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1 Introduction

Since the milestone discovery of the Higgs boson at the Large Hadron Collider (LHC), the
investigation of Higgs boson properties has become one of the primary targets of the LHC
programme [1, 2]. This investigation requires the comparisons of theoretical predictions and
experimental measurements for Higgs boson production processes at the highest precision. At
the LHC, the high-energy region of 2 → 2 scattering processes with Higgs boson final states is of
particular interest. In this region, the observables such as Higgs boson transverse momenta (pT )
spectrum and fiducial cross sections, offer opportunities to study the Higgs boson’s properties
under extreme conditions and probe new physics effects beyond the Standard Model (SM).
The investigation in the high-energy region will become particularly relevant in the upcoming
high-luminosity phase of LHC experiments and in future high-energy colliders.

This investigation is also challenging from a theoretical perspective, as it requires highly
technical perturbative quantum field theory (QFT) calculations of higher-order electroweak
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(EW) and quantum chromodynamic (QCD) corrections. Given that the Higgs boson interacts
with all SM particles, including itself, the massive particles such as the top quark, Higgs,
and gauge bosons will manifest in the virtual loops. The resolution of massive particles
leads to massive multi-loop Feynman integrals that are significantly more complicated than
their massless counterparts. The complexity of Feynman integrals increases not only with
the number of mass scales, but also with the number of massive internal lines in the loops.
To tackle the massive Feynman integrals for 2 → 2 processes at the two-loop level, various
successful methods have been developed in the past decades. The analytic methods include the
differential equations approach [3–7], iterated integrals [8–10], the Mellin-Barnes method [11–
13] in combination with summation techniques [14–16], the analytic expansion method in high-
energy and forward-scattering kinematics [17–21], and also semi-analytic approaches [22–27].
The numerical methods include the parametric integrations based on sector decomposition [28–
30], integrand-level subtractions [31, 32], dispersion relations [33], and numerical differential
equations methods [34] with auxiliary mass flow [35–37]. These methods have enabled
high-precision predictions for many important collider scattering processes.

Among the above methods, the high-energy expansion is a well-suited analytic approach
for phenomenological studies of scattering processes with large transverse momenta, particu-
larly for 2 → 2 Higgs boson production processes at the LHC [20, 38–40]. For example, in
the calculations of Higgs boson pair production, it has been shown that a deep high-energy
expansion combined with Padé approximations can yield precise results across a vast phase
space region, from the high-energy limit down to pT ≈ 150GeV for Yukawa and QCD
corrections [20, 21]. In a similar spirit but from a different perspective, the high-energy
QCD factorisation formulas explored in refs. [41–44] can capture the leading high-energy
behaviour of massive QCD amplitudes. In order to access most of the phenomenologically
relevant regions at the LHC, the higher-order expansion terms beyond the leading high-
energy approximation are necessary. In this paper, we will present the analytic integration
techniques for massive two-loop four-point integrals at high energies, including higher-order
terms in this limit. These results serve as crucial boundary conditions for the deep high-
energy expansion of two-loop EW and QCD corrections for 2 → 2 scattering processes at
the LHC and future high-energy colliders, enabling precise predictions over a wide-range
of interesting phase space regions.

In the high-energy region, the kinematic invariants of Feynman diagrams are larger
than the mass-square of all SM particles at the EW scale. Hence, the integrals in most
cases can be Taylor expanded in the small-external-mass (mext → 0) and equal-internal-mass
(mint → m) limits [20], resulting in simpler master integrals (MIs) that are analytically
tractable. As examples, sample Feynman diagrams of the representative MIs are shown in
figure 1. These MIs are further calculated analytically through the asymptotic expansion
in the small-mass parameter m, which is the main focus of this paper. In section 2, we
will review the Mellin-Barnes integral representations of higher-order expansion terms at
high energies. In section 3, we will discuss the analytic techniques for solving the resulting
Mellin-Barnes integrals. The analytic techniques discussed in this paper are implemented
in the Mathematica toolbox AsyInt, which is publicly available at:

https://gitlab.com/asyint/asyint-public
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PL1 NPL1 PL2 NPL2

Figure 1. Sample planar and non-planar massive two-loop four-point Feynman diagrams with massive
propagators represented by thick lines and massless ones represented by thin lines.

The overview of AsyInt is presented in section 4, and the commands are summarised in
appendix A. For more details on practical usage, we also refer to the working examples in
the AsyInt repository. In section 5, we will discuss calculational steps and present analytic
solutions of Feynman integrals shown in figure 1.

2 Integral representations at high energies

In this section, we will review the approach to obtain the Mellin-Barnes (MB) integral
representations for massive Feynman integrals at high energies [18, 20]. The starting point of
the whole calculation is the positive definite Symanzik polynomials of a particular Feynman
integral. They can always be obtained in the Euclidean region by using the Euclidean
kinematic invariants Sab = −(qa + qb)2, where qa and qb denote the external momenta. For
four-point integrals, the Euclidean Mandelstam invariants {S, T, U} = {−s,−t,−u} are used
in the calculation. Note that the final results of four-point integrals are expressed in terms
of positive {s, T, U} in the physical region, which requires the analytic continuation from
the Euclidean region by the transformation S → s.

2.1 Alpha representations and asymptotic expansions

Let us consider a generic two-loop Feynman integral with n propagators and k numerators

In,k :=
∫ 2∏

j=1
dlj

Nλ1
1 · · ·Nλk

k

D1+δ1
1 · · ·D1+δn

n

, (2.1)

where the propagator denominators are defined as Di = m2
i −p2

i with mi ∈ {0,m} and pi being
the momentum. The numerators can be either irreducible scalar products or denominators
with negative powers. The integration measure is defined as∫

dlj := µ2 ϵ eγE ϵ

iπd/2

∫
ddlj with d = 4− 2 ϵ , (2.2)

where γE is the Euler-Mascheroni constant and ϵ is the dimensional regulator. The δi are
real numbers that serve as the additional regulators to the propagator denominator Di

and also the shifts of propagator denominator powers.1 The Feynman integral in eq. (2.1)
admits an n-line Feynman diagram, whose Symanzik polynomials are denoted by U and F
with {N1, . . . , Nk} = 1. The k-numerator extension to its integral definition is a necessary

1For example, the shift δi → δi + a yields an integral with higher-power denominator Da+1+δi
i .
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completion in order to perform the integration-by-parts (IBP) reduction at two loops. The
Symanzik polynomials for this extended k-numerator Feynman integral are denoted by Ũ
and F̃ . Note that U and F depend on n alpha parameters, while Ũ and F̃ depend on
(n + k) alpha parameters.

Now the so-called alpha representation (or Schwinger-parametric form) for this Feynman
integral can be written as

In,k =
∫ ∞

0
dnαδ

 k∏
t=1

(−∂)|λt|

∂α
|λt|
n+t

 Ũ−d/2 e−F̃/Ũ

 ∣∣∣∣
αn+1=···=αn+k=0

, (2.3)

where the integration measure is
∫ ∞

0
dnαδ :=

∫ ∞

0

n∏
i=1

dαi
αδi

i

Γ(1 + δi)
. (2.4)

This alpha representation is obtained by treating the numerator on the same footing as
the propagator [45]

1
(Di)λ

=


1

Γ(λ)

∫ ∞

0
dαi α

λ−1
i e−Di αi for λ > 0

(−1)|λ| ∂
|λ|

∂α
|λ|
i

e−Di αi

∣∣∣
αi=0

for λ < 0 .
(2.5)

By taking the derivative in eq. (2.3), the following alpha representation can be obtained

In,k =
∫ ∞

0
dnαδ

[
U−d/2 e−F/U

]
Ôk({Sab,m

2}, {αn}) , (2.6)

which only depends on U ,F polynomials, n alpha parameters {αn} and invariants {Sab,m
2}.

As a consequence of taking derivatives, the additional rational function Ôk in terms of alpha
parameters and invariants is generated. Note that for integrals without numerators, the
rational function reduces to unity (Ô0 = 1).

In the next step, one can readily apply the high-energy asymptotic expansions on the
alpha representation of the integral. First, one needs to find all relevant regions by the
method of regions [46] with the following high-energy hierarchy

m2/Sab ∼ ρ ≪ 1 . (2.7)

With the positive definite U ,F polynomials as inputs, AsyInt relies on asy2.1.m [47] to
obtain all the high-energy regions, including one hard region and various asymptotic regions.
Here we use the terminology of asymptotic regions to denote all kinds of soft, ultrasoft,
collinear regions etc. In the hard region, the scaling is given by

hard scaling:m2/Sab ∼ ρ, {αn} ∼ 1. (2.8)

In the asymptotic regions, certain alpha parameters can have the scalings of the order ρ or
ρ1/2. Suppose that the set of alpha parameters which have ρ-scaling is given by {αs}, and
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the remaining set of alpha parameters is given by {αn/s}, then the scaling of an asymptotic
region is denoted by

asymptotic scaling:m2/Sab ∼ ρ, {αs} ∼ ρ or √
ρ , {αn/s} ∼ 1. (2.9)

In the hard region, since the only scaling parameter is m2 ∼ ρ, its high-energy expansion
can be obtained by a simple Taylor expansion as

I(hard)
n,k =

∞∑
j=0

(ρm2)j

j!
∂j

∂(m2)j
In,k

∣∣∣∣
m2=0

. (2.10)

The integrals on the r.h.s. can be reduced to the massless MIs, which are well studied in
the literature [4, 48–50].

The calculation of the asymptotic region integrals is more involved. Suppose there are R
asymptotic regions in total, and each region r has its own asymptotic scaling in eq. (2.9).
Each scaling can yield the following expansions on U ,F polynomials

Ur =
∞∑

j=0

√
ρ j U (j)

r , Fr =
∞∑

j=0

√
ρ j F (j)

r , (2.11)

and also the expansion of the Ôk rational function

Ôk,r =
∞∑

j=0

√
ρ j−jmin Ô(j)

k,r, (2.12)

where √ρ−jmin denotes the leading order expansion term of the rational function. Inserting the
above expansions into eq. (2.6) and re-expanding around √

ρ while ignoring any overall factor
√
ρ−jmin , the alpha representation in each region r at high energies can be schematically

written as

I(r)
n,k =

∫ ∞

0
dnαδ

√
ρ j

j!

[
∂j

∂(√ρ) j

(
U−d/2

r e−Fr/Ur Ôk,r

) ]∣∣∣∣∣
ρ=0

=
∫ ∞

0
dnαδ

[(
U (0)

r

)− d
2 e−F(0)

r /U(0)
r

]( ∞∑
j=0

√
ρ jŜ(j)

k,r

)
. (2.13)

The rational function Ŝ(j)
k,r depends on {αn} and {Sab,m

2, d}, and can be regarded as the
shift operators of the so-called template integrals, which can be obtained by the integration
of integrands in the square bracket of eq. (2.13). More details will be discussed in the next
subsection. Note that Ŝ(0)

k,r = Ô(0)
k,r, and we have Ŝ(0)

0,r = 1 if there is no numerator.

2.2 Mellin-Barnes representations and template integrals

In this section, we will review the template integral approach [18] based on Mellin-Barnes
(MB) integral representations. The template integral T (r)

n in region r is the leading-order
approximation in the high energy expansion of eq. (2.13)

T (r)
n ({δi}, ϵ) :=

∫ ∞

0
dnαδ

[(
U (0)

r

)− d
2 e−F(0)

r /U(0)
r

]
, (2.14)
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which only depends on the propagators of the integral definition. The MB representation of
the template integral can be obtained by means of the alpha-parametric integrations∫ ∞

0
dααa e−Aα = Γ(1 + a)A−1−a , (2.15)∫ ∞

0
dααa (A+Bα) = A1+a+bB−1−a Γ(1 + a) Γ(−1− a− b)

Γ(−b) (2.16)

and the applications of the Mellin transformation into the complex plane

(X + Y )λ =
∫ Re(z)+i∞

Re(z)−i∞

dz
2πi

Γ(−λ+ z) Γ(−z)
Γ(−λ) Xz Y λ−z . (2.17)

By employing the rescaling transformation αi → αiαj , one can obtain (multi-dimensional) MB
representations. Note that the dimensionality of MB representations of T (r)

n can be reduced
by well-chosen variable transformations and integration strategies. Alternatively, one can also
use automated tools like AMBRE [51] or MBcreate.m [52] to obtain the MB representations.

The higher-order expansion terms in eq. (2.13) can be obtained by promoting the rational
functions Ô(0)

k,r and Ŝ(j)
k,r to shift operators that shift the {δi} and ϵ indices of the template

integrals. Schematically, these functions take the form

Ŝ(j)
k,r =

∑
σ

[
{Sab, m

2, d}-monomial
]

σ
×

[
{αi}-polynomial

]
σ(

U (0)
r

)ησ
, (2.18)

where σ runs over all possibilities for taking derivatives in eq. (2.13), and ησ are non-negative
integers. The function Ô(0)

k,r takes the same form. The action of one particular term in these
functions applied to the template integral is given by

Ŝ(j)
k,r ◦ T (r)

n ({δi}, ϵ) ⊃ {Sab, m
2, d}-monomial ×

∏n
i=1 α

βi
i

(U (0)
r )η

◦ T (r)
n ({δi}, ϵ) (2.19)

= {Sab, m
2, d}-monomial ×

(
n∏

i=1
Pβi

1+δi

)
T (r)

n ({δi + βi}, ϵ− η) ,

where βi and η are non-negative integers, and Pβi
1+δi

= Γ(1 + δi + βi)/Γ(1 + δi) is the
Pochhammer function. Now the high-energy expansion in eq. (2.13) can be cast into a
form in terms of shift operators and template integrals, and the summation over all R
asymptotic regions gives

I(asy)
n,k =

R∑
r=1

[ ∞∑
j=0

√
ρ j Ŝ(j)

k,r ◦ T (r)
n ({δi}, ϵ)

]
. (2.20)

After applying the shift operators, we need to resolve the δi- and ϵ-singularities in the
Gamma functions, and perform series expansions in the limits ϵ → 0 and δi → 0. In order
to explore the cancellations of δi-poles, these singularities must be resolved in the same
sequence of {δ1, . . . , δn, ϵ} for all regions. Note that the δ-singularities are present in each
individual region, but their sum across all asymptotic regions is free from δ-singularities.
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To achieve this, AsyInt chooses the integration lines parallel to the imaginary axis, e.g.
Re(z) = {−1/7,−1/11, . . . } for each integration variable z = z1, z2, . . . , and employs MB.m [53]
to find the integration contour by assigning real values to {δi, ϵ} such that all left poles in
Gamma functions Γ(· · ·+ z) are on the left side of integration contour, while all right poles
in Gamma functions Γ(· · · − z) are on the right side of integration contour. The subsequent
analytic continuation is performed by MB.m to move {δi, ϵ} across the integration contour, in
order to perform series expansions in the limits δi → 0 and ϵ→ 0 . Note that after the analytic
continuation and expansion, merging poles can appear where the locations of left poles and
right poles in Gamma functions coincide. In this approach, one can obtain the power series
of eq. (2.20) up to a certain order O

(
mjmax

)
and O (ϵvmax) in MB representations expressed

in terms of Gamma functions Γ(z) and PolyGamma functions ψ(i)(z) = di+1

dzi+1 ln
[
Γ(z)

]
.

Schematically, the final MB representation can be written as the series

I(asy)
n,k =

∑
u,j,v

ϵumj log(m2)v
∑
iMB

 +i∞∫
−i∞

∏
l

dzl

2πi f
ujv

iMB

(
Γ, ψ(i); z1, z2, . . .

) , (2.21)

where each of the MB integrals inside the square brackets can contain either zl-independent
Gamma and PolyGamma functions or various zl-integrations in the multi-dimensional complex
space. The real values of integration lines Re(zl) are omitted to simplify the notation in
the following.

3 Solving irreducible Mellin-Barnes integrals

In this section, we will describe the algorithmic approaches to solve a large number of MB
integrals appearing in eq. (2.21) to higher-order expansion terms in m2. Usually, the first
step is to reduce the dimensionality of the MB integrals whenever possible through various
corollaries of Barnes’ lemma [12, 18, 52]. Note that AsyInt is not designed for the MB
integral reduction problem but aims to solve the irreducible MB integrals, which are the
“master integrals” in this context. Here, irreducible MB integrals are broadly defined as
those that either cannot be reduced or for which a reduction method is unknown. AsyInt
offers three approaches to address the irreducible MB integrals: the analytic summation,
the numerical reconstruction, and the analytic Expand&Fit method. We will discuss their
applicabilities to different types of MB integrals in the following subsections.2

3.1 Analytic summation

The analytic summation method is the core approach in solving the MB integrals by summing
over residues based on the Cauchy theorem. Given a one-dimensional MB integral with a
straight-line integration contour Re(z) < 0 and no right pole in the interval (Re(z), 0), we
can close the integration contour with the right semi-circle

+i∞∫
−i∞

dz
2πi f

(
Γ, ψ(i); z

)
= −

∞∑
k=0

Resz=k

[
f
(
Γ, ψ(i); z

)]
−
∫

arc

dz
2πi f

(
Γ, ψ(i); z

)
, (3.1)

2There are other approaches for solving particular types of MB integrals, such as the series-representation
solutions [54] and integral-representation solutions in terms of transcendental functions [55]. For pedagogical
reviews of MB methods, please refer to the textbooks [12, 13].
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or with the left semi-circle. This approach relies on two assumptions: (1) the residue series in
the right or left half-plane is convergent; (2) the arc contribution on the left or right semi-circle
is vanishing. In cases where these two assumptions are satisfied, AsyInt can extract the
sum over infinitely many residues of MB integrals and pass them to HarmonicSums.m [56–67],
Sigma.m [68, 69] and EvaluateMultiSums.m [70–72] for analytic summation. Often, this
approach can successfully solve scaleless and one-scale MB integrals up to two dimensions
within the capabilities of the modern summation techniques. However, there are in general also
more complicated multi-dimensional MB integrals appearing in eq. (2.21), such as those with
non-vanishing arc contributions on the semi-circles,3 and those involving two kinematic scales.
For those complicated MB integrals, one can resort to the Expand&Fit method that will be
discussed in the section 3.3. Note that the results obtained from the analytic summation can
provide useful insights into the structures of transcendental functions and rational functions
that will appear, which are important ingredients for the Expand&Fit method.

3.2 Numerical reconstruction

The numerical reconstruction method is a widely used approach, particularly suitable for
solving multi-dimensional scaleless MB integrals when the basis of constants is known a
priori. The strategy is to first reduce their dimensionality by making changes of variables
and applying corollaries of Barnes’ lemma [12, 18, 52]. Note that except for the first and
second Barnes lemma that are automated in MB.m, the dimensionality reduction step is
usually conducted on a case-by-case basis. AsyInt currently does not offer MB reduction
routines. If the MB integrals can be reduced to one-dimensional ones, then in most cases
their high-precision numerical evaluations can be obtained by using MB.m to more than a
thousand digits of precision. The PSLQ algorithm [73] can be applied to reconstruct the
analytic expressions in terms of special constants from the high-precision numerical values,
provided that the basis of the constants is sufficiently complete for the problem. Based on
the author’s experience, the required constants for massive two-loop four-point integrals up
to transcendental-weight five can be constructed from the basis{

1,
√
3, log(2), log(3), π, ψ(1)(1/3), cZ , ζ(3), Li4 (1/2) , ζ(5)

}
(3.2)

where cZ is a new constant that admits a series representation

cZ =
∫ ∞

0

dα1 dα2√
α1 α2 (α1 + α2 + 1) (α2α1 + α1 + α2)

=
∞∑

k=0

2Γ
(
k + 1

2

)4 [
ψ(0)(k + 1)− 2ψ(0)

(
k + 1

2

)
+ ψ(0)(2k + 1)

]
π(k! )2 Γ(2k + 1) . (3.3)

The new constant cZ appears in the fully-massive non-planar two-loop four-point Feynman
integral. Note that the constants

{
Im
[
Li3

(
±i√

3

)]
, Im

[
Li3

(
i
√

3+1
4

)] }
may also appear in

the intermediate steps of the calculation.

3For more details on the discussion of non-vanishing arc contributions, please refer to ref. [20].

– 8 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
9

3.3 Analytic Expand&Fit method

In this section, we will present the analytic Expand&Fit method for addressing the complicated
MB integrals with one or two scales appearing in eq. (2.21). The previously discussed
approaches serve as the building blocks for this method. The basic idea is to expand
these MB integrals in certain kinematic limits to high orders, and then perform a fitting
procedure using an ansatz of linear combinations of transcendental and rational functions.
Note that this approach has been used for solving one-scale one-dimensional MB integrals
in ref. [18].4 In this paper, the Expand&Fit method is devised to solve the following types
of more complicated MB integrals:

I1 =
+i∞∫

−i∞

dz1
2πi

dz2
2πi x

z1 f1
(
Γ, ψ(i); z1, z2

)
, (3.4)

I2 =
+i∞∫

−i∞

dz1
2πi

dz2
2πi x

z1 yz2 f2
(
Γ, ψ(i); z1, z2

)
, (3.5)

where I1 contains one scale x and possibly nested non-vanishing arc contributions in the
z2 integration, and I2 contains two scales x and y, making the calculations much more
involved. In practical calculations of two-loop four-point integrals, one usually has x = T/S

and y = U/S. Note that there are no specific restrictions or assumptions that f1 and f2 must
satisfy. The Expand step can always be performed given sufficient computational resources,
while the Fit step only requires that the function space is known a priori.

In the applications that we have considered so far, the difficult integrals of I2-type appear
only in the non-planar integrals, as the positive definiteness of U and F polynomials requires
S, T and U to be independent. This requirement has two reasons: (1) the expansion-by-regions
method in the parametric space requires the positive definite F polynomial to work correctly;
(2) analytic integrations with positive definite F polynomials are simpler than those with
F polynomials involving indefinite signs, as the latter can develop singularities. Given that
U cannot be completely eliminated in terms of S and T without introducing a negative
sign in the F polynomial, it can only be partially eliminated by imposing the kinematic
relation. For example, with the kinematic relation S + T + U = 0, and since F is linear
in S, T, U and m2, we can subtract zero-terms [(. . . )(S + T + U)] inside the F polynomial
while maintaining its positive definiteness in a minimal way. This polynomial minimisation
step is implemented in AsyInt. Moreover, rewriting U in terms of S and T will introduce
additional Mellin transformations that increase the dimensionality of MB representations.
Thus, it cannot simplify the problem with the MB approach.

Note that the simplification of eliminating U -dependence will only manifest in the final
physical-region results with positive s and T . To arrive at this point, we need to first obtain the
full functional dependence of U in the Euclidean region and perform the analytic continuation
afterwards. Therefore, the Expand&Fit method is well-suited for I2-type integrals, as the
two-scale problem in the Euclidean region eventually simplifies to a one-scale problem in
the physical region. More details will be discussed in section 3.3.2.

4In general, the expansion-and-fitting is a well-known mathematical method that has been used in various
contexts. The early application of this idea can also be found in ref. [74].
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3.3.1 Expand&Fit for one-scale MB integrals

The Expand&Fit method can be used to solve the I1-type MB integrals as in eq. (3.4), which
can contain non-vanishing arc contributions on the semi-circle of the z2-plane. To keep the
technical discussion concise, let us assume that only integer-valued poles appear in f1.

In the Expand step, the z1 right-residues are extracted such that the expansion in the
x → 0 limit can be taken. There are two types of right-residues for z1z1 = 0, 1, 2, . . .

z1 = g(z2), g(z2) + 1, g(z2) + 2, . . .
, (3.6)

where the second-type residue arises from Gamma functions of the type Γ(. . .± z2 − z1). Note
that when evaluating at the real values of the z1- and z2-integration contours (straight lines),
the function g(z2) = . . . ± z2 gives the minimal real value such that Re(g(z2)) > Re(z1) >
Re(g(z2)) − 1, Now taking the first type of residues in eq. (3.6) yields

I
(1)
1 = −

+i∞∫
−i∞

dz2
2πi

∞∑
k=0

Resz1=k x
z1 f1

(
Γ, ψ(i); z1, z2

)

= −
∞∑

k=0

N∑
n=0

xk log(x)n

+i∞∫
−i∞

dz2
2πi f̂

(1)
1,(k,n)

(
Γ, ψ(i); k1, z2

)
, (3.7)

where f̂ (1)
1,(k,n) and the power-log series in x are the resultant residue functions from taking k-th

right-residue in z1, and the negative sign arises from closing the integration contour in the right
half of the plane. The remaining z2-integrals in eq. (3.7) need to be computed to obtain an
analytic finite series for I(1)

1 . In order to account for the arc contributions in these z2-integrals,
AsyInt uses the aforementioned numerical reconstruction method with the PSLQ algorithm.

Taking the second type of residues in eq. (3.6) gives

I
(2)
1 = −

∞∑
k1=0

+i∞∫
−i∞

dz2
2πi x

g(z2)+k1 f̂
(2)
1

(
Γ, ψ(i); g(z2) + k1, z2

)

=
kmax∑
k=0

N∑
n=0

xk log(x)n c
(2)
(k,n)

(
Γ, ψ(i)

)
(3.8)

where in the first line the z2 left- or right-residues need to be taken according to the criteria
g(z2)|z2→±∞> 0. Note that in this case, the arc contributions inside the z2-integrals vanish,
regulated by the scale x assuming 1 > x > 0. In the second line, the expressions are
re-organised into a finite series, and c

(2)
(k,n) are coefficients expressed in terms of Gamma and

PolyGamma functions. From eqs. (3.7) and (3.8), we obtain a power-log series of the form

I1
x→0= I

(1)
1 + I

(2)
1 =

kmax∑
k=0

N∑
n=0

c(k,n) x
k log(x)n , (3.9)

which we truncate at a finite order kmax.
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In a second step we apply a Fit procedure to reconstruct the full functional dependence
of I1. For this purpose, we make an ansatz for which we also expand in the x→ 0 limit. The
comparison with eq. (3.9) determines the unknown coefficient constants in the ansatz. The
ansatz can be constructed from a basis of rational functions in combination with another
basis of transcendental functions. For example, the following weight-5 function bases typically
appear in the high-energy massive two-loop four-point integrals calculations to O(ϵ1)

fRF =
{
1 , 1

x
,

1
1 + x

,
1
x2 ,

1
(1 + x)2 , . . .

}
,

fHPL =
{
H0(x) , H−1(x) , H0,−1(x) , . . . , H0,0,0,0,−1(x)

}
, (3.10)

in the Euclidean region with x = T/S (or x = U/S). The Harmonic PolyLogarithms (HPLs)
are defined by

Hk1,...,kn(x) =
∫ x

0

dt1
|k1| − sgn (k1) t1

Hk2,...,kn(t1) , (3.11)

with H(x) = 1 and H0(x) = log(x). The corresponding bases in the physical region can
be obtained by the transformation x → x′ = T/s = −x. Note that fitting higher-order
expansion terms in m typically requires a larger basis fRF with higher-inverse-power rational
functions, while fitting higher-order terms in ϵ requires a larger basis fHPL with higher-weight
transcendental functions. Now the ansatz can take the form

I
(ans)
1 =

∑
i,j

a(i,j) f
(i)
RF(x) f

(j)
HPL(x) , (3.12)

where a(i,j) denote the unknown coefficient constants, and the indices i, j denote the i-th and
j-th elements of the list fRF and fHPL, respectively. The series expansion of the ansatz gives

I
(ans)
1

x→0=
kmax∑
k=0

N∑
n=0

f(k,n)(a(i,j))xk log(x)n , (3.13)

where the function f(k,n) is expressed in terms of a(i,j) and other constants. The value of
kmax depends on the number of unknown coefficients in the ansatz. Comparing eq. (3.13)
and eq. (3.9) yields relations that form a linear system of equations

f(k,n)(a(i,j)) = c(k,n) . (3.14)

Now the final step of the Fit procedure is to solve the linear system of equations to determine
the coefficients a(i,j) for the ansatz in eq. (3.12).

Note that for practical calculations, it is advantageous to apply this Fit procedure to
a suitable combination of MB integrals in eq. (2.21) at a particular order, including the
computed ones. The combination of MB integrals can effectively exploit the cancellation
of spurious rational functions in the final expressions, thereby reducing the size of ansatz
in eq. (3.12) needed for the Fit procedure. The Expand&Fit method also works for more
general cases where the transcendental functions are beyond HPLs. The only requirement
is that the function space must be known a priori.
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3.3.2 Expand&Fit for two-scale MB integrals

The Expand&Fit method for the I2-type integrals as in eq. (3.5) is more involved. As
mentioned before, this type of integral typically appears in the non-planar two-loop four-point
topologies, in order to keep the F polynomial positive definite. In the following discussions,
we have x = T/S and y = U/S.

In the Expand step, the z1 right-residues are first extracted in the same way as in
eq. (3.6). Taking the first type of z1 residues gives

I
(1)
2 = −

∞∑
k=0

N∑
n=0

xk log(x)n

+i∞∫
−i∞

dz2
2πi y

z2 f̂
(1)
2,(k,n)

(
Γ, ψ(i); k1, z2

)

=
∞∑

k=0

N∑
n=0

xk log(x)n F
(1)
(k,n)({H}; y) , (3.15)

where in the second line the z2-integration is computed analytically by the summation method.
The exact function F

(1)
(k,n)({H}; y) is expressed in terms of HPLs with argument y. Taking

the second type of z1 right-residues gives

I
(2)
2 = −

∞∑
k1=0

+i∞∫
−i∞

dz2
2πi x

g(z2)+k1 yz2 f̂
(2)
2

(
Γ, ψ(i); g(z2) + k1, z2

)

=
∞∑

k1=0

∞∑
k2=0

N1∑
n1=0

N2∑
n2=0

c
(2)
(k1,n1,k2,n2) x

k1 log(x)n1 yk2 log(y)n2 . (3.16)

At this stage, the full functional dependence of y in the Euclidean region has been obtained,
and we can perform the analytic continuation into the physical region to take advantage of
the simplification in that region. Since all masses are expanded, and the m-dependence is
factorised, we can use the relation U = −S − T and S = −s, and perform the transformation
S − iε→ s+ iε where iε is the causal prescription. This corresponds to the transformations

x = T

−(s+ iε) → x′ = T

s+ iε and y = s− T

−(s+ iε) → y′ = s− T

s+ iε , (3.17)

and the branch cuts through the analytic continuation

log(x) = log(x′) + iπ and log(y) = log(y′) + iπ . (3.18)

The subsequent transformations on the HPLs are needed such that all HPLs are expressed
with argument x′. By default, AsyInt relies on HarmonicSums.m to perform transformations
of HPLs. One can also use other tools for this purpose. Once the transformations are done, the
expressions can be re-expanded in the x′ → 0 limit and truncated to a finite power-log series

I2
x′→0= I

(1)
2 + I

(2)
2

∣∣∣
x,y→x′

=
kmax∑
k=0

N∑
n=0

c′(k,n) x
′k log(x′)n , (3.19)

with complex-valued coefficient constants c′(k,n).
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The Fit step is similar to the case in section 3.3.1, but with a different function basis
in the physical region. Now an ansatz

I
(ans)
2 =

∑
i,j

a′(i,j) f
(i)
RF(x

′) f (j)
HPL(x

′) , (3.20)

can be constructed from the following bases

fRF =
{
1 , 1

x′
,

1
1− x′

,
1
x′2

,
1

(1− x′)2 , . . .

}
,

fHPL =
{
H0(x′) , H1(x′) , H0,1(x′) , H0,0,1(x′) , . . .

}
. (3.21)

By expanding the ansatz in the x′ → 0 limit and comparing to eq. (3.19), we can determines
the coefficient constants a′(i,j) in eq. (3.20).

4 Overview of AsyInt

In this section, we will overview the program structure of AsyInt by presenting the workflow,
main commands, and a simple one-loop example. With AsyInt, users can perform analytic
calculations of two-loop four-point integrals with a few simple commands. More details of
two-loop calculations will discussed in section 5.

4.1 Workflow and main commands

AsyInt contains two toolkits: the first is for generating MB integrals, and the second is for
solving the MB integrals. Their workflows are shown in figures 2 and 3, respectively. The
AsyInt main commands (or interfaces) are depicted inside grey blocks, and their inputs and
outputs are summarised in appendix A.

In toolkit I, AsyInt relies on asy2.1.m for finding the regions and MB.m for resolving
singularities. By specifying the small expansion parameter, the command

GenerateInput or GenerateInputNum

Figure 2. Workflow of AsyInt toolkit I: generate integrals.
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Figure 3. Workflow of AsyInt toolkit II: solve integrals.

generates the Symanzik polynomials and returns relevant regions with corresponding scalings,
for the Feynman integrals without or with numerators, respectively. For the hard region, the
massless master integrals up to weight-6 are provided in the AsyInt repository. With these
master integrals, users can straightforwardly obtain the expansion of hard regions integrals,
as shown in eq. (2.10). For the asymptotic regions, the command

AlphaRepForTempInt

generates the alpha representation for the template integrals. Note that the MB repre-
sentations of template integrals are not unique. It depends on the users’ choice on the
change of variables and Mellin transformations. AsyInt does not offer an automated routine
for integrating alpha parameters, but it does provide helper functions such as IntTypeA,
IntTypeB and MBsplit commands, which enable users to perform integrations. With the
scalings and template integrals, the command

AsyExp2MB or AsyExpNum2MB

automatically performs the steps discussed in section 2.2 and generates MB integrals to
the desired order in the expansion parameter and the dimensional regulator ϵ, for Feynman
integrals without and with numerators, respectively. Integrals with higher-power denominators
can also be generated by providing the DotShift optional input.

In toolkit II, AsyInt relies on MB.m for numerical integrations and HarmonicSums.m,
Sigma.m and EvaluateMultiSums.m for analytic summations of residues. The analytic sum-
mation approach for scaleless and one-scale MB integrals are implemented in the commands

AISum1DMB and AISum2DMB

for one- and two-dimensional integrals, respectively. However, due to the potential presence
of non-vanishing arc contributions, it is advised to always verify the results against numerical
evaluations using MB.m. If the numerical validation fails, users can resort to the Expand&Fit
method. For scaleless MB integrals, the numerical reconstruction method is implemented
in the command

AIRecNum1DMB
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with a user-defined constant list, which can be built from the basis in eq. (3.2). Note that as
mentioned before, AsyInt is not designed to solve the MB dimensionality reduction problem.
Therefore, users are required to perform the MB dimensionality reduction themselves if
necessary.

The above commands AISum1DMB and AIRecNum1DMB further serve as the building blocks
for the analytic Expand&Fit method. For I1-type integrals as in eq. (3.4), the command

AIExpandI1

performs the expansion in the x → 0 limit and employs the AIRecNum1DMB command to
evaluate the nested integration. The output of the AIExpandI1 command can be further
processed by the fitting command

FitAnsatz

with a user-defined ansatz as in eq. (3.12). For I2-type integrals as in eq. (3.5), the command

AIExpandI2

performs the expansion in the x→ 0 limit and employs the AISum1DMB command to evaluate
the nested integration with y-dependence. Note that obtaining higher-order expansion terms
for I2-type integrals with analytic y-dependence can be computationally very expensive.
Therefore, users can switch to the lower-level command

AIExpand2DMB

in combination with the AISum1DMB command for parallel computations on a computing
cluster. The command

AIEucl2Phys

further processes the output of the AIExpandI2 command for the analytic continuation from
the Euclidean region to the physical region. Now the output is rewritten in terms x′ = −x
and can be re-expanded in the x′ → 0 limit. The re-expanded results are passed to the
command FitAnsatz to perform the fitting procedure with an ansatz as in eq. (3.20).

4.2 A simple example: one-loop box integral

In this subsection, we provide a simple example of a massive one-loop box integral, shown
in figure 4, to demonstrate the basic usage of AsyInt. With AsyInt, we can compute this

Figure 4. One-loop box diagram.

– 15 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
9

Region α1 α2 α3 α4
R1 0 0 0 0
R2 0 0 1 1
R3 0 1 1 0
R4 1 0 0 1
R5 1 1 0 0

Table 1. Scalings of alpha parameters for the one-loop box integral, i.e. αi ∼ ρp where p is the power
in the table. R1 is the hard region and R2, . . . , R4 are the asymptotic regions.

integral to O(ϵ2) and O(m8) efficiently. We will keep this subsection brief and provide more
detailed discussions of calculational steps for the two-loop cases in section 5.

The propagators of this integral are

{
m2 − l2,m2 − (l + q2)2,m2 − (l − q1 − q3)2,m2 − (l − q1)2

}
(4.1)

where the external kinematics are described by

q2
1 = q2

2 = q2
3 = 0 , (q1 + q2)2 = s , (q1 + q3)2 = t , (q2 + q3)2 = u . (4.2)

The Euclidean invariants are S = −s, T = −t, U = −u.

First, we use the GenerateInput command to generate the Symanzik polynomials

U = α1 + α2 + α3 + α4 , (4.3)
F = m2 (α1 + α2 + α3 + α4)2 + S α1α3 + T α2α4 (4.4)

and also all regions with corresponding scalings under the hierarchy S, T, U ∼ 1 and m2 ∼
ρ≪ 1. They are listed in table 1. Since the one-loop example is simple, it is not necessary
to compute the hard region integral separately. We can treat all five regions on the same
footing using the template integrals approach.

We then use the AlphaRepForTempInt command to generate the alpha representations,
and the MB representations are obtained by using the integration commands: IntTypeA,
IntTypeB and MBsplit. The following abbreviations are adopted for later convenience

Γ[x1, . . . , xn] :=
n∏

i=1
Γ(xi) , δi1...in :=

n∑
k=1

δik
. (4.5)
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The MB representations are

T (1)
box1l=

+i∞∫
−i∞

dz1
2πi

1
Sδ1234+ϵ+2

(
T

S

)z1 Γ [−δ413 − z1 − ϵ− 1, δ1234 + z1 + ϵ+ 2,−z1]
Γ [δ3 + 1, δ4 + 1,−δ1234 − 2ϵ, δ1 + 1, δ2 + 1]

×Γ[δ1 + z1 + 1, δ3 + z1 + 1,−δ312 − z1 − ϵ− 1] , (4.6)

T (2)
box1l=

T−δ3−1m2(−δ12−ϵ)

Sδ4+1
Γ [δ12 + ϵ, δ1 − δ3, δ2 − δ4]
Γ [δ12 − δ34, δ1 + 1, δ2 + 1] , (4.7)

T (3)
box1l=

T−δ3−1m2(−δ14−ϵ)

Sδ2+1
Γ [δ14 + ϵ, δ1 − δ3, δ4 − δ2]
Γ [δ14 − δ23, δ1 + 1, δ4 + 1] , (4.8)

T (4)
box1l=

T−δ1−1m2(−δ23−ϵ)

Sδ4+1
Γ [δ23 + ϵ, δ3 − δ1, δ2 − δ4]
Γ [δ23 − δ14, δ2 + 1, δ3 + 1] , (4.9)

T (5)
box1l=

T−δ1−1m2(−δ34−ϵ)

Sδ2+1
Γ [δ34 + ϵ, δ3 − δ1, δ4 − δ2]
Γ [δ34 − δ12, δ3 + 1, δ4 + 1] . (4.10)

From the template integrals, we use the AsyExp2MB command to generate MB integrals up
to O(ϵ2) and O(m8). We use the SortPatternList command to select all one-dimensional
MB integrals. In the next step, we use the AISum1DMB command to solve these MB integrals
order-by-order in ϵ. In the last step, we use the AIEucl2Phys command to perform the
analytic continuation to the physical region. The results to O(ϵ2) and O(m8) are expressed as

Ibox1l[1, 1, 1, 1] =
(
µ2

s

)2ϵ 2∑
i=0

4∑
j=0

ϵi
(
m2
)j
f(i,j)(s, T,m2) , (4.11)

with the coefficient functions

f(0,0) = 1
sT

[
π2 + 2iπH0(T̂ )− 2H0(m̂2)2 + 2H0(m̂2)(− iπ +H0(T̂ ))

]
, (4.12)

f(1,0) = 1
sT

[
iπ3

3 +
(
− 4π2

3 − 2iπH1(T̂ ) + 2H0,1(T̂ )
)
H0(T̂ )−

1
3H0(T̂ )3

+2
3π

2H0(m̂2) + 4
3H0(m̂2)3 + 2iπH0,1(T̂ )− 2H0,0,1(T̂ )

+iH0(m̂2)2(π + iH0(T̂ ))− iH0(T̂ )2(π − iH1(T̂ )) + 14ζ(3)
]
, (4.13)

f(2,0) = 1
sT

[7π4

180 +
(
− iπ3

6 + iπH1(T̂ )2 + 2H0,1,1(T̂ ) +H1(T̂ )(π2 − 2H0,1(T̂ ))

−6ζ(3))H0(T̂ ) +
(
π2

2 + iπH1(T̂ ) +
1
2H1(T̂ )2 −H0,1(T̂ )

)
H0(T̂ )2

+1
6H0(T̂ )4 − 1

2π
2H0(m̂2)2 − 1

2H0(m̂2)4 +
(
iπ3

3 − 2iπH0,1(T̂ )

+2H0,0,1(T̂ )− 2ζ(3)
)
H1(T̂ )− π2H0,1(T̂ )− 2iπH0,0,1(T̂ )

+2iπH0,1,1(T̂ ) + 2H0,0,0,1(T̂ )− 2H0,0,1,1(T̂ )

+1
3H0(m̂2)3(− iπ +H0(T̂ )) +

1
3H0(T̂ )3(iπ + 2H1(T̂ ))

+H0(m̂2)
(
− iπ3

6 + 1
6π

2H0(T̂ )− 4ζ(3)
)
+ 4iπζ(3)

]
, (4.14)

– 17 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
9

where T̂ = T/s, m̂2 = m2/s. The higher-order terms to O(m8) can be found in the ancillary
file [82]. These results are cross checked against numerical evaluations with AMFlow [36]
on various phase space points in the high-energy limit. For example, with the phase space
point

√
s = 2TeV, pT =

√
u t/s = 400GeV and m = 80GeV, the results to O(m8) agree

with AMFlow to 5 digits. The accuracy can be easily improved by computing high-order
expansion terms in m. For the deeper expansion, we recommend the differential equations
approach as discussed in refs. [20, 39].

5 Analytic results of massive two-loop integrals

In this section, we will discuss the calculational steps and present the analytic results for
two-loop PL1, NPL1 and NPL2 integrals shown in figure 1. Note that the fully-massive
planar integral PL2 (with and without numerators) also calculated by AsyInt has been
discussed in ref. [20].

5.1 Planar integral PL1 with numerators

As a first two-loop example, we will discuss the three-massive-line planar integral PL1 with
numerators in more detail. The PL1 integral is defined through the propagators

{
m2 − l22, −l2l , m2 − (l2 + q1 + q2) 2, m2 − (l2 − q3) 2, − (ll + q1) 2, − (ll − q2) 2,

− (−l2 + ll − q2) 2, − (l2 + ll) 2, − (ll + q3) 2
}

(5.1)

where the last two propagators denote the irreducible numerators. The kinematics of external
lines are given by

q2
1 = q2

2 = q2
3 = 0 , (q1 + q2)2 = s , (q1 + q3)2 = t , (q2 + q3)2 = u , (5.2)

with the relation s + t + u = 0. In the direct integration approach with AsyInt, we start
with the Euclidean kinematics {S, T, U} = −{s, t, u} by assuming S, T and U to be positive.
Note that in the physical region, our “Minkowski” kinematics is s, T, U > 0. For the present
discussion of PL1 integral with numerators, the extended Symanzik polynomials associated

Figure 5. Two-loop PL1 diagram.
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with the nine propagators are

Ũ = (α1 + α3 + α4) (α2 + α5 + α6) + (α1 + α2 + α3 + α4 + α5 + α6)α7

+(α1 + α2 + α3 + α4 + α5 + α6 + 4α7)α8 + (α1 + α3 + α4 + α7 + α8)α9 ,

F̃ = (α1 + α3 + α4)
[
α3α5 + α4α5 + α7α5 + α8α5 + α3α6 + α4α6 + α3α7 + α4α7 + α6α7

+α3α8 + α4α8 + α6α8 + 4α7α8 + α2 (α3 + α4 + α7 + α8) + (α3 + α4 + α7 + α8)α9

+α1 (α2 + α5 + α6 + α7 + α8 + α9)
]
m2 +

[
α5(2α7α8 + α6 (α7 + α8) + (α7 + α8)α9

+α4 (α6 + α8 + α9) ) + α1 (α2α3 + (α5 + α6 + α7 + α8 + α9)α3 + α5 (α6 + α7 + α9))
+α3 (α2α8 + (α5 + α7) (α6 + 2α8 + α9))

]
S +

[
α2α4α7 + ( (α5 + α6)α7

+α1 (α5 + α6 + α7) + α3 (α5 + α6 + α7) + (α5 + α6 + 2α7)α8)α9

+α4 (α5 + α6 + 2α7) (α8 + α9)
]
U , (5.3)

where the relation S + T + U = 0 has been used. The Symanzik polynomials associated with
the seven-propagator Feynman diagram can be obtained by

U = Ũ
∣∣∣
α8=α9=0

and F = F̃
∣∣∣
α8=α9=0

. (5.4)

In the following, we will concentrate on the calculation of the one-numerator (8-th
propagator) top-sector integral IPL1 [1, 1, 1, 1, 1, 1, 1,−1, 0] to O(m0), whose complexity is
similar to the integral without numerators IPL1 [1, 1, 1, 1, 1, 1, 1, 0, 0] to O(m2). The alpha
representation of this one-numerator integral can be obtained by taking derivative w.r.t. α8
as described in eq. (2.3) and (2.6) such that

IPL1 [1, 1, 1, 1, 1, 1, 1,−1, 0] =
∫ ∞

0
d7αδ

[
U−d/2 e−F/U

]
Ô1
(
{S,U,m2}, {α1, . . . , α7}

)
,

(5.5)
where Ô1 is the resulting rational function from the derivative operation. At this stage, one
observes that the alpha representation of this integral only depends on seven alpha parameters,
hence the high-energy asymptotic expansion directly applies to the U ,F polynomials and the
Ô1 function, which are associated to the seven-propagator Feynman diagram. AsyInt relies
on asy2.1.m to find all asymptotic regions by imposing the kinematic scaling S,U ∼ 1 and
m2 ∼ ρ ≪ 1. The resulting scalings of the seven alpha parameters in all regions are listed
in table 2. Note that the above Symanzik polynomials, the relevant regions and scalings
can be obtained by using the GenerateInputNum command.

Among these regions, the hard region R1 yields massless integrals, which can be con-
veniently calculated by the canonical differential equation approach with Canonica [75]
in combination with IBP reductions by LiteRed [76], using the Taylor expansion shown
in eq. (2.10).

For the asymptotic regions R2, . . . , R8, AsyInt employs the template-integral approach
as described in section 2.2. By applying the scalings of the alpha parameters and invariants
to U ,F and Ô1 in eq. (5.5), one can re-expand the alpha representation in √

ρ and obtain the
expanded alpha representation for each asymptotic region r as in eq. (2.13) with additional
shift-operators Ŝ1,r. Then the template integral T (r)

PL1
for each region can be extracted as in
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Region α1 α2 α3 α4 α5 α6 α7
R1 0 0 0 0 0 0 0
R2 0 0 1 1 1 0 0
R3 0 1 1 0 1 0 0
R4 0 1 1 0 1 1 1
R5 1 0 0 1 0 1 0
R6 1 0 1 2 1 1 0
R7 1 1 0 0 0 1 0
R8 1 1 0 0 1 1 1

Table 2. Scalings of alpha parameters for the PL1 integral, i.e. αi ∼ ρp where p is the power in the
table. R1 is the hard region and R2, . . . , R8 are the asymptotic regions.

eq. (2.14), such that the sum of asymptotic regions can be written as in eq. (2.20) by

I(asy)
PL1

[1, 1, 1, 1, 1, 1, 1,−1, 0] =
8∑

r=2

[ ∞∑
j=0

√
ρ j Ŝ(j)

1,r ◦ T (r)
PL1

({δi}, ϵ)
]
. (5.6)

Note that the template integrals T (r)
PL1

describe the leading-order high-energy behaviour of
the original Feynman diagram with the first seven propagators, and the shift operators Ŝ1,r

encodes both the numerator and higher-order high-energy expansion effects. As the template
integrals in different regions have different leading-order scaling of m, the √

ρ-scaling in
eq. (5.6) does not have a one-to-one correspondence with the m-scaling in the final results.

The alpha representations of template integrals are generated by the
AlphaRepForTempInt command. Their MB representations can be obtained through
using the commands: IntTypeA, IntTypeB and MBsplit. We obtain the template integrals

T (2)
PL1

=
+i∞∫

−i∞

dz1
2πi

U−δ4−1m−2δ1267−4ϵ

Sδ35+2
Γ[−z1, δ2−δ4+z1,−δ25−ϵ,−δ26−ϵ,δ1267+2ϵ]

Γ [−δ534−ϵ−1, δ1+1,−δ2−ϵ+1, δ2+1]

×Γ[−δ27+δ4−z1−ϵ+1,−δ534+z1−ϵ−1, δ726−δ4+z1+ϵ]
Γ[δ6+1, δ7+1,−δ45+z1−ϵ]

, (5.7)

T (3)
PL1

=
+i∞∫

−i∞

dz1
2πi

dz2
2πi

U−δ2−1m−2δ1467−4ϵ

Sδ35+2
Γ[−δ2+δ4+z1+z2,−δ7+z2−ϵ+1,−z1,−z2]
Γ [−δ523−ϵ−1, δ1+1,−δ2+z1+z2−ϵ+1]

×Γ[−δ23+z1+z2−ϵ,−δ26+z1−ϵ,δ67+ϵ,−δ523+z1−ϵ−1, δ1267−z1−z2+2ϵ]
Γ[δ4+1, δ6+1, δ7+1,−δ23+z1−ϵ]

, (5.8)

T (4)
PL1

=
+i∞∫

−i∞

dz1
2πi

dz2
2πi

m−2δ14−2ϵ

Sδ23567+ϵ+3

(
U

S

)z1 Γ[δ4+z1+1, δ7+z1+z2+1, δ14+ϵ]
Γ [δ1+1, δ2+1, δ4+1, δ5+1, δ6+1, δ7+1]

×Γ[−δ725−z1−z2−ϵ−1,−δ726−z1−ϵ−1, δ2567+z1+z2+ϵ+2,−z1,−z2]
Γ[δ14−δ3+z1+z2+1,−δ2567−2ϵ]

×Γ[δ1−δ3+z2, δ2+z1+1] , (5.9)

– 20 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
9

T (5)
PL1

=
+i∞∫

−i∞

dz1
2πi

U−δ4−1m−2δ2357−4ϵ

Sδ16+2
Γ[−z1, δ2−δ4+z1,−δ25−ϵ,−δ26−ϵ]

Γ [−δ614−ϵ−1,−δ2−ϵ+1, δ2+1, δ3+1, δ5+1]

×Γ[−δ27+δ4−z1−ϵ+1,−δ614+z1−ϵ−1, δ725−δ4+z1+ϵ,δ2357+2ϵ]
Γ[δ7+1,−δ46+z1−ϵ]

, (5.10)

T (6)
PL1

= U−δ4−1m−2δ1356−4δ27−8ϵ

S−δ27−2ϵ+2
Γ[−δ26−ϵ,δ1267+2ϵ,δ2357+2ϵ,−δ7−ϵ+1,−δ25−ϵ]

Γ [δ2+1, δ3+1, δ7+1, δ1+1,−δ2−ϵ+1] ,(5.11)

T (7)
PL1

=
+i∞∫

−i∞

dz1
2πi

dz2
2πi

U−δ2−1m−2δ3457−4ϵ

Sδ16+2
Γ[−δ2+δ4+z1+z2,−δ7+z2−ϵ+1,−z1,−z2]

Γ [−δ612−ϵ−1,−δ2+z1+z2−ϵ+1, δ3+1, δ4+1]

×Γ[−δ12+z1+z2−ϵ,−δ25+z1−ϵ,δ57+ϵ,−δ612+z1−ϵ−1, δ2357−z1−z2+2ϵ]
Γ[δ5+1, δ7+1,−δ12+z1−ϵ]

, (5.12)

T (8)
PL1

=
+i∞∫

−i∞

dz1
2πi

dz2
2πi

m−2δ34−2ϵ

Sδ12567+ϵ+3

(
U

S

)z1 Γ[δ5+z2+1, δ34+ϵ,−δ625−z2−ϵ−1]
Γ[δ2+1, δ3+1, δ4+1, δ5+1, δ6+1, δ7+1]

×Γ[−δ725−z1−ϵ−1, δ2567+z1+z2+ϵ+2,−δ56712+δ3−z1−z2−ϵ−2,−z1,−z2]
Γ[−δ2567−2ϵ,δ34−δ56712−z2−ϵ−1]

×Γ[δ2+z1+1, δ4+z1+1] . (5.13)

Since the MB representations of template integrals are not unique, it is crucial to derive the
minimal MB representations with the lowest possible MB dimensionality.

With the MB representations derived, the action of shift operators on the template
integrals in eq. (5.6) can be determined according to the shifting rules in eq. (2.19), yielding
the integral representations of the high-energy expansion to the desired order. Then AsyInt
employs MB.m to perform the analytic continuation to separate left poles and right poles
in the Gamma functions with pre-determined straight lines as the integration contour,
e.g. Re(z1) = −1/7 and Re(z2) = −1/11. The analytically continued integrals are then
expanded in the sequence of {δ1, . . . , δ7, ϵ} to the order O(δ0

i ) and O(ϵϵmax). Note that each
region can have δ-singularities, while they cancel in the sum of all asymptotic regions in
eq. (5.6). Truncating the resulting integrals to the order O(m0) and O(ϵ1), we obtain 5730
one-dimensional MB integrals and 3536 two-dimensional MB integrals, among which there
are 3497 two-dimensional ones of the I1-type as in eq. (3.4). This procedure is performed
by the AsyExpNum2MB command.

The next step is solving the resulting MB integrals. The one-dimensional and simple
two-dimensional ones can be solved by the analytic summation and numerical reconstruction
methods with AsyInt commands: AISum1DMB, AISum2DMB and AIRecNum1DMB. The more diffi-
cult two-dimensional ones of I1-type need the Expand&Fit method as discussed in section 3.3.1.
A priori, it is unclear how many two-dimensional MB integrals contain non-vanishing nested
arc contributions. This usually only becomes evident during the numerical validation stage.
Hence, in practice, we can either pass all I1-type integrals to the Expand&Fit procedure, or
proceed with AISum2DMB command and validate the results numerically. If the validation
fails, one resorts to the Expand&Fit procedure. In this procedure, the AIExpandI1 command
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turns these two-dimensional MB integrals into a power-log series

I(exp) =
kmax∑
k=0

N∑
n=0

c(k,n) y
k log(y)n (5.14)

in the y = U/S → 0 limit. The value of kmax depends on the order of ϵ and m2. For
this example up to O(m0) and O(ϵ1), it is sufficient to have kmax = 120. The coefficients
c(k,n) are correctly computed by the AIExpandI1 command, which also accounts for non-
vanishing arc contributions. Note that computing higher-order c(k,n) terms for k > 100
can be computationally expensive. It can require one- or two-thousand-digit precision for
numerical evaluations of MB integrals, such that the PSLQ algorithm can reconstruct the
analytic ratios of two large integer numbers. Since the planar integral can be solved directly
in the Euclidean region, we can set S = 1 and write down an ansatz from the following
basis rational functions and HPLs

fRF =
{
1, 1
y
, y

}
,

fHPL =
{
H−1(y), H0,−1(y), H0,−1,−1(y), H0,0,−1(y), H0,−1,−1,−1(y), H0,0,−1,−1(y),
H0,0,0,−1(y), H0,−1,−1,−1,−1(y), H0,−1,0,−1,−1(y), H0,0,−1,−1,−1(y),
H0,0,−1,0,−1(y), H0,0,0,−1,−1(y), H0,0,0,0,−1(y)

}
. (5.15)

It is not necessary to include H0(y) = log(y) in the basis fHPL, since log(y) is explicitly
present in eq. (5.14). As discussed in section 3.3.1, the size of rational function basis depends
on the expansion order in m. Hence, we have a more compact basis at O(m0). Now the
ansatz to transcendental weight-5 can be constructed as

I(ans) =
∑
i,j

a(i,j) f
(i)
RF(y) f

(j)
HPL(y) , (5.16)

which contains 96 undetermined coefficients a(i,j). By using the FitAnsatz command, we
can require

lim
y→0

I(ans) = I(exp) (5.17)

to the order O(y120) and solve the resulting linear system of equations. Now the fitting
procedure is complete and the coefficients a(i,j) are determined. Strictly speaking, the first
96 equations are sufficient to fix all a(i,j), but we prefer to use all 121 equations, with the
last 25 equations serving as cross checks.

At the end, the asymptotic-region results are combined with hard-region results, then
the reconstruction of S-dependence and the analytic continuation to the physical region in
terms of s and T is performed by the AIEucl2Phys command. The final analytic results
for this integral to O(m0) and O(ϵ1) are expressed as

IPL1 [1, 1, 1, 1, 1, 1, 1,−1, 0] =
(
µ2

s

)2ϵ 1∑
i=−2

ϵi f(i)(s, T, U,m2) , (5.18)
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with coefficient functions

f(−2) = 1
sU

[
− π2

6 − 1
2H0(m̂2)2 −H0(m̂2)H1(T̂ )−

1
2H1(T̂ )2

]
, (5.19)

f(−1) = 1
s2U

[
− 1

6 iπ
3(s+ 2T ) +

(
− π2T

3 + 2iπUH1(T̂ )− 2sH1(T̂ )2
)
H0(m̂2)

+1
3UH0(m̂2)3 + π2

(
− 5s

3 + T

)
H1(T̂ )− TH0(m̂2)2H1(T̂ )

+iπUH1(T̂ )2 + 1
3(−4s+ T )H1(T̂ )3 + iπ(5s− 2T )H0,1(T̂ )

+(−5s+ 2T )H0,1,1(T̂ ) + (3s+ 4T )ζ(3)
]
, (5.20)

f(0) = 1
s2U

[
π4

180(64s+ 111T ) +
(
iπ3

2 (−T + U) + π2

3 (−5s+ 7T )H1(T̂ ) + 2iπUH1(T̂ )2

+1
6(−9s+ 4T )H1(T̂ )3 + iπ(7s− 4T )H0,1(T̂ ) + (−7s+ 4T )H0,1,1(T̂ )

+(19s− 14T )ζ(3)
)
H0(m̂2) +

(1
3π

2(s+ T ) + 3
4sH1(T̂ )2

)
H0(m̂2)2

+
(
iπU

3 + 1
6(3s+ 4T )H1(T̂ )

)
H0(m̂2)3 + 1

24(s+ 6T )H0(m̂2)4

+
(1
6 iπ

3(−19s+ 10T ) + iπ(19s− 10T )H0,1(T̂ ) + (−19s+ 10T )H0,1,1(T̂ )

+(13s+ 6T )ζ(3)
)
H1(T̂ ) +

1
6π

2(−15s+ 13T )H1(T̂ )2 + 4
3 iπUH1(T̂ )3

+
(
− 11s

8 + 2T
3

)
H1(T̂ )4 + 1

6π
2(−57s+ 26T )H0,1(T̂ ) + iπ(23s− 10T )H0,0,1(T̂ )

+3iπ(−7s+ 4T )H0,1,1(T̂ ) + (−23s+ 10T )H0,0,1,1(T̂ ) + (23s− 14T )H0,1,1,1(T̂ )

+4iπ(3s− 4T )ζ(3)
]
, (5.21)

f(1) = 1
s2U

[ 1
360 iπ

5(−17s+ 194T ) +
( 1
360π

4(−183s+ 136T ) +
(1
6 iπ

3(−11s+ 8T )

+iπ(11s− 8T )H0,1(T̂ ) + (−11s+ 8T )H0,1,1(T̂ ) +
1
3(11s− 6T )ζ(3)

)
H1(T̂ )

+1
6π

2(−11s+ 10T )H1(T̂ )2 + iπUH1(T̂ )3 + 1
4(−3s+ 2T )H1(T̂ )4

+1
6π

2(−31s+ 20T )H0,1(T̂ ) + iπ(13s− 8T )H0,0,1(T̂ )

+iπ(−13s+ 10T )H0,1,1(T̂ ) + (−13s+ 8T )H0,0,1,1(T̂ ) + 3(5s− 4T )H0,1,1,1(T̂ )

+2iπ(−T + U)ζ(3)
)
H0(m̂2) +

( 1
12 iπ

3(−11s+ 14T )− 1
6π

2(s+ 4T )H1(T̂ )

−1
2 iπUH1(T̂ )2 + 1

6(3s− T )H1(T̂ )3 + iπ

(
− 5s

2 + T

)
H0,1(T̂ )

+
(5s

2 − T

)
H0,1,1(T̂ ) +

(
− 103s

6 + 13T
)
ζ(3))H0(m̂2)2 +

( 1
18π

2(−15s+ 2T )

−1
3 iπUH1(T̂ )−

1
6sH1(T̂ )2

)
H0(m̂2)3 +

(
− 1

3 iπU + 1
12(−2s− T )H0(m̂2)5

– 23 –



J
H
E
P
0
9
(
2
0
2
4
)
0
6
9

+ 1
12(−5s− 3T )H1(T̂ )

)
H0(m̂2)4 +

( 1
360π

4(1153s− 500T )

+π
2

6 (−159s+ 86T )H0,1(T̂ ) + iπ(61s− 30T )H0,0,1(T̂ ) + iπ(−61s+ 40T )H0,1,1(T̂ )

+(−61s+ 30T )H0,0,1,1(T̂ ) + (67s− 46T )H0,1,1,1(T̂ ) + 10iπ(−2s+ T )ζ(3)
)
H1(T̂ )

+
( 1
12 iπ

3(−55s+ 34T ) + iπ

(55s
2 − 17T

)
H0,1(T̂ ) +

(
− 55s

2 + 17T
)
H0,1,1(T̂ )

+
(167s

6 − 8T
)
ζ(3))H1(T̂ )2 + π2

(
− 41s

18 + 2T
)
H1(T̂ )3 + 11

12 iπUH1(T̂ )4

+ 1
60(−53s+ 33T )H1(T̂ )5 +

(1
6 iπ

3(−71s+ 34T ) + 4(3s− 4T )ζ(3)
)
H0,1(T̂ )

+2iπUH0,1(T̂ )2 + 1
6π

2(−183s+ 86T )H0,0,1(T̂ ) +
π2

6 (179s− 100T )H0,1,1(T̂ )

+5iπ(13s− 6T )H0,0,0,1(T̂ ) + iπ(40T − 71s)H0,0,1,1(T̂ ) + iπ(61s− 40T )H0,1,1,1(T̂ )
+(−65s+ 30T )H0,0,0,1,1(T̂ ) + (65s− 34T )H0,0,1,1,1(T̂ )− 4UH0,1,0,1,1(T̂ )

+(−67s+ 46T )H0,1,1,1,1(T̂ ) +
1
9π

2(−146s+ 195T )ζ(3) + (51s+ 4T )ζ(5)
]
, (5.22)

where T̂ = T/s, m̂2 = m2/s and U = s− T . Note that the presence of U is simply to shorten
the expressions, and all HPLs are expressed with argument T̂ . In the ancillary file [82], the
analytic results for another integral IPL1 [1, 1, 1, 1, 1, 1, 1, 0,−1] are also provided.

These results are the boundary conditions for determining the deep high-energy expansion,
e.g. up to O(m120). For details on this aspect, please refer to refs. [20, 39]. The analytic
results are cross checked against numerical evaluations with AMFlow on various phase space
points in the high-energy limit. For example, the results to O(m0) agree with AMFlow at the
percent level with

√
s = 2TeV, pT =

√
u t/s = 400GeV and m = 80GeV. The high-energy

expansion to O(m30) agrees with AMFlow to more than 35 digits.

5.2 Non-planar integral NPL1

As a second two-loop example, we will sketch the calculational steps for the three-massive-line
non-planar integral NPL1, and present the analytic results to O(ϵ1) and O(m2), i.e., four
expansion terms in m. The NPL1 integral has the following propagators{

m2 − l21, −l22, m2 − (−l1 + q1 + q2) 2, m2 − (l1 − q1 − q2 − q3) 2, − (l2 + q1) 2,

− (l1 − l2 − q1 − q2) 2, − (l1 − l2 − q1) 2
}
, (5.23)

Figure 6. Two-loop NPL1 diagram.
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Region α1 α2 α3 α4 α5 α6 α7
R1 0 0 0 0 0 0 0
R2 0 0 1 1 0 1 0
R3 0 1/2 1 1/2 0 1/2 0
R4 0 1 1 0 0 1 0
R5 0 1 1 0 1 1 1
R6 0 1 1 1 0 0 0
R7 1 0 0 0 1 0 1
R8 1 0 0 1/2 1/2 0 1/2
R9 1 0 0 1 0 0 1
R10 1 0 0 1 1 0 0
R11 1 0 1 2 1 1 0
R12 1 1 0 0 1 1 1
R13 1 1 1 2 0 0 1

Table 3. Scalings of alpha parameters for the NPL1 integral, i.e. αi ∼ ρp where p is the power in the
table. R1 is the hard region and R2, . . . , R13 are the asymptotic regions.

where the kinematics of the external lines are the same as eq. (5.2) and the numerators are not
shown. In this example, we will discuss the seven-line top-sector integral INPL1 [1, 1, 1, 1, 1, 1, 1].
By using the GenerateInput command, the Symanzik polynomials for this integral are

U = α3α5 + α4α5 + α6α5 + α3α6 + α4α6 + (α3 + α4 + α5)α7

+α2 (α3 + α4 + α6 + α7) + α1 (α2 + α5 + α6 + α7) ,
F =

[
α3α5α7 + α1 (α2 (α3 + α6) + α3 (α5 + α6 + α7))

]
S + (α4α5α6)T + (α2α4α7)U

+(α1 + α3 + α4)
[
α3α5 + α4α5 + α6α5 + α3α6 + α4α6 + (α3 + α4 + α5)α7

+α2 (α3 + α4 + α6 + α7) + α1 (α2 + α5 + α6 + α7)
]
m2 , (5.24)

where the relation S+T +U = 0 is used to obtain the minimal positive definite F polynomial.
By imposing S, T, U ∼ 1 and m2 ∼ ρ, the scalings of alpha-parameters in all regions are
listed in table 3.

For the hard region R1, the massless non-planar master integrals can be calculated by
the corresponding canonical differential equations. Its high-energy expansion to O(m2) can
be obtained by using the Dinv command from LiteRed and performing IBP reductions.

For the asymptotic regions R2, . . . , R13, the alpha representations of template integrals
are obtain by using AlphaRepForTempInt command. The MB representations of these
template integrals are

T (2)
NPL1

=
+i∞∫

−i∞

dz1
2πi

U−δ4−1m−2δ1257−4ϵ

Sδ36+2
Γ [δ1257 + 2ϵ,−z1,−δ25 − ϵ,−δ27 + δ4 − z1 − ϵ+ 1]

Γ [−δ46 + z1 − ϵ,−δ634 − ϵ− 1, δ1 + 1, δ2 + 1]

×Γ[− δ4,6 + δ2 + z1 − 1,−δ6,3,4 + z1 − ϵ− 1, δ7,2,5 − δ4 + z1 + ϵ]
Γ[δ5 + 1, δ7 + 1] , (5.25)
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T (3)
NPL1

=T
− δ46

2 + δ2
2 − 1

2U− δ24
2 + δ6

2 − 1
2m−δ624−2δ715−4ϵ−1

S
δ26

2 +δ3−
δ4
2 + 3

2

Γ
[

1
2 (δ624 + 2δ715 + 4ϵ+ 1) ,−δ25 − ϵ

]
2Γ

[
1
2 (−δ624 − 2ϵ+ 1) , δ1 + 1, δ2 + 1

]

×
Γ
[

1
2 (δ24 − δ6 + 1) , 1

2 (δ26 − δ4 + 1) , 1
2 (δ26 − δ4 + 2δ5 + 1) + δ7 + ϵ, 1

2 (δ46 − δ2 + 1)
]

Γ
[
δ4 + 1, δ5 + 1, δ6 + 1, δ7 + 1

]
×Γ(−δ67 − ϵ) , (5.26)

T (4)
NPL1

=
+i∞∫

−i∞

dz1
2πi

T−δ6−1U−δ2−1m−2δ1457−4ϵ

Sδ3+1
Γ [−z1,−δ25 − ϵ,−δ26 + δ4 + z1 − 1, δ57 + ϵ]
Γ [−δ2567 − 2ϵ, δ1 + 1, δ4 + 1, δ5 + 1, δ7 + 1]

×Γ[− δ67 − ϵ,−δ623 + z1 − ϵ− 1,−δ2567 + z1 − 2ϵ, δ56712 − z1 + 2ϵ+ 1]
Γ[− δ26 + z1 − ϵ,−δ623 − ϵ− 1] , (5.27)

T (5)
NPL1

=
+i∞∫

−i∞

dz1
2πi

dz2
2πi

m−2δ1,4−2ϵ

Sδ56723+ϵ+3

(
T

S

)z1 (U
S

)z2 Γ [δ7 + z2 + 1, δ1,4 + ϵ]
Γ [δ1 + 1, δ2 + 1, δ4 + 1, δ5 + 1, δ6 + 1]

×Γ[− δ725 − z2 − ϵ− 1,−δ756 − z1 − ϵ− 1, δ2567 + z1 + z2 + ϵ+ 2]
Γ[δ7 + 1,−δ2567 − 2ϵ, δ1,4 − δ56723 − ϵ− 1]

×Γ[− δ56723 + δ1 − z1 − z2 − ϵ− 2,−z1,−z2, δ4 + z1 + z2 + 1, δ5 + z1 + 1] , (5.28)

T (6)
NPL1

=
+i∞∫

−i∞

dz1
2πi

T−δ4−1m−2δ1567−4ϵ

Sδ23+2
Γ [δ1567 + 2ϵ,−z1,−δ24 + δ6 + z1 − 1]

Γ [−δ24 + z1 − ϵ,−δ423 − ϵ− 1, δ1 + 1, δ5 + 1]

×Γ[− δ56 + δ4 − z1 − ϵ+ 1,−δ67 − ϵ,−δ423 + z1 − ϵ− 1, δ756 − δ4 + z1 + ϵ]
Γ[δ6 + 1, δ7 + 1] , (5.29)

T (7)
NPL1

=
+i∞∫

−i∞

dz1
2πi

T−δ5−1U−δ7−1m−2δ2346−4ϵ

Sδ1+1
Γ [−z1,−δ25 − ϵ, δ26 + ϵ,−δ67 − ϵ]

Γ [−δ2567 − 2ϵ, δ2 + 1, δ3 + 1, δ4 + 1, δ6 + 1]

×Γ[− δ57 + δ4 + z1 − 1,−δ715 + z1 − ϵ− 1,−δ2567 + z1 − 2ϵ, δ56723 − z1 + 2ϵ+ 1]
Γ[− δ57 + z1 − ϵ,−δ715 − ϵ− 1] , (5.30)

T (8)
NPL1

=T
− δ45

2 + δ7
2 − 1

2U− δ47
2 + δ5

2 − 1
2m−2δ623−δ745−4ϵ−1

S
δ57

2 +δ1−
δ4
2 + 3

2

Γ
[
δ623 + 1

2δ745 + 2ϵ+ 1
2 ,−δ25 − ϵ

]
2Γ
[
−1

2δ745 − ϵ+ 1
2 , δ2 + 1, δ3 + 1, δ4 + 1

]
×
Γ[ δ45

2 − δ7
2 + 1

2 ,
δ47
2 − δ5

2 + 1
2 ,

δ57
2 − δ4

2 + 1
2 , δ26 + δ57

2 − δ4
2 + ϵ+ 1

2 ,−δ67 − ϵ]
Γ[δ5 + 1, δ6 + 1, δ7 + 1] , (5.31)

T (9)
NPL1

=
+i∞∫

−i∞

dz1
2πi

T−δ4−1m−2δ2356−4ϵ

Sδ17+2
Γ [δ2356 + 2ϵ,−z1,−δ25 − ϵ,−δ47 + δ5 + z1 − 1]
Γ [−δ47 + z1 − ϵ,−δ714 − ϵ− 1, δ2 + 1, δ3 + 1]

×Γ[− δ56 + δ4 − z1 − ϵ+ 1, δ625 − δ4 + z1 + ϵ,−δ714 + z1 − ϵ− 1]
Γ[δ5 + 1, δ6 + 1] , (5.32)

T (10)
NPL1

=
+i∞∫

−i∞

dz1
2πi

U−δ4−1m−2δ2367−4ϵ

Sδ15+2
Γ [δ2367 + 2ϵ,−z1,−δ27 + δ4 − z1 − ϵ+ 1]

Γ [−δ45 + z1 − ϵ,−δ514 − ϵ− 1, δ2 + 1, δ3 + 1]

×Γ[− δ45 + δ7 + z1 − 1,−δ67 − ϵ,−δ514 + z1 − ϵ− 1, δ726 − δ4 + z1 + ϵ]
Γ[δ6 + 1, δ7 + 1] , (5.33)
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T (11)
NPL1

=U
−δ4−1m−4δ27−2δ1356−8ϵ

S−δ27−2ϵ+2
Γ [−δ25 − ϵ,−δ67 − ϵ, δ1257 + 2ϵ, δ2367 + 2ϵ]

Γ [δ1 + 1, δ2 + 1, δ3 + 1, δ7 + 1] , (5.34)

T (12)
NPL1

=
+i∞∫

−i∞

dz1
2πi

dz2
2πi

m−2δ34−2ϵ

Sδ56712+ϵ+3

(
T

S

)z1 (U
S

)z2 Γ [δ6 + z1 + 1, δ34 + ϵ,−δ625 − z1 − ϵ− 1]
Γ [δ2 + 1, δ3 + 1, δ4 + 1, δ5 + 1, δ6 + 1]

×Γ[− δ726 − z2 − ϵ− 1, δ2567 + z1 + z2 + ϵ+ 2,−δ56712 + δ3 − z1 − z2 − ϵ− 2]
Γ[δ7 + 1,−δ2567 − 2ϵ, δ34 − δ56712 − ϵ− 1]

×Γ[− z1,−z2, δ2 + z2 + 1, δ4 + z1 + z2 + 1] , (5.35)

T (13)
NPL1

=T
−δ4−1m−4δ56−2δ1237−8ϵ

S−δ56−2ϵ+2
Γ [−δ25 − ϵ,−δ67 − ϵ, δ1567 + 2ϵ, δ2356 + 2ϵ]

Γ [δ1 + 1, δ3 + 1, δ5 + 1, δ6 + 1] . (5.36)

In case of R3 and R8, some of the αi scale as √
ρ. Here it is convenient to apply the following

variable transformations

αi →
√
β1β2
β3

, αj →
√
β1β3
β2

, αk →
√
β2β3
β1

, (5.37)

in the corresponding U and F polynomials and take into account the Jacobian determinant(
2
√
β1β2β3

)−1.
With these template integrals, the AsyExp2MB command can generate the high-energy

expansion using shift operators and perform the analytic continuation and the series expansion
in the sequence of {δ1, . . . , δ7, ϵ}. After resolving the δ- and ϵ-singularities, the cancellation
of δ-singularities is observed in the sum of all asymptotic regions. Truncating the expanded
MB integrals to the order O(ϵ1) and O(m2), we obtain 11650 MB integrals, among which
there are 342 two-dimensional MB integrals of I2-type as in eq. (3.5). These I2-type MB
integrals with two-scales are more involved and require the Expand&Fit method described in
section 3.3.2. Since solving these MB integrals is more difficult and computationally much
more expensive compared to the I1-type integrals, it is important to simplify the MB integrals
with the GammaSimplifyList command before using the Expand&Fit method.

For performance reasons, instead of using the automated command AIExpandI2, we use
the lower-level command AIExpand2DMB to expand the I2-type integrals in the x = T/S → 0
limit to more than a hundred expansion terms. At this stage, two expansion series are
generated

I(1) = −
kmax∑
k=0

N∑
n=0

xk log (x)n

+i∞∫
−i∞

dz2
2πi y

z2 f̂
(1)
(k,n)

(
Γ, ψ(i); k1, z2

)
, (5.38)

I(2) =
kmax∑
k1=0

k′
max∑

k2=0

N1∑
n1=0

N2∑
n2=0

c
(2)
(k1,n1,k2,n2) x

k1 log (x)n1 yk2 log (y)n2 . (5.39)

where x = T/S and y = U/S, and k′max in the second series are automatically generated
by the algorithm. The first series still contains a large number of MB integrals involving
z2 integrations with y-dependence. These MB integrals with z2 integrations are calculated
analytically by the summation method with the command AISum1DMB, yielding results that
contain the exact y-dependence expressed in terms of HPLs. Then we can analytically
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continue these two series I(1) and I(2) to the physical region by rewriting y = (−S − T )/S
and transforming S → s by using the command AIEucl2Phys.

Once the power-log series in the physical region are obtained in terms of only s and T ,
we can rewrite the expressions in terms of x′ = T/s and set s = 1. We combine I(1) and
I(2), and re-expand the series in the x′ → 0 limit to obtain

I(exp) =
kmax∑
k=0

N∑
n=0

c′(k,n) x
′k log(x′)n . (5.40)

Note that computing the z2-integration in the I(1) series to obtain higher-order c′(k, n) terms
can be computationally very expensive. It can require a few hundred gigabytes of memory
to compute c′(k, n) terms for k > 100 at O(ϵ1) and O(m2). Hence it is important to keep
the ansatz size in the next fitting procedure as small as possible.

Now we can perform the fitting procedure with the following basis functions

fRF =
{ 1
x′
,

1
1− x′

,
1
x′2

,
1

(1− x′)2

}
,

fHPL =
{
H1(x′), H0,1(x′), H0,0,1(x′), H0,1,1(x′), H0,0,0,1(x′), H0,0,1,1(x′), H0,1,1,1(x′), (5.41)

H0,0,0,0,1(x′), H0,0,0,1,1(x′), H0,0,1,0,1(x′), H0,0,1,1,1(x′), H0,1,0,1,1(x′), H0,1,1,1,1(x′)
}
,

where the log(x′) = H0(x′) is again excluded from the HPL basis. Now the ansatz can be
constructed to transcendental weight-5 with 128 undetermined coefficients

I(ans) =
∑
i,j

a′(i,j) f
(i)
RF(T ) f

(j)
HPL(T ) . (5.42)

To achieve such a minimal ansatz and avoid spurious rational functions in fRF, it is necessary
to combine the power-log series obtained from I2-type integrals with all other simpler MB
integrals that have been calculated prior to this step. In this context, we compute the
remaining 11308 MB integrals and denote their analytic solution in the physical region as
I(known). It is also worth noting again that higher-order terms in m increase the basis of
rational functions fRF, while the higher-order terms in ϵ increase the basis of HPL functions
fHPL. For example, at O(m0) only {1/x′, 1/(1− x′)} are needed for fRF, while at O(ε0) only
HPLs up to weight-4 are needed for fHPL. Therefore, up to O(m2) and O(ϵ1), at least 128
unknown coefficients a′(i,j) are needed. By using the FitAnsatz command, we can require

lim
x′→0

I(ans) = lim
x′→0

(
I(exp) + I(known)

)
(5.43)

to O(x′150), and determine the coefficients a′(i,j) order-by-order in ϵ and m. Once the
fitting procedure is complete in the physical region, the s-dependence can be reconstructed
straightforwardly.

Here, we provide a general estimation of the efficiency of AsyInt for solving this NPL1
integral. The large number of integrals for I(known) can be computed in parallel and do not
represent the bottleneck of the computation. The most computationally expensive part is
obtaining I(exp) to higher orders in x′. At O(ϵ1), we need to compute at least 65 expansion
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terms in x′ for the fitting procedure at O(m0), and 130 expansion terms in x′ at O(m2). While
the computations for each order in x′ can be parallelised, performance is limited by solving
the highest-order term due to the presence of complicated intermediate expressions. To obtain
higher-order terms within a reasonable amount of time and memory usage, AsyInt has been
optimised in its symbolic manipulations for these expressions. With this optimisation, we can
solve the 65th expansion term in x′ at O(m0) in about ten-hour CPU time, and the 130th
expansion term in x′ at O(m2) in about one-week CPU time.

Finally, in combination with the massless contributions in the hard region R1, the results
of this integral to O(ϵ1) and O(m2) are expressed as

INPL1 [1, 1, 1, 1, 1, 1, 1] =
(
µ2

s

)2ϵ 1∑
i=−2

2∑
j=−1

ϵimj f(i,j)(s, T, U,m) , (5.44)

with coefficient functions

f(−2,−1) = − iπ2

s2
√
TU

, (5.45)

f(−2,0) = 1
s2TU

[
2iπs− 5π2s

3 +(2T + iπ(T −U))H0(T̂ )+(3iπs+(T −U)H0(T̂ )

+(T −U)H1(T̂ ))H0(m̂2)+ 3
2sH0(m̂2)2+(−2U+ iπ(T −U))H1(T̂ )

]
, (5.46)

f(−1,−1) = i

s2
√
TU

[
2π2H0(m̂2)+8π2 log(2)

]
, (5.47)

f(−1,0) = 1
s2TU

[
− iπ(16+3π2)s+(−16T −8iπU+π2(4s−6T )+2(4+ iπ)sH1(T̂ )

+(−T +U)H1(T̂ )2)H0(T̂ )+(− iπs+(−T +U)H1(T̂ ))H0(T̂ )2

+1
3(−T +U)H0(T̂ )3+(4iπs− π2s

3 +(4T +2sH1(T̂ ))H0(T̂ )

−sH0(T̂ )2−4UH1(T̂ )−sH1(T̂ )2)H0(m̂2)+(−4iπs

+(3s−2T )H0(T̂ )+(−s−2T )H1(T̂ ))H0(m̂2)2− 11
3 sH0(m̂2)3

+(8iπT +2(8U+π2(s−3T )))H1(T̂ )− iπsH1(T̂ )2+ 1
3(−T +U)H1(T̂ )3

]
, (5.48)

f(0,−1) = −i
s2
√
TU

[
2π2H0(m̂2)2+16π2H0(m̂2) log(2)+ π2(7π2+192log2(2))

6

]
, (5.49)

f(0,0) = 1
s2TU

[
i

(
− π3

3 (3s+10T )+12πTζ(3)−10πs(−8+7ζ(3))
)
+ π4

60(49s+134T )

+
(
i(40πU+ 1

6π
3(45s−38T ))+(20iπU−10(4s+π2U)

+10(T −U)H0,1(T̂ ))H1(T̂ )+(10s+2iπT )H1(T̂ )2+ 2
3(s−4T )H1(T̂ )3

+(20(−2s+T )+4iπ(2s+3T ))H0,1(T̂ )+(−48s+40T )H0,0,1(T̂ )
+26(−T +U)H0,1,1(T̂ )+T (80−11π2−36ζ(3))−4sζ(3))H0(T̂ )+(10iπU

+5
2π

2(T −U)+(10U+ iπ(s−4T ))H1(T̂ )+(− s

2−T )H1(T̂ )2
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+2(6s−5T )H0,1(T̂ ))H0(T̂ )2+
(
− 10T

3 + 4
3 iπ(2s−T )

+
(
−2s+ 8T

3

)
H1(T̂ ))H0(T̂ )3+ 1

12(s+8T )H0(T̂ )4+
(
− 1
6 iπ(48+11π2)s

+
(
−8T −4iπU+π2

(
− 5s

2 +T
)
+4sH1(T̂ )+sH1(T̂ )2

)
H0(T̂ )

+(− iπs−sH1(T̂ ))H0(T̂ )2− 1
3sH0(T̂ )3

+(4iπT +8U+π2
(3s

2 +T
)
)H1(T̂ )− iπsH1(T̂ )2+ 1

3sH1(T̂ )3

+8sζ(3))H0(m̂2)+
(
−2iπs+ 5π2s

12 −2TH0(T̂ )+
1
2sH0(T̂ )2

+2UH1(T̂ )+
1
2sH1(T̂ )2

)
H0(m̂2)2+

(
5iπs+ 1

3(−7s+4T )H0(T̂ )

+
(
s+ 4T

3

)
H1(T̂ )

)
H0(m̂2)3+ 47

12sH0(m̂2)4+(−80U+11π2U

+i
(
−40πT + 1

6π
3(7s−38T )

)
−14iπsH0,1(T̂ )+10(−T +U)H0,0,1(T̂ )

+4(s+5T )H0,1,1(T̂ )+(26s−36T )ζ(3))H1(T̂ )+
(
10iπT + 5

2π
2(U−T )

)
H1(T̂ )2

+
(10U

3 − 4
3 iπ(s+T )

)
H1(T̂ )3+

(3s
4 − 2T

3

)
H1(T̂ )4+(20iπ(T −U)

+10π2(−T +U))H0,1(T̂ )+(40s−20T −2iπ(11s+6T ))H0,0,1(T̂ )
+(2iπ(17s−6T )−20(s+T ))H0,1,1(T̂ )+(72s−60T )H0,0,0,1(T̂ )

+36(T −U)H0,0,1,1(T̂ )−12(s+5T )H0,1,1,1(T̂ )+20Tζ(3)
]
, (5.50)

where T̂ = T/s, m̂2 = m2/s and U = s− T . The higher-order terms up to O(ϵ1) and O(m2)
can be found in the ancillary file [82]. Note that for applications to non-trivial processes,
the calculation of this integral at O(ϵ1) is necessary, and it is much more involved compared
to the computations at O(ϵ0).

The analytic results are cross checked against numerical evaluations with AMFlow on
various phase space points in the high-energy limit.5 For example, with

√
s = 2TeV,

pT =
√
u t/s = 400GeV and m = 80GeV, the results to O(m2) agree with AMFlow at a permil

level for the real parts and at a few permil level for the imaginary parts. The high-energy
expansion to O(m30) agrees with AMFlow to 18 digits for the real parts and to 24 digits
for the imaginary parts.

5.3 Non-planar integral NPL2

As the last two-loop example, we consider the fully-massive non-planar integral NPL2. This
integral is of great phenomenological interest and also mathematically intriguing, as it hints
at new types of beyond-elliptic functions, as discussed in refs. [78, 79]. However, no analytic

5The NPL1 integral has also been analytically calculated in [77] to O(ϵ0), but without publicly available
analytic expressions. Hence, a comparison cannot be performed.
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Figure 7. Two-loop NPL2 diagram.

solution beyond the large-mass limit is known so far.6 Here, we present the analytic results
of this integral in the high-energy limit to O(ϵ0) and O(m0), i.e., two expansion terms in m.7
We show that up to these orders, the results can be expressed in terms of HPLs.

The NPL2 integral has the following propagators{
m2 − l21,m

2 − (l1 + q3) 2,m2 − (l1 + l2 + q2 + q3) 2,m2 − (l1 + l2 − q1) 2,

m2 − (l2 − q1) 2,m2 − l22,m
2 − (l2 + q2) 2

}
(5.51)

where the kinematics are still the same as eq. (5.2) and the numerators are not shown. The
seven-line top-sector integral INPL2 [1, 1, 1, 1, 1, 1, 1] has the Symanzik polynomials

U = (α3 + α4) (α5 + α6 + α7) + α1 (α3 + α4 + α5 + α6 + α7)
+α2 (α3 + α4 + α5 + α6 + α7) , (5.52)

F = (α1 + α2 + α3 + α4 + α5 + α6 + α7)
[
(α3 + α4) (α5 + α6 + α7) + α1(α3 + α4 + α5

+α6 + α7) + α2 (α3 + α4 + α5 + α6 + α7)
]
m2 +

[
(α1α4 + (α1 + α2 + α3 + α4)α5)α7

+α2α3α5
]
S + (α2α4α6)T + (α1α3α6)U . (5.53)

By imposing the scaling S, T, U ∼ 1 and m2 ∼ ρ, the resulting scalings of alpha parameters
in all regions are listed in table 4.

The massless non-planar integral in the hard region R1 can be obtained in the same
way as before, and the asymptotic-region integrals are calculated by AsyInt. By combining
contributions in all regions, the final results of this integral to O(ϵ0) and O(m0) are obtained as

INPL2 [1, 1, 1, 1, 1, 1, 1] =
(
µ2

s

)2ϵ 0∑
j=−1

mj f(j)(s, T, U,m2) , (5.54)

with coefficient functions

f(−1) = − i cZ π
2

s2
√
TU

, (5.55)

f(0) = 1
s2TU

[
π4

180(15s+ 202T )− 2iπ(T (π2 − 2ζ(3)) + s(−24 + 23ζ(3))) + (48T − 6π2T

+i
(
24πU + 2

3π
3(7s− 5T )

)
+
(
12iπU + 1

3(− ((72 + 13π2)s) + 14π2T )

6The non-planar fully massive integrals involving three different masses from top quark, Higgs and Z/W

bosons have been analytically computed in the large top-mass expansion in [80].
7The higher-order terms in ϵ and m of this integral are usually needed for non-trivial processes. However,

computing these terms requires solving a large number of irreducible two-scale three-dimensional MB integrals,
which are more involved. Therefore, we defer this calculation to the future.
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Region α1 α2 α3 α4 α5 α6 α7
R1 0 0 0 0 0 0 0
R2 0 0 0 0 1 1 1
R3 0 0 0 1 1 1 0
R4 0 0 1 0 0 1 1
R5 0 0 1 1 0 0 1
R6 0 0 1 1 1 0 0
R7 0 0 1 1 1 1 1
R8 0 1/2 1/2 0 0 1/2 1
R9 0 1 0 0 0 1 1
R10 0 1 1 0 0 0 1
R11 1/2 0 0 1/2 1 1/2 0
R12 1 0 0 0 1 1 0
R13 1 0 0 1 1 0 0
R14 1 1 0 0 0 0 1
R15 1 1 0 0 1 0 0
R16 1 1 0 0 1 1 1
R17 1 1 1 1 0 0 1
R18 1 1 1 1 1 0 0

Table 4. Scalings of alpha parameters for the NPL2 integral, i.e. αi ∼ ρp where p is the power in the
table. R1 is the hard region and R2, . . . , R18 are the asymptotic regions.

+6(T − U)H0,1(T̂ )
)
H1(T̂ ) + (6 + iπ)sH1(T̂ )2 + 1

3(s− 4T )H1(T̂ )3

+(12(T − 2s) + 4iπ(2s+ T ))H0,1(T̂ ) + (24T − 32s)H0,0,1(T̂ ) + 14(U − T )H0,1,1(T̂ )

+2
3(s− 34T )ζ(3))H0(T̂ ) +

(
6iπU + 1

3π
2(−3s+ 7T ) + (−2iπT + 6U)H1(T̂ )

−TH1(T̂ )2 + (8s− 6T )H0,1(T̂ )
)
H0(T̂ )2 +

(
− 2T + 1

3 iπ(5s− 2T )

+
(
− s+ 4T

3

)
H1(T̂ )

)
H0(T̂ )3 + 1

6(s+ 2T )H0(T̂ )4 +
(
− 2

3 iπ(36 + 7π2)s

+
(
− 12iπU − 8

3((9 + π2)T − π2U) + 2(6 + iπ)sH1(T̂ ) + 2UH1(T̂ )2
)
H0(T̂ )

+(− 2iπs− 2TH1(T̂ ))H0(T̂ )2 − 2
3TH0(T̂ )3

+
(
12iπT + 24U + 8

3π
2(−T + U)

)
H1(T̂ )− 2iπsH1(T̂ )2 + 2

3UH1(T̂ )3

−8sζ(3)
3

)
H0(m̂2) +

(
6iπs− 5π2s

3 + (6T + iπ(T − U) + 3sH1(T̂ ))H0(T̂ )

−sH0(T̂ )2 + (−6U + iπ(T − U))H1(T̂ )− sH1(T̂ )2
)
H0(m̂2)2

+
(4iπs

3 + 2
3(2s+ T )H0(T̂ ) +

(
− 2s+ 2T

3

)
H1(T̂ )

)
H0(m̂2)3 − 1

2sH0(m̂2)4
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+(6(π2 − 8)U + i

(
− 24πT + π3

3 (s− 10T )
)
− 10iπsH0,1(T̂ ) + 6(U − T )H0,0,1(T̂ )

+4(s+ 3T )H0,1,1(T̂ ) +
4
3(9s− 17T )ζ(3))H1(T̂ ) + (6iπT

+1
3π

2(4s− 7T ))H1(T̂ )2 + (2U − 1
3 iπ(3s+ 2T ))H1(T̂ )3 + 1

6(3s− 2T )H1(T̂ )4

+(12iπ(T − U) + 14
3 π

2(U − T ))H0,1(T̂ ) + (24s− 12T − 2iπ(9s+ 2T ))H0,0,1(T̂ )

+(iπ(22s− 4T )− 12(s+ T ))H0,1,1(T̂ ) + (48s− 36T )H0,0,0,1(T̂ )

+20(T − U)H0,0,1,1(T̂ )− 12(s+ 3T )H0,1,1,1(T̂ ) +
4
9π

2sψ(1)
(1
3

)
− 1

3sψ
(1)
(1
3

)2

+12Tζ(3)
]
, (5.56)

where T̂ = T/s, m̂2 = m2/s and U = s − T . Note that the constant cZ is defined in
eq. (3.3), and its numerical value

cZ = 17.695031908454309764234228747255048751062059438637 . . . (5.57)

can be computed to arbitrary numerical precision. These results are cross checked against
numerical evaluations with pySecDec [30] on several phase space points in the high-energy
limit. For example, with the phase space point

√
s = 2TeV, pT = 400GeV and m = 80GeV,

the results to O(m0) agree with pySecDec at a few percent level for the real part and
at a percent level for the imaginary part, given the default percent-level accuracy of the
pySecDec result.

6 Conclusions

The high-energy behaviour of massive two-loop four-point Feynman integrals is of both
phenomenological and mathematical interest. For example, as an effective probe of new
physics effects beyond the Standard Model, studies of multi-Higgs-boson and associated-Higgs-
boson production with large transverse momenta at the LHC and future high-energy colliders
require precise theoretical predictions in the high-energy region. In this region, both higher-
order EW and QCD radiative corrections are relevant. In particular, the massive particles
such as top quark, Higgs and vector bosons are resolved in the virtual loops. Therefore, the
calculation of massive two-loop four-point Feynman integrals is of paramount importance.

In this paper, we have presented analytic techniques and the Mathematica toolbox AsyInt
for calculating massive two-loop four-point Feynman integrals in the high-energy region. By
treating particle masses as small expansion parameters, direct integrations of these integrals
can be achieved in the parametric space with the asymptotic expansion and the MB approach.
In particular, we have presented the analytic Expand&Fit method to systematically solve two
types of complicated irreducible MB integrals: one-scale two-dimensional MB integrals with
nested non-vanishing arc contributions, and two-scale two-dimensional MB integrals. With
this method, analytic results to higher orders in the small-mass expansion parameter and the
dimensional regulator ϵ can be obtained using AsyInt in an algorithmic fashion. This kind of
analytic calculation is the bottleneck of the deep high-energy expansion approach, which can
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provide precise predictions to 2 → 2 scattering processes across a vast range of interesting
phase space regions. These results may further serve as boundary conditions to the differential
equations approach in the high-energy limit. Currently, AsyInt is limited by its capability
for reducing the dimensionality of MB integrals, which will be improved in future work.

Finally, we have discussed three representative massive two-loop four-point Feynman
integrals, including both planar and non-planar examples. Their analytic results are also
provided in the ancillary file [82].
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A Commands of AsyInt

The commands of the public version AsyInt 1.0 are listed in this appendix. The global
parameters in AsyInt are ep and D, rho, im, where D = 4 − 2ep, rho is the scaling power-
counting parameter used internally, and im denotes the imaginary i. In the following, we
use => to denote the output of commands.

A.1 Toolkit I: generate integrals

GenerateInput [loops , props , kinematics , SmallInv , ScalePara , xlist ,
EuclInv :{SS ,TT ,UU}, EuclInvSum :0, UserDefineRelation :{}]
=> {UFpoly , Region , Scaling }

GenerateInputNum [loops , props , numidx , kinematics , SmallInv , ScalePara ,
xlistNum , EuclInv :{SS ,TT ,UU}, EuclInvSum :0, UserDefineRelation :{}]
=> {UFpoly , Region , Scaling , UFpolyNum }

The inputs are

• loops: a list of loop momenta, e.g. {l1, l2}.

• props: a list of propagators, e.g. {m^2-(l1+q1)^2, ...}.

• kinematics: rules of external kinematics, e.g. {q1*q2->-SS/2, q1*q3->-TT/2, ...}.

• EuclInv: Euclidean kinematic invariants (SS=-s, TT=-t, UU=-u by default).

• EuclInvSum: sum of Euclidean invariants (SS+TT+UU=0 by default).

• SmallInv: a small expansion parameter, e.g. m^2.
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• ScalePara: a scaling parameter, e.g. rhos = rho^2 ∼ m^2/SS.

• xlist: a list of alpha parameters of a Feynman diagram, e.g. {x[1], x[2], ...}.

• xlistNum: a list of alpha parameters of an extended Feynman integral with numerators
.

• numidx: a list of numbers that indicates the positions of numerators in the props list.

• UserDefineRelation: a replacement rule provided by the user, e.g. {UU->-SS-TT}.

The outputs are

• UFpoly: Symanzik polynomials of a Feynman diagram.

• UFpolyNum: Symanzik polynomials of an extended Feynman integrals with numerators.

• Region: a list of regions from the asymptotic expansion. The first region is the hard
region be default.

• Scaling: the scaling of alpha parameters in terms of rho power countings.

AlphaRepForTempInt [UFpoly , Scaling , dlist , xlist , ScalePara ]
=> { AlphaRepRegion }

The additional input is

• dlist: a list of delta regulators of a Feynman diagram, e.g. {d1, d2, ...}. They also
serve as symbolic propagator-power shifts for template integrals.

The output is

• AlphaRepRegion: a list of alpha representations of asymptotic regions.

AsyExp2MB [UFpoly , Scaling , dlist , xlist , ExpLowOrd , ExpMaxOrd ,
SmallInv , ScalePara , TempIntList , HardIntList , Zrule , epOrd ,
DotShift : {}, AddExpOrd : 0]
=> {MBexp}

AsyExpNum2MB [UFpolyNum , numidx , UFpoly , Scaling , dlistNum , xlistNum ,
ExpLowOrd , ExpMaxOrd , SmallInv , ScalePara , TempIntList ,
HardIntList , Zrule , epOrd , AddExpOrd :0]
=> {MBexp}

The additional inputs are

• dlistNum: a list of delta regulators of an extended Feynman integral with numerators.

• ExpLowOrd: the lowest power of the expansion parameter SmallInv, where the high-
energy expansion begins. Typically, it is 0 for planar integrals, but -1/2 for non-planar
integrals.
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• ExpMaxOrd: the highest power of the expansion parameter SmallInv, where the high-
energy expansion terminates.

• AddExpOrd: an additional expansion depth in the square root of the expansion parameter
Sqrt[SmallInv]. Typically, it is 0 for integrals without numerators, but 1 or 2 for
integrals with numerators. Note that AsyInt performs internal safety checks during
the expansion. Therefore, the command will abort if potential missing expansion terms
are detected, and prompt users to increase the value of AddExpOrd.

• epOrd: the highest power of dimensional regularisation parameter ep, where the ε-series
terminates.

• HardIntList: a list with only one hard region (the first region), e.g. {R1tmp}. Note
that the R1tmp does not need to be the Head of a function; it serves as a placeholder
to ensure that Length[HardIntList]=1. For simple integrals, users can also calculate
the template integral for the hard region and set HardIntList={} to handle the hard
region integral on the same footing as the other asymptotic region integrals.

• TempIntList: a list of template integrals in asymptotic regions, e.g. {R2tmp, R3tmp,
...}. They must be the Head of template-integral functions that return the MB
integrand representation. The convention of template-integral functions is demonstrated
by the example

R2tmp[dlist,ep]:= Gamma[d1+ep+Z1]*Gamma[d2-ep-Z2]*...

where Z1,Z2 are integration variables in the complex plane.

• Zrule: a rule fixing the real parts of straight integration lines parallel to the imaginary
axis. The default choice is {Z1->-1/7, Z2->-1/11, Z3->-1/17, Z4->-1/19}.

• DotShift: a list indicating which propagator is raised to higher powers. For example,
if the second propagator contains n dots, i.e. raised to power (n+1), users should set
{d2,n}.

The output is

• MBexp: expressions containing Mellin-Barnes integrands.

The option is:

• ExpSafetyCheck: an option to switch on or off the safety check on the expansion depth.
It is True by default, meaning that AsyInt will expand two more terms in rho to check
whether the expansion depth is sufficient to the desired order ExpMaxOrd. If the safety
check fails, the commands will prompt users to increase the value of AddExpOrd. For
performance reasons, users can disable this feature by setting it to False.

• ResolveMBexact0: an option to switch on or off the internal check and resolution
of problematic outputs with exactly vanishing MB integrals. It is False by default.
Usually, AsyInt has internal checks to avoid this kind of problematic outputs. However,
in complicated calculations, problematic outputs may still occur. Users can set this
option to True and AsyInt will try to resolve the issue.
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Note that warning messages can appear during the evaluation, which are handled by AsyInt
internally. Users can ignore these massages as long as the program does not abort.

A.2 Toolkit II: solve integrals

AISum1DMB [MBexp , Z1 , k1 , Zcontour , SmallInv , MBscale :" none",
MBscale2 :" none", LRpreset :"R", AddShift :1, BSpresent :0]
=> { Result }

AISum2DMB [MBexp , Z1 , Z2 , k1 , k2 , Zcontour , SmallInv , MBscale :" none",
MBscale2 :" none", LRpreset :{"R","R"}, AddShift :1, split :0]
=> { Result }

The inputs are

• Z1, Z2: MB integration variables in the complex plane.

• k1, k2: positive integers for the infinity residues representations. Note that AsyInt
imposes positive-integer assumptions on k1, k2. If users choose other parameters,
additional assumptions are required.

• Zcontour: same as Zrule.

• MBscale: a scale associated with the MB integrals, i.e. MBscale^Z1 is present. Note
that MBscale="none" implies scaleless MB integrals.

• MBscale2: a second scale that is not associated with the MB integrals, i.e. no Z1 or Z2
dependence. It is only relevant for non-planar integrals.

• LRpreset: variables determining which side of semi-circle to close with. For example,
{"R","L"} will close the Z1 integration contour to the right semi-circle and the Z2
integration contour to the left semi-circle. Note that the Z1-dependent Z2 integration
contour will be decided by AISum1DMB and AISum2DMB automatically, and user inputs
have no effect on it.

• AddShift: a level parameter dealing with the extra residues from left- and right-merging
poles, which are separated from infinity series representations expressed in terms of k1,
k2. Note that AISum1DMB and AISum2DMB will adjust its value when necessary.

• BSpresent: an parameter indicating whether binomial sums are handled or not. By
default, this feature is disabled with BSpresent=0.

• split: an parameter indicating whether to split the nested residue calculations for
performance reasons. By default, this feature is disabled with split=0.

Note that with the public version AsyInt 1.0, the commands AISum1DMB and AISum2DMB
only support computations of MB integrals with integer-valued residues.
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AINumRec1DMB [MBexp , KinList , TransParaList , ConstList , Zcontour ,
PrecList , MaxPower :200 , KnownRes :0]
=> { Result }

The additional inputs are

• KinList: a list of kinematic variables appearing in scaleless MB integrals, e.g. {TT,
UU}.

• TransParaList: a list of transcendental parameters used for dividing MB integrals
into smaller blocks, e.g. {Log[m^2], Zeta[3], Pi}. This list is necessary for handling
large expressions of MB integrals.

• ConstList: a list of constants used for numerical reconstruction with PSLQ algorithm.

• PrecList: a list of two targeted precisions for numerical evaluations, specified in terms
of digits. For example, {900, 1000} indicates numerical evaluations aiming at 900-
and 1000-digit precision. Note that AISum2DMB requires identical final result from both
evaluations for a successful numerical reconstruction. Therefore, users should ensure a
sufficient difference between these two precisions.

• MaxPower: the maximal truncating powers of parameters in KinList used during the
evaluation. This is typically relevant for the Expand&Fit method.

• KnownRes: previously calculated analytic results used to combined with MB integrals
for the numerical reconstruction. This can reduce the size of ConstList by exploiting
cancellations of spurious terms.

The output Result is the analytic solutions to the MB integrals.
The options are:

• NoGammaSimplify: an option to switch on or off the usage of GammaSimplifyList
inside the command AINumRec1DMB. It is False by default. Users can enable this
feature by setting it to True for some specific types of integrals.

• MBintOneByOne: an option to switch on or off the one-by-one MB integral numerical
evaluation. It is False by default. For complicated integrals involving Hypergeometric
functions like HypergeometricPFQ, users may enable this feature by setting it to True.

AIEucl2Phys [exp , SmallInv , TT , UU , SS , s, mus , IntDef , LoopOrd , epOrd ,
NoEpExp :False , EuclKinRelation :{UU ->-TT -SS}]
=> { PhysResult }

The additional inputs are

• SS,TT,UU: the positive invariants in the Euclidean region.

• s,TT,UU: the positive invariant in the physical region.
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• mus: regularisation scale squared µ2

• IntDef: a list of integral definition, e.g. a seven-line integral is {1,1,1,1,1,1,0,0}.

• LoopOrd: the loop order.

• NoEpExp: if NoEpExp =!= False, no (mus/SS)^ep or (mus/s)^ep prefactor will be
attached, and no ε-expansion will be performed. This feature is disabled by default.

• EuclKinRelation: the kinematic relation in Euclidean region used in the analytic
continuation.

The output is

• PhysResult: results in the physical region.

Note that AIEucl2Phys does not contain a complete list of analytic continuation rules. For
more crossing and analytic continuation rules, please refer to ref. [20].

AC2Phys [exp , SmallInv , TT , UU , SS , s, EuclKinRelation :{UU ->-TT -SS}]
=> { PhysResult }

This is a lower-level command version of AIEucl2Phys, but without s-dependence and
regularisation scale reconstructions. It is suitable for manipulating individual functions,
rather than the full expression.

A.2.1 Expand&Fit module

AIExpandI1 [MBexp , Z1 , k1 , Z2 , k2 , Zcontour , Z1ExpOrd , KinList ,
TransParaList , ConstList , PrecList , LRpreset :{"R","R"}, AddShift :2]
=> { ResExp }

AIExpandI2 [MBexp , Z1 , k1 , Z2 , k2 , Zcontour , Z1ExpOrd , MBscale ,
MBscale2 , SmallInv , LRpreset :{"R","R"}, AddShift :2]
=> { ResExp }

The additional input is

• Z1ExpOrd: the highest power of Z1 in the expansion of MBscale^Z1 in the MBscale → 0
limit.

The output is

• ResExp: expanded results in the MBscale → 0 limit.

Note that for the AIExpandI2 command, the second scale MBscale2 is also associated with
MB integrals, i.e. MBscale2^Z2 is present.

AIExpand2DMB [MBexp , Z1 , k1 , Z2 , k2 , Zcontour , Z1ExpOrd ,
LRpreset :{"R","R"}, AddShift :2, IgnoreBDconst :0, ToSum :0]
=> {MBexp , ExtraResidue }
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Note that with the public version AsyInt 1.0, the commands AIExpand2DMB,
AIExpandI1 and AIExpandI2 only support computations of MB integrals with integer-valued
residues.

FitAnsatz [Ansatz , ResExp , MBscale , SmallInv , CoeffSymbol , ExpOrd ,
AnsatzExpRule , TransParaList :{Pi}, InitGuess :{}]
=> { Result }

The additional inputs are

• Ansatz: an ansatz constructed from transcendental functions and rational functions
with unknown coefficients.

• CoeffSymbol: the symbolic Head of unknown coefficients in the ansatz. For example,
CoeffSymbol=a for coefficients a[i,j].

• AnsatzExpRule: expansion rules for transcendental functions appearing in the ansatz
in the MBscale → 0 limit.

• ExpOrd: expansion order used for fitting the ansatz, with its maximal value being
Z1ExpOrd.

• InitGuess: prior knowledge or initial guesses that may reduce the size of the ansatz.

A.3 Other commands

IntTypeA [integrand , var , varResList :{}]

IntTypeB [integrand , var , varResList :{}]

MBsplit [integrand , X, Y, Zvar]

The command IntTypeA is the integration routine of eq. (2.15), the command IntTypeB is
the integration routine of eq. (2.16), and the command MBsplit is the Mellin transformation
routine of eq. (2.17). The inputs are

• integrand: the integrand in alpha representation.

• var: the alpha variable to be integrated over.

• varResList: a list of alpha variables to be rescaled. For example, if varResList =
{x2, x3} and var = x1, these routines will rescale x2->x2*x1, x3->x3*x1, and then
integrate over x1. The Jacobian determinants are taken into account.

• X,Y: expressions of the X and Y as in eq. (2.17).

• Zvar: the MB integration variable z introduced in eq. (2.17).

The outputs are the integrated or Mellin transformed results.
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GammaSimplifyList [exp]

This is an efficient and momery-economic recursive simplification command designed to
simplify large expressions of Gamma and PolyGamma functions through their recursions.

SortPatternList [exp , PatternList ]

This is a pattern sorting command that outputs a list of expressions. For example, if
PatternList = {Z1, Z2}, then the output is a list of non-vanishing expressions in the form
{no Z1 or Z2, only Z1, only Z2, both Z1 and Z2}.

KinToX [exp , TT , SS , x, Z]

This is a command that identifies MB integrals with scales. It translate TT^(Z+a)*SS^(-Z+b)
to x^Z*TT^a*SS^b.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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