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Abstract

Reliable forecasts of quasi-stationary, recurrent, and persistent large-scale atmo-
spheric circulation patterns—so-called weather regimes—are crucial for various
socio-economic sectors, including energy, health, and agriculture. Despite steady
progress, probabilistic weather regime predictions still exhibit biases in the exact
timing and amplitude of weather regimes. This study thus aims at advancing
probabilistic weather regime predictions in the North Atlantic-European region
through ensemble post-processing. Here, we focus on the representation of seven
year-round weather regimes in sub-seasonal to seasonal reforecasts of the Euro-
pean Centre for Medium-Range Weather Forecasts (ECMWF). The manifesta-
tion of each of the seven regimes can be expressed by a continuous weather
regime index, representing the projection of the instantaneous 500-hPa geopo-
tential height anomalies (Z500A) onto the respective mean regime pattern. We
apply a two-step ensemble post-processing involving first univariate ensemble
model output statistics and second ensemble copula coupling, which restores the
multivariate dependence structure. Compared with current forecast calibration
practices, which rely on correcting the Z500 field by the lead-time-dependent
mean bias, our approach extends the forecast skill horizon for daily/instantaneous
regime forecasts moderately by 1 day (from 13.5 to 14.5 days). Additionally, to
our knowledge our study is the first to evaluate the multivariate aspects of fore-
cast quality systematically for weather regime forecasts. Our method outperforms
current practices in the multivariate aspect, as measured by the energy and var-
iogram score. Still, our study shows that, even with advanced post-processing,
weather regime prediction becomes difficult beyond 14 days, which likely points
towards intrinsic limits of predictability for daily/instantaneous regime forecasts.
The proposed method can easily be applied to operational weather regime fore-
casts, offering a neat alternative for cost- and time-efficient post-processing of
real-time weather regime forecasts.
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1 | INTRODUCTION

Weather regimes, defined as quasi-stationary, recurrent,
and persistent large-scale circulation patterns (Michelan-
geli et al., 1995; Vautard, 1990), provide valuable infor-
mation for decision-making in the energy (Bloomfield
et al., 2021; Mockert et al., 2023), health (Charlton-Perez
et al., 2019), and agricultural (Lavaysse et al., 2018) sec-
tors. These weather regimes are associated with distinct
conditions on surface variables, including 2-m tempera-
ture, 10-m wind, and radiation, and thus prove beneficial
for extended-range prediction. The representation of com-
plex large-scale circulations through a finite set of states
(e.g., weather regimes) facilitates the interpretation and
categorisation of the prevailing large-scale circulation and
its impact on surface weather. In the context of renew-
able energy forecasts for the European region, Bloomfield
et al. (2021) conducted a comprehensive study comparing
grid-point-based forecasting methods with pattern-based
methods (including weather regimes). While grid-point
forecasts exhibit superior skill up to 10 days lead time,
pattern-based methods demonstrate better performance
at extended-range lead times (12+ days).

In this article, we adopt the year-round definition of
seven North Atlantic-European weather regimes pro-
posed by Grams et al. (2017). These weather regimes,
illustrated in SupplementS1 in the Supporting Informa-
tion, represent large-scale circulation patterns within
the 500-hPa geopotential height field (Z500). The regime
definition is rooted in continuous information about the
amplitude of the seven weather regimes via a normalised
weather regime index (IWR). The seven-dimensional IWR
vector thus provides additional information about the cur-
rent regime characteristics beyond a mere categorisation,
which proved to be useful in sub-seasonal prediction of
weather regimes (cf. discussion in Grams et al., 2020).

However, extended-range forecasts of Z500 have sub-
stantial biases (e.g., Biieler et al., 2021; Ferranti et al., 2018).
One commonly used method to address these mean
biases involves calibrating the Z500 field before comput-
ing weather regimes (cf. Biieler et al., 2021). Instead of
computing the Z500 anomalies relative to the reanalysis
climatology, this method computes anomalies relative to
the 90-day running-mean reforecast climatology at the
respective lead time. While this correction mitigates the
Z500 bias in the forecast field, it does not address all
systematic errors, for example, the flow dependence of
systematic errors. Additionally, this specific approach is
impractical for operational on-the-fly reforecasts like those
produced by the European Centre for Medium-Range
Weather Forecasts (ECMWF), due to the need for com-
promises regarding averaging windows when computing
running-mean climatologies.

The presence of systematic errors and biases is a com-
mon challenge in ensemble weather forecasting (Lerch
et al., 2020; Vannitsem et al, 2021). Addressing this
challenge can involve statistical post-processing meth-
ods, where systematic forecasting errors are corrected
by analysing the statistical error distribution of past
forecasts. Most research efforts have been focused on uni-
variate post-processing methods where different weather
variables, locations, or lead times are treated separately.
However, many practical applications require accurate
representations of temporal, spatial, and inter-variable
dependences. Preserving these multivariate dependence
structures is crucial. In low-dimensional scenarios, this
could be achieved by fitting a specific multivariate prob-
ability distribution (Schefzik & Moller, 2018). A more
broadly applicable strategy involves a two-step process.
In the first step, forecasting variables are post-processed
individually in all dimensions. Then, in the second step,
the multivariate dependence structure is restored by rear-
ranging univariate sample values based on the rank order
structure of a specific multivariate dependence template.
From a mathematical perspective, this second step corre-
sponds to applying a parametric or non-parametric copula.
Commonly used multivariate approaches include ensem-
ble copula coupling (Schefzik et al., 2013), the Schaake
Shuffle (Clark et al., 2004), or a Gaussian copula approach
(Moller et al., 2013).

The combination of ensemble model output statistics
(EMOS: Gneiting & Raftery, 2007) and ensemble copula
coupling (ECC: Schefzik et al., 2013) grounded in Sklar’s
theorem from multivariate statistics (Schefzik et al., 2013),
EMOS-ECC, has proven to be effective across various
meteorological forecast variables. Schefzik et al. (2013)
explored different EMOS-ECC configurations for sea-level
pressure forecasts and consistently found its superior
performance compared with alternative calibration
techniques. Additionally, the configuration where equidis-
tant quantiles are drawn from the forecast distribution
(EMOS-ECC-Q) outperformed other EMOS-ECC config-
urations in the context of pressure forecasts. In a study
by Scheuerer and Hamill (2015) on wind-speed forecasts,
EMOS-ECC-Q consistently outperformed raw ensemble
forecasts, EMOS-Q (without restoring multivariate depen-
dences), and another EMOS-ECC configuration. Applying
the EMOS-ECC approach from Schefzik et al. (2013) to
temperature forecasts, Schefzik (2017) compared it with
a member-by-member post-processing (MBMP) method.
Schefzik’s (2017) findings indicate that both methods
exhibit good performance, with EMOS-ECC consistently
outperforming MBMP in predictive skill. Further, vari-
ous comparative studies of multivariate post-processing
methods have found that the differences between dif-
ferent variants of ECC or observation-based approaches
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such as the Schaake Shuffle tend to be small, and that
EMOS-ECC-Q usually constitutes a competitive bench-
mark (e.g., Lakatos et al., 2023; Lerch et al., 2020; Perrone
et al., 2020; Wilks, 2015). Commonly, as also in the studies
mentioned above, post-processing is applied directly to
meteorological forecast variables, for example, tempera-
ture, precipitation, or wind-speed forecasts. The promising
results from these recent studies motivate us to apply the
EMOS-ECC-Q approach to our problem at hand, enabling
comprehensive multivariate post-processing. Instead of
directly post-processing a forecast variable (e.g., Z500)
generated by the forecasting model, we post-process the
weather regime index forecast, which is derived from the
Z500 forecast.

In our study, we develop a two-step post-processing
method that adapts EMOS-ECC to forecasts of the con-
tinuous weather regime index IWR. In a first step, we
address the univariate marginal distributions of each
weather regime index independently. Subsequently, in
the second step, we restore the multivariate dependence
structure among weather regimes by applying a copula
function. This function learns the dependence structure
from the raw weather regime index forecasts. To our
knowledge, our study is the first to develop multivariate
post-processing methods for the weather regime index,
and presents the first comprehensive evaluation of the
multivariate probabilistic forecast skill for weather regime
forecasts.

The structure of the article is outlined as follows. In
Section 2, we introduce the reforecasts, the weather regime
index, and the statistical post-processing methods. Addi-
tionally, we discuss the scoring rules used to evaluate the
forecasts. Section 3 starts with a brief discussion of the
mean biases in ECMWF Integrated Forecasting System
(IFS) reforecasts and is then divided into three parts. In
Section 3.2 we analyse the univariate skill. Then we shift
our focus to assess multivariate skill (Section 3.3) and,
lastly, we test the sensitivity of the EMOS-ECC approach
to the frequency of reforecast initialisations and the his-
torical period covered by the reforecasts (Section 3.4). In
Section 4 we conclude and discuss our findings, and give
an outlook on further research avenues.

2 | DATA AND METHODS

2.1 | ECMWEF reforecast and reanalysis

For our study, we utilise sub-seasonal to seasonal
reforecast data by ECMWF, provided through the
Subseasonal-to-Seasonal ~ (S2S)  Prediction  Project
Database (Vitart et al., 2017). To increase the number of
forecast initial dates available for our analysis, we merge
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forecasts from two consecutive model cycles, Cy46R1 and
Cy47R1 (Vitart & Mladek, 2023). These reforecasts are
computed twice a week (Mondays and Thursdays) and
consist of 11 ensemble members, covering a forecast lead
time of 0-46 days with 91 vertical levels and a native hori-
zontal grid spacing of 16 km up to day 15 and 32 km from
day 15 onwards. Forecast data were remapped from their
native resolution to a regular latitude-longitude grid with
1° grid spacing. The two model cycles were operational
from June 11, 2019, to May 11, 2021, with a cycle change
on June 30, 2020. As a result, for the period between
May 11 and June 30, reforecasts are only available from
Cy46R1, which may impact the training and evaluation of
our methods within that specific time period. It is likely
that in this period the post-processing performs worse, due
to fewer training dates. Nonetheless, with the combina-
tion of Cy46R1 and Cy47R1, our dataset spans 21 years of
reforecasts, from June 11, 1999-May 11, 2020, comprising
a total of 4000 initial dates, each with 11 ensemble mem-
bers. The reforecasts are initialised using the ECMWF
Reanalysis v5 (ERA5) data (Hersbach et al., 2020). For
verification purposes, we treat the ERAS dataset as a “per-
fect ensemble member” by matching ERAS5 data to each
initialisation date and lead time (cf. Wandel et al., 2024).
Further, the ERAS5 data are remapped to the same grid
spacing as the reforecasts.

2.2 | Weather regimes

In this study, we use the seven year-round North
Atlantic-European weather regimes introduced by Grams
et al. (2017) based on ERA-Interim reanalysis, but adapted
here for the newer ERAS5 reanalysis as described in Hauser
et al. (2023a, 2023b) and applied to IFS reforecasts fol-
lowing the approach of Biieler et al. (2021) and Osman
et al. (2023). These weather regimes represent the most
common large-scale circulation patterns in the North
Atlantic-European region (30-90°N, 80°W-40°E). In
brief, we conduct an empirical orthogonal function (EOF)
analysis of six-hourly (1979-2019), 10-day low-pass filtered
(filter width of 20 days, hence +10days), seasonally nor-
malised geopotential height anomalies (Z500A, relative to
91-day running-mean climatology) within the domain of
the weather regimes. We then apply a k-means clustering
algorithm on the first seven EOFs and set k = 7. These
seven clusters represent the seven distinct weather regimes
(Figure S1) originally introduced by Grams et al. (2017),
with three cyclonic (Atlantic Trough (AT), Zonal Regime
(Z0O), and Scandinavian Trough (ScTr)) and four anticy-
clonic regime types (Atlantic Ridge (AR), European Block-
ing (EuBL), Scandinavian Blocking (ScBL), and Greenland
Blocking (GL)).
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To describe the projection of instantaneous anoma-
lies onto mean regime patterns, whether in reanalysis or
(re)forecast, we introduce a seven-dimensional weather
regime index, IWR. We briefly outline the steps to com-
pute the weather regime index (see also Figure S2) for
two sets of forecasts, raw and Z500 bias-corrected (nota-
tion adopted by Osman et al. (2023)), and refer to Biieler
et al. (2021) and Osman et al. (2023) for a more detailed
description of the computation of the IWR.

Similar to the definition of the weather regime pat-
terns, we compute the Z500A for raw forecasts relative to
the 91-day running-mean ERAS5 climatology (1979-2019,
Figure S2, top middle panel). Subsequently, we then apply
a low-pass filter and normalisation to obtain standard-
ised and filtered Z500A (®,,:), where m* denotes all 11
ensemble members and the ERAS5 perfect member.

Computing Z500A directly by subtracting ERAS cli-
matology from model (re)forecasts does not account for
systematic model biases. To address this, systematic Z500
forecast biases are eliminated in the Z500 bias-corrected
forecasts (abbreviated as Z500 cor., Figure S2, top right
panel). Here, the underlying Z500 calendar day clima-
tology derived from ERAS5 reanalysis is replaced with
a model climatology (similar to Biieler et al., 2021). To
ensure a fair comparison later on, the model climatology
covers June 1999-May 2015, excluding the subsequent
test period of June 2015-May 2020. This ensures that
model data from the test period are not included. For the
perfect member, the ERAS5 climatology of this reduced
period is used rather than model climatology. Due to the
different reference periods in climatology (1979-2019 vs.
1999-2015), the ERAS5 perfect members of the raw and
Z500 bias-corrected forecasts are not identical (though
differences are minimal).

After computing the standardised and filtered Z500A
(®») for each forecast, we project these onto the seven
cluster mean Z500A following the method of Michel and
Riviére (2011), via

1
P(wr,m*)(t’ T) =

X
Zi,qoe(region) COS((p) A,p€E(region)
[@ms (4, 0.1, T) - Py (4, @) - cos(@)]. (1)

Here, Pwrm+)(t,7) represents a scalar measure for the
spatial correlation of the instantaneous anomaly field
O, (4, @,t,7) at lead-time day r initialised at date
t and ensemble member m* with the cluster mean
anomaly field ® (4, @) for the weather regimes wr €
{AT, ZO, ScTr,AR, EuBL, ScBL, GL}. Here, A and ¢ denote
the longitudinal and latitudinal degrees, respectively.

The weather regime index Iwrm+(t,7) is then
computed for each weather regime, ensemble member,
initialisation date, and lead time based on anomalies of the

projections Pgyr.m+)(t, 7). These anomalies are relative to
the climatological mean projection Py = %Zf\i 1Pewn (D)
and the estimated climatological standard deviation of the
projection,

P * t,’[ _P
I(wr,m*)(t, ‘L') = (wr,m )( ) (wr) . (2)

N 2
%Z (P(wr)(i) - P(wr))

i=1

The variable i in the climatological mean projection and
estimated standard deviation has different meanings for
the two different forecast sets. For the raw forecasts, i iter-
ates over the ERA5 data from 1979-2019. For the Z500
bias-corrected forecasts, i iterates over all available dates
and ensemble members in the model forecast data from
June 1999-May 2015 (the reduced training set). Combin-
ing the weather regime index for each weather regime
yields a seven-dimensional weather regime index vector
IWR,,-(t,7) for each initialisation date, lead time, and
ensemble member.

For verifying IWR forecasts, respective ERA5 perfect
members are considered. When computing skill scores
(e.g., the continuous ranked probability skill score), we use
a climatological reference forecast, computed by the per-
fect member of the raw IWR forecast (Figure S2, bottom
right panel).

2.3 | Statistical post-processing

We employ a two-step statistical post-processing method
based on Sklar’s theorem (Lerch et al., 2020; Schefzik
et al., 2013; Sklar, 1959) for the seven-dimensional
weather regime index forecast: first, univariate process-
ing using ensemble model output statistics EMOS (Gneit-
ing & Raftery, 2007), and, second, multivariate process-
ing through ensemble copula coupling ECC (Schefzik
et al., 2013). We adapt the notation of Lerch et al. (2020)
and Chen et al. (2024) with slight modifications for our
specific setup.

According to Sklar’s theorem, a multivariate cumu-
lative distribution function (CDF) H can be decomposed
into a copula function C representing the dependence
structures and its marginal univariate CDFs Fur, ... ,Fgr
obtained through univariate post-processing. Specifi-
cally, for xur, ... ,xgr € R, we have H(xur, ... ,XcL) =
C(Far(XaT), ... ,Fgr(xgr)) (Lerch et al., 2020), where the
subscript iterates through the seven weather regimes
wr € {AT, ZO, ScTr, AR, EuBL, ScBL, GL} and x represents
the weather regime index.

The unprocessed 7D ensemble forecast of the weather
regime index with M = 11 ensemble members is denoted
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as X, ..., Xy €R’, where X, = <X£,fm, ,X,(”GL)>.
Similarly, the observations of the weather regime index
are denoted asy = (y4D), ... ,y(®) e R7.

2.3.1 | Ensemble model output statistics

The first step of the two-step post-processing method is
to apply EMOS univariately to fit a Gaussian predictive
distribution ™ with mean y and variance o2,

YOIXM, LX) ~ N (o) =Fy, (3)

where the distribution parameters 8 = (u, o) are linked to
the ensemble forecasts via 6 = g(X3, ... , Xp).
The parameters

([1,62) = ((10 + al)_(, b() + blsz) = g(Xiwr)’ ,XI(\YIW)> (4)

are determined by minimising the continuous ranked
probability score (CRPS) via optimisation of ag, a;, by, by
on a training period from June 1999-May 2015
(Figure 1a,b). The resulting model for each weather
regime index is referred to as EMOS-G. Initially, we con-
ducted the above-mentioned univariate post-processing
step using different setups for the training period to
discern variations in performance. These setups involved

(a) Example raw forecast
distribution on training data

¢+ Raw ensemble members

o(lwr)

data

forecast

N Weather Regimes

FIGURE 1

Apply Gaussian predictive | - Equidistant quantiles

distribution y®» with +  Independent mémbers
---- ERA ground truth
i

optimisation parameters
ao, au, bo, b1 from training
data on each IWR on test

Generate an 11-member
ensemble by computing
equidistant quantiles

Restore multivariate
dependence structure by
imposing rank order
structure of raw ensemble

Royal Meteorological Society

training one EMOS method on the full dataset, splitting it
into two seasons (winter half-year (October-March) and
summer half-year (April-September)), four seasons (win-
ter (December-February), spring (March-May), summer
(June-August), and autumn (September-November)), or
training EMOS for each calendar day using running win-
dows of 9, 31, and 91 days. The performance of all methods
was comparable, with a slight tendency towards better
performance for the four-season approach and a running
window of 31 days. We therefore focus our analysis on
the 31-day running-window setup, as it is amongst the
best-performing setups and compatible with on-the-fly
generated reforecast data.

For each weather regime index, we reduce the con-
tinuous Gaussian forecast distributions to an ensemble
with the same number of members (M =11) as the
unprocessed forecast X, ... , Xy, (Figure 1b). This process
involves drawing equidistant quantiles at levels 1/(M +
1), ...,M/(M+1) from the forecast distributions Féwr)
and the resulting forecasts are referred to as EMOS-Q
(Figure 1c).

2.3.2 | Ensemble copula coupling

In the second step, we utilise ECC to restore the multi-
variate dependence structure of the weather regime index.

(b) Example EMOS-G forecast
distribution on test data

o(lwr)

Iwr

2 T >
8/)70 1 & P & F® %Sb o

\Weather Regimes

Post-processing workflow for the seven-dimensional weather regime index using EMOS-ECC. (a) Initially, the

optimisation parameters are fitted by minimising the continuous ranked probability score on the raw ensemble forecasts in the training data.
The obtained optimising parameters from the training data are then applied to ensemble forecasts in the test data to transform them into
Gaussian predictive distributions (a to b). (b) The resulting EMOS-G forecast is used to sample equidistant quantiles, generating (c) the
post-processed ensemble forecast EMOS-Q, which is organised by the rank. Finally, (d) ECC-Q is employed to restore the multivariate
dependence structure of the raw forecast (transparent bars in d). [Colour figure can be viewed at wileyonlinelibrary.com]
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We achieve this by retrieving the rank order structure of
the unprocessed ensemble member forecasts (Figure 1d,
pale bars) and sorting the post-processed ensemble mem-
bers accordingly (Figure 1c,d). To formalise this pro-
cess, for each weather regime index we define oy(m) =

rank(X,(nwr)) as a permutation, and aim to find Xom _

Afrwr) . where J%(lwr), ..,%% form a sample under the
(wr)

assumption that %" < - .- < 2" to simplify the notation.

Here,

-1 -1
s (wr) | (Wr) 1 s (Wr) (Wr) M
= (F ) <—>x .=(F ) (_)
1 ( 0 M+1 M o M+1

represent the quantile-based EMOS-Q predictions of the
weather regime indices. This non-parametric, empiri-
cal copula approach is referred to as ECC-Q. Unlike
in the Introduction, for the sake of simplicity we will
refer to the execution of the two-step process as ECC
and not EMOS-ECC, since we did not test any other
univariate methods. Next to ECC, we also tested the
Schaake Shuffle approach, which ranks ensemble mem-
bers based on past observations rather than the actual
forecast.

2.4 | Skill metrics and their skill scores
In this study, we aim to compare the univariate and
multivariate skill of the post-processed ensemble fore-
casts using EMOS-G and ECC-Q with the skill of the
current practice of processing the Z500 field prior to
computing the weather regime index. To conduct this
comparison, we introduce the continuous ranked prob-
ability skill score (CRPSS) for univariate evaluation and
the energy skill score (ESS) and variogram skill score
(VSS) for assessing multivariate aspects of forecast qual-
ity. While these scores are discussed extensively in Gneit-
ing and Raftery (2007) and Scheuerer and Hamill (2015),
we will provide a concise summary of the underlying
metrics and skill scores in this work and direct inter-
ested readers to the literature mentioned for more detailed
information.

The CRPS is a metric used for evaluating univariate
probabilistic forecasts and generalises the absolute error to
which it reduces when the forecast is deterministic. It is
defined as

CRPS(F,y) = / m(F(x) —1{x>y})? dx, (5)

where 1 represents the indicator function, F is a predic-
tive distribution, and y is the observation. Lower values
represent higher skill, where a CRPS value of 0 indicates a
perfect forecast.

To assess the skill of multivariate probabilistic fore-
casts, we employ the energy score (ES) and the variogram
score (VS) of order p (VSP). The ES is a generalisation of
the CRPS and the variogram score originates in the concept
of variograms (also referred as structure functions) from
geostatistics. The ES is calculated as

M M M
1 1

BS(EY) = 3 LI%i =yl = 735 3 D X=Xl 6)

i=1 i=1j=1
where || - || denotes the Euclidean norm on R?, X;, X; are
samples from the multivariate forecast distribution, and y
represents the multivariate observation, respectively. The

VSP is given by
D D M ) 2
i j 1 W _ w0
VSP(F,y) = ZZWLJOJV(” _y(;)|P _ MZ)X; _ij ‘ ) i
k=1

i=1 j=1
(7
with w; ; being a non-negative weight for pairs of compo-
nent combinations and p representing the order of the VS.
In accordance with Scheuerer and Hamill (2015), we use
an unweighted version of the VS with w; ; =1 and setp =
0.5. The values of both the energy and the variogram score
can be interpreted similarly to the CRPS, where lower
values represent better forecast skill.

The skill scores (SS¢) for the mentioned skill metrics

(S € {CRPS,ES, VSP}) are calculated as

- =, (®)

where §f is the mean score of a forecasting method f. For
the skill metrics considered here, a perfect score Sop; equals

0. As a reference forecast (Srf), we generally use a 31-day
ensemble climatology, where the ensemble members are
represented by reanalysis data for the S2S reforecast dates
throughout the training period of June 1999-May 2015 of
the raw weather regime index (Figure S2, bottom right
panel). A value of 1 indicates perfect skill, a value of 0 equal
skill, and negative values worse skill than the reference
forecast.

2.5 | Diebold-Mariano test of equal
performance

To assess the statistical significance of the differences
in predictive performance between the post-processed
forecast, raw forecast, Z500 bias-corrected forecast,
and climatological reference forecast, we employ the
Diebold-Mariano test of equal performance (Diebold &
Mariano, 1995), the test statistic ¢, of which is given by
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SF_ G
ty = \/n——2 (9)

n

where St = %Z:’zls(Fi,yi) and SY = %ZLS(G%YI‘) repre-
sent the mean scores of forecasts F and G over n sam-
ples, respectively. Following Gneiting and Katzfuss (2014)
and assuming independence between the score differ-
entials, we estimate the standard deviation by 6, =

\/%2?:1 (SFi,y) — S(Gi,yi))z. Under standard regularity
assumptions, t, asymptotically follows a standard Gaus-
sian distribution. Negative values of t, indicate that F
outperforms G with respect to the considered score S. We
use a level of @ = 0.05 to assess the significance of the per-
formance. Values falling outside this level (indicated with
grey shading in Figures 6 and 8) are considered statistically
significant.

2.6 | Verification rank histograms
Verification rank histograms are essential tools for assess-
ing the calibration of a collection of ensemble forecasts for
a scalar predictand, which here is the IWR (Wilks, 2011).
To construct a rank histogram, we analyse n ensemble
forecasts, each with M = 11 ensemble members. For every
ensemble forecast, we determine the rank of the observa-
tion within the M + 1 values, hence we sort the IWR in
ensemble forecasts and observation (reanalysis) in ascend-
ing order and determine the rank of the observation value.
These ranks are then tabulated, resulting in a histogram
that represents the distribution of observation ranks across
all ensemble forecasts. A calibrated and reliable forecast
would be represented by a uniform distribution of ranks,
while deviations may indicate biases or under/overdisper-
sion in the ensemble forecasts. To provide a comprehen-
sive view, we visualise the verification rank histograms of
each lead time in one joint two-dimensional histogram.
The rank is on the x-axis, the lead time on the y-axis, and
the frequency distribution is indicated by coloured boxes
and numbers inside the boxes, indicating the deviations
from a perfect frequency distribution of 1/12 for each rank
due to 11 + 1 members.

3 | RESULTS

In this section, we first analyse Z500 forecast biases and
how they are connected to biases in the weather regime
index forecasts. Then we present a comprehensive evalu-
ation of the post-processed forecasts in comparison with
both the raw and Z500 bias-corrected forecasts of the
weather regime index (IWR). Our analysis is divided into

Royal Meteorological Society

two main aspects: the assessment of univariate skill, focus-
ing on EMOS-G (Section 3.2), and the evaluation of multi-
variate skill, centred around ECC-Q (Section 3.3). In addi-
tion, we investigate the method’s sensitivity to variations
in training data availability (Section 3.4). It is important to
note that we are assessing the ensemble forecast’s capabil-
ity to predict IWR on given days, which is a challenging
forecasting question, in particular at extended-range lead
times.

3.1 | Z500 forecast biases

Biases in the Z500 forecast have a direct impact on the
seven-dimensional weather regime index, as these project
directly into the IWR forecasts. The analysis of Z500 biases
as a function of forecast lead time (Figure 2) unveils the
reasons for systematic biases in the IWR (Figure S3). In the
weather regime region (denoted by the grey dashed box
in Figure 2), forecast biases grow from values near 0 gpm
(geopotential meter) at 0 day lead time to around 40 gpm at
lead times beyond 20 days. Throughout the year, positive
biases dominate in the northern part of the weather regime
region (first row in Figure 2) and extend from Canada
into the high-latitude North Atlantic. This positive bias
anomaly projects most prominently into the Atlantic Ridge
weather regime (yellow in Figure S3). The Z500 biases are
seasonally dependent, which also manifests in the IWR.
In winter (second row in Figure 2), Z500 biases exhibit a
dipole structure projecting into the Atlantic Trough and
Greenland Blocking (purple and blue in Figure S3). In
spring (third row in Figure 2), the positive Z500A in the
North Atlantic grows, projecting into the Atlantic Ridge
and Greenland Blocking (yellow and blue in Figure S3).
During summer (fourth row in Figure 2), the positive
anomaly in the North Atlantic intensifies, accompanied by
anegative anomaly in northern Europe, projecting into the
Scandinavian Trough and Atlantic Ridge (orange and yel-
low in Figure S3). In autumn (fifth row in Figure 2), the
positive anomaly resides mainly in northern America and
the high-latitude North Atlantic, resulting in projections
into the Greenland Blocking and Atlantic Ridge (blue and
yellow in Figure S3). This seasonally differentiated analy-
sis of bias growth in the Z500 field and its projection into
weather regimes emphasises the need for bias correction
that accounts for seasonality.

3.2 | Univariate post-processing

Here, we utilise EMOS for univariate post-processing.
EMOS is trained on a reforecast dataset with 3101 forecasts
spanning June 1999-May 2015, and subsequently tested
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(a) Season: Year, lead time: 0d (b) Season: Year, lead time: 5d

(c) Season: Year, lead time: 10d

(d) Season: Year, lead time: 20d

(e) Season: DJF, lead time: 0d (f) Season: DJF, lead time: 5d
T |

S L L o
;:’*{’:; '&\ a
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(j) Season: MAM, lead time: 5d
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-5 5
Z500 bias [gpm]

FIGURE 2
computed by subtracting the ERA perfect member from the ensemble mean. The mean bias fields are presented for the entire year and four

Displayed are the mean 500-hPa geopotential height anomaly biases of the ensemble mean forecasts. The Z500A bias is

seasons (winter: DJF, spring: MAM, summer: JJA, autumn: SON) across rows, and at lead times of 0, 5, 10, and 20 days across columns. The
region corresponding to North Atlantic-European weather regimes is indicated by the dashed grey box. Note that the bias field at lead time 0

days is not exactly 0 gpm, as we present biases of the 10-day low-pass filtered Z500. Consequently, the Z500 forecast at 0 day lead time is
influenced by forecasts up to 10 days ahead. [Colour figure can be viewed at wileyonlinelibrary.com]

on 899 forecasts from the reforecast dataset covering June
2015-May 2020. As we intend to apply the post-processing
to operational forecasts, we train the EMOS for each cal-
endar day using a running-window approach with 31
days and raw forecasts. The univariate evaluation of the
EMOS predictions is based on the analytical closed-form
solution of the CRPS for the Gaussian forecast distribu-
tion (EMOS-G), whereas the verification rank histograms
and multivariate score computations are based on the
quantile-based forecasts (EMOS-Q and ECC-Q). For com-
putational details and implications of these choices, see,
for example, Jordan et al. (2019).

In the previous section, we identified biases in the
Z500 field forecasts (Figure 2). The (positive) bias is par-
ticularly prominent in the high latitudes of the North
Atlantic, persisting across seasons and lead times, notably
projecting into the Atlantic Ridge regime, which is charac-
terised by a positive Z500A in a similar region. Therefore,
we focus on analysing the verification rank histograms
for the Atlantic Ridge and its counterpart, the Atlantic
Trough, aiming to assess forecast reliability and calibra-
tion. For a comprehensive overview of rank histograms for
all weather regimes, please refer to Figures S4 and S5 in the
Supplement.
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(a) Atlantic Trough, raw. (b) Atlantic Trough, Z500 bias-corrected. (c) Atlantic Trough, EMOS-Q.
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(d) Atlantic Ridge, raw. (e) Atlantic Ridge, Z500 bias-corrected. (f) Atlantic Ridge, EMOS-Q.
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FIGURE 3 The verification rank histograms for (a-c) the Atlantic Trough and (d-f) the Atlantic Ridge are visualised. Additional rank
histograms for all cyclonic and anticyclonic weather regimes can be found in supplementary Figures S4 and S5. The figures illustrate the rank
histograms for (a,d) raw forecasts, (b,e) Z500 bias-corrected forecasts, and (c,f) EMOS-Q post-processed forecasts for both weather regimes.
The rank is illustrated on the x-axis, the lead time on the y-axis, and the frequency of occurrence, specific for each lead time, is indicated by
the values and colours of the boxes. To facilitate the readability, the frequency is shown as anomaly to a perfect distribution of 1/12. [Colour
figure can be viewed at wileyonlinelibrary.com]

Due to the observed bias in the Z500 forecast, the raw  correction of the Z500 field improves the reliability
IWR forecast for Atlantic Trough tends to be underforecast ~ for these two weather regimes at extended lead times
for lead times exceeding 10 days (Figure 3a, noticeable in ~ (Figure 3b,e), it deteriorates the reliability at shorter lead
the red colours at higher ranks), while it is overforecast at ~ times. Forecasts up to a 10-day lead time tend to overfore-
shorter lead times. Similarly, the Atlantic Ridge is consis-  cast the Atlantic Trough regime, while the Atlantic Ridge
tently overforecast across all lead times (Figure 3d, evident  is strongly underforecast at lead times up to 12 days after
in the red colour at lower ranks). Although the bias  the Z500 bias correction. Verification rank histograms
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(a) Mean CRPSS across the 7WR for the forecasting methods. (b) Raw forecast.
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(c) Z500 bias-corrected forecast (current practice). (d) Post-processed EMOS-G forecast.
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FIGURE 4 CRPSS as a function of lead time. In (a), the aggregated mean CRPSS across the weather regimes is shown for the three

forecasting methods, raw (blue), Z500 bias-corrected (orange), and EMOS-G (green). In (b)—(d) the CRPSS is shown separately for each
weather regime, indicated by the regime colours, for (b) the raw forecasts, (c) the Z500 bias-corrected forecasts, and (d) the EMOS-G

forecasts. The red box indicates the area where we zoom in to visualise the differences between those regimes better. The CRPSS is calculated

against a 31-day rolling climatological forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

show that forecasts post-processed with EMOS exhibit
improved reliability (Figure 3c,f for the Atlantic Trough
and Atlantic Ridge, respectively). While forecast biases
persist to some extent, their magnitude decreases, and the
largest deviations shift from the outer ranks towards the
central ranks. This general trend is also observed across
the other weather regimes. EMOS consistently enhances
the raw IWR forecast, particularly for the Zonal Regime
and Scandinavian Trough (see Supplementary Figure S4).
Forecasts are also better calibrated for Greenland Blocking.
However, forecasts of European and Scandinavian Block-
ing exhibit similar or even larger miscalibration, with
observation too frequently falling into the highest ranks
(see Figure S5). In summary, the Z500 bias-corrected fore-
cast, especially at shorter lead times, degrades the ensem-
ble’s calibration. The IWR is either underforecast (Scan-
dinavian Trough), overforecast (Greenland Blocking), or
overconfident (Zonal Regime, European and Scandinavian
Blocking), as evident in the underdispersive distribu-
tion in the verification rank histograms. Overall, these

findings suggest that EMOS post-processing generates
more reliable and consistent forecasts for the weather
regime index compared with Z500 bias-corrected fore-
casts. To investigate the corrections via EMOS in more
detail, we analyse the estimated EMOS coefficients intro-
duced in Equation (4) for different weather regimes
(Figure S6). Across all weather regimes (Figure 4a-g),
the coefficients associated with the ensemble mean (a;)
and ensemble variance (b;) converge to zero as lead
time increases. The intercept coefficient of the location
parameter (ap) remains nearly constant at zero, while
the intercept coefficient of the scale parameter (by) con-
verges to one. This indicates that the EMOS model has
learned to rely less on the flow-dependent information
from the raw ensemble predictions and reverts to clima-
tological forecasts as lead time increases. In particular, for
the first 10 days, there is no notable bias correction of the
ensemble mean prediction with coefficient values of a;
close to one and ay close to zero. Thus, the main effect of
EMOS post-processing appears to be the adjustment of the
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ensemble spread. We now dive deeper into the com-
parison of the univariate skill of the various forecasting
methods (raw, Z500 bias-corrected, and EMOS-G). For
this purpose, we assess the CRPSS with climatology as
the reference forecast. As an initial comparison among
the forecasting methods, we examine the mean skill score
over the seven weather regimes (Figure 4a).

The mean skill scores of the three forecasting methods
(Figure 4a) mainly differ for extended-range lead times,
with the CRPSS for EMOS-G approaching 0 and only sur-
passing it minimally at lead times beyond 30 days. The
CRPSS for the raw and Z500 bias-corrected forecasts is
greater than O until day 17 and approaches a skill score
of -0.09. For early lead times, all forecasting methods
obtain high scores, with the raw and EMOS-G forecasts
slightly outperforming the Z500 bias-corrected forecasts.
At extended lead times, the Z500 bias-corrected forecasts
exhibit slightly lower CRPSS values than the raw forecasts,
though the difference is minimal.

In Figure 4a, we observed that the mean skill scores
of the raw and EMOS-G forecasts remain similar up to
day 10 and afterwards EMOS-G forecasts show noticeably
higher skill than the raw and Z500 bias-corrected fore-
casts. We now analyse the skill scores across the weather
regimes (Figure 4b-d) to reveal commonalities and dif-
ferences between the individual forecasting methods. All
three forecasting methods have in common that the dif-
ferences in the CRPSS of the individual weather regimes
are close to indistinguishable up to a lead time of 7 days.
A further commonality is the order of skill for the dif-
ferent weather regimes at lead times between 10 and
15 days (the lead time range until which all forecast-
ing methods still exhibit CRPSS values larger than 0 for
each weather regime). The lowest skill is observed for
the Atlantic Trough and Atlantic Ridge, which coincides
with our choice in the analysis of verification rank his-
tograms due to the region of largest Z500 bias in the North
Atlantic that project on the anomalies associated with the
Atlantic Trough and Atlantic Ridge. The third lowest fore-
cast skill is found for European Blocking, which is known
to be particularly challenging to predict compared with
other regimes, looking at the categorical weather regime
definition (see Biieler et al. (2021)). For the remaining four
regimes, a common order of skill cannot be discerned.
However, it is noteworthy that, for the EMOS-G forecast-
ing method, the CRPSS across all four regimes (Zonal
regime, Scandinavian Trough, Scandinavian, and Green-
land Blocking) is remarkably similar. Overall, the largest
differences in terms of forecast skill for the different fore-
casting methods and regimes are observed for lead times
of 10-14 days (insets in Figure 4b-d).

To asses the skill score improvements of the EMOS-G
forecasts in comparison with the raw forecast in more
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FIGURE 5 Forecast skill horizon gain as a function of
different CRPSS thresholds from raw forecasts to EMOS-G
forecasts. Lead-time gain separated for weather regimes. [Colour
figure can be viewed at wileyonlinelibrary.com]

detail, we calculate the lead-time gain across a range of
forecast skill horizon thresholds (Figure 5). The forecast
skill horizon is defined as the lead time at which the CRPSS
of a forecast falls below a certain threshold. Typical thresh-
olds for the forecast skill horizon are 0, which indicates
that the CRPS of the forecasting method achieves the same
score as the climatological reference forecast, or 0.1 (see
Biieler et al. (2021) in the context of weather regimes),
which indicates an improvement of the skill score com-
pared with climatology of 10%. There is no set rule as to
which threshold should be analysed, as this is subject to
the forecast question. Therefore, we provide a visualisation
of a range of thresholds ranging from 0.0 up to 0.4 at inter-
vals of 0.01, demonstrating the robustness of the results
across a range of thresholds (Figure 5).

EMOS-G consistently outperforms the raw forecast,
as all lead-time gain values are positive for each weather
regime. The mean lead-time gain ranges from 0.3 days for
a CRPSS threshold of 0.4 up to 11.2 days for a threshold of
0.0. The most significant improvements occur in forecasts
of the Zonal Regime, Greenland Blocking, and European
Blocking, while the smallest improvements are observed
for forecasts of the Scandinavian Trough and Scandina-
vian Blocking. This is in line with the close proximity of
the CRPSS curves for these four regimes (excluding Euro-
pean Blocking) in Figure 4d. The apparent similarity in
terms of forecast skill is due to the substantial increase of
forecast skill for the Zonal Regime and Greenland Block-
ing after being post-processed with EMOS-G. Fixing the
CRPSS threshold to 0.1, similar to Biieler et al. (2021), we
find mean forecast skill horizons of 13.5 and 14.5 days for
the raw and EMOS-G forecasts, respectively, indicating a
lead-time gain of 1 day.
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(a) EMOS-G to raw forecast.
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To complete the univariate analysis, we evalu-
ate the significance of skill improvements using a
Diebold-Mariano test for equal performance on the CRPS.
We compare the EMOS-G method with the raw (Figure 6a)
and Z500 bias-corrected (Figure 6b) forecasts, as well as
the climatological reference forecast (Figure 6c).

EMOS-G leads to significantly higher skill than the raw
and Z500 bias-corrected forecasts. These results are sta-
tistically significant for all weather regimes and all lead
times at a level of 0.05, except for the Scandinavian Trough
at lead times between 12 and 16 days (Figure 6a). The
least significant results at extended lead times when com-
paring EMOS-G forecasts with raw forecasts are observed
for European and Scandinavian Blocking, which is in line
with the respective verification rank histograms in sup-
plementary Figure S5d,f,g,i, respectively. Compared with
climatology (Figure 6¢), EMOS-G demonstrates significant
performance improvements across all weather regimes out
to 19 days forecast lead time, with even longer significant
improvements for European Blocking, reaching out to 28
days.

In conclusion, applying EMOS-G post-processing to
the raw forecasts leads to significant skill improvements
across all weather regimes and lead times compared with
the Z500 bias-corrected method. The forecast skill hori-
zon, measured by a 10% CRPSS improvement relative to
climatology, extends to an average of 15.5 days for all
weather regimes, surpassing the current practice of Z500
calibration by 1.2 days and the raw forecasts by 1 day.

3.3 | Multivariate post-processing

Similar to the evaluation of univariate post-processing skill
(Section 3.2), we compare skill scores with the raw and

Lead time [days]

EuBL [ scBL [ GL

Z500 bias-corrected forecasts and assess the significance of
the skill differences using a Diebold-Mariano test. To eval-
uate the multivariate skill of the forecasts, we employ the
ES, which is a multivariate extension of the CRPS. We also
evaluate our results by using the variogram score (VS) as
an alternative metric, which has been argued to be more
discriminative with respect to the correlation structure.
When comparing the multivariate skill scores (ESS
in Figure 7a and VSS in Figure 7b) of the univari-
ate post-processing of EMOS-Q (green lines) with the
additional multivariate post-processing of EMOS-Q plus
ECC-Q (red lines), the necessity of the multivariate step
becomes clear. EMOS-Q ensemble members are sorted in
ascending order (ensemble member 1 has the lowest val-
ues of each weather regime index and ensemble member
11 the highest value), while for ECC-Q the IWR values
are sorted based on the rank order of the raw forecast
ensembles. This comparison demonstrates the direct effect
of the multivariate post-processing step. The forecast skill
improvement of ECC-Q in comparison with EMOS-Q is
notable as early as 5 days lead time. The more relevant
comparison of multivariate skill scores is between ECC-Q
and raw and Z500 bias-corrected forecasts. The raw fore-
casts (blue), Z500 bias-corrected forecasts (orange), and
ECC-Q post-processed forecasts (red) exhibit compara-
ble skill for lead times up to 12 days for ESS and VSS
(Figure 7a,b). At extended lead times, the energy skill score
for the raw and Z500 bias-corrected forecasts is compara-
ble and ECC-Q exhibits higher skill. However, the score of
all three forecasting methods is below 0 after lead times
of 16-18 days and hence less skilful than a climatological
forecast. For the variogram skill score, the results are sim-
ilar for the raw and Z500 bias-corrected forecasts but both
exhibit less skill than climatology after 14 days of forecast
lead time. The superiority of ECC-Q at extended lead times

85UBD 17 SUOWWOD BARR1D 3|eal|dde aup Aq pauRA0h a8 S3P1e O ‘88N JOS3INI 0} A1G1T BUIIUO AB]IM UO (SUORIPUCD-PUR-SUBYW0D" A3 1M A.q 1 BUI|UO//:SHNY) SUORIPUOD PUe SW L 38U 39S *[7202/60/.2] U0 ARiqIT aul|uo AB|IM 4 InHsu| Jeynss|ey Aq 0v8t b/z00T 0T/I0p/wod A ImAfeiq iUl U0 SIeWL//:SANY W01} papeojumoq ‘0 ‘X0L8LLYT


http://wileyonlinelibrary.com

MOCKERT ET AL.

Quarterly Journal of the ERMets

(a) Energy Skill Score.
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(b) Variogram Skill Score.
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FIGURE 7 Multivariate skill scores for raw forecast (blue), Z500 bias-corrected forecast (orange), EMOS-Q (green), Schaake Shuffle

(purple), and ECC-Q (red), using (a) the energy skill score and (b) the variogram skill score. [Colour figure can be viewed at

wileyonlinelibrary.com]

does not prevail for the variogram skill score and its per-
formance is similar to the other forecasting methods. In
preliminary tests with the Schaake Shuffle, we observed no
significant differences in multivariate performance with
respect to ECC, based on ESS and VSS (Figure 7, purple
line covered by red line).

Analysing the significance of the ECC-Q skill scores
against the other forecasting methods, by using a
Diebold-Mariano test (Figure 8), gives a clearer insight
into the actual differences of the skill scores. Using the
energy score, ECC-Q does perform better than the raw
and Z500 bias-corrected forecasts at all lead times. These
results are significant for all lead times against the Z500
calibration and significant for all lead times, except day
5-15, against the raw forecasts. Comparing the energy
score of ECC-Q against climatology, it becomes apparent
that ECC-Q has significant better scores until lead time 16
days. When using the variogram score, ECC-Q performs
significantly better up to 8 days lead time. Comparing with
the raw forecasts, the variogram score of ECC-Q is signifi-
cantly better until 3 days. Against climatology, the score of
ECC-Q is significantly better until a lead time of 12 days.

In conclusion, the multivariate comparison of the
results aligns with the findings from the univariate com-
parison. Post-processing using EMOS-G and ECC-Q
demonstrates its competitiveness with the pre-processing
method of Z500 calibration and shows it continuously out-
performs the pre-processing method using the energy skill
score and for most lead times using the variogram skill
score. Restoring the multivariate dependence structure has
been shown to be a crucial aspect of the post-processing
method, as it leads to a substantial improvement in
multivariate performance compared with univariate
post-processing (EMOS-Q), ensuring a more accurate
representation of the true relationship between weather

10
5
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Lead time [days]
FIGURE 8 Diebold-Mariano tests based on the multivariate

scores (energy score (solid) and variogram score (dashed)) for equal
predictive performance of ECC-Q and the raw forecast (blue), the
Z500 bias-corrected forecast (orange), and the climatological
reference forecast (olive green). [Colour figure can be viewed at
wileyonlinelibrary.com]

regime indices of each ensemble member. However, it is
important to acknowledge that the multivariate forecast
skill in the extended range for all forecasting methods,
evaluated over the entire testing period, is inferior to
climatology.

3.4 | Sensitivity of post-processed
weather regime forecasts to training data
availability

The main setup of our analysis involves combining two
ECMWF model cycles (Cy46R1 and Cy47R1) to train
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FIGURE 9 Comparison of performance when reducing

training data to the cycles CY46R1 (pink) and CY47R1 (purple)
separately, as well as using only the eight most recent years of both
cycles (green) together. We compare the performance of these
method setups using skill scores (CRPSS: solid lines, ESS: dashed
lines, VSS: dotted lines) with respect to the ECC-Q method trained
on both forecast cycles and the full training period of 16 years.
Verification is performed on the joined forecasts of both cycles, as in
the previous sections. [Colour figure can be viewed at
wileyonlinelibrary.com]

and evaluate on a large dataset. While this approach
allows us to test the potential performance limit of our
post-processing method, it does not fully represent the
data amount available in an operational forecasting sce-
nario, where training relies solely on reforecast data from
the operational model cycle. To address the issue of avail-
able reforecast data for training, we test the sensitivity of
EMOS+ECC trained on two variants of a reduced set of
reforecasts.

First, we test for a lower initialisation frequency of
forecasts by splitting the training data into the respective
forecast cycles, Cy46R1 and Cy47R1. Second, we test for
the importance of interannual variability in the training
period by keeping both forecasting cycles but reducing the
number of training years to the eight most recent years
of the entire training period (June 2007-May 2015). The
testing period is identical to that in the previous sections,
using the 899 forecasts from June 2015-May 2020, combin-
ing data from both forecast model cycles. To ensure a fair
comparison, we exclude data from April 26-July 15 of each
year for Cy47R1, as this cycle did not run for a full year
operationally, hence training EMOS with a 31-day rolling
window might not be possible at all or only on a minimal
set of forecasts. We now compare the performance of the
ECC-Q setups with a reduced training period directly with
the ECC-Q setup with the full training set (Figure 9) for the
skill scores: CRPSS (solid lines), ESS (dashed lines), and
VSS (dotted lines).

ECC-Q trained on Cy46R1 (pink), which ran for more
than a full year, exhibits skill scores nearly identical when

compared with the combination of both forecast cycles
(skill score values around 0). ECC-Q trained only on
Cy47R1 (purple) exhibits slightly lower skill scores than
ECC-Q trained on Cy46R1, which is potentially due to the
unavailability of training data for April 26-July 15. When
training on an eight-year long training period (green),
the performance is in general worse than ECC-Q trained
only on one forecast cycle, and consequently training on
the full training data. This indicates that accounting for
the interannual variability in the training period is more
important than accounting for the initialisation frequency
of the forecasts.

In a simplified operational scenario for end users, it
may be beneficial to define a categorical weather regime
index by assigning the weather regime with the highest
weather regime index (if it is above 1.0) to the correspond-
ing initial date plus lead time (see, e.g., Biieler et al. (2021)
for a more detailed definition of the categorical weather
regime index). With this approach, our results hold when
analysing the forecasts using a categorical forecast skill
score, namely the Brier skill score (not shown here).

In conclusion, the post-processing approach we evalu-
ated in our study could be applied directly to operational
ECMWF extended-range forecasts without considerable
losses in skill compared with the results shown above.
Training the ECC-Q across many years of forecasts is of
greater importance than training the ECC on forecasts
with higher initialisation frequency. Our findings remain
robust when using a simplified categorical weather regime
index instead of the seven-dimensional weather regime
index.

4 | CONCLUSIONS AND
DISCUSSION

The present study explores the potential of a statistical
post-processing technique that combines ensemble model
output statistics and ensemble copula coupling to enhance
the forecast skill of multivariate probabilistic weather
regime forecasts. Following the approach of Grams
et al. (2017), we employ a year-round seven-dimensional
weather regime index (IWR) that identifies four anticy-
clonic and three cyclonic regimes. The IWR represents
the projection of 500-hPa geopotential height anomalies
(Z500A) onto the mean anomaly patterns of the seven
distinct weather regimes.

Our approach involves the computation and post-
processing of weather regime indices, based on the
Z500 field obtained from ECMWPF’s sub-seasonal refore-
cast ensemble data, utilising model cycles Cy46R1 and
Cy47R1. The outcomes of this process are validated against
ERAS5 reanalyses. To enhance the accuracy of the raw
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multivariate probabilistic weather regime forecasts, a
combined approach of EMOS and ECC is employed as part
of the post-processing procedure.

Biases in the raw IWR forecasts can be traced directly
back to biases in the Z500A fields. EMOS can effectively
correct a portion of these biases and systematic forecast-
ing errors, and thus improves univariate forecasting skill
scores at all lead times. When evaluating EMOS in a uni-
variate context against the current practice of using Z500
bias-corrected fields (where Z500A are computed against a
model climatology rather than the ERAS climatology), sig-
nificant improvements are observed across all lead times
and for all weather regimes. The forecast skill horizon,
which is defined as the lead time until which CRPSSjim
exceeds a specific threshold, indicates that EMOS outper-
forms the Z500 bias-corrected and raw forecasts for a range
of skill horizon thresholds (0 < CRPSS.im < 0.4). When
the threshold is set at 0.1, the mean forecast skill horizon
across the seven weather regimes in the EMOS process is
14.5 days. This represents an improvement of 1 day com-
pared with the raw forecast and 1.2 days compared with
the Z500 bias-corrected forecasts.

The multivariate dependence structure of the IWRs is
lost when post-processing ensemble forecasts in a univari-
ate manner with EMOS. Hence, restoring this structure
through ECC is crucial in multivariate post-processing.
The effectiveness of ECC is evident when comparing mul-
tivariate skill scores of the univariate EMOS and multivari-
ate ECC forecasts. The enhancements of ECC compared
with EMOS become evident starting from a lead time of
5 days when considering multivariate skill scores (ESS
and VSS). Consistent with the univariate comparison with
the Z500 bias-corrected forecasts, the multivariate com-
parison also demonstrates the superiority of the ECC pro-
cess. Specifically, ECC significantly outperforms the Z500
bias-corrected forecasts in terms of the energy score across
all lead times and the variogram score up to a lead time of
8 days.

The EMOS-ECC process exhibits little sensitivity to
the initialisation frequency of reforecasts in the training
period, but displays a more pronounced sensitivity to the
interannual variability in the training data. Nonetheless,
the skill achieved by EMOS+ECC when trained on a mod-
ified training data set surpasses the current practice of
calibrating the Z500 forecast field prior to assigning the
weather regime index.

In summary, the statistical post-processing approach
of combining EMOS+ECC consistently outperforms the
Z500 bias-corrected forecasts. Not only is this approach
computationally efficient, but it also provides a compelling
alternative due to its ease of implementation and ability
to deliver comparable or superior forecasting skill. Addi-
tionally, it is versatile, being applicable to both on-the-fly
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and fixed reforecast configurations. Our findings remain
robust when using a limited training data set. Capturing
the interannual variability in the training data set is of
greater importance than including more frequent initial
times. Further, our findings also remain robust using a
simplified categorical weather regime index instead of the
seven-dimensional weather regime index.

In line with previous studies, such as Schefzik
et al. (2013) on pressure, Scheuerer and Hamill (2015)
on wind speed, and Schefzik (2017) on temperature, the
EMOS-ECC-Q approach with the seven-dimensional
weather regime index is also comparable or superior to
other methods. Similar to the findings by Schefzik (2017),
we observe that the individual EMOS-Q ensemble
lacks representation of dependence structures (Figure 7
EMOS-Q vs. ECC-Q), leading to weaknesses in multivari-
ate scores like the energy and variogram score. However,
we address this limitation by combining the univariate
EMOS-Q with the multivariate ECC-Q post-processing
step, effectively restoring the dependence structure and
enhancing predictive skill.

Although the EMOS-ECC approach outperforms the
Z500 bias-corrected approach, it is important to note that,
on average, skilful forecasts of the daily weather regime
index are limited primarily to the medium range, typi-
cally up to 15 days. This limitation is dependent on factors
like the season, specific weather regime, and the state of
the atmosphere. Similar findings were reported by Biieler
et al. (2021) using the categorical weather regime index
definition based on Z500 bias-corrected weather regimes
and the Brier skill score. The limited skill horizons across
all methods stem largely from the intrinsic predictabil-
ity limit of the atmosphere and model deficiencies. All
methods rely solely on the Z500 ensemble forecast. The
marginal improvements in forecast skill of post-processed
probabilistic weather regime indices prompt the question
of whether these improvements propagate into down-
stream applications (e.g., energy or hydrological fore-
casts) by utilising post-processed forecasts rather than raw
forecasts. Further research is needed to address this ques-
tion.

In practical applications of EMOS-ECC post-
processing, we believe that it is crucial to consider both the
multivariate outcomes from ECC and the Gaussian distri-
butions from the univariate EMOS step, weighing these
outcomes based on the specific application. This approach
ensures a comprehensive and accurate interpretation of
the forecast. Thanks to the Gaussian distributions in the
EMOS post-processing step, this method can be adapted
to forecasting models with varying numbers of ensemble
members in reforecasts (used as training data) and opera-
tional forecasts (e.g., 11 vs. 101 ensemble members in the
ECMWEF forecast cycle CY48R1).
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During specific atmospheric situations (“windows of
forecast opportunity”), such as a strong stratospheric polar
vortex or specific phases of the Madden—-Julian Oscil-
lation (Madden & Julian, 1971), the forecast skill hori-
zon for weather regimes may extend, as demonstrated
by Biieler et al. (2021). Building on results from studies
exploring predictive skill in the midlatitudes and telecon-
nection patterns (Ferranti et al., 2018; Lee et al., 2019;
Mayer & Barnes, 2020), we believe that enhancing weather
regime forecasts in the extended range can be achieved
by incorporating additional information/predictors rep-
resenting the state of relevant atmospheric modes into
our post-processing method. Neural networks are likely
to be the most suitable method for the effective imple-
mentation of these features (Rasp & Lerch, 2018; Van-
nitsem et al., 2021). By introducing neural networks into
the post-processing framework, we anticipate not only
an improvement in extended-range predictive skill but
also the ability to investigate the characteristics of win-
dows of forecasting opportunity through the application
of explainable artificial intelligence (explainable AI) meth-
ods. In addition, it is likely that advancing forecast skill
to sub-seasonal lead times can be achieved by focusing
on skill during windows of forecast opportunity, rather
than average skill over all available forecasts. Hence, it is
crucial to identify and explore a priori knowledge linked
to improved flow-dependent predictability. We hypothe-
sise that evaluating forecasts based on windows of forecast
opportunity will be of imminent importance for down-
stream applications, providing additional information to
the user on whether to trust the forecast or not.

We are currently engaged in optimising neural net-
works for the effective post-processing of extended-range
weather regime forecasts, aiming not only to enhance
predictive skill but also to explore—a priori—forecasting
windows of opportunity using explainable Al
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