑚𝑠,𝑥,𝑎𝑤𝑐𝑐 =

√

√

√

√

√

∑𝑁
𝑙=1 𝑤𝑙

(

𝑢𝑥,𝑙,𝑎𝑤𝑐𝑐 − 𝑢𝑥,𝑎𝑤𝑐𝑐
)2

∑𝑁
𝑙=1 𝑤𝑙

, (10)

with weights 𝑤𝑙 = 𝑇 ,𝑙. Finally, the turbulence intensity is calculated
as:

T𝑢,𝑥,𝑎𝑤𝑐𝑐 = 𝑢𝑟𝑚𝑠,𝑥,𝑎𝑤𝑐𝑐 ∕ 𝑢𝑥,𝑎𝑤𝑐𝑐 . (11)

For mean velocity estimates, we calculate the 95% confidence
ntervals as 𝑢 ± 1.96

√

𝑢2𝑟𝑚𝑠∕𝑁 , where 𝑁 is the number of pseudo-
nstantaneous velocity estimated obtained from the AWCC algorithm.
ssuming the instantaneous velocity follows a normal distribution, we
lso obtain the 95% confidence interval for root mean square velocity
luctuations as 𝑢𝑟𝑚𝑠 ± 1.96

√

𝑢2𝑟𝑚𝑠∕(2𝑁) (Benedict and Gould, 1996).
Further, the 95% confidence interval of turbulence intensity estimates
were calculated as T𝑢 ± 1.96

√

𝜎2T, with variance of the turbulence
ntensity 𝜎2T obtained through error propagation as:

2
T =

𝑢𝑟𝑚𝑠
𝑢

⎡

⎢

⎢

⎢

⎣

⎛

⎜

⎜

⎜

⎝

√

𝑢2𝑟𝑚𝑠∕𝑁

𝑢

⎞

⎟

⎟

⎟

⎠

2

+

⎛

⎜

⎜

⎜

⎝

√

𝑢2𝑟𝑚𝑠∕(2𝑁)

𝑢𝑟𝑚𝑠

⎞

⎟

⎟

⎟

⎠

2
⎤

⎥

⎥

⎥

⎦

. (12)

One of the effects we investigate in this research is the window-
veraging effect introduced by estimating the pseudo-instantaneous
elocity for a group of 𝑁𝑝 particles, which pass the probe during a time
indow 𝑇 ,𝑙. For this, we calculate the pseudo-instantaneous velocities

or each window 𝑙, by time-averaging the stochastic velocity time series
ver duration of the 𝑙th window:

𝑢𝑥,𝑙,𝑓
]𝑡𝑙+𝑇 ,𝑙
𝑡𝑙

= ∫

𝑡𝑙+𝑇 ,𝑙

𝑡=𝑡𝑙
𝑢𝑓,𝑥(𝑡) d𝑡 (13)

or conciseness, we denote
[

𝑢𝑥,𝑙,𝑓
]𝑡𝑙+𝑇 ,𝑙
𝑡𝑙

as ⟨𝑢𝑥,𝑓 ⟩𝑙
hereinafter.

Finally, the air concentration is estimated from the synthetic signal
f the leading tip 𝑆1(𝑡) as (e.g. Kramer et al., 2020)

= 1
𝑇 ∫

𝑇

𝑡=0
𝑆1(𝑡) 𝑑𝑡, (14)

where 𝑇 is the measurement duration.

2.4. Stochastic signals verification: velocity and phase functions

The workflow was verified by comparing velocity time series, mea-
sured with a Laser Doppler Anemometer (LDA), to stochastic velocity
time series with equivalent mean and root-mean square velocity fluctu-
ations. The velocity time series were sampled in the non-aerated region
of a laboratory scale spillway chute, at relative invert normal distances
𝑧∕ℎ of 0.03, 0.21 and 0.41, respectively, where ℎ is the flow depth. The
spillway is characterized by an inclination angle of 50◦, and an invert
roughness of 𝑘𝑠 = 0.74 mm. Further details on the experimental setup
can be found in Bürgler et al. (2023b).

The velocity time series were recorded for 120 s at a specific flow
rate of 0.2 m2s−1 at 3.67 m downstream of the broad-crested weir with
mean sampling rates of 924 Hz, 1310 Hz, and 1525 Hz, respectively.
The mean velocities, (turbulent intensities), and [integral time scales]
are 4.27 ms−1, 5.74 m2s−1, and 6.05 m2s−1, (0.19, 0.12, and 0.10), and
[0.03 s, 0.11 s, and 0.29 s], respectively.

For the sake of comparison, three stochastic velocity time series
were generated with equivalent flow properties and duration. The

power spectral densities obtained with the algorithm of Velte et al.

4 
(2014) for the measured and stochastic velocity time series are com-
pared in Fig. 2a. Therefore, the measured LDA time series were ad-
usted for irregular sampling by zero order interpolation (sample-and-
old) (e.g. Velte et al., 2014). The LDA spectra exhibit a −5/3 decay
ypical for turbulent flows. The measured time series contain more
nergy at smaller frequencies. Also, the decay begins at slightly larger
requencies and approaches a characteristic slope of −6/3, which is
ypical for a stochastic process described by the Langevin equation
i.e., Ornstein–Uhlenbeck process) (Bibbona et al., 2008). It should be
oted that additional noise in the LDA signals (filtered) may lead to
ertain deviations when compared to the stochastic signals. Neverthe-
ess, the stochastic time series reproduce the essential characteristics
f turbulent flow, including the mean velocity, turbulence intensity,
ntegral time scale, as well as the velocity covariance in the 𝑥−𝑧 plane
Fig. 2a). Also, the frequency distribution of the instantaneous velocity
around the mean (𝑢), normalized by the standard deviation (𝜎) are

well reproduced by the stochastic time series (Fig. 2b–d).
For further verification of the proposed methodology, we compare

synthetic signals to measured phase-detection probe signals recorded
in the aerated region of the previously described experimental setting.
The signals were recorded at a location 𝑥 = 8.17 m downstream
of the spillway crest. Synthetic signals were generated for the same
flow conditions and instrumentation characteristics. For more detail
we refer again to Bürgler et al. (2023b). The visual comparison of the
binarized, measured and synthetic signals in Fig. 2e and f, respectively,
eveals fundamental similitude. Also the flow properties obtained from
rocessing the signals with the AWCC algorithm, including the air
oncentrations (𝑐), bubble count rates (𝑓𝑏), Sauter mean diameter

(𝑑32 = 1.5𝑐𝑢𝑥,𝑎𝑤𝑐𝑐∕𝑓𝑏), and time-averaged velocities 𝑢𝑥,𝑎𝑤𝑐𝑐 are similar
in the physical data and the generated stochastic series (cf. Fig. 2e–
f ). Moreover, we verified that the distributions of air chord length 𝑙𝑐ℎ,𝑎
determined from the synthetic signals – when the latter were generated
with a prescribed bubble diameter 𝑑𝑏 – are in agreement with the
theoretical air chord length distribution 𝑃 (𝑙𝑐ℎ,𝑎|𝑑𝑏) = 𝑙𝑐ℎ,𝑎∕(2(𝑑𝑏∕2)2) for
andomly pierced, spherical bubbles with diameter 𝑑𝑏 (see Tab. 1 in
lark and Turton, 1988).

. Key mechanisms defining the baseline errors

In this section, we theoretically address the key mechanisms defin-
ng the baseline errors occurring during the estimation of flow proper-
ies in bubbly turbulent flows. Before the systematic quantification of
hese errors, we elaborate on four main mechanisms, that may result in
bias and/or random errors when sampling flow properties in aerated,
ubbly flows with phase-detection probes, namely:

E1 Selective sampling bias
E2 Velocity bias
E3 Decorrelation bias
E4 Averaging effect due to pseudo-instantaneous velocity estima-

tions

While E1 to E3 are primarily caused by 3-D turbulence, E4 is a
haracteristic of the AWCC processing algorithm.

1: selective sampling bias
Conductivity probes are usually installed aligned with the mean

low. However, as a result of turbulence (3-D), individual bubbles move
long trajectories at an angle relative to the probe orientation. For the
ake of simplicity, in the following we only consider turbulent fluctu-
tions in the 𝑥-𝑦-plane. Further, we assume spherically-shaped bubbles
ith diameter 𝑑𝑏 and a constant bubble velocity 𝐮𝑏 = (𝑢𝑥,𝑏, 𝑢𝑦,𝑏) during

he interaction with the probe (𝛥𝑥∕𝑢𝑥,𝑏 ≪  ). For this simplified case,
the angle of bubble movement may be defined as 𝜃 = tan−1(𝑢𝑦,𝑏∕𝑢𝑥,𝑏),
where 𝑢𝑥,𝑏 and 𝑢𝑦,𝑏 are the instantaneous bubble velocities in 𝑥- and
𝑦-directions, respectively.
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Fig. 2. Power spectral density (a) and velocity distributions (b-d) of three Laser Doppler Anemometry (LDA) velocity time series and stochastic velocity time series with the same
mean velocity 𝑢, standard deviation 𝜎, and integral time scale  . Measured and binarized signals in self-aerated boundary layer flow (e) and synthetically generated signals for
comparable flow conditions (f) exhibiting similar air concentrations 𝑐, bubble count rates 𝑓𝑏, Sauter mean diameter 𝑑32, and mean velocity 𝑢𝑥.
For a given streamwise and transverse tip separation (𝛥𝑥 and 𝛥𝑦,
respectively), there is a limiting bubble trajectory angle for which
the bubble can be detected by both probe tips. These minimum and
maximum bubble trajectory angles (𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥, respectively), are
illustrated in Fig. 3a–b. For the shaded triangles in Fig. 3a and b it is
possible to write:

sin
(

𝜃𝑚𝑖𝑛 − 𝛼
)

=
𝑑𝑏
𝑆
, (15)

and:

sin
(

𝜃𝑚𝑎𝑥 + 𝛼
)

=
𝑑𝑏
𝑆
, (16)

where 𝛼 = tan−1(𝛥𝑦∕𝛥𝑥) is the angle between the leading and trailing
probe tips and 𝑆 =

√

𝛥𝑥2 + 𝛥𝑦2 the distance between the two tips.
Solving Eqs. (15) and (16) for the minimum and maximum angles of
detection 𝜃𝑚𝑖𝑛 and 𝜃𝑚𝑎𝑥 results in:

𝜃𝑚𝑖𝑛 = sin−1
(

𝑑𝑏
𝑆

)

+ 𝛼 (17)

𝜃𝑚𝑎𝑥 = sin−1
(

𝑑𝑏
𝑆

)

− 𝛼 (18)

Fig. 3c illustrates the minimum and maximum detection angles
as a function of 𝛼 and the ratio between the bubble diameter and
the tip separation distance 𝑑𝑏∕𝑆. It is important to highlight that the
angles of detection are symmetric around 𝛼 and not around 0. This
indicates that probes with a side-by-side design (|𝛼| > 0) exhibit a
selective sampling bias, potentially resulting in a selective sampling of
bubbles and thereby in biased mean velocity or turbulence intensity
estimations.
5 
E2: velocity bias due to transverse impacts
Thorwarth (2008) described how a non-parallel alignment of the

probe tips to the main flow direction leads to a systematic overestima-
tion of the mean velocity. Assuming a large bubble interface, idealized
as a plane orthogonal to the bubble trajectory, the ratio 𝜒 between the
estimated velocity 𝑢𝑥,𝑎𝑤𝑐𝑐 and the true streamwise velocity 𝑢𝑥,𝑏 is given
as (Thorwarth, 2008):

𝜒 =
𝑢𝑥,𝑎𝑤𝑐𝑐

𝑢𝑥,𝑏
=

𝛥𝑥∕𝜏
𝐿𝑥∕𝜏

=
cos (𝛼)

cos (𝜃) cos (𝜃 − 𝛼)
(19)

Fig. 4b presents 𝜒 as a function of 𝜃 for a range of −45◦ ≤ 𝛼 ≤
0◦. Although Thorwarth (2008) focused on overestimations of mean
velocities, Eq. (19) also showcases a mild underestimation (𝜒 < 1)
for 0◦ > 𝜃 > 𝛼. More interestingly, the underestimation appears to be
bounded, while the overestimation is unbounded and strongly increases
for 𝜃 ≫ 0◦ or 𝜃 ≪ 𝛼. In 3-D space, the angles of under- or overestimation
take the form of an under- and overestimation cones as depicted in
Fig. 4a.

This over- and underestimation, depending on the approach angle
𝜃, means that even for a constant streamwise velocity, but varying 𝜃 as
a result of transverse turbulence fluctuations, a certain variance would
be estimated, thus directly adding to an overestimation of turbulence.
Moreover, the over- and underestimation cones are not symmetrical
around 𝜃 = 0◦ for phase-detection probes with a side-by-side design
(|𝛼| > 0◦). This means that also mean velocity estimations are biased
due to transverse turbulent fluctuations.

E3: decorrelation bias
Thorwarth (2008) also pinpointed that increasing flow turbulence

results in a larger number of bubbles that interact with only one
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Fig. 3. Identification of the: (a) minimum (𝜃𝑚𝑖𝑛) and (b) maximum (𝜃𝑚𝑎𝑥) angles of detection for a bubble with velocity 𝐮𝑏, as a function of 𝛼 (tip-to-tip axis inclination), tip
separation (𝑆) and bubble diameter (𝑑𝑏). (c) Mapping of the detection regions.
Fig. 4. (a) Bubble trajectory angles resulting under- or overestimation form cones in 3-D space. The minimum (𝜃𝑚𝑖𝑛) and maximum (𝜃𝑚𝑎𝑥) angles of detection form a cone aligned
with the tip-to-tip axis. (b) Ratio 𝜒 between the estimated velocity 𝑢𝑥,𝑎𝑤𝑐𝑐 and the true streamwise velocity 𝑢𝑥,𝑏 as a function of 𝜃 and 𝛼.
of the two probe tips, leading to smaller maximum cross-correlation
coefficients (𝑅12,𝑚𝑎𝑥) during full signal cross-correlation based velocity
estimations. For AWCC-based processing, this can further affect velocity
estimations since windows with low 𝑅12,𝑖,𝑚𝑎𝑥 are removed by the cross-
correlation based filtering Eq. (8). Based on the detection limits defined
by Eqs. (17) and (18), it is evident that this effect is exacerbated with
decreasing ratio 𝑑𝑏∕𝑆, i.e., for smaller bubbles and larger tip-to-tip
distance 𝑆.

Further, for large transverse and small streamwise velocity fluc-
tuations, bubbles are more likely to hit only one of two tips as the
angle 𝜃 = tan−1

(

𝑢𝑏,𝑦∕𝑢𝑏,𝑥
)

with respect to the mean flow is larger
than for large transverse and large streamwise velocity fluctuations.
This results in smaller 𝑅12,𝑖,𝑚𝑎𝑥 for windows during smaller streamwise
velocity fluctuations and consequently a higher probability that those
windows are removed by the correlation-based filtering. Ultimately,
this results in an over-representation of windows with large streamwise
velocities and directly overestimates the mean velocity, while also
underestimating the turbulence intensity.

E4: window averaging effect
The AWCC algorithm breaks the recorded signals into windows,

such that each window contains a number of 𝑁𝑝 bubbles. The time
duration of the window therefore depends on the interarrival time be-
tween bubbles or, on average terms, the bubble frequency 𝑓𝑏. Assuming
spherical bubbles, the latter can be estimated as 𝑓𝑏 = 1.5𝑢𝑐∕𝑑𝑏 with 𝑢
being the mean flow velocity, 𝑐 the local air concentration and 𝑑 the
𝑏
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bubble diameter (Crowe, 2005). The average window duration is then
defined as

𝑇 =
𝑁𝑝𝑑𝑏
1.5𝑢𝑐

. (20)

For large 𝑇 , there is an increasing risk of undersampling the real
instantaneous velocity time series. If the flow has a small integral time
scale 𝑥 ≪ 𝑇 , a segment will cover several fluctuations, therefore
smoothing the natural fluctuations of the flow. In simpler terms, if the
velocity fluctuates around the mean value with a time scale 𝑥 of 1 s
and the segment 𝑇 covers 10 s, we will average over ten fluctuations
within a pseudo-instantaneous velocity estimation. Conversely, if for
the same sampling characteristics, our flow time scale is 100 s, then
the AWCC would be able to obtain 10 pseudo-instantaneous velocity
estimations per turbulent cycle. Based on 1-D stochastic velocity time
series and synthetic signals, Kramer et al. (2019) found that turbulence
intensity was underestimated by ∼ 20% for 𝑥∕𝑇 ≈ 1, while the mean
velocity estimations were not significantly affected.

4. Results: Error quantification

4.1. General remarks

In this section, we study how the key factors identified in Section 3
are manifested in self-aerated boundary layer flows and quantify their
importance. For that purpose, we identify a wide range of flow proper-
ties, probe characteristics and post-processing parameters in literature
(Table 1). Relevant flow parameters that are not included in Table 1 are
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Table 2
Common range of flow conditions on spillway or tunnel chutes and parameters of phase-detection probes and selection of the base case for the
quantification of baseline errors.
Parameter Symbol Unit Range Base Comment
Flow conditions

Mean velocity 𝑢 [ms−1] 1–50 10 Based on the range of flow velocities identified in Table 1.
Turbulent intensity T [ms−1] 0.0–0.35 0.25 Based on the range of turbulence intensities identified

in Table 1, but limited to T ≤ 35%, since larger T𝑢 result
in negative instantaneous velocities, which is not physically
meaningful for self-aerated flows on spillways.

Velocity covariance 𝜌𝑥𝑧 [−] −0.45 −0.45 Velocity covariance typically defining the shear stress
in boundary layer flows Pope (2000).

Integral time scale  [s] 0.001–1.0 0.1 Based on integral time scales obtained from ADV
measurements by Valero et al. (2022) and extended to
account for smaller time scales.

Void fraction 𝑐 [−] 0.005–0.4 0.25 Based on the range of void fractions for which bubbly
flow can be expected.

Bubble diameter 𝑑𝑏 [mm] 0.5–20 3 Based on the range bubble size identified observed
by Bürgler et al. (2023a).

Phase-detection probe geometry and post-processing

Streamwise separation 𝛥𝑥 [mm] 0.5–10 5 Based on the range identified in Table 1.
Transverse separation 𝛥𝑦 [mm] 0–2 1 Based on the range identified in Table 1.
Sampling frequency 𝑓𝑠 [kHz] 10–2000 500 Based on the range identified in Table 1.
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the velocity covariance 𝜌𝑥𝑧, the integral time scale  , and the bubble
diameter 𝑑𝑏. The velocity covariance typically defining the shear stress
n boundary layer was assumed with a constant value −0.45 (Pope,
000). For subcritical open-channel flow, Valero et al. (2022) observed
ntegral time scales between (−1) s to (0) s. To account for the lack
f experimental data on integral time scales in supercritical boundary
ayer flows, we investigate a wide range of integral time scales between
.001 s and 1.0 s. Finally, we consider bubble diameters between
.5 mm and 20 mm based on the range bubble size observed by Bürgler
t al. (2023a) in laboratory-scale spillway flows.

By default, we focus on a base case (identified in Table 2), which
epresents a reasonable, representative flow situation and sampling
rocedure. Then, we systematically vary various parameters around the
ase case to aid the identification of key factors and to explain errors
n estimated mean velocities and turbulent intensities. When necessary,
e add further variables to identify the key mechanisms driving the
rrors in estimations.

For the following simulations, we sample for a duration of 300 sec-
nds, thereby exceeding typical recommendations on sampling dura-
ion (e.g. Felder and Chanson, 2015). Beside investigating the effect
f flow factors and instrumentation characteristics on mean velocity
nd turbulent intensity estimations, we also investigated the effect
n the estimation of void fractions. However, under our modelling
ssumptions, we found that the void fraction could be recovered from
he measured signals with a negligible error (±1%).

.2. Flow properties affecting the mean velocity estimation

Estimations of mean (time-averaged) flow velocities based on phase-
etection probe measurements are common practice and generally
egarded as accurate. Using a cross-correlation based method, Thor-
arth (2008) found that mean velocities were overestimated by ≈ 10%

n comparison to LDA-measurements, when the probe was aligned with
he main flow direction. For highly turbulent conditions (Tu,x = 30%),
ramer et al. (2019) reported an overestimation of mean velocities up

o 10%, which was attributed to the fact that more particles pass the
robe tips at higher velocities. This error could be reduced to negligible
rrors of ∼1% by applying the window weighting scheme to calculate
irst and second order moments of the pseudo-instantaneous velocity
ime series (Kramer et al., 2020), as used herein (Eqs. (9) and (10)).

In the following, we test mean velocities between 2.5 to 40 ms−1,
round the base case of Table 2 and turbulence intensities between
% and 35%. We investigate the effect of streamwise and transverse

urbulence separately, by setting either T𝑢,𝑥 or T𝑢,𝑦 (and T𝑢,𝑧) to zero

7 
nd systematically vary the other parameter. This analysis allowed us
o identify turbulence as one of the main factors affecting the accuracy
n the estimation of mean velocities.

Fig. 5a shows that mean velocities are consistently overestimated
ith increasing streamwise turbulence (T𝑢,𝑥). This overestimation re-
ains below 10% for Tu,x values up to 25%, yet it increases to ap-
roximately 16% when the streamwise turbulence intensity reaches
5%. The observed bias is consistent across the whole range of mean
elocities.

We found that error mechanism E3 was the key factor contributing
o the observed bias in the mean velocity. In Figs. 5b,d, the frequency
istributions of the window-averaged fluid velocity ⟨𝑢𝑥,𝑓 ⟩ , i.e., the
indow-averaged velocity of the true velocities of the bubbles impact-

ng the probe tips (which are later analysed with the AWCC over the
ame time window) and the estimated pseudo-instantaneous velocity
𝑥,𝑎𝑤𝑐𝑐 are compared for the cases of 𝑢𝑥,𝑟𝑒𝑎𝑙 = 10 ms−1 and Tu,x,real of

5% and 35%, respectively. For ⟨𝑢𝑥,𝑓 ⟩ , we distinguish between ‘all’
windows, and windows that were either ‘rejected’ or ‘accepted’ during
the correlation-based filtering (Eq. (8) and ROC).

For small streamwise turbulence (Fig. 5b), both accepted and re-
jected velocity estimations are distributed symmetrically around the
imposed mean velocity 𝑢𝑥,𝑟𝑒𝑎𝑙 = 10 ms−1. However, for Tu,x,real = 35%,
AWCC velocity estimations for windows with smaller flow veloci-
ties are more frequently rejected. This ultimately results in an over-
representation of windows with higher flow velocities that explains
the observed bias. Despite causing a bias towards overestimation of
mean velocities in case of large streamwise turbulence, we find that
the correlation-based filter is very effective in removing numerous
erroneous pseudo-instantaneous velocity estimations (see Fig. 5e). The
error of the accepted windows are largely within ± 10%.

With increasing transverse turbulence intensity Tu,y and Tu,z, we
identify a trend to slightly overestimate mean velocities in the order of
up to ∼ 2 %, but only when turbulence intensities Tu,yz exceed 10%. The
observed overestimation is mainly attributed to error mechanisms E1
and E2. At larger transverse turbulence intensities, bubbles may travel
at larger or smaller angles 𝜃 with respect to the probe orientation. While
bubbles travelling at angles 𝛼 < 𝜃 < 0◦ lie within the underestimation
cone, bubbles travelling at angles 𝜃 > 0◦ or 𝜃 < 𝛼 are in the
verestimation cone (Fig. 4a,b). Considering the specific geometry of
he probe (𝛼 ≈ 11◦), the tendency to overestimate is more pronounced

than the tendency to underestimate. This leads to the observed bias
for large transverse turbulence intensity Tu,y and Tu,z. This outcome
aligns with expectations, given that the underestimation occurs within
an internal cone, resulting in a more rapidly expanding probability
space for the overestimation.
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Fig. 5. (a) Effect of streamwise (T𝑢,𝑥) and transverse (T𝑢,𝑦, T𝑢,𝑧) turbulence on the mean velocity estimations. Frequency distributions of the window-averaged fluid velocity ⟨𝑢𝑥,𝑓 ⟩
of ‘all’, ‘rejected’ or ‘accepted’ windows and estimated pseudo-instantaneous velocity 𝑢𝑥,𝑎𝑤𝑐𝑐 for 𝑢𝑥,𝑟𝑒𝑎𝑙 = 10 ms−1 and T𝑢,𝑥,𝑟𝑒𝑎𝑙 of (b) 5% and (d) 35%, respectively. Comparison of
𝑢𝑥,𝑎𝑤𝑐𝑐 to ⟨𝑢𝑥,𝑓 ⟩ for ‘rejected’ or ‘accepted’ windows for 𝑢𝑥,𝑟𝑒𝑎𝑙 = 10 ms−1 and T𝑢,𝑥,𝑟𝑒𝑎𝑙 of (c) 5% and (e) 35%, respectively. Error bars represent 95% confidence intervals.
Additional tests suggest that other factors such as the void fraction
and bubble size do not pose any significant impact on the mean velocity
estimation for the range of flow properties studied (Table 2). Factors
such as the integral time scale or bubble size also resulted in negligible
effects.

4.3. Flow properties affecting the turbulence intensity estimation

Turbulence intensity is one of the most complicated flow properties
to be sampled in air–water flows. To estimate turbulence intensity, first
a pseudo-instantaneous time series of velocities needs to be estimated
from the raw signals. When doing so using AWCC, this is limited to
an estimation of a ‘‘pseudo’’-instantaneous velocity because it repre-
sents the velocity of a group of bubbles. Here we systematically study
how the estimation of turbulence is affected by the air–water flow
properties.

Our analysis suggests that the prime factor affecting the estima-
tion of streamwise turbulence intensity (T𝑢,𝑥,𝑎𝑤𝑐𝑐) is the turbulence
intensity of the flow itself. We consider streamwise turbulence inten-
sities between 5% and 35%. Thereby we notice two effects: For small
turbulence intensities T𝑢,𝑥 ≤ 20% both under- and overestimations
occur with errors mostly within ±10% of the actual T𝑢,𝑥,𝑟𝑒𝑎𝑙, allowing
a reasonably accurate turbulence estimation. However, as streamwise
flow turbulence increases, AWCC estimations do not follow up linearly
and the error in the estimated turbulence intensity becomes more
significant. For larger turbulence intensities, T𝑢,𝑥,𝑎𝑤𝑐𝑐 is always under-
estimated (Fig. 6a). This underestimation can be as high as 30% of the
actual T𝑢,𝑥,𝑟𝑒𝑎𝑙, when the latter reaches values of 35%. This means that
in strong turbulence, direct estimation of turbulence intensity remains
highly uncertain.

Additionally, we observe that the turbulence estimations are further
affected by the anisotropy of the flow, i.e. by the ratio of transverse
to streamwise turbulence intensity 𝑇𝑢,𝑦∕𝑇𝑢,𝑥 or 𝑇𝑢,𝑧∕𝑇𝑢,𝑥, hereinafter
only referred to as 𝑇𝑢,𝑦∕𝑇𝑢,𝑥. More isotropic turbulence exacerbates the
underestimation at large T𝑢,𝑥,𝑟𝑒𝑎𝑙.

Figs. 6c–d presents the streamwise versus transverse velocities of
bubbles pierced by either one or two tips for the case of T𝑢,𝑥,𝑟𝑒𝑎𝑙 = 0.25
and anisotropy ratios 𝑇𝑢,𝑦∕𝑇𝑢,𝑥 of 0.25 and 1, respectively. Additionally,
the minimum (𝜃𝑚𝑖𝑛) and maximum (𝜃𝑚𝑎𝑥) detection angles are indicated
to illustrate the selective sampling bias due to the limit of detection
(𝜃𝑚𝑖𝑛 to 𝜃𝑚𝑎𝑥) formulated in Section 3, and highlight their importance.
For 𝑇 ∕𝑇 = 0.25, most bubbles travel at angles that lie within
𝑢,𝑦 𝑢,𝑥
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the detection cone and the distribution of bubbles pierced by only
one and two tips are comparable. However, with increasing 𝑇𝑢,𝑦∕𝑇𝑢,𝑥,
bubbles with small 𝑢𝑏,𝑥 and large 𝑢𝑏,𝑦 may be detected by the leading
tip while escaping from the trailing tip. As a consequence, bubbles
with smaller streamwise velocities are less likely to be detected by both
tips, resulting in the observed underestimation of turbulence intensities.
This suggests that error mechanism E1, i.e. the selective detection
of bubbles, is the main driver for the larger underestimation with
increasing turbulence isotropy.

We observe a second critical factor affecting the accurate estimation
of turbulence in the flow, namely the integral time scale ( ). We test
integral time scales between 0.005 s and 0.5 s. Considering the average
window duration 𝑇 of 0.008 s for the considered cases (Table 2), this
yields ratios 𝑥∕𝑇 between 0.625 and 62.5. Our results in Fig. 6a
show that smaller integral time scales generally result in increasing
underestimation of turbulence intensity. This is a direct effect of error
mechanism E4. As the ratio of integral time scale of the flow to average
AWCC window duration 𝑥∕𝑇 becomes smaller, the most extreme
turbulent fluctuations are more intensely smoothed out. For example,
for Tu,y = 25% and 𝑥∕𝑇 = 1.25 the underestimation amounts to
roughly 25%, which is comparable to the underestimation of 20%
found by Kramer et al. (2019) for Tu,x = 20% and 𝑥∕𝑇 ≈ 1. However,
with reducing 𝑥∕𝑇 , the underestimation becomes more intense.

Another relevant factor identified in our analysis is related to air
concentration. Our observations show that turbulence intensity is con-
siderably underestimated for air concentrations 𝑐 < 5% (for the base
case). For air concentrations of 1% the underestimation reaches up to
30%. We identified E4 as main mechanism resulting in the observed
trend. A smaller air concentration – for fixed remaining flow properties
– results in a smaller bubble frequency. As a consequence, the average
window duration 𝑇 increases and the ratio of window duration to
integral time scale decreases.

Finally, we also examine how the bubble size with 𝑑𝑏 between 1 mm
and 10 mm affect the estimation of turbulence intensities (Fig. 7a).
Decreasing the bubble size relative to the probe size increases the
probability that bubbles are not pierced by both tips as direct conse-
quence of mechanism E1. This is consistent with the observation from
Fig. 7a, that a bubble size smaller than the base case streamwise tip
separation 𝛥𝑥 = 5 mm results in increasing underestimation of turbu-
lence intensity. As evident from Fig. 7b, a bubble size of 𝑑𝑏 = 1 mm
results in a maximum bubble trajectory angle 𝜃𝑚𝑎𝑥 of 0◦, effectively
preventing bubbles with a transverse velocity 𝑢 greater than 0 ms−1
𝑏,𝑦
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Fig. 6. Effect of turbulent intensity on turbulence estimations, including effects of (a) anisotropy and (b) integral time scale of the flow. Direct illustration of E1 key error
mechanism at (c) low isotropic (𝑇𝑢,𝑦∕𝑇𝑢,𝑥 = 0.25) and (d) fully isotropic (𝑇𝑢,𝑦∕𝑇𝑢,𝑥 = 1) turbulence with 𝑇𝑢,𝑥 = 25%. Error bars represent 95% confidence intervals.
Fig. 7. Effect of bubble size 𝑑𝑏 on turbulence intensity estimation for varying levels of turbulence anisotropy T𝑢,𝑦∕T𝑢,𝑥 (a). Direct illustration of the effect of relative bubble size
through mechanism E1 for a (b) small 𝑑𝑏 = 1 mm and (c) larger bubble size 𝑑𝑏 = 5 mm. Error bars represent 95% confidence intervals.
from interacting with both probe tips (E1). This results in a reduced
range of detected streamwise velocities and an underestimation of
streamwise turbulence intensity by approximately 25%. In contrast, for
a larger 𝑑𝑏 = 5 mm the minimum and maximum angles of detection are
not limiting for the considered flow conditions as evident in Fig. 7c.

4.4. Effect of probe geometry and post-processing on mean velocity

Phase-detection probes are often developed in research laboratories,
which leads to differences in their design (Table 1). We investigate the
effect of streamwise tip separation for a range of 0.5 mm ≤ 𝛥𝑥 ≤ 10 mm.
9 
We discover a systematic overestimation of the mean velocity with
increasing distance between leading and trailing tips (Fig. 8a). For
a given bubble size 𝑑𝑏, streamwise tip separation 𝛥𝑥 and turbulence
anisotropy ratio, bubbles travelling at smaller instantaneous streamwise
velocities are more likely to miss the second tip due to transverse
movements, than bubbles travelling at larger instantaneous streamwise
velocity. Therefore, we have a detection bias towards larger velocities,
based on mechanism E1. Larger transverse velocity fluctuations due to
a larger ratio of transverse to streamwise turbulence intensity T𝑢,𝑦∕T𝑢,𝑥
exacerbate this trend, which is evident in Fig. 8a. The overestimation
of the mean flow velocity may reach up to 20% for streamwise tip
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Fig. 8. Effect of streamwise tip separation 𝛥𝑥 on (a) mean velocity estimations for different levels of turbulence anisotropy, (b) turbulence intensity estimations for different lateral
tip separations 𝛥𝑦. Smoothing effect of the number of particles per AWCC window (𝑁𝑝) on the turbulence intensity estimations with AWCC and of the window averaged fluid
velocity (c). Error bars represent 95% confidence intervals.
5

5
i

c
r

separation of 10 mm and fully isotropic turbulence with T𝑢,𝑥,𝑟𝑒𝑎𝑙 = 0.25.
evertheless, for 𝛥𝑥 < 5 mm, the error remains within ± 10%.

.5. Effect of probe geometry and post-processing on turbulence estimation

Our results show that the streamwise tip separation 𝛥𝑥, but also
he transverse separation 𝛥𝑦, affect turbulence intensity estimations
see Fig. 8b). For probes with a streamwise alignment of the tips
𝛥𝑦 = 0 mm), increasing 𝛥𝑥 results in increasing underestimation of
urbulence intensity, reaching approx. 25% for 𝛥𝑥 = 10 mm. For probes
ith a side-by-side design (𝛥𝑦 > 0), turbulence intensity may be
verestimated when 𝛥𝑥 becomes smaller than ≈2 mm. Overestimations
each up to 170% of the actual turbulence intensity for combinations
f 𝛥𝑥 = 0.5 mm and 𝛥𝑦 = 1 mm, in combination with other base
ase parameters. This is consistent with larger overestimations expected
rom mechanism E2. On the contrary, 𝛥𝑥 larger than 2 mm resulted
n underestimations that tend to the case of zero transverse separa-
ion. The underestimations may be explained by two factors: (i) the
moothing effect of the window-averaging (E4), and (ii) with increasing
𝑥, bubbles with large velocities are more likely to be detected, while
lower bubbles are more likely to escape (due to traverse velocity
luctuations, i.e., mechanism E1). This creates a bias towards larger
ean velocities and underestimation of turbulence intensity as part of

he histogram (slower velocities) is cut off by the selective sampling
ias (E1). We observed that increasingly isotropic turbulence enhances
he observed trends.

Besides the streamwise and transverse tip spacing, we investigate
he effect of the number of particles per averaging window 𝑁𝑝 on
stimations of mean velocities and turbulence intensity. For the tested
ange of 3 ≤ 𝑁𝑝 ≤ 30, the number of particles per window had no
ignificant effect on mean velocity estimations. However, we observe
hat increasing the number of particles per averaging windows results
n increasing underestimation of turbulence intensity (Fig. 8c). This is
n direct agreement with the findings of Kramer et al. (2020).

Finally, we also investigate the effect of sampling rates 𝑓𝑠 on the
bility to estimate mean velocities and turbulence intensities. Sampling
ates applied in previous studies cover a wide range between 10 kHz
nd 1000 kHz. Our tests indicate that increasing the sampling rate
bove 20 kHz did not result in more accurate estimations of mean
elocities and turbulent intensities. This is in agreement with previous

tudies (e.g. Felder and Chanson, 2015).

10 
. Discussion

.1. A regression model for the correction of baseline errors and how to use
t (application)

The previous analysis, for selected flow conditions around a base
ase (Table 2), showcases the order of magnitude of different er-
ors and identifies key mechanisms (E1-E4, Section 3) driving those

inaccuracies. A direct quantification of errors of real-world phase-
detection probe measurements (Section 4) is challenging, owing to the
multi-dimensional, partially unknown parameter space, and due to the
superposition of different error mechanisms. To enable a convenient
estimation of the baseline error, we ran additional simulations com-
prising more than 19,000 parameters combinations using Monte Carlo
sampling from the ranges identified in Table 2. Based on this dataset of
simulations (Bürgler et al., 2024a), we trained a quantile random forest
regression model (Meinshausen and Ridgeway, 2006). The trained
model allows to correct mean flow velocities and turbulence intensities
obtained through AWCC. Corrected values are not only provided in
terms of mean values, but through multiple quantiles, thereby, proving
guidance on the uncertainty associated with the measurement and
correction.

The required input parameters include the mean velocity, turbu-
lence intensity, void fraction, and the Sauter mean diameter as a
proxy for the bubble diameter, which are directly available from post-
processing of phase-detection probe signals using AWCC. Further inputs
include the streamwise and lateral tip separations 𝛥𝑥 and 𝛥𝑦, as well
as the number of particles per window 𝑁𝑝. Details on the model and
instructions for its application are available in Appendix.

We demonstrate the application of the regression model for velocity
and turbulence intensity profiles measured by Bürgler et al. (2023a) in
Fig. 9. The trends for flow factors affecting the turbulence estimation
have serious implications when measuring turbulence intensities in self-
aerated boundary layer flows. Namely, the most adverse conditions –
a combination of large turbulence intensities with a typical anisotropy
ratio of ≈ 0.5 with small integral time scales, small air concentrations,
and small bubble size — occur close to the wall. Hence mean velocity
and turbulence intensity measurements are least reliable where they
would be most interesting to derive quantities like the shear velocity.

5.2. Optimizing probe geometry

Our results suggest that the accuracy of mean velocity and turbu-
lence intensity estimations in bubbly flows strongly depends on the

flow conditions, but also on the design of the phase-detection probes. In
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Fig. 9. Application of the regression model to quantify the corrected values (median), the interquartile range (IQR) and the 90% confidence interval (CI) for a (a) mean velocity
and (b) turbulence intensity profile measured by Bürgler et al. (2023a) in gradually varied spillway flow characterized by an inclination angle of 50◦, hydraulic roughness of 𝑘𝑠
= 0.73 mm, and specific discharge of 𝑞 = 0.2 m2s−1. The application of the regression model is limited to lower half of the profile, where 𝑐 ≤ 0.4.
the presence of 3-D turbulence, a ratio of bubble size to tip separation
distance smaller than 1 increases the risk that the measured velocity
statistics are affected by selective sampling (E1). This suggests that the
tip-to-tip separation should be in the order of the prevailing bubble
size. As the range of detectable bubble trajectory angles 𝜃 is symmetric
around 𝛼 – the angle between the leading and trailing axis tip and the
main flow direction – an increasing ratio 𝛥𝑦∕𝛥𝑥 further increases the
selective sampling bias.

Therefore, we recommend streamwise tip separations 𝛥𝑥 between
2 mm and 5 mm for typical transverse tip separations 𝛥𝑦 between
0.5 mm and 1 mm. With this, errors of mean velocity and turbulence
intensity estimations are expected to be within ± 10% and ± 20%,
respectively.

When the relative bubble size 𝑑𝑏∕𝛥𝑦 is smaller than 2, additional
uncertainties are expected. While our results suggest that this may be
compensated by reducing 𝛥𝑦, other issues – such as flow separation and
a wake downstream of the leading tip (Sene, 1984; Chanson, 1988) –
may become relevant as the streamwise separation approaches zero.

5.3. Limitations

The simulations of phase-detection probe measurements in bub-
bly flows are based on several simplifications. Bubble trajectories are
determined under the assumption that the instantaneous bubble ve-
locity equals the instantaneous fluid velocity (no-slip). This allows
to impose controlled dispersed phase velocity statistics and consider-
ably reduces the computational effort of the simulations. Since phase-
detection probes measure the velocity of the conveyed phase (i.e., the
bubble velocity in bubbly flows) (Crowe, 2005), we quantified mea-
surement errors between mean velocities and turbulent intensities re-
covered from the synthetic signal with the AWCC algorithm and the
mean velocities and turbulent intensities of the simulated bubbles. Con-
sequently, the correction model provides estimates of the true velocity
statistics of the bubbles. Potential differences between dispersed and
continuous phase velocities are not corrected by the data-driven model
when applied to actual phase-detection probe measurements.

Further, the probe tips are simplified as ideally small points. Ef-
fects such as flow separation and a wake downstream of the leading
tip (Chanson, 1988), as well as bubble-probe interactions that could
result in slow down or deformation of bubbles, (Hohermuth et al.,
2021b; Pagliara et al., 2023) are neglected. For regions close to the wall
of turbulent boundary layers (small velocities and bubble size), Hoher-
muth et al. (2021b) observed a mean velocity bias of approximately
−10% in a comparison to LDA measurements due to intrusive effects.
11 
However, based on our findings an overestimation of mean velocities is
expected for this region with large turbulence intensity. This potentially
indicates that intrusive effects may actually be larger than reported
by Hohermuth et al. (2021b), but are to some degree compensated by
baseline errors with opposing effects.

One question that arises is if the intrusive velocity bias correction
scheme proposed by Hohermuth et al. (2021b) can be applied in addi-
tion to the correction model from this study. The fact that the intrusive
velocity bias and the biases in estimated mean velocities presented
in this study act in opposing directions, suggests that a correction of
intrusive effects is still necessary after the correction of intrinsic errors.
Since the correction scheme of Hohermuth et al. (2021b) was calibrated
against LDA data without consideration of the biases presented herein,
the correction scheme for intrusive effects may require a re-evaluation.
Nevertheless, recent findings of Pagliara et al. (2023) suggest that
intrusive effects remain negligible for a wide range of bubble sizes and
for velocities above 3 ms−1. In such cases, the correction model from
this study can be applied without additional considerations of intrusive
effects.

Given those assumption, the present analysis allows for the quan-
tification of a baseline error inherent to dual-tip phase-detection probe
measurements in turbulent flows. In less ideal conditions, for example
with varying bubble size and shape, a stronger decorrelation of the
leading and trailing tip signals and therewith additional measurement
uncertainties are expected.

Finally, the correction model proposed herein should not be applied
for phase-detection probe measurements if the flow conditions or probe
characteristics lie outside of the ranges stated in Table 2.

6. Conclusion

Air–water flows have been sampled in civil engineering structures
for nearly seven decades. However, studies on the performance of the
specific instrumentation used in laboratory and field scale studies are
scarce. This study provides, for the first time, a complete and com-
prehensive description of a myriad of mechanisms that induce errors
in the sampling of multiphase flows in spillways and tunnel flows.
This is achieved by developing a tool for simulating phase-detection
probe measurements, based on the Langevin equation and informed by
real-world flow properties (Table 1).

This investigation represents the first uncertainty study taking into
account 3-D turbulence for a large and complete range of flow proper-
ties. It is therefore able to reproduce realistic boundary layer charac-
teristics inspired by real-word spillway data and can be directly used
to estimate future experimental uncertainty.
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Our investigation sheds light on the following points:

1. We identify four key mechanisms that, combined, explain intrin-
sic baseline errors in the sampling of bubbly flows with phase-
detection probes. More specifically, we delineate and quantify
the selective sampling bias (E1) and the decorrelation bias (E3),
both primarily attributed to 3-D turbulence, for the first time.
Additionally, we quantify the previously described velocity bias
due to transverse impacts of bubbles (E2) and the averaging
effect inherent to the AWCC processing algorithm (E4).

2. We quantify the magnitude of these errors and their interplay
for the mean velocity and turbulence intensity estimations. Of
paramount importance is the finding, that the least favourable
conditions typically occur in the near wall region. The identi-
fied error mechanisms result in mean velocity error magnitudes
of up to 15%, which is comparable to the recently discussed
intrusive velocity bias. Also turbulence intensities are substan-
tially underestimated with increasing turbulence intensity of the
flow itself and with increasing turbulence isotropy. In near-wall
regions, the ascertained errors reach up to 40% for typical phase-
detection probe designs. This has serious implications when
quantifying derived flow properties, such as the shear velocity,
based on near-wall phase-detection probe measurements.

3. While the errors induced by properties of the flow itself – for
example by high turbulence intensity – can hardly be minimized,
we show that the probe design is a key element in error mini-
mization and that the optimal design depends on the bubble size.
The presented, data-driven tool for bias correction of mean ve-
locity and turbulence intensity estimations, but also the software
for simulating phase-detection probe measurements, can be ap-
plied in future studies to improve the design of phase-detection
probes for various flow conditions.

4. Finally, we provide a novel, data-driven tool to correct for
intrinsic errors occurring during phase-detection probe measure-
ments and to quantify the associated uncertainties. This tool
can be directly applied to past or future phase-detection probe
measurements to correct mean velocities and turbulence inten-
sities estimates. Thereby, this study contributes considerably to
improved accuracy of dual-tip phase-detection probe measure-
ments and the characterization of air–water flows in hydraulic
structures.
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Appendix. A regression model for the correction and uncertainty
quantification of phase-detection probe measurements

The regression model for the bias correction and uncertainty quan-
tification of phase-detection probe measurements is based on a large
dataset of measurement errors containing more than 19,000 simula-
tions (Bürgler et al., 2024a). The simulation dataset represents a wide
range of flow conditions, probe characteristics, and AWCC algorithm
parameters as presented in Table 2. All parameters were sampled
uniformly over the stated range of values, except the integral time scale
was sampled from a log-normal distribution. For each simulation, the
measured mean velocity and turbulence intensity as well as the true
underlying values are known. This allows to train a regression model
also using the void fraction, the bubble diameter, the streamwise and
lateral phase-detection probe tip separation, as well as the number of
particles per window used for the AWCC algorithm as further inputs.
The trained model is capable of correcting real-world phase-detection
probe data for the intrinsic errors captured by the simulations.

The regression model is based on a quantile regression forest model.
A quantile regression forests is a non-parametric tool to estimate
the conditional distribution of a target variable, suitable for high-
dimensional input parameter space (Meinshausen and Ridgeway, 2006).
The model is implemented in Python, leveraging the existing ‘quantile-
forest’ Python package developed by Johnson (2024). Two separate
quantile forest regression models were trained, one to correct the
mean velocity and one to correct turbulence intensity estimations. The
data was split into training and testing sets containing 80% and 20%
of the simulations, respectively. The training data was further split
into 5 folds, which we used for hyperparameter tuning applying 300
iterations of a randomized grid search cross-validation. The optimized
hyperparameters comprise number of trees, maximum tree depth and
number of features considered for the best split. The performance
of the model prediction of mean velocity and turbulence intensity is
illustrated in Fig. A.1 for the training and testing set. Predicted values
correspond to the median. For the testing dataset, the performance
of the AWCC algorithm is presented for comparison. The prediction
model is able to reduce the root mean square error for the mean
velocity by a factor of 7 and for the turbulence intensity by a factor of
2.2, indicating a considerable improvement. Besides median corrected
values, the regression model also provides the 5- to 95-percentile and
interquartile range.

Access to the code and detailed instructions on model usage, includ-
ing input data format and parameter settings to facilitate a straightfor-
ward application of the regression model to dual-tip phase-detection
probe measurements is provided at https://gitlab.ethz.ch/vaw/public/
pdp-uq (Bürgler et al., 2024b).

https://gitlab.ethz.ch/vaw/public/pdp-sim
https://gitlab.ethz.ch/vaw/public/pdp-sim
https://gitlab.ethz.ch/vaw/public/pdp-sim
https://gitlab.ethz.ch/vaw/public/pdp-uq
https://gitlab.ethz.ch/vaw/public/pdp-uq
https://gitlab.ethz.ch/vaw/public/pdp-uq
https://gitlab.ethz.ch/vaw/public/pdp-uq
https://gitlab.ethz.ch/vaw/public/pdp-uq
https://gitlab.ethz.ch/vaw/public/pdp-uq
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Fig. A.1. Model predictions of mean velocities (a–b) and turbulence intensities (c–d) for the training and testing subsets. Mean velocities (b) and turbulence intensities (d)
estimations resulting from the AWCC algorithm for the testing subset are presented for comparison.
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