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Kurzfassung

Der Schwerpunkt dieser Arbeit liegt auf der Dynamik des Entkommens (Escape) eines

Partikels oder von Partikeln aus einem Potentialtopf. Dieses Problem ist entscheidend für

die Beschreibung verschiedener physikalischer, chemischer und biologischer Prozesse.

Das Phänomen des Escapes ist in zahlreichen Beispielen von Bedeutung, wie z.B. dem

Kentern von Schiffen aufgrund äußerer Einwirkung durch Wellen, wo die Analyse der

vereinfachten Schiffsdynamik ungefähre Kriterien für das Kentern liefern kann.

Escape spielt auch eine entscheidende Rolle beim Gravitationskollaps von Sternen

und hat Anwendungen in der Physik und im Ingenieurwesen, insbesondere beim

Josephson-Effekt und dynamischen Beulen, einem wesentlichen Aspekt der elastischen

Instabilitätsphänomene. Im Bereich der mikroelektromechanischen Systeme (MEMS)

hilft die Untersuchung der Escapesdynamik bei der Verbesserung von Geräten wie

MEMS-Schaltern, und im Kontext der Partikelabsorption und -falle ist sie instrumental

beim Einsatz von beweglichen Spiegeln und elektromagnetischen Fallen sowohl für

geladene als auch für neutrale Partikel. Weitere Beispiele umfassen das Escape von

Polymeren in der Chemie und die Energieerzeugung mittels bi-stabiler Potentialtöpfe.

Der theoretische Aspekt dieser Arbeit umfasst Untersuchungen zur Escapesdynamik,

die durch Differentialgleichungen mit Anfangsbedingungen gesteuert werden. Die Ab-

hängigkeit von diesen Anfangsbedingungen in Verbindung mit Erregungsparametern

wie Frequenz, Amplitude und Phasenverschiebung bestimmt, ob das Escape stattfindet.

Dieses binäre Ergebnis des Escapes oder kein Escapes hängt vom multidimensionalen

Raum der Parameter und Anfangsbedingungen ab. Zusätzlich zur Darstellung des

binären Escapesatzes kann es auch nützlich sein, die Escapesrate zu bestimmen, d.h.

die Zeit, die ein Partikel benötigt, um das Potential zu verlassen.

Die Studie berücksichtigt auch die Rolle der Dämpfung in Systemen, wobei ihre Präsenz

bei normal großen Anwendungen wie dem Kentern von Schiffen, ihre Abwesenheit

bei atomaren und himmlischen Prozessen und die Komplexität, die sie in mäßig

gedämpften Systemen hinzufügt, berücksichtigt wird. Diese Komplexität entsteht aus

der Unfähigkeit, die Dämpfung vollständig zu ignorieren oder sich ausschließlich auf
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stationäre Bewegungen zu verlassen, angesichts der Bedeutung von Übergangsprozessen

bei Escapesphänomenen.

Die transiente Natur des Escapes, das nur einmal auftritt, stellt Herausforderungen

bei der Detektion dar und erfordert präzise analytische Lösungen (oder zumindest

Schätzungen), um die Bedingungen für das Escape zu bestimmen. Im Wesentlichen

untersucht diese Arbeit die grundlegenden Mechanismen des Escapes, insbesondere

am Beispiel des harmonischen Oszillators mit und ohne viskose Dämpfung. Es

erweitert sich auf die Untersuchung der Escapesdynamik gekoppelter Partikel und

erforscht das Potenzial der Nutzung des Escapes zur Steuerung von Partikeln innerhalb

eines sinusförmigen Potentialtopfes. Darüber hinaus stellt die Studie mathematische

Theoreme im Zusammenhang mit dem Mittelwert und der globalen Optimierung

periodischer Funktionen vor, die wertvolle Werkzeuge zur Lösung von Problemen im

Zusammenhang mit der Escapesdynamik bieten. Diese Elemente prägen zusammen

den Kern dieser Forschung und spiegeln eine fokussierte, aber umfassende Erkundung

des facettenreichen Bereichs der Escapesdynamik wider.
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Abstract

The focus of this work is on the dynamics of a particle/particles escape from a potential

well. This problem is crucial in describing various physical, chemical, and biological

processes. The phenomenon of escape finds relevance in numerous examples, such as

the capsize of ships due to external excitation by waves, where the analysis of simplified

ship dynamics can provide approximate criteria for capsize.

The escape phenomenon also plays a crucial role in the gravitational collapse of stars

and has applications in physics and engineering, notably in the Josephson effect and

dynamic buckling, an essential aspect of elastic instability phenomena. In the realm

of micro-electromechanical systems (MEMS), the study of escape dynamics aids in

improving devices like MEMS switches, and in the context of particle absorption and

trapping, it is instrumental in the use of moving mirrors and electromagnetic traps

for both charged and neutral particles. Further examples include polymer escape in

chemistry and energy harvesting using bi-stable potential wells.

The theoretical aspect of this study includes investigations into escape dynamics

governed by differential equations with initial conditions. Dependence on these initial

conditions, coupled with excitation parameters such as frequency, amplitude, and phase

shift, determines whether escape occurs. This binary outcome of escape or non-escape

depends on the multidimensional space of parameters and initial conditions. In addition

to detailing the binary escape set, it may also be useful to determine the escape rate, i.e.,

the time required for a particle to exit the potential.

The study also considers the role of damping in systems, noting its presence in normal-

sized applications such as ship capsizing, its absence in atomic and celestial-sized

processes, and the complexity it adds in moderately damped systems. This complexity

arises from the inability to disregard damping entirely or rely solely on stationary

motion, given the significance of transients in escape phenomena.

The transient nature of escape, which occurs only once, presents challenges in detection,

requiring precise analytical solutions (or at least estimates) to determine the conditions

for escape.
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In essence, this thesis delves into the fundamental mechanisms of escape, particularly

focusing on the example of the harmonic oscillator with and without viscous damping.

It extends to investigate the escape dynamics of coupled particles and explores the

potential of utilizing escape for the control of particles within a sinusoidal potential well.

Additionally, the study introduces mathematical theorems related to averaging and

global optimization of periodic functions, providing valuable tools to address problems

related to escape dynamics. These elements collectively shape the core of this research,

reflecting a focused yet comprehensive exploration into the multifaceted realm of escape

dynamics.
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1 Introduction

In the first chapter of this thesis, the subject is introduced and its significance established.

In addition, an overview of the current state of research is provided, along with

identifying existing gaps in the research. From this, the objectives and structure of

the thesis are derived.

1.1 Motivation and the topic of the work
The concept of escape in dynamics forms the cornerstone of this thesis. Escape, in its

fundamental sense, refers to a scenario in which a particle or a body, initially situated in

a confined area around the minimum of a potential well (the basin of attraction), exits

this region due to initial conditions, external excitation, or parametric excitation, and,

importantly, does not return to it.

To elucidate this concept, consider the example of a rocket. Initially, the rocket resides

within Earth’s gravitational potential well, or its basin of attraction. However, because

of propulsion, a form of excitation, the rocket leaves Earth’s vicinity, embarking on a

voyage to destinations like the Moon, Mars, or even further celestial bodies with no

intention of returning. This departure from Earth’s gravitational influence exemplifies

escape.

Another pertinent example is that of the dynamics of a ship. A ship at rest in calm

waters maintains a vertical position, its asymptotically stable equilibrium, due to the

restoring moments and the energy dissipation provided by the water. However, periodic

external excitation, such as ocean waves, induces a rolling motion in the ship. The ship

oscillates due to the combined effect of potential and wave forces. In extreme cases, this

oscillation can lead the ship to capsize, a point of no return where the initial assumptions

and system dynamics change drastically, possibly beyond the descriptive power of the

original equations of motion.

This dramatic alteration, often observed in escape scenarios, can fundamentally change

the system’s state, potentially involving additional variables or completely altering the

system’s dynamics.
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1 Introduction

Another concept related to the problem of escape is known as level crossing or first

passage. This problem is similar to the escape problem, but in this case, a certain

observable of the system, such as displacement, total energy, or force, crosses a

predefined level. It is worth noting that the level-crossing problem encompasses a

broader range of problems as compared to the escape problem, since the potential must

be bounded for an escape to occur, whereas, in level-crossing problems, there is no such

restriction. This suggests that escape problems are fundamentally nonlinear, whereas

level-crossing problems may still be linear.

In this dissertation, we explore the theoretical aspects of escape dynamics within the

framework of ordinary differential equations (ODEs). Central to our exploration are

ODEs, often with uncertain initial conditions and influenced by external excitations. Our

investigation primarily revolves around the system’s response to harmonic excitation,

characterized by its amplitude, frequency, and initial phase. This study aims to

determine the precise effects of these initial conditions and excitation parameters on the

phenomenon of escape, which manifests as a binary outcome, either occurring or not.

Another critical aspect of escape/level-crossing dynamics is the temporal factor, intro-

ducing the notion of ’escape time’ or ’first passage time.’ This element is especially critical

in engineering contexts where escape is generally undesirable due to its potentially haz-

ardous implications. In many instances, escape/level-crossing occurs rapidly. However,

certain parameter combinations exhibit a more gradual process, observable both in

linear and nonlinear systems. Notably, nonlinear systems introduce the additional

saddle and maximum mechanisms, further complicating the escape dynamics.

The work of Professor Gendelman and his group [55, 56, 67, 68, 88], particularly their

use of action-angle variables, offers significant insights into these mechanisms. This

thesis extends this exploration by describing safe basins in simple dynamic problems

such as harmonic and damped harmonic oscillators.

Another area of interest is the effect of coupled bodies’ relative motion, for which

we introduce a new averaging theorem. This theorem is particularly pertinent for

systems with strong coupling between particles and fast relative motions, allowing for

a simplification from multi-degree-of-freedom systems to a single-degree system in

an effective potential. This simplification is not only theoretically fascinating but also

offers practical advantages, significantly reducing numerical costs, particularly for large

systems with high stiffness values in their differential equations.

Additionally, we examine the positioning of a strongly damped particle in a harmonic

potential well, exploring the dynamic implications of such a setup. This examination

naturally extends to related issues of escape, including capturing and scattering, and

the intricacies of positioning. The approaches outlined in this thesis add to the dialogue

on these topics, suggesting avenues for future research and potential improvements in

particle positioning techniques.

2



1.2 Literature overview: Methods

1.2 Literature overview: Methods
The literature review begins by examining stochastic escape, tracing its development

from Kramers’ work to recent studies, emphasizing its role in chemistry for analyzing

molecular reaction rates. It then shifts to deterministic escape, covering its initial

theoretical investigations, the concept of safe basins and integrity measure, and the

advancements of the recent years on escape in conservative systems. Subsequently,

several problem-specific studies are summarized including the problematics of ship

capsizing, dynamic pull-in of MEMS devices, and dynamic beam buckling. Further, but

precisely not detailed examples are the physics of Josephson junctions [9], escape into

inflation or recollapse to singularity in cosmology [16, 151], and escape and recapture

of comets and asteroids in celestial mechanics [44].

This review aims to provide an impression of the importance of both stochastic and

deterministic escape dynamics, combining historical context with current theoretical

developments.

1.2.1 Stochastic Escape
In his landmark study, Kramers investigated the Brownian motion of particles in a

potential well, providing a diffusion model that was instrumental in calculating the

escape rate of particles, analogous to chemical reactions [94]. Kramers’ model was elegant

in its simplicity, employing a one-dimensional potential to draw parallels between the

stochastic motion of particles and reaction kinetics. His findings demonstrated that,

across a vast viscosity range, the escape probabilities deduced from the diffusion

equation were consistent with those predicted by the transition state theory, thus

validating his theoretical approach.

Kramers’ work transcended its immediate field, influencing various areas, including

nuclear physics, as evidenced by its relevance to the fission processes discussed

by Bohr and Wheeler. Kramers set the stage for decades of research into thermally

activated processes and stochastic dynamics by presenting a unifying framework that

linked Brownian motion with chemical reaction rates. His diffusion model remains a

cornerstone in the study of chemical kinetics.

The works of Chandrasekhar on stochastic processes in physics and astronomy [32], Wang
and Uhlenbeck on the theory of Brownian motion [209], and Brown Jr. on thermal

fluctuations of ferromagnetic particles [86] were all influenced by the foundational

insights provided by Kramers’ work.

Benzi et al. contributions [13–15] explore stochastic resonance and system complexity,

with his 1981 paper emphasizing the resonance in systems subjected to both periodic and

random perturbations. Arecchi et al., in their 1984 paper [5] focus on first passage times in

3



1 Introduction

stochastic processes, a quantity of interest similar to escape time, which we will further

elucidate in the theory section. In 1986, Fonseca et al. [64] investigated non-Gaussian

and non-Markovian dynamics in liquids. They connected these dynamics to escape

processes from potential wells and activated rate processes in pumped systems.

The paper authored by Soliman et al. in 1990 [184] examines the escape dynamics of

an oscillator that is sinusoidally driven from a cubic potential well. The study finds

that the optimal escape occurs at around 80% of the natural frequency of the oscillator

linearized around its bottom stable equilibrium. The research also introduces a stochastic

integrity measure. It establishes a connection between this measure and changes in the

deterministic basin of attraction’s geometry.

The 1993 book ’Activated Barrier Crossing,’ edited by Fleming and Hanggi [63], focuses

on noise-driven escape from metastable states and reactive processes in various environ-

ments. It discusses transition-state theory and Kramer’s theory, emphasizing the effects

of environmental coupling on reactions. The book also touches on recent developments

in ultrafast spectroscopy and their impact on barrier-crossing dynamics.

’New Trends in Kramer’s Reaction Rate Theory,’ a 1995 book edited by Talkner and
Hanggi [193], extends these discussions covering the concept of escape from metastable

states, reviewing foundational theories and introducing recent advancements. The

book highlights applications in diffusion, chemical reactions, nucleation, and biological

processes.

The paper from 2006 by Kalmykov et al. [87] discusses the rate at which a Brownian

particle escapes from a double-well potential due to thermal activation. The study

explores the escape rates and position correlation times for different dissipation levels.

It provides analytical equations for low-barrier scenarios in various damping regimes.

Further research on stochastic escape includes the effect of time-derivative Ornstein-

Uhlenbeck noise [7], initial conditions [34], mean escape time [28], and control of the

escape rate by combining vortex flow with magnetic fields [2].

1.2.2 Deterministic Escape
Undertaking the exploration of the complex topic of escape, we explore the domain of

deterministic escape, distinct from its stochastic counterpart.

Early theoretical advancements

In 1970, Subramanian published his Ph.D. dissertation at Harvard University [188], titled

’Escape from a potential well.’ This study explores the dynamics of escaping from

potential wells in elastic structure buckling and galactic models. Drawing inspiration

from Budiansky’s dynamic buckling criteria in elastic structures, the dissertation extends

to examine conservative two-degree-of-freedom systems. It proposes a model where a

4



1.2 Literature overview: Methods

particle is trapped at the bottom of a double-well potential energy function, focusing

on the kinetic energy needed to transition to the second well, especially the energy

surpassing the saddle point. The dissertation introduces a Hamiltonian for a two-

coordinate system with a time-independent potential function and an axis of symmetry,

significant in galactic models for analyzing trapped motions. The study also considers

a nonlinear coordinate coupling. The results provide insight into escape conditions

from potential wells, influencing structural design against buckling and enhancing our

understanding of galactic dynamics in gravitational wells.

Later, in his seminal 1979 work [78], Holmes investigated the complex behaviors of

a nonlinear oscillator under harmonic forcing in a double-welled Duffing potential.

The study delves into the bifurcation phenomena that occur as the amplitude of the

external force varies. Holmes finds that the system’s responses are predictable for small

and large force amplitudes and align with established averaging theories. However,

at intermediate force levels, the oscillator exhibits complex and unexpected behavior

known as strange attractors or chaotic oscillations, a concept previously identified

in higher-dimensional autonomous ordinary differential equations. The underlying

potential is significant, as it is one of the simplest to model an escape.

The book by Guckenheimer and Holmes [73] offers a comprehensive examination of

nonlinear oscillations, dynamical systems, and bifurcations of vector fields including a

systematic analysis of the double-well potential given by the Duffing equation.

In 1985, the same potential well was investigated by Moon et al. [135]. The authors report

on chaotic motions, emphasizing the fractal nature of the system’s basins of attraction

and their correlation with homoclinic orbits.

In their paper from 1987, Ueda et al. observed subharmonic motions while simulating

a particle’s dynamics in the two-welled Duffing potential [203], which sheds light on

nonlinear resonance and the role of period-doubling bifurcation in the emergence of

strange attractors.

In 1991, a paper by Thompson [200], titled ’Chaotic Phenomena Triggering the Escape

from a Potential Well,’ explored the dynamics of a damped, driven mechanical oscillator

in a quadratic-cubic potential well, representing a metastable system near a fold. The

paper aims to demonstrate how dynamic elements such as saddle nodes, folds, and

period doublings combine to form complex response structures, such as hierarchies

of cusps and incomplete Feigenbaum trees. A key focus is on the basin of attraction

and the loss of engineering integrity caused by a homoclinic tangle, which analysis can

precisely forecast. The paper also examines chaotic transients, aligning with scaling

laws and disproving common predictions made by harmonic balance analysis about

flips and folds. Melnikov’s analysis is employed to demonstrate the presence of chaos

analytically, showing a good correlation between the generated curve and the numerical

data. The paper then shifts focus to ’safe basins,’ identifying initial conditions that
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lead to escape versus those that do not. The safe basin area is seen to shrink with

increasing excitation, a phenomenon called the ’Dover Cliff,’ where the safe basin

area decreases minimally at first, followed by a drastic reduction, explained through

homoclinic tangency. The current dissertation will provide an alternative explanation

of the ’Dover Cliff’ phenomenon, showing that the typical erosion profile can also be

created in linear systems.

Neishtadt ’s 1991 paper [145] examines the effects of small or slow perturbations on a

Hamiltonian system with one degree of freedom. It focuses on how the phase plane

of the unperturbed system, divided by separatrices, behaves under perturbations that

enable phase points to cross these separatrices. The paper describes various proba-

bilistic phenomena arising from these separatrix crossings. These include scattering of

trajectories, random jumps in the values of adiabatic invariance, and adiabatic chaos.

These phenomena are significant both in theoretical problems of classical mechanics

and in practical contexts like planetary science and plasma physics.

In 1992, Gottwald et al. published a paper on the experimental mimicry of Duffing’s

equation [72]. Before his work, Duffing’s equation was extensively studied analytically

and numerically. Nevertheless, experimental work in mechanics has been more limited.

Gottwald’s work describes a novel experimental approach in which a particle or a rigid

body mimics the behavior of Duffing’s equation. The study investigates free and forced

oscillations, illustrating familiar nonlinear dynamic features such as competing steady-

state attractors, hysteresis, sensitivity to initial conditions, subharmonic oscillation, and

chaos. The experiment uses a setup similar to a ball rolling on a double-walled potential

energy surface, offering insights into Duffing’s oscillator.

Quinn ’s 1997 paper [162], ’Transition to Escaping System of Coupled Oscillators,’

explores a Hamiltonian system derived from two forced pendulums connected by a

torsional spring. The paper focuses on a coupled oscillator system’s confined motions at

intermediate energy levels. These motions, unbounded over time but oscillating within

the bounds of the homoclinic orbit of the unperturbed system for a significant duration,

are analyzed through equipotential surfaces. These surfaces are closed at lower energies

but open up at higher energy levels. The trajectories from a stochastic phase-space

region remain confined for extended periods before eventually escaping through the

opening in equipotential curves and proceeding to infinity.

In 1999, Sanjuan published a paper exploring the effect of nonlinear damping on the

universal escape oscillator [175], the first study to investigate the impact of velocity-power

proportional damping on escape dynamics. It described a range of nonlinear phenomena,

including period-doubling bifurcations and chaos. The research demonstrated that

increasing the nonlinear damping power had a similar effect to reducing the damping

coefficient in linearly damped systems. The theoretical findings based on the Melnikov
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analysis were supported by numerical results, focusing on how the varying excitation

amplitude and damping power affected the system’s behavior.

Basins of attraction and integrity measures

Over the past four decades, the field of nonlinear dynamics has made significant

advancements in understanding the phenomena of particle escape from a potential

well, which is strongly related to the concept of the basin of attraction and its integrity

measures. Safe basins are areas in the phase space where the system’s behavior is

dynamically acceptable, including scenarios such as the convergence towards attractors

or maintaining stability within a potential well. The integrity of these basins is

paramount in studying nonlinear mechanical oscillators, especially concerning the

concept of escape from potential wells, as it ensures the system’s reliability under

variable conditions. [163]

Integrity measures are a quantitative tool to assess the robustness and size of safe basins.

The Global Integrity Measure (GIM) and the Integrity Factor (IF) are two primary

metrics used in this context [163]. The GIM measures the normalized hyper-volume of

the safe basin, offering a straightforward indication of its overall size. On the other hand,

the IF assesses the radius of the largest hyper-sphere fully encompassed by the safe

basin, focusing on its compact and non-fractal aspects, which are vital for maintaining

dynamical integrity.

The concept of basin erosion is central to understanding the dynamics of escape. Erosion

refers to the diminishing integrity of safe basins due to changes in system parameters,

particularly excitation amplitude. This erosion is a critical indicator of a system’s

weakening ability to stay within safe operational limits, directly impacting the potential

for escape from a well.

Control methods are used to mitigate the effects of basin erosion and maintain dynamical

integrity. These methods involve adjusting system parameters or modifying excitation

characteristics to delay or prevent the erosion of safe basins. Such strategies are essential

to avoid abrupt system failures, especially in environments with uncertainties or external

disturbances.

In essence, safe basins and integrity measures are essential to analyzing and controlling

the dynamics in nonlinear mechanical oscillators. They are vital to ensuring the reliability

of the system and preventing escape from potential wells, with a focus on monitoring

and controlling the erosion process.

The following section provides a historical overview of the research on this topic.

In 1989, Thompson initiated this exploration focusing on chaotic phenomena that trigger

escape from a potential well [198]. His study explored mechanical oscillators and their

dynamics, focusing on saddle-node folds, period-doubling flips, and chaos that influence
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escape dynamics. Thompson ’s work was instrumental in highlighting the significance

of the basin of attraction and its erosion due to homoclinic tangling, a phenomenon

precisely predicted using Melnikov analysis. This foundation was essential to setting

the stage for subsequent explorations of the integrity and stability of dynamical systems.

Parallel to this, Soliman and Thompson, in the same year, advanced the understanding of

system stability by introducing the concept of integrity measures to quantify the erosion

of both smooth and fractal basins of attraction [183]. Their research explored how

attractor basins evolve under varying control parameters, deepening the understanding

of system responses to external influences.

Further expanding this field, Szemplinska-Stupnicka in 1992 explored the phenomena

of cross-well chaos and escape in driven oscillators. Her research offered insights into

common behaviors among various dissipative softening-type oscillators, integrating

computational simulations and analytical approximations. This work enriched the

understanding of how systems transition from regular, periodic responses to more

complex, chaotic motions, providing valuable formulae for predicting these transitions

[190].

The early 1990s also saw significant contributions from Lansbury, Thompson and Stewart.
Their 1992 study on basin erosion in the twin-well Duffing oscillator unveiled two

distinct bifurcation scenarios. This research was essential in understanding how basin

boundaries develop fractal structures and how this is related to the dynamics of

homoclinic tangencies, further illuminating the complexities of system stability and

response under varied conditions [104].

In a series of papers, Lenci and Rega explored control strategies for nonlinear dynamics in

various systems, including two-well impact systems, rocking blocks, and thermoelastic

electrically actuated microbeams. Their work combined theoretical treatment and

practical applications to provide insights into optimal control strategies aimed at

mitigating safe basin erosion and controlling homoclinic bifurcations, thus improving

system stability and predictability [109–118].

Escape in conservative systems

Previously, the exploration of escape dynamics through analytical methods has predom-

inantly focused on damped systems, where the assumption of transient decay holds,

allowing the application of methods such as harmonic balance [206–208]. Another

commonly used technique, Melnikov analysis, does not focus on the solution. Instead,

it describes the homoclinic tangency and assesses chaotic behavior, which is then linked

to escape [113, 198]. In conservative systems, the decay of transients cannot be assumed,

and the impact of initial conditions is preserved throughout the motion, seemingly

complicating the situation. However, freely oscillating conservative systems have the
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advantage of conserving total energy. Moreover, adiabatic invariants can be identified

using action-angle variables, which retain their value throughout the system’s motion,

even if it is subjected to some excitation [103].

Action-angle variables in classical mechanics are a set of canonical coordinates used

in integrable systems. These variables are particularly useful for characterizing the

nature of flows within a system when energy levels are conserved, and the space of

these energy levels is compact. In essence, they provide a means to understand the

frequencies of oscillatory or rotational motions in a system without directly solving its

equations of motion, which is especially valuable in systems where the Hamilton–Jacobi

equation is entirely separable. Action-angle variables are applicable only when a system

is completely integrable, meaning there is a maximal number of independent Poisson

commuting invariants, and the conserved energy surface is compact. These variables

are instrumental in simplifying the analysis of such systems, making them integral to

understanding their dynamics [70, 159, 176].

The 2018 paper by Gendelman examines the escape of a classical particle from a one-

dimensional conservative potential well using action-angle variables [67]. This approach

yields a nontrivial conservation law, enabling efficient analytic methods to predict the

minimal forcing amplitude for escape. The study finds a sharp minimum in this

amplitude at an intermediate frequency, corroborating previous models relevant to the

capsize of ships and microelectromechanical systems.

The research utilizes a cosine hyperbolic potential, uniquely allowing for exact calcu-

lations of the action-angle variables. This leads to the identification of two escape

mechanisms: the direct maximum mechanism and the subtler saddle mechanism.

Gendelman and Karmi in their 2019 paper extend these concepts to other potentials,

including truncated quadratic and quadratic-quartic wells. It is possible to find the

exact solution in the first case. However, describing the critical force and its dependence

on the excitation frequency and the initial phase is not straightforward, especially

when dealing with a commensurable ratio of the natural frequency of the well and

the excitation frequency. This issue will be later clarified in Chapter 3 describing the

dynamics of forced escape from an asymmetrically truncated quadratic potential well

based on [224]. The analysis of the quadratic-quartic potential, incorporating elliptic

functions, re-encounters the two distinct escape scenarios, allowing a conjecture for the

more general case: that the sharp minimum of the critical force at specific frequencies

signifies a universal ’fingerprint’ of escape dynamics under periodic forcing for a wide

variety of weakening potentials.

The 2019 study by Naiger and Gendelman, [137], represents an important development

in the field. This research introduced viscous damping into the model, diverging from

the traditional Hamiltonian approach. The paper investigates the averaged transient

dynamics by focusing on the primary 1:1 resonance. The study’s analytical approach
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determines the minimum force necessary to escape, considering the excitation frequency

and damping coefficients. The results show consistency with the theoretical predictions,

with some deviations at very low frequencies.

Farid’s 2020 paper [55] further explores this field by examining asymmetric potential

wells. Using two different models, Farid’s study contributes to understanding the nu-

ances of transient escape dynamics. The findings demonstrate the uniformity of escape

mechanisms in various well structures, even with minor damping, complementing the

earlier findings on symmetric wells.

Farid expanded the scope of escape dynamics studies by examining a particle’s behavior

in a purely nonlinear truncated quartic potential well under harmonic excitation [57].

This work deviates from earlier models that approximated potential wells linearly for

small perturbations. The paper highlights the inadequacy of traditional analytical

methods when addressing systems with strong nonlinearity, such as pre-tensioned

metal wires and polymer-based structural components. Instead, it employs a canonical

transformation to action–angle variables within the framework of isolated resonance

approximation. This approach allows for an analytic formulation of the escape envelope,

revealing that even in such a nonlinear context, a sharp minimum exists in the forcing

amplitude for escape, indicative of intersecting escape mechanisms. Notably, Farid

identifies three mechanisms: two gradual ’maximum’ mechanisms, corresponding

to a steady increase in response with excitation intensity, and a ’saddle’ mechanism

that leads to an abrupt response, which could pose a significant risk due to its sudden

nature. The analysis uses energy-based response curves to predict the maximal transient

energy over a range of excitation parameters, illustrated by iso-energy contours. These

theoretical predictions align well with numerical simulations, offering a comprehensive

understanding of escape dynamics in purely nonlinear systems.

Furthering this line of inquiry, Farid and Gendelman ’s joint paper in 2021, [56], investigates

the escape dynamics from a weakly nonlinear truncated potential well under the

influence of viscous damping. Prioritizing the primary 1:1 resonance, this study is

notable for considering the effects of damping in the context of transient behavior,

drawing a parallel to a 2019 paper by Naiger and Gendelman [137]. The researchers employ

a multiple-scales analysis to tackle the non-integrable slow-flow equations introduced

by damping, demonstrating the significant divergence in escape dynamics between

linear and weakly nonlinear systems. This paper uniquely quantifies the damping’s

impact on the escape threshold through an explicit analytical expression. Their findings

underscore the intricacies of slow-flow dynamics and provide an understanding of

how damping alters escape mechanisms, thus refining the conceptual framework for

studying escape phenomena in damped systems.

Advancing the study of escape dynamics, the work of Kravetc and Gendelman in 2022, [95],

revisits the classic problem of a particle’s escape from a potential well under harmonic
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forcing. This paper addresses the challenge of applying action–angle variables to model

potentials, which is traditionally possible for only a limited number of potential functions.

They propose a method to approximate realistic generic potentials with low-order

polynomial functions suitable for the action-angle transformation. To demonstrate

their method’s effectiveness, they applied it to the isolated resonant approximation

for a generic quartic potential. The implications of this approach are particularly

relevant to the study of pull-in instabilities in MEMS, including the analysis of a

single-degree-of-freedom model of a capacitive micromachined ultrasonic transducer.

By approximating the electrostatic potential in MEMS with quartic polynomials, they

assessed the accuracy of escape threshold predictions, finding that a global 𝐿2
-optimal

heuristic approximation yields the most precise results.

In a 2023 study by Kravetc, Gendelman and Fidlin, [96], the resonant escape under

finite-time harmonic excitation in nonlinear systems with damping is explored. Their

approach establishes the critical forcing for resonant escape within a finite timeframe.

Subsequently, they adapt the isolated resonance approximation (AIR) method to estimate

the escape time, offering insight into the escape process’s temporal aspect. Their analysis

uncovers a fractal-like boundary demarcating the finite-time escape region, elucidating

the limitations of the AIR method and the high sensitivity of escape dynamics to the

duration of numerical simulations. This discovery is significant for comprehending the

intricacies of escape phenomena in practical applications where time constraints are

critical.

Shifting the focus from the role of excitation parameters to the influence of initial

conditions on escape dynamics, Karmi, Kravetc and Gendelman in 2021 presented an

analytical exploration of safe basins in the context of a classical particle’s escape from a

potential well under harmonic forcing [88]. The study utilizes the approximation of iso-

lated resonance, simplifying the dynamics to a conservative flow on a two-dimensional

resonance manifold. This simplification enables a clear demarcation of SB boundaries,

the initial conditions that do not lead to escape. The research used a parabolic-quartic

well as a benchmark and provided accurate predictions of SB boundaries for lower

forcing amplitudes. The analysis revealed the decomposition of SBs into disjoint zones

for specific parameter ranges linked to two distinct escape mechanisms on the resonance

manifold. For higher forcing amplitudes, the analytic predictions lose some accuracy

due to the limitations of the isolated resonance approximation and the complex nature

of secondary resonances. Nevertheless, the findings offer valuable insights into the SB

boundaries.

Additional details are available in Karmi ’s 2022 dissertation on the analytic prediction

of safe basins, examining three benchmark potential wells and their transient dynamics

[89]. The study presents an in-depth analysis of escape behavior, especially under

conditions of principal 1:1 resonance, examining the shift in minimal forcing for
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different frequencies and providing explicit evaluations of the critical force values.

The dissertation highlights the two earlier found distinct escape scenarios in a strongly

nonlinear well, differentiated by their approach to the escape transition. This research

provides an analytical framework for predicting SBs, even with strong nonlinearities. It

marks an advancement in understanding the influence of initial conditions on escape

dynamics. The study highlights the potential for using these predictions as preliminary

estimates for more detailed numerical computations.

The 2024 study conducted by Kravetc et al. [97] advances our understanding of dynamical

integrity and safe basins in systems undergoing forced escape. The ’approximation of

isolated resonance’ method was used to determine and analyze safe basins in escape

scenarios from potential wells. The authors’ approach features precise identification

and characterization of SBs, including the establishment of erosion profiles. A notable

contribution is the introduction of the concept of ’true’ safe basins, which are character-

ized by their invariance to phase shifts, a crucial consideration in real-world applications.

The study uses a cubic polynomial potential as a benchmark model to demonstrate the

effectiveness of their method.

Building on the foundation of escape dynamics in single-degree-of-freedom systems,

recent studies by Engel, Ezra, Gendelman and Fidlin have expanded analytical investigation

into two-degree-of-freedom dynamical systems. In their 2023 paper, Engel et al. explored

the escape mechanisms of a system consisting of two coupled particles via a spring from

a potential well [50]. By examining three distinct potential wells with varying topologies,

the study aims to uncover the fundamental escape mechanisms within different regions

of parameter space. Employing both numerical and analytical methods, the researchers

map out escape mechanisms across a range of initial conditions, proposing analytic

criteria to predict system behavior.

In a related study by Engel, Gendelman and Fidlin, the scope of analytical research is

expanded to include the escape of a single particle from a two-dimensional potential

well [51]. This research is focused on scenarios with zero initial velocities, analyzing

the escape basins on the configuration plane. To achieve this, the study develops

two complementary analytic approaches. The first approach examines the gradient

system linked to the well’s potential relief, while the second modifies the isolated

resonance approximation to suit the two-dimensional context. Together, these methods

delineate an outer boundary of the stability basin. Additionally, the erosion of this

boundary by secondary resonances is numerically investigated, providing insight into

the destabilizing effects that these resonances can have on escape dynamics.
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1.3 Literature overview: Applications
The previous sections have articulated the importance of the escape phenomenon in

nonlinear dynamics, a concept integral to numerous applications. The following section

will present specific engineering cases that emphasize the role of escape. Through these

cases, we will see how understanding escape dynamics is a critical element in the design

and functionality of various engineering systems.

Ship capsize

A ship can capsize when external forces, such as waves, wind, or uneven weight

distribution, cause it to tip beyond its angle of positive static stability. This tipping point

is comparable to a particle escaping a potential well where enough energy is received to

cross the boundary. The dynamics of a ship capsize is governed by the interplay of these

forces, the vessel’s design, and its initial stability, determining whether it can recover or

not.

The 1987 paper authored by Virgin [205] significantly contributes to understanding

nonlinear ship rolling motion. The paper proposes a semi-empirical, nonlinear differ-

ential equation that models the rolling motion of a ship. The equation incorporates

experimental data to model nonlinear damping and righting lever characteristics, and

the comparison with observed behavior is reasonably good. The article describes a

numerical phenomenological approach that analyzes this type of behavior.

In his 1989 paper, Virgin introduces a safety criterion to prevent the capsize of floating

vessels [206]. The criterion is based on the total energy of the steady-state solution of

a harmonically driven oscillator. Should the energy level reach a certain percentage of

the energy corresponding to the saddle energy, the ship enters a critical region where

its operation is unsafe. For analytical purposes, the softening Duffing oscillator is used

with some additional damping.

Virgin’s safety criterion is elaborated through the harmonic balance method, which

approximates the steady-state amplitudes for velocity and displacement, leading to

an evaluation of escape conditions. The paper also extends this analysis to biased

systems, where additional constant forces, such as wind, result in asymmetric potentials

and modified escape dynamics. The research validates the safety criterion through

comparisons with numerical simulations, noting its conservative estimates in predicting

the required forces for escape. The conclusion emphasizes the practical significance

of the criterion in marine design, offering a straightforward, adaptable method for

enhancing the safety and stability of floating vessels.

Related to Virgin’s 1989 investigation of the double-well Duffing oscillator, Nayfeh
et al. study the bifurcations in a forced softening Duffing oscillator, providing a

complementary analytical perspective [140]. Similarly, the behavior of a damped
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Duffing oscillator with softening characteristics was analyzed, taking into account

the impact of harmonic excitation’s frequency and amplitude with the novelty in the

methodology combining second-order perturbation solutions and Floquet analysis to

construct bifurcation diagrams. This approach successfully predicts complex system

behaviors such as symmetry breaking, period-doubling bifurcations, and jumps between

bounded and unbounded motions, which are corroborated by computer simulations

exhibiting chaos and unbounded motions, among other behaviors.

The subsequent note from 1991 by Virgin et al. links directly to Nayfeh and Sanchez’s

findings by contrasting the multiple-scale method with the harmonic balance approach

in analyzing escape dynamics from a potential well [207]. This comparison, underpinned

by stability investigations via Floquet theory and the Routh-Hurwitz criterion, further

elucidates the capsize mechanisms outlined in the softening-spring Duffing oscillator

model.

In 1992, Virgin et al. continued this line of inquiry with a focus on predicting escape from

potential wells under harmonic excitation [208]. The study extends the application of

the harmonic balance method to assess the critical forcing amplitudes against potential

barriers in nonlinear systems with damping. The paper presents findings for both

single and coupled two-degree-of-freedom systems, showing close alignment with

numerical integration results, albeit with some discrepancies. This progression of

research, initiated by Virgin’s work, develops a more nuanced understanding of the

nonlinear dynamical systems relevant to marine safety and design.

The 1992 paper by Thompson et al., parallel to Virgin’s work, delves into the dynamics

of a capsizing ship by deriving equations of motion for a vessel experiencing heaving,

swaying, and rolling in varying wave conditions [201]. It adopts a first-principles

approach, allowing for a broad application to different sea states. It also introduces a

novel method for approximating hydrodynamic pressure using an expansion in circular

harmonics. By assuming a static balance in heave, Thompson simplifies the analysis to

focus on a single roll equation. This equation accounts for both direct and parametric

excitation. The numerical and transient state analysis of a biased boat model upholds

the earlier findings about basin erosion and emphasizes the significance of transient

capsize phenomena, particularly under realistic levels of parametric excitation.

The paper published by Spyrou et al. in 2000 reviews the progress made in nonlinear

dynamics within naval architecture in recent years, providing a comprehensive analysis

of ship dynamics [186]. The paper focuses on the advancements made since the 1970s,

highlighting key topics such as ship capsize mechanisms and broaching, particularly

in the context of their nonlinear behavior. The authors also discuss how these insights

were integrated with numerical ship hydrodynamics, representing a significant shift

in understanding ship motion instabilities. This review showcases the importance
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of nonlinear dynamics in addressing complex challenges in naval architecture and

improving marine safety and ship design.

A similar message is found in the book by Belenky et al. from 2007. The book

comprehensively covers stochastic and deterministic differential equations that describe

ship motion [11]. This book emphasizes the importance of nonlinear dynamics and

stochastic processes in ship motion, particularly in waves. It evaluates the limitations of

conventional dynamic stability assessment methods for modern naval and commercial

ships. The book also discusses contemporary solutions and various stability failures,

including capsizing, surf riding, broaching, parametric resonance, and instability at

wave crests.

Dynamic buckling

Dynamic buckling is a failure mechanism of elastic structures under time-dependent

loads, which has been extensively analyzed in the works of Budiansky [21–23, 82] and by

others [65, 71, 77, 80, 92]. This concept is particularly relevant in structures sensitive to

initial imperfections and subjected to variable loading conditions. Budiansky ’s research

provides criteria and estimates for the dynamic buckling strength of such structures.

The subject of dynamic buckling is further explored in the work of Thompson et al.
[196], which discusses the broader spectrum of elastic instability phenomena, including

buckling. This approach provides a framework for understanding the boundary

conditions and constraints contributing to such instabilities.

The phenomenon of dynamic buckling can be observed in various structural forms

under different loading scenarios. For instance, the study by Vasilikis and Karamanos
[204] investigates the behavior of thin-walled cylinders under external pressure, focusing

on buckling and post-buckling characteristics. This research is significant for practical

engineering applications, such as the stability of buried pipelines. Another example is

provided by Sadighi et al. [172], where the dynamic buckling of axially half-corrugated

thin-walled tubes under axial loading is examined. Their work emphasizes the influence

of structural geometry on the buckling process.

The study by Buratti and Tavano [24] on the dynamic buckling of anchored steel tanks

in seismic conditions further illustrates the relevance of dynamic buckling in structural

engineering. This research highlights the interaction between structural dynamics and

external loading. The foundational texts by Simitses and Hodges [182], and Bushnell
[26] provide a broader context to understand dynamic buckling in various engineering

scenarios.

Dynamic buckling can be conceptually linked to the ’escape from a potential well’

problem. In this analogy, the structure in a stable equilibrium state is akin to a particle

in a potential well. Under dynamic loading, the stability of the structure is challenged,
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similar to that of a particle that receives energy to escape the well. The critical point

of dynamic buckling, where the structure loses stability, parallels the particle’s escape

point from the potential well.

Further expansion of the topic is seen in the work of Champneys et al. [31], which

explores elastic instability, particularly in structures that lose stability subcritically

without a nearby stable post-buckled state. This work underscores the challenges of

designing structures susceptible to buckling due to imperfections or external shocks.

It also emphasizes the concept of the Maxwell load, where the energy levels of the

unbuckled and buckled states are equivalent.

Dynamic pull-in

The following overview is based on the comprehensive summary of Zhang et al. [220].

Electrostatic actuation is a leading mechanism in micro/nanoelectromechanical systems

(MEMS/NEMS), chosen for its numerous advantages. This method has spurred

the development of various electrostatic actuators employed in applications such as

micro/nanomotors, switches, relays, resonators, mirrors, pumps, valves, and filters [10,

27, 35, 42, 52, 121, 124, 149, 150, 160, 194, 218]. [220] categorizes these devices by:

• Input condition: encompassing displacement, torsional, and general type actuators

[59, 85, 105, 106, 108, 146, 157, 211].

• Designated motion: consisting of parallel-plate (horizontal and vertical movement

types) and comb-drive (lateral, vertical, rotational, torsion bar types) actuators [59,

185, 194, 211, 212].

• Element configuration: incorporating beam-type (such as cantilever, fixed-fixed,

curved, bridge-type beams) [157, 213], plate-type [105], membrane-type [85], and

specialized forms (S-shaped [187], tulip-shaped [178], stacked [90], U-shaped [161],

multi-layer [147, 170], etc.).

Electrostatic MEMS/NEMS are particularly advantageous because of the intense in-

teraction between different energy domains at the micro- and nanoscales. However,

this actuation method inherently introduces nonlinear dynamics, notably leading to a

’pull-in’ instability. This pull-in phenomenon is analogous to the problem of a particle

escaping from a potential well, both illustrating critical behaviors in their respective

systems. Pull-in instability significantly limits the operational range of these systems,

as it occurs when the electrostatic force increases more rapidly than the corresponding

spring force, causing a crucial performance limitation [189]. Instability here refers to

the loss of stability and the post-critical behavior of the system, including both static
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and dynamic aspects. Bolotin [18] offers an in-depth look at dynamic instabilities in

structural mechanics, which is essential for understanding pull-in instability.

The groundwork on pull-in phenomena was laid by Nathanson et al. [138] and Taylor
[195] in the late 1960s, leading to a rich body of research on this nonlinear behavior.

Various modeling and simulation approaches have been developed for pull-in analysis,

including lumped capacitor-mass-spring systems [126], simplified geometrical analytical

models [17, 170], reduced order models [33, 143, 215], Full-Lagrangian methods [40,

41], Lyapunov exponent methods [100], and molecular dynamics modeling for carbon

nanotubes [53]. Comprehensive reviews on these models and simulations are available

from authors such as Pelesko and Bernstein [156], Lin and Wang [120], Batra et al. [10],

Zhang et al. [218], and Chuang et al. [35]. Pull-in analysis is generally divided into two

categories: one using quasistatic assumptions and the other focusing on dynamic pull-in

[54].

In addition to electrostatic forces, factors such as geometrical and material characteristics,

surface effects [4, 12, 47, 48, 58, 127], temperature variations [192, 214], size-dependent

effects [1, 6, 66, 171], gas squeeze film effects [8, 119, 217], fluid loadings [165, 180],

mechanical shocks and noise impacts [3, 38, 83, 153, 216, 219] also play a role in pull-in

instability. Researchers such as Luo and Wang [126], Zhao et al. [143], Krylov and

Maimon [99], and Neilson and Barbastathis [148] have made significant contributions to

understanding pull-in dynamics in MEMS/NEMS.

Furthermore, the pull-in phenomenon is not only limited to electrostatic actuators but

also occurs in magnetostatic [41, 146, 194] and dielectric elastomer actuators [39, 76, 91,

136], often leading to failures. The rapid development of MEMS/NEMS has heightened

interest in reliability analysis, prediction, and testing of pull-in-induced failures [35, 37,

124, 125]. The degree of frequency adjustment in these systems is also constrained by

pull-in effects [49, 54, 144, 154, 155]. Furthermore, recent attention has been drawn to

pull-in instabilities in nano-switches [191] and graphene membranes [123].

The pull-in instability in electrostatic MEMS/NEMS devices has received significant

attention due to its widespread impact on device performance, as highlighted by Zhang et
al. [220]. Strategies to mitigate pull-in instability, improve operational range, and harness

the phenomenon for practical applications have become focal points in MEMS/NEMS

research. Numerous studies have proposed various approaches, including mechanical

modifications [25, 81, 164] and control strategies [30, 131, 179], to extend the travel range

and improve the stability of these devices.

Rocha et al. [167] have contributed to this discourse by comparing different methodologies

to expand the travel range of electrostatic actuators on parallel plates. Despite the general

perception of pull-in as an undesirable effect, its control, especially in the context of

dispersive forces, has been a subject of considerable research [101, 102, 107]. Borovic et
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al.[19] and Shirazi et al. [181] have provided insightful analyses of existing open-loop

and closed-loop control strategies for gap-closing MEMS electrostatic actuators.

Although pull-in instability is typically seen as a negative aspect in most MEMS/NEMS

devices, it is also ingeniously utilized as a sensor mechanism in some cases, creating

actuators capable of generating significant force. Devices such as MEMS switches and

accelerometers [46, 85, 161, 168] are examples where pull-in instability is not merely

managed but is effectively employed as a functional characteristic. Additionally, the

pull-in phenomenon serves as a test mechanism to extract crucial material parameters

such as Young’s modulus, interlayer shear effect, and residual stress [122, 152, 169–171].

Particle positioning

The manipulation of particles from the microscale down to the nanoscale with precision

and efficiency is becoming increasingly significant, especially in fields such as rapid

prototyping and biomedicine. While optical manipulation techniques have traditionally

dominated this area, there has been a shift towards utilizing acoustic forces for assem-

bling particles. This approach eliminates the requirement for chemical agents, including

photoinitiators, as noted in the works of [128, 134].

In Chapter 6, we focuses on the dynamics of a strongly damped particle in a cosine

potential, analogous to the system of a damped-driven pendulum, which has been

extensively studied in the literature. In his 1922 publication, Hamel [75] investigated the

undamped forced oscillations of a pendulum at considerable amplitudes, examining

the presence and characteristics of periodic solutions. Later, Hubbard [79] investigated

the chaotic dynamics of the forced damped pendulum, illuminating the complexity and

control opportunities within such systems. Thanks to Coullet et al. [158], recent advances

have been made in understanding the dynamics of the damped driven pendulum

subjected to a constant torque. Further contributions were made by Boscaggin et al. [20],

who studied subharmonic solutions, and Salas et al. [173], who offered closed-form

solutions for the dynamics of forced damped rotational pendulum oscillators.

Further examples

In the following, some further examples on the importance of the escape phenomena

are given.

A significant paper from Bethe et al. from 1979, investigates the gravitational collapse of

stars [16]. This paper offers insights into the equation of state during stellar collapse. The

authors discuss the transformation of nuclei and particles at various densities, electron

capture by nuclei, and the adiabatic journey to higher densities. The paper contributes

significantly to our understanding of stellar phenomena, particularly in the context of

the equation of state.
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The book by Barone et al. [9] is a significant study on the physics and applications of the

Josephson junction, where the tunneling of electrons can be understood as an escape.

The paper by Castagnino and Ferraro [29], published in 1984, provides a detailed analysis

of the phenomenon of the capture of charged particles by an electric field. The study

examines the behavior of a massless scalar quantized field in two-dimensional flat

space-time, with one mirror exhibiting in-out motion. This analysis sheds new light on

the creation of particles and the spectrum of such particles.

1.3.1 Objective of the Work
The primary aim of this research is to make a modest contribution to the field of
oscillator dynamics, with a particular focus on understanding escape dynamics in
various systems. Our approach is structured around three key objectives:

1. Exploring under-researched areas in harmonic oscillators related to escape:

We recognize the gaps in current literature, especially in studying the harmonic

oscillator, where excitation and natural frequencies are commensurable. This

aspect of our research seeks to build on and extend the existing knowledge

base, addressing topics that have not been fully resolved in previous studies.

Additionally, we aim to broaden the understanding of transient processes in

harmonic oscillators involving both damping and excitation, areas that seem to be

less covered in existing research.

2. Advancing the understanding of the escape of multiparticle chains: A significant

part of our research is dedicated to exploring the escape of strongly coupled chains

under poly-harmonic excitation. We develop and analyze models for two and

more complex 𝑛-body systems.

3. Exploring the mechanisms of escape: Our objective is to enhance our under-

standing of the escape mechanisms in oscillator systems. This involves a thorough

analysis of the maximum and saddle mechanisms described by Gendelman, as

well as the interaction of the concurring fast and slow mechanisms that emerge

as a result of initial conditions and from the interplay between free and forced

oscillations.

Furthermore, our research incorporates a newly developed averaging method based on

classical probability density functions. This method is intended to offer an alternative

to our study’s analytical and numerical analysis processes, facilitating a more efficient

calculation of the averaging integral.

In summary, this research aims to contribute to understanding the dynamics of escape

by studying less-explored areas, enhancing the understanding of multiparticle chains,
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and elucidating escape mechanisms to add valuable insights to the field of dynamical

systems.

1.3.2 Structure of the Work
This dissertation is structured as follows. In Chapter 2, the development of averaging

methods and their applications to describe nonlinear escape dynamics is performed.

Linear and nonlinear escape problems are investigated in Chapter 3, respectively, from

a safety perspective focusing on safe basins of escape. In contrast, Chapter 4 focuses

on the case where escape is desired, exploring the effects of excitation parameters

on escape. Chapter 5 investigates escaping multiparticle chains and reducing their

dynamics, whereas Chapter 6 offers a perspective for controlling escape. The final

chapter provides a summary and an outlook on future research directions.

Chapter 2: Methods
This chapter introduces the mathematical methods used throughout the dissertation. It

begins with a discussion of averaging techniques and an exploration of cross-correlation-

based averaging. The chapter concludes by examining the global optimization of the sum

of sines, which sets the stage for more sophisticated analyses in subsequent chapters.

Chapter 3: Safe basins of escape in the linear case
The focus shifts to examining safe basins of escape in linear systems. For that, various

definitions of escape are introduced in this chapter. Furthermore, the undamped-

driven harmonic oscillator and its extension to a damped-driven harmonic oscillator are

analyzed.

Chapter 4: Critical forcing of escape
This chapter parallels the structure of Chapter 3. However, it focuses on critical forcing

scenarios in both undamped and damped-driven harmonic oscillators. The investigation

is extended to small-nonlinearities in conservative harmonically driven systems. Finally,

an experimental validation of the results is performed.

Chapter 5: Escape of multiparticle chains with different time-scales
Here, the dissertation expands to multiparticle chains, exploring the escape of a two-

particle chain under biharmonic excitation, an 𝑛-particle chain under polyharmonic

excitation, and a chain of two colliding particles under biharmonic excitation, providing

a comprehensive view of escape dynamics across various system complexities.

Chapter 6: Controlling escape
The penultimate chapter addresses control strategies for escape dynamics, focusing on

particle positioning in overdamped systems. This chapter bridges the theoretical aspects

of the dissertation with practical control applications.

Chapter 7: Summary and outlook
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The final chapter summarizes the key findings of the dissertation and discusses open

questions and potential future applications of the models and methods developed

throughout the work.
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In the field of nonlinear dynamics, obtaining exact analytical solutions can be challenging

or even impossible, leading to the need for approximations and simplifications. These

approximation methods must be consistent and yield the known solution of the linear

system for diminishing nonlinearities. Such methods are referred to as asymptotic

methods.

Among the leading asymptotic approaches are perturbation theory (with the Lindstedt-

Poincaré method noted for its prominence [141]), averaging techniques [174], and the

method of multiple scales [142]. Which method is used depends on the problem at

hand and the depth of knowledge that the researcher has. Perturbation theory is the

most basic and commonly used of these methods, giving direct approximations for the

paths that state variables follow. In contrast, averaging and multiple-scale methods

start by transforming the system’s coordinates, to simplify the process of finding and

analyzing both stable and unstable equilibrium solutions. These methods enable one to

identify slow manifolds and to separate dynamics on these manifolds and oscillations

around them. Then, all kinds of motion on these manifolds can be investigated much

more easily. For example, periodic motions of the original system appear as equilibria

on the slow manifold. Transient motions on the slow manifold are easy to integrate

numerically since they are slow and allow for significantly larger time steps.

Other methods focus only on long-term steady-state solutions. One of the most famous

representative of such methods is the method of harmonic balance. To analyze the

dynamics of the forced-damped pendulum, we employ the harmonic balance method,

a proven analytical technique in various scientific and engineering fields, including but

not limited to electrical circuits, fluid dynamics, and mechanical systems, as extensively

documented in the literature [69, 74, 93, 139, 177].

In this chapter, we describe a specific form of the averaging method utilized throughout

the dissertation. Calculating the average of a function includes an integral over a time

period, which is often not straightforward, especially in piecewise smooth problems.

Therefore, an alternative method developed by Genda et al. is also described briefly

[227].
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Finally, at the end of this chapter, a theorem is presented to approximate the global

extrema of the sum of two sinusoidal functions. This theorem is necessary to handle

one of the simplest oscillatory systems capable of escape: a harmonically driven particle

in a truncated quadratic potential well. If the particle is in the well, the solution in the

non-resonant case is the sum of two harmonics. However, to determine whether the

particle will reach the boundary of the well, we need to find the global optima of the

solution. This problem results in significant algebraic difficulties, so an approximation

needs to be developed.

2.1 The method of harmonic balance
The following section is based on [84]

1
.

The method of harmonic balance facilitates the approximation of periodic solutions to

nonlinear systems up to any desired order. This approach is particularly valuable in

identifying limit cycles within a system. Unlike perturbation method solutions, the

harmonic balance method is not limited to small nonlinearities. However, the term

’harmonic balance’ is not consistently defined across the literature. Typically, ’harmonic

balance’ refers to a first-order approximation. Some authors use the term to denote an

’equivalent linearization,’ while in control theory, this concept is related to the describing

function of a nonlinear element. Assuming a periodic solution, the nonlinear equation

is harmonically linearized, thus representing a first-order approximation technique.

This results in a linear differential equation with amplitude-dependent coefficients that

reflect the nonlinearity of the original system. A slightly modified version involves

inserting a harmonic function with the problem’s fundamental frequency into the

nonlinear differential equation and performing a coefficient comparison. Instead of the

harmonically linearized system equation, this yields a direct first-order approximation

solution. For higher-order approximations, the harmonic balance method can be

employed as a Galerkin method [129].

2.1.1 Harmonic balance as equivalent linearization
Consider the following nonlinear equation:

¥𝑥 + 𝑓 (𝑥, ¤𝑥) = 𝑔(𝑡). (2.1)

1
The original German text has been translated by the author.
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We seek periodic solutions. Assume that 𝑓 (𝑥, 𝑣) is symmetric and lacks a constant

component. The objective is to transform the equation into the following form:

¥𝑥 + 𝑏∗ ¤𝑥 + 𝑎∗𝑥 = 𝑔(𝑡). (2.2)

This can be achieved by assuming sinusoidal vibration responses:

𝑥 = 𝑥̂ cos 𝜔𝑡 (2.3)

¤𝑥 = 𝑣 = −𝑥̂𝜔 sin 𝜔𝑡 (2.4)

These expressions are substituted into 𝑓 (𝑥, 𝑣). Since a periodic solution is sought,

𝑓 (𝑥, 𝑣) is also periodic and can be expressed as a Fourier series, considering only the

fundamental frequency 𝜔 components (first-order approximation).

𝑓 (𝑥̂ cos 𝜔𝑡 ,−𝑥̂𝜔 sin 𝜔𝑡) = 𝑎0 +
∞∑
𝑘=1

(𝑎𝑘 cos 𝑘𝜔𝑡 + 𝑏𝑘 sin 𝑘𝜔𝑡)

≈ 𝑎1 cos 𝜔𝑡 + 𝑏1 sin 𝜔𝑡

≈ 𝑎1

𝑥

𝑥̂
+ 𝑏1

¤𝑥
−𝑥̂𝜔

≈ 𝑎∗𝑥 + 𝑏∗ ¤𝑥 (2.5)

with coefficients

𝑎∗ =
𝜔
𝜋𝑥̂

∫ 2𝜋
𝜔

0

𝑓 (𝑥̂ cos 𝜔𝑡 ,−𝑥̂𝜔 sin 𝜔𝑡) cos 𝜔𝑡d𝑡 (2.6)

𝑏∗ = − 1

𝜋𝑥̂

∫ 2𝜋
𝜔

0

𝑓 (𝑥̂ cos 𝜔𝑡 ,−𝑥̂𝜔 sin 𝜔𝑡) sin 𝜔𝑡d𝑡 (2.7)

This process linearizes the original equation. The coefficients 𝑎∗ and 𝑏∗ depend on the

amplitude 𝑥̂.

2.1.2 Harmonic balance as a weighted residuals method
This is a Galerkin method that employs harmonic functions as both ansatz and weight

functions. Consider the following nonlinear equation:

¥𝑥 + 𝑓 (𝑥, ¤𝑥) = 𝑔(𝑡). (2.8)
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The solution is expressed as a Fourier series:

𝑥ℎ(𝑡) ≈ 𝐶0 +
𝑁∑
𝑘=1

(𝐶𝑘 cos 𝑘𝜔𝑡 + 𝑆𝑘 sin 𝑘𝜔𝑡). (2.9)

The approach involves defining a residual with the approximation 𝑥ℎ and minimizing

this residual. We define an error (the residual) as:

𝑟 = ¥𝑥ℎ + 𝑓 (𝑥ℎ , ¤𝑥ℎ) − 𝑔(𝑡). (2.10)

If the residual itself is expanded into a Fourier series

𝑟ℎ(𝑡) = 𝛼0 +
∞∑
𝑘=1

(𝛼𝑘 cos 𝑘𝜔𝑡 + 𝛽𝑘 sin 𝑘𝜔𝑡), (2.11)

the residual is minimized when the coefficients of the Fourier series up to order 𝑁 (the

order of the approximation 𝑥ℎ) vanish:

𝛼0 =
1

𝑇

∫ 𝑇

0

𝑟ℎ(𝑡)d𝑡 = 0 (2.12)

𝛼𝑘 =
2

𝑇

∫ 𝑇

0

𝑟ℎ(𝑡) cos(𝑘𝜔𝑡)d𝑡 = 0, 𝑘 = 1, . . . , 𝑁 (2.13)

𝛽𝑘 =
2

𝑇

∫ 𝑇

0

𝑟ℎ(𝑡) sin(𝑘𝜔𝑡)d𝑡 = 0, 𝑘 = 1, . . . , 𝑁 (2.14)

This produces 2𝑁 + 1 equations to solve for the 2𝑁 + 1 unknowns (𝐶0 , 𝐶1 , . . . , 𝐶𝑁 ,

𝑆1 , . . . , 𝑆𝑁 ). Being a Galerkin method, it yields the best possible solution with the

given ansatz functions. By minimizing the residual, the distance between the linear

combination of the basis functions and the actual solution is minimized.

2.2 The averaging method
In what follows, the averaging method is briefly described based on the book of Sanders
et al. [174].

2.2.1 Transformation to standard form
In the analysis of nonlinear dynamical systems, it is practical to express the system in a

standard form. This step makes using perturbation methods more straightforward to
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analyze the system’s behavior. Consider a system subject to a perturbation given by the

equation

¤x = f0(x, 𝑡) + 𝜀f1(x, 𝑡 , 𝜀), x(0) = a, (2.15)

and the corresponding unperturbed system

¤z = f0(z, 𝑡), z(0) = a. (2.16)

We assume that the initial condition-dependent solution to the unperturbed system

z(a, 𝑡) is known. Using the method of variation of integration constants, we define a

transformation z = z(𝜁, 𝑡), with z(𝜁, 0) = 𝜁 and 𝜁 ∈ R𝑛 .

The perturbed solution can be expressed as x = z(𝜁, 𝑡) after the transformation. We then

derive a differential equation for 𝜁 that combines the original perturbed system with

the unperturbed solution:

𝜕z(𝜁, 𝑡)
𝜕𝑡

+ D𝜁z(𝜁, 𝑡) · 𝑑𝜁
𝑑𝑡

= f0(z(𝜁, 𝑡), 𝑡) + 𝜀f1(z(𝜁, 𝑡), 𝑡 , 𝜀), (2.17)

with D𝜁(z) denoting the Jacobian of the vector z with respect to 𝜁. Realizing that the

unperturbed function z satisfies its differential equation, we simplify to find an equation

for
¤𝜁, assuming that the Jacobian D𝜁z(𝜁, 𝑡) is invertible and sufficiently smooth:

¤𝜁 = 𝜀 (D𝜁z(𝜁, 𝑡))−1 · f1(z(𝜁, 𝑡), 𝑡 , 𝜀). (2.18)

Under the above assumptions on the Jacobian D𝜁z(𝜁, 𝑡), the equation for 𝜁, with the

initial condition 𝜁(0), is the system in its standard form. While the transformation

is theoretically simple, it can be complex and impractical in practice. However, the

standard form works well in the case of quasilinear perturbation problems. We consider

the perturbation problem to be quasilinear when the system can be expressed as:

¤x = 𝐴(𝑡)x + 𝜀f1(x, 𝑡 , 𝜀), (2.19)

where 𝐴(𝑡) is a matrix function that varies continuously with time. The unperturbed

equation is represented by ¤y = 𝐴(𝑡)y, which has a complete set of independent solutions

that construct the fundamental matrix solution Φ(𝑡). This fundamental matrix is chosen

to satisfy Φ(𝑡0) = 𝐼. With this, the variable transformation is applied:

x = Φ(𝑡)z, (2.20)
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leading to the perturbed equation in the transformed variables:

¤z = 𝜀Φ−1(𝑡)f1(Φ(𝑡)z, 𝑡 , 𝜀) (2.21)

under the assumption that Φ−1(𝑡) is invertible for all nonnegative 𝑡. If 𝐴(𝑡) is constant,

the fundamental matrix becomes Φ(𝑡) = 𝑒𝐴(𝑡−𝑡0), and the standard form is expressed as:

¤z = 𝜀𝑒−𝐴(𝑡−𝑡0)f1(𝑒𝐴(𝑡−𝑡0)z, 𝑡 , 𝜀). (2.22)

This form is particularly useful when the eigenvalues of 𝐴 are all purely imaginary. If

not, the situation can still be challenging even if 𝑓 1
is bounded.

An illustrative example is provided by an oscillatory system subject to a perturbed initial

value problem:

¥𝑥 + 𝜔2𝑥 = 𝜀𝑔(𝑥, ¤𝑥, 𝑡, 𝜀), (2.23)

𝑥(0) = 𝑎1 , (2.24)

¤𝑥(0) = 𝑎2. (2.25)

For the unperturbed scenario ¥𝑦 +𝜔2𝑦 = 0, we adopt a transformation from the variation

of constants:

𝑥 = 𝑧1 cos(𝜔(𝑡 − 𝑡0)) +
𝑧2

𝜔
sin(𝜔(𝑡 − 𝑡0)), (2.26)

¤𝑥 = −𝑧1𝜔 sin(𝜔(𝑡 − 𝑡0)) + 𝑧2 cos(𝜔(𝑡 − 𝑡0)). (2.27)

This transformation enables us to recast the perturbed system as:

¤𝑧1 = − 𝜀
𝜔

sin(𝜔(𝑡 − 𝑡0))𝑔(·, ·, 𝑡 , 𝜀), (2.28)

¤𝑧2 = 𝜀 cos(𝜔(𝑡 − 𝑡0))𝑔(·, ·, 𝑡 , 𝜀), (2.29)

𝑧1(𝑡0) = 𝑎1 , (2.30)

𝑧2(𝑡0) = 𝑎2. (2.31)

To elucidate the system’s behavior further, we introduce a transformation to amplitude

𝑟 and phase 𝜙 variables:

x =

[
𝑟 sin

(
𝜔𝑡 − 𝜙

)
𝑟𝜔 cos

(
𝜔𝑡 − 𝜙

) ] , ¤x =

[
𝑟𝜔 cos

(
𝜔𝑡 − 𝜙

)
−𝑟𝜔2

sin

(
𝜔𝑡 − 𝜙

) ] . (2.32)
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Through this transformation, we derive the equations governing the evolution of 𝑟 and

𝜙:

¤𝑟 = 𝜀 cos

(
𝜔𝑡 − 𝜙

)
𝑔(·, ·, 𝑡 , 𝜀), (2.33)

¤𝜙 = − 𝜀
𝑟𝜔

sin

(
𝜔𝑡 − 𝜙

)
𝑔(·, ·, 𝑡 , 𝜀). (2.34)

The initial conditions for 𝑟 and 𝜙 are extracted from the initial state of 𝑥 and ¤𝑥. This

transformation will be frequently used in this work to transform nonlinear escape

problems with a single degree of freedom into the standard form to analyze them

further.

2.2.2 Periodic averaging in perturbation analysis
Periodic averaging is applied to perturbation problems in the standard form where the

function to be averaged is periodic. For a system described by

¤x = 𝜀f1(x, 𝑡) + 𝜀2f2(x, 𝑡 , 𝜀), (2.35)

x(0) = a, (2.36)

with f1
and f2

being 𝑇-periodic in 𝑡, the averaged equation is obtained by integrating f1

over one period and neglecting the 𝜀2
term:

¤z = 𝜀f̄1(z), (2.37)

z(0) = a, (2.38)

where

f̄1(z) = 1

𝑇

∫ 𝑇

0

f1(z, 𝑠) 𝑑𝑠 =:

〈
f1(z, 𝑡)

〉
. (2.39)

This method ensures that the solution x(𝑡) stays within a bound of z(𝑡), of magnitude

𝜀, for 0 ≤ 𝑡 ≤ 𝐿/𝜀, which was first shown by Bogoliubov [98]. The reader is referred to

[174] for the proof of first-order periodic averaging. The method can be enhanced to

incorporate the higher-order terms 𝜀2 , 𝜀3 , ...

An example is given in the following to demonstrate the application of periodic

averaging.

Example 2.2.1 (Van der Pol Oscillator). The Van der Pol oscillator, with nonlinearity of 𝒪(𝜀),
is expressed as:

¥𝑥 − 𝜀(1 − 𝑥2) ¤𝑥 + 𝑥 = 0, 𝑥(0) = 𝑥0 , ¤𝑥(0) = 𝑢0 , (2.40)
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where the function 𝑔(𝑥, ¤𝑥) from Eq. (2.23) corresponds to 𝜀(1− 𝑥2) ¤𝑥, a nonlinear damping term.
Implementing the standard amplitude-phase transformation, we consider:

𝑥 = 𝑟 sin

(
𝑡 − 𝜙

)
, (2.41)

¤𝑥 = 𝑟 cos

(
𝑡 − 𝜙

)
. (2.42)

Substituting into the Van der Pol equation yields the equations in the standard form for the
amplitude 𝑟 and phase shift 𝜙:

¤𝑟 = 𝜀𝑟
(
1 − 𝑟2

cos
2(𝑡 + 𝜙)

)
sin

2(𝑡 + 𝜙), 𝑟(0) = 𝑟0 , (2.43)

¤𝜙 = 𝜀
(
1 − 𝑟2

cos
2(𝑡 + 𝜙)

)
sin

(
𝑡 + 𝜙

)
cos

(
𝑡 + 𝜙

)
, 𝜙(0) = 𝜙0 , (2.44)

where 𝑟0 and 𝜙0 are to be obtained from 𝑥0 and 𝑢0. These equations can be averaged over one
period to determine the change in 𝑟 and 𝜙 due to the perturbation:

𝑓 1

𝑟 (𝑟) =
𝜀

2𝜋

∫
2𝜋

0

𝜀𝑟
(
1 − 𝑟2

cos
2(𝑡 + 𝜙)

)
sin

2(𝑡 + 𝜙)d𝑠 =
1

8

𝜀𝑟(4 − 𝑟2), (2.45)

𝑓 1

𝜙(𝑟) = − 𝜀
2𝜋𝑟

∫
2𝜋

0

(
1 − 𝑟2

cos
2(𝑡 + 𝜙)

)
sin

(
𝑡 + 𝜙

)
cos

(
𝑡 + 𝜙

)
d𝑠 = 0. (2.46)

Furthermore, we introduce the averaged amplitude 𝐴 := ⟨𝑟⟩ and the averaged phase shift
𝜑 :=

〈
𝜙
〉
. Their differential equations are given by

¤𝐴 =
1

8

𝜀𝐴(4 − 𝐴2), 𝐴(0) = 𝑟0 , (2.47)

¤𝜑 = 0, 𝜑(0) = 𝜙0 , (2.48)

Solving the averaged system approximates the system’s response under the perturbation, revealing
the slow evolution of the amplitude and phase.

𝐴(𝑡) = 2𝑒
𝜀𝑡
2√

𝑒𝜀𝑡 + 4

𝑟2

0

− 1

, 𝜑(𝑡) = 𝜙0. (2.49)

Specifically, for small 𝜀, in the first-order approximation, the amplitude 𝐴 converges to a constant
value, leading to a limit cycle, while the phase shift 𝜑 remains constant.
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2.3 Cross-correlation-based averaging

2.3 Cross-correlation-based averaging
In practice, the averaging integral, given in Eq. (2.39), is not always as straightforward

to evaluate as in Eqs. (2.45)-(2.46). Specifically, integrals of the form

𝑓 (𝑥) = ⟨ 𝑓 (𝑥 + 𝑔(𝑡))⟩ = 1

𝑇

∫ 𝑇

0

𝑓 (𝑥 + 𝑔(𝑡))d𝑡 (2.50)

can become difficult to handle analytically. Challenging cases include when 𝑓 (𝑥) is

defined piecewise or simply the antiderivative of 𝑓 (𝑥𝑆 + 𝑔(𝑡)) is not available analytically.

In [227], Genda et al. offer an alternative method, which is based on the classical

probability density (CPD) function of the function 𝑔(𝑡). The following text and figures

are adapted from [227] and [228].

Definition 2.3.1. Let 𝑔𝑖 : (𝑎, 𝑏) → R be either a strictly monotonically increasing 𝒞1 function
with the parameter 𝑑𝑖 = 0 when the sign of its derivative is positive or a strictly monotonically
decreasing 𝒞1 function with the parameter 𝑑𝑖 = 1 when the sign of its derivative is negative.
Then, its CPD is defined [45] by

𝜌𝑖 :


R → R0+

𝑥 ↦→ (−1)𝑑𝑖
𝑔′
𝑖
[𝑔−1

𝑖
(𝑥)]

1

𝑏−𝑎 1(𝑔𝑖 (𝑎),𝑔𝑖 (𝑏))(𝑥),
(2.51)

where slightly abusing the notation to set the value of 𝜌𝑖 to 0 outside (𝑔𝑖(𝑎), 𝑔𝑖(𝑏)), we use the
indicator function defined as

1𝑋(𝑥) =
{

1 𝑥 ∈ 𝑋,
0 otherwise.

(2.52)

Note that the strict monotony guarantees the existence of the inverse. If the function 𝑔𝑖(𝑥) = 𝐶𝑖

is constant on 𝑥 ∈ (𝑎, 𝑏), its CPD is given by

𝜌𝑖(𝑥) = 𝛿(𝑥 − 𝐶𝑖), (2.53)

where 𝛿(·) denotes the Dirac distribution.

Definition 2.3.2. Let 𝑔 be a piecewise, continuously differentiable, periodic function with the
time period 𝑇 defined by

𝑔 :

{
(𝑡𝑖−1 , 𝑡𝑖) → R for 𝑖 = 1 . . . 𝑛,

𝑥 ↦→ 𝑔𝑖(𝑥),
(2.54)
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with 𝑡0 = 0 and 𝑡𝑛 = 𝑇 such that all 𝑔𝑖 are either strictly monotonously increasing, decreasing,
or constant on its domain of definition. We further define Δ𝑇𝑖 := 𝑡𝑖 − 𝑡𝑖−1. Then, the CPD of 𝑔
is defined by the weighted average

𝜌(𝑥) :=
1

𝑇

𝑛∑
𝑖=1

Δ𝑇𝑖𝜌𝑖(𝑥). (2.55)

Theorem 2.3.3. For a bounded function 𝑓 and an at least piecewise continuously differentiable
periodic function 𝑔 with period 𝑇, the averaging operator

𝑓 (𝑥) = ⟨ 𝑓 (𝑥 + 𝑔(𝑡))⟩ = 1

𝑇

∫ 𝑇

0

𝑓 (𝑥 + 𝑔(𝑡))d𝑡 (2.56)

is equivalent to the cross-correlation integral

(𝜌 ★ 𝑓 )(𝑥) =
∫ ∞

−∞
𝑓 (𝑦)𝜌(𝑦 − 𝑥)d𝑦, (2.57)

if 𝜌(𝑥) is chosen as the CPD of the ’fast’ variable 𝑔(𝑡).

For the proof of Theorem 2.3.3, we refer to [227].

Remark 2.3.4. In practical technical scenarios, ’fast’ almost periodic motions frequently occur.
An example is the summation of two sine functions with incommensurable frequencies. The
selection of interval boundaries impacts the outcome when averaging these functions over a finite
duration. Since 𝑔(𝑡) is almost periodic, it lacks a specific time period. Nevertheless, one can
consider 𝑇 → ∞ to achieve a uniquely determined integral.

Based on Eq. (2.57), a second, moment-based theorem can be derived, further reducing

calculation complexity for many practical cases.

Definition 2.3.5. The 𝑘𝑡ℎ moment of a CPD 𝜌(𝑥) is defined by

𝑚𝑘 = E(𝑋 𝑘) =
∫ ∞

−∞
𝑥𝑘𝜌(𝑥)d𝑥. (2.58)

For the specific values of several CPDs, refer to [227].

Theorem 2.3.6. Assume that 𝑓 (𝑥) is a real analytic function and has the domain of convergence
𝐷(𝑦) = (𝑦+𝑅𝑙(𝑦), 𝑦+𝑅𝑢(𝑦)) when expanded into Taylor series around 𝑦 with the non-positive
valued function 𝑅𝑙(𝑦) and the non-negative valued one 𝑅𝑢(𝑦). Furthermore, assume that the
range of the ’fast’ variable 𝑔(𝑡) is [𝑥𝑙 , 𝑥𝑢], that is, sup 𝑔(𝑡) = 𝑥𝑢 and inf 𝑔(𝑡) = 𝑥𝑙 . Without
loss of generality, we assume 𝑚1 = 0, and thus 𝑥𝑙 ≤ 0 ≤ 𝑥𝑢 . We define the set

𝐷𝜌 = {(𝑦 ∈ R|(𝑅𝑙(𝑦) < 𝑥𝑙) ∧ (𝑥𝑢 < 𝑅𝑢(𝑦))}, (2.59)
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2.3 Cross-correlation-based averaging

𝐷𝜌

Figure 2.1: Visual interpretation of the definition of 𝐷𝜌. Figure adapted from [227]

i.e., the set of points around which the convergence radius of 𝑓 (𝑥) is large enough that the support
of 𝜌(𝑥) fits into it (cf. Fig. 2.1). Then, the following holds.

𝑓 (𝑥) =
∫ ∞

−∞
𝑓 (𝑦)𝜌(𝑦 − 𝑥)d𝑦 =

∞∑
𝑘=0

𝑚𝑘

𝑓 (𝑘)(𝑥)
𝑘!

for 𝑥 ∈ 𝐷𝜌 , (2.60)

where (·)(𝑘)(𝑥) denotes the 𝑘th derivative.

For the proof of Theorem 2.3.6, we refer to [227].

Theorem 2.3.6 is of particular significance in two specific instances: a) when the target

function is a polynomial, which implies that a finite set of moments suffices to compute

the average, and b) when the support of 𝜌 is limited, leading to 𝑚𝑘 → 0 as 𝑘 → ∞.

In the following, we demonstrate how to obtain the CPD of complex motions consisting

of the sum of individual periodic motions with incommensurable frequencies. For that

end, we generalize the concept of incommensurability for more than two frequencies.

Definition 2.3.7 (Linear independence overQ). The frequencies 𝜔1 , . . . , 𝜔𝑃 ∈ R are linearly
independent over Q if

𝑃∑
𝑖=1

𝑟𝑖𝜔𝑖 ≠ 0, (2.61)

holds for any set of rational numbers 𝑟𝑖 ∈ Q, except 𝑟1 = 𝑟2 = ... = 𝑟𝑃 = 0.

Weyl established that the 𝑃-dimensional flow on a torus T𝑃 = R𝑃/Z𝑃 is equidistributed

[210], meaning a particle starting at 𝒙0 = [𝑥0,1 , . . . , 𝑥0,𝑃]⊤ ∈ T𝑃 and traversing with

uniform velocity in direction 𝝎 = [𝜔1 , . . . , 𝜔𝑃]⊤ ∈ R𝑃 on T𝑃 , such that

x(𝑡) = (x0 + 𝝎𝑡) mod 1 =

(
{𝑥0,1 + 𝜔1𝑡}, {𝑥0,2 + 𝜔2𝑡}, . . . , {𝑥0,𝑃 + 𝜔𝑃𝑡}

)⊤
, (2.62)
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spends a relative dwell time in any volume element 𝑉 proportional to the element’s

hypervolume |𝑉 |, if and only if the frequencies 𝜔1 , . . . , 𝜔𝑃 are linearly independent over

Q.

Here, {·} denotes the fractional part function, and ’relative dwell time’ refers to the

ratio lim𝑡→∞ 𝑡𝑉/𝑡, where 𝑡𝑉 is the time spent within volume element 𝑉 over the total

observation period 𝑡. This aligns with the notion that flow on a 𝑃-dimensional torus is

ergodic with respect to the Haar measure on T𝑃 [36].

Thus, sampling particle positions at uniformly distributed random time points within

[0, 𝑇], as 𝑇 → ∞, will yield a uniform multivariate distribution in T𝑃 . These sam-

pled positions can be viewed as outcomes of a 𝑃-dimensional random variable X =

[𝑋1 , . . . , 𝑋𝑃]⊤, with each scalar component uniformly distributed in [0, 1] and inde-

pendent of others. This interpretation allows for the computation of the CPD for

polyharmonic excitation as described.

Theorem 2.3.8. Assuming the frequencies 𝜔1 , . . . , 𝜔𝑃 are linearly independent over Q, the
CPD of

𝑧(𝑡) =
𝑃∑
𝑖=1

𝐴𝑖 sin(𝜔𝑖𝑡 + 𝛽𝑖) (2.63)

is obtained through

𝜌(𝑥) = (𝜌1 ∗ 𝜌2 ∗ ... ∗ 𝜌𝑃)(𝑥), (2.64)

where 𝜌1 ∗𝜌2 ∗ ... ∗𝜌𝑃 denotes the convolution of 𝜌1 , 𝜌2 , . . . , 𝜌𝑃 , each characterized by the arcsine
distribution

𝜌𝑖(𝑥) =
1

𝜋
√
𝐴2

𝑖
− 𝑥2

. (2.65)

Proof. The ergodic nature of the line on T𝑃 , parameterized by the sines’ arguments,

implies that the flow of these arguments on T𝑃 is uniform. Sampling this flow at

uniformly random intervals equates statistically to sampling from a 𝑃-dimensional

uniform distribution on the torus, indicating that Eq. (2.63)’s sum mirrors the probability

distribution of the sum of 𝑃 uniformly distributed random variables on [0, 2𝜋] after the

transformation 𝐴𝑖 sin(Ω𝑖𝑋𝑖 + 𝛽𝑖) is applied.

As per [227], the CPD of a simple harmonic term 𝐴𝑖 sin(Ω𝑖𝑡 + 𝛽𝑖) is represented by Eq.

(2.65). CPDs and PDFs share equivalent statistical properties, and the PDF of the sum

of independent variables is the convolution of their individual PDFs, as outlined in Eq.

(2.64), thus concluding the proof. □
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2.3 Cross-correlation-based averaging

Remark 2.3.9. The commutative property of convolution implies the sequence of operations is
irrelevant.

Remark 2.3.10. The moments of the centered arcsine distribution with half-width𝐴 are provided
by [227] as follows:

𝑚𝐾 =

{
𝐴𝐾 1

2
𝐾

( 𝐾
𝐾/2

)
if 𝐾 is even,

0 if 𝐾 is odd,
for 𝐾 ≥ 0. (2.66)

Theorem 2.3.11. Let 𝑚 𝑗 , 𝑗𝑖 denote the 𝑗th
𝑖

moment of the 𝑗th term’s CPD from Eq. (2.63), where
𝑗𝑖 ∈ N+ for all 𝑗 = {1, . . . , 𝑃}. The 𝐾th moment of 𝜌(𝑥), as indicated in Eq. (2.64), is expressed
as

𝑚𝐾 =

©­­­«
∑

(∑𝑃
𝑗=1

𝑗𝑖

)
=𝐾

𝑃∏
𝑗=1

𝑚 𝑗 , 𝑗𝑖

𝑗𝑖 !

ª®®®¬𝐾! (2.67)

Proof. The moment-generating function of a random variable 𝑋 is represented by

𝑀𝑋(𝑡) =
∞∑
𝐾=0

𝑚𝐾

𝐾!

𝑡𝐾 . (2.68)

It is a well-established fact that the product of the moment-generating functions

of independent random variables 𝑋1 , 𝑋2 , . . . , 𝑋𝑃 results in the moment-generating

functions of their sum, 𝑋 =
∑𝑃
𝑖=1
𝑋𝑖 :

𝑀𝑋(𝑡) = 𝑀𝑋1
(𝑡)𝑀𝑋2

(𝑡)...𝑀𝑋𝑃 (𝑡). (2.69)

Given that moment-generating functions are power series, the Cauchy product rule is

applicable, resulting in Eq. (2.67). □

In the following, we demonstrate the application of the above theorems.

Fig. 5.5 gives an example for the CPD of a biharmonic function. In Fig. 2.2a, the

function is periodic, thus the linear independency of the frequency components over Q

is not fulfilled. As a result, the CPD differes significantly from the CPD of an aperiodic

function, represented in Fig. 2.2b.
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(a) Periodic bi-harmonic motion given by 𝑔(𝑡) = − cos(𝑡) − cos(1.4𝑡 − 0.1) and its numerically obtained CPD

(b) Aperiodic bi-harmonic motion given by 𝑔(𝑡) = − cos(𝑡) − cos

(√
2𝑡 − 0.1

)
and its analytically obtained CPD

Figure 2.2: Effects of commensurability on the CPD. Figures adapted from [227]

Example 2.3.12 (Escape of a pair of coupled particles). Consider the scenario where two
particles are coupled by a strong linear spring of stiffness 𝑘 ≫ 1, located in a quadratic-quartic
potential well given by 𝑉(𝑥) = 𝑥2/2 − 𝑥4/4 (cf. Fig. 2.3). The equations of motion are:

¥𝑥1 +𝑉′(𝑥1) + 𝑘(𝑥1 − 𝑥2) = 0, (2.70)

¥𝑥2 +𝑉′(𝑥2) + 𝑘(𝑥2 − 𝑥1) = 0, (2.71)

𝑥1(0) = 𝑥2(0) = 0, (2.72)

¤𝑥1(0) = −𝑣0 , (2.73)

¤𝑥2(0) = 𝑣0. (2.74)

The stability of the solution is sought in dependence of the parameters 𝑘 and 𝑣0. By introducing
the center of mass and relative displacement as new variables

𝜂 =
𝑥1 + 𝑥2

2

, and 𝑦 = 𝑥2 − 𝑥1 , (2.75)
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the following equations are derived:

¥𝜂 +
𝑉′ (𝜂 − 𝑦

2

)
+𝑉′ (𝜂 + 𝑦

2

)
2

= 0, (2.76)

¥𝑦 +
(
2𝑘 + 1 − 3𝜂2

)
𝑦 − 𝑦3

4

= 0, (2.77)

𝜂(0) = ¤𝜂(0) = 0, (2.78)

𝑦(0) = 0, (2.79)

¤𝑦(0) = 2𝑣0. (2.80)

Given that 𝑉′(𝑥) is an even function, one solution is 𝜂(𝑡) = 0. However, its stability depends
on the values of 𝑣0 and 𝑘. Substituting 𝜂(𝑡) in Eq. (2.77) simplifies the problem to a softening
Duffing oscillator. The total energy is given by

𝐸0 =
1

2

¤𝑦2(0) = 2𝑣2

0
, (2.81)

which helps in determining the amplitude of oscillations

𝐴 = 2

√
2𝑘 + 1

√√√
1 −

√
1 −

2𝑣2

0

(2𝑘 + 1)2 . (2.82)

With 𝑘 ≫ 1, the oscillations in 𝑦 are rapid, allowing for the averaging of Eq. (2.76) [60]. By
Theorem 2.3.3, an exact determination of 𝑦(𝑡) is unnecessary; its CPD suffices. Theorem 2.3.6
indicates that only the first three moments are relevant in the averaging, as𝑉′(𝑥) is a third-degree
polynomial. The symmetry of 𝑦(𝑡) nullifies the odd moments, leaving only the second moment
(other than the trivial zeroth one). The linear force being significantly larger than the nonlinear
cubic force, the motion is closely akin to harmonic motion, with the second moment

𝑚𝑦,2 =
𝐴2

2

. (2.83)

The averaged center of mass is denoted as 𝜉 := ⟨𝜂⟩. After rescaling the moment due to the factor
1/2 and inserting it into Eq. (2.83), we get〈

𝑉′
(
𝜂 − 𝑦(𝑡)

2

)〉
=

〈
𝑉′

(
𝜂 + 𝑦(𝑡)

2

)〉
= 𝑉′(𝜉) + 1

8

𝑉′′′(𝜉)𝑚𝑦,2 =

(
1 − 3

8

𝐴2

)
𝜉 − 𝜉3 ,

(2.84)
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𝑘

Figure 2.3: Configuration of two cou-

pled particles in a quadratic-quartic

potential well. Figure adapted from

[227]

Figure 2.4: Graphical representation of the critical initial velocity

𝑣0,c in relation to the stiffness parameter 𝑘 of the linear spring.

Figure adapted from [227]

resulting in an averaged differential equation

¥𝜉 +
(
1 − 3

8

𝐴2

)
𝜉 − 𝜉3 = 0. (2.85)

Linear stability analysis results in the stability condition

8

3

!

> 𝐴2 , (2.86)

which translates to

𝑣0

!

< 𝑣0,c :=
2

3

√
3𝑘 + 1. (2.87)

The comparison between this analytical estimate and direct numerical simulations is depicted
in Fig. 2.4. The simulations were conducted by slightly altering the initial conditions to
𝜂(0) = 0.005 and integrating the system for up to 1000 time units. The particle pair’s escape
classifies the solution 𝜂(𝑡) = 0 as unstable.

2.4 Global optimization of the sum of two harmonics
In investigating escape problems, it is paramount to determine the maximum displace-

ment of the particle during its course, as it is a helpful indicator of escape. The escape

condition is often simplified as follows: if some quantity related to the particle’s motion

(total energy, displacement, force) crosses a certain level, the case is classified as escape
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[225, 68]. The following section assists in investigating a specific case by working with

the exact motion of the underlying system.

Undamped linear differential equations give rise to harmonics in their solutions. When

a single-degree-of-freedom undamped harmonic oscillator is subjected to harmonic

excitation with different natural and excitation frequencies, the resulting motion can be

represented as the sum of two sine functions. However, finding the maximum of such

a function with general frequency, phase, and amplitude values is not straightforward

and, in most cases, can only be done numerically, especially if the excitation and natural

frequencies are commensurable.

However, reasonable estimates can be given even for those cases. The following text

and figure are adapted from the work of Genda et al. [224].

We seek to find the supremum of a function 𝑓 with respect to time 𝑡, which is represented

by

sup

𝑡

𝑓 (𝑡) = sup

𝑡

(
𝐴 cos

(
Ω𝐴𝑡 + 𝛼𝐴

)
+ 𝐵 cos

(
Ω𝐵𝑡 + 𝛼𝐵

) )
(2.88)

where𝐴, 𝐵,Ω𝐴 ,Ω𝐵 > 0 and 𝛼𝐴 , 𝛼𝐵 ∈ [0, 2𝜋). Through the transformation of coordinates

𝑡 := Ω𝐴𝑡 + 𝛼𝐴 (2.89)

and defining

Ωratio :=
Ω𝐵

Ω𝐴
, 𝛼

shift
:= −Ω𝐵𝛼𝐴

Ω𝐴
+ 𝛼𝐵 , (2.90)

we can reformulate the problem as

𝑓sup := sup

𝑡

𝑓 (𝑡) = sup

𝑡

(𝐴 cos 𝑡 + 𝐵 cos(Ωratio𝑡 + 𝛼
shift)) . (2.91)

Theorem 2.4.1. If Ωratio is a non-rational real number, the supremum of Eq. (2.91) is

𝑓sup,Irr := 𝐴 + 𝐵. (2.92)

In contrast, if Ωratio is rational, denoted as Ωratio = 𝑁/𝑀 for some 𝑁, 𝑀 ∈ N, the supremum of
𝑓 (𝑡) can be approximated by

𝑓sup,Rat := 𝐴
©­«1 − 2𝜋2

(
𝐵Ωratio

𝐴 + 𝐵Ω2

ratio

)
2

|𝑦0 |2ª®¬ + 𝐵 ©­«1 − 2𝜋2

(
𝐴

𝐴 + 𝐵Ω2

ratio

)
2

|𝑦0 |2ª®¬ ,
(2.93)
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with

Δ𝐸 =
gcd(𝑀, 𝑁)

𝑀
, (2.94)

𝑦shift =
𝛼shift

2𝜋
+

⌊
−

𝛼shift

2𝜋Δ𝐸

⌋
Δ𝐸, (2.95)

|𝑦0 | = min{−𝑦shift ,Δ𝐸 + 𝑦shift} = −
����𝑦shift +

Δ𝐸

2

���� + Δ𝐸

2

. (2.96)

where the relative error due to 𝛼shift is of the fourth order. ’gcd(𝑀, 𝑁)’ denotes the greatest
common divisor of 𝑀 and 𝑁 . {𝑥} = 𝑥 − ⌊𝑥⌋ denotes the fractional part, with ⌊·⌋ representing
the floor function.

For the proof of Theorem 2.4.1, we refer to [224].

Remark 2.4.2. For improved precision in the results (𝜖rel = 𝒪(𝛼6

𝐵
), see Fig. 2.5), the following

formula is recommended

𝑓max,T = 𝐴 cos

(
−2𝜋

𝐵Ω𝐵𝑦0

𝐴 + 𝐵Ω2

𝐵

)
+ 𝐵 cos

(
2𝜋

𝐴𝑦0

𝐴 + 𝐵Ω2

𝐵

)
(2.97)

= 𝐴 cos

(
2𝜋

𝐵Ω𝐵

𝐴 + 𝐵Ω2

𝐵

|𝑦0 |
)
+ 𝐵 cos

(
2𝜋

𝐴

𝐴 + 𝐵Ω2

𝐵

|𝑦0 |
)
, (2.98)

where the latter equality emerges due to the symmetric property of the cosine function.

For more on the derivation of Eq. (2.97), see [224].

In Fig. 2.5, the logarithmic values of relative errors for maximum estimates as per

Eqs. (2.92), (2.93), and (2.97) are represented against the logarithm of the phase shift,

specifically 𝛼𝐵, for

max

𝑡∈(0,4𝜋)
cos(𝑡) + cos

(
1

2

𝑡 + 𝛼𝐵

)
. (2.99)

Within the 𝛼𝐵 range of (0.01, 𝜋
6
), the relative errors for the estimates (2.92), (2.93), and

(2.97) are of the second, fourth, and sixth order respective to 𝛼𝐵.
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2.4 Global optimization of the sum of two harmonics

Figure 2.5: Logarithmic representation of the relative error, 𝜖
rel

:=
| 𝑓max− 𝑓max|

𝑓max

for three different estimates of

max𝑡∈(0,4𝜋) cos(𝑡) + cos

(
1

2
𝑡 + 𝛼𝐵

)
, plotted against the logarithm of 𝛼𝐵 ∈ (0.01, 𝜋

6
). The 2

nd
order estimate is

obtained by 𝐴 + 𝐵, the 4
th

order one by Eq. (2.93), and the 6
th

order one by Eq. (2.97). The linear fits with one

parameter align precisely with the numerically derived data. Figure adapted from [224]
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3 Safe basins of level crossing in the
linear case

The following chapter deals with the topic of preventing escape. The main focus is

identifying the safe basins of escape, which are the initial conditions for which the

particle remains within the potential well under a given excitation. The escape is not

defined if the problem is linear, as the underlying potential well is infinitely deep. To

address this, some authors propose truncating the quadratic well and replacing the

cut-off part with a constant value [57, 68, 89], resulting in zero restoring force in that

area.

An alternative method of analyzing a problem without truncating the data involves

examining the first passage or level crossing. This approach determines whether a

particle reaches a specific displacement value during its course.

However, to analyze the escape dynamics of a particle, it is necessary to define what

escape is and what a potential well is. In simple terms, a potential well is the region

surrounding a local minimum of potential energy 𝑉(𝑥). However, it is essential to

specify the exact boundaries of this area. To do so, we use the concept of drainage basins

in geology, adapting it to dynamic systems.

Definition 3.0.1 (Potential Well). Let 𝑉 : R𝑛 → R be a potential function. The largest subset
𝑊 ⊆ R𝑛 is called a potential well if for every x0 ∈ 𝑊 , the trajectory x(𝑡) governed by the
differential equation

¤x = −∇𝑉(x),
x(0) = x0 ,

(3.1)

converges to x𝑊 as 𝑡 → ∞, where x𝑊 ∈𝑊 (or x𝑊 ⊆ 𝑊 for a set of local minima) denotes a local
minimum of 𝑉(x) associated with𝑊 .

Remark 3.0.2. Eq. (3.1) corresponds to the motion of a damped particle of negligible mass, such
as a drop of water on a non-absorbing surface.

Def. 3.0.1 allows us to define particle escape.
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3 Safe basins of level crossing in the linear case

Definition 3.0.3 (Escape of a particle). Let 𝑉 : R𝑛 → R be a potential energy function with
a local minimum x𝑊 and its corresponding potential well𝑊 ⊆ R𝑛 . A particle escapes from the
well𝑊 , if ∃ 𝑡𝐸 ∈ R+ such that ∀𝑡 > 𝑡𝐸, x(𝑡) ∉𝑊 .

Remark 3.0.4. Although Def. 3.0.3 is an accurate definition in most cases, it is impractical for
both numerical and analytical calculations because knowledge of the solution is required at all
times.

A more convenient definition for numerical purposes is stated below.

Definition 3.0.5 (Numerical escape criterion). Let 𝑉 : R𝑛 → R be a potential energy
function with a local minimum x𝑊 and its corresponding potential well 𝑊 ⊆ R𝑛 . A particle
escapes from the well𝑊 , if ∀𝑡 ∈ (𝑡𝐸 , 𝑇], x(𝑡) ∉𝑊 and 𝑇−𝑡𝐸

𝑇 ∈ 𝒪(1). Here, 1 ≪ 𝑇 ∈ R+ denotes
the upper limit of the simulation time interval.

Remark 3.0.6. Def. 3.0.5 gives a weaker condition than Def. 3.0.3; thus, the set of non-escaping
points in the latter case is at least as large as in the case of Def. 3.0.3.

Remark 3.0.7. The condition 𝑇−𝑡𝐸
𝑇 ∈ 𝒪(1) is necessary to ensure that the particle leaves𝑊 not

only temporarily, but that escape indeed occurs.

This definition is appropriate for numerical studies; however, its application in analytics

is still cumbersome. Therefore, an even weaker escape definition is given below.

Definition 3.0.8 (Analytical escape criterion). Let𝑉 : R𝑛 → R be a potential energy function
with a local minimum x𝑊 and its corresponding potential well 𝑊 ⊆ R𝑛 . A particle escapes
from the well𝑊 , if ∃ 𝑡𝐸 ∈ R+ such that x(𝑡𝐸) = 𝜕𝑊 , i.e., the particle reaches the potential well’s
boundary.

This definition can be generalized for quantities other than the displacement of particles.

An extension to other values related to the particle’s motion is given in the following.

Definition 3.0.9 (Level crossing in dynamical systems). In a dynamical system defined by
¤x = f(x(𝑡)) ∈ R𝑛 with observable 𝑔 : {x(𝑡) | 𝑡 ∈ [0,∞)} → R, a level crossing occurs at time
𝑡𝐿𝐶 if 𝑔(x(𝑡𝐿𝐶)) = 𝐺, for some predefined threshold value 𝐺 ∈ R. The first level-crossing time
(also called first-passage time) is the smallest positive time for which 𝑔(x(𝑡)) = 𝐺 holds.

Remark 3.0.10. The criterion given by Def. 3.0.8 is based on the criterion given by Def. 3.0.9
when choosing the observable as the distance of the particle from 𝜕𝑊 and setting 𝐺 := 0.

Alternatively, one might choose other observables as in [67, 68], where the average action

and total energy are the relevant values. Def. 3.0.9 allows for the investigation of a

wide variety of problems within the framework of generalized escape, as the observable

𝑔(x(𝑡)) can be any functional related to the system’s temporal evolution.
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3.1 Undamped driven harmonic oscillator

Definition 3.0.11 (Safe basins of escape). The safe basin is the set of initial conditions for
which a particle, with given parameter values and excitation, does not escape.

In the specific case of a single harmonic excitation, there are three forcing parameters:

excitation amplitude, frequency, and initial phase. Amplitude and frequency are of

equal importance and are well-controllable in experiments. However, the impact of the

initial phase on escape is often secondary and results solely in the dislocation of the

safe basins in the initial condition plane. Furthermore, controlling the initial phase is

also difficult in experimental settings. In [97], Kravetc et al. introduced the concept of

’true’ safe basins; the set of initial conditions that do not escape under variation of the

excitation’s initial phase.

Definition 3.0.12 (True safe basins of escape). The true safe basin refers to a set of initial
conditions for a particle with given system parameters, excited with a harmonic excitation of
given amplitude and frequency, with which the particle does not escape for any initial phase
value.

Remark 3.0.13. The size of the true safe basin is always less than the size of the safe basin with
a specific initial phase.

Our investigation of the escape problem in an asymmetrically truncated quadratic

potential well uses Def. 3.0.8 for analytical purposes and Def. 3.0.5 for numerical ones.

The following text and figures are adapted from the work of Genda et al. [224].

3.1 Undamped driven harmonic oscillator
The equations of motion of an undamped harmonically driven particle in an asymmet-

rically truncated quadratic potential are given as follows,

𝑚 ¥𝑥 + 𝑚𝑉′(𝑥) = 𝐹 sin(Ω𝑥𝜏 + 𝛽), (3.2)

𝑥(0) = 𝑥̃0 , (3.3)

¤𝑥(0) = 𝑢̃0 , (3.4)

with the potential function defined as

𝑉(𝑥) =


−Ω2

0

2
𝑟2

𝐵
+ Ω2

0

2
𝑥2

for 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 ,
−𝑟2

𝐵
+𝑥2

𝑙

2
Ω2

0
for 𝑥 < 𝑥𝑙 ,

−𝑟2

𝐵
+𝑥2

𝑢

2
Ω2

0
for 𝑥𝑢 < 𝑥,

(3.5)

Here,Ω𝑥 ∈ [0,∞) represents the angular frequency, 𝛽 ∈ [−𝜋,𝜋) the phase, and 𝐹 ∈ [0,∞)
the amplitude of the excitation. Ω0 ∈ (0,∞) denotes the natural angular frequency of
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3 Safe basins of level crossing in the linear case

the potential well and 𝑚 ∈ (0,∞) is the mass of the particle. The left and right potential

boundaries around the origin are denoted by 𝑥𝑙 ∈ (−∞, 0) and 𝑥𝑢 ∈ (0,∞), respectively.

Using Def. 3.0.1, it is clear that𝑊 = (𝑥𝑙 , 𝑥𝑢). We introduce

𝑟𝐵 := min{−𝑥𝑙 , 𝑥𝑢} (3.6)

to represent the minimum distance from the deepest point of the potential to its

nearest boundary. Figure 3.1 gives a graphical representation of 𝑉(𝑥). Introducing

Figure 3.1: Asymmetrically truncated quadratic potential 𝑉(𝑥). Figure adapted from [224]

nondimensional parameters such as the nondimensional time 𝑡 := Ω0𝜏, excitation

amplitude 𝑓 := 𝐹/𝑚, and excitation frequency 𝜔 := Ω𝑥/Ω0, the equation of motion can

be reformulated as:

¥𝑥 + 𝑉̃′(𝑥) = 𝑓 sin(𝜔𝑡 + 𝛽), (3.7)

𝑥(0) = 𝑥0 := 𝑥̃0 , (3.8)

¤𝑥(0) = 𝑢0 :=
𝑢̃0

Ω0

, (3.9)

alongside the adjusted potential function:

𝑉̃(𝑥) =


− 𝑟2

𝐵

2
+ 𝑥2

2
for 𝑥𝑙 ≤ 𝑥 ≤ 𝑥𝑢 ,

−𝑟2

𝐵
+𝑥2

𝑙

2
for 𝑥 < 𝑥𝑙 ,

−𝑟2

𝐵
+𝑥2

𝑢

2
for 𝑥𝑢 < 𝑥.

(3.10)
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3.1 Undamped driven harmonic oscillator

Using the analytic escape condition from Def. 3.0.8, the calculation of the motion is

confined to the range 𝑥𝑙 < 𝑥 < 𝑥𝑢 . The differential equation becomes linear, allowing

for an explicit analytic solution. For 𝜔 ≠ 1 (excluding the resonance and escape scenario

for any initial condition), the solution is expressed as:

𝑥(𝑡) = 𝑅 sin(𝑡 + 𝛼) + 𝑃 sin(𝜔𝑡 + 𝛽), (3.11)

with

𝑃 =
𝑓

1 − 𝜔2

, (3.12)

𝑅 =

√
(𝑥0 − 𝑃 sin 𝛽)2 + (𝑢0 − 𝑃𝜔 cos 𝛽)2 , (3.13)

𝛼 = atan2 ((𝑥0 − 𝑃 sin 𝛽), 𝑢0 − 𝑃𝜔 cos 𝛽) . (3.14)

3.1.1 Safe basins of quasi-periodic motions
The relationship between the excitation frequency and the natural frequency of a

potential well plays a crucial role in determining the periodicity of motion. In [89], an

extensive investigation was carried out for the simpler scenario of 𝜔 ∈ R\Q, indicative

of a quasi-periodic motion. An effective approach to estimate the upper limit of the

absolute displacement, 𝑟sup := max𝑡 |𝑥(𝑡)|, is given by Theorem 2.4.1 as

𝑟max = 𝑅 + |𝑃 |. (3.15)

Implementing the values of |𝑃 | and 𝑅 from Eqs. (3.12)-(3.13) in Eq. (3.15), and ensuring

that 𝑟max < 𝑟𝐵 to maintain a non-escape scenario, we derive:

𝑟𝐵 > 𝑅 + |𝑃 |, (3.16)

𝑟𝐵 − |𝑃 | > 𝑅. (3.17)

In cases where |𝑃 | ≥ 𝑟𝐵, no initial conditions can satisfy this inequality since 𝑅 is always

nonnegative. Consequently, based on this estimation, for an excitation amplitude

𝑓 ≥ 𝑟𝐵 |1 − 𝜔2 |, (3.18)

the particle will inevitably escape from the well for any initial condition. Conversely, if

|𝑃 | < 𝑟𝐵, squaring both sides of Eq. (3.17) yields:

𝐷𝑃 : (𝑟𝐵 − |𝑃 |)2 > (𝑥0 − 𝑃 sin 𝛽)2 + (𝑢0 − 𝑃𝜔 cos 𝛽)2 , (3.19)
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𝑟𝐵

𝑥0

𝑢0

−𝜔𝑃

𝛽

𝑃

(a) 𝜔 < 1

𝑟𝐵

𝑥0

𝑢0

−𝜔𝑃

𝛽

𝑃

(b) 𝜔 > 1

Figure 3.2: The location of the safe basin 𝐷𝑃 on the 𝑥0 − 𝑢0 plane. Figure adapted from [224]

indicating the interior of a circular disk centered at (𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽) with radius

𝑅𝐷 = 𝑟𝐵 − |𝑃 |.
The largest possible disk, denoted by 𝐷0, is realized when |𝑃 | = 0 (i.e., 𝐹 = 0), implying

no external excitation. This results in a disk centered at the origin with radius 𝑟𝐵:

𝐷0 : 𝑟2

𝐵 > 𝑥2

0
+ 𝑢2

0
, (3.20)

covering a total area of:

𝐴0 = 𝜋𝑟2

𝐵 . (3.21)

A notable distinction arises between the cases where 𝜔 < 1 and 𝜔 > 1. For 𝜔 < 1, the

circular disk defined by Eq. (3.19) remains entirely within 𝐷0. However, for 𝜔 > 1, parts

or the entire disk area 𝐷𝑃 may extend beyond 𝐷0. Figure 3.2 visually represents the

non-escaping set. In both scenarios, the total area of the safe basin also called the global

integrity measure (𝐺𝐼𝑀), is calculated as:

𝐴𝑃 = 𝜋(𝑟𝐵 − |𝑃 |)2. (3.22)

Although these observations on the safe basin area may seem straightforward, they have

significant practical value. Due to the lack of precise control over the particle’s initial

conditions, having a reference case is essential for comparing results and investigating

non-escaping sets of initial conditions from nonquadratic potentials. Understanding

the impact of system parameters and excitation on the global integrity measure allows

one to characterize other potentials with respect to their erosion properties.
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3.1 Undamped driven harmonic oscillator

Remarks

Throughout this dissertation, we will explore the concept of escape and how it involves

competing mechanisms. Even in the simple case of the harmonically driven undamped

harmonic oscillator, we can identify two mechanisms for moderate values of 𝑓 . The

first mechanism involves the impact of initial conditions on escape. If (𝑥0 , 𝑢0) is chosen

outside the circle with radius 𝑟𝐵, the particle is already out of the potential or will be

during the first period of its oscillation. This is because its initial energy is so large that

it alone is sufficient for escape. This mechanism causes escape rapidly, and we term it

the ’fast’ mechanism.

The second mechanism involves the excitation driving the particle out of the well, even

if the particle’s initial energy is not sufficient for escape. This mechanism is slower

and requires time and several excitation periods, particularly if the force amplitude 𝑓 is

moderate. We call this mechanism the ’slow’ mechanism. It is a beat-like phenomenon

when the excitation frequency and the natural frequency of the well are close to each

other.

The importance of these two competing mechanisms will be discussed in detail for the

damped driven harmonic oscillater in Sect. 3.2.

True safe basins

In the simple case of the driven undamped harmonic oscillator, where the excitation

frequency and the natural frequency of the well are incommensurable, the calculation

of the true safe basins (see Def. 3.0.12) is possible. With initial conditions from this

non-escaping set, for arbitrary values of the initial excitation phase, the particle does not

escape. Thus, we can define the set as follows:

𝑇𝑆𝐵 : (𝑟𝐵 − |𝑃 |)2 > max

𝛽∈[0,2𝜋)
(𝑥0 − 𝑃 sin 𝛽)2 + (𝑢0 − 𝑃𝜔 cos 𝛽)2 . (3.23)

With simple geometrical considerations based on Fig. 3.2, we can derive the existence

condition of true safe basins

|𝑃 | <
{
𝑟𝐵
2

for 𝜔 < 1,
𝑟𝐵

1+𝜔 for 𝜔 > 1.
(3.24)

In order to determine the size of the set of initial conditions that satisfy the inequality

(3.23), we have to solve the following optimization problem first:

𝛽∗(𝑥0 , 𝑢0) = argmax

𝛽∈[0,2𝜋)
(𝑥0 − 𝑃 sin 𝛽)2 + (𝑢0 − 𝑃𝜔 cos 𝛽)2 . (3.25)
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3 Safe basins of level crossing in the linear case

Then, we can insert 𝛽∗(𝑥0 , 𝑢0) in Eq. 3.19, and find the true safe basin. Since the objective

function is smooth, we can calculate its derivative to find the optimal 𝛽 value. We have

2(𝑃 sin 𝛽 − 𝑥0)𝑃 cos 𝛽 − 2(𝑃𝜔 cos 𝛽 − 𝑢0)𝑃𝜔 sin 𝛽 = 0

...

𝑃(1 − 𝜔2)
𝑥0

sin 𝛽 + 𝜔𝑢0

𝑥0

tan 𝛽 = 1. (3.26)

Eq. (3.26) allows for an analytical solution. Further manipulating the equation results

in the following fourth-order polynomial in sin 𝛽:

𝑎2

sin
4 𝛽 − 2𝑎 sin

3 𝛽 + (1 + 𝑏2) sin
2 𝛽 + 2𝑎 sin 𝛽 − 1 = 0 (3.27)

where

𝑎 =
𝑃(1 − 𝜔2)

𝑥0

, 𝑏 =
𝜔𝑢0

𝑥0

(3.28)

have been introduced for brevity. The four solutions for sin 𝛽 can be determined by

Ferrari’s method. However, they are very lengthy expressions, with which further

calculations are impractical.

Nevertheless, when limiting our scope to 𝜔 ≈ 1, we can introduce the small parameter

𝜀 := 1 − 𝜔2
and look for the solution in terms of a series by 𝜀 described by the

small-parameter perturbation method for algebraic expressions:

𝛽 = 𝛽0 + 𝜀𝛽1 + . . . . (3.29)

Furthermore, we rewrite 𝜔 as follows:

𝜔 =
√

1 − 𝜀 ≈ 1 − 𝜀
2

+ 𝒪(𝜀2). (3.30)

To handle the trigonometric expressions sin 𝛽 and tan 𝛽 in Eq. (3.26), we rewrite them

in Taylor series around 𝛽0 as follows:

sin 𝛽 = sin 𝛽0 + cos(𝛽0)(𝜀𝛽1 + 𝜀2𝛽2 + . . . ) − sin(𝛽0)(𝜀𝛽1 + 𝜀2𝛽2 + . . . )2 + . . . (3.31)

= sin 𝛽0 + cos(𝛽0)𝛽1𝜀 + 𝒪(𝜀2) (3.32)

and

tan 𝛽 = tan 𝛽0 +
1

cos
2 𝛽0

𝛽1𝜀 + 𝒪(𝜀2). (3.33)
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3.1 Undamped driven harmonic oscillator

Inserting Eqs. (3.29)-(3.33) in Eq. (3.26), we obtain

𝑃𝜀
𝑥0

(sin 𝛽0 + cos 𝛽0𝜀𝛽1) +
(
1 − 𝜀

2

) 𝑢0

𝑥0

(
tan 𝛽0 +

𝜀𝛽1

cos
2 𝛽0

)
= 1. (3.34)

Collecting terms of 𝜀0
yields the following.

𝑢0

𝑥0

tan 𝛽0 = 1, (3.35)

which has its solutions at

𝛽0 = arctan

(
𝑥0

𝑢0

)
+ 𝑘𝜋, with 𝑘 ∈ {0, 1}. (3.36)

It turns out that for 𝑃 > 0, 𝑘 = 0 is a minimum and 𝑘 = 1 is a maximum, and for 𝑃 < 0

vice versa. We limit our focus to the case with 𝑃 > 0 and note that the calculation is

analogous for 𝑃 < 0. Then, we have

𝛽∗
0
= arctan

(
𝑥0

𝑢0

)
+ 𝜋. (3.37)

Now, we collect the terms of 𝜀1
in Eq. (3.34):

𝑃 sin 𝛽0

𝑥0

+ 𝑢0

𝑥0

(
𝛽1

cos
2 𝛽0

− tan 𝛽0

2

)
= 0, (3.38)

resulting in

𝛽∗
1
=

(
tan 𝛽0

2

− 𝑃 sin 𝛽0

𝑢0

)
cos

2 𝛽0 =
𝑥0𝑢0

𝑥2

0
+ 𝑢2

0

©­­«
1

2

+ 𝑃√
𝑥2

0
+ 𝑢2

0

ª®®¬ , (3.39)

where the last equation results from the insertion of 𝛽∗
0
. Thus, the solution is estimated

by

𝛽∗ ≈ arctan

(
𝑥0

𝑢0

)
+ 𝜋 + 𝜀

𝑥0𝑢0

𝑥2

0
+ 𝑢2

0

©­­«
1

2

+ 𝑃√
𝑥2

0
+ 𝑢2

0

ª®®¬ . (3.40)
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3 Safe basins of level crossing in the linear case

In the following, we use the less precise estimate 𝛽∗ ≈ 𝛽∗
0
. Inserting it into Eq. (3.23), we

estimate the true safe basin by

(𝑟𝐵 − 𝑃)2 ≥
©­­«𝑥0 +

𝑃𝑥0√
𝑥2

0
+ 𝑢2

0

ª®®¬
2

+
©­­«𝑢0 +

𝑃𝜔𝑢0√
𝑥2

0
+ 𝑢2

0

ª®®¬
2

(3.41)

= 𝑥2

0

©­­«1 + 𝑃√
𝑥2

0
+ 𝑢2

0

ª®®¬
2

+ 𝑢2

0

©­­«1 + 𝑃𝜔√
𝑥2

0
+ 𝑢2

0

ª®®¬
2

. (3.42)

The comparison between the numerically obtained exact boundary and the estimate in

Eq. (3.42) is shown in Fig. 3.3. Even for non-small frequency discrepancies (𝜔 =
√

2),

the estimated boundary remains reasonably close to the numerically obtained one.

At the boundary of 𝑇𝑆𝐵, the equality in inequality (3.41) holds. We introduce the polar

coordinates (𝑟, 𝜑) and reparametrize 𝜕𝑇𝑆𝐵 as

𝑥0 = 𝑟 cos 𝜑, 𝑢0 = 𝑟 sin 𝜑. (3.43)

Insertion in Eq. (3.42) yields

(𝑟𝐵 − 𝑃)2 = 𝑟2

(
cos

2(𝜑)
(
1 + 𝑃

𝑟

)
2

+ sin
2(𝜑)

(
1 + 𝑃𝜔

𝑟

)
2

)
(3.44)

= cos
2(𝜑)(𝑟 + 𝑃)2 + sin

2(𝜑)(𝑟 + 𝑃𝜔)2 , (3.45)

from which we can express 𝜕𝑇𝑆𝐵 as

𝑟(𝜑) =
√
𝑃2(𝜔 − 1)2 cos

4 𝜑 − 𝑃2(𝜔 − 1)2 cos
2 𝜑 + (𝑃 − 𝑟𝐵)2 + 𝑃(𝜔 − 1) cos

2 𝜑 − 𝑃𝜔.
(3.46)

The area of the true safe basin is given by the integral

Area =

∫
2𝜋

0

𝑟2(𝜑)
2

d𝜑 (3.47)

=
𝜋
4

((
𝜔2 + 2𝜔 + 5

)
𝑃2 − 8𝑟𝐵𝑃 + 4𝑟2

𝐵

)
− 2𝑃(𝑟𝐵 − 𝑃)(1 + 𝜔)𝐸

(
(𝜔 − 1)2𝑃2

4(𝑟𝐵 − 𝑃)2

)
,

(3.48)
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3.1 Undamped driven harmonic oscillator

Figure 3.3: True safe basins on the 𝑥0 − 𝑢0 plane for large frequency discrepancy 𝜔 =
√

2, resulting in 𝜀 = −1,

and for various values of 𝑃. With increasing values of 𝑃, the boundary estimate becomes less accurate. This

is due to Eq. (3.26), where for small 𝑃, the first term of the left-hand side remains small, even though 1− 𝜔2
is

large
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3 Safe basins of level crossing in the linear case

Figure 3.4: Exact numerical area (red dots) vs. analytically estimated area (color scale) of the true safe basins

depicted against the parameter values 𝜔 and 𝑃. It is important to note that the values are only valid for

irrational values of 𝜔. For rational 𝜔 values, the true safe basin may be larger

where 𝐸(𝑚) denotes the complete elliptic integral of the second kind with the parameter

𝑚. Since the estimate is valid for small 𝜀, we can further simplify Eq. (3.48). Substituting

𝜔2 = 1 − 𝜀 and 𝜔 = 1 − 𝜀/2, we obtain

Area = 𝜋

(
(𝑟𝐵 − 2𝑃)2 + 𝜀

𝑃(𝑟𝐵 − 2𝑃)
2

)
= 𝜋

(
(𝑟𝐵 − 2𝑃)2 − (𝜔 − 1)𝑃(𝑟𝐵 − 2𝑃)

)
, (3.49)

resulting in a small influence of the excitation frequency on the true safe basins. In fact,

the estimate (see Fig. 3.4) showed good agreement with the numerically found area of

the set determined by Eq. (3.23).

For 𝑃 < 0, |𝑃 | is to be inserted everywhere in Eqs. (3.48) and (3.49).

The estimates (3.48)-(3.49) could be further improved by applying 𝛽∗ = 𝛽∗
0
+𝜀𝛽∗

1
. However,

this would result in much more complicated expressions for 𝜕𝑇𝑆𝐵, possibly leading to

inexpressible 𝑟(𝜑).

3.1.2 Safe basins of periodic motions represented as a sum of
two harmonics with commensurable frequencies

In the previous section, we analyzed the size and location of safe basins of oscillations

consisting of two harmonics with incommensurable frequencies. Now, we focus our
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3.1 Undamped driven harmonic oscillator

attention on the more complicated commensurable case. In this case, the frequency ratio

is given by the fraction of two positive integers 𝜔 = 𝑁/𝑀.

The function 𝑥(𝑡; 𝑥0 , 𝑢0 , 𝑓 , 𝜔, 𝛽), as stated in Eq. (3.11), depends on time and several

parameters. If we consider time, initial position, and velocity as variables, Eq. (3.11)

transforms into 𝑥(𝑡 , 𝑥0 , 𝑢0; 𝑓 , 𝜔, 𝛽), a function of three variables. Determining

𝑥min(𝑥0 , 𝑢0) := min

𝑡≥0

𝑥(𝑡 , 𝑥0 , 𝑢0) (3.50)

and

𝑥max(𝑥0 , 𝑢0) := max

𝑡≥0

𝑥(𝑡 , 𝑥0 , 𝑢0) (3.51)

yields the largest negative and positive displacements as functions of two variables,

given a set of fixed parameters. The escape condition from Def. 3.0.8 is applied to define

safe basins:

𝑆𝐵 :

(
𝑥𝑙 < 𝑥min(𝑥0 , 𝑢0)

)
∩

(
𝑥max(𝑥0 , 𝑢0) < 𝑥𝑢

)
. (3.52)

To evaluate 𝑥max(𝑥0 , 𝑢0) according to Theorem 2.4.1, the optimization problem

max

𝑡≥0

𝑥(𝑡) = max

𝑡≥0

(𝑅 sin

(
𝑡 + 𝛼

)
+ 𝑃 sin

(
𝜔𝑡 + 𝛽

)
), (3.53)

is reformulated to the standard form:

max

𝑡≥0

𝑥(𝑡) = max

𝑡≥0

(𝑅 cos 𝑡 + 𝑃 cos(𝜔𝑡 + 𝛼𝐵,max)) (3.54)

with the transformation

𝑡 = 𝑡 + 𝛼 − 𝜋
2

. (3.55)

The new phase shift is thus:

𝛼𝐵,max =
𝜋
2

(𝜔 − 1 + 2𝜎(−𝑃)) − 𝜔𝛼 + 𝛽, (3.56)

where the Heaviside function is applied:

𝜎(𝑥) =
{

1 𝑥 ≥ 0,

0 𝑥 < 0,
(3.57)
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3 Safe basins of level crossing in the linear case

to include the case where 𝑃 < 0. The minimum value 𝑥min(𝑥0 , 𝑢0) can be found similarly,

using the fact that all minimization problems can be converted to maximization ones,

𝑥min(𝑥0 , 𝑢0) = −max

𝑡≥0

(𝑅 sin

(
𝑡 + 𝛼 + 𝜋

)
+ 𝑃 sin

(
𝜔𝑡 + 𝛽 + 𝜋

)
), (3.58)

and then transforming it into:

𝑥min(𝑥0 , 𝑢0) = −max

𝑡≥0

(𝑅 cos 𝑡 + |𝑃 | cos(𝜔𝑡 + 𝛼𝐵,min)), (3.59)

using:

𝑡 = 𝑡 + 𝛼 + 𝜋
2

, (3.60)

𝛼𝐵,min =
𝜋
2

(1 − 𝜔 + 2𝜎(−𝑃)) − 𝜔𝛼 + 𝛽. (3.61)

The application of Theorem 2.4.1 leads to the estimation:

𝑥̂max(𝑥0 , 𝑢0) = 𝑅(1 − 2𝜋2 𝑥̃2

max
) + |𝑃 |(1 − 2𝜋2 𝑦̃2

max
), (3.62)

𝑥̂min(𝑥0 , 𝑢0) = −𝑅(1 − 2𝜋2 𝑥̃2

min
) − |𝑃 |(1 − 2𝜋2 𝑦̃2

min
), (3.63)

or, based on Remark 2.4.2, more accurately:

𝑥̂max(𝑥0 , 𝑢0) = 𝑅 cos(2𝜋𝑥̃max) + |𝑃 | cos(2𝜋𝑦̃max), (3.64)

𝑥̂min(𝑥0 , 𝑢0) = −𝑅 cos(2𝜋𝑥̃min) − |𝑃 | cos(2𝜋𝑦̃min), (3.65)

with:

𝑥̃
max/min

=
𝜔 |𝑃 | |𝑦

0,max/min
|

𝑅 + 𝜔2 |𝑃 | , (3.66)

𝑦̃
max/min

=
𝑅 |𝑦

0,max/min
|

𝑅 + 𝜔2 |𝑃 | , (3.67)

|𝑦
0,max/min

| = −
����𝑦𝑁,max/min

+ Δ𝐸

2

���� + Δ𝐸

2

, (3.68)

𝑦𝑁,max/min
=

𝛼𝐵,max/min

2𝜋
+ 𝐿

0,max/min
Δ𝐸, (3.69)

𝐿
0,max/min

=

⌊
− 𝛼𝐵,max/min

2𝜋Δ𝐸

⌋
, (3.70)

Δ𝐸 =
gcd(𝑀, 𝑁)

𝑀
, (3.71)
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3.1 Undamped driven harmonic oscillator

where the notation ’max\min’ is used to denote both cases concisely. The deviation in

𝑥̂max(𝑥0 , 𝑢0) and 𝑥̂min(𝑥0 , 𝑢0) arises from different values of 𝛼𝐵,max and 𝛼𝐵,min. Assuming

that 𝑀 and 𝑁 are relative primes, we have Δ𝐸 = 1/𝑀, simplifying Eqs. (3.68)-(3.70) to:

|𝑦0,max(𝛼𝐵,max\min
)| = −

����𝛼𝐵,max\min

2𝜋
− 1

𝑀

⌊
𝑀𝛼𝐵,max\min

2𝜋

⌋
− 1

2𝑀

���� + 1

2𝑀
. (3.72)

For every pair of coordinates (𝑥0 , 𝑢0) located within the safe basin, (𝑥0 , 𝑢0) belongs to

both 𝑆𝐵𝑢 and 𝑆𝐵𝑙 . Therefore, we can assert that (𝑥0 , 𝑢0) is a member of the intersection

𝑆𝐵𝑢 ∩ 𝑆𝐵𝑙 , where 𝑆𝐵𝑢 and 𝑆𝐵𝑙 are defined as

𝑆𝐵𝑢 := {(𝑥0 , 𝑢0) ∈ R2 |𝑥̂max(𝑥0 , 𝑢0) < 𝑥𝑢}, (3.73)

𝑆𝐵𝑙 := {(𝑥0 , 𝑢0) ∈ R2 |𝑥𝑙 < 𝑥̂min(𝑥0 , 𝑢0)}. (3.74)

Determining the boundaries of this set using analytical methods is a complex task (see

Figures 3.5a and 3.5c). However, in specific scenarios, the complexity can be significantly

reduced, such as when (−𝑥𝑙 = 𝑥𝑢) is a symmetric potential or when 𝑆𝐵𝑙 is a subset of

𝑆𝐵𝑢 (or vice versa) for all values of 𝑓 and 𝛽 as illustrated in Figs. 3.5c and 3.5d.

In cases where 𝑁 + 𝑀 is an even number, we find that Eq. (3.72) is periodic with a

period of
2𝜋
𝑀 :

|𝑦0,max(𝑥)| =
�����𝑦0,max

(
𝑥 + 2𝜋

𝑀

) �����, (3.75)

and by evaluating

𝛼𝐵,max − 𝛼𝐵,min = (𝜔 − 1)𝜋 =
𝑁 −𝑀
𝑀

𝜋, (3.76)

we can confirm this periodic nature. Therefore, 𝑥max(𝑥0 , 𝑢0) is equivalent to 𝑥min(𝑥0 , 𝑢0)
when 𝑁 +𝑀 is an even number. Subsequently, an analytical estimate for the boundary

of the safe basin is provided for the cases mentioned above.

Case 1: |𝑥𝑙 | ≫ 𝑥𝑢 or 𝑁 +𝑀 even

This section addresses situations where one of the potential well’s boundaries is

substantially farther from the center than the other or when the sum of 𝑁 and 𝑀

is even.
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3 Safe basins of level crossing in the linear case

(a) 𝑁 = 2 and 𝑀 = 1 with |𝑃 | = 0.5 (b) 𝑁 = 3 and 𝑀 = 2 with |𝑃 | = 0.3

(c) 𝑁 = 1 and 𝑀 = 2 with |𝑃 | = 0.5 (d) 𝑁 = 1 and 𝑀 = 3 with |𝑃 | = 0.5

Figure 3.5: Analytically derived estimates for the safe basin (yellow region), relevant to escape scenarios in

the initial condition plane for varying 𝜔 = 𝑁
𝑀

. The level sets of 𝑥max(𝑥0 , 𝑢0) = 𝑥𝑢 and 𝑥min(𝑥0 , 𝑢0) = 𝑥𝑙 are

colored green and pink, respectively. The circular disk, defined by Eq. (3.19), is colored red. The intersecting

areas of the level sets (𝑆𝐵𝑢 and 𝑆𝐵𝑙 ) demarcate the region of no escape (𝑆𝐵). Figure adapted from [224]
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3.1 Undamped driven harmonic oscillator

In cases where the difference between the potential boundaries is significant, the particle

tends to escape towards the nearer boundary. Therefore, the level set related to this

closer boundary gains importance.

Assuming |𝑥𝑙 | ≫ 𝑥𝑢 , it implies that 𝑆𝐵𝑢 is a subset of 𝑆𝐵𝑙 (otherwise, we consider an

analogous calculation for 𝑥̂min(𝑥0 , 𝑢0)). To investigate the structure of the safe basin,

which is influenced by the parameters 𝑓 , 𝑀 and 𝑁 (noting that 𝛽 acts as a rotational

factor in the initial condition plane), the escape criterion 3.0.8 is applied to the more

manageable, although less accurate, estimate given in Eq. (3.62), resulting in the

following:

𝑥̂max(𝑥0 , 𝑢0) = 𝑅 + |𝑃 | − 2𝜋2𝑅 |𝑃 | |𝑦0,max |2
𝑅 + 𝜔2 |𝑃 |

!

= 𝑥𝑢 . (3.77)

Given that 𝑅 and |𝑦0,max | depend on 𝑥0 and 𝑢0, we can define a polar coordinate function

centered at (𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽). This function determines the boundary’s distance based

on the angle, denoted as 𝑅(𝜑). For this purpose, |𝑦0,max | is redefined as:

𝑔(𝜑) := |𝑦0,max(𝜑)| = −
����𝑁𝑀 𝜑

2𝜋
− 1

𝑀

⌊
𝑁𝜑

2𝜋

⌋
− 1

2𝑀

���� + 1

2𝑀
, (3.78)

with the angular coordinate 𝜑 being:

𝜑 := −𝛼𝐵,max

𝜔
= 𝛼 − 𝛽

𝜔
− 𝜋

2𝜔
(𝜔 − 1 + 2𝜎(−𝑃)), (3.79)

forming a triangle wave with a period of 2𝜋/𝑁 , an amplitude of 1/(4𝑀), and a positive

shift of 1/(4𝑀). The escape condition (3.77) is then modified to:

𝑅2 +
(
(𝜔2 + 1 − 2𝜋2𝑔2(𝜑))|𝑃 | − 𝑥𝑢

)
𝑅 + 𝜔2 |𝑃 |(|𝑃 | − 𝑥𝑢) = 0, (3.80)

and resolved for 𝑅, resulting in:

𝑅(𝜑) =
𝑥𝑢 −

(
1 + 𝜔2 − 𝜋2𝑔2(𝜑)

)
|𝑃 |

2

±

√
4𝑔4(𝜑)𝜋4 |𝑃 |2 − 4𝜋2

(
(𝜔2 + 1)|𝑃 | − 𝑥𝑢

)
|𝑃 |𝑔2(𝜑) +

(
(𝜔2 − 1)|𝑃 | − 𝑥𝑢

)
2

2

, (3.81)

where, for |𝑃 | < 𝑥𝑢 , the positive solution uniquely defines the safe basin’s boundary

(illustrated by the green curve in Fig. 3.7a). At the points where 𝑔(𝜑) = 0, occurring 𝑁

times within 𝜑 ∈ [0, 2𝜋), the solution simplifies to 𝑅 = 𝑥𝑢 − |𝑃 |, signifying that the shape

from Eq. (3.77) intersects the circle from Eq. (3.19). For values of 𝜑 other than
𝑛

2𝜋 (with
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3 Safe basins of level crossing in the linear case

(a) 𝑁 = 1, 𝑀 = 1, 2, 3, ... (b) 𝑁 = 1, 2, 3, 4, 𝑀 = 1

Figure 3.6: Representation of the triangle wave function for various 𝑀 and 𝑁 values. Figure adapted from

[224]

𝑛 = 0, 1, ..., 𝑁 − 1), where 𝑅(𝜑) > 𝑥𝑢 − |𝑃 |, the circle in Eq. (3.19) becomes inscribed

within the shape in Eq. (3.77). A notable situation arises when 𝑁 = 1, where a potential

safe basin may exist for 𝑥𝑢 < |𝑃 | < 𝑃crit, despite the absence of the circle, and yet |𝑃 |
remains below the critical threshold 𝑃crit, beyond which no safe basin can be formed. In

this case, the origin of the polar coordinates (𝑥0 , 𝑢0) = (𝑃 sin 𝛽, 𝑃𝜔 sin 𝛽) shifts outside

the safe basin, leading to some values of 𝜑 yielding negative 𝑅1,2(𝜑), which lack physical

significance. However, for other values of 𝜑, there are two positive roots 𝑅1,2(𝜑) that

define the safe basin (blue curve in Fig. (3.7a)).

An upper limit for 𝑃crit can be obtained by noting that safe basins vanish when the

square root term in Eq. (3.81) becomes zero. At this point, the safe basin reduces to

a single point in the direction of the angle, at 𝜑 = 𝜋, where 𝑔(𝜑) takes its maximum,

namely 𝑔(𝜑) = 1

2𝑀 (see Fig. 3.6). Given 𝑁 = 1, we get 𝜔 = 1/𝑀. Thus, the discriminant

in Eq. (3.80)(
𝜔2 + 1 − 2𝜋2𝑔2(𝜑))|𝑃 | − 𝑥𝑢

)
2 − 4

(
𝜔2 |𝑃 |2 − 𝑥𝑢 |𝑃 |𝜔2

)
= 0 (3.82)

reaches zero at

𝑃crit =

2

(
2𝑀2 − 2

√
2𝜋 − 𝜋2 − 2

)
𝑀2

(2𝑀2 − 𝜋2 + 4𝑀 + 2) (2𝑀2 − 𝜋2 − 4𝑀 + 2)
𝑥𝑢 . (3.83)

Figure 3.8 presents the calculated values for the scaled critical forcing
|𝑃 |
𝑥𝑢

when 𝑁 = 1

and either 𝑆𝐵𝑢 ⊆ 𝑆𝐵𝑙 or the reverse holds, for various values of 𝑀.
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3.1 Undamped driven harmonic oscillator

(a) Employing the approximation in Eq. (3.62) (b) Employing the approximation in Eq. (3.64)

Figure 3.7: Illustration of the boundaries of the safe basin in the initial condition plane for 𝜔 = 𝑁
𝑀

= 1

2
, 𝛽 = 0,

𝑥𝑙 = −∞, and 𝑥𝑢 = 1, considering various values of 𝑃 and the approximations in Eqs. (3.62) and (3.64).

The existence of a safe basin is indicated by the blue curve for 𝑃 > 𝑥𝑢 . The origins of the polar coordinates

(𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽), with respect to which the curve in Eq. (3.81) delineates the basin boundary, are marked

as dots. The safe basin estimates on the left-hand side are higher due to 𝑓𝑠𝑢𝑝,𝑅𝑎𝑡 ≤ 𝑓𝑠𝑢𝑝,𝑇 (cf. Eqs. (2.93) and

(2.97)). Figure adapted from [224]

For 𝑁 ≥ 2, we cannot observe that 𝑃crit > 𝑥𝑢 occurs, as it would imply the presence

of 𝑁 disjoint, non-escaping basins (resulting from the 𝑁-fold rotational symmetry),

centered at (𝑃 sin 𝛽, 𝑃𝜔 cos 𝛽). Hence, the analytically deduced safe basin vanishes in

these instances if |𝑃 | > 1.

To approximate the area within the level set 𝑥max(𝑥0 , 𝑢0) = 𝑥𝑢 , one must compute the

following integral:

Figure 3.8: The trend of 𝑃crit/𝑥𝑢 approaching 1 as the value of 𝑀 increases, keeping 𝑁 = 1 constant. Figure

adapted from [224]
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3 Safe basins of level crossing in the linear case

𝐴max =

∫
2𝜋

0

𝑅2(𝜑)
2

d𝜑, (3.84)

which simplifies to

𝐴max = 𝑁

∫ 𝜋
𝑁

0

𝑅2(𝜑)d𝜑, (3.85)

due to the 𝑁-fold rotational and the mirror symmetry. Eq. (3.85) results in elliptic

integrals that require extensive calculations. Nevertheless, for an estimate, the Taylor

series of 𝑅2(𝜑) around 𝜑 = 0 up to the fifth order yields

𝑅2(𝜑) = (𝑥𝑢 − |𝑃 |)2 + (𝑥𝑢 − |𝑃 |)2 |𝑃 |𝜔2

|𝑃 |(𝜔2 − 1) + 𝑥𝑢
𝜑2

+
(𝑥𝑢 − |𝑃 |)2 |𝑃 |2

(
(3𝜔2 − 1)|𝑃 | + 𝑥𝑢

)
𝜔4

4 ((𝜔2 − 1)|𝑃 | + 𝑥𝑢)3
𝜑4 + 𝒪(𝜑6). (3.86)

Integration and insertion of 𝜔 = 𝑁/𝑀 leads to

𝐴max,T =
(
𝑥𝑢 − |𝑃 |

)
2

𝜋
©­­«1 + 𝜋2

3

(
𝑁2 +𝑀2

(
𝑥𝑢
|𝑃 | − 1

)) +

(
3𝑁2 +𝑀2

(
𝑥𝑢
|𝑃 | − 1

))
𝜋4

20

(
𝑁2 +𝑀2

(
𝑥𝑢
|𝑃 | − 1

))
3

ª®®¬ .
(3.87)

The denominators remain positive considering that 𝑥𝑢 > |𝑃 |. For large 𝑁 and 𝑀, the

higher-order terms in the expansion diminish, leading the safe basin to approach a

circular disk as described in Sect. 3.1.1. Fig. 3.9 compares Eq. (3.87) with direct

numerical simulation and semianalytic estimates based on numerical integration of

sublevel sets defined by 𝑥̂
max(𝑥0 ,𝑢0) < 𝑥𝑢 , where 𝑥̂

max(𝑥0 ,𝑢0) is derived from Eq. (3.64) and

Eq. (3.62) respectively. For the smallest values 𝑀 and 𝑁 , that is, 𝑁 = 1 and 𝑀 = 2 or

𝑁 = 2 and 𝑀 = 1, the analytic approximations are less precise. However, for higher

values of 𝑁 and 𝑀, the estimate of 𝐺𝐼𝑀 becomes more accurate. Direct simulation

indicates the persistence of safe basins even for |𝑃 | > 𝑥𝑢 . However, their prediction

is not feasible with the methodology mentioned above due to the restrictive escape

condition 3.0.8: the particle exits the potential each excitation period, but it returns

due to the high excitation amplitude and essential nonlinearity at the potential’s edge.

Increasing excitation amplitudes results in nonlinear effects, as evidenced in Fig. 3.10

with a relatively smooth boundary and Fig. 3.11 showing a fractal-like boundary with

period tripling.
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3.1 Undamped driven harmonic oscillator

𝑥𝑢 = −𝑥𝑙 with 𝑁 +𝑀 odd

In cases where the potential is symmetric and the sum of𝑁 and𝑀 forms an odd number,

the safe basin exhibits a rotational symmetry of 2𝑁-fold and mirror symmetry, allowing

the computation of its area as

𝐴max = 2𝑁

∫ 𝜋
2𝑁

0

𝑅2(𝜑)d𝜑. (3.88)

Applying the Taylor series expansion for 𝑅2(𝜑) as specified in Eq. (3.86), we deduce the

expression for

𝐴max,T =
(
𝑥𝑢 − |𝑃 |

)
2

𝜋
©­­«1 + 𝜋2

12

(
𝑁2 +𝑀2

(
𝑥𝑢
|𝑃 | − 1

)) +

(
3𝑁2 +𝑀2

(
𝑥𝑢
|𝑃 | − 1

))
𝜋4

320

(
𝑁2 +𝑀2

(
𝑥𝑢
|𝑃 | − 1

))
3

ª®®¬ .
(3.89)

A graphical example of Eq. (3.89) for 𝑁 = 2 and 𝑀 = 1 is provided in Fig. 3.9c.

3.1.3 Comparison with numerical results
This section compares the analytically derived results with their numerical counterparts,

considering various parameter selections. For numerical simulations, the escape

condition 3.0.5 was used.

Fig. 3.9 compares the analytical and numerical findings for the global integrity measure

(𝐺𝐼𝑀), specifically the safe basin area, under varying parameters.

Fig. 3.10 shows a wedge-shaped safe basin for a supercritical forcing value
|𝑃 |
𝑥𝑢

= 1.3

(𝑁 = 2, 𝑀 = 1 and 𝑥𝑙 = −∞), unanticipated by the stated model. However, the safe

basin boundary is smooth and lacks fractal characteristics.

Fig. 3.11 illustrates a fractal-like non-escaping set under a high excitation amplitude of

|𝑃 |
𝑥 = 1.6 (𝑁 = 2, 𝑀 = 1 and 𝑥𝑙 = −∞). The substantial amplitude and the problem’s

strong nonlinearity at the boundary cause fractal-like edges for the safe basin.

3.1.4 Concluding remarks
The safe basins of a particle in an asymmetrically truncated quadratic potential well

subjected to harmonic excitation are significantly impacted by a commensurable fre-

quency ratio
𝑁
𝑀 . The size of the safe basins increases significantly when the ratio of the

excitation frequency to the natural frequency is a ratio of small integers.

In a system close to 1 : 𝑀 frequency ratio, safe basins may not appear when the system is

perturbed. On the contrary, they may be present if the ratio is exactly 1 : 𝑀, emphasizing
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3 Safe basins of level crossing in the linear case

(a) 𝑁 = 2, 𝑀 = 1, 𝑥𝑢 = 1 and 𝑥𝑙 = −∞ (b) 𝑁 = 3, 𝑀 = 2, 𝑥𝑢 = 1 and 𝑥𝑙 = −∞

(c) 𝑁 = 2, 𝑀 = 1, 𝑥𝑢 = 1 and 𝑥𝑙 = −1 (d) 𝑁 = 1, 𝑀 = 2, 𝑥𝑢 = 1 and 𝑥𝑙 = −∞

Figure 3.9: Variation in the global integrity measure (𝐺𝐼𝑀) in response to the excitation amplitude for different

excitation frequency values (shown in deep blue dots). The analytic estimates, indicated by red, yellow, and

purple lines, are based on Eq. 3.87. The numerical integration of the area of the sublevel set, defined by

𝑥̂
max(𝑥

0
,𝑢

0
) < 𝑥𝑢 and denoted by green diamonds and light blue squares, is also depicted. Here, 𝑥̂

max(𝑥
0
,𝑢

0
)

is determined by Eqs. (3.64) and (3.62). In particular, Fig. 3.9d shows that the Taylor series expansion of Eq.

(3.81) offers estimations only for |𝑃 | < 𝑥𝑢 , yet the semianalytic approach, marked with green diamonds, still

yields qualitatively correct results. Figures adapted from [224]
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3.1 Undamped driven harmonic oscillator

(a) Safe basin on the initial condition plane

(b) Time evolution of the solution for 𝑥0 = 0.352,

𝑢0 = −2.224

Figure 3.10: The wedge-shaped safe basin (yellow region) for 𝑃crit < |𝑃 | = 1.3 with 𝑁 = 2, 𝑀 = 1, 𝑥
l
= −∞ and

𝑥u = 1, after 50 excitation periods. Selected initial conditions within the safe basin show that the particle leaves

the potential well in each excitation period, but the strong force returns it; thus, a safe basin is maintained for

supercritical forcing. Observations suggest that this non-escaping mechanism is feasible only for excitation

frequencies exceeding the well’s natural frequency (𝜔 > 1). The prediction of these basins using the analytical

method of this study is not feasible. Figures adapted from [224]

the dependence of safe basins on frequency ratios. In the case of the frequency ratio

𝑁 : 𝑀, a safe basin can be divided into two parts: a stable and long-lasting part unaffected

by minor frequency changes and a temporary and illusory part that disappears even

with slight disturbances in the frequency ratio. Safe basins that disappear under the

slightest disturbance are dangerous in applications, as they give the false illusion of a

safe operation.
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3 Safe basins of level crossing in the linear case

(a) Safe basin on the plane of initial conditions

(b) Temporal progression of the solution for

initial conditions 𝑥0 = 1.286, 𝑢0 = −2.38 and for

𝑥0 = 0.704, 𝑢0 = −2.482.

Figure 3.11: The fractal characteristics of safe basin (yellow region) at 𝑃crit < |𝑃 | = 1.6 with parameters 𝑁 = 2,

𝑀 = 1, 𝑥
l
= −∞, and 𝑥u = 1. The integration was carried out over 100 periods of excitation. The particle

displacement’s temporal evolution can be periodic or experience periodic tripling, contingent on the chosen

initial condition. Figures adapted from [224]

3.2 Damped-driven harmonic oscillator
This section extends our previous model of a driven harmonic oscillator with a viscous

damping force, which is essential in realistic engineering models. The model is suitable

for a broad range of engineering, physics, and natural sciences systems because it

represents the standard form of a damped, driven single degree-of-freedom mechanical

system after linearization around a stable equilibrium.

We focus on the level-crossing problem of this system. This focus allows us to minimize

the secondary effects of truncating a potential, which often introduces significant

nonlinearities, as seen in the previous section. Additionally, abrupt force changes,

typical in truncated systems, are rare in natural or technical systems, confirming the

appropriateness of choosing the level-crossing problem.

3.2.1 Problem setting
This section focuses on safe basins regarding the level crossing of a classical particle,

denoted as𝑚, under the influence of a linear spring with stiffness 𝑘 and viscous damping

characterized by 𝑐. The absolute magnitude of the critical displacement is represented

by 𝑟𝐵. Once the particle crosses this boundary, it enters an unsafe zone. The undamped

natural frequency is defined as

Ω0 =

√
𝑘

𝑚
. (3.90)
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3.2 Damped-driven harmonic oscillator

(a) Equivalent mechanical model of the problem (b) Crossing of the symmetric boundary at 𝑟𝐵

Figure 3.12: Illustration of problem settings. Figures adapted from [225]

A sinusoidal force characterized by an amplitude 𝐹, an angular frequency Ω, and an

initial phase 𝛽 excites the particle. The initial conditions are given by (𝑥̃0 , 𝑢̃0). The

illustration of this problem setting is shown in Fig. 3.12.

3.2.2 Equations of motion
Then, the equation of motion is expressed by

𝑚𝑥̃′′ + 𝑐𝑥̃′ + 𝑚Ω2

0
𝑥̃ = 𝐹 sin(Ω𝑡 + 𝛽), (3.91)

𝑥̃(𝑡 = 0) = 𝑥̃0 , (3.92)

𝑥̃′(𝑡 = 0) = 𝑢̃0 , (3.93)

with □′ := d□/d𝑡. After division by 𝑚 and the introduction of the dimensionless

displacement 𝑥 := 𝑥̃/𝑟𝐵 and dimensionless time 𝑡 := Ω0𝜏, the equation transforms to

¥𝑥 + 𝑐

Ω0𝑚
¤𝑥 + 𝑥 =

𝐹

𝑟𝐵𝑚
sin

(
Ω

Ω0

𝜏 + 𝛽

)
, (3.94)

𝑥(𝜏 = 0) = 𝑥0 :=
𝑥̃0

𝑟𝐵
, (3.95)

¤𝑥(𝜏 = 0) = 𝑢0 :=
𝑢̃0

Ω0𝑟𝐵
, (3.96)

where ¤□ denotes the derivative concerning the dimensionless time 𝜏. Defining

𝐷 :=
𝑐

2Ω0𝑚
, 𝑓 :=

𝐹

𝑟𝐵𝑚
, 𝜔 :=

Ω

Ω0

, (3.97)
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3 Safe basins of level crossing in the linear case

leads to the non-dimensional equation of motion of a driven damped harmonic oscillator

¥𝑥 + 2𝐷 ¤𝑥 + 𝑥 = 𝑓 sin(𝜔𝜏 + 𝛽), (3.98)

𝑥(𝜏 = 0) = 𝑥0 ,

¤𝑥(𝜏 = 0) = 𝑢0.

The procedure to solve Eq. (3.98) is standard and is not elaborated here. The solution

takes the form

𝑥(𝜏) = 𝑅𝑒−𝐷𝜏
sin(𝜔0𝜏 + 𝛼) + 𝑃 sin(𝜔𝜏 + 𝛽 + 𝛾), (3.99)

with

𝜔0 :=
√

1 − 𝐷2 , (3.100)

𝑃 :=
𝑓√

(1 − 𝜔2)2 + 4𝐷2𝜔2

, (3.101)

𝛾 := atan2(−2𝐷𝜔, 1 − 𝜔2), (3.102)

𝐶1 := 𝑥0 − 𝑃 sin(𝛽 + 𝛾), (3.103)

𝐶2 := 𝑢0 − 𝑃𝜔 cos(𝛽 + 𝛾), (3.104)

𝑅 :=

√
𝐶2

1
+ 2𝐷𝐶1𝐶2 + 𝐶2

2

1 − 𝐷2

, (3.105)

𝛼 := atan2(𝜔0𝐶1 , 𝐷𝐶1 + 𝐶2), (3.106)

where atan2(𝑦, 𝑥) denotes the ’2-argument arctangent’. By assuming the excitation

frequency is close to 𝜔0, the small parameter

𝜀 := 𝜔 − 𝜔0 (3.107)

is introduced. The determination of the level-crossing time involves identifying the

smallest positive 𝜏LC satisfying

𝑥(𝜏LC)
!

= ±1. (3.108)

According to Eq. (3.99), two distinct level-crossing cases emerge: ’fast’ and ’slow’ level

crossing. In the ’fast’ scenario, the particle attains the critical distance within the initial

excitation period, implying that the level crossing is predominantly influenced by the

initial conditions, as a small excitation amplitude cannot significantly alter the particle’s

trajectory in such a brief interval. On the contrary, in the ’slow’ scenario, the particle
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3.2 Damped-driven harmonic oscillator

(a) ’Fast’ level crossing (𝑥0 = 0.86, 𝑢0 = 0.045) (b) ’Slow’ level crossing (𝑥0 = −0.665, 𝑢0 = 0.945)

Figure 3.13: Illustrative cases of level crossing with 𝐷 = 0.02, 𝑓 = 0.15, 𝜔 = 1.1, 𝛽 = 𝜋. Figures adapted from

[225]

initially lacks the total energy necessary for level crossing. However, the harmonic force

gradually drives the particle closer to the critical displacement value until it is finally

achieved (see Fig. 3.13).

In each scenario, the plane of the initial conditions is divided into safe (𝑆𝐹 , 𝑆𝑆) and

unsafe regions (𝑈𝐹 , 𝑈𝑆), classified by the type of level crossing. If the particle is within

𝑆𝐹 and 𝑆𝑆, it will not cross the critical distance, making the ultimate safe region the

intersection of these two conditions (𝑆 := 𝑆𝐹 ∩ 𝑆𝑆).

3.2.3 Criteria for level crossing
This section explores the configurations of the safe basins shaped by both the ’fast’ and

’slow’ crossing mechanisms.

’Fast’ level crossing

Initially, we discuss the ’fast’ level-crossing mechanism, predominantly influenced by

the initial conditions. At the boundary of the ’fast’ safe region 𝑆𝐹 , the condition is that

the first local extremum of the particle’s displacement, denoted by 𝑥(𝜏𝐹), equals plus or

minus one:

𝜕𝑆𝐹 := {(𝑥0 , 𝑢0) ∈ R2 |𝑥(𝜏𝐹 ; 𝑥0 , 𝑢0) = ±1}, (3.109)

accompanied by the time of level crossing

𝜏𝐹(𝑥0 , 𝑢0) := {min 𝜏| ¤𝑥(𝜏; 𝑥0 , 𝑢0) = 0 and 𝜏 ≥ 0}. (3.110)

To accurately determine the value and timing of the first local extremum of 𝑥(𝜏), one

must solve the transcendental equation ¤𝑥(𝜏) = 0, which generally lacks an analytical
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3 Safe basins of level crossing in the linear case

solution. However, the regular perturbation technique for algebraic equations can

provide a reasonable approximation of 𝜏𝐹 : expanding in terms of the small parameter 𝜀

generates solvable equations in sequence to estimate the time of the first extremum of

Eq. (3.99). A first-order approximation in 𝜀 is sufficiently precise (see the green line in

Figs. 3.15 and 3.17), allowing us to represent time as

𝜏 = 𝜏0 + 𝜀𝜏1 + 𝒪(𝜀2). (3.111)

Similarly, 𝑥(𝜏) is reformulated as

𝑥(𝜏) = 𝑥0(𝜏) + 𝜀𝑥1(𝜏) + 𝒪(𝜀2). (3.112)

Setting 𝐷 = 𝐷∗ |𝜀|, with 𝐷∗ = 𝒪(1), and 𝜔 = 𝜔0 + 𝜀, reduces the problem, and the only

small parameter 𝜀 remains. A Taylor series expansion to the first order in 𝜀 gives

𝑥(𝜏) ≈𝑅 sin(𝜔0𝜏0 + 𝛼) + 𝑃 sin(𝜔0𝜏0 + 𝛽 + 𝛾)
+ (𝑅 [cos(𝜔0𝜏0 + 𝛼)𝜔0𝜏1 − sin(𝜔0𝜏0 + 𝛼)𝐷∗𝜏0]

+ 𝑃 cos(𝜔0𝜏0 + 𝛽 + 𝛾)(𝜏0 + 𝜔0𝜏1))𝜀. (3.113)

By defining

𝑄 :=

√
𝑅2 + 2𝑅𝑃 cos(𝛼 − 𝛽 − 𝛾) + 𝑃2 , (3.114)

𝜈 := atan2(𝑅 sin 𝛼 + 𝑃 sin(𝛽 + 𝛾), 𝑅 cos 𝛼 + 𝑃 cos(𝛽 + 𝛾)), (3.115)

Eq. (3.113) can be rewritten as

𝑥(𝜏) = 𝑄 sin(𝜔0𝜏0 + 𝜈) (3.116)

+ 𝜀 (𝜏0(𝑃 cos(𝜔0𝜏0 + 𝛽 + 𝛾) − 𝐷∗𝑅 sin(𝜔0𝜏0 + 𝛼)) +𝑄𝜏1𝜔0 cos(𝜔0𝜏0 + 𝜈)) .

¤𝑥(𝜏) = 0 is satisfied at the local extrema points. The derivative with respect to 𝜏 (similar

as in the method of multiple scales) is expressed as

d□

d𝜏
=

𝜕□

𝜕𝜏0

+ 𝜀
𝜕□

𝜕𝜏1

, (3.117)

which, upon disregarding higher-order terms than 𝒪(𝜀), leads to

¤𝑥(𝜏) = 𝑄𝜔
0

cos(𝜔0
𝜏

0
+ 𝜈) + 𝜀

(
−𝑄𝜏

1
𝜔2

0
sin(𝜔0

𝜏
0
+ 𝜈) + 𝑃(cos(𝜔0

𝜏
0
+ 𝛽 + 𝛾) (3.118)

− 𝜏
0
𝜔

0
sin(𝜔0

𝜏
0
+ 𝛽 + 𝛾)) − 𝐷∗𝑅(sin(𝜔0

𝜏
0
+ 𝛼) + 𝜏

0
𝜔

0
cos(𝜔0

𝜏
0
+ 𝛼))

)
.
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3.2 Damped-driven harmonic oscillator

Based on condition (3.110), the terms involving 𝜀0
and 𝜀1

have to cancel out. While

there are numerous solutions for 𝜏𝐹 , our interest lies in the smallest positive one, which

is given as follows:

𝜏∗
0
(𝑥0 , 𝑢0) =

mod

(𝜋
2
− 𝜈,𝜋

)
𝜔0

, (3.119)

𝜏∗
1
(𝑥0 , 𝑢0) =

𝑃(cos

(
𝜔0𝜏∗

0
+ 𝛽 + 𝛾

)
− 𝜏∗

0
𝜔0 sin

(
𝜔0𝜏∗

0
+ 𝛽 + 𝛾

)
)

𝑄𝜔2

0
sin

(
𝜔0𝜏∗

0
+ 𝜈

)
−
𝐷∗𝑅(sin

(
𝜔0𝜏∗

0
+ 𝛼

)
+ 𝜏∗

0
𝜔0 cos

(
𝜔0𝜏∗

0
+ 𝛼

)
)

𝑄𝜔2

0
sin

(
𝜔0𝜏∗

0
+ 𝜈

) , (3.120)

𝜏𝐹(𝑥0 , 𝑢0) := 𝜏∗
0
+ 𝜀𝜏∗

1
. (3.121)

Then, it is possible to insert the value of 𝜏𝐹(𝑥0 , 𝑢0) in Eq. (3.109) and depict the boundary

of the ’fast’ safe region 𝜕𝑆𝐹 as a function implicitly dependent on (𝑥0 , 𝑢0) (see Figs. 3.15

and 3.17). Although the analytical evaluation of Eq. (3.109) outlining the ’fast’ boundary

𝜕𝑆𝐹 is too complicated, its numerical computation is significantly more efficient than

the direct numerical simulation of Eq. (3.98) (cf. Sect. 3.2.5).

It is important to note that using only 𝜏𝐹(𝑥0 , 𝑢0) ≈ 𝜏∗
0
(𝑥0 , 𝑢0) in Eq. (3.121) produces a

result that is less precise, but still valuable and significantly simpler than including the

term of 𝒪(𝜀).
The green line in Figs. 3.15 and 3.17 illustrates the boundary of ’fast’ level crossing.

Without excitation (see Fig. 3.15a), level crossing can occur only due to the initial

conditions. Given that the potential is symmetric, and the motion is damped and

one-dimensional (though in cases of two-dimensional motions, this may not hold due

to coupling terms), its maximum is achieved during the initial half-period of the motion.

Consequently, the ’fast’ boundary 𝜕𝑆𝐹 plays a pivotal role in defining the safe basin of

the particle. With increasing damping, the area of the safe basin also increases. When

the values of 𝐷 are moderate, the analytical prediction shows remarkable agreement

with the numerical data.

The transient motion persists indefinitely in scenarios with excitation but no damping

(see Fig. 3.15b). Here, the interplay between the particular and homogeneous solutions

(the beating motion) governs the safe basin. The ’slow’ boundary 𝜕𝑆𝑆 defines the safe

basin in such instances. The resulting safe basin forms a circular disk when the frequency

ratio between the particular and homogeneous solutions is irrational. In contrast, a

rational frequency ratio leads to a safe basin of a different shape, as discussed in Sect.

3.1. However, even in these scenarios, the ’fast’ boundary accurately represents the set

of initial conditions where level crossing occurs within the first half-period of excitation,

as shown in the deep-blue region in Fig. 3.15b.
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3 Safe basins of level crossing in the linear case

Figure 3.14: The precise solution and its envelope determined by Eq. (3.125) for 𝐷 = 0.02, 𝑓 = 0.15, 𝜔 = 1.1,

𝛽 = 𝜋, 𝑥0 = 0 and 𝑢0 = 1. Figure adapted from [225]

In situations involving both damping and excitation (see Fig. 3.17), both the ’fast’ and

’slow’ boundaries gain significance and outline a segment of the safe basin boundary.

’Slow’ level crossing

To determine the boundary of the safe region for the ’slow’ crossing mechanism, the

envelope of 𝑥(𝜏) is analyzed. This envelope can be approximated using the total energy

of the particle. Therefore, we calculate:

2𝐸 = 𝑥2 + ¤𝑥2. (3.122)

By differentiating Eq. (3.99) and inserting it into Eq. (3.122), we derive the expression:

2𝐸 = 𝑅2𝑒−2𝐷𝜏 + 𝑃2 + 2𝑅𝑃𝑒−𝐷𝜏
cos(𝜀𝜏 − 𝛼 + 𝛽 + 𝛾)

+ (𝜔2

0
− 1)𝑅2𝑒−2𝐷𝜏

cos
2(𝜔0𝜏 + 𝛼) + 𝑃2(𝜔2 − 1) cos

2(𝜔𝜏 + 𝛽 + 𝛾)
+ 2𝑅𝑃(𝜔𝜔0 − 1)𝑒−𝐷𝜏

cos(𝜔0𝜏 + 𝛼) cos(𝜔𝜏 + 𝛽 + 𝛾) + 𝐷2𝑅2𝑒−2𝐷𝜏
sin

2(𝜔0𝜏 + 𝛼)
− 2𝐷𝑅2𝜔0𝑒

−2𝐷𝜏
sin(𝜔0 + 𝜏) cos(𝜔0𝜏 + 𝛼)

− 2𝐷𝑅𝑃𝜔𝑒−𝐷𝜏
sin(𝜔0𝜏 + 𝛼) cos(𝜔𝜏 + 𝛽 + 𝛾). (3.123)

We can observe that in Eq. (3.123) from the second line onward, each term is of 𝒪(𝜀).
Hence, disregarding these, we simplify to

2𝐸̃ := 𝑅2𝑒−2𝐷𝜏 + 𝑃2 + 2𝑅𝑃𝑒−𝐷𝜏
cos(𝜀𝜏 − 𝛼 + 𝛽 + 𝛾), (3.124)

and the envelope is approximated by

𝐴(𝜏) = ±
√

2𝐸̃. (3.125)
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3.2 Damped-driven harmonic oscillator

The envelope’s peak, 𝐴max, and the instance of the first level crossing cannot be explicitly

determined (for numerical instances, see Figs. 3.15b, 3.17, and 3.18). However, a

reasonable approximation for the envelope’s maximum is achievable, considering that

it occurs at the beginning of the motion (’fast’ level crossing) or around the time when

the cosine term in Eq. (3.124) first equals 1 (’slow’ level crossing), that is,

𝜏𝑆 = mod

(
𝛼 − 𝛽 − 𝛾

𝜀
,
2𝜋

|𝜀|

)
. (3.126)

Therefore,

𝐴2

max
= (𝑃 + 𝑅𝑒−𝐷𝜏𝑆 )2. (3.127)

Hence, the boundary of the ’slow’ safe region is defined by

𝜕𝑆𝑆 := {(𝑥0 , 𝑢0)|𝐴max(𝑥0 , 𝑢0) = 1}. (3.128)

The interior of 𝑆𝑆 (illustrated in Fig. 3.17) is characterized by

−1 < 𝑃 + 𝑅𝑒−𝐷𝜏𝑆 < 1. (3.129)

The left-hand side of the inequality is inherently satisfied. The right side leads to

𝑅𝑒−𝐷𝜏𝑆 < 1 − 𝑃, (3.130)

implying a condition for a non-escaping set:

𝑃
!

< 1. (3.131)

Taking the exponential term to the opposite side and squaring both sides in Eq. (3.130)

results in

𝑅2 < 𝑒2𝐷𝜏𝑆 (1 − 𝑃)2. (3.132)

Substituting 𝑅2
from Eq. (3.105) and reorganizing, we get

𝐶2

1
+ 2𝐷𝐶1𝐶2 + 𝐶2

2

(1 − 𝐷2)(1 − 𝑃)2 < 𝑒2𝐷𝜏𝑆 . (3.133)

The equation’s left-hand side delineates level sets of ellipses rotated by 45
◦

and centered

at (𝑃 sin(𝛽 + 𝛾), 𝑃𝜔 cos(𝛽 + 𝛾)). The right side is a function that varies with the initial

conditions through 𝜏𝑆(𝑥0 , 𝑢0). Our objective is to determine the nature of the level
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3 Safe basins of level crossing in the linear case

(a) As the damping increases (𝐷 = 0.1) with no

excitation applied ( 𝑓 = 0, 𝜔 and 𝛽 irrelevant),

the safe basin’s area (yellow surface) enlarges

compared to the unit circle (solid magenta line).

The ’slow’ level-crossing mechanism is not

applicable here since the envelope (cf. Eq. (3.125))

possesses no other local maxima aside from the

initial one

(b) The influence of exciting force ( 𝑓 = 0.08) on the

boundary as predicted by the ’fast’ level-crossing

mechanism (solid green line) in the absence of

damping (𝐷 = 0), 𝜔 = 0.95 and 𝛽 = 0. The absence

of 𝐷 means that the logarithmic spiral remains

constant, forming a circle

Figure 3.15: Damping and excitation effects on the ’fast’ level-crossing boundary within the initial condition

plane. Analytical calculations ignore both influences. The color scale indicates the time required for level

crossing (∞ denotes no crossing). Figures adapted from [225]

sets of 𝑒2𝐷𝜏𝑆(𝑥0 ,𝑢0)
. To achieve this, we first consider the parameter ranges 𝛼 ∈ (−𝜋,𝜋],

𝛽 ∈ (−𝜋,𝜋], and 𝛾 ∈ (−𝜋, 0]. We then have:

𝜏𝑆 =


𝛼−𝛽−𝛾+2𝜋

𝜀 if 𝛼 − 𝛽 − 𝛾 < 0,
𝛼−𝛽−𝛾

𝜀 if 0 ≤ 𝛼 − 𝛽 − 𝛾 ≤ 2𝜋,
𝛼−𝛽−𝛾−2𝜋

𝜀 if 2𝜋 < 𝛼 − 𝛽 − 𝛾,

(3.134)

where 𝛼 is the only parameter dependent on the initial conditions. The domain length

of 𝜏𝑆 exceeds 2𝜋 when all parameters vary. However, when altering only the initial

conditions (as seen when the time of level crossing is plotted in the plane of initial

conditions, cf. Fig. 3.17) and fixing the values of 𝑓 , 𝐷, 𝜔, and 𝛽, only 𝛼 changes. Given

the range of 𝛼 as (−𝜋,𝜋] and the fixed values of 𝛽 and 𝛾, at most two definition domains

of Eq. (3.134) can be active. For certain ranges of 𝑥0 and 𝑢0, the middle case in Eq. (3.134)
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3.2 Damped-driven harmonic oscillator

× ×

Figure 3.16: Change to polar coordinates. The black unit

circle replaces 𝜕𝑆𝐹 , while the blue logarithmic spiral represents

𝜕𝑆𝑆 . The beige area, bounded by these curves, symbolizes the

analytic approximation of the safe basin (here 𝜀 < 0). Figure

adapted from [225]

Figure 3.17: Numerically obtained level-crossing

time (color scale) and safe basin (yellow area,

∞ indicates no crossing) on the 𝑥0 − 𝑢0 initial

condition plane for 𝐷 = 0.02, 𝑓 = 0.15, 𝜔 = 1.1,

and 𝛽 = 𝜋. The analytical approximation of

the safe basin is represented by the intersection

of curves 𝜕𝑆𝑆 and 𝜕𝑆𝐹 . Lines of constant 𝜏𝑆
originate from the point 𝐶̃, with 𝜏𝑆 increasing

linearly with the angle in the clockwise direction.

Each color change represents a peak in the

solution 𝑥(𝜏) (see Fig. 3.13b). Figure adapted

from [225]

will always be valid regardless of the values of 𝑓 , 𝐷, 𝜔, and 𝛽; however, only the first or

third case can occur for other values of 𝑥0 and 𝑢0.

Next, we identify the subsets where 𝜏𝑆 remains constant, representing the level sets on

the right-hand side of the equation. This observation implies that, along these sets, 𝛼

also maintains a constant value, denoted as 𝛼0. Hence, by defining 𝛼 in Eq. (3.106), we

establish:

𝛼0 = atan2

(
𝐶1

√
1 − 𝐷2 , 𝐷𝐶1 + 𝐶2

)
= const., (3.135)

𝐶2 =

(√
1 − 𝐷2

tan 𝛼0

− 𝐷
)
𝐶1. (3.136)
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3 Safe basins of level crossing in the linear case

(a) 𝛽 = 𝜋/4 (b) 𝛽 = 𝜋/2

Figure 3.18: Numerical visualization of level-crossing time (color scale) and safe basin (yellow area, ∞ denotes

no crossing) on the 𝑥0 −𝑢0 plane of initial conditions for𝐷 = 0.02, 𝑓 = 0.15, 𝜔 = 1.1, and 𝛽 = {𝜋/4,𝜋/2}. Lines

of constant 𝜏𝑆 originate from the point 𝐶̃, with 𝜏𝑆 linearly increasing with angle clockwise. These graphs,

together with Fig. 3.17, suggest that although the initial excitation phase 𝛽 minimally affects the size of the

safe basin, it primarily influences its orientation. Figures adapted from [225]

When the values of 𝐶1 and 𝐶2 from Eqs. (3.103)-(3.104) are substituted, the equation is

reduced to:

𝑢0 − 𝑃𝜔 cos(𝛽 + 𝛾) =
(√

1 − 𝐷2

tan 𝛼0

− 𝐷
)
(𝑥0 − 𝑃 sin(𝛽 + 𝛾)) . (3.137)

From Eq. (3.137), it becomes evident that the paths where 𝜏𝑆 is constant are rays (due

to the atan2 function) beginning at the point (𝑃 sin(𝛽 + 𝛾), 𝑃𝜔 cos(𝛽 + 𝛾)). Based on Eq.

(3.134), the ray where 𝜏𝑆 = 0 has the gradient

Δ𝑢0

Δ𝑥0

=

√
1 − 𝐷2

tan(𝛽 + 𝛾) − 𝐷, (3.138)

and its orientation is such that if 𝛽 + 𝛾 ∈ [−𝜋
2
, 𝜋

2
], the line resides in the half-plane

satisfying

𝐶2 > −𝐷𝐶1 , (3.139)
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3.2 Damped-driven harmonic oscillator

𝑢0 > −𝐷𝑥0 + 𝑃(sin(𝛽 + 𝛾) + 𝜔 cos(𝛽 + 𝛾)), (3.140)

alternatively, if 𝛽 + 𝛾 ∉ [−𝜋
2
, 𝜋

2
], the line is situated in the opposite half-plane:

𝐶2 < −𝐷𝐶1. (3.141)

Beginning along the ray corresponding to 𝜏𝑆 = 0 and rotating clockwise for 𝜀 > 0 or

anticlockwise for 𝜀 < 0, the increase in 𝜏𝑆 is proportional to the angle of rotation. A full

rotation brings the maximal level-crossing time to

𝜏S,max =
2𝜋

|𝜀| . (3.142)

Plotting the value of 𝑒2𝐷𝜏𝑆
(as in Eq. (3.133)) as a function of the angle of rotation around

(𝑃 sin(𝛽 + 𝛾), 𝑃𝜔 cos(𝛽 + 𝛾)) reveals an increasing logarithmic spiral (see the red curve

in Figs. 3.15b, 3.17 and 3.18, and the blue curve in Fig. 3.16). Taking into account Eq.

(3.130), this suggests that the anticipated non-escaping set resides within an ellipse,

rotated by 45
◦
, with a major axis

𝑎 =
√

1 + 𝐷(1 − 𝑃) (3.143)

and minor axis

𝑏 =
√

1 − 𝐷(1 − 𝑃), (3.144)

expanding exponentially along the spiral’s angle.

3.2.4 The safe basin’s area
Analytical estimation of the safe basin area is feasible. Specifically, this is done by

replacing the boundary of the ’fast’ escaping set 𝜕𝑆𝐹 with the unit circle, representing

the safe basin of a truncated quadratic potential without damping and excitation. This

approach underestimates the safe region’s area when considering damping since part

of the safe region is excluded by disregarding the damping effect. Due to damping,

the particle is decelerated sufficiently not to reach the boundary (as shown in Fig.

3.15a). However, concerning the excitation effect, replacing 𝑆𝐹 with the unit disk

is not significantly limiting, as the difference between the two sets remains minor

for sufficiently small excitation amplitudes, keeping the analytic estimate reasonably

accurate (as indicated in Fig. 3.15b).
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3 Safe basins of level crossing in the linear case

The ’slow’ safe region 𝑆𝑆 is similarly simplified. Rather than considering the interior of

the rotated ellipse from Eq. (3.133), we disregard 𝐷 in the inequality’s left-hand side,

leading to a circle centered at

𝐶̃ := (𝑃 sin(𝛽 + 𝛾), 𝑃𝜔 cos(𝛽 + 𝛾)). (3.145)

Further simplification involves neglecting 𝜔 in the circle’s position, defining the point

𝐶 := (𝑃 sin(𝛽 + 𝛾), 𝑃 cos(𝛽 + 𝛾)) (3.146)

as the origin of a new polar coordinate system (𝑟, 𝜑), rotated by

∠(−−→𝑂𝐶, ®𝑒𝑥0
) = 𝜋

2

− 𝛽 − 𝛾 (3.147)

relative to the original (𝑥0 , 𝑢0) system. From Eqs. (3.146) and (3.147), it is evident that

the center and orientation of the logarithmic spiral depend on 𝛽. However, in the new

coordinate system (𝑟, 𝜑), the excitation phase 𝛽 is irrelevant (see Fig. 3.18). The slope of

the line where 𝜏𝑆 = 0, as given in Eq. (3.138), corresponds to the same angle
𝜋
2
− 𝛽 − 𝛾

when 𝐷 is neglected. Thus, 𝜑 = 0 marks the starting angle of the spiral (see Fig. 3.16).

The ensuing calculations are for 𝜀 < 0, which is analogous but mirrored for 𝜀 > 0.

The unit circle shifted to (−𝑃, 0) is described by

𝑅𝐶(𝜑) = −𝑃 cos 𝜑 +
√

1 − 𝑃2
sin

2 𝜑. (3.148)

The logarithmic spiral’s equation is

𝑅𝑆(𝜑) = (1 − 𝑃)𝑒
𝐷
|𝜀| 𝜑 . (3.149)

The influence of independent parameters 𝐷 and 𝜀 can be represented using their ratio,

𝐷∗ = 𝐷/|𝜀|. Two scenarios arise concerning solutions to

𝑅𝐶(𝜑) = 𝑅𝑆(𝜑)

(1 − 𝑃)𝑒𝐷∗𝜑 = −𝑃 cos 𝜑 +
√

1 − 𝑃2
sin

2 𝜑. (3.150)

In the simpler case with large𝐷∗
, the only real solution is in 𝜑0 = 0. For a smaller critical

value𝐷∗
crit

, there are two distinct solutions of Eq. (3.150), 𝜑 = 0 and 𝜑1 = 𝜑2 = 𝜑crit. With

even smaller𝐷∗
, three distinct real roots of Eq. (3.150) are found, 0 = 𝜑0 < 𝜑1 < 𝜑2 < 2𝜋.

Unfortunately, Eq. (3.150) cannot be explicitly solved for 𝜑, but a graphical solution is
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3.2 Damped-driven harmonic oscillator

Figure 3.19: The solutions of (1 − 𝑃)𝑒𝐷∗𝜑 = −𝑃 cos 𝜑 +
√

1 − 𝑃2
sin

2 𝜑 depend on the parameters 𝐷∗
and 𝑃.

For 𝐷∗ > 𝐷crit, the only real solution is 𝜑0 = 0. Figure adapted from [225]

provided in Fig. 3.19. An reasonably accurate heuristic estimate (see Fig. 3.21) for 𝐷∗
crit

is

𝐷∗
crit

≈ 3

4

atanh(𝑃). (3.151)

To ascertain the safe basin’s size, we compute

𝐺𝐼𝑀 =
1

2

∫
2𝜋

0

(min{𝑅𝐶(𝜑), 𝑅𝑆(𝜑)})2d𝜑. (3.152)

If 𝐷∗ > 𝐷crit, then 𝑅𝑆(𝜑) > 𝑅𝐶(𝜑) ∀𝜑 ∈ [0, 2𝜋), and the integral equals the area of the

unit circle 𝜋. Otherwise, the integral becomes

𝐺𝐼𝑀 =
1

2

(∫ 𝜑1

0

𝑅2

𝐶(𝜑)d𝜑 +
∫ 𝜑2

𝜑1

𝑅2

𝑆(𝜑)d𝜑 +
∫

2𝜋

𝜑2

𝑅2

𝐶(𝜑)d𝜑
)
. (3.153)
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3 Safe basins of level crossing in the linear case

Figure 3.20: Illustration of the safe basin’s size (𝐺𝐼𝑀) in relation to parameters 𝑃 (amplitude of forced response)

and 𝐷∗
(damping-frequency perturbance ratio). The thick curves denote the values 𝐷∗ = 0, 0.2, 0.4, ..., 2. The

erosion profiles (starting at 𝑃crit) for a fixed 𝐷∗ > 0 are often referred to as the ’Dover cliff’ profiles. There are

no safe basins for 𝑃 > 1. Figure adapted from [225]

The indefinite integral of 𝑅2

𝐶
(𝜑) is

𝐼𝐶(𝜑) :=

∫
𝑅2

𝐶(𝜑)d𝜑 =
𝑃2

2

sin(2𝜑) + 𝜑 − 𝑃 sin 𝜑
√

1 − (𝑃 sin 𝜑)2 − arcsin(𝑃 sin 𝜑).

(3.154)

The indefinite integral of 𝑅2

𝑆
(𝜑) is expressed as

𝐼𝑆(𝜑) :=

∫
𝑅2

𝑆(𝜑)d𝜑 =
(1 − 𝑃)2

2𝐷∗ 𝑒2𝐷∗𝜑 . (3.155)

Therefore, the safe basin’s size is given by

𝐺𝐼𝑀 =
𝐼𝐶(𝜑1) + 𝐼𝑆(𝜑2) − 𝐼𝑆(𝜑1) + 2𝜋 − 𝐼𝐶(𝜑2)

2

. (3.156)

These computations also allow for a graphical representation of the safe basin area

(𝐺𝐼𝑀) versus 𝐷∗
and 𝑃 (see Fig. 3.20 and the right side of Fig. 3.21a). In particular, for

nonzero damping, the safe basin size does not immediately decrease as the excitation

amplitude, and hence 𝑃, increases.
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3.2 Damped-driven harmonic oscillator

(a) Left: Numerically computed 𝐺𝐼𝑀 values for 𝜔 = 1.1 and 𝛽 = 𝜋/3. Right: Analytically computed 𝐺𝐼𝑀
values

(b) Left: Numerically computed values of 𝐺𝐼𝑀 for 𝜔 = 1.02 and 𝛽 = 0. Right: Numerically computed

values for 𝜔 = 0.95 and 𝛽 = 0

Figure 3.21: The size of the safe region (𝐺𝐼𝑀) is shown against the parameters 𝐷∗
and 𝑃. The boundary

indicating the critical level of forced vibration amplitude, represented as a red line (𝑃crit), is determined

according to Eq. (3.157). It is apparent that for 𝑃 values less than 𝑃crit, the extent of the safe region expands in

the numerically derived diagrams, a result attributed to the addition of damping (refer to Fig. 3.15a). When 𝑃
is below 𝑃crit, that is, below the red line, the impact of excitation on the magnitude of the safe region appears

to be minimal upon direct numerical calculation, being predominantly affected by 𝐷∗
. The growth of the

stability region with respect to 𝐷∗
is disregarded in the approximation of 𝜕𝑆𝐹 using the unit circle. Figures

adapted from [225]
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3 Safe basins of level crossing in the linear case

Below a critical amplitude for forced excitation 𝑃crit, the safe basin is solely determined

by the ’fast’ mechanism as defined by Eq. (3.109). This critical 𝑃crit aligns with the ’cliff’

and can be approximated using Eq. (3.151) as

𝑃 < 𝑃crit ≈ tanh

(
4

3

𝐷∗
)
. (3.157)

However, once the critical amplitude 𝑃crit is exceeded, both mechanisms become

essential for the level-crossing process. As 𝑃 increases, the ’slow’ level-crossing process

increasingly dominates, and a larger portion of the safe basin boundary arc length is

defined by 𝜕𝑆𝑆.

In Fig. 3.20, we can observe the ’Dover cliff’ erosion profiles (𝑃 increases at constant

𝐷∗
) of safe basins. Such profiles were first documented in nonlinear damped escape

problems with external harmonic excitation [200, 202]. In this scenario, since 𝑃 is a linear

function of the excitation amplitude 𝑓 , the graph can classically be interpreted to show

the size of safe basins against 𝑓 , keeping 𝐷, 𝜔, and 𝛽 constant. There are two critical

values of 𝑃: one in 𝑃crit, where the ’fast’ erosion of the safe basin begins, and another

in 𝑃 = 1, where the safe basin vanishes. The abrupt erosion at 𝑃crit is often associated

with the homoclinic tangency of the particle’s orbit [199]; however, this study shows

that sudden erosion of the safe region can also occur in linear systems. This erosion

profile is not an inherent characteristic of nonlinearity but rather a consequence of the

decay of the transient motion.

The study presented in this chapter provides reasonably accurate estimates of the safe

basins’ size and location in the classic example of a harmonically forced damped linear

oscillator, serving as a benchmark for investigating nonlinear system effects.

3.2.5 Numerical Results and Model Validation
This section focuses on validating the analytical model against direct numerical results.

In Fig. 3.21, the total area of the safe basin (𝐺𝐼𝑀) is illustrated depending on the values

of 𝐷∗
and 𝑃. On the left of Fig. 3.21a, the numerically generated contour plot is shown

for 𝜔 = 1.1 and 𝛽 = 𝜋
3
. The red line represents the estimated parameter combination

where the logarithmic spiral tangentially meets the unit circle. Despite a not-so-small

value of 𝜀 = 0.1 − 0.1056, the analytic model shows a commendable accuracy. However,

it should be noted that 𝜀 is not constant as it depends on 𝐷, thus affecting 𝐷∗
. In Fig.

3.21b, the numerically calculated 𝐺𝐼𝑀 is depicted for 𝜔 = 0.95 and 𝜔 = 1.02, both

with 𝛽 = 0. The correlation with the analytic prediction is slightly less precise here

than for 𝜔 = 1.1, but it is still fairly accurate. As 𝐷∗
increases, the difference between

the numerical and analytical results increases, mainly due to errors in positioning 𝜕𝑆𝑆
based on the maximum estimate of Eq. (3.124) by Eq. (3.127). An error magnitude
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3.2 Damped-driven harmonic oscillator

of 5-6% may occur and can significantly influence the spiral’s growth rate. Applying

Poincaré’s small-parameter method might yield more accurate results for the maximum

of Eq. (3.124). However, it would considerably complicate the equations, making further

analytic continuation unfeasible.

Direct numerical simulations involve extensive calculations. The grids in Fig. 3.21a

and Fig. 3.21b have only 21×21 nodes due to the computational intensity - each grid

point’s 𝐺𝐼𝑀 requires 101×101 simulations on the initial condition plane, totaling 4 498

641 individual simulations.

To assess the reduction in computational cost in computing 𝜕𝑆𝑆 and 𝜕𝑆𝐹 versus the

direct numerical integration of Eq. (3.98), simulations were performed using 𝐹 =

{0.05, 0.1, 0.15}, Ω = 1.1, 𝐷 = 0.02, and 𝛽 = 𝜋/2. These utilized a 401×601 grid across

initial conditions on [−1, 1] × [−1.5, 1.5]. The results indicated a 200-350-fold decrease

in computational cost using 𝜕𝑆𝑆 and 𝜕𝑆𝐹 compared to direct integration of Eq. (3.98).

3.2.6 Conclusions and scope for future research
This chapter described the stabilizing effect of viscous damping on the safe basins from

a symmetrically truncated quadratic potential well under harmonic excitation, focusing

on excitation frequencies near the system’s natural frequency.

Two competing mechanisms, ’fast’ and ’slow’ level crossing, are identified as defining the

safe basins. The ’fast’ mechanism relates to the particle’s initial energy and its sufficiency

in driving the particle out of the potential well, which is particularly significant when

the damping is considerable compared to the frequency difference between excitation

and the potential well.

The ’slow’ mechanism is akin to a beat phenomenon, becoming prominent when the

decay of transient motion is slow, allowing for the accumulation of a large amplitude

resonant oscillation.

A complicated interaction between these mechanisms affects the size of the safe basin.

Up to a specific forced amplitude (𝑃crit), the ’fast’ mechanism predominates, keeping

the safe basin size nearly constant. Beyond 𝑃crit, as the excitation increases, the ’slow’

mechanism gains importance, leading to rapid safe basin erosion. At a force amplitude of

1, level crossing inevitably occurs for any initial condition, resulting in the disappearance

of the safe basin.

Although the model studied is linear, the identification of these competing mechanisms

also has implications for nonlinear systems. The typical ’Dover cliff’ erosion profile,

observed in many damped, nonlinear escape scenarios, is not inherently due to system

nonlinearity, but rather, it results from the transient motion’s decay and the interplay of

the system’s forced response.
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3 Safe basins of level crossing in the linear case

Figure 3.22: Numerically derived level-crossing time (color scale, ∞ indicating no crossing) and safe basin

(yellow region) on the 𝑥0 − 𝑢0 initial condition plane for 𝐷 = 0.02, 𝑓 = 0.4, 𝜔 = 0.5, and 𝛽 = 0. Figure adapted

from [225]

In strongly damped cases, the transient motion rapidly decays, preventing the beat-like

vibration that causes the ’slow’ mechanism. Therefore, the shape of the safe basin is

mainly determined by the ’fast’ mechanism, especially when the oscillation amplitude

of the particular solution 𝑃 is below one. For 𝑃 > 1, the forced oscillation is strong

enough to swing into the critical region, eliminating the safe basin.

When the frequency of excitation differs from the resonant frequency of the well, the

’slow’ mechanism gradually becomes less important. As a result, the envelope’s peaks

become less prominent, leaving the ’fast’ mechanism as the primary cause for level

crossing. As shown in Fig. 3.22, with an excitation frequency (𝜔 = 0.5) significantly

lower than the natural frequency, the ’slow’ beat-based mechanism loses its prominence.

The superposition of transient and steady-state motion does not yield apparent peaks

in the envelope, rendering the ’fast’ mechanism the primary cause for level crossing.

Indeed, no level crossing occurs after the first excitation period, suggesting a limit set

by the excitation time period.

For large differences between excitation and natural frequencies, the boundaries 𝜕𝑆𝐹
and 𝜕𝑆𝑆, defined by Eqs. (3.109) and (3.128), are less accurate due to the assumption of

small perturbance in the excitation frequency. However, the characteristics of the safe
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3.2 Damped-driven harmonic oscillator

basin resemble those identified by Genda et al. [224] (see Sect. 3.1) for the conservative

case, for which analytical estimates exist.

Numerical results also indicate that the excitation’s initial phase has a negligible effect

on the safe basin’s size but significantly influences its location (cf. Figs. 3.16 and 3.18).

Consequently, the analytic model in Sect. 3.2.4 disregards the dependence on the initial

phase 𝛽.

This study provides a semianalytic formula to calculate the safe basin area based

on the system’s parameters, as shown in Fig. 3.20. These insights are valuable for

designing physical systems with dynamics similar to those studied here. For example,

in applications where extended safe basins are desired to mitigate oscillations under

noisy excitation, it is beneficial to maintain 𝑃 < 𝑃crit. Additionally, in preventing

the failure of brittle materials under harmonic load, it is crucial to ensure that initial

conditions do not significantly compromise the system’s integrity.

This chapter has explored the stabilizing effect of viscous damping on safe basins from

a symmetrically truncated quadratic potential well under harmonic excitation near the

system’s natural frequency. The identified ’fast’ and ’slow’ level-crossing mechanisms

have significant implications for linear systems and potentially for nonlinear ones. The

observed ’Dover cliff’ erosion profile in safe basins, often attributed to nonlinearities,

results from the interplay between decaying motion due to initial conditions and the

system’s forced response.

Future research could investigate whether safe basins can be accurately estimated

analytically in systems with small, polynomial-type nonlinearities or non-standard

features like Coulomb friction or constant restoring force [229]. Another interesting

question is whether damping always stabilizes escape and level-crossing, including in

scenarios with nonlinear damping.

Finally, understanding the safe basins’ shapes and escape probabilities in noisy dynamics

holds practical significance. Although noise might lead to a nonzero escape probability

for any initial condition, there is a possibility of defining proper safe basins with zero

escape probability, especially when the noise amplitude is bounded.

This work aims to improve the understanding of escape or level-crossing mechanisms,

contributing to the safer design of devices and systems.
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4 Critical forcing of escape

As reported in Chapter 1, investigating the critical forcing amplitude necessary to cause

particle escape has significant literature. As the distinction between escape and level

crossing is not sharp, most results apply equally to the latter case.

In this section, we focus solely on systems initially at rest, that is, with homogeneous

initial conditions. At time 𝑡 = 0, the harmonic excitation of the form 𝐹 sin(Ω𝑡 + 𝛽) is

activated, and the particle begins to move. Throughout this chapter, the primary focus

is on analyzing the main resonance.

First, in Sect. 4.1, we review the undamped and linearly damped driven harmonic

oscillator. In Sect. 4.2, a general analytic scheme is presented to analyze systems

with weak nonlinearities, and an example is given for the level crossing problem

with quadratic-quartic nonlinearity. In Sect. 4.3, a Melnikov analysis proves that in

sufficiently smooth, undamped systems, oscillations approaching the potential well

boundary become chaotic, and it provides an explanation of why parts of the critical

force boundary become so uneven in such systems. In Sect. 4.4, an experimental

validation of the different escape mechanisms is presented.

4.1 Linear oscillators

4.1.1 Harmonically driven, undamped harmonic oscillator
We investigate the level-crossing problem of the following system

¥𝑥 + 𝑥 = 𝐹 sin(Ω𝑡 + 𝛽), (4.1)

𝑥(0) = 0, (4.2)

¤𝑥(0) = 0. (4.3)

The motion fulfilling Eq. (4.1) is given by

𝑥(𝑡) = 𝑅 sin(𝑡 + 𝛼) + 𝑃 sin(Ω𝑡 + 𝛽), (4.4)
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4 Critical forcing of escape

Figure 4.1: Excitation and initial phase dependent critical forcing amplitude of the undamped, harmonic

oscillator

with

𝑃 =
𝐹

1 −Ω2

, (4.5)

𝑅 = |𝑃 |
√

1 + (𝜔2 − 1) cos
2 𝛽, (4.6)

𝛼 = atan2(−𝑃 sin 𝛽,−𝑃Ω cos 𝛽) =


arctan

(
tan 𝛽
Ω

)
for Ω < 1,

arctan

(
tan 𝛽
Ω

)
+ 𝜋 for Ω > 1.

(4.7)

The critical level is at 𝑥crit = ±1, thus the force necessary to reach it is given by

𝐹crit =
|1 −Ω2 |

max𝑡∈[0,∞)
√

1 + (Ω2 − 1) cos
2 𝛽 sin(𝑡 + 𝛼) + sin(Ω𝑡 + 𝛽)

, (4.8)

where the optimization problem has to be solved to obtain the exact value, which is a

challenging task for general Ω. However, for Ω ∈ I, similar arguments as in Sect. 2.4

guarantee that the supremum of the function in the denominator is given by

sup

𝑡∈[0,∞)

√
1 + (Ω2 − 1) cos

2 𝛽 sin(𝑡 + 𝛼) + sin(Ω𝑡 + 𝛽) =
√

1 + (Ω2 − 1) cos
2 𝛽 + 1,

(4.9)
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4.1 Linear oscillators

yielding the critical force amplitude

𝐹crit(Ω, 𝛽) =
|1 −Ω2 |√

1 + (Ω2 − 1) cos
2 𝛽 + 1

, (4.10)

which formula was also found by Karmi in [89]. Eq. (4.10) is visualized in Fig. 4.1.

4.1.2 Damped-driven harmonic oscillator
An extension of the previous model is achieved by adding linear damping to the system.

The equation of motion becomes

¥𝑥 + 2𝐷 ¤𝑥 + 𝑥 = 𝐹 sin(Ω𝑡 + 𝛽), (4.11)

𝑥(0) = 0, (4.12)

¤𝑥(0) = 0. (4.13)

The solution is

𝑥(𝑡) = 𝑅𝑒−𝐷𝑡 sin(Ω0𝑡 + 𝛼) + 𝑃 sin(Ω𝑡 + 𝛽 + 𝛾), (4.14)

with

Ω0 =
√

1 − 𝐷2 , (4.15)

𝜀 = Ω −Ω0 , (4.16)

𝑃 =
𝐹√

(1 −Ω2)2 + 4𝐷2Ω2

, (4.17)

𝛾 = atan2(−2𝐷Ω, 1 −Ω2) =
{

arctan
2𝐷Ω

Ω2−1

for Ω < 1,

arctan
2𝐷Ω

Ω2−1

+ 𝜋 for Ω > 1,
(4.18)

𝑅 = 𝑃𝐾, (4.19)

𝐾 =

√
1 + (Ω2 − 1) cos

2(𝛽 + 𝛾) + 𝐷Ω sin(2𝛽 + 2𝛾)
1 − 𝐷2

, (4.20)

𝛼 = atan2(−Ω0 sin(𝛽 + 𝛾),−𝐷 sin(𝛽 + 𝛾) −Ω cos(𝛽 + 𝛾)). (4.21)

The critical level is at 𝑥crit = ±1, thus the critical force is defined by

𝐹crit =

√
(1 −Ω2)2 + 4𝐷2Ω2

max𝑡∈[0,∞)] 𝐾𝑒−𝐷𝑡 sin(Ω0𝑡 + 𝛼) + sin(Ω𝑡 + 𝛽 + 𝛾)
. (4.22)
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4 Critical forcing of escape

(a) 𝛽 = 0 (b) 𝛽 = 𝜋
2

Figure 4.2: Frequency-dependent critical forcing amplitude for various damping and initial phase values. The

solid lines represent the analytic estimates, while the markers represent the critical force values obtained from

the direct numerical simulations of Eq. (4.11)

Eq. (4.22) contains an optimization problem that is impossible to solve analytically. We

must make some assumptions and simplify the equations to gain further analytic insight

into the process. In the following, we assume that the frequency shift 𝜀 is small. In this

case, the solution is a beat-like motion (cf. Fig. 3.14). We focus on the envelope of the

solution, which we can estimate using the total energy. After neglecting the terms of

𝒪(𝜀), we have the squared amplitude

𝐴2(𝑡) = 2𝐸 = 𝑃2

(
𝐾2𝑒−2𝐷𝑡 + 1 + 2𝐾𝑒−2𝐷𝑡

cos(𝜀𝑡 − 𝛼 + 𝛽 + 𝛾)
)
. (4.23)

The criterion of level crossing becomes 𝐴2

crit
= 1. Due to homogeneous initial conditions

𝐴2(0) = 0. For 𝑡 → ∞ we have 𝐴2(𝑡 → ∞) = 𝑃2
. The cosine term causes oscillations

such that 𝐴2(𝑡) has infinitely many local maxima. However, the global maximum is the

first local maximum, closest to time 0. We cannot find its location exactly, but we can

approximate it by replacing the cosine term with 1. Thus, we have

𝐴2

max
= 𝑃2

(
𝐾𝑒−𝐷𝑡max + 1

)
2

, (4.24)

𝑡max = mod

(
𝛼 − 𝛽 − 𝛾

𝜀
,
2𝜋

|𝜀|

)
. (4.25)
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4.1 Linear oscillators

(a) 𝛽 = 0 (b) 𝛽 = 𝜋
2

Figure 4.3: Frequency-dependent critical forcing amplitude for various damping and initial phase values with

(Ω −Ω0) ∉ 𝒪(𝜀) and nonsmall damping values. The solid lines represent the analytic estimates, while the

markers represent the critical force values obtained from the direct numerical simulations of Eq. (4.11)

The estimate of the critical force is given as

𝐹crit =

√
(1 −Ω2)2 + 4𝐷2Ω2

𝐾𝑒−𝐷𝑡max + 1

(4.26)

Fig. 4.2 shows the comparison of Eq. (4.26) to direct numerical simulations of Eq. (4.11)

for various initial phase and damping values. The analytic estimate agrees well with

the numerically obtained results. We can observe that additional damping shifts the

minimum of the critical force upwards and makes its sharp minimum smooth.

We can also observe that the effect of the initial phase vanishes around Ω = 1, but it is

not negligible for greater and lower values of Ω.

In Fig. 4.3, the analytic estimate is compared to numerical simulations where the assump-

tion of small frequency deviation and small damping is no longer met. Surprisingly, Eq.

(4.26) still works well for the right-hand side of the curve. However, on the left-hand

side, an interesting phenomenon around Ω = 1/3 can be observed in the case 𝛽 = 𝜋/2,

resulting in a bulk on the critical force curve. In the case of 𝐷 = 0, we can observe

interesting patterns for both investigated values of 𝛽. The excitation frequency values

used for the numerical simulations are rational numbers. Sometimes they are the ratio of

small integers (e.g., 0.2, 0.4, 2), which results in significantly higher critical force values

than they would for any irrational number from their infinitesimal vicinity. To describe

these values, the methods presented in Sect. 2.4 could yield more exact estimates.
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4 Critical forcing of escape

Furthermore, we can observe that for large frequency deviations, the role of the initial

phase becomes significant.

4.2 Critical forcing of harmonically driven
conservative systems with small nonlinearity

In the previous sections, we have seen the influence of excitation frequency on the critical

force amplitude necessary to drive the particle to a critical level.

Interest may arise in analyzing the level-crossing behavior of nonlinear systems when

the excitation frequency approximates the natural frequency set by the potential well.

The following chapter is based on [221, 68].

We assume a weakly nonlinear system of the form

¥𝑥 + 𝑥 + 𝜀𝑁(𝑥)︸      ︷︷      ︸
=:𝑈′

0
(𝑥)

= 𝜀 𝐹 sin(Ω𝜏 + 𝛽)︸          ︷︷          ︸
=:𝐹(𝜏)

, (4.27)

where Ω−1 ∈ 𝒪(𝜀) and𝑁(𝑥) is an odd function. Without loss of generality, the potential

energy at the bottom of the potential well𝑈0(0) = 0 can be chosen; thus,

𝑈0(𝑥) =
1

2

𝑥2 + 𝜀

∫ 𝑥

0

𝑁(𝑥̃)d𝑥̃︸         ︷︷         ︸
=:𝑈𝑁 (𝑥)

. (4.28)

The critical energy level in which we are interested, 𝐸crit, can be set to 1/2, corresponding

to an amplitude close to one.

𝐴crit =
(
𝑈′

0

)−1

(
𝐸crit =

1

2

)
. (4.29)

The system in Eq. (4.27) is close to a conservative one. The unperturbed form of this

equation allows for the transition to variables that represent the total energy and phase

of the system.

𝐸 =
1

2

¤𝑥2 +𝑈0(𝑥), (4.30)

𝜃 =

∫ 𝑥

0

d𝛾

±
√

2𝐸 − 2𝑈0(𝛾)
− 𝜏. (4.31)

The selection of the sign in the preceding equation depends on the sign of ¤𝑥.
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4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

The differential equations governing the new variables in the perturbed framework

evolve slowly:

¤𝐸 = ±𝜀
√

2𝐸 − 2𝑈0(𝑥)𝐹(𝜏), (4.32)

¤𝜃 = −𝜀𝐹(𝜏)
∫ 𝑥

0

d𝛾

2𝐸 − 2𝑈0(𝛾)
. (4.33)

Averaging of these equations over a period of the excitation is possible. The correspond-

ing first-order approximate equations can be expressed as:

¤𝐸 = ±𝜀
〈√

2𝐸 − 2𝑈0𝐹(𝜏)
〉
, (4.34)

¤𝜃 = −𝜀
〈
𝐹(𝜏)

∫ 𝑥

0

d𝛾

2𝐸 − 2𝑈0(𝛾)

〉
, (4.35)

with ⟨·⟩ indicating averaging over explicit time. However, to utilize these equations,

𝑈0(𝑥) needs explicit representation in terms of the new variables (𝐸, 𝜃). Typically, this

cannot be achieved directly, so an approximate heuristic method is used for analytic

predictions.

Assume that the solution to Eq. (4.27) may be approximated by nearly harmonic

oscillations:

𝑥 = 𝐴(𝑡) sin(Ω𝜏 + 𝛽 +Ψ(𝑡)), (4.36)

¤𝑥 = 𝑣(𝐴(𝑡)) cos(Ω𝜏 + 𝛽 +Ψ(𝑡)). (4.37)

Here, 𝐴(𝑡) represents the amplitude of oscillation and Ψ(𝑡) the phase shift. These

variables are linked to the system’s energy, which changes gradually according to Eqs.

(4.32)-(4.33). Utilizing the transformation (4.30)-(4.31), we can equate the total energy

with the potential energy at maximum displacement, i.e., at 𝑥 = 𝐴:

𝐸 = 𝑈0(𝐴). (4.38)

Thus, the time derivative of the energy can be estimated to the first order by the derivative

of the amplitude:

¤𝐸 = 𝑈′
0
(𝐴) ¤𝐴. (4.39)

However, the maximum velocity occurs as the system reaches the energy minimum of

the potential. Therefore, the amplitude of the velocity can be estimated as:

𝑣(𝐴) =
√

2𝑈0(𝐴) =
√
𝐴2 + 2𝜀𝑈𝑁 (𝑥) ≈ 𝐴 + 𝜀

𝑈𝑁 (𝐴)
𝐴

. (4.40)
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4 Critical forcing of escape

Integrating Eqs. (4.39) and (4.40) into (4.34), we obtain the governing equation for the

averaged amplitude 𝜉 = ⟨𝐴⟩ as:

¤𝜉 = 𝜀

√
2𝑈0(𝜉)
𝑈′

0
(𝜉) ⟨𝐹(𝜏) cos(Ω𝜏 + 𝛽 +Ψ(𝑡))⟩ . (4.41)

For consistency with the transformations (4.36) and (4.37), we derive the equation for

the phase shift:

𝐴(Ω + ¤Ψ) = 𝐴 cos
2(Ω𝜏 + 𝛽 +Ψ(𝑡))

+𝑈′
0
(𝐴 sin(Ω𝜏 + 𝛽 +Ψ(𝑡))) sin(Ω𝜏 + 𝛽 +Ψ(𝑡))

− 𝜀𝐹(𝜏) sin(Ω𝜏 + 𝛽Ψ(𝑡)).
(4.42)

Introducing the small discrepancy between the excitation frequency and the system’s

eigenfrequency at the potential well’s bottom:

𝛿 = Ω − 1 = 𝒪(𝜀), (4.43)

Eq. (4.42) simplifies to:

𝐴 ¤Ψ = −𝛿𝐴 − 𝐴 sin
2(Ω𝜏 + 𝛽 +Ψ(𝑡))

+𝑈′
0
(𝐴 sin(Ω𝜏 + 𝛽 +Ψ(𝑡))) sin(Ω𝜏 + 𝛽Ψ(𝑡))

− 𝜀𝐹(𝜏) sin(Ω𝜏 + 𝛽 +Ψ(𝑡)).
(4.44)

Moreover, due to𝑈′
0
(𝑦)|𝑦→0 = 𝑦, combining the second and third terms of the right-hand

side is possible:

𝐴 ¤Ψ = −𝛿𝐴 + 𝜀𝑁(𝐴 sin(Ω𝜏 + 𝛽 +Ψ(𝑡))) sin(Ω𝜏 + 𝛽 +Ψ(𝑡))
− 𝜀𝐹(𝜏) sin(Ω𝜏 + 𝛽Ψ(𝑡)),

𝜀𝑁(𝑥) = 𝑈′
0
(𝑥) − 𝑥.

(4.45)

Division by 𝐴 yields

¤Ψ = −𝛿 + 1

𝐴
𝜀𝑁(𝐴 sin(Ω𝜏 + 𝛽 +Ψ(𝑡))) sin(Ω𝜏 + 𝛽 +Ψ(𝑡))

− 1

𝐴
𝜀𝐹(𝜏) sin(Ω𝜏 + 𝛽 +Ψ(𝑡)).

(4.46)

Now, we can average Eq. (4.46). The second term on the right-hand side might be

difficult to evaluate. However, a simple meaning to this expression can be given: it is
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4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

the deviation of the amplitude-dependent angular eigenfrequency of the nonlinear free

oscillations from the linearized system’s eigenfrequency, one. We can define:

𝜔∗(𝐴) := 𝜔(𝐴) − 1, (4.47)

and write the averaged phase shift 𝜓 = ⟨Ψ⟩ as

¤𝜓 = −𝛿 + 𝜔∗(𝜉) − 𝜀
𝐴

⟨𝐹(𝜏) sin(Ω𝜏 + 𝛽 + 𝜓(𝑡))⟩ . (4.48)

According to [103], the oscillation period of a particle of mass 𝑚 with a specific total

energy 𝐸 in a potential well𝑈(𝑥) in the absence of excitation, representing a conservative

system can be determined by the following.

𝑇(𝐸) =
√

2𝑚

∫ 𝑥2(𝐸)

𝑥1(𝐸)

d𝑥√
𝐸 −𝑈(𝑥)

. (4.49)

Here, 𝑥1 and 𝑥2 denote the positions corresponding to the maximal displacements in

the potential for the specified total energy 𝐸. Then,

𝜔(𝜉) = 2𝜋

𝑇(𝐸(𝜉)) . (4.50)

The term 𝜔∗(𝜉) describes how nonlinearity influences the oscillation frequency within

the potential well. With small nonlinearity, 𝜔∗(𝜉) ∈ 𝒪(𝜀) holds.

The effects of the averaged external excitation are quantified as follows:

⟨𝐹(𝜏) cos(Ω𝜏 + 𝛽 +Ψ(𝑡))⟩ = − 𝜀
2

𝐹 sin(𝜓), (4.51)

⟨𝐹(𝜏) sin(Ω𝜏 + 𝛽 +Ψ(𝑡))⟩ = 𝜀
2

𝐹 cos(𝜓). (4.52)

By incorporating (4.51) into Eqs. (4.41) and (4.48), we derive the final expressions for

the first-order approximations:

¤𝜉 = − 𝜀
2

√
2𝑈0(𝜉)
𝑈′

0
(𝜉) 𝐹 sin(𝜓), (4.53)

¤𝜓 = −𝛿 + 𝜔∗(𝜉) − 𝜀
2

𝐹

𝜉
cos(𝜓), (4.54)

with the initial conditions

𝜉(0) = 𝜉0 , 𝜓(0) = 𝜓0. (4.55)
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4 Critical forcing of escape

The initial values of 𝑥0 and ¤𝑥0 can be used to determine𝜓0 and 𝜉0. From Eqs. (4.36)-(4.37)

we have

𝑥0 = 𝜉0 sin(𝛽 + 𝜓0), (4.56)

𝑣0 = 𝑣(𝜉0) cos(𝛽 + 𝜓0). (4.57)

By Eq. (4.40), we can approximate 𝑣(𝜉) ≈ 𝜉 and obtain estimates for the initial values of

the ’slow’ variables as

𝜉0 =

√
𝑥2

0
+ 𝑣2

0
, (4.58)

𝜓0 = arctan

(
𝑥0

𝑣0

)
− 𝛽. (4.59)

Although the transformation is exact only under purely quadratic potential conditions,

it remains a close approximation for minor nonlinearities, and if necessary, it can be

improved with a perturbation method of the form

𝜉0 = 𝜉0,0 + 𝜀𝜉0,1 + . . . (4.60)

𝜓0 = 𝜓0,0 + 𝜀𝜓0,1 + . . . (4.61)

However, we do not go into detail about this calculation.

4.2.1 Solution by integrating factors
A solution to Eqs. (4.53)-(4.54) can be constructed using integrating factors. First, we

define:

𝑔(𝜉) :=
𝑣(𝜉)
𝑈′(𝜉) =

√
2𝑈(𝜉)
𝑈′(𝜉) ≈ 1 + 𝜀

(
𝑈𝑁 (𝜉)
𝜉2

− 𝑁(𝜉)
𝜉

)
. (4.62)

After dividing Eq. (4.54) by Eq. (4.53) and reordering the terms, the equation becomes:

𝛿 − 𝜔∗(𝜉) + 𝜀
𝐹

2𝜉
cos𝜓︸                      ︷︷                      ︸

=:𝑝(𝜉,𝜓)

− 𝜀
𝐹

2

sin𝜓𝑔(𝜉)︸          ︷︷          ︸
=:𝑞(𝜉,𝜓)

d𝜓

d𝜉
= 0. (4.63)

An appropriate integrating factor 𝜇(𝜉) is defined as 𝜇(𝜉) := 𝑒
∫
𝑓 (𝜉)d𝜉

with:

𝑓 (𝜉) :=
1

𝑞

(
𝜕𝑝

𝜕𝜓
− 𝜕𝑞

𝜕𝜉

)
=

1

𝑔(𝜉)

(
1

𝜉
− 𝑔′(𝜉)

)
. (4.64)
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4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

Thus,

𝜇(𝜉) = 𝑒

∫
1

𝑔(𝜉)𝜉 d𝜉

𝑔(𝜉) . (4.65)

Multiplying (4.63) by 𝜇(𝜉), we determine the partial derivatives for the first integral

𝐶(𝜉,𝜓):

𝜕𝐶(𝜉,𝜓)
𝜕𝜉

=

(
𝛿 − 𝜔∗(𝜉) + 𝜀

𝐹

2𝜉
cos𝜓

)
𝜇(𝜉),

𝜕𝐶(𝜉,𝜓)
𝜕𝜓

= −𝜀𝐹
2

𝑔(𝜉)𝜇(𝜉) sin𝜓.

(4.66)

The first integral is then expressed as:

𝐶(𝜉,𝜓) = 𝜀
𝐹

2

𝑒

∫
1

𝑔(𝜉)𝜉 d𝜉
cos𝜓 +

∫
(𝛿 − 𝜔∗(𝜉)) 𝑒

∫
1

𝑔(𝜉)𝜉 d𝜉

𝑔(𝜉) d𝜉. (4.67)

Eq. (4.67) is a conservation law of the system. The value of 𝐶 remains constant along the

solution trajectories. For the critical energy level 𝐸crit = 1/2 the corresponding critical

amplitude 𝜉crit reached at the maximum of the critical trajectory can be calculated,

allowing the definition of 𝐶crit. The values of 𝜓 for which 𝜉 is maximal can be found

by dividing Eq. (4.53) by Eq. (4.54) and equating it to zero since 𝜉 being continuous

can have a maximum when its derivative vanishes, resulting in 𝜓crit = {0,𝜋} as possible

values where an extremum may occur. As we shall see later, it is essential at which value

of 𝜓, the maximum of 𝜉, is taken.

When the integrals are evaluated, their values are known up to an arbitrary constant.

This problem can be solved by fixing the scale, for example, setting 𝐶(0,𝜓) = 0. When

𝜉 = 0, the value 𝜓 is indifferent.

After inserting 𝜉crit and 𝜓crit into Eq. (4.67), the critical value 𝐶crit can be calculated and

compared to those obtained by 𝐶0(𝜉0 ,𝜓0).
In the following, an example with nonlinearity

𝑁(𝑥) = −𝑥3

(4.68)

shall be given to demonstrate the application of the method described above.
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4 Critical forcing of escape

4.2.2 Example with quadratic-quartic potential
The equation of motion is given as

¥𝑥 + 𝑥 − 𝜀𝑥3 = 𝜀𝐹 sin(Ω𝜏 + 𝛽). (4.69)

Therefore, we have

𝑈0(𝑥) =
1

2

𝑥2 − 𝜀
𝑥4

4︸︷︷︸
=:𝑈𝑁 (𝑥)

(4.70)

and

𝑣(𝐴) =
√
𝐴2 + 𝜀

𝐴4

2

≈ 𝐴 + 𝜀
𝐴3

4

. (4.71)

The critical displacement is given by

𝑈0(𝜉crit) =
1

2

(4.72)

𝜉crit,1,2 = ±

√
1 −

√
1 − 2𝜀
𝜀

= ±
(
1 + 1

4

𝜀 + 𝒪(𝜀2)
)

(4.73)

The deviation of the eigenfrequency from one, caused by the nonlinearity, is given as

𝜔∗(𝜉) = − 𝜀
𝐴

〈
𝐴3

sin
3 (Ω𝜏 + 𝛽 +Ψ(𝑡)) sin(Ω𝜏 + 𝛽 +Ψ(𝑡))

〉
+ 𝒪(𝜀2) (4.74)

= −𝜀3

8

𝜉2 + 𝒪(𝜀2). (4.75)

Thus, the first-order differential equations of the slow variables are

¤𝜉 = − 𝜀
2

𝐴 + 𝜀𝐴
3

4

𝐴 − 𝜀𝐴3

𝐹 sin(𝜓) = − 𝜀
2

𝐹 sin(𝜓) + 𝒪(𝜀2) (4.76)

¤𝜓 = −𝛿 − 𝜀
3

8

𝜉2 − 𝜀
2

𝐹

𝜉
cos(𝜓), (4.77)

Division of Eq. (4.76) by Eq. (4.77) eliminates the time and yields

d𝜉
d𝜓

=
𝐹 sin(𝜓)

2Δ + 3

4
𝜉2 + 𝐹

𝜉 cos(𝜓)
, (4.78)
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4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

with Δ := 𝛿/𝜀. We can reorganize Eq. (4.78) as(
2Δ + 3

4

𝜉2 + 𝐹

𝜉
cos(𝜓)

)
d𝜉 − 𝐹 sin(𝜓)d𝜓 = 0 (4.79)

Eq. (4.79) is not exact since

𝜕𝑝

𝜕𝜓
−

𝜕𝑞

𝜕𝜉
≠ 0, (4.80)

however, by Eq. (4.65) an appropriate Euler multiplicator is given leading to(
2Δ𝜉 + 3

4

𝜉3 + 𝐹 cos(𝜓)
)

d𝜉 − 𝜉𝐹 sin(𝜓)d𝜓 = 0. (4.81)

The first integral becomes

𝐶(𝜓, 𝜉) = 𝜉𝐹 cos(𝜓) + Δ𝜉2 + 3

16

𝜉4. (4.82)

Stationary solutions of Eqs. (4.76)-(4.77) can be found by setting the left-hand side equal

to zero and solving the resulting nonlinear algebraic equations. This yields

𝜓̃1 = 0, (4.83)

𝜓̃2 = 𝜋, (4.84)

for the stationary value of the phase shift. Then, from Eq. (4.77), we have

𝑝(𝜉) :=
3

4

𝜉3 + 2Δ𝜉 ± 𝐹 = 0, (4.85)

with three solutions, respectively

𝜉̃
1/2,1 =

(
2

1

3

(√
128Δ3 + 81𝐹2 ∓ 9𝐹

) 2

3 − 4 · 2

2

3 Δ

)
3

(√
128Δ3 + 81𝐹2 ∓ 9𝐹

) 1

3

, (4.86)

𝜉̃
1/2,2 =

4 · 2

2

3 (1 +
√

3𝚥)Δ + 2

1

3 𝚥(
√

3 + 𝚥)
(√

128Δ3 + 81𝐹2 ∓ 9𝐹
) 2

3

6

(√
128Δ3 + 81𝐹2 ∓ 9𝐹

) 1

3

, (4.87)
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𝜉̃
1/2,3 =

4 · 2

2

3 (1 −
√

3𝚥)Δ + 2

1

3 (−1 −
√

3𝚥)
(√

128Δ3 + 81𝐹2 ∓ 9𝐹
) 2

3

6

(√
128Δ3 + 81𝐹2 ∓ 9𝐹

) 1

3

. (4.88)

Whether there are one real and two imaginary roots or three real roots depends on the

sign of the discriminant of the polynomial in Eq. (4.85), which independently of the

signs of 𝐹 is given by

Discr(𝑝) = −24Δ3 − 243

16

𝐹2. (4.89)

Three real roots exist if the discriminant is positive. It is the case for

𝐹 < −8

√
2

9

|Δ|3/2

sign(Δ). (4.90)

Eq. (4.90) implies that three real roots are possible only for Δ < 0. Furthermore, for

𝜓̃1 = 0, one of the roots, while for 𝜓̃2 = 𝜋, two are always negative and thus unphysical.

Furthermore, for 𝜓̃1 = 0, there is always a negative root, while for 𝜓̃2 = 𝜋, there is always

a positive root.

In summary, if the discriminant in Eq. (4.90) is positive, there are two stationary

solutions 𝜉̃1,1 (saddle) and 𝜉̃1,3 (center) in 𝜓̃1 = 0 and one stationary solution 𝜉̃2,1 (center)

in 𝜓̃2 = 𝜋.

If the discriminant is negative, there is only one stationary solution in (𝜋, 𝜉̃2,1).
The critical forcing amplitude is calculated for homogeneous initial conditions, which

case does not distinguish itself by any qualitative difference but by its technical relevance.

The resulting trajectory is called the limiting phase trajectory (LPT, [132, 133]).

As we shall see, at the critical force value, three different mechanisms can be distin-

guished based on the phase shift’s value 𝜓 at the moment of escape:

• the Type 1 Maximum Mechanism if escape occurs at 𝜓 = 𝜋,

• the Type 2 Maximum Mechanism if escape occurs at 𝜓 = 0,

• the Saddle Mechanism for values 𝜓 ∈ (0,𝜋).

In [68], describing the same example as above, the Type 1 Maximum Mechanism and the

Saddle Mechanism are described correctly, although the Type 2 Maximum Mechanism is

not mentioned. Later, in [57], the Type 2 Maximum Mechanism was correctly identified

for another dynamical system.

The Type 1 and 2 Maximum Mechanisms are explained simply: the smallest 𝐹 value is

sought, such that the largest value of 𝜉 in Eq. (4.82) reaches 𝜉crit, the critical level.

100



4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

Since at the maximum of the amplitude, 𝜉 is continuous in 𝜓, for the critical forcing

value, the curve defined by 𝐶(𝜓, 𝜉) is tangential to the line 𝜉 = 𝜉crit. It is only possible at

𝜓 = 𝜋 (MM Type 1) or at 𝜓 = 0 (MM Type 2), yielding the two equations for the critical

force

𝐶(𝜋, 𝜉crit) = 𝜉crit𝐹crit,MM1 cos(𝜋) + Δ𝜉2

crit
+ 3

16

𝜉4

crit
= 0, (4.91)

𝐹crit,MM1(Δ) = Δ𝜉crit +
3

16

𝜉3

crit
, (4.92)

and

𝐶(0, 𝜉crit) = 𝜉crit𝐹crit,MM2 cos(0) + Δ𝜉2

crit
+ 3

16

𝜉4

crit
= 0, (4.93)

𝐹crit,MM2(Δ) = −Δ𝜉crit −
3

16

𝜉3

crit
. (4.94)

The two curves meet at 𝐹 = 0 and ΔMM := − 3

16
𝜉2

crit
. Although both Eqs. (4.92) and (4.94)

are defined for all real Δ values, we expect the force to be positive, thus

𝐹crit,MM(Δ) =
{
Δ𝜉crit + 3

16
𝜉3

crit
for Δ < ΔMM

−Δ𝜉crit − 3

16
𝜉3

crit
for ΔMM < Δ.

(4.95)

However, Eq. (4.95) does not describe the entire critical forcing amplitude curve correctly

since the planar curve defined by the implicit function 𝐶(𝜓, 𝜉) = 0 is not connected

for some Δ values. If 𝐶
saddle

< 0, the level set 𝐶(𝜓, 𝜉) below the saddle and above the

saddle is disjoint. Along the critical values defined by Eq. (4.95), the trajectories are still

tangential, but the LPT corresponds only to the level set below the saddle. The saddle

energy must fulfill 𝐶
saddle

≥ 0 for an escape. In the critical case, equality holds.

The location of the saddle is defined by Eq. (4.85). Thus, the following two nonlinear

equations have to be fulfilled

3

4

𝜉3

saddle
+ 2Δ𝜉

saddle
+ 𝐹crit,SM = 0 (4.96)

3

16

𝜉4

saddle
+ Δ𝜉2

saddle
+ 𝜉

saddle
𝐹crit,SM = 0. (4.97)

Eqs. (4.96)-(4.97) have the solution

𝜉
saddle

(Δ) = 4

3

√
−Δ, (4.98)

𝐹crit,SM(Δ) = 8

9

(−Δ)3/2

for Δ < 0. (4.99)
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4 Critical forcing of escape

However, this criterion is only valid if the location of the saddle is below the value of the

critical level, i.e., 𝜉
saddle

≤ 𝜉crit, yielding a further constraint on the values of Δ. Equality

holds if

𝜉
saddle

=
4

3

√
−ΔSM = 𝜉crit , (4.100)

ΔSM,2 = − 9

16

𝜉2

crit
. (4.101)

At this point, 𝐹crit,SM(Δ) is tangential to 𝐹crit,MM2(Δ).
On the other hand, the fulfillment of Eqs. (4.96)-(4.97) alone is not sufficient for escape

since the trajectory, after passing the saddle, must also reach the critical level. The

corresponding critical force is defined by the Type 1 Maximum Mechanism in Eq. (4.92).

Both criteria are fulfilled at the same time for 𝐹crit,SM(ΔSM,1) = 𝐹crit,MM1(ΔSM,1), i.e,

8

9

(−ΔSM,1)3/2 = ΔSM,1𝜉crit +
3

16

𝜉3

crit
, (4.102)

yielding

ΔSM,1 = − 9

64

𝜉2

crit
, (4.103)

𝐹SM,1 =
3

64

𝜉3

crit
, (4.104)

which is the location of the sharp minimum. For ΔSM,1 < Δ, the criterion for the saddle

mechanism becomes stronger. Thus, the critical force curve is defined as follows.

𝐹crit(Δ) =


Δ𝜉crit + 3

16
𝜉3

crit
for Δ < ΔSM,2 ,

8

9
(−Δ)3/2

for ΔSM,2 ≤ Δ ≤ ΔSM,1 ,

−Δ𝜉crit − 3

16
𝜉3

crit
for ΔSM,1 < Δ.

(4.105)

In the analytic approximation, the initial excitation phase does not influence the critical

forcing curve in any way. However, in the original problem setting, as we shall see in

Fig. 4.9, the initial excitation phase does influence the V-curve.

Eq. (4.105) is represented graphically in Fig. 4.4 for 𝜀 = 0.05.

The Type I and II Maximum Mechanisms and the Saddle Mechanisms are depicted in

Figs. 4.5)-(4.7.

In Fig. 4.8, time series data of direct numerical simulations is shown representing the

three distinct escape mechanisms.
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4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

Figure 4.4: Critical forcing amplitude depicted against the discrepancy between excitation frequency and

the linearized natural frequency of the potential well for homogeneous initial conditions. Three concurring

escape mechanisms can be observed

In Fig. 4.9, the analytical, critical force curve is shown for various values of 𝜀. 𝜀 = 0.5

corresponds to escape from a quadratic-quartic well without truncation, while 𝜀 values

below 0.5 correspond to truncated potentials/level crossing.

For small values of 𝜀, the analytical estimate is in excellent agreement with the numerical

simulations, and the initial phase of the excitation is, in fact, insignificant. As the

nonlinearity becomes more important, the deviation between simulation and analytical

results for excitation frequencies further away from the V-curve’s minimum gains

significance (𝜀 = 0.05 − 0.2). The analytical and numerical results deviate everywhere

for the fully nonlinear case with 𝜀 = 0.5. Not even the location of the sharp minimum is

approximated well. It is also important to note that with strong nonlinearity, as we shall

see in Sect. 4.3, chaos emerges, making the right-hand side of the V-curve very uneven

(cf. Fig. 4.10).

4.2.3 Conclusions and scope for future research
This section has revised the 1:1 resonance analysis of the level-crossing problem of

undamped harmonically driven one-degree-of-freedom systems with small nonlinearity.

The results shown here are based on [68] and [221], with an important correction made to

the above articles by identifying the omitted Type 2 Maximum Mechanism, responsible

for the far left side of the V-shaped critical forcing curve. This mechanism was correctly

identified in [57] for a purely quartic potential, and it is indeed a universal mechanism
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(a) Cartesian plot
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(b) Polar plot

Figure 4.5: Type 2 Maximum Mechanism with critical forcing for Δ = −0.8 and 𝜀 = 0.05. The level sets of

𝐶(𝜓, 𝜉) are represented in black, the LPT is shown in green and the critical level is shown in red, the saddle

level set is shown in blue
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Figure 4.6: Saddle Mechanism with critical forcing for Δ = −0.5 and 𝜀 = 0.05. The level sets of 𝐶(𝜓, 𝜉) are

represented in black, the LPT is shown in green, and the critical level is shown in red
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(a) Cartesian plot
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Figure 4.7: Type 1 Maximum Mechanism with critical forcing for Δ = 0 and 𝜀 = 0.05. The level sets of 𝐶(𝜓, 𝜉)
are represented in black, the LPT in green, and the critical level in red. The saddle does not exist

in any escape problem, also to be found even in the linear case, in which it gives the

whole left-hand side of the V-curve.

The approach applied in this chapter is valid for small nonlinearities; it is convenient

due to the polynomial expressions arising in the calculations; however, for large

nonlinearities, the results deviate significantly from the simulation results. In [57,

67, 68], action-angle variables offer more accurate results for large nonlinearities using

elliptic functions.

As we have observed, there is always a steady-state solution. Additional fixed points

arise for some excitation frequency ranges, such as an unstable saddle point and a

stable (but not asymptotically stable) center point, which is well known from previous

studies on the Duffing oscillator focusing on steady-state solutions. With a softening

characteristic, the backbone curve is tilted to the left, which is why only one steady-state

solution exists for Δ > 0. Since the system is not damped, transients never decay, but

periodic patterns can be observed in the solution’s envelope around the amplitude of

the stable fixed points.

Only one saddle can exist with the simple nonlinearity 𝑁(𝑥) = −𝑥3
. However, it is

possible to construct a more complicated restoring force function (including further

polynomial terms) such that further fixed points arise, giving rise to more complex

dynamics with additional escape mechanisms.

Damping further complicates the picture since the first integral, given in Eq. (4.82), does

not exist (or, at least until now, has not been found); therefore, the simple escape criteria

105



4 Critical forcing of escape

(a) Type 2 Maximum Mechanism with Δ = −1 and 𝐹 = 0.8

(b) Saddle Mechanism with Δ = −0.4 and 𝐹 = 0.223

(c) Type 1 Maximum Mechanism with Δ = 0 and 𝐹 = 0.19

Figure 4.8: Simulation time series data showing the three distinct escape mechanisms for 𝜀 = 0.05 and

homogeneous initial conditions
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4.2 Critical forcing of harmonically driven conservative systems with small nonlinearity

(a) 𝜀 = 0.01 (b) 𝜀 = 0.05

(c) 𝜀 = 0.2 (d) 𝜀 = 0.5

Figure 4.9: Analytically determined critical force amplitude compared to numerical simulation data for initial

excitation phase 𝛽 = 0 and 𝛽 = 𝜋/2, respectively

presented in this chapter cannot be exploited. However, it is likely that the ’fast’ and

’slow’ as well as the Type 1 and Type 2 Maximum and Saddle Mechanisms all play a role

in such a scenario.

107



4 Critical forcing of escape

4.3 Melnikov analysis of an undamped particle’s
escape from an arbitrary one-dimensional
potential well under harmonic excitation

In the following section, the Melnikov analysis of the escape problem of an undamped

particle from an arbitrary, one-dimensional potential well under weak harmonic excita-

tion is performed. The analysis shows that escape through the maximum mechanism

is triggered by chaotic motion. The topic was investigated almost 40 years ago by

[197] for the canonical cubic oscillator with small linear damping. Through Melnikov

analysis, Thompson et al. showed that chaotic phenomena occur before escape. In [175],

Sanjuan used Melnikov analysis to investigate escape in a quadratic-cubic potential in

the presence of nonlinear damping.

Such chaotic phenomena seem universal in escape problems, indifferent to the potential

shape. In the following analysis, we assume twice continuously differentiable potential

functions and show through Melnikov analysis that chaos is indeed present in all

sufficiently smooth undamped one-dimensional escape problems where weak harmonic

excitation is considered.

The system equation is given by

¥𝑥 +𝑉′(𝑥) = 𝜀𝐹 sinΩ𝑡. (4.106)

To meaningfully consider escape, the potential 𝑉(𝑥) must fulfill some other properties

other than the two-fold continuous differentiability. It has to have at least a (local)

minimum and a (local) maximum. If a local minimum is adjacent to two local maxima

of the same potential energy, they are connected by two (symmetric) heteroclinic orbits

in the phase space. However, if there is only one adjacent local maximum, or two, but

with different potential energy, the lower one is connected to itself with a homoclinic

orbit in the phase space. Thus, the safe basin of the unperturbed system is bounded by

the separatrix.

Our purpose is to show that the perturbed system becomes chaotic in the vicinity of the

separatrix. Let us focus on the homoclinic case. We rewrite Eq. (4.106) as a system of

first-order differential equations

¤𝑥 = 𝑦︸︷︷︸
=: 𝑓1(𝑥,𝑦)

(4.107)

¤𝑦 =−𝑉′(𝑥)︸ ︷︷ ︸
=: 𝑓2(𝑥,𝑦)

+ 𝜀𝐹 sinΩ𝑡︸     ︷︷     ︸
=:𝑔2(𝑥,𝑦,𝑡)

. (4.108)
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under harmonic excitation

In addition, we define 𝑔1(𝑥, 𝑦, 𝑡) := 0 for later use (cf. Eq. (4.115)). Let us denote

the unstable hyperbolic fixed point (local maximum) of the unperturbed system by

x𝐻 = (𝑥𝐻 , 0) and define 𝑥𝑇 to be the other turning point of the particle, that is, 𝑉(𝑥𝑇) =
𝑉(𝑥𝐻) := 𝐸𝐻 .

The equation of the separatrix is given by the level set of the total energy at the hyperbolic

fixed point, i.e.,

𝑉(𝑥𝑠𝑥) +
𝑦2

𝑠𝑥

2

= 𝐸𝐻 . (4.109)

Thus, we have

𝑦𝑠𝑥(𝑥) = ±
√

2(𝐸𝐻 −𝑉(𝑥)). (4.110)

Insertion of Eq. (4.110) in Eq. (4.107) yields

d𝑥

d𝑡
= ±

√
2(𝐸𝐻 −𝑉(𝑥)). (4.111)

Applying zero velocity initial conditions (𝑥(0) = 𝑥𝑇 , ¤𝑥(0) = 0) and separating the

variables results in

𝐹(𝑥) :=

∫ 𝑥

𝑥𝑇

d𝑥̃√
2(𝐸𝐻 −𝑉(𝑥̃))

= ±𝑡. (4.112)

Note, that in the region bounded by the separatrix 𝑉(𝑥) < 𝐸𝐻 , thus, the term under the

square root is positive and 𝑡 is monotonous in 𝑥, hence,

𝑥𝑠𝑥(𝑡) = 𝐹−1(𝑡), (4.113)

𝑦𝑠𝑥(𝑡) = ¤𝑥𝑠𝑥(𝑡) = ±
√

2(𝐸𝐻 −𝑉(𝐹−1(𝑡))). (4.114)

The Melnikov function is given by

𝑀(𝑡0) =
∫ ∞

−∞
f((q0(𝑡 − 𝑡0))) ∧ g(q0(𝑡 − 𝑡0), 𝑡)d𝑡 , (4.115)

with f ∧ g = 𝑓1𝑔2 − 𝑓2𝑔1 and

f(x) =
(
𝑓1(𝑥, 𝑦)
𝑓2(𝑥, 𝑦)

)
, g(x, 𝑡) =

(
𝑔1(𝑥, 𝑦, 𝑡)
𝑔2(𝑥, 𝑦, 𝑡)

)
, q0 =

(
𝑥𝑠𝑥(𝑡)
𝑦𝑠𝑥(𝑡)

)
, (4.116)
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4 Critical forcing of escape

which, in our case, simplifies to

f(x) =
(

𝑦

−𝑉′(𝑥)

)
, g(x, 𝑡) =

(
0

𝜀𝐹 sinΩ𝑡

)
, (4.117)

hence,

𝑀(𝑡0) = 𝜀𝐹

∫ ∞

−∞
𝑦𝑠𝑥(𝑡 − 𝑡0) sinΩ𝑡d𝑡 (4.118)

= 𝜀𝐹

∫ ∞

−∞
𝑦𝑠𝑥(𝑡) sinΩ(𝑡 + 𝑡0)d𝑡 (4.119)

= 𝜀𝐹 cosΩ𝑡0

∫ ∞

−∞
𝑦𝑠𝑥(𝑡) sinΩ𝑡d𝑡︸                   ︷︷                   ︸

=:𝐼

+𝜀𝐹 sinΩ𝑡0

∫ ∞

−∞
𝑦𝑠𝑥(𝑡) cosΩ𝑡d𝑡︸                   ︷︷                   ︸

=0

, (4.120)

where the last term is always zero, since 𝑦𝑠𝑥(𝑡) is odd in 𝑡. Thus, the negative and

positive sides of the integral (Cauchy principal value) are canceled out. Integral 𝐼 exists

since ∫ ∞

−∞
𝑦𝑠𝑥(𝑡) sinΩ𝑡d𝑡 ≤

∫ ∞

−∞
|𝑦𝑠𝑥(𝑡) sinΩ𝑡 |d𝑡 (4.121)

≤
∫ ∞

−∞
|𝑦𝑠𝑥(𝑡)|d𝑡 = 2

∫ ∞

0

|𝑦𝑠𝑥(𝑡)|d𝑡 = 2|𝑥𝐻 − 𝑥𝑇 |. (4.122)

Hence, the Melnikov function has infinitely many zeros in 𝑡0, implying that the stable

and unstable manifolds intersect, which leads to chaotic behavior due to its well-known

relation to the Smale horseshoe map.

Similar arguments can be applied in the case of a homoclinic separatrix.

This result is important because it shows that chaotic phenomena occur prior to the

escape of a harmonically excited, undamped particle from a wide class of potential wells.

In [96], chaos appears in the maximum mechanism when the forcing value falls in a

critical region, sufficient to induce oscillations reaching the vicinity of the unperturbed

system’s separatrix. Escape through the saddle mechanism does not show chaotic

behavior since, in this case, the critical energy level is far below the separatrix’s. In

this case, a critical forcing value exists, above which a sudden transient jump from the

vicinity of the small-amplitude stationary solution takes place, and the particle escapes.

Fig. 4.10 illustrates this well.
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4.4 Experimental validation of escape mechanisms

Figure 4.10: Escape time from the potential 𝑉(𝑥) = 𝑥2/2 − 𝑥4/4 of an undamped particle depicted against the

excitation frequency and the forcing amplitude using homogeneous initial conditions

4.4 Experimental validation of escape mechanisms
Through this dissertation, escape is analyzed analytically and numerically. In this

chapter, however, we focus on the experimental validation of the distinct escape

mechanisms described in Sect. 4.2, the Saddle, and the Type I and II Maximum

Mechanisms.

The experiment is carried out on the modified Duffing oscillator test rig of the Institute

of Engineering Mechanics at KIT (see Fig. 4.11).

The mechanical part of the experiment consists of a vertically placed shaft supported by

two air bearings. The pressure of the air bearings can be regulated between 0 and 6 bars.

When the air pressure is turned off, additional ball bearings support the shaft, but they

become ’deactivated’ once the air supply is on. This setup, although energy-intensive,

provides very low friction values.

A copper disk is mounted on the shaft for dual purposes. First, it provides an

additional moment of inertia. Second, it allows the creation of eddy currents when the

electromagnet around the plate is turned on, generating additional viscous damping.

With a direct current generator, it is also possible to precisely regulate the viscous

damping strength by setting the voltage value𝑈𝐷 .
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4 Critical forcing of escape

Figure 4.11: Experimental setup of a double-well oscillator created by the geometrical nonlinearities of coil

springs
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4.4 Experimental validation of escape mechanisms

Figure 4.12: Sketch of the experimental setup

Two coil springs attach the shaft to the test rig’s frame. Their placement is such that

the distance between their fixation point on the frame and the fixation points on the

shaft is less than the springs’ relaxed length, resulting in compressed springs when the

springs’ longitudinal axis passes through the shaft. Since the springs are placed facing

each other, the resulting restoring moment created by them is symmetrical. It has two

stable equilibria on both sides of the unstable, symmetrical equilibrium.

A schematic model is given in Fig. 4.13. The system has a rotatory degree of freedom

with dependent coordinate 𝜑. A disk comprising the total moment of inertia of the

rotatory system 𝐽 is attached to a spring of stiffness 𝑐. In the symmetrical state, the

spring length is 𝑑, greater than the spring’s relaxed length 𝑙0 = 𝑙(0). The spring is

fixed to the disk at a distance 𝑅 from the center point of the disk. Some dry friction

acts with coefficient 𝜇 in bearings and joints. Furthermore, variable viscous damping

with coefficient 𝑘 ∈ [𝑘min , 𝑘max] is also present. If the eddy current brake is deactivated,

the viscous damping coefficient takes the value 𝑘 = 𝑘min. In addition, an electric

motor provides the external momentum 𝑀(𝑡) to excite the system. The stator is an

electromagnet whose current can be controlled from a variable DC source. The rotor
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4 Critical forcing of escape

A - A

A A

Figure 4.13: Schematic representation of the underlying mechanical system

is supplied with an electric current from a function generator, the signal of which is

passed through a power amplifier to reach the necessary strength.

All parameter values and the function 𝑀(𝑡) are to be identified.

Using the notations of Fig. 4.11, the equation of motion is given by

𝐽 ¥𝜑 + 𝑘 ¤𝜑 + 𝜇 sign ¤𝜑 + 𝑐𝑅(𝑅 + 𝑑)
(
1 − 𝑙

0√
2𝑅2 + 𝑑2 + 2𝑅𝑑 − 2𝑅(𝑅 + 𝑑) cos 𝜑

)
sin 𝜑 = 𝑀(𝑡).

(4.123)

The equilibria of the system are at

𝜑1,2 = {0,𝜋, }, (4.124)

𝜑3,4 = ± arccos

(
2𝑅2 + 𝑑2 + 2𝑅𝑑 − 𝑙2

0

2𝑅(𝑅 + 𝑑)

)
. (4.125)

With the parameter values used in the experimental setup, 𝜑2 = 𝜋 cannot exist since the

spring does not permit such expansion. Also, it is evident that for 𝑑 < 𝑙0, the equilibrium

𝜑1 = 0 is unstable, and the equilibria 𝜑3,4 are stable.
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4.4 Experimental validation of escape mechanisms

Since Eq. (4.123) is quite complicated due to the square-root and trigonometric functions,

a double-well Duffing model was chosen to simplify the model without sacrificing

significant accuracy.

The simplified equation of motion is thus given by

¥𝜑(𝑡) + 𝑘

𝐽
¤𝜑(𝑡) + 𝜇

𝐽
sign ¤𝜑(𝑡)) + 𝑐𝑅 (𝑅 + 𝑑)

𝐽

(
1 − 𝑙0

𝑑

)
𝜑

+ 1

𝐽

©­­«−
𝑐𝑅 (𝑅 + 𝑑)

(
1 − 𝑙0

𝑑

)
6

+ 𝑐𝑅 (𝑅 + 𝑑)2 𝑙0𝑅
2𝑑3

ª®®¬𝜑3+ =
𝑀(𝑡)
𝐽

. (4.126)

The equation is strongly nonlinear in the parameters; thus, estimating them based on

time series data is difficult. Even in the case of success, it is only possible up to a constant

multiplier, as the excitation moment is not known due to missing information on the

motor’s torque constant: the motor’s torque divided by the armature current. However,

this information is not needed to model the system’s dynamics. We introduce the new

parameters

• 𝐴 – the coefficient of the linear part of the restoring moment:

𝐴 =
𝑐𝑅(𝑅+𝑑)

𝐽

(
1 − 𝑙0

𝑑

)
,

• 𝐵 – the coefficient of the cubic part of the restoring moment:

𝐵 = −
𝑐𝑅(𝑅+𝑑)

(
1− 𝑙

0

𝑑

)
6𝐽 + 𝑐𝑅(𝑅+𝑑)2 𝑙0𝑅

2𝑑3𝐽
,

• 𝐶 – a bias term to match the coordinate system with the zero position of the encoder,

• 𝐷– the viscous damping coefficient per unit moment of inertia, 𝐷 = 𝑘/𝐽,

• 𝐸– the dry friction coefficient per unit moment of inertia, 𝐸 = 𝜇/𝐽,

• 𝐹– voltage–torque proportionality factor of the motor per unit moment of inertia,

𝐹 = 𝑀(𝑡)/𝐽𝑢𝑀(𝑡).

It is assumed that motor voltage 𝑢𝑀(𝑡) is related to the motor current by Ohm’s law: we

neglect the back electromotive force (for justification, see Fig. 4.14) and the inductance

of the rotor as we work with very low frequencies. Since we measure voltage and not

electric current, 𝐹 is not equivalent to the torque constant but related to it.

The equation of motion is thus given by:

¥𝜑(𝑡) + 𝐷 ¤𝜑(𝑡) + 𝐸 sign ¤𝜑(𝑡)) − 𝐴(𝜑(𝑡) − 𝐶) + 𝐵(𝜑(𝑡) − 𝐶)3 = 𝐹𝑢𝑀(𝑡). (4.127)
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Figure 4.14: Back electromotive force under manual rotations of the shaft. The values are 2-3 orders of

magnitude smaller than the voltage values used in the experiments

The system described by Eq. (4.127) has an unstable equilibrium at 𝜑1 = 𝐶 and stable

equilibria at 𝜑2 = 𝐶 +
√
𝐴/𝐵 and 𝜑3 = 𝐶 −

√
𝐴/𝐵. Around both stable equilibria,

√
2𝐴

gives the linearized angular eigenfrequency. Eq. (4.127) is valid for ¤𝜑 ≠ 0.

Parameter values 𝐴, 𝐵, 𝐶, 𝐷, 𝐸 and 𝐹 must be estimated to compare the system with

numerical simulations. Furthermore, since we do not measure it directly, the estimation

of 𝑢𝑀(𝑡), based on the recorded signal of the signal generator 𝑢𝑆(𝑡), is necessary.

To make the parameter identification possible, we measure the value of the rotation

angle and the signal generator’s output voltage. The former is performed with a 21-bit

digital rotational encoder from Netzer Precision, based on the SSI protocol. Sensor

values are read using an Arduino
TM

Mega 2560 Rev 3 and transferred directly via serial

communication to MATLAB
TM

.

The signal generator’s output voltage is also measured using the Arduino board utilizing

a digital ADS1115 16-bit ADC module. With this setup, achieving a maximum sampling

frequency of up to 200 Hz is possible. This frequency is enough to accurately describe

the mechanical system’s underlying dynamics. During the measurements, a sampling

frequency of 100 Hz was used. The setup is shown in Fig. 4.15.

4.4.1 Estimation of the motor voltage
When running a measurement, we can observe that a constant voltage set on the function

generator does not result in any torque on the motor (cf. Fig. 4.17). However, this is only

possible if no current flows through the armature, equivalent to no voltage on the rotor.

This happens because the power amplifier acts as a high-pass filter, cutting down signal
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Figure 4.15: Data acquisition with Arduino

components below 10 Hz. Indeed, the datasheet of the power amplifier type 2706 from

Brüel & Kjaer confirms this observation, describing the frequency domain with a flat

response between 10-20 000 Hz. However, our system lies significantly below this range

since we investigate harmonic excitation with frequencies between 1.4-2.5 Hz. In this

range, the amplifier still amplifies the signal components, however, the amplification is

significantly smaller than the set value and it is frequency-dependent.

The data sheet of the power amplifier does not provide a Bode diagram, so a measurement

was performed to determine the amplification in this domain. A harmonic voltage with

a constant amplitude of 50 mV and stepwise varying frequency was generated and

amplified. The power amplifier’s output was measured, and the signal amplitude was

calculated for all different frequencies. The measurement data is depicted in Fig. 4.17,

and the resulting amplification function is plotted in Fig. 4.18.

For numerical purposes, the power amplifier was modeled with a 𝐷𝑇1 element, whose

transfer function is given by

𝐺(𝑠) = 𝐾𝐷𝑠

1 + 𝑇1𝑠
, (4.128)
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Figure 4.16: Effects of the power amplifier: a) the function generator’s voltage signal is high-pass filtered, b)

only voltage values from a certain range have an effect; out of this range, no excitation appears at all

Figure 4.17: Measurement of 𝑢𝑀 (𝑡) under varying frequency values of 𝑢𝑆(𝑡) with constant amplitude voltage

of 50 mV.
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Figure 4.18: Frequency-dependent amplification function of the power amplifier

with 𝐾𝐷 = 1.02 and 𝑇1 = 0.05 fitted to the measurements (see Fig. 4.18). The impulse

response is given by

𝑔(𝑡) = 𝐾𝐷𝛿(𝑡)
𝑇1

− 𝐾𝐷𝑒
− 𝑡
𝑇
1

𝑇2

1

. (4.129)

The amplification and phase shift can be determined by inserting 𝑠 = 𝚥𝜔:

𝐺(𝚥𝜔) = 𝐾𝐷𝜔√
1 + 𝑇2

1
𝜔2

𝑒
𝚥 arctan

1

𝑇
1
𝜔 , (4.130)

resulting in

𝐴(𝜔) = 𝐾𝐷𝜔√
1 + 𝑇2

1
𝜔2

, 𝜃(𝜔) = arctan

1

𝑇1𝜔
. (4.131)

The power amplifier’s estimated step response and Bode plot are shown in Fig. 4.19.

Assuming homogeneous initial conditions the calculation of any excitation signal 𝑢𝑀(𝑡)
based on 𝑢𝑆(𝑡) and the transfer function also becomes possible by calculating

𝑈𝑀(𝑠) = 𝐺(𝑠)𝑈𝑆(𝑠) =
𝐾𝐷𝑠

1 + 𝑇1𝑠
𝑈𝑆(𝑠) (4.132)

𝑢𝑀(𝑡) = ℒ−1

{ 𝐾𝐷𝑠

1 + 𝑇1𝑠
𝑈𝑆(𝑠)

}
(4.133)
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Figure 4.19: Estimated characteristics of the power amplifier

𝑢𝑀(𝑡) =
∫ 𝑡

0

𝑔(𝑡 − 𝜏)𝑢𝑆(𝜏)𝑑𝜏 (4.134)

𝑢𝑀(𝑡) = 𝐾𝐷

𝑇1

(
𝑢𝑆(𝑡) −

1

𝑇1

∫ 𝑡

0

𝑒
− 𝑡−𝜏

𝑇
1 𝑢𝑆(𝜏)𝑑𝜏

)
. (4.135)

From Eq. (4.135), we see that the power amplifier’s output is not simply a scalar multiple

of its input but is to be corrected by an additional term resulting from the integral.

To identify parameters, we will evaluate the convolution integral numerically. However,

with the signal generator, we can precisely control the input of the power amplifier. Thus,

we refer to 𝑢𝑆(𝑡) as the input, and the resulting plots should be interpreted accordingly.

4.4.2 Parameter identification
The process of identifying the parameters of the model involves a two-step approach.

Firstly, the parameters are identified using the measured acceleration. Secondly, the

parameters are fine-tuned using a comparison between the measured angle values and

the values given by the numerical solution of Eq. (4.127).

First step

Since the angle measurement is very accurate, its numerical differentiation generates

little noise, and it is possible to obtain the acceleration numerically. Then, the parameter

values in Eq. (4.127) are sought for which the sum of squares of differences between

acceleration data and the corresponding predictions is minimized. Eq. (4.127) is

nonlinear in the parameters, so an exact formula as in linear Gaussian least squares
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Figure 4.20: Phase portrait of the shaft’s rotation after initially pushing it by hand

cannot be given. However, numerically, the determination of the parameters is simple.

MATLAB’s inbuilt function fitnlm yields the parameter values with the corresponding

statistics.

For more precise results, parameter values without external excitation are first identified.

The system is initially pushed, and the decaying motion is registered. The data is cleaned

by removing the pushing part to focus only on free motion. A graphical representation

of the data and its removed values is shown in Fig. 4.20.

The experiment is carried out several times, and the data are combined into a common

vector, which is provided as input to fitnlm. In mathematical terms, the optimization

problem is given by

min

pa

𝐽a(t; pa) =
1

𝑁

∑
𝑡𝑖∈t

(
¥𝜑(𝑡𝑖) − ¥̂𝜑(𝑡𝑖 , pa)

)
2

(4.136)

where 𝑁 is the number of data points, pa = [𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹]⊤ and t is the vector

containing all the time instances of the measurements. Based on Eq. (4.127), the

acceleration estimate is given by

¥̂𝜑(𝑡𝑖) = −𝐷 ¤𝜑(𝑡𝑖) − 𝐸 sign ¤𝜑(𝑡𝑖) + 𝐴(𝜑(𝑡𝑖) − 𝐶) − 𝐵(𝜑(𝑡𝑖) − 𝐶)3 − 𝐹𝑢𝑀(𝑡𝑖). (4.137)

Parameter estimates were made for two damping values: no added viscous damping

and 𝑈𝐷 = 30𝑉 . In tables 4.1)-(4.2, the coefficient estimates with their most important

statistics are given.
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Table 4.1: Estimated model coefficients without added viscous damping,𝑈𝐷 = 0𝑉 .

Coefficient Estimate Standard error t-statistic p-value

𝐴 78.131 0.111 91 698.17 0

𝐵 1530.6 1.4136 1082.8 0

𝐶 0.002 696 9 5.3394 · 10
−5

50.51 0

𝐷 0.234 54 0.012 704 18.463 1.5043 · 10
−73

𝐸 0.262 14 0.015 059 17.407 7.9516 · 10
−66

Table 4.2: Estimated model coefficients with added viscous damping𝑈𝐷 = 30𝑉 .

Coefficient Estimate Standard error t-statistic p-value

𝐴 76.722 0.131 04 585.5 0

𝐵 1511.3 1.8776 804.89 0

𝐶 0.003 392 9 7.198 · 10
−5

47.137 0

𝐷 1.3582 0.016 086 84.435 0

𝐸 0.1345 0.015 311 8.7843 2.5647 · 10
−18

The p-values are very small, and thus, all parameters contribute significantly to the

improvement of the model. The models demonstrate a very good fit to the data. The

high 𝑅-squared values of 0.997 and 0.996, respectively, indicate that the models explain

almost all the variability in the response variable.

The underlying model given by Eq. (4.127) is only a simplification of the more exact

model given by Eq. (4.126), which is also just a simplification of reality. However, the

exceptionally high value of the coefficient of determination (𝑅2
) signifies that even the

simplified model is very close to reality.

The two-dimensional surface for the case with𝑈𝐷 = 30𝑉 is given by ¥̂𝜑(𝜑, ¤𝜑) as well as

the measured data are plotted in Fig. 4.22.

In Tables 4.1)-(4.2, there are slight differences between the two estimates. However, they

should have the same values for the parameters 𝐴, 𝐵, 𝐶, and 𝐸, which could suggest that

there may be interactions between the parameters that have not been considered or that

the optimization problem has multiple solutions. Furthermore, temperature changes

could have influenced the experiment results because the two sets of measurements were

not taken simultaneously. In particular, the value of 𝐸 shows a significant difference.

The assumption of Coulomb friction might be an oversimplification. For example, for

a better model, the friction force should be assumed to be proportional to the spring

force in the pivots of the springs’ sockets. In Fig. 4.21, we can see a scenario in which

the shaft is rotated by hand in both directions of the two equilibria and then released to

return to its resting position. We can observe that the values to which the shaft returns

when released from the left differ from the values of the right, defining an angle interval,
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X 12.9485

Y -13.2809

X 24.4732

Y -12.8545

X 38.5594

Y -0.248

X 58.4131

Y 12.8313

X 66.7618

Y 12.7922

Figure 4.21: Test on the assumption with Coulomb friction by manually rotating the shaft away from its

equilibria, respectively, and letting it return to them

respectively, where the stiction is greater than the springs’ restoring force. However,

this interval is significantly different for 𝜑2 (Δ𝜑2 = 0.0391° = 0.000682 rad) than for 𝜑3

(Δ𝜑3 = 0.4264° = 0.007442 rad), reaching an order of magnitude.

It is possible to estimate the value of 𝐸 with these data directly. The linearization of Eq.

(4.127) around 𝜑2,3 without external excitation is given by

¥𝜑 + 𝐷 ¤𝜑 + 𝐸sign( ¤𝜑) + 2𝐴(𝜑 − 𝜑2,3) = 0. (4.138)

At the angle value equivalent to the half-width of the stiction region, the restoring torque

is equal to the maximal friction value when in equilibrium, that is,

𝐸2,3 =
2𝐴Δ𝜑2,3

2

= 𝐴Δ𝜑2,3 , (4.139)

𝐸2 = 0.053, (4.140)

𝐸3 = 0.58. (4.141)

Since the difference between 𝐸2 and 𝐸3 in the friction coefficient value is greater than an

order of magnitude, we will use the value 𝐸 = 0.5 in the further numerical validation.

Similarly, it is also possible to identify the value of the parameter 𝐹. Exciting the system

with a harmonic voltage generates the data depicted in Fig. 4.23.

Eq. (4.137) is then fitted on the acceleration data yielding fit with 𝑅2 = 0.999 with the

following parameter values listen in Table 4.3. The values are close to the previous

estimates based on the free decaying motion of the system; however, the proportionality

factor of 𝐹 became known.
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4 Critical forcing of escape

Figure 4.22: Measured vs. predicted values of the angular acceleration with added viscous damping𝑈𝐷 = 30𝑉

Table 4.3: Estimated coefficients of the model with added viscous damping,𝑈𝐷 = 30𝑉 .

Coefficient Estimate Standard error t-statistic p-value

𝐴 83.424 0.112 96 738.54 0

𝐵 1574 4.9257 319.54 0

𝐶 0.001 538 6 0.000 337 13 4.5637 5.3327 · 10
−6

𝐷 1.1757 0.018 587 63.256 0

𝐸 0.453 21 0.014 872 30.473 8.6553 · 10
−168

𝐹 −0.968 23 0.005 994 8 −161.51 0
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4.4 Experimental validation of escape mechanisms

Figure 4.23: Measurement data with excitation frequency 𝑓 = 1.75 Hz, voltage range Δ𝑢𝑆 = 750 mV and

starting phase 𝛽 = 0 with additional damping𝑈𝐷 = 30𝑉

Figure 4.24: Measurement vs. fitted data with excitation frequency 𝑓 = 1.75 Hz, voltage range Δ𝑢𝑆 = 750 mV

and starting phase 𝛽 = 0 with additional damping𝑈𝐷 = 30𝑉 . 𝑅2 = 0.999
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4 Critical forcing of escape

Second step

In the second step of the parameter identification, the measured position data is used

to find the optimal model parameters. The parameter estimates from the first step,

described in Sect. 4.4.2, are used as initial values. Furthermore, the initial conditions

also have to be estimated, which is done by using the measured initial angle value and

the initial velocity calculated numerically based on the measurement data.

Figure 4.25: Comparison of the measurement data and numerical simulation with optimized parameters

without added damping

Figure 4.26: Comparison of the measurement data and numerical simulation with optimized parameters with

𝑈𝐷 = 30𝑉

Then, the numerical solution of Eq. (4.127) is calculated and evaluated at the same time

instances where the measurements were recorded. The Euclidian norm of the difference

of the two vectors is finally calculated and used as the cost function in the optimization.

The non-gradient-based fmincon function of MATLAB is used for optimization since

the objective function is nonsmooth due to the possibility of escape. In Figs. 4.25)-(4.26

the numerical solutions are compared to the measurement data with and without added

viscous damping. The identified parameters are listed in Table 4.4.
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4.4 Experimental validation of escape mechanisms

Parameters 𝑈𝐷 = 0𝑉 𝑈𝐷 = 30𝑉

𝐴 84.7163 84.70781

𝐵 1618.60 1628.687

𝐶 -0.00067 0.005982

𝐷 0.28932 1.009082

𝐸 0.255610 0.751432

𝑥0 0.191728 0.226265

𝑢0 3.09931 4.198380

Table 4.4: Optimal parameter values found based on measurements depicted in Figs. 4.25 and 4.26

The parameter values 𝐴 and 𝐵 corresponding to the conservative part of the dynamics

differ from those found in the first step in Sect. 4.4.2. However, they are close to each

other, as should be, since the difference in the two simulations is only the additional

damping. However, the value of 𝐸 is significantly different in both cases, indicating that

the assumption of Coulomb friction might be an oversimplification. Another reason

may be that it is difficult to differentiate the roles of Coulomb and viscous damping

based on measurement data since the identified parameter values show an increase in

𝐸 in Table 4.4 compared to Tables 4.1)-(4.2, however, the estimated value of 𝐷 decreases

from 1.3582 to 1.0091 in the case of𝑈𝐷 = 30𝑉 .

Later on, in the numerical simulations for model validation, damping coefficient values

of 𝐷 = 0.25 and 𝐷 = 1 will be used, respectively. They correspond to Leer damping

ratios of approximately 0.01 and 0.04.

Finally, the second step of the parameter identification of the excited system is also

performed by fitting on the measured angle data (see Fig. 4.27). The optimal parameter

values corresponding to the second step are listed in Table 4.5. The change in the value

of the parameter 𝐹 is not very significant, around 10%. In the subsequent numerical

simulation, we will use a value of 𝐹 = −0.9 to account for the proportionality factor

between the electromotor torque and the voltage.

Parameter Value

𝐴 84.0838

𝐵 1582.89

𝐶 0.00156

𝐷 0.76176

𝐸 0.72437

𝐹 -0.8885

𝑥0 -0.2531

𝑢0 0

Table 4.5: Estimated parameter values corresponding to the second step of the optimization including

excitation with 𝑢𝑆(𝑡) = 2.5 + 0.375 sin(1.75 · 2𝜋𝑡) and added damping𝑈𝐷 = 30𝑉
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4 Critical forcing of escape

Figure 4.27: Comparison of the measurement data and numerical simulation with optimized parameters

under external excitation 𝑢𝑆(𝑡) = 2.5+0.375 sin(1.75 · 2𝜋𝑡) and added damping𝑈𝐷 = 30𝑉 . The initial motion

in the estimate before the excitation is turned in is observable due to the implementation of the Coulomb

friction in Eq. (4.127), which is valid only for ¤𝜑 ≠ 0

Table 4.6 summarizes the parameter identification results, showing the values for the

subsequent section’s simulations.

Parameters 𝑈𝐷 = 0𝑉 𝑈𝐷 = 30𝑉

𝐴 84 84

𝐵 1600 1600

𝐶 0 0

𝐷 0.25 1

𝐸 0.5 0.5

𝐹 -0.9 -0.9

Table 4.6: Optimal parameter values used in simulations for validation of the V-curve
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4.4 Experimental validation of escape mechanisms

4.4.3 Measurement of the critical Ω − 𝐹𝑆 curve with
homogeneous initial conditions

In this section, measurement results corresponding to critical forcing values are pre-

sented. At the beginning of all measurements, the shaft rested at 𝜑3. The signal

generator was set to

𝑢𝑆(𝑡) =
𝐹𝑆

2

sin (2𝜋Ω𝑡 + 𝛽) , (4.142)

with two different values for 𝛽 = {0,𝜋}. Two different voltage values were applied to the

eddy current brake 𝑈𝐷 = {0𝑉, 30𝑉}. If the shaft leaves the well corresponding to 𝜑3,

escape is reported; otherwise, after 50 seconds, no escape is reported. This observation

time interval is sufficient since the motion is damped and all transient processes decay

during this time. The results are shown in Fig. 4.28. Deep blue color corresponds

to escape, yellow color to no escape, and turquoise dots to cases when both scenarios

could be observed with the same parameter values in consecutive experiments, which

is only possible in the vicinity of the escape boundary and highlights the sensitivity of

the measurement outcome for small, uncontrollable parameter fluctuations. Fig. 4.29

shows the Ω − 𝐹𝑆 curves generated by numerical integration of the model identified in

the previous section. Parameter values listed in Table 4.6 were used for the simulation.

It is important to note that the power amplifier’s frequency-dependent amplification

factor is not included in the scale; in the numerical simulations, the amplifier’s effect

was taken into account to approximate the physical system’s dynamics as accurately as

possible.

Comparing Fig. 4.28 with Fig. 4.29, we can observe the following similarities in both

the numerical and experimental results related to the critical excitation amplitudes:

• A sharp minimum exists, and the overall shape of the critical forcing boundary on

the Ω − 𝐹𝑆 plane is V-shaped, although uneven on its right-hand side due to the

maximum mechanism.

• The curve’s minimum is not at the linearized eigenfrequency of the well but is

shifted to the left. In 𝜑3 the linearized eigenfrequency is

√
2𝐴 = 12.96 rad/s = 2.06

Hz. However, the measured minimum is around 1.7-1.8 Hz, depending on the

damping value.

• The right-hand side of each plot contains escape ’bays’ and no escape ’peninsulas.’

An increasing excitation amplitude value does not automatically result in an

escape; it might also return an already escaping scenario to a non-escaping one.

• The initial phase 𝛽 plays a minor role in the escape process, mainly on the right-

hand side of the V-curve.
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4 Critical forcing of escape

• The excitation amplitude necessary to achieve escape increases significantly when

damping is added to the system dynamics. While in the case without added

damping, the minimum is at 𝐹𝑆 = 0.4, in the case of added damping, it shifts to

𝐹𝑆 = 0.7.

• Damping increases the value of the critical force amplitudes and shifts the curve’s

minimum to the left from 1.8 Hz to 1.7 Hz.

• On the left-hand side of the minimal critical force, the saddle mechanism dom-

inates, while on the right-hand side, the maximum mechanism (see Figs. 4.32,

4.30a)

• The escape ’bays’ and no-escape ’peninsulas’ do not disappear when the viscous

damping increases.

The agreement between the numerical simulations and the measurements mutually

validates the accuracy of the results. Furthermore, the above observations agree with

those described in earlier literature based on numerical simulations [67, 68].

In the following, some additional figures demonstrate the variety of nonlinear effects in

the system. Fig. 4.30 shows that a larger excitation amplitude does not always result in

escape if, with a lower amplitude, an escape has already occurred. However, this effect

could only be observed on the right-hand side of the V-shaped critical force curve.

Fig. 4.31 shows chaotic escape. During more than 30 excitation periods, the particle

remains in the well where its motion has started, yet all of a sudden, it escapes.

Fig. 4.32 shows how the saddle mechanism works. The amplitude increases slowly,

approaching a critical distance from the saddle. At a point when it almost seems that it

has reached a stationary state, the amplitude starts to increase rapidly, and within a few

excitation periods, the system escapes from its original potential well.

In Fig. 4.33, a similar scenario is plotted; however, the jump after the gradual increase of

the amplitude is not sufficient to directly reach the well’s boundary; however, it comes

close to it, spending enough time there to end up with a significantly different phase

from the previous one. Now, the excitation pumps more energy into the system, causing

escape.

Fig. 4.34 shows a scenario where the opposite of what we observed in Fig. 4.33 occurs.

The amplitude first increases slowly, then rapidly, almost reaching the saddle, but finally

falls back into the same well. Compared to the excitation, its phase is changed so that

it has a smaller local maximum amplitude value in the next growth period than the

previous one. After repeating this growth-decay period a couple more times, finally,

transients are damped out, and the motion reaches a periodic, stationary motion.

Finally, Fig. 4.35 shows a parameter setting where the system sometimes remains in

the original potential well and sometimes escapes. This observation indicates chaotic

behavior.
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4.4 Experimental validation of escape mechanisms

(a)𝑈𝐷 = 0𝑉 and 𝛽 = 0 (b)𝑈𝐷 = 0𝑉 and 𝛽 = 𝜋

(c)𝑈𝐷 = 30𝑉 and 𝛽 = 0 (d)𝑈𝐷 = 30𝑉 and 𝛽 = 𝜋

Figure 4.28: Measured Ω−𝐹𝑆 map with homogeneous initial conditions. 𝑢𝑆(𝑡) = 𝐹𝑆
2

sin(2𝜋Ω𝑡 + 𝛽). The yellow

color represents no escape; the deep blue represents escape, and the turquoise when both were observed in

consecutive measurements with the same parameters
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4 Critical forcing of escape

(a)𝑈𝐷 = 0𝑉 and 𝛽 = 0 (b)𝑈𝐷 = 0𝑉 and 𝛽 = 𝜋

(c)𝑈𝐷 = 30𝑉 and 𝛽 = 0 (d)𝑈𝐷 = 30𝑉 and 𝛽 = 𝜋

Figure 4.29: Simulated Ω− 𝐹𝑆 map with homogeneous initial conditions. 𝑢𝑆(𝑡) = 𝐹𝑆
2

sin(2𝜋Ω𝑡 + 𝛽). The color

scale represents the time necessary to escape. If no escape is observed after 50 seconds, the yellow color is

used, and no escape is associated with the given parameter values
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4.4 Experimental validation of escape mechanisms

(a) Escape ’bay’ with 𝐹𝑆 = 375 mV (b) No-escape ’peninsula’ with 𝐹𝑆 = 425 mV

Figure 4.30: Time series comparison of measurements with parameters from an escape ’bay’ and a no-escape

’peninsula.’ Ω = 2.15 Hz,𝑈𝐷 = 0 V, 𝛽 = 0

Figure 4.31: Chaotic escape with Type 1 MM, experimental data. 𝐹𝑆 = 425 mV, Ω = 2.05 Hz,𝑈𝐷 = 0 V, 𝛽 = 0

Figure 4.32: Escape through the SM, experimental data. 𝐹𝑆 = 375 mV, Ω = 1.65 Hz,𝑈𝐷 = 30 V, 𝛽 = 0
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4 Critical forcing of escape

Figure 4.33: SM and Type 1 MM combined, experimental data. 𝐹𝑆 = 275 mV, Ω = 1.7 Hz,𝑈𝐷 = 0 V, 𝛽 = 0

Figure 4.34: Non-escaping scenario with combined SM and Type 1 MM, experimental data. 𝐹𝑆 = 350 mV,

Ω = 1.7 Hz,𝑈𝐷 = 30 V, 𝛽 = 0

Figure 4.35: A chaotic scenario where for the same parameters and initial conditions, the system first remains

within the well, but in a consecutive measurement escapes from the well, experimental data. 𝐹𝑆 = 500 mV,

Ω = 2.1 Hz,𝑈𝐷 = 30 V, 𝛽 = 𝜋

134



4.4 Experimental validation of escape mechanisms

Figure 4.36: Jump into a solution with a double period, experimental data. 𝐹𝑆 = 1000 mV, Ω = 1.9 Hz,𝑈𝐷 = 30

V, 𝛽 = 0

Although the escape time in the experiment was not directly measured, in most cases,

we can observe that the fate of a trajectory, whether it escapes or not, is determined in

the first few periods of the excitation. In the numerical simulations, we can explicitly

observe this on the color scale where escape times larger than 20 seconds are rare, which

means that few parameter combinations result in trajectories that ’survive’ more than

30-50 excitation periods in the well. If they do so, their trajectory is chaotic (see Fig.

4.31). More commonly, if a trajectory does not escape in its first few ’attempts,’ as in

Figs. 4.34 and 4.30b, it reaches a steady-state vibration due to the damping, which we

can also interpret as the ’slow’ escape mechanism, described in Chapter 3, although the

situation is more complicated here due to the significant nonlinearities. It is no longer

valid that the first escape ’attempt’ must succeed. For example, in Fig. 4.30a and 4.33,

only the third and second ’attempts,’ respectively, were successful.

Interestingly, non-escaping, steady-state solutions do not always have the same period

as the excitation; a jump into a solution with a double period was, for example, observed

in a measurement (see Fig. 4.36).

4.4.4 Measurement of the critical Ω − 𝐹𝑆 curve for slowly
increasing excitation amplitude

This section investigates the critical excitation amplitude necessary for escape without

transients. We achieve this by slowly increasing the amplitude to a harmonic excitation,

allowing enough time for the transients to decay. At a certain excitation amplitude, the

steady-state solution always loses its stability, and depending on the excitation frequency,
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4 Critical forcing of escape

Figure 4.37: Numerical simulation time series data with amplitude sweep at Ω = 1.4 Hz, 𝐷 = 1. The starting

phase is irrelevant in this case. Escape occurs at 𝐹S,crit = 1.601 V. The saddle mechanism is observable; a

sudden increase in the oscillation amplitude starts already far from the well’s boundary. After the transient

process following the escape, the solution finally stabilizes around a periodic, full-well oscillation

escape occurs rapidly (saddle mechanism), or a period-doubling cascade starts, finally

leading to chaos and escape (maximum mechanism).

In the numerical simulations, the function generator’s output is given by

𝑢𝑆(𝑡) =
𝐹max

2

𝑡

𝑡max

sin(2𝜋Ω𝑡), (4.143)

with 𝐹max V and 𝑡max being large enough to surely drive out the particle from its original

well with a quasi-statically increasing amplitude.

In this scenario, the excitation’s initial phase is irrelevant since the system vibration will

adjust to it rapidly.

This adjustment can be observed in the experiments and the numerical simulations

with and without added viscous damping. Figs. 4.37)-(4.40 demonstrate the above

observations graphically.

Fig. 4.41 shows the critical forcing amplitude values for the numerical and experimental

results. We can observe that the sharp minimum also exists here. Furthermore, the

numerical simulations predict this minimum with reasonable accuracy—an added

viscous damping results in a shift of the minimum. The minimally necessary excitation

amplitude increases from 𝐹𝑆 = 0.5 V to 𝐹𝑆 = 0.8 V. As before, the corresponding

frequency also shifts towards the left, from around Ωmin = 1.75 Hz to Ωmin = 1.65 Hz.

Considering that the linearized eigenfrequency of the system is around Ω
lin

= 2.05 Hz,

this change is quite significant.
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Figure 4.38: Numerical simulation time series data with amplitude sweep at Ω = 2.1 Hz, 𝐷 = 1. The starting

phase is irrelevant in this case. Escape occurs at 𝐹S,crit = 1.549 V. Here, the maximum mechanism dominates.

Escape is predictable due to the period-doubling bifurcations taking place just before reaching the critical

excitation amplitde

Figure 4.39: Experimental time series data with amplitude sweep at Ω = 1.4 Hz,𝑈𝐷 = 0 V. The starting phase

is irrelevant in this case. Escape occurs at 𝐹S,crit = 1.244 V. The saddle mechanism is observable; a sudden

increase in the oscillation amplitude starts already far from the well’s boundary. After the transients’ decay,

the solution’s stabilization to a periodic full-well oscillation can be observed. This solution remains stable

even when the excitation amplitude is decreased to a fraction of its previous value, causing escape. When

the full-swing oscillation loses stability, the vibrations continue in a single well and reduce significantly in

amplitude
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4 Critical forcing of escape

Figure 4.40: Experimental time series data with amplitude sweep at Ω = 2.0 Hz,𝑈𝐷 = 0 V. The starting phase

is irrelevant in this case. Escape occurs at 𝐹S,crit = 1.070 V. Before escape occurs, a cascade of period-doubling

bifurcation can be observed

(a) Without additional damping (b) With additional damping𝑈𝐷 = 30 V

Figure 4.41: Comparison of numerical results with the experimental ones by slowly increasing the excitation

amplitude and noting its value at the moment of escape. Despite some quantitative differences, the prediction

of the sharp minimum’s location and value shows good agreement
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4.4.5 Conclusions and scope for further research
The purpose of this section was to experimentally validate the escape mechanisms

described previously in the literature [67, 68, 198] and in Chapters 3)-(4.

A test rig in ITM’s laboratory has been modified and equipped with a high-precision,

capacitive angle encoder. With the test rig, the precise setting of the viscous damping

through eddy currents is possible, and an electromotor can apply arbitrarily shaped

exciting torque.

The underlying model is estimated using a double-well Duffing oscillator, identifying

model parameters encompassing viscous damping, dry friction, and excitation propor-

tionality factors.

Compared to the simulation results of the identified model, the experimental results

show a good agreement when comparing the critical forcing values of escape under

harmonic excitation. Indeed, starting with homogeneous initial conditions, even such

details as nonescaping ’peninsulas’ and escape ’bays’ are correctly identified. The

appearance of these irregularities of the V-shaped critical force boundary may be related

to the ’slow’ escape mechanism. As Fig. 4.41 compared to Figs. 4.28)-(4.29 shows the

amplitude values at which the escape ’bays’ appear are lower than those necessary to

cause escape from a quasi-steady-state solution. It indicates that escape in this amplitude

regime is only possible because of transients. The envelope covering the vibrations, as

in Fig. 3.13b in Sect. 3, has various peaks before reaching a steady-state solution. In

the nonlinear case, although not always, the escape occurs at the first of these envelope

peaks.

Even though a larger excitation amplitude can cause the vibration amplitude to increase

more quickly, the highest point of the envelope encompassing the vibration is not always

larger than the highest point of an envelope related to a smaller excitation, since the peak

in the latter case occurs earlier than in the former, allowing the transients to decrease in

the meantime.

An alternate interpretation suggests the coexistence of several attractors in the phase

space, which possess intricately intertwined catchment areas in initial conditions and

system and excitation parameters. As demonstrated in Fig. 4.39, there is a coexistence

of periodic solutions and possibly even chaotic attractors, a determination that is

challenging to make based on experiments due to the lengthy transients before a

periodic solution is reached. For example, Fig. 4.42 presents a measurement in which

the motion does not exhibit discernible patterns, leaving it uncertain whether continued

observation would reveal a periodic solution.

Numerous potential avenues for future studies are raised. This research examined

the proximity of 1:1 resonance. The possibility of sub- or superharmonic resonance

occurring and its influence on the shape of the critical Ω−𝐹 curve is a fascinating inquiry.
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4 Critical forcing of escape

Figure 4.42: Measured time series data with harmonic excitation. Ω = 1.6 Hz, 𝐹𝑆 = 1.5 V,𝑈𝐷 = 30 V, 𝛽 = 𝜋/2

and added dry friction (non-quantified). The motion seems to be chaotic and does not settle to a recognizable

pattern

Investigating escape under frequency-modulated signals, particularly sweep signals, is

another area of study with significant technical importance since, for a machine operating

at a certain speed, it is essential to pass through resonance to reach its operational point.

Similarly, when the machine is deactivated, it experiences a passage through resonance

in the opposite direction. Understanding the working mechanisms of the saddle and

maximum can allow us to anticipate varying system responses in both directions.
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5 Escape of multibody systems with
different time-scales

In the previous chapters, we investigated the escape of a single particle from a potential

well. This chapter will focus on the escape of coupled particle systems. The common

property of the analyzed systems is the presence of different time scales. The particles

are strongly coupled, resulting in the chain’s internal vibrations having frequencies

much higher than the ’slow’ vibrations of the chain’s center of mass.

The text and figures of this chapter are based on the studies by Genda et al. [221, 222,

228].

5.1 Escape of an 𝑛-particle chain from a potential
under polyharmonic excitation

In [221], Genda et al. investigated the escape dynamics of a pair of strongly coupled

particles from a truncated quadratic potential under biharmonic excitation. The analysis

was extended to strongly coupled 𝑛-particle chains under polyharmonic excitation in

[228]. Since the latter case includes the former, we will provide only the more general

version and an example with a three-particle chain.

5.1.1 Problem setting
We investigate the system shown in Figure 5.1. The scenario is constrained to one-

dimensional movement along the 𝑥 axis. The system consists of 𝑛 particles, each with

masses 𝑚1, 𝑚2, ..., 𝑚𝑛 . Linear viscous damping acts between the neighboring particles,

represented by 𝑛 − 1 dashpot dampers, each with a damping coefficient 𝑘1, 𝑘2, ..., 𝑘𝑛−1,

and the elastic restoring force within the particles is provided by 𝑛 − 1 linear springs,

each with a stiffness coefficient 𝑐1, 𝑐2, ..., 𝑐𝑛−1. A polyharmonic force of 𝐹1(𝑡), 𝐹2(𝑡), ...,

𝐹𝑛(𝑡) can act on each particle. Initially, the particles are placed within a potential well,

and each particle experiences a unique restoring force given by𝑉1(𝑥1),𝑉2(𝑥2), ...,𝑉𝑛(𝑥𝑛),
where 𝑉𝑖(𝑥𝑖) = 𝑚𝑖𝑉(𝑥𝑖). The base potential 𝑉(·) is determined later.
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…

𝑥

𝑚1

𝑉(𝑥)𝐹1 𝑡

𝑚2 𝑚𝑛−1 𝑚𝑛

𝑐1 𝑐𝑛−1

𝑘𝑛−1𝑘1

𝐹2 𝑡 𝐹𝑛−1 𝑡 𝐹𝑛 𝑡

Figure 5.1: A potential well containing an internally damped, coupled 𝑛-particle system is considered. The

particles in the system have an equilibrium distance of zero, which implies the possibility of mutual penetration

without physical constraints. Figure adapted from [228]

It is important to note that particles can pass through each other in this model because of

the zero equilibrium distance between them. For a model including particle collisions,

refer to Sect. 5.2.

Derivation of the equations of motion

We formulate the equations of motion for the system described by applying the Euler-

Lagrange equations.

d

d𝑡

𝜕𝑇

𝜕 ¤𝑞𝑖
(𝑡 , ¤q(𝑡)) = −𝜕𝑈

𝜕𝑞𝑖
(𝑡 , q(𝑡)) − 𝜕𝐷

𝜕 ¤𝑞𝑖
(𝑡 , ¤q(𝑡)) +𝑄∗

𝑖 (𝑡) for 𝑖 = 1, ..., 𝑛, (5.1)

where 𝑞𝑖 = 𝑥𝑖 represent the generalized coordinates, and

𝑇 =

𝑛∑
𝑖=1

1

2

𝑚𝑖 ¤𝑥2

𝑖 , (5.2)

𝑈 =

𝑛−1∑
𝑖=1

1

2

𝑐𝑖(𝑥𝑖+1 − 𝑥𝑖)2 +𝑉𝑖(𝑥𝑖), (5.3)

𝐷 =

𝑛−1∑
𝑖=1

1

2

𝑘𝑖( ¤𝑥𝑖+1 − ¤𝑥𝑖)2 , (5.4)

𝑄∗
𝑖 (𝑡) = 𝐹𝑖(𝑡) = 𝐹𝑖 ,0 sin(Ω0𝑡 + 𝛽𝑖 ,0) +

𝑃∑
𝑝=1

𝐹𝑖 ,𝑝 sin

(
Ω𝑖 ,𝑝𝑡 + 𝛽𝑖 ,𝑝

)
, (5.5)
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5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

with 𝑃 belonging to the positive natural numbers N+
. The continuous potential 𝑉(𝑥) is

required to be bounded above, meaning

lim

|𝑥 |→∞
𝑉(𝑥) ≤ 𝐶, for some 𝐶 ∈ R. (5.6)

Additionally, the system is scaled such that the potential well has a stable equilibrium

point at 𝑥 = 0, with its linearized angular eigenfrequency 1, that is:

𝑉′(𝑥 = 0) = 0, (5.7)

𝑉′′(𝑥 = 0) = 1. (5.8)

In the following, the term frequency will signify the angular frequency measured in

radians per second.

Moreover, we assert that 𝑉(𝑥) has a single well𝑊 and exhibits a softening behavior as

delineated by:

𝑉′′(𝑥) ≤ 𝑉′(𝑥)
𝑥

≤ 1. (5.9)

This inequality is derived from the notion of a ’softening characteristic,’ where the

stiffness of the potential, defined as 𝑐(𝑥) := 𝑉′(𝑥)/𝑥, diminishes as one moves away from

the well’s bottom, denoted by an increasing |𝑥 |. Conversely, the maximal stiffness at

𝑥 = 0 is expressed as:

lim

𝑥→0

𝑉′(𝑥)
𝑥

= lim

𝑥→0

𝑉′(𝑥) −𝑉′(0)
𝑥 − 0

= 𝑉′′(𝑥)|𝑥=0 = 1. (5.10)

Considering that 𝑉(𝑥) is bounded above, the maximum on the left-hand side of 𝑉(𝑥)
is marked as 𝑥𝑙 , with 𝑥𝑙 belonging to R− ∪ {−∞}, and the maximum on the right-hand

side is denoted as 𝑥𝑟 , with 𝑥𝑟 in R+ ∪ {∞}. Thus, the well is given by𝑊 = (𝑥𝑙 , 𝑥𝑟).
Escape is defined as before in Def. 3.0.3, but now, all particles must satisfy the definition.

Given the strong coupling between the particles, separation of the particle chain is

unfeasible, i.e., the case is not possible when some particles escape to the right while

others escape to the left side of the well. Fig. 5.2 provides a visual illustration of a

potential that meets these criteria.

It is assumed that the masses 𝑚𝑖 are of order 𝒪(1), and the forces exerted by the

coupling springs substantially surpass those attributed to the potential, i.e., 𝑐𝑖 ≫ 1 ≥
max𝑥∈(𝑥𝑙 ,𝑥𝑟 )𝑉

′′
𝑖
(𝑥), which implies 𝑐𝑖 ∈ 𝒪(𝜀−1). Further, non-small damping is assumed,

with 𝑘𝑖 being of order 𝒪(1). Given these assumptions regarding 𝑐𝑖 and 𝑘𝑖 , the internal

modes of the chain exhibit underdamped characteristics, leading to the receptance

frequency response function displaying 𝑛 − 1 local maxima (cf. Fig. 5.3). These
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5 Escape of multibody systems with different time-scales

. . . .

Figure 5.2: Illustration of a potential that is considered feasible. The potential’s interior extends from 𝑥𝑙 to 𝑥𝑟 .
Figure adapted from [228]

peaks are identified as resonant frequencies. It is hypothesized that the lowest resonant

frequency for relative movements within the particle chain markedly surpasses the

linearized eigenfrequency of the potential well.

Each particle is excited by up to 𝑃 + 1 harmonic forces, of which one component is

assumed to have the same low frequency Ω0 ∈ 𝒪(1), but can vary in the excitation

amplitude 𝐹𝑖 ,0 and initial phase 𝛽𝑖 ,0.

Subsequent excitation frequencies are considered significantly higher than the base

frequency, that is, Ω𝑖 ,𝑝 ≫ Ω0, and are not necessarily uniform across all particles,

meaning that Ω𝑖 ,𝑝 may vary independently from Ω𝑗 ,𝑝 .

These excitation patterns are particularly relevant in the context of cantilever beams

employed as sensors within microelectromechanical systems. A notable application

is observed in atomic force microscopy, where a transcendental equation determines

the cantilever beam’s eigenfrequencies and are linearly independent over the rational

numbers (cf. Def. 2.3.7).

Incorporating Eqs. (5.2-5.5) into Eq. (5.1) leads to the nonlinear differential equation

system:

M¥x + K¤x + Cx + v′(x) = f(𝑡), (5.11)

where the matrices and vectors are defined as follows:

M = diag(𝑚1 , 𝑚2 , . . . , 𝑚𝑛) ∈ R𝑛×𝑛 , (5.12)

K = diag(𝑘1 , 𝑘1 + 𝑘2 , . . . , 𝑘𝑛−2 + 𝑘𝑛−1 , 𝑘𝑛−1) − subdiag (𝑘1 , 𝑘2 , . . . , 𝑘𝑛−1)
− superdiag (𝑘1 , 𝑘2 , . . . , 𝑘𝑛−1) ∈ R𝑛×𝑛 , (5.13)

C = diag(𝑐1 , 𝑐1 + 𝑐2 , . . . , 𝑐𝑛−2 + 𝑐𝑛−1 , 𝑐𝑛−1) − subdiag (𝑐1 , 𝑐2 , . . . , 𝑐𝑛−1)
− superdiag (𝑐1 , 𝑐2 , . . . , 𝑐𝑛−1) ∈ R𝑛×𝑛 , (5.14)

x =
[
𝑥1 , 𝑥2 , . . . , 𝑥𝑛

]⊤ ∈ R𝑛 , (5.15)

v′(x) =
[
𝑉′

1
(𝑥1), 𝑉′

2
(𝑥2), . . . , 𝑉′

𝑛(𝑥𝑛)
]⊤ ∈ R𝑛 , (5.16)
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5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

f(𝑡) =
[
𝐹1(𝑡), 𝐹2(𝑡), . . . , 𝐹𝑛(𝑡)

]⊤ ∈ R𝑛 , (5.17)

with diag(·), subdiag(·), and superdiag(·) indicating diagonal, subdiagonal, and super-

diagonal matrices, respectively. Moreover, bold lowercase symbols indicate vectors

in the time domain, whereas bold uppercase symbols represent matrices. In line

with the standard literature notation, the vectors denoting Laplace transforms are also

represented by bold uppercase characters.

Coordinate decoupling

Currently, the differential equation manifests strong coupling among the coordinates

in a nonlinear manner. Moreover, the significant stiffness of the springs, in contrast to

the potential’s moderate restoring force, leads to a slow-fast dynamic within the system.

By implementing a suitable coordinate transformation, we can achieve a formulation

where the nonlinear terms only weakly couple the system, leaving the linear terms to

dominate the coupling. This simplification allows for the analytical treatment of the

resulting ’fast’ linear system of ordinary differential equations, facilitating the derivation

of analytical solutions for the ’fast’ variables and permitting the focus to shift exclusively

to the analysis of the ’slow’ variable. The approach is as follows.

New coordinates, 𝜂 and 𝑦𝑖 for 𝑖 ∈ {2, . . . , 𝑛}, are introduced as:

𝜂 =

∑𝑛
𝑖=1
𝑚𝑖𝑥𝑖∑𝑛

𝑖=1
𝑚𝑖

and 𝑦𝑖 = 𝑥𝑖 − 𝑥𝑖−1 , for 𝑖 ≥ 2. (5.18)

Here, the first coordinate, 𝜂, signifies the center of mass for the chain, while the

subsequent coordinates, 𝑦𝑖 , denote the relative displacements between adjacent particles.

Defining 𝑀 =
∑𝑛
𝑖=1
𝑚𝑖 , the transformation is expressed as:

y =



𝜂

𝑦2

𝑦3

...

𝑦𝑛


=



𝑚1

𝑀
𝑚2

𝑀
𝑚3

𝑀 . . . 𝑚𝑛

𝑀

−1 1 0 . . . 0

0 −1 1

. . .
...

...
. . .

. . .
. . . 0

0 . . . 0 −1 1

︸                           ︷︷                           ︸
=:S−1



𝑥1

𝑥2

𝑥3

...

𝑥𝑛


. (5.19)
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Introducing the notation 𝑀𝑘𝑙 =
∑𝑙
𝑖=𝑘 𝑚𝑖 , where 𝑙 > 𝑐 ∈ N+

, enables us to determine S,

the transformation matrix for converting coordinates from y to x as follows:

S =
1

𝑀



𝑀 −𝑀2𝑛 −𝑀3𝑛 . . . . . . . . . −𝑀𝑛𝑛

𝑀 𝑀11 −𝑀3𝑛 . . . . . . . . . −𝑀𝑛𝑛

𝑀 𝑀11 𝑀12 −𝑀4𝑛 . . . . . . −𝑀𝑛𝑛

...
. . .

...

𝑀 𝑀11 . . . 𝑀
1(𝑘−1) −𝑀(𝑘+1)𝑛 . . . −𝑀𝑛𝑛

𝑀 𝑀11 . . . . . . . . . 𝑀
1(𝑛−2) 𝑀

1(𝑛−1)


. (5.20)

For the new coordinate system y, the matrices representing damping and stiffness are

expressed as

K̃ =



0 0 0 . . . . . . 0

0
𝑘1

𝑚1

+ 𝑘1

𝑚2

− 𝑘2

𝑚2

0 . . . 0

... − 𝑘1

𝑚2

𝑘2

𝑚2

+ 𝑘2

𝑚3

− 𝑘3

𝑚3

. . .
...

. . .
. . . 0

... 0 − 𝑘𝑛−3

𝑚𝑛−2

𝑘𝑛−2

𝑚𝑛−2

+ 𝑘𝑛−2

𝑚𝑛−1

− 𝑘𝑛−1

𝑚𝑛−1

0 . . . 0 − 𝑘𝑛−2

𝑚𝑛−1

𝑘𝑛−1

𝑚𝑛−1

+ 𝑘𝑛−1

𝑚𝑛


, (5.21)

C̃ =



0 0 0 . . . . . . 0

0
𝑐1

𝑚1

+ 𝑐1

𝑚2

− 𝑐2

𝑚2

0 . . . 0

... − 𝑐1

𝑚2

𝑐2

𝑚2

+ 𝑐2

𝑚3

− 𝑐3

𝑚3

. . .
...

. . .
. . . 0

... 0 − 𝑐𝑛−3

𝑚𝑛−2

𝑐𝑛−2

𝑚𝑛−2

+ 𝑐𝑛−2

𝑚𝑛−1

− 𝑐𝑛−1

𝑚𝑛−1

0 . . . 0 0 − 𝑐𝑛−2

𝑚𝑛−1

𝑐𝑛−1

𝑚𝑛−1

+ 𝑐𝑛−1

𝑚𝑛


. (5.22)

In the transformed coordinate system, it becomes evident that the internal viscous

damping no longer influences the center of mass 𝜂.

Substituting x = Sy into Eq. (5.11), the motion equations in new coordinates can be

written as:

MS¥y + KS¤y + CSy + v′(Sy) = f(𝑡), (5.23)

¥y + S−1M−1KS︸       ︷︷       ︸
=:K̃

¤y + S−1M−1CS︸       ︷︷       ︸
=:C̃

y + S−1M−1v′(Sy)︸           ︷︷           ︸
=:ṽ′

= S−1M−1f(𝑡)︸        ︷︷        ︸
=:f̃(𝑡)

. (5.24)
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5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

This transformation simplifies the analysis of the dynamics by decoupling the ’slow’

and ’fast’ variables.

The matrices K̃ and C̃, given in Eqs. (5.21)-(5.22), illustrate the system’s transformed

stiffness and damping characteristics, respectively. In further analysis, we compute the

modified potential force vector ṽ′
as follows:

ṽ′ = S−1M−1


𝑚1𝑉

′(s1y)
𝑚2𝑉

′(s2y)
...

𝑚𝑛𝑉
′(s𝑛y)


=



∑𝑛
𝑖=1

𝑚𝑖𝑉
′(s𝑖y)

𝑀

𝑉′(s2y) −𝑉′(s1y)
...

𝑉′(s𝑛y) −𝑉′(s𝑛−1y)


, (5.25)

utilizing the notation S = (s1 , s2 , . . . , s𝑛)𝑒T
, where each s𝑖 ∈ R𝑛 .

According to [61] and [62], the particular solutions for 𝑦2...𝑦𝑛 are minimally affected by

their coupling to 𝜂, attributable to the non-small damping between the particles and the

weak coupling to the ’outer’ potential field, given that 𝑐𝑖/𝑚𝑖 ∈ 𝒪(𝜀−1). In contrast, the

maximum stiffness of the potential, max𝑥∈(𝑥𝑙 ,𝑥𝑟 )𝑉
′(𝑥)/𝑥, is of order 𝒪(1).

Assuming small relative displacements, that is, |𝑦𝑖 | < 1 for 𝑖 = 2...𝑛, and considering

that the particles predominantly reside within the potential well, i.e., 𝑥𝑖 ∈𝑊 = (𝑥𝑙 , 𝑥𝑟),
the potential force can be linearized around 𝑥𝑖−1 as:

𝑉′(𝑥) ≈ 𝑉′(𝑥𝑖−1) +𝑉′′(𝑥𝑖−1)(𝑥 − 𝑥𝑖−1), (5.26)

and given s𝑖y𝑖 = 𝑥𝑖 , we deduce:

𝑉′(s𝑖y) −𝑉′(s𝑖−1y) ≈ 𝑉′′(𝑥𝑖−1)𝑦𝑖 , (5.27)

which can be disregarded since𝑉′′(𝑥) ≤ 1 ≪ 𝑐𝑖 according to our assumptions. Therefore,

the vector simplifies to:

ṽ′ ≈
[∑𝑛

𝑖=1
𝑚𝑖𝑉

′(s𝑖y)
𝑀 , 0, . . . , 0

]⊤
. (5.28)

Analogously, the transformed force vector f̃(𝑡) is calculated as:

f̃(𝑡) =
[∑𝑛

𝑖=1
𝐹𝑖 (𝑡)
𝑀 ,

𝐹2(𝑡)
𝑚2

− 𝐹1(𝑡)
𝑚1

, . . . ,
𝐹𝑛 (𝑡)
𝑚𝑛

− 𝐹𝑛−1(𝑡)
𝑚𝑛−1

]⊤
. (5.29)

It is important to note that while a linear model can effectively approximate the ’fast’

subsystem by neglecting nonlinear terms, such a simplification is unattainable for the

’slow’ subsystem. The omission of nonlinearities in the equation of 𝜂 would significantly

alter its dynamics, primarily because the ’fast’ dynamics is influenced by the linear
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5 Escape of multibody systems with different time-scales

springs and dampers, whose effects are neutralized in the ’slow’ system, leaving the

potential’s force as the primary dynamic driver for the center of mass.

Steady-state solutions for the fast subsystem

Analytically deriving the eigenmodes, eigenfrequencies, and specific solutions for

𝑦2(𝑡)...𝑦𝑛(𝑡) in a closed form with arbitrary parameter values is often unfeasible. There-

fore, the focus shifts to a particular scenario where all masses, dampers, and springs

are uniform, i.e., 𝑚𝑖 = 𝑚, 𝑘𝑖 = 𝑘, and 𝑐𝑖 = 𝑐 for all 𝑖 ∈ {1, . . . , 𝑛} and 𝑖 ∈ {1, . . . , 𝑛 − 1},
respectively. The center of mass’s equation of motion simplifies to:

¥𝜂 +
∑𝑛
𝑖=1
𝑉′(s𝑖y)
𝑛

=

∑𝑛
𝑖=1
𝐹𝑖(𝑡)

𝑛𝑚
. (5.30)

Addressing Eq. (5.30) necessitates initial resolution for 𝑦2 , . . . , 𝑦𝑛 , achieved by consider-

ing the matrix sub-section that excludes the first row and column, thus yielding:

y = [𝑦2 𝑦3 . . . 𝑦𝑛]⊤ ∈ R𝑛−1 , (5.31)

K = K̃2:𝑛,2:𝑛 ∈ R(𝑛−1)×(𝑛−1) , (5.32)

C = C̃2:𝑛,2:𝑛 ∈ R(𝑛−1)×(𝑛−1) , (5.33)

f = f̃2:𝑛 ∈ R𝑛−1 , (5.34)

where the subscript notation 𝑝 : 𝑞 and 𝑝 : 𝑞, 𝑟 : 𝑠 refers to vector and matrix segments,

respectively. The reduced system’s motion equations are encapsulated as:

¥y + K¤y + Cy = f(𝑡), (5.35)

where K and C represent tridiagonal Toeplitz matrices.

Given the non-negligible damping values, the homogeneous solution of the differential

equation decays rapidly, leading our interest toward the particular solution in response

to polyharmonic excitation. Using the linear nature of the simplified problem, we

can determine this solution by applying the Laplace transform. Assuming that initial

conditions are null, the Laplace transform of Eq. (5.35) is represented as:

𝑠2Y(𝑠) + 𝑠KY(𝑠) + CY(𝑠) = F(𝑠), (5.36)

where Y(𝑠) = ℒ{y(𝑡)} and F(𝑠) = ℒ{f(𝑡)}, leading to:
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

𝑠2 + 2
𝑘
𝑚 𝑠 + 2

𝑐
𝑚 − 𝑘

𝑚 𝑠 − 𝑐
𝑚 0 . . . 0

− 𝑘
𝑚 𝑠 − 𝑐

𝑚

. . .
. . .

. . .
...

0

. . .
. . .

. . . 0

...
. . .

. . .
. . . − 𝑘

𝑚 𝑠 − 𝑐
𝑚

0 . . . 0 − 𝑘
𝑚 𝑠 − 𝑐

𝑚 𝑠2 + 2
𝑘
𝑚 𝑠 + 2

𝑐
𝑚

︸                                                                              ︷︷                                                                              ︸
=:A(𝑠)



𝑌2

𝑌3

...

𝑌𝑛−1

𝑌𝑛


=



𝐹2

𝐹3

...

𝐹𝑛−1

𝐹𝑛


.

(5.37)

Introducing 𝑎 = 𝑠2 + 2
𝑘
𝑚 𝑠 + 2

𝑐
𝑚 to denote the main diagonal values and 𝑏 = − 𝑘

𝑚 𝑠 − 𝑐
𝑚 for

the values of the sub and superdiagonals, the eigenvalues 𝜆𝐾 , for 𝐾 = 1...𝑛 − 1, of the

matrix are determined as:

𝜆𝐾 = 𝑎 − 2𝑏 cos

(
𝐾𝜋
𝑛

)
, (5.38)

with the corresponding eigenvectors being:

v𝐾 =

[
sin

(
𝜋𝐾
𝑛

)
, . . . , sin

(
(𝑛 − 1)𝜋𝐾

𝑛

)]⊤
, 𝐾 ∈ {1, . . . , 𝑛 − 1}. (5.39)

The eigenvectors in this representation are not of unit length, so they need to be

normalized. The 𝐾th
eigenvector has length

��v𝐾 �� = √√√
𝑛−1∑
𝑙=1

sin
2

(
𝑙𝜋𝐾
𝑛

)
=

√√√√√√√√√𝑛 − 1

2

− 1

2

𝑛−1∑
𝑙=1

cos

(
2𝜋𝑙𝐾
𝑛

)
︸             ︷︷             ︸

=-1

=

√
𝑛

2

, (5.40)

which is derived using the trigonometric identity sin
2 𝑥 = 1−cos 2𝑥

2
and the summation

property of roots of unity. We can observe that all eigenvectors share the same magnitude.

The orthogonal and symmetric matrix Q is formed as:

Q =

√
2

𝑛

[
v1 , v2 , . . . , v𝑛−1

]
, (5.41)

implying Q = Q−1 = Q⊤
. Thus, A ∈ C(𝑛−1)×(𝑛−1)

can be decomposed as:

A = QΛQ⊤ = QΛQ, (5.42)
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facilitating the expression of A−1
as:

A−1 = QΛ−1Q. (5.43)

The entries of A−1
are then:

𝐴−1

𝑖 𝑗 (𝑠) =
2

𝑛

𝑛−1∑
𝐾=1

sin

(
𝑖𝜋𝐾
𝑛

)
sin

(
𝑗𝜋𝐾
𝑛

)
𝑠2 + 2

𝑘
𝑚 𝑠 + 2

𝑐
𝑚 − 2

(
𝑘
𝑚 𝑠 + 𝑐

𝑚

)
cos

(𝜋𝐾
𝑛

) . (5.44)

By the system’s linearity, the particular solution for the polyharmonic excitation is

deduced by assessing the impact of a single harmonic excitation and then applying

superposition for all harmonic forces affecting the particle chain.

To begin, we analyze the response to a harmonic function 𝐹𝑖 sin(𝜔𝑖𝑡 + 𝛽𝑖), applied to the

𝑖th reduced coordinate (not the 𝑖th particle), where 𝑖 ∈ {1, . . . , 𝑛 − 1}. The response is

given by

Y(𝑠 = 𝚥𝜔𝑖) = A−1(𝚥𝜔𝑖)
[
0, . . . , 𝐹𝑖𝑒

𝚥𝛽𝑖 , . . . , 0
]⊤

= 𝐹𝑖𝑒
𝚥𝛽𝑖a−1

𝑖 (𝚥𝜔𝑖), (5.45)

where a−1

𝑖
signifies the 𝑖th column within the inverse of matrix A, and 𝚥 represents the

imaginary unit. Consequently, the expression for the 𝐾th
row of vector y(𝑡) is expressed

as

𝑦𝐾(𝑡) =
���𝑌𝐾(𝜔𝑖)

��� sin

(
𝜔𝑖𝑡 +Ψ𝐾(𝜔𝑖)

)
, (5.46)

where the phase angle Ψ𝐾(𝜔𝑖) equates to the argument ∠𝑌𝐾(𝜔𝑖).
When the 𝑖th particle is excited according to Eq. (5.5), in the 𝑦 coordinates, such excitation

appears twice, as outlined by Eq. (5.29), except at the end of the chain, where it occurs

only once. Therefore, we have 2(𝑃 + 1)(𝑛 − 1) distinct harmonic components combined.

The complex amplitudes of the simple harmonic excitation on the 𝑖th particle, due

to the 𝑝th
harmonic excitation, 𝑝 ∈ {0, . . . , 𝑃}, manifesting with either a positive or

negative sign as depicted in Eq. (5.29), are denoted by Y𝑖 ,𝑝,+ and Y𝑖 ,𝑝,−, respectively, for

𝑖 ∈ {1, 2, . . . , 𝑛}. We obtain the following:

Y𝑖−1,𝑝,+(𝚥Ω𝑖 ,𝑝) = 𝐹𝑖 ,𝑝 𝑒
𝚥𝛽𝑖 ,𝑝a−1

𝑖
(𝚥Ω𝑖 ,𝑝), 𝑖 ∈ {2, . . . , 𝑛}, 𝑝 ∈ {0, 1, . . . , 𝑃}, (5.47)

Y𝑖 ,𝑝,−(𝚥Ω𝑖 ,𝑝) = −𝐹𝑖 ,𝑝 𝑒 𝚥𝛽𝑖 ,𝑝a−1

𝑖
(𝚥Ω𝑖 ,𝑝),𝑖 ∈ {1, 2, . . . , 𝑛 − 1}, 𝑝 ∈ {0, 1, . . . , 𝑃}. (5.48)

The particular solution for the relative displacements is thus described by

𝑦𝐾(𝑡) =
𝑛−1∑
𝑖=1

𝑃∑
𝑝=0

∑
𝑞∈{−,+}

���𝑌 𝑖 ,𝑝,𝑞,𝐾−1(𝚥Ω𝑖 ,𝑝)
��� sin

(
Ω𝑖 ,𝑝𝑡 +Ψ𝑖 ,𝑝,𝑞,𝐾−1(𝚥Ω𝑖 ,𝑝)

)
, (5.49)
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with 𝐾 ranging from 2 to 𝑛, and 𝑌 𝑖 ,𝑝,𝑞,𝐾−1 signifying the (𝐾 − 1)th row of the vector Y𝑖 ,𝑝,𝑞 .

In this way, we obtain reasonably good estimates for 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡).

Resonant frequencies

Our interest predominantly lies in understanding the system’s dynamics around its

resonant frequencies. To determine the resonance peaks and their corresponding

amplifications, it suffices to analyze the system under a single harmonic excitation, as

illustrated in Eq. (5.45), targeting the 𝑖th reduced coordinate (and not the 𝑖th particle).

The detailed formulation for the 𝐾th
row of the vector Y is thus:

𝑌𝐾(𝚥𝜔𝑖) =
2

𝑛

𝑛−1∑
𝑙=1

sin

(
𝑖𝜋𝑙
𝑛

)
sin

(
𝐾𝜋𝑙
𝑛

)
𝑠2 + 2

𝑘
𝑚 𝑠 + 2

𝑐
𝑚 − 2

(
𝑘
𝑚 𝑠 + 𝑐

𝑚

)
cos

(
𝜋𝑙
𝑛

) ����
𝑠=𝚥𝜔𝑖

𝐹𝑖𝑒
𝛽𝑖

(5.50)

=
2

𝑛

𝑛−1∑
𝑙=1

sin

(
𝑖𝜋𝑙
𝑛

)
sin

(
𝐾𝜋𝑙
𝑛

)[
2
𝑐
𝑚

(
1 − cos

(
𝜋𝑙
𝑛

))
− 𝜔2

𝑖

]
− 𝚥

[
2𝜔𝑖

𝑘
𝑚

(
1 − cos

(
𝜋𝑙
𝑛

))] 𝐹𝑖𝑒𝛽𝑖 . (5.51)

Significant oscillations occur when the magnitude of 𝑌𝑖 is large, which can happen

when the absolute value of at least one denominator in the sum gets close to zero. The

magnitude of the denominator is given as:���� [2𝑐

𝑚

(
1 − cos

(
𝜋𝑙
𝑛

))
− 𝜔2

𝑖

]
− 𝚥

[
2𝜔𝑖

𝑘

𝑚

(
1 − cos

(
𝜋𝑙
𝑛

))] ���� = (5.52)√[
2𝑐

𝑚

(
1 − cos

(
𝜋𝑙
𝑛

))
− 𝜔2

𝑖

]
2

+ 4𝜔2

𝑖

𝑘2

𝑚2

(
1 − cos

(
𝜋𝑙
𝑛

))
2

= (5.53)√
𝜔4

𝑖
+ 4

(
1 − cos

(
𝑙𝜋
𝑛

)) [
𝑘2

𝑚2

(
1 − cos

(
𝑙𝜋
𝑛

))
− 𝑐

𝑚

]
𝜔2

𝑖
+

(
2𝑐

𝑚

(
1 − cos

𝜋𝑙
𝑛

))
2

. (5.54)

Since 𝑘 > 0, the absolute value of the denominator is a continuously differentiable

function for any 𝜔𝑖 ∈ R. We can find its minimum value by setting its derivative equal

to zero.

The square-root function’s monotonicity implies that the expression’s minimum value

is attained where the inner fourth-order polynomial is minimized. This polynomial,

being symmetric with a positive coefficient for 𝜔4

𝑖
, suggests two potential outcomes: a

local maximum at 𝜔𝑖 = 0 with symmetric local minima around this point, or a singular

minimum at 𝜔𝑖 = 0. The function’s value increases as it diverges from zero, with the

latter scenario indicating a highly overdamped aperiodic system, which lies beyond the
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5 Escape of multibody systems with different time-scales

Figure 5.3: Illustration of amplification and phase relative to the excitation frequency for a system comprising

𝑛 = 4 particles, with parameters set at 𝑚 = 1, 𝑘 = 0.8, 𝑐 = 1000. The excitation is applied to the second particle

in the chain. Analytically determined peak frequencies as per Eq. (5.56) are indicated by dashed black lines.

Figure adapted from [228]

scope of this study (see Eq. (5.60)). Differentiating the expression within the square root

yields:

4𝜔3

𝑖 + 8

(
1 − cos

(
𝑙𝜋
𝑛

)) (
𝑘2

𝑚2

(
1 − cos

(
𝑙𝜋
𝑛

))
− 𝑐

𝑚

)
𝜔𝑖 = 0, (5.55)

solving which we obtain:

𝜔𝑖 ,12 = ±

√
2

(
1 − cos

(
𝑙𝜋
𝑛

)) (
𝑐

𝑚
− 𝑘2

𝑚2

(
1 − cos

(
𝑙𝜋
𝑛

)))
, (5.56)

𝜔𝑖 ,3 = 0. (5.57)

By substituting values for 𝑙 = 1...𝑛 − 1, we derive analytical approximations for the

resonant frequencies of the chain. A visual representation of a system with particles

𝑛 = 4 is presented in Fig. 5.3.

The frequencies deduced from Eq. (5.56) represent the spectrum at which resonant

responses may be triggered. Nonetheless, excitation at specific nodes does not guarantee

resonant motion for all frequencies, as resonant activity also demands that the numerator
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5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

sin

(
𝑖𝜋𝑙
𝑛

)
sin

(
𝐾𝜋𝑙
𝑛

)
in Eq. (5.51) remains non-zero. For instance, in Fig. 5.3, showing a

system with 𝑛 = 4 and 𝑙 = 2, 𝑦
2
≡ 𝑦3 (therefore, 𝐾 = 2) is not excitable by the second

resonant frequency 𝑖 = 2, due to the numerator becoming null.

Building on Eq. (5.56), we can also approximate the maximum value of the damping

coefficient 𝑘crit, which allows all internal modes of the chain to remain oscillatory. For

all resonant peaks to exist, the condition under the square root for all 𝑙 ∈ {1, . . . , 𝑛 − 1}
must yield a real number, satisfied when:

𝑐

𝑚
>
𝑘2

𝑚2

(
1 − cos

(
𝑙𝜋
𝑛

))
, ∀𝑙 ∈ {1, . . . , 𝑛 − 1}, (5.58)

𝑐𝑚 > 𝑘2

(
1 − cos

(
(𝑛 − 1)𝜋

𝑛

))
= 𝑘2

(
1 + cos

(𝜋
𝑛

))
, (5.59)√

𝑐𝑚

2

>

√
𝑐𝑚

1 + cos
𝜋
𝑛

=: 𝑘crit > 𝑘. (5.60)

The possible values for 𝑛 range from 2 to infinity, placing the critical damping coefficient

within the interval

𝑘crit ∈
(√

𝑐𝑚

2

,
√
𝑐𝑚

]
. (5.61)

Special case: harmonic excitation

Owing to the superposition principle, the simplified linear system in Eq. (5.35), our

primary interest is directed towards the behavior of the 𝑖th body when it undergoes

simple harmonic excitation.

Analytical solutions for 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) are sought in the context of excitation exclusively

by the high-frequency force 𝐹𝑖 ,𝑝 sin

(
Ω𝑖 ,𝑝𝑡 + 𝛽𝑖 ,𝑝

)
. The governing equation for 𝜂 emerges

as an undamped second-order nonlinear differential equation, indicating the absence

of damping and, consequently, never decaying transients. In contrast, the system of

equations that describe 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) approximates a damped linear second-order

differential equation system, where significant damping ensures rapid convergence to a

steady-state solution, as depicted in Eq. (5.49). Under a singular harmonic excitation, the

steady-state solutions 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡) resonate as pure harmonics around the common

center of mass 𝜂(𝑡):

z(𝑡) := x(𝑡) − 𝜂(𝑡)e = Sy(𝑡) − 𝜂(𝑡)e, (5.62)

153



5 Escape of multibody systems with different time-scales

z(𝑡) = 1

𝑛



−(𝑛 − 1) −(𝑛 − 2) . . . −1

1 −(𝑛 − 2) . . . −1

1 2 . . . −1

...
...

. . .
...

1 2 . . . 𝑛 − 1

︸                                       ︷︷                                       ︸
∈R𝑛×(𝑛−1)


𝑦2

𝑦3

...

𝑦𝑛


, (5.63)

where e = [1 1 ... 1]⊤. Through Eq. (5.63), it becomes evident that the components

of z are linear combinations of 𝑦2 , . . . , 𝑦𝑛 , each constituting a sum of 𝑛 − 1 sine functions

with varying amplitudes and phases but sharing the same frequency Ω𝑖 ,𝑝 . To simplify

such sums, the trigonometric identity below is useful:

𝑛∑
𝑖=1

𝐴𝑖 sin(𝜔𝑡 + 𝜑𝑖) = 𝐴 sin(𝜔𝑡 + 𝜑), (5.64)

where

𝐴 =

√√√(
𝑛∑
𝑖=1

𝐴𝑖 cos 𝜑𝑖

)
2

+
(
𝑛∑
𝑖=1

𝐴𝑖 sin 𝜑𝑖

)
2

, (5.65)

𝜑 = atan2

(
𝑛∑
𝑖=1

𝐴𝑖 sin 𝜑𝑖 ,
𝑛∑
𝑖=1

𝐴𝑖 cos 𝜑𝑖

)
, (5.66)

with atan2(𝑦, 𝑥) denoting the two-argument arctangent function, offering precise phase

determination over (−𝜋,𝜋), in contrast to the range of arctan(𝑦/𝑥) limited to (−𝜋/2,𝜋/2).
The amplitude and phase of the harmonic oscillation for the 𝑗th body are efficiently

derived using complex numbers, as established in Eq. (5.45) for Y(𝚥Ω𝑗2):

Z(𝚥Ω𝑗2) = SY(𝚥Ω𝑗2), (5.67)

𝐴𝐾 = |𝑍𝐾(𝚥Ω𝑗2)|, (5.68)

Ψ𝐾 = ∠𝑍𝐾(𝚥Ω𝑗2), (5.69)

𝑧𝐾(𝑡) = 𝐴𝐾 sin

(
Ω𝑗2𝑡 +Ψ𝐾

)
. (5.70)

The relative movements of the particles around the center of mass are harmonic functions

that exhibit distinct amplitudes and phase angles despite sharing a common frequency.

When the system is subject to multiple harmonics simultaneously, due to the linearity

of Eq. (5.35), the relative motions z(𝑡) of the particles around the chain’s center of mass

can be described by the sum of harmonics with frequency components corresponding

to the excitation.
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Given the strong coupling between the particles, it becomes evident that frequencies

exciting the center of mass of the particle chain within the potential well are considerably

lower than those of the internal chain vibrations. This distinction allows for the omission

of low-frequency excitation terms in the calculation of z, as visually represented in Fig.

5.4 within Sect. 5.1.3.

This insight leads to a revisitation of Eq. (5.30), which, for model reduction, employs the

methodology suggested in Sect. 2.3. This approach models high-frequency oscillations

through the classical probability density of the particle positions, offering a simplified

way to capture the system dynamics.

5.1.2 Averaging-based model reduction
The preceding section provided analytic descriptions for the motion of particles around

their common center of mass, which are now incorporated into Eq. (5.30) using Eq.

(5.63), leading to:

¥𝜂 +
∑𝑛
𝑖=1
𝑉′(𝜂 + 𝑧𝑖(𝑡))
𝑛

=

∑𝑛
𝑖=1
𝐹𝑖(𝑡)

𝑛𝑚
. (5.71)

Because 𝑧𝑖(𝑡) and 𝐹𝑖 ,𝑝 sin

(
Ω𝑖 ,𝑝𝑡 + 𝛽𝑖 ,𝑝

)
are ’fast’ variables, the equation is averaged to

isolate the ’slow’ dynamics, introducing 𝜉 := ⟨𝜂⟩ to signify the averaged position of the

center of mass. The ’fast’ harmonic forces average out, yielding:

¥𝜉 +
〈∑𝑛

𝑖=1
𝑉′(𝜉 + 𝑧𝑖(𝑡))
𝑛

〉
=

∑𝑛
𝑖=1
𝐹𝑖 ,0 sin(Ω0𝑡 + 𝛽𝑖 ,0)

𝑛𝑚
. (5.72)

Application of Eq. (5.64) further reduces Eq. (5.72) to:

¥𝜉 +
〈∑𝑛

𝑖=1
𝑉′(𝜉 + 𝑧𝑖(𝑡))
𝑛

〉
= 𝐹0 sin(Ω0𝑡 + 𝛽0), (5.73)

where

𝐹0 : =

√(∑𝑛
𝑖=1
𝐹𝑖 ,0 cos 𝛽𝑖 ,0

)
2 +

(∑𝑛
𝑖=1
𝐹𝑖 ,0 sin 𝛽𝑖 ,0

)
2

𝑛𝑚
, (5.74)

𝛽0 : = atan2

(
𝑛∑
𝑖=1

𝐹𝑖 ,0 sin 𝛽𝑖 ,0 ,
𝑛∑
𝑖=1

𝐹𝑖 ,0 cos 𝛽𝑖 ,0

)
. (5.75)

Averaging the left side of Eq. (5.72) demands a more nuanced approach. Sect. 2.3

elucidates that the time average of the function 𝑓 (𝑥 + 𝑔(𝑡)), with 𝑔(𝑡) as the ’fast’

variable, is obtainable not only through time integration but also through a cross-
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correlation integral with 𝑓 (𝑥) and the classical probability density (CPD) 𝜌(𝑥) of 𝑔(𝑡), as

demonstrated in Theorem 2.3.3:

⟨ 𝑓 (𝑥 + 𝑔(𝑡))⟩ = 1

𝑇

∫ 𝑇

0

𝑓 (𝑥 + 𝑔(𝑡))d𝑡 =
∫ ∞

−∞
𝑓 (𝑦)𝜌(𝑦 − 𝑥)d𝑦. (5.76)

Moreover, based on Theorem 2.3.6, the averaged function can be represented through

the moments of 𝜌(𝑥) for analytic functions, via:

⟨ 𝑓 (𝑥 + 𝑔(𝑡))⟩ =
∫ ∞

−∞
𝑓 (𝑦)𝜌(𝑦 − 𝑥)d𝑦 =

∞∑
𝐾=0

𝑚𝐾

𝑓 (𝐾)(𝑥)
𝐾!

. (5.77)

Here, 𝑚𝐾 denotes the 𝐾th
moment of 𝜌(𝑥). This formula is applicable, provided the

support of 𝜌(𝑥) is within the convergence radius of the Taylor series expansion for 𝑓 (𝑥).
Consequently, once the moments of the ’fast’ variables 𝑧𝑖(𝑡) are determined, averaging

Eq. (5.73) becomes more straightforward, particularly when 𝑓 (𝑥) is a polynomial,

necessitating only the computation of a finite number of moments.

For a rigorous understanding of the CPD and the derivation of CPDs of various functions,

one can consult the works of [227] and [166].

The zeroth moment of any CPD is always one. In the specific context of our study, where

𝑧𝑖(𝑡) represents a polyharmonic function, the superposition of multiple harmonics, it

is possible under certain conditions to determine the moments of this polyharmonic

summation. The probability density function (PDF) for a composite of independent

variables is obtained by convolution of their respective PDFs [43]. CPDs, akin to PDFs,

are nonnegative and integrate to one, yet they conceptually differ fundamentally. CPDs

abstract away from the precise timing of particle positions, instead focusing on the spatial

distribution by considering the duration a particle occupies a specific position. PDFs,

on the other hand, are used to describe random variables. Theorem 2.3.8 elucidates an

analytical approach to determine the CPD for polyharmonic functions.

Integrating Eq. (5.77) with Theorem 2.3.11 facilitates the derivation of the effective

restoring force in Eq. (5.73). While solving Eq. (5.77) can generally pose challenges or

require numerical approaches; the scenario simplifies for polynomial potentials 𝑉(𝑥),
allowing straightforward, even analytic solutions.

This methodology completes the reduction of the initially 𝑛 degree-of-freedom (DoF)

system to a single DoF system, under the condition that the ’fast’ excitation frequencies

Ω𝑖 ,𝑝 are linearly independent over Q. Fig. 5.5 illustrates the difference in CPDs for

commensurable versus incommensurable frequencies 𝜔1 and 𝜔2, showcasing the effects

of commensurability on the CPD.

Subsequent sections will highlight examples that underscore the applicability of the

discussed analytic results. After reducing the system to a single DoF, the literature offers
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5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

various methodologies for further analyzing the escape behavior of the system [221, 67,

68, 88, 95]. The emphasis here will thus be on the reduction process rather than delving

into the specific analytical methods applicable to 1 DoF escape problems in conservative

systems.

5.1.3 Example
We examine an illustrative case where the number of particles is 𝑛 = 3, and the potential

is a quadratic-quartic polynomial given by

𝑉(𝑥) = 1

2

𝑥2 − 1

4

𝑥4. (5.78)

We assume that the masses, damping, and stiffness coefficients are identical. Further,

we assume that the stiffness is large and the damping is non-negligible. Thus, we can

assume without loss of generality that 𝑚 = 1. The equations of motion are expressed as
¥𝑥
1

¥𝑥
2

¥𝑥
3

 +

𝑘 −𝑘 0

−𝑘 2𝑘 −𝑘
0 −𝑘 𝑘



¤𝑥
1

¤𝑥
2

¤𝑥
3

 +

𝑐 −𝑐 0

−𝑐 2𝑐 −𝑐
0 −𝑐 𝑐



𝑥

1

𝑥
2

𝑥
3

 +

𝑉′(𝑥

1
)

𝑉′(𝑥
2
)

𝑉′(𝑥
3
)

 =


𝐹

1,0 sin (Ω0
𝑡 + 𝛽

0)
𝐹

2,1 sin (Ω2
𝑡 + 𝛽

2)
𝐹

3,1 sin (Ω3
𝑡 + 𝛽

3)

︸                    ︷︷                    ︸
=:


𝐹

1
(𝑡)

𝐹
2
(𝑡)

𝐹
3
(𝑡)



.

(5.79)

Here, Ω0 ≈ 1 represents a low frequency, whereas Ω2 and Ω3 signify high frequencies,

exciting the chain’s internal vibrational modes. The transformation to new coordinates,

specifically the center of mass and relative displacements, is given as


𝜂

𝑦2

𝑦3

 =


1

3

1

3

1

3

−1 1 0

0 −1 1



𝑥1

𝑥2

𝑥3

 . (5.80)

Accordingly, the differential equations in these new coordinates are reformulated as

¥𝜂 +
𝑉′(𝜂 − 2

3
𝑦

2
− 1

3
𝑦

3
) +𝑉′(𝜂 + 1

3
𝑦

2
− 1

3
𝑦

3
) +𝑉′(𝜂 + 1

3
𝑦

2
+ 2

3
𝑦

3
)

3

=

∑
3

𝑖=1
𝐹𝑖(𝑡)

3

, (5.81)

and in a more succinct form

¥𝜂 +
∑

3

𝑖=1
𝑉′(𝜂 + 𝑧𝑖(𝑡))

3

=

∑
3

𝑖=1
𝐹𝑖(𝑡)

3

, (5.82)
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5 Escape of multibody systems with different time-scales

where 𝑧𝑖 := 𝑥𝑖 − 𝜂. The equations that describe the relative motions are

[
¥𝑦2

¥𝑦3

]
+

[
2𝑘 −𝑘
−𝑘 2𝑘

] [
¤𝑦2

¤𝑦3

]
+

[
2𝑐 −𝑐
−𝑐 2𝑐

] [
𝑦2

𝑦3

]
+

[
𝑉′(𝑥2) −𝑉′(𝑥1)
𝑉′(𝑥3) −𝑉′(𝑥2)

]
︸                ︷︷                ︸

negligible

=


𝐹2(𝑡) − 𝐹1(𝑡)︸︷︷︸

negligible

𝐹3(𝑡) − 𝐹2(𝑡)

 ,
(5.83)

indicating that in Eq. (5.83), the forces due to potential and low-frequency excitation

are minimal compared to the spring forces, making them negligible. The linearized

equation system’s Laplace transform is given by[
𝑠2 + 2𝑘𝑠 + 2𝑐 −𝑘𝑠 − 𝑐

−𝑘𝑠 − 𝑐 𝑠2 + 2𝑘𝑠 + 2𝑐

]
︸                                  ︷︷                                  ︸

=:A(𝑠)

[
𝑌2(𝑠)
𝑌3(𝑠)

]
= F(𝑠), (5.84)

where F(s) denotes the Fourier transform of the excitations. The inverse of matrix A(𝑠)
is computed as

A−1(𝑠) = 1

(𝑠2 + 𝑘𝑠 + 𝑐)(𝑠2 + 3𝑘𝑠 + 3𝑐)

[
𝑠2 + 2𝑘𝑠 + 2𝑐 𝑘𝑠 + 𝑐

𝑘𝑠 + 𝑐 𝑠2 + 2𝑘𝑠 + 2𝑐

]
. (5.85)

For ease of calculation, the functions are defined by

𝐺𝑙(𝑠) := 𝑠2 + 𝑙𝑘𝑠 + 𝑙𝑐 for 𝑙 ∈ {1, 2, 3}, (5.86)

𝐺0(𝑠) := 𝑘𝑠 + 𝑐. (5.87)

The transfer function is derived by setting 𝑠 = 𝚥𝜔, which allows us to reformulate Eqs.

(5.86)-(5.87) as follows:

𝐺𝑙(𝚥𝜔) = −𝜔2 + 𝑙𝑐 + 𝚥𝜔𝑙𝑘 =
√
(−𝜔2 + 𝑙𝑐)2 + 𝜔2𝑙2𝑘2

exp

(
𝚥 arctan

𝜔𝑙𝑘

−𝜔2 + 𝑙𝑐

)
,

(5.88)

𝐺0(𝚥𝜔) = 𝑐 − 𝚥𝜔𝑘 =
√
𝑐2 + 𝜔2𝑘2

exp

(
𝚥 arctan

−𝜔𝑘
𝑐

)
, (5.89)

leading to

G(𝚥𝜔) = 1

𝐺1(𝚥𝜔)𝐺3(𝚥𝜔)

[
𝐺2(𝚥𝜔) 𝐺0(𝚥𝜔)
𝐺0(𝚥𝜔) 𝐺2(𝚥𝜔)

]
. (5.90)
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Resonance frequencies are anticipated around the values

𝜔
1,peak

=

√
𝑐 − 𝑘2

2

and 𝜔
2,peak

=

√
3

(
𝑐 − 3𝑘2

2

)
. (5.91)

We define the high-frequency excitation values as

Ω2 = 𝜔
2,peak

, (5.92)

Ω3 = 𝜔
1,peak

. (5.93)

The amplitude and phase of the stationary solutions for 𝐹2(𝑡) are determined by[
𝑌2,2

𝑌3,2

]
=

1

𝐺1(𝚥Ω2)𝐺3(𝚥Ω2)

[
𝐺2(𝚥Ω2) 𝐺0(𝚥Ω2)
𝐺0(𝚥Ω2) 𝐺2(𝚥Ω2)

] [
𝐹2𝑒

𝚥𝛽2

−𝐹2𝑒
𝚥𝛽2

]
. (5.94)

Using the identity 𝐺2(𝚥𝜔) − 𝐺0(𝚥𝜔) = 𝐺1(𝚥𝜔), Eq. (5.94) simplifies to[
𝑌2,2

𝑌3,2

]
=

1

𝐺3(𝚥Ω2)

[
1

−1

]
𝐹2𝑒

𝚥𝛽2 , (5.95)[
𝑌2,2

𝑌3,2

]
=

2

√
3𝐹2

9𝑘
√

4𝑐 − 3𝑘2

𝑒
𝚥

(
𝛽2−arctan

(√
12𝑐−18𝑘2

3𝑘

)) [
1

−1

]
, (5.96)

with Eq. (5.96) derived by substituting Eq. (5.92).

Likewise, the stationary solution for 𝐹3(𝑡) is derived as[
𝑌2,3

𝑌3,3

]
=

1

𝐺1(𝚥Ω3)𝐺3(𝚥Ω3)

[
𝐺0(𝚥Ω3)
𝐺2(𝚥Ω3)

]
𝐹3𝑒

𝚥𝛽3 . (5.97)

Substituting Eq. (5.93) in Eq. (5.97) gives[
𝑌2,3

𝑌3,3

]
=

2𝐹3𝑒
𝚥(𝛽3−𝛾1−𝛾3)

𝑘
√

4𝑐 − 𝑘2

√
16𝑐2 + 44𝑐𝑘2 − 17𝑘4

[ √
4𝑐2 + 4𝑐𝑘2 − 2𝑘4𝑒 𝚥𝛾0

√
4𝑐2 + 20𝑐𝑘2 − 7𝑘4𝑒 𝚥𝛾2

]
, (5.98)

where

𝛾0 := arctan ∠𝐺0(𝚥𝜔1,peak
) = arctan

(
𝑘
√

4𝑐 − 2𝑘2

2𝑐

)
, (5.99)

𝛾𝑙 := arctan ∠𝐺𝑙(𝚥𝜔1,peak
) = arctan

(
𝑙𝑘
√

4𝑐 − 2𝑘2

(2𝑙 − 2)𝑐 + 𝑘2

)
for 𝑙 ∈ {1, 2, 3}. (5.100)
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5 Escape of multibody systems with different time-scales

Figure 5.4: Comparison of the numerical solution of 𝑧1(𝑡) with the analytic one for 𝑛 = 3, 𝑚 = 1, 𝑘 = 3,

𝑐 = 10000, 𝐹0 = 0.33, 𝐹2 = 200, 𝐹3 = 100, Ω0=1,Ω2 =

√
3(𝑐 − 3𝑘2

2
), Ω3 =

√
𝑐 − 𝑘2

2
, 𝛽0 = 𝛽2 = 𝛽3 = 𝜋

2
. Figure

adapted from [228]

Utilizing the complex amplitudes𝑌2,2 . . . 𝑌3,3, the steady-state solutions can be expressed

as

𝑦2(𝑡) = |𝑌2,2 | sin (𝜔2,Peak
𝑡 + ∠𝑌2,2) + |𝑌2,3 | sin (𝜔1,Peak

𝑡 + ∠𝑌2,3) , (5.101)

𝑦3(𝑡) = |𝑌3,2 | sin (𝜔2,Peak
𝑡 + ∠𝑌3,2) + |𝑌3,3 | sin (𝜔1,Peak

𝑡 + ∠𝑌3,3) . (5.102)

The oscillatory motion of the particles around their center of mass is represented by

𝑧1(𝑡) = −2

3

𝑦2(𝑡) −
1

3

𝑦3(𝑡) = 𝑍1,1 sin(𝜔1,Peak
𝑡 + 𝜁1,1) + 𝑍1,2 sin(𝜔2,Peak

𝑡 + 𝜁1,2),
(5.103)

𝑧2(𝑡) =
1

3

𝑦2(𝑡) −
1

3

𝑦3(𝑡) = 𝑍2,1 sin(𝜔1,Peak
𝑡 + 𝜁2,1) + 𝑍2,2 sin(𝜔2,Peak

𝑡 + 𝜁2,2),
(5.104)

𝑧3(𝑡) =
1

3

𝑦2(𝑡) +
2

3

𝑦3(𝑡) = 𝑍3,1 sin(𝜔1,Peak
𝑡 + 𝜁3,1) + 𝑍3,2 sin(𝜔2,Peak

𝑡 + 𝜁3,2),
(5.105)

where 𝑍1,1 . . . 𝑍3,2 and 𝜁1,1 . . . 𝜁3,2 are determined via Eqs. (5.64-5.66). Consequently,

the particles’ movements relative to their center of mass are characterized by biharmonic

functions. Given that 𝜔
1,Peak

and 𝜔
2,Peak

are irrationally related, implying their linear

independence over Q, Theorem 2.3.8 is applicable for calculating the moments of the

fast variable’s CPD.

The motion described by 𝑧𝑙 with 𝑙 ∈ {1, 2, 3} is biharmonic. According to [227], for a

function 𝑓 (𝑡) = 𝐴1 sin(𝜔1𝑡 + 𝛽1) + 𝐴2 sin(𝜔2𝑡 + 𝛽2) with 𝜔1 and 𝜔2 being incommensu-

rable and 𝐴1 ≥ 𝐴2 (without loss of generality), the CPD can be derived analytically. In

160



5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

our polynomial case, only the first moments are required. By employing Theorem 2.3.11

with 𝑃 = 2, we derive

𝑚𝐾 =

©­­­«
∑

(∑
2

𝑗=1
𝑗𝑖

)
=𝐾

2∏
𝑗=1

𝑚 𝑗 , 𝑗𝑖

𝑗𝑖 !

ª®®®¬𝐾!, (5.106)

with 𝑚 𝑗 ,1 and 𝑚 𝑗 ,2 elucidated by Eq. (2.66). The first few moments are as follows:

𝑚0 = 1, (5.107)

𝑚1 = 𝑚3 = 𝑚5 = 0, (5.108)

𝑚2 =
𝐴2

1
+ 𝐴2

2

2

, (5.109)

𝑚4 =
3

8

𝐴4

1
+ 3

2

𝐴2

1
𝐴2

2
+ 3

8

𝐴4

2
. (5.110)

Therefore, the corresponding moments for 𝑧𝑙 are computed by substituting 𝐴1 and 𝐴2

with 𝑍𝑙 ,1 and 𝑍𝑙 ,2, respectively.

Let the average center of mass be denoted by 𝜉 = ⟨𝜂⟩. In Eq. (5.82), the terms necessitating

averaging are 𝑉′(𝜂 + 𝑧𝑙(𝑡)) for 𝑙 ∈ {1, 2, 3}. Using Eq. (5.77), the average calculations

for analytic functions 𝑓 (𝑥), such as in Eq. (5.78), can be simplified through a series

expansion. Thus, we obtain

⟨𝑉′(𝜂 + 𝑧𝑙(𝑡))⟩ = 𝑚0𝑉
′(𝜂) + 𝑚1︸︷︷︸

=0

𝑉′′(𝜂) +
𝑚2𝑉

′′′(𝜂)
2

+ . . .︸︷︷︸
=0

(5.111)

= (1 − 3𝑚2)𝜂 − 𝜂3 =

(
1 − 3

𝑍2

1,𝑙
+ 𝑍2

2,𝑙

2

)
𝜂 − 𝜂3 , (5.112)

where terms beyond 𝑚4 are null due to 𝑉 (𝑘)(𝑥) = 0 for 𝑘 ≥ 4. Incorporating this result

into Eq. (5.82), we deduce

¥𝜉 +
©­­­­«
1 −

∑
3

𝑙=1
𝑍2

1,𝑙
+ 𝑍2

2,𝑙

2︸             ︷︷             ︸
=:𝑑

ª®®®®¬
𝜉 − 𝜉3 =

𝐹1,0 sin (Ω0𝑡 + 𝛽0)
3

, (5.113)

¥𝜉 + 𝜔2

𝑑
𝜉 − 𝜉3 =

𝐹1,0 sin (Ω0𝑡 + 𝛽0)
3

. (5.114)
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In this context, 𝑑 is defined as a detuning parameter, which is affected by various

underlying elements that lead to steady-state oscillations around the center of mass,

indicated by 𝑧1(𝑡), 𝑧2(𝑡), and 𝑧3(𝑡). The equation reflects the dynamics of an individual

particle subjected to harmonic forcing, although the system’s linear eigenfrequency is

adjusted to 𝜔𝑑 =
√

1 − 𝑑.

By introducing suitable dimensionless time and space variables

𝜏 := 𝜔𝑑𝑡 , 𝜒 :=
𝜉
𝜔𝑑

, (5.115)

we derive

𝜒′′ + 𝜒 − 𝜒3 = 𝐹 sin(Ω𝜏 + 𝛽0), (5.116)

accompanied by

𝐹 :=
𝐹1,0

3𝜔3

𝑑

, Ω :=
Ω0

𝜔𝑑
, (5.117)

where □′ symbolizes differentiation in terms of 𝜏.

The equation given by (5.118) has received considerable attention in scholarly discussions

[68, 88, 89, 95, 96], and as such, it will not be elaborated upon further in this work.

In the following section, we perform numerical analysis to compare the ’slow’ dynamics

of the direct integration of Eq. (5.79) with the reduced system dynamics given by Eq.

(5.118).

5.1.4 Numerical Evaluation
The subsequent sections detail a numerical comparison between the original 3 DoF

system and its simplified 1 DoF counterpart. This comparison involves computing the

escape time within a defined parameter space for Ω0 and 𝐹1,0. The simulation employs

nondimensional parameters as follows: 𝑛 = 3, 𝑚 = 1, 𝑘 = 3, 𝑐 = 10000, 𝐹2 = 200,

𝐹3 = 100, Ω2 =

√
3(𝑐 − 3𝑘2

2
), Ω3 =

√
𝑐 − 𝑘2

2
, and 𝛽0 = 𝛽2 = 𝛽3 = 𝜋

2
.

Utilizing these parameters, the simplified model is expressed by

¥𝜉1 + 0.9668 𝜉 − 𝜉3 =
𝐹0

3

. (5.118)

This equation is derived by incorporating the influence of internal chain vibrations on

its center of mass. A simplistic approach might ignore the effects of internal vibrations,

but such an oversimplification results in inaccuracies, as evidenced in Fig. 5.5b. This

figure contrasts the time evolution of both the original 3 DoF model (given by Eq. (5.79))
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5.1 Escape of an 𝑛-particle chain from a potential under polyharmonic excitation

(a) Reduced model considers the effect of internal ’fast’ vibrations, resulting in the detuning parameter

𝑑 = 0.0332. The reduced model follows the original dynamics reasonably well

(b) Naive model with 𝑑 = 0. The inaccuracy of the naively reduced model is evident

Figure 5.5: Comparative time evolution between the full 3 DoF model (cf. Eq. (5.79)) and the reduced 1 DoF

models (naive and averaging-based ones) under 𝐹0 = 0.33, Ω0 = 1, and 𝛽0 = 0 with homogeneous initial

conditions. The parameters of the full model are as described in the main text. Figures adapted from [228]

and the overly simplified model (given by Eq. (5.118) with setting 𝑑 = 0), with excitation

𝐹0 = 0.33, Ω0 = 1, 𝛽0 = 0, and homogeneous initial conditions. On the contrary, Fig.

5.5a shows the time evolution of both the original and the model reduced by averaging,

revealing a more accurate match.

Through Melnikov analysis, it has previously been established that before escape in

a quadratic-cubic potential, chaotic motion may occur [175, 200]. It is plausible to

extend this understanding to a quadratic-quartic potential. Such dynamics hint at a

fractal boundary delineating the escaping and nonescaping regions. Within this chaotic

domain, slight changes in initial conditions or model inaccuracies significantly affect

the system. Therefore, predicting exact escape times using a simplified model becomes

practically impossible within the chaotic boundary region. However, the reduced model

can provide precise results outside this chaotic zone. A parameter study explored

this theory, setting the Ω0 range between 0.6 and 1.2 and 𝐹0 between 0 and 1. This

examination also compares the performance of the averaging method against a naive

approach that ignores internal chain vibrations. Fig. 5.6 presents the escape times
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5 Escape of multibody systems with different time-scales

(a) Original model escape times (b) Absolute error in escape

times, reduced vs. original

(c) Absolute error in escape times, naive

vs. original

Figure 5.6: Validation of models: (a) shows escape times for the original system by varying 𝐹0 and Ω0 under

uniform initial conditions. (b) shows the absolute error in the escape time between the original and reduced

models, which incorporates a detuning factor of 𝑑 = 0.0332. (c) illustrates the discrepancy from a naive model

reduction that omits internal vibration effects, meaning 𝑑 = 0. This oversimplification reveals a marked shift in

the escape boundary’s frequency and force amplitude, as deduced from Eq. (5.117), while the model reduced

by averaging shows a better alignment with the original model. Parameters not explicitly mentioned here are

as specified in the main text. Figures adapted from [228]

for the original model (cf. Fig. 5.6a), along with the absolute errors from both the

averaging-based method (cf. Fig. 5.6b) and the naive approach (cf. Fig. 5.6c). The naive

approach notably shifts the V-shaped escape boundary, underscoring that disregarding

internal vibrations yields an imprecise reduced model. This boundary shift is aligned

with the predictions of Eq. (5.117).

The stiffness of the reduced differential equation is significantly smaller than that of the

original equations, leading to a drastic enhancement in computational efficiency and

a significant reduction in simulation duration for the provided example. Specifically,

the computational cost was reduced by 99.75%, highlighting the efficiency of the model

reduction process.

5.1.5 Discussion
This study has introduced a method to reduce the complexity of the dynamics of strongly

coupled chains of 𝑛 particles under external excitation in a potential well. By exploiting

the discrepancy in frequency scales between the chain’s rapid internal oscillations and

the ’slow’ movement of the center of mass within the potential well, the introduced

method achieves a significant model simplification from 𝑛 DoF to 1 DoF.

The original model accommodates polyharmonic excitation that excites all particles,

provided that it also comprises a singular low frequency. Thus, it ensures that not only

high-frequency internal vibrations are excited but also the chain’s center of mass in the

potential well.
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The model includes non-negligible damping forces between the particles, facilitating the

quick dissipation of transient, high-frequency movements. This setup allows for direct

analytical determination of the fast vibratory states, assuming that the potential-induced

forces are negligible compared to those of linear springs. As a result, the fast relative

movements are identified as time-dependent functions within the nonlinear differential

equation that models the motion of the chain’s center of mass. The cumulative effect of

these rapid oscillations on the motion of the center of mass is estimated by averaging

with reasonable accuracy.

An example involving a triharmonic force exciting a three-particle chain within a

quadratic-quartic potential well illustrates the reduction process. Analytical reduction is

complemented by numerical validation through escape time calculations across various

excitation forces and frequencies. For the selected quadratic-quartic potential, the

high-frequency excitation’s effect is primarily observed as a detuning of the potential’s

linearized natural frequency, facilitating the application of several preexisting analytical

techniques.

5.1.6 Conclusions and future research directions
The approach to model reduction presented here shows two primary benefits. First,

it elucidates the ’slow’ dynamics and the underlying ’slow’ force fields governing the

system. Second, it yields a significant reduction in computational costs. In the presented

case of a three-particle system, we observed a 99.75% decrease in the simulation time.

This advantage is expected to grow as the system expands to include more particles

with intensified interactions, which complicates the differential equation system and

increases its stiffness, thereby emphasizing the importance of model reduction.

Looking ahead, there are multiple avenues to expand this research. One potential

direction involves applying the reduction techniques to more complicated potential

wells that deviate from polynomial expressions to evaluate the versatility of the current

methodologies. Another exciting area is the exploration of different excitation models,

including stochastic or dynamically varying forces, to assess their impact on the system’s

slow dynamics and computational load.

Further investigations could also focus on the model’s scalability with an increased

particle count and more complex interaction dynamics. Specifically, determining

the computational benefits in more rigid systems would be enlightening. Given the

significant time savings demonstrated in the example of three particles, developing a

scaling principle to predict computational savings in larger configurations might be

feasible.

Expanding the model to include two- and three-dimensional potential wells represents

another promising research domain.
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An alternative research path may explore scenarios without damping among particles.

This condition is vital for its potential implications on the model’s precision and efficacy,

especially considering how the absence of transient decay might affect the results.

Lastly, investigating the dynamics of particle chains with nonlinear interparticle cou-

plings could provide valuable insights. This exploration would aim to understand how

increasing system complexity impacts the slow and rapid dynamics, offering a more

nuanced view of the model’s applicability and potential limitations.
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5.2 Escape of a chain of two colliding particles from a
potential under biharmonic excitation

The following section will extend the particle chain model with collision. We will

investigate the escape dynamics of a pair of strongly coupled particles in a potential well

under bi-harmonic excitation. The text and figures of this section have been adapted

from [222].

5.2.1 Description of the model
We analyze the scenario presented in Fig. 5.7. This analysis involves a system where

two particles with masses 𝑚1 and 𝑚2 undergo bi-harmonic excitation within a one-

dimensional quadratic potential well. The particles are connected by a stiff linear spring,

characterized by a large stiffness coefficient 𝑐, and are damped by a viscous damper

with a damping coefficient 𝑘 of the order 𝒪(1). For each particle, the potential wells are

distinct and expressed as 𝑉1(𝑥) = 𝑚1𝑉(𝑥) for the first particle and 𝑉2(𝑥) = 𝑚2𝑉(𝑥) for

the second, with masses 𝑚1 and 𝑚2 being of order 𝒪(1). 𝑉(𝑥) is not specified explicitly

but shall fulfill all requirements of a potential described in Sect. 5.1. The system is

subjected to driving forces 𝐹1(𝑡) and 𝐹2(𝑡). The design ensures that the particles do not

pass through each other and interact once they reach a separation of Δ := 𝑟1 + 𝑟2. The

collision at this point is nearly perfectly elastic, denoted by 𝑅 ≈ 1.

The equations governing the particles’ movement are:[
𝑚

1
0

0 𝑚
2

] [
¥𝑥
1

¥𝑥
2

]
+

[
𝑘 −𝑘
−𝑘 𝑘

] [
¤𝑥
1

¤𝑥
2

]
+

[
𝑐 −𝑐
−𝑐 𝑐

] [
𝑥

1

𝑥
2

]
+

[
𝑚

1
𝑉′(𝑥

1
)

𝑚
2
𝑉′(𝑥

2
)

]
=

[
𝐹

1
(𝜏)

𝐹
2
(𝜏)

]
, if 𝑥

1
+ Δ < 𝑥

2
,

𝑥
1+ = 𝑥

1− , if 𝑥
1
+ Δ = 𝑥

2
,

𝑥
2+ = 𝑥

2− , (5.119)

¤𝑥
1+ =

𝑅𝑚
2
( ¤𝑥

2− − ¤𝑥
1−) + 𝑚1

¤𝑥
1− + 𝑚

2
¤𝑥
2−

𝑚
1
+ 𝑚

2

,

¤𝑥
2+ =

𝑅𝑚
1
( ¤𝑥

1− − ¤𝑥
2−) + 𝑚1

¤𝑥
1− + 𝑚

2
¤𝑥
2−

𝑚
1
+ 𝑚

2

.

The excitation in this study is configured as follows to stimulate both the center of mass

motion in the well (Ω11) and the relative motion between particles (Ω12):

𝐹1(𝜏) = 𝐹11 sin(Ω11𝜏 + 𝛽11) + 𝐹12 sin(Ω12𝜏 + 𝛽12), (5.120)

𝐹2(𝜏) = 0. (5.121)
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Figure 5.7: Illustration of the collision problem in a potential well influenced by harmonic excitation

The physical coordinates 𝑥1 and 𝑥2 undergo a linear transformation to new variables

𝑦1 :=
𝑚1𝑥1 + 𝑚2𝑥2

𝑚1 + 𝑚2

, 𝑦2 := 𝑥2 − 𝑥1 , (5.122)

where 𝑦1 signifies the center of mass motion and 𝑦2 represents the relative particle

distance greater than or equal to Δ during the oscillations. Incorporating the inverse

transformation into Eq. (5.119) yields

¥𝑦1+𝜇𝑉′ (𝑦1 − (1 − 𝜇)𝑦2) + (1 − 𝜇)𝑉′ (𝑦1 + 𝜇𝑦2)

=
1

𝑚1 + 𝑚2

(𝐹11 sin(Ω11𝜏 + 𝛽11) + 𝐹12 sin(Ω12𝜏 + 𝛽12)) if 𝑦2 > Δ, (5.123)

𝑦1+ = 𝑦1− , if 𝑦2 = Δ,

¤𝑦1+ = ¤𝑦1− ,

¥𝑦2+
𝑘

𝑚
¤𝑦2 +

𝑐

𝑚
𝑦2 +𝑉′ (𝑦1 + 𝜇𝑦2) −𝑉′ (𝑦1 − (1 − 𝜇)𝑦2)︸                                       ︷︷                                       ︸

minor coupling term of 𝒪(1) as
𝑐
𝑚≫𝑉′(𝑥)

= −𝐹11

𝑚1

sin(Ω11𝜏 + 𝛽11) −
𝐹12

𝑚1

sin(Ω12𝜏 + 𝛽12) if 𝑦2 > Δ, (5.124)

𝑦2+ = 𝑦2− , if 𝑦2 = Δ,

¤𝑦2+ = −𝑅 ¤𝑦2− ,

with

1

𝑚
:=

1

𝑚1

+ 1

𝑚2

, 𝜇 :=
𝑚1

𝑚1 + 𝑚2

. (5.125)
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This reformulation demonstrates that Eq. (5.124) is coupled to Eq. (5.123) via a small

and negligible term (cf. Sect. 5.1). However, the coupling in the other direction is

non-negligible. Thus, Eq. (5.124) can be simplified to a linear equation, facilitating

straightforward solutions.

¥𝑦2 +
𝑘

𝑚
¤𝑦2 +

𝑐

𝑚
𝑦2 = −𝐹11

𝑚1

sin(Ω11𝜏 + 𝛽11)

− 𝐹12

𝑚1

sin(Ω12𝜏 + 𝛽12) if 𝑦2 > Δ, (5.126)

𝑦2+ = 𝑦2− , if 𝑦2 = Δ

¤𝑦2+ = 𝑅𝑦2− ,

The resonant frequency of 𝑦2 without taking into account the collisions is

Ω02 =

√
𝑐

𝑚
− 𝑘2

2𝑚2

. (5.127)

Assuming that the excitation frequency Ω12 is at least as large as Ω02 and Ω11 ≪ Ω02, Eq.

(5.124) describes primarily ’fast’ motions, while Eq. (5.123) describes the ’slow’ motion.

Given that the damping ratio 𝑘/𝑚 is nonsmall, the homogeneous part of the solution

decays rapidly from the ’slow’ motion’s perspective, rendering the particular solution

the significant one, as in [61, 62].

Due to collisions, Ω02 is not a resonant frequency of the ’fast’ subsystem.

To obtain the ’fast’ motion and the resonant frequencies of the ’fast’ subsystem, a

preliminary analysis based on [60] must be performed.

5.2.2 Resonance of the colliding particles under high-frequency
excitation

Fidlin already analyzed the resonance frequencies of Eq. (5.126) in Chapter 3.5 of [60].

Although this section reiterates much of the book’s discussion, a slight deviation in the

outcome is noted here because of a typographical error within the source material.

Before taking advantage of the results of [60], a necessary initial step involves transform-

ing the coordinates to standardize the coefficient of 𝑦2 in Eq. (5.126) to unity.

Defining a new, dimensionless time scale 𝑡 = 𝜔0𝜏, where 𝜔0 =
√
𝑐/𝑚, enables the

expression of dimensionless time derivatives as

¤𝑦2 =
d𝑦2

d𝜏
= 𝜔0

d𝑦2

d𝑡
= 𝜔0𝑦

′
2
, (5.128)

¥𝑦2 =
d

2𝑦2

d𝜏2

= 𝜔2

0

d
2𝑦2

d𝑡2
= 𝜔2

0
𝑦′′

2
, (5.129)
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with the prime (’) indicating derivatives with respect to the dimensionless time. Thus,

Eq. (5.126) rewritten in dimensionless time appears as

𝑦′′
2
+ 𝑘

𝜔0𝑚
𝑦′

2
+ 𝑦2 = − 𝐹11

𝑚1𝜔2

0

sin

(
Ω11

𝜔0

𝑡 + 𝛽11

)
︸                          ︷︷                          ︸

negligible

− 𝐹12

𝑚1𝜔2

0

sin

(
Ω12

𝜔0

𝑡 + 𝛽12

)
. (5.130)

Setting Ω11 near Ω01 = 1 minimizes the first term’s impact on 𝑦2. By establishing the

parameters

𝛽 :=
𝑘

𝜔0𝑚
, 𝜀 :=

𝐹12

𝑚1𝜔2

0

, 𝜔 :=
Ω12

𝜔0

, (5.131)

Eq. (5.130) simplifies to

𝑦′′
2
+ 𝛽𝑦′

2
+ 𝑦2 = −𝜀 sin(𝜔𝑡 + 𝛽12), if 𝑦2 > Δ, (5.132)

𝑦2+ = 𝑦2− , if 𝑦2 = Δ (5.133)

𝑦′
2+ = −𝑅𝑦′

2−. (5.134)

Applying the ’unfolding transformation’

𝑦2 = |𝑧 | + Δ, (5.135)

lets us transcribe Eq. (5.132) into

𝑧′′ + 𝛽𝑧′ + 𝑧 = (−Δ − 𝜀 sin(𝜔𝑡 + 𝛽12)) sgn(𝑧) if 𝑧 ≠ 0, (5.136)

𝑧′+ − 𝑧′− = −(1 − 𝑅)𝑧′− if 𝑧 = 0. (5.137)

Employing the Van der Pol transformation

𝑧 = 𝐴 sin 𝜑, 𝑧′ = 𝐴 cos 𝜑, (5.138)

and defining the uniformly rotating phase

𝜓 = 𝜔𝑡 + 𝛽12 , (5.139)

allows for rewriting Eq. (5.136) as

𝐴′ = −𝛽𝐴 cos
2 𝜑 + (−Δ − 𝜀 sin𝜓) cos 𝜑 sgn(sin 𝜑) if 𝜑 ≠ 𝑛𝜋,

𝐴+ − 𝐴− = −(1 − 𝑅)𝐴− if 𝜑 = 𝑛𝜋, (5.140)
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𝜑′ = 1 + 𝛽 sin 𝜑 cos 𝜑 + Δ + 𝜀 sin𝜓

𝐴
| sin 𝜑 |, (5.141)

𝜓′ = 𝜔. (5.142)

With the usual definitions of the resonant surface and resonant solutions from [60], we

concentrate on those 𝜔 values at which the averaged right-hand side of the equation

exhibits discontinuities. Such points are interesting since they are likely to correspond

to large amplitude responses. The terms considered ’dangerous’ for their potential to

cause significant responses are defined as follows:

< sin𝜓 cos 𝜑 sgn sin 𝜑 > =
1

2𝜋

∫
2𝜋

0

sin(𝜔𝑡 + 𝛾) cos 𝑡 sgn sin 𝑡d𝑡 , (5.143)

< sin𝜓 | sin 𝜑 | > =
1

2𝜋

∫
2𝜋

0

sin(𝜔𝑡 + 𝛾)| sin 𝑡 |d𝑡 , (5.144)

𝛾 = 𝜓0 − 𝜑0 , (5.145)

which are non-zero for specific frequencies 𝜔𝑙 = 2𝑙 , 𝑙 = 1, 2, 3, .... We introduce the

small parameter

𝛿 =
𝜔
2𝑙

− 1, (5.146)

and the ’slow’ phase difference

𝜃 = 𝜑 − 𝜓

2𝑙
, (5.147)

which enables us to transform Eq. (5.140) as

𝐴′ = −𝛽𝐴 cos
2 𝜑 − Δ cos 𝜑sgn(sin 𝜑)

− 𝜀 sin

(
2𝑙(𝜑 − 𝜃)

)
cos 𝜑 sgn(sin 𝜑) if 𝜑 ≠ 𝑛𝜋, (5.148)

𝐴+ − 𝐴− = −(1 − 𝑅)𝐴− if 𝜑 = 𝑛𝜋, (5.149)

𝜃′ = −𝛿 + 𝛽 sin 𝜑 cos 𝜑 +
Δ + 𝜀 sin

(
2𝑙(𝜑 − 𝜃)

)
𝐴

| sin 𝜑 |, (5.150)

𝜑′ = 1 + 𝛽 sin 𝜑 cos 𝜑 +
Δ + 𝜀 sin

(
2𝑙(𝜑 − 𝜃)

)
𝐴

| sin 𝜑 |. (5.151)

To execute discontinuous averaging effectively for small 𝛿 values, one considers the

integrals

𝐽1 =
1

2𝜋

∫
2𝜋

0

sin(2𝑙𝜑)| sin 𝜑 |d𝜑 =
1

𝜋

∫ 𝜋

0

sin(2𝑙𝜑) sin 𝜑d𝜑 = 0, (5.152)
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𝐽2 =
1

2𝜋

∫
2𝜋

0

cos(2𝑙𝜑)| sin 𝜑 |d𝜑 = − 2

𝜋(4𝑙2 − 1) , (5.153)

𝐽3 =
1

2𝜋

∫
2𝜋

0

sin(2𝑙𝜑) cos 𝜑 sgn sin 𝜑d𝜑 =
4𝑙

𝜋(4𝑙2 − 1) , (5.154)

𝐽4 =
1

2𝜋

∫
2𝜋

0

cos(2𝑙𝜑) cos 𝜑 sgn sin 𝜑d𝜑 = 0. (5.155)

These results facilitate the deduction of averaged differential equations:

𝐴′ = −
(
1

2

𝛽 + 1 − 𝑅
𝜋

)
𝐴 − 4𝑙𝜀

𝜋(4𝑙2 − 1) cos 2𝑙𝜃, (5.156)

𝜃′ = −𝛿 + 2Δ

𝜋𝐴
+ 2𝜀

𝜋(4𝑙2 − 1)
sin(2𝑙𝜃)

𝐴
. (5.157)

Notably, Eq. (5.156) corrects an error from Eq. (3.95) in [60], addressing a misprinted

factor.

To find the steady-state solutions 𝐴∗ and 𝜃∗, one sets the derivatives to zero, leading to

𝛽𝑙𝐴∗ = − 2𝜀

𝜋(4𝑙2 − 1) cos 2𝑙𝜃∗ , (5.158)

𝛿𝐴∗ −
2Δ

𝜋
=

2𝜀

𝜋(4𝑙2 − 1) sin 2𝑙𝜃∗. (5.159)

With further manipulations involving definitions

𝛽𝑙 =
1

2
𝛽 + 1−𝑅

𝜋

2𝑙
, 𝜀𝑙 =

𝜀

4𝑙2 − 1

, (5.160)

the equation for 𝐴∗ simplifies to a relation where only the stable solution is relevant:

𝐴∗ =
2

𝜋

𝛿Δ +
√
𝜀2

𝑙
(𝛽2

𝑙
+ 𝛿2) − Δ2𝛽2

𝑙

𝛽2

𝑙
+ 𝛿2

. (5.161)

Determining the maximal amplitude 𝐴∗,max involves optimizing in 𝛿, leading to

𝐴∗,max =
𝜀𝑙
𝛽𝑙
, (5.162)

which interestingly reveals that the peak amplitude is invariant under different choices

of Δ.
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Now, the solution for the displacement 𝑧(𝑡) can be expressed as

𝑧(𝑡) = 𝐴∗ sin

(
𝜔𝑡
2𝑙

+ 𝜑0

)
, (5.163)

where 𝜑0 is the initial phase, irrelevant for further calculations. Consequently, 𝑦2(𝑡)
becomes

𝑦2(𝑡) = 𝐴∗

����sin

(
𝜔𝑡
2𝑙

+ 𝜑0

)���� + Δ. (5.164)

(a) 𝑚1 = 1, 𝑚2 = 5, Ω12 = 61.9677 (𝑙 = 1) and Δ = 0 (b) 𝑚1 = 2, 𝑚2 = 1, Ω12 = 138.61 (𝑙 = 2) and

Δ = 0.0003.

Figure 5.8: Comparison of the numerical solution for 𝑦2 with the theoretically estimated stationary amplitude

for 𝑐 = 800, 𝑘 = 0.5, 𝑅 = 0.99, and 𝐹12 = 15. The analytical model can predict the stationary amplitude with

good accuracy for 𝑙 = 1, but the accuracy decreases for 𝑙 > 1

5.2.3 Derivation of the effective slow potential using the CPD
of high-frequency oscillations

Knowing the amplitude 𝑦2, one can derive the CPD for the high-frequency oscillations

around the center of mass 𝑦1. The new position variables 𝑧1 and 𝑧2 are determined by:[
𝑧1

𝑧2

]
=

[
− 𝑚2

𝑚1+𝑚2

𝑦2

𝑚1

𝑚1+𝑚2

𝑦2

]
, (5.165)

indicating asymmetrical movement around 𝑦1 unless 𝑚1 = 𝑚2. The movement distribu-

tion for each particle is characterized by a modified arcsine distribution, highlighted in

the following figure, demonstrating an asymmetrical CPD.

To establish the probability density functions for 𝑧1 and 𝑧2, we set:

𝐴1∗ = (1 − 𝜇)𝐴∗ , 𝐴2∗ = 𝜇𝐴∗ , Δ1 = (1 − 𝜇)Δ, Δ2 = 𝜇Δ, (5.166)
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Figure 5.9: One period of the high-frequency oscillation and the corresponding CPD with 𝑚1 = 2, 𝑚2 = 1,

Δ = 0.003, 𝑐 = 800, 𝑘 = 0.5, 𝑅 = 0.99, and 𝐹12 = 15 and Ω12 = 138.61 (𝑙 = 2)

leading to

𝑧1 = −𝐴1∗

����sin

(
𝜔𝑡
2𝑙

+ 𝜑0

)���� − Δ1 , 𝑧2 = 𝐴2∗

����sin

(
𝜔𝑡
2𝑙

+ 𝜑0

)���� + Δ2. (5.167)

The CPDs of 𝑧1(𝑡) and 𝑧2(𝑡) can be determined by formulas (2.51) and (2.55). Since 𝑧1

and 𝑧2 are half sines, we can also adapt the CPD of a sine function, which yields

𝜌1(𝑥) =


2

𝜋
√
𝐴2

1∗−(𝑥+Δ1)2
for − 𝐴1∗ − Δ1 < 𝑥 < −Δ1 ,

0 otherwise,

(5.168)

𝜌2(𝑥) =


2

𝜋
√
𝐴2

2∗−(𝑥−Δ2)2
for Δ2 < 𝑥 < 𝐴2∗ + Δ2 ,

0 otherwise.

(5.169)

Since the cross-correlation integral is a linear operator, we can obtain the integral at once

by calculating the combined CPD of the motion as a weighted sum:

𝜌(𝑥) = 𝜇𝜌1(𝑥) + (1 − 𝜇)𝜌2(𝑥). (5.170)

Fig. 5.9 gives a graphical example of such a CPD.

Now that the stationary ’fast’ motion has been described with sufficient accuracy, we

turn back to the problem of escape and the related problem of deriving an effective

potential for the center of mass.

The resonance of the center of mass within the potential well remains unaltered by

collisions.
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5.2 Escape of a chain of two colliding particles from a potential under biharmonic excitation

Eq. (5.123) describing the motion of the center of mass can now be reformulated

to incorporate the averaged effects over the high-frequency oscillations 𝑧1 and 𝑧2, as

follows:

¥𝑦1 + 𝜇𝑉′ (𝑦1 + 𝑧1) + (1 − 𝜇)𝑉′ (𝑦1 + 𝑧2) =
1

𝑚1 + 𝑚2

(
𝐹11 sin(Ω11𝜏 + 𝛽11)

+ 𝐹12 sin(Ω12𝜏 + 𝛽12)
)
. (5.171)

Since 𝑧1(𝑡) and 𝑧2(𝑡) are very fast compared to 𝑦1, which has linearized eigenfrequency

one at the origin, we calculate the average of Eq. (5.171).

Instead of computing the averaging integral in time, we use Theorem 2.3.3 to obtain the

average of 𝑉̃′(𝑦1 + 𝑧1/2
) over a period of the ’fast’ vibration as a cross-correlation of 𝑉′

and 𝜌.

𝑉̃′(𝑦1) =
∫ ∞

−∞
𝑉′(𝑥)𝜌(𝑥 − 𝑦1)d𝑥. (5.172)

The average of the right-hand side becomes

𝐹11

𝑚1 + 𝑚2︸    ︷︷    ︸
=:𝐹

sin(Ω11𝜏 + 𝛽11) (5.173)

Without further specification of 𝑉′
, we cannot proceed, however. To demonstrate the

method, we choose an appropriate potential function

𝑉(𝑥) =
{

1

2
𝑥2 − 1

2
|𝑥 | ≤ 1,

0 |𝑥 | > 1.
(5.174)

Since both 𝑉′
and 𝜌 are piecewise functions, their cross-correlation is also piecewise.

The following piece boundaries are needed:

𝑑1 = −1 − Δ2 − 𝐴2∗ , 𝑑2 = −1 − Δ2 ,

𝑑3 = −1 + Δ1 , 𝑑4 = −1 + Δ1 + 𝐴1∗ , (5.175)

𝑑5 = 1 − Δ2 − 𝐴2∗ , 𝑑6 = 1 − Δ2 ,

𝑑7 = 1 + Δ1 , 𝑑8 = 1 + Δ1 + 𝐴1∗.

Assuming Δ + 𝐴∗ < 2, we can guarantee 𝑑1 < 𝑑2... < 𝑑8. Then, we define the domains

𝐷1 = {𝑥 ∈ R|𝑥 ≤ 𝑑1}, (5.176)
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5 Escape of multibody systems with different time-scales

𝐷𝑖 = {𝑥 ∈ R|𝑑𝑖−1 ≤ 𝑥 < 𝑑𝑖} for 𝑖 = 2 . . . 8, (5.177)

𝐷9 = {𝑥 ∈ R|𝑑8 ≤ 𝑥}. (5.178)

The result of Eq. (5.172) becomes:

𝑉̃′(𝑦1) =



0 𝑥 ∈ 𝐷1 ,

(1 − 𝜇)
(
𝑦1 + Δ2 + 2

𝜋

(√
𝐴2

2∗ − (1 + Δ2 + 𝑦1)2 − (𝑦1 + Δ2) arcsin

(
− 1+Δ

2
+𝑦

1

𝐴
2∗

)))
𝑥 ∈ 𝐷2 ,

(1 − 𝜇)
(
𝑦1 + Δ2 + 2

𝜋𝐴2∗
)

𝑥 ∈ 𝐷3 ,

𝜇

(
2

𝜋

(√
𝐴2

1∗ − (Δ1 − 1 − 𝑦1)2 + (Δ1 − 𝑦1) arcsin

(
Δ

1
−1−𝑦

1

𝐴
1

)
− 𝐴1∗

))
+ (1 − 𝜇)

(
𝑦1 + Δ2 + 2

𝜋𝐴2∗
)

𝑥 ∈ 𝐷4 ,

𝑦1 𝑥 ∈ 𝐷5 ,

𝜇
(
𝑦1 − Δ1 − 2

𝜋𝐴1∗
)
+ (1 − 𝜇)

(
2

𝜋

(
𝐴2∗ −

√
𝐴2

2∗ − (1 − Δ2 − 𝑦1)2 + (Δ2 + 𝑦1) arcsin

(
1−Δ

2
−𝑦

1

𝐴
2∗

)))
𝑥 ∈ 𝐷6 ,

𝜇
(
𝑦1 − Δ1 − 2

𝜋𝐴1∗
)

𝑥 ∈ 𝐷7 ,

𝜇

(
− 2

𝜋

(√
𝐴2

1
− (1 + Δ1 − 𝑦1)2 + (Δ1 − 𝑦1) arcsin

(
1+Δ

1
−𝑦

1

𝐴
1∗

))
− Δ1 + 𝑦1

)
𝑥 ∈ 𝐷8 ,

0 𝑥 ∈ 𝐷9 .

(5.179)

Note that 𝐷3 and 𝐷7 are typically small due to the assumption of the particles’ small

physical size.

Thus, the differential equation describing the ’slow’ motion is given by

¥𝑦1 + 𝑉̃′(𝑦1) = 𝐹 sin(Ω11𝜏 + 𝛽11). (5.180)

Although 𝑉̃′(𝑦1) describes the effective force field, integrating it once more offers the

effective potential 𝑉̃(𝑦1). Due to the complexity of 𝑉̃′(𝑦1), the exact form is intricate, and

we do not express it in closed form.

In Fig. 5.10, a graphical example depicts the analytically calculated effective restoring

force and its (numerically) obtained integral, the effective potential for selected parameter

values.

One critical consequence of the asymmetric integration kernel is the asymmetry of the

effective force field. Consequently, the potential energy at the right boundary of the

potential diverges from that on the left side, potentially causing uneven escape dynamics.

The likelihood of escape towards the right may vary compared to that towards the left.

As the ratio𝑚1/𝑚2 diverges from unity, the asymmetry intensifies, resulting in vibrations

centered around a point other than 0.

5.2.4 Numerical results and discussion
It is possible to assess the accuracy of the order reduction method by displaying the

escape time on a low excitation frequency–force diagram. Fig. 5.11 shows such a

comparison between the reduced and original models. It should be noted that the sharp
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5.2 Escape of a chain of two colliding particles from a potential under biharmonic excitation

(a) Force–𝑉̃′(𝑦1) (b) Potential–𝑉̃(𝑦1)

Figure 5.10: Non-linear original and effective restoring force and potential for 𝑚1 = 2, 𝑚2 = 1, 𝑐 = 800, 𝑘 = 0.5,

𝑅 = 0.99, 𝐹12 = 15, Ω12 = 69.306 (𝑙 = 1), Δ = 0.0003

(a) Original model (b) Reduced model (c) Absolute error in the escape time

Figure 5.11: Contrasting the original and reduced models with excitation at the first resonant frequency,

Ω12 = 69.34 (𝑙 = 1) and parameter values 𝑚1 = 2, 𝑚2 = 1, 𝑐 = 800, 𝑘 = 0.5, 𝐹12 = 15, 𝑅 = 0.99, Δ = 0.0003,

𝛽11 = −𝜋/2 and homogeneous initial conditions. The color scale represents the escape time. 𝐹 :=
𝐹

11

𝑚
1
+𝑚

2

. In

the one-degree-of-freedom system, a simulation time reduction from 5 hours to 4 minutes has been observed

minimum (Ω𝐶 , 𝐹𝐶) observed in many studies can be determined with relative accuracy.

However, there is no frequency-dependent critical forcing value above which escape

occurs for any forcing amplitude. Instead, the transition from no escape to escape occurs

along a fractal-like boundary, and there are even separate nonescaping ’islands’ in the

sea of escaping Ω11 − 𝐹11 parameter combinations.

5.2.5 Conclusions
This section explored the escape dynamics of a strongly coupled, colliding pair of

particles from a potential well under bi-harmonic excitation. By transforming the

physical coordinates to those representing the center of mass and the inter-particle

distance, we could segregate the motion into slower and faster components. The fast
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5 Escape of multibody systems with different time-scales

(a) Ω11 = 1.02551, 𝐹 =
𝐹

11

𝑚
1
+𝑚

2

= 0.0979592 (b) Ω11 = 0.991837, 𝐹 =
𝐹

11

𝑚
1
+𝑚

2

= 0.0367347

(c) Ω11 = 0.99, 𝐹 =
𝐹

11

𝑚
1
+𝑚

2

= 0.025 (d) Ω11 = 1.0071429, 𝐹 =
𝐹

11

𝑚
1
+𝑚

2

= 0.032653061

Figure 5.12: Time series comparison of the original and the reduced model with parameters 𝑚1 = 2, 𝑚2 = 1,

𝑐 = 800, 𝑘 = 0.5, 𝐹12 = 15, Ω12 = 69.306 (𝑙 = 1), Δ = 0.0003 and homogeneous initial conditions. All four

combinations of escape/no escape are possible

motion’s oscillation amplitudes were determined using the ’unfolding transformation.’

Then, the averaging method based on the fast motion’s probability density function was

utilized to obtain the effective restoring force acting on the particles’ center of mass.

The derived expressions for the effective force field are entirely analytical, enabling

significant reductions in simulation time (from 5 hours to 4 minutes, as demonstrated).

Critical system characteristics, such as the positioning of non-escaping islands within

the Ω11 − 𝐹11 domain, are effectively preserved. Although this investigation focused

on escape within a truncated quadratic potential, the outlined PDF-centric averaging

approach readily adapts to various potential forms.
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6 Positioning of an overdamped
particle

In the preceding chapters, we explored the concept of escape from a passive standpoint.

In this chapter, we switch to an active perspective and discuss the positioning of a

particle in a potential well using harmonic excitation. The variable that will be altered is

only the excitation amplitude. The following text and the included figures are adapted

from the study by Genda et al. [223].

This chapter is organized as follows: Sect. 6.1 introduces the problem setting. In Sect. 6.2

the steady-state solutions are determined using the harmonic balance method, followed

by Sect. 6.3, where the stability analysis of these solutions is performed. Sect. 6.4

validates our theoretical findings through numerical simulations. The implications and

limitations of our study are discussed in Sect. 6.5. We conclude with Sect. 6.6, which

summarizes this chapter and suggests avenues for future investigation.

6.1 Problem setting
The following study focuses on the dynamic behavior of a strongly damped particle

within a cosine potential when subjected to harmonic excitation. The system’s differential

equation is represented in Eq. (6.1). This scenario is mechanically similar to a pendulum

experiencing damping in a gravitational setting, additionally influenced by periodic

external forces. The primary equation governing the motion is formulated as follows:

𝑚 ¥𝑥 + 𝑘 ¤𝑥 + 𝑐 sin 𝑥 = 𝑓 sin(𝜔𝜏 + 𝛽), (6.1)

where 𝜏 [s] represents the time, 𝑥 [m] is the displacement, and

• 𝑚 [kg] represents the mass of the particle,

• 𝑘 [kg/s] denotes the damping coefficient, significant enough to cause overdamped

dynamics; i.e., 𝑘 = 𝒪(1).

• 𝑐 sin 𝑥 [kg · m/s
2
] is the restoring force due to the potential.
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6 Positioning of an overdamped particle

Figure 6.1: Problem setting. Figure adapted from [223]

• 𝑓 [kg ·m/s
2
] indicates the magnitude of the external force, which is also considered

to be of the order 𝒪(1).

The excitation frequency 𝜔 [rad/s] and the initial phase 𝛽 [rad] are given without specific

constraints.

We reduce the number of parameters through the transformation of coordinates 𝜏 = 𝜔0𝑡

(where prime denotes differentiation with respect to 𝜏), with 𝜔0 defined as 𝑐/𝑘 and

introducing the dimensionless frequency Ω := 𝑘𝜔/𝑐, along with dimensionless mass

and force parameters

𝑀 :=
𝑐𝑚

𝑘2

, 𝐹 :=
𝑓

𝑘𝜔0

. (6.2)

Subsequently, the equation of motion is reformulated as

𝑀𝑥′′ + 𝑥′ + sin 𝑥 = 𝐹 sin(Ω𝑡 + 𝛽). (6.3)

Numerical analysis indicates that the steady-state solutions of the system extend beyond

simple oscillations at the potential’s minimum, as presented in Fig. 6.2a. They may also

stabilize around the potential’s peak for certain values of 𝐹, as demonstrated in Fig. 6.2c.

Moreover, it is possible to achieve solutions that exist in states intermediate to these

extremes, as emphasized in Fig. 6.2b. This introduces the potential for symmetry

breaking in the stationary states, a phenomenon that will be explored analytically in the

subsequent section.
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6.2 Analytical approach

(a) Bottom (b) Intermediate (c) Top

Figure 6.2: Different solution types (illustrated with black solid lines) for parameter values 𝑀 = 1, Ω = 1,

𝛽 = 𝜋/2 under homogeneous initial conditions (𝑥(0) = 0, ¤𝑥 = 0). Depending on the selected value of 𝐹, the

center of the vibration (indicated by the red line) can maintain stability at either the bottom, top, or any

position along the cosine potential. This center of oscillation is approximated by the average of the upper and

lower boundary lines of the numerical simulation (shown as dashed black lines). Figure adapted from [223]

6.2 Analytical approach
When significant damping is present, numerical simulations of Eq. (6.3) only reveal

periodic solutions, without chaotic phenomena or irregularities such as period doubling.

Thus, for further examination, we assume that the system, after undergoing a transient

phase, achieves a stationary stage where the fundamental frequency aligns with the

driving frequency. Our goal is to identify these steady-state solutions and evaluate their

stability.

Given that the system settles into periodic solutions in its steady state, the harmonic

balance method is appropriate for analyzing the system’s long-term dynamics. To

accommodate asymmetric solutions, a constant (bias) term is introduced alongside the

primary harmonic term:

𝑥0(𝑡) = 𝐴0 + 𝐴1 sin(Ω𝑡 + 𝛽 −Ψ). (6.4)

Incorporating this expression into the differential equation, as specified by Eq. (6.3),

yields:

𝑀(−Ω2𝐴1 sin(Ω𝑡 + 𝛽 −Ψ)) + 𝐴1Ω cos(Ω𝑡 + 𝛽 −Ψ)
+ sin(𝐴0 + 𝐴1 sin(Ω𝑡 + 𝛽 −Ψ)) = 𝐹 sin(Ω𝑡 + 𝛽). (6.5)
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6 Positioning of an overdamped particle

The complexity of the inclusion of a sine function within another sine function in Eq.

(6.5) is handled using the Jacobi-Anger expansion, represented by Eqs. (6.6)-(6.7):

sin(𝑧 sin(𝜃)) = 2

∞∑
𝑛=1

𝐽2𝑛−1(𝑧) sin [(2𝑛 − 1)𝜃] , (6.6)

cos(𝑧 sin(𝜃)) = 𝐽0(𝑧) + 2

∞∑
𝑛=1

𝐽2𝑛(𝑧) cos(2𝑛𝜃), (6.7)

where 𝐽𝑛(𝑧) denotes the Bessel function of the first kind of order 𝑛.

By applying Eqs. (6.6)-(6.7) to Eq. (6.5) and matching terms up to the first harmonic

of Ω𝑡, we arrive at three nonlinear algebraic equations by isolating the constant, the

sin(Ω𝑡 + 𝛽), and the cos(Ω𝑡 + 𝛽) terms:

𝐽0(𝐴1) sin𝐴0 = 0, (6.8)

−𝐴1Ω
2𝑀 cosΨ + 𝐴1Ω sinΨ + 2 cos𝐴0𝐽1(𝐴1) cosΨ = 𝐹, (6.9)

𝐴1Ω
2𝑀 sinΨ + 𝐴1Ω cosΨ − 2 cos𝐴0𝐽1(𝐴1) sinΨ = 0. (6.10)

Eq. (6.8) indicates three distinct solution categories, or, as referred to in the following,

solution families: either𝐴0 is located at the cosine potential’s minimum (bottom solution

family) or maximum (top solution family), or 𝐴1 matches a zero of the Bessel function

𝐽0 (intermediate solution family), i.e.,

𝐴0,1 = 2𝑘𝜋, 𝑘 ∈ Z, (6.11)

𝐴0,2 = (2𝑘 + 1)𝜋, 𝑘 ∈ Z, (6.12)

𝐴1,3 = 𝐽−1

0
(0), 𝐴1,3 > 0, (6.13)

where 𝐽−1

0
(0) signifies all positive zeroes of the zeroth-order Bessel function of the first

kind. For the scenarios depicted by Eqs. (6.11)-(6.12), the determination of 𝐴1 and Ψ

requires further calculations from Eqs. (6.9)-(6.10), whereas in the case of Eq. (6.13), the

values of 𝐴0 and Ψ are deduced from the remaining equations.

For an illustrative representation of the solution families, refer to Fig. 6.7b. The three

identified solution families are detailed as follows:

6.2.1 Bottom solution family
By substituting Eq. (6.11) in Eqs. (6.9)-(6.10) and performing algebraic manipulations,

we can isolate Ψ and 𝐴1 in two separate equations:

sinΨ1 =
𝐴1,1Ω

𝐹
,
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(a) 𝐹 varies (b) 𝑀 varies

Figure 6.3: Graphical representation of the solutions of Eq. (6.15). Solutions within a certain amplitude range

might only exists, if Ω2 is real

(
𝐴1,1Ω

2𝑀 − 2𝐽1(𝐴1,1)
)

2

+ 𝐴2

1,1Ω
2 = 𝐹2. (6.14)

Although an explicit solution for 𝐴1,1 from Eq. (6.14) is not available, it is possible to

express Ω(𝐴1,1) as

Ω1,2 =

√√√
1

𝑀

(
2𝐽1(𝐴1,1)
𝐴1,1

− 1

2𝑀
±

√
1

4𝑀2

− 2𝐽1(𝐴1,1)
𝐴1,1𝑀

+ 𝐹2

𝐴2

1,1

)
. (6.15)

A graphical representation of the solutions for various values of 𝐹 and 𝑀 are shown in

Fig. 6.4

For 𝐴1,1 we can propose an asymptotic solution for high 𝐹 values where the influence

of the cosine potential’s force is minor in comparison to damping and inertial forces:

𝐴1,1 ≈ 𝐹

Ω

1√
Ω2𝑀2 + 1

, for 𝐹 ≫ 1. (6.16)

6.2.2 Top solution family
In a similar manner, by inserting Eq. (6.12) in Eqs. (6.9)-(6.10) and executing analogous

algebraic steps, equations containing only Ψ and 𝐴1 can be derived:

sinΨ2 =
𝐴1,2Ω

𝐹
,
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6 Positioning of an overdamped particle

(a) 𝐹 varies (b) 𝑀 varies

Figure 6.4: Graphical representation of the solutions of Eq. (6.18). Solutions within a certain amplitude range

might not exist at all

(
𝐴1,2Ω

2𝑀 + 2𝐽1(𝐴1,2)
)

2

+ 𝐴2

1,2Ω
2 = 𝐹2 , (6.17)

highlighting that the equations for the bottom solution family and the top solution family

diverge solely in the sign preceding 2𝐽1(𝐴1,2). The frequency obtained as a function of

the amplitude is given by

Ω1,2 =

√√√
1

𝑀

(
−2𝐽1(𝐴1,1)

𝐴1,1
− 1

2𝑀
±

√
1

4𝑀2

+ 2𝐽1(𝐴1,1)
𝐴1,1𝑀

+ 𝐹2

𝐴2

1,1

)
, (6.18)

where Ω2 (with a negative sign preceding the inner square root) is physically infeasible

since always complex-valued. The solution exhibits a complex pattern for small Ω

values, characterized by several roots. Consequently, subsequent discussions will focus

on Ω ≥ 1, where root multiplicity ceases to be a concern.

6.2.3 Intermediate solution family
The approach to identifying this set of solutions is different from the previous cases

because the feasible values for 𝐴1 are predetermined and the focus turns to determining

𝐴0. Denoting the 𝑘th
root of 𝐽0(𝐴1) as 𝛼𝑘 , we rewrite Eqs. (6.9)-(6.10) as:(

2 cos𝐴0𝐽1(𝛼𝑘) − 𝛼𝑘Ω
2𝑀

)
cosΨ + 𝛼𝑘Ω sinΨ =𝐹, (6.19)

−
(
2 cos𝐴0𝐽1(𝛼𝑘) − 𝛼𝑘Ω

2𝑀
)

sinΨ + 𝛼𝑘Ω cosΨ =0, (6.20)
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leading to the following formulas:

sinΨ3 =
𝛼𝑘Ω
𝐹

,(
2 cos𝐴0𝐽1(𝛼𝑘) − 𝛼𝑘Ω

2𝑀
)

2

+ 𝛼2

𝑘
Ω2 = 𝐹2. (6.21)

From Eq. (6.21), 𝐴0 can be calculated as

𝐴0 = 2𝜋𝑙 ± arccos

©­­«
𝛼𝑘Ω2𝑀 ±

√
𝐹2 − 𝛼2

𝑘
Ω2

2𝐽1(𝛼𝑘)
ª®®¬ , 𝑙 ∈ Z. (6.22)

Eq. (6.22) yields two different types of solutions, as the square root can have a positive or

negative sign. However, these solutions might be complex-valued and thus unphysical

for certain parameter values.

Real intermediate solutions exist depending on whether the argument of the arccos

function is within the range [−1, 1]. For such a solution to exist,

𝛼𝑘Ω < 𝐹 (6.23)

must hold. Additionally, the argument of the arccos function remains real if the following

condition is satisfied:

−1 ≤
𝛼𝑘Ω2𝑀 ±

√
𝐹2 − 𝛼2

𝑘
Ω2

2𝐽1(𝛼𝑘)
≤ 1. (6.24)

For 𝐽1(𝛼𝑘) > 0, the existence condition becomes

−2𝐽1(𝛼𝑘) − 𝛼𝑘Ω
2𝑀 ≤ ±

√
𝐹2 − 𝛼2

𝑘
Ω2 ≤ 2𝐽1(𝛼𝑘) − 𝛼𝑘Ω

2𝑀, (6.25)

whereas for 𝐽1(𝛼𝑘) < 0, the condition is

−2𝐽1(𝛼𝑘) − 𝛼𝑘Ω
2𝑀 ≥ ±

√
𝐹2 − 𝛼2

𝑘
Ω2 ≥ 2𝐽1(𝛼𝑘) − 𝛼𝑘Ω

2𝑀. (6.26)

Whether a real solution with plus or minus sign in front of the square root exists can be

answered by case analysis. Here, we focus on the scenario where 𝐽1(𝛼𝑘) > 0, as outlined

in Eq. (6.25), with the understanding that the procedure and the results of Eq. (6.26) are

analogous.
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6 Positioning of an overdamped particle

The left-hand term of Eq. (6.25) is invariably negative, and its right-hand term becomes

negative when

2𝐽1(𝛼𝑘)
𝛼𝑘Ω2

< 𝑀, (6.27)

under which circumstances only the negative square root, −
√
𝐹2 − 𝛼2

𝑘
Ω2

, is applicable.

Consequently, we find that√
(𝛼𝑘Ω2𝑀 − 2𝐽1(𝛼𝑘))2 + 𝛼2

𝑘
Ω2 ≤ 𝐹 ≤

√
(𝛼𝑘Ω2𝑀 + 2𝐽1(𝛼𝑘))2 + 𝛼2

𝑘
Ω2 , (6.28)

which also satisfies the condition outlined in Eq. (6.23).

However, if the condition

2𝐽1(𝛼𝑘)
𝛼𝑘Ω2

> 𝑀, (6.29)

is fulfilled, −
√
𝐹2 − 𝛼2

𝑘
Ω2

satisfies the right side of Eq. (6.25), but the positive square

root, +
√
𝐹2 − 𝛼2

𝑘
Ω2

, also becomes feasible under the condition that

𝛼𝑘Ω ≤ 𝐹 ≤
√
(2𝐽1(𝛼𝑘) − 𝛼𝑘Ω2𝑀)2 + 𝛼2

𝑘
Ω2 , (6.30)

thereby allowing for two potential solution forms:

𝐴0 = 2𝜋𝑙 ± arccos

©­­«
𝛼𝑘Ω2𝑀 ±

√
𝐹2 − 𝛼2

𝑘
Ω2

2𝐽1(𝛼𝑘)
ª®®¬ , 𝑙 ∈ Z, (6.31)

to exist. For the range√
(𝛼𝑘Ω2𝑀 − 2𝐽1(𝛼𝑘))2 + 𝛼2

𝑘
Ω2 ≤ 𝐹 ≤

√
(𝛼𝑘Ω2𝑀 + 2𝐽1(𝛼𝑘))2 + 𝛼2

𝑘
Ω2 , (6.32)

only the solution

𝐴0 = 2𝜋𝑙 ± arccos

©­­«
𝛼𝑘Ω2𝑀 −

√
𝐹2 − 𝛼2

𝑘
Ω2

2𝐽1(𝛼𝑘)
ª®®¬ , 𝑙 ∈ Z, (6.33)

remains feasible.
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6.3 Stability analysis of steady-state solutions

The observation of two distinct solutions within the intermediate solution family under

the parameter conditions of Eq. (6.29) results from the limitations of the applied

harmonic balance ansatz, as it incorporates only a constant term along with the first

harmonic to approximate the periodic steady-state response of Eq. (6.3). The limitation

of this approach is evident in the parameter region specified, leading to the emergence

of a physically invalid solution. Incorporating additional terms into the harmonic

balance ansatz could eliminate this discrepancy. In fact, such dual solutions could not

be detected in numerical simulations: as the force amplitude increases, the vibration

center 𝐴0 transitions smoothly and continuously between the bottom and top of the

potential (see Figs. 6.6a and 6.7a).

The analysis for cases where 𝐽1(𝛼𝑘) < 0 follows a similar logic, revealing an analogous

artificial dual-solution parameter space.

6.3 Stability analysis of steady-state solutions
After identifying the periodic steady-state solutions of Eq. (6.3), the next step involves

determining their stability. To this end, we introduce a small perturbation 𝛿 to the

steady-state solution 𝑥0, such that:

𝑥(𝑡) = 𝑥0(𝑡) + 𝛿(𝑡), (6.34)

and incorporate it into Eq. (6.3) to obtain:

𝑀𝑥′′
0
+𝑀𝛿′′ + 𝑥′

0
+ 𝛿′ + sin(𝑥0 + 𝛿) = 𝐹 sin(Ω𝑡 + 𝛽), (6.35)

By linearizing the sine term around 𝑥0, the equation simplifies to:

𝑀𝑥′′
0
+𝑀𝛿′′ + 𝑥′

0
+ 𝛿′ + sin(𝑥0) + cos(𝑥0)𝛿 = 𝐹 sin(Ω𝑡 + 𝛽). (6.36)

Given 𝑥0 satisfies Eq. (6.3) under the first harmonic approximation, simplifying Eq.

(6.35) by canceling terms leads to:

𝑀𝛿′′ + 𝛿′ + cos(𝑥0)𝛿 = 0. (6.37)

Eq. (6.37) represents a linear differential equation with parametric excitation, as 𝑥0 varies

over time. To analyze stability, one approach involves calculating Hill’s determinant. By

transforming time with 𝜏 := Ω𝑡/2, we arrive at the following:

𝑀Ω2

4

¥𝛿 + Ω

2

¤𝛿 + cos (𝐴0 + 𝐴1 sin(2𝜏 −Ψ)) 𝛿 = 0, (6.38)
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6 Positioning of an overdamped particle

where ¤□ := 𝑑□
𝑑𝜏 .

At the boundary between stable and unstable parameters, the solution oscillates with a

period of 𝜋 or 2𝜋, as stated by Hill’s theory [130]. For a solution with period length 𝜋, it

can be expressed as a Fourier series:

𝛿(𝑡) =
∞∑
𝑛=0

𝑎𝑛 cos(2𝑛𝜏) +
∞∑
𝑛=1

𝑏𝑛 sin(2𝑛𝜏), (6.39)

with undetermined coefficients 𝑎𝑛 and 𝑏𝑛 . The time-dependent parameter in 𝛿 can

similarly be expressed as a series:

cos (𝐴0 + 𝐴1 sin(2𝜏 −Ψ)) =
∞∑
𝑛=0

𝑐𝑛 cos(2𝑛𝜏) +
∞∑
𝑛=1

𝑑𝑛 sin(2𝑛𝜏), (6.40)

with coefficients 𝑐𝑛 and 𝑑𝑛 defined by:

𝑐0 =
1

𝜋

∫ 𝜋

0

cos (𝐴0 + 𝐴1 sin(2𝜏 −Ψ)) 𝑑𝜏, (6.41)

𝑐𝑛 =
2

𝜋

∫ 𝜋

0

cos (𝐴0 + 𝐴1 sin(2𝜏 −Ψ)) cos(2𝑛𝜏)𝑑𝜏 for 𝑛 ∈ N+ , (6.42)

𝑑𝑛 =
2

𝜋

∫ 𝜋

0

cos (𝐴0 + 𝐴1 sin(2𝜏 −Ψ)) sin(2𝑛𝜏)𝑑𝜏 for 𝑛 ∈ N+. (6.43)

To evaluate Eqs. (6.41)-(6.43), leveraging the Jacobi-Anger expansion simplifies the

integrand as follows:

cos(𝐴0 + 𝐴1 sin(2𝜏 −Ψ)) = cos(𝐴0) cos(𝐴1 sin(2𝜏 −Ψ)) − sin(𝐴0) sin(𝐴1 sin(2𝜏 −Ψ))

= cos(𝐴0)
(
𝐽0(𝐴1) + 2

∞∑
𝑛=1

𝐽2𝑛(𝐴1) cos(4𝑛𝜏 − 2𝑛Ψ)
)

− sin(𝐴0)
(
2

∞∑
𝑛=1

𝐽2𝑛−1(𝐴1) sin((2𝑛 − 1)(2𝜏 −Ψ))
)

= cos(𝐴0)
(
𝐽0(𝐴1) + 2

∞∑
𝑛=1

𝐽2𝑛(𝐴1)(cos(4𝑛𝜏) cos(2𝑛Ψ) + sin(4𝑛𝜏) sin(2𝑛Ψ))
)

− sin(𝐴0)
(
2

∞∑
𝑛=1

𝐽2𝑛−1(𝐴1)(sin(2(2𝑛 − 1)𝜏) cos((2𝑛 − 1)Ψ)

− cos(2(2𝑛 − 1)𝜏) sin((2𝑛 − 1)Ψ))
)
. (6.44)
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6.3 Stability analysis of steady-state solutions

This expansion allows for the calculation of the coefficients 𝑐𝑛 and 𝑑𝑛 by decomposing

the cosine term into its harmonic components. This enables a systematic analysis of the

stability of periodic steady-state solutions.

Given the orthogonality of sines and cosines, the Fourier coefficients are derived as

follows:

𝑐0 = cos(𝐴0)𝐽0(𝐴1), (6.45)

𝑐𝑛 =

{
2 sin(𝐴0)𝐽𝑛(𝐴1) sin(𝑛Ψ) for 𝑛 odd in N+ ,

2 cos(𝐴0)𝐽𝑛(𝐴1) cos(𝑛Ψ) for 𝑛 even in N+ ,
(6.46)

𝑑𝑛 =

{
−2 sin(𝐴0)𝐽𝑛(𝐴1) cos(𝑛Ψ) for 𝑛 odd in N+ ,

2 cos(𝐴0)𝐽𝑛(𝐴1) sin(𝑛Ψ) for 𝑛 even in N+.
(6.47)

Substituting Eq. (6.39) in Eq. (6.38) and equating the coefficients for cos(2𝑛𝜏) and

sin(2𝑛𝜏) results in an infinite linear system for 𝑎𝑛 and 𝑏𝑛 as follows:


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0

0

0

0

...
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𝑐
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𝑐
0
+ 𝑐4
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+ 2Ω . . .

𝑑
2

𝑑1

2
+ 𝑑3

2
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2
− 𝑐3

2

𝑑4

2
− 2Ω 𝑐

0
− 𝑐4

2
− 4𝑀Ω2 . . .

...
...

...
...

...
. . .





𝑎
0

𝑎
1

𝑏
1

𝑎
2

𝑏
2

...


.

(6.48)

For a non-trivial solution to exist, the determinant of the Hill matrix in Eq. (6.48) must

vanish. Calculating directly the determinant of an infinite matrix is impossible; therefore,

an approximation is employed by truncating the first (2𝑛 + 1) rows and columns. In

particular, for 𝑛 = 0, we obtain a single value 𝑐0, which leads to the stability boundary

approximation:

Δ0 := 𝑐0 = cos(𝐴0)𝐽0(𝐴1)
!

= 0. (6.49)

We can also calculate the determinant for 𝑛 = 1 and 𝑛 = 2, to obtain a better estimate.

However, the calculations are much more intricate in these cases. Therefore, before

proceeding, we limit the investigation to the bottom solution family by inserting 𝐴0 = 0,

resulting in the determinants

Δ1 := 𝐽0(𝐴1)
(
𝑀2Ω4 − 2𝐽0(𝐴1)𝑀Ω2 + 𝐽0(𝐴1)2 − 𝐽2(𝐴1)2 +Ω2

)
(6.50)
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6 Positioning of an overdamped particle

(a) For non-small 𝑀, the solutions of Δ1 = 0 and

Δ2 = 0 remain distinct

(b) For small 𝑀, the solutions of Δ1 = 0 converges

to solutions of Δ2 = 0. Although Δ2 has further

solutions

Figure 6.5: Numerically evaluated solutions of Δ𝑛 = 0 for 𝑛 = {0, 1, 2} with 𝑀 = {0.05, 1} and 𝐴0. For 𝑛 = 0

and 𝑛 = 1, 𝑐0 = 0 is a solution; however, for 𝑛 = 2 it is only an approximation, to which the solution for large

Ω values converges

and

Δ2 : =

(
𝑀2Ω4 − 2𝐽0(𝐴1)𝑀Ω2 + 𝐽0(𝐴1)2 − 𝐽2(𝐴1)2 +Ω2)

)
×(

16𝐽0(𝐴1)𝑀2Ω4 − 8𝐽0(𝐴1)2𝑀Ω2 + 8𝐽2(𝐴1)2𝑀Ω2 + 𝐽0(𝐴1)3 − 2𝐽0(𝐴1)𝐽2(𝐴1)2

− 𝐽0(𝐴1)𝐽4(𝐴1)2 + 4𝐽0(𝐴1)Ω2 + 2𝐽2(𝐴1)2𝐽4(𝐴1)
)
, (6.51)

respectively. We can observe that Δ1 = 0 admits the solution 𝐽0(𝐴1) = 0, but other

solutions, at least for a certain parameter region, become feasible. In contrast to that,

Δ2 = 0 does not admit 𝐽0(𝐴1) = 0 as a solution anymore, yet by showing the numerically

obtained solutions depending on the value of Ω, we can observe that for reasonably

large values of Ω this solution converges to the previously established one, 𝐽0(𝐴1) = 0

(see Fig. 6.5).

For even higher values of 𝑛, we offer the following argument to make plausible why the

truncation at 𝑛 = 0 should not result in large errors compared. The explanation for this

approximation is supported by three observations:

1. Bessel functions of the first kind are bounded between -1 and 1 for nonnegative

arguments;

2. 𝐽𝑛(𝐴1) approaches zero for large 𝑛 and moderate 𝐴1 values;
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6.3 Stability analysis of steady-state solutions

3. the Hill matrix’s diagonal elements become increasingly negative with 𝑛2𝑀Ω2
,

suggesting that the determinant’s dominant term is the product of its diagonal

elements, which can be represented as

𝐷 = 𝑐0

∞∏
𝑛=1

(
𝑐0 +

𝑐2𝑛

2

− 𝑛2𝑀Ω2

) (
𝑐0 −

𝑐2𝑛

2

− 𝑛2𝑀Ω2

)
. (6.52)

Thus, apart from 𝑐0, no other term in the determinant can approach zero, confirming the

stability boundary approximation made with 𝑛 = 0. This approach remains valid for

non-negligible frequency values, where numerical simulations corroborate the stability

boundary’s proximity to that predicted by 𝑐0 = 0 (see Fig. 6.5). The complexity increases

for smaller Ω values due to slower growth of the matrix’s diagonal terms, potentially

introducing additional stability boundaries. However, exploring these scenarios exceeds

the scope of this analysis.

The stability boundary for periodic solutions with a period of 2𝜋, when analyzed under

truncation at 𝑛 = 0, yields an identical condition to that found in Eq. (6.49). This

outcome also aligns with a straightforward averaging of the time-dependent parameter

in Eq. (6.38):

⟨cos(𝐴0 + 𝐴1 sin(2𝜏 −Ψ))⟩ = cos𝐴0𝐽0(𝐴1). (6.53)

Considering the averaged disturbance 𝛿̃ = ⟨𝛿⟩, the averaged form of Eq. (6.38) simplifies

to:

𝑀Ω2

4

¥̃𝛿 + Ω

2

¤̃𝛿 + cos𝐴0𝐽0(𝐴1)𝛿̃ = 0. (6.54)

By examining 𝐴0 and 𝐴1 for different solution families, a straightforward linear stability

analysis can be used to assess the stability of steady-state solutions identified in Sects.

6.2.1-6.2.3. For a solution to be asymptotically stable, the condition cos𝐴0𝐽0(𝐴1) > 0

must hold.

6.3.1 Stability of the bottom solution family
For the bottom solution family, where the vibration center 𝐴0 is at the bottom of the

potential well, cos𝐴0 = 1. The solution is considered stable if 𝐽0(𝐴1) is positive. Since

𝐴1 changes continuously with 𝐹, the stability boundaries are defined between two
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6 Positioning of an overdamped particle

consecutive roots of 𝐽0(𝐴1) = 0. Applying this to Eq. (6.14), we obtain the critical forcing

values at which the stability of the steady-state solution changes:

𝐹
crit,1,k

=

√
(2𝐽1(𝛼𝑘) − 𝛼𝑘Ω2𝑀)2 + 𝛼2

𝑘
Ω2 , (6.55)

where 𝛼𝑘 denotes the 𝑘th
root of 𝐽0(𝐴1). Consequently, the stable regions for the

steady-state solution at the bottom of the potential well can be described as follows:√
(2𝐽1(𝛼2𝑘) − 𝛼2𝑘Ω

2𝑀)2 + 𝛼2

2𝑘
Ω2 < 𝐹 <

√
(2𝐽1(𝛼2𝑘+1) − 𝛼2𝑘+1Ω

2𝑀)2 + 𝛼2

2𝑘+1
Ω2 ,

(6.56)

with 𝑘 ∈ N and defining 𝛼0 := 0.

6.3.2 Stability of the top solution family
In the case where the vibration center is at the top of the potential, the scenario mirrors

that of the bottom solution family but with cos𝐴0 = −1. Therefore, the solutions at the

top of the potential are stable when 𝐽0(𝐴1) takes negative values. Critical forcing values,

marking transitions in the stability of the steady-state solutions, are given by

𝐹
crit,2,k

=

√
(2𝐽1(𝛼𝑘) + 𝛼𝑘Ω2𝑀)2 + 𝛼2

𝑘
Ω2 , (6.57)

where 𝛼𝑘 denotes the 𝑘th
root of 𝐽0(𝐴1). Consequently, the stability criteria for steady-

state solutions are defined as√
(2𝐽

1
(𝛼

2𝑘+1
) + 𝛼

2𝑘+1
Ω2𝑀)2 + 𝛼2

2𝑘+1
Ω2 < 𝐹 <

√
(2𝐽

1
(𝛼

2𝑘+2
) + 𝛼

2𝑘+2
Ω2𝑀)2 + 𝛼2

2𝑘+2
Ω2 ,

(6.58)

with 𝑘 ∈ N.

Critical forcing values calculated in Eq. (6.14) and Eq. (6.17) diverge due to the alteration

of the sign within the square root. As such, the stable regions for the top and bottom

solution families are distinct and do not include all feasible values of 𝐹. This discrepancy

implies that for certain ranges of 𝐹, neither the bottom nor the top solution families

are stable, suggesting the existence of an intermediate stable solution situated between

these two.

6.3.3 Stability of the intermediate solution family
The linear stability analysis does not offer direct insight into the stability of the

intermediate solution family because the values of 𝐴1 are derived from the zeros of
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𝐽0(𝐴1). As a result, the expression cos𝐴0𝐽0(𝐴1) invariably equals zero, which produces

an eigenvalue in Eq. (6.38) with a zero real part. The linear approximation employed

here does not allow for a definitive conclusion on stability. Nevertheless, both topological

reasoning and extensive numerical simulations indicate that the intermediate solution

family, as described by Eq. (6.22), is stable for√(
2𝐽

1
(𝛼

2𝑘+1
) − 𝛼

2𝑘+1
Ω2𝑀

)
2 + (𝛼

2𝑘+1
Ω)2 < 𝐹 <

√(
2𝐽

1
(𝛼

2𝑘+1
) + 𝛼

2𝑘+1
Ω2𝑀

)
2 + (𝛼

2𝑘+1
Ω)2

(6.59)

and √(
2𝐽

1
(𝛼

2𝑘+2
) + 𝛼

2𝑘+2
Ω2𝑀

)
2 + (𝛼

2𝑘+2
Ω)2 < 𝐹 <

√(
2𝐽

1
(𝛼

2𝑘+2
) − 𝛼

2𝑘+2
Ω2𝑀

)
2 + (𝛼

2𝑘+2
Ω)2 ,

(6.60)

where 𝑘 belongs to N and we define 𝛼0 as zero. It is noted that the sign of 𝐽1(𝛼𝑘)
changes with each successive 𝑘, which aligns Eqs. (6.59)-(6.60) with the stability regions

described by Eqs. (6.56) and (6.58).

6.4 Verification
Fig. 6.6a illustrates the numerically determined equilibrium of the center of vibration

against the values of 𝐹 and 𝑀. A focused analysis of the parameter space for 𝐹 =

2.65 . . . 2.71 and 𝑀 = 0.001 . . . 0.05 is presented in Fig. 6.7a. The estimated analytical

center of steady-state oscillations is shown in Fig. 6.6b. Although there is qualitative

agreement between the analytical and numerical findings, certain discrepancies are

observed; for example, the numerically derived critical value for the stability change

in 𝑀 = 0 is found at 𝐹crit,num(𝑀 = 0) = 2.677, in contrast to the analytical forecast of

𝐹
crit,anal

(𝑀 = 0) = 2.619. Consequently, the transition range from 𝐴0 = 0 to 𝐴0 = 𝜋 also

shifts slightly for 𝑀 ≠ 0.

The precision of the harmonic balance method could be further enhanced by adding an

additional term as follows:

𝑥0(𝑡) = 𝐴0 + 𝐴1 sin(Ω𝑡 −Ψ1) + 𝐴2 sin(2Ω𝑡 −Ψ2). (6.61)

However, this would increase the complexity of the resulting algebraic equations to an

analytically unmanageable level.

However, through numerical analysis, it is apparent that the intermediate solution

breaks the symmetry, characterized not only by the offset of its center of vibration but

also by the appearance of nonzero even Fourier components. To illustrate this, Fig. 6.8
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6 Positioning of an overdamped particle

(a) Numerically determined equilibrium position

of the center of vibration 𝐴0. The bifurcation in the

upper corner is attributed to Eq. (6.33) that allows

multiple solutions within a family of solutions. The

actual position reached in the steady state depends

on the excitation phase and the initial conditions

(b) Analytically determined equilibrium position of

the center of vibrations 𝐴0. The lower corner is inac-

curately portrayed due to a spurious dual solution

resulting from the truncated harmonic balance ansatz.

Simulations reveal a smooth transition of 𝐴0 from 0 to

𝜋

Figure 6.6: Representation of the steady-state center of vibration 𝐴0 against the values of 𝐹 and 𝑀 with Ω = 1,

𝛽 = 𝜋/2 fixed under homogeneous initial conditions (𝑥(0) = 0 and ¤𝑥(0) = 0). The color scale indicates the

magnitude of 𝐴0. The abrupt change in the upper corner of Fig. 6.6a results from a shift in the center of the

steady-state solution within the same solution family. Such changes are feasible as Eqs. (6.11)-(6.13) only

identify stable solution families without specifying the exact solution family member to which the steady-state

solution converges. Figures adapted from [223]

provides two instances in which the Fourier coefficients of the periodic steady-state

oscillation are calculated through numerical integration of Eq. (6.62)

𝐶𝑘 =
1

𝑇

∫ 𝑡∞+𝑇

𝑡∞

𝑥(𝑡)𝑒−𝑖Ω𝑘𝑡 d𝑡 , (6.62)

with 𝑇 representing the period 2𝜋/Ω, and 𝑡∞ signifying a sufficiently advanced time to

disregard the transient dynamics. These coefficients allow for the representation of the

steady-state oscillation as:

𝑥(𝑡) =
∞∑

𝑘=−∞
𝐶𝑘 𝑒

𝑖Ω𝑘𝑡 . (6.63)

As 𝐹 increases, the stability of the solution at the bottom of the potential is lost according

to Eq. (6.56), yet solutions near the top of the potential do not immediately become

stable as per Eq. (6.58). A solution with an offset center becomes symmetric only there
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6.4 Verification

(a) High-resolution view of the bottom part of Fig. 6.6a.

The color scale represents the value of 𝐴0. For 𝑀 → 0,

the function converges to a step function at 𝐹crit = 2.677,

changing its value from 𝐴0 = 0 to 𝐴0 = 𝜋

Top

Center

Bottom

(b) Classification of the stable steady-state

solution families

Figure 6.7: Comparison of numerical findings and analytical predictions regarding parameters 𝐹 and 𝑀. The

illustration on the left presents numerical findings for small values of 𝑀, while the right represents the stable

steady-state solution families derived analytically: lower (green), upper (red), and intermediate (purple).

Figures adapted from [223]

where the underlying potential exhibits symmetry, occurring only at integer multiples

of 𝜋. A symmetric solution around these discrete values has an identical shape on both

sides of its center, incorporating solely odd harmonics in its Fourier expansion (refer to

Fig. 6.8a). In contrast, solutions with a different offset center, reflecting asymmetry in

the restoring force, are expected to be asymmetric, leading to a Fourier expansion that

includes both odd and even harmonics (see Fig. 6.8b).
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6 Positioning of an overdamped particle

(a) Symmetric steady-state solution for 𝐹 = 2.5

(b) Asymmetric steady-state solution for 𝐹 = 3

Figure 6.8: Decomposition of the solution 𝑥(𝑡) as it approaches steady state (on the left) and the spectral

amplitudes |𝐶𝑘 | (on the right) for the parameters 𝑀 = 0.5, 𝐹 = {2.5, 3}, Ω = 1 and 𝛽 = −𝜋/2 with initial

conditions 𝑥(0) = 0 and ¤𝑥(0) = 0. The red line represents the center of the oscillation and the dashed line

indicates the slowly evolving envelope of the oscillation. Figures adapted from [223]

6.5 Discussion
This chapter has investigated the dynamic behavior of an overdamped particle in a cosine

potential subjected to harmonic excitation. The study reveals that the particle’s mass,

along with the force’s amplitude and frequency, influences the steady-state oscillation’s

center. We can observe that increasing values of 𝐹 cause a gradual shift in the oscillation’s

center from a bottom equilibrium position 2𝑘𝜋 towards an upper equilibrium (2𝑘 ± 1)𝜋,

until a specific force threshold is crossed, stabilizing the oscillation’s center at the top of

the potential. Upon further increasing 𝐹, the oscillation center reverses toward the lower

equilibrium, a cycle that repeats with increasing values of 𝐹, although the transition

between the lower and the upper equilibrium occurs faster and faster with increasing

values of 𝐹. This phenomenon of continuous transition is attributed to the particle’s

mass, as a massless particle exhibits an abrupt jump in the steady-state oscillation’s

center, contrasting with the gradual shift seen in massive particles.

The initial conditions of the system and the excitation phase can also have an effect on the

steady-state vibrations, determining the center of vibration within the respective stable
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solution family, as shown in Fig. 6.6a, where the upper corner shows the bifurcation

of the steady-state center of vibration. However, the solution family itself remains

unchanged.

Upon closer inspection, the asymmetry in the system’s dynamics, initially attributed

to the particle’s mass, is inherent to the system itself. Excluding the particle’s mass

simplifies the system to symmetric dynamics, an oversimplification that overlooks the

intrinsic asymmetry captured by Eqs. (6.9)-(6.10).

The amplitude of the steady-state oscillation is predominantly shaped by the damping

effect and the mass of the particle; however, the potential’s force also plays a role,

influencing the oscillation amplitude through its average impact over one oscillation

period. Depending on the intensity of the excitation force, this average force can either

amplify or diminish the oscillation amplitude relative to the same damped, driven

particle when disregarding the effect of the potential. The latter, degenerate case, would

always result in stabilization of the center of vibration either at a lower or an upper

extremum of the potential. However, due to 𝑀 ≠ 0, when stability is lost in a bottom

or top equilibrium, stability at the opposite extremum of the potential has not yet been

gained, necessitating an intermediate equilibrium for any stable periodic solution.

In contrast, in the massless particle scenario, the system simplifies to first-order dynamics,

diverging from traditional mechanical systems and challenging our expectations. The

absence of mass equates the vibration amplitudes at both equilibrium points, facilitating

immediate stability transfer upon destabilization at one. To explore the transition

towards zero mass, the singular perturbation method might offer insights, albeit beyond

this study’s scope.

6.6 Conclusions and scope for future research
The appearance of stable and biased steady-state solutions within a seemingly symmetric

setup underscores the pivotal role of an ansatz in research. An ansatz, essentially an

educated guess, significantly simplifies complex problems by focusing on essential

variables and dynamics. Its apt selection allows for critical insights, though, in the

present case, the challenge lies in identifying an ansatz that, while seemingly redundant,

allows for the uncovering of asymmetry in symmetric problems. Examples such as the

Kármán vortex street and turbulent flows in pipes illustrate the utility of a well-chosen

ansatz in revealing underlying physical phenomena.

The results described in this chapter offer scope for practical applications, such as in

electromagnetic or acoustic field-driven molecular systems, where excitation ampli-

tude adjustments alone can modulate position control, bypassing the need for phase

manipulation.
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6 Positioning of an overdamped particle

A further question arising is the nature of potentials that facilitate continuous vibration

center adjustments through mere excitation amplitude enhancements. Exploring the

conditions that such potentials have to fulfill is a promising area for future investigation.
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7 Summary and Outlook

The main goal of this thesis was to investigate why escape processes often show
nonsmooth characteristics in systems with smooth dynamics.
The answer to this question is the contemporaneous existence of different, concurring
escape mechanisms.
In an analysis focusing on 1:1 resonance, we explored how these escape mechanisms

produce unique patterns resulting in abrupt, nonsmooth changes in the system dynamics.

In undamped systems, the critical forcing curve depicted against the excitation frequency

forms a distinctive V-shaped sharp minimum. In the truncated quadratic potential, the

Type 1 and 2 maximum mechanisms form the V-curve. In contrast, in the case of nonlinear

restoring force, the concurring maximum and saddle mechanisms are responsible for

this pattern.

In moderately damped systems, the slow and fast escape mechanisms concur, resulting

in sharp, safe basin boundaries and the typical ’Dover cliff’ erosion profile, where the safe

basin size initially following a plateau drops drastically when the excitation amplitude

is further increased.

In strongly damped systems, the initial conditions are of little importance in the escape

dynamics since transient processes decay rapidly. However, even so, as demonstrated

in Chapter 6, the dynamics of such systems can show significant complexity and result

in unexpected, symmetry-breaking solutions.

The following summary provides an overview of each chapter’s key findings and

discusses possibilities for further research.

Chapter 3 investigated the safe basins of a harmonically driven particle in a quadratic

truncated potential, simplifying the analysis to a linear problem. It examined the

peculiar structures of safe basins, which occur when the excitation frequency and the

potential’s natural frequency are integer ratios, resulting in stable, circular portions and

illusory parts that disappear with slight perturbations of the frequency ratio.

In the second part of the chapter, the focus was on the effect of viscous damping under

harmonic excitation. Similarly to the undamped case, the transient motion cannot be

neglected, and it is responsible for two essential escape mechanisms: the ’fast’ and the
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7 Summary and Outlook

’slow.’ The initial energy of the particle drives the ’fast’ mechanism and is significant

when the damping is high relative to the frequency difference between excitation and the

natural frequency. The ’slow’ mechanism resembles a beat phenomenon and becomes

prominent when transient motion decays slowly, allowing large amplitude oscillations

to develop.

The interplay between these mechanisms determines the size and stability of safe basins,

which have significant implications for system safety. The chapter showed that viscous

damping increases the size of safe basins but also shows that damping is responsible

for the frequently observed erosion profiles of the safe basin area, the Dover cliff profile,

where a rush decrease in the safe basin area starts at a critical forcing amplitude. These

insights are essential for designing safer systems in industrial applications, where

extended safe basins are desired to mitigate oscillations under noisy excitation. Future

research could explore the effects of different types of damping on safe basins, such as

nonlinear damping or friction. In addition, the impact of noise on safe basins could be

investigated to understand how external disturbances affect stability.

Chapter 4 approached escape problems from another perspective, focusing on the

critical forcing values depending on the excitation frequency and initial excitation phase

and extending the examination of escape dynamics to driven undamped systems with

small nonlinearities. It describes the two escape mechanisms (Type 1 Maximum and

Saddle) found by Gendelman [68] and introduces a third Type 2 Maximum Mechanism,

so far not documented in the case of perturbed quadratic potential. The chapter

validates these mechanisms through an experiment using a modified test rig with

a high-precision capacitive rotational encoder. The measurements revealed that the

complex dynamics found in nonlinear, driven-undamped systems persist in the slightly

damped case. The measurement confirmed the existence of multiple attractors in the

phase space, including chaotic ones. It used a driven, damped double-well Duffing

oscillator to model the test rig’s dynamics, with the primary objective of identifying the

model parameters. Simulations performed on the model showed good agreement with

measurement data in the escape dynamics. Future research should focus on exploring

sub- and superharmonic resonances, examining escape under frequency-modulated

signals, and further exploring complex dynamics in nonlinear systems to enhance

system performance, reliability, and safety in engineering applications.

Chapter 5 investigated the escape of multibody systems with different time scales,

focusing on 𝑛-particle chains under polyharmonic excitation and a colliding, driven pair

of particles. The proposed reduction techniques simplify dynamics into slower and faster

components by transforming the system into center-of-mass and interparticle distance

coordinates, leading to significant computational cost savings. These techniques offer a

scalable approach for examining complex systems while preserving fundamental dynam-

ics, with applications to various systems and substantial implications for engineering
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and scientific research. Future research can explore applying these techniques to more

complicated potential wells, including non-polynomial forms, incorporating different

types of excitation like stochastic or time-dependent forces, examining model scalability

with increasing particle counts and intricate interactions, and applying model reduction

to 2D and 3D potentials. Additionally, investigating scenarios without damping and

examining particle chains with nonlinear couplings could enhance the understanding

of system dynamics.

Chapter 6 examines control strategies for escape dynamics in overdamped systems,

highlighting the discovery of stable and biased steady-state solutions in seemingly

symmetric setups, underscoring the importance of an appropriate ansatz in research.

These findings suggest practical applications in systems driven by electromagnetic or

acoustic fields, where excitation amplitude adjustments can modulate position control

without complex phase manipulation. Further research could explore potentials that

allow continuous vibration center adjustments through changes in excitation amplitude

and other control strategies to manage escape dynamics in complex environments

effectively.
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