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Turbulent Flow above Realistic Roughness
Ship hulla

a
Dall-E 3: "Create a realistic image of a small fishing ship,

where small mussels generate a rough and patchy ship surface only on
the submerged ship hull below the water line"

Heat exchangerb

b
Dall-E 3: "Create a realistic picture of a heat pump unit for

heating a house to visualize the heat flow and transfer from the unit to
the surrounding. Show the air flow"

Atmospheric sciencec

c
Dall-E 3: "Create a realistic picture of the Austrian alps, where

lots of clouds flowing over the mountains showing the turbulent air flow"

Question
Predict roughness influence to velocity and temperature distribution without costly simulations
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Turbulent Channel Flow with Smooth Wall
Simulation Setup
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Turbulent Channel Flow with Smooth Wall
Simulation Setup
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Mean Velocity Profile
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Smooth Wall
Mean velocity and temperature follows distinct profile with known relations (log-law)
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Roughness Influenced Channel Flow I

(a) Artificial: Uniform (b) Artificial: Isotropic (c) Real: Sandpaper (d) Real: Turbine blade

Roughness characterization
→ multiscale phenomenon with diverse subclasses (isotropic, homogenous, patchy, anisotropic)
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Roughness Influenced Channel Flow II
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Effect:

Increased friction

Increased heat transfer

Roughness function ∆U+, ∆Θ+:

Characterized shift in logarithmic layer
(Hama, 1954; Clauser, 1954)

Research question

→ Predict shift ∆U+ and ∆Θ+ (and hence Cf and St) given a roughness height profile
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Approach

Procedure:

Data
Neural

Network
Symbolic

RegressionData

Prediction of ∆U+ and ∆Θ+

Data:

4200 rough surfaces (S) and 93 high-fidelity simulations (S̃) (Yang et al., 2023)

External data set (Ẽ) for additional testing
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Approach

Procedure:

Data
Neural

Network
Symbolic

Regression
Neural

Network

Prediction of ∆U+ and ∆Θ+

Neural Network:

Data-driven function approximation given powerful statistical measures
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Approach

Procedure:

Data
Neural

Network
Symbolic

Regression
Symbolic

Regression

Prediction of ∆U+ and ∆Θ+

Symbolic Regression:

Convert hidden function in human-understandable symbolic expression
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Prediction
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Neural Network Prediction
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Results:

1.0 1.5 2.0 2.5 3.0

kr

1.0

1.5

2.0

2.5

3.0

k̂
r

4.0 4.5 5.0 5.5 6.0 6.5

∆Θ+

4.0

4.5

5.0

5.5

6.0

6.5

∆̂
Θ

+

Test set External set

kr:

Set MAPE

Test 13.41%
External 27.52%

∆Θ+:

Set MAPE

Test 4.26%
External 9.5%
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Symbolic Regression

Goal
➙ Translate network to application-

oriented correlation

Statistical parameters vs. power
spectrum & probability density function

Genetic Programming

Python library PySR (Cranmer, 2023)

S

P
S

,P
D

F,...

MLP

k
r →

PS, pdf, ... k̂r
. . . . . .

Symbolic Regression

statistical quantities k̂r
. . . . . .

⇒

functional form
fSR : Rn → R

fMLP : Rm → R

discretized
version of fMLP

Channel Flow Machine Learning Further Steps References

8/15 09.09.2024 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach



Symbolic Correlation

Correlation R2 Result

kr =
ks

k99
= ESx ( −ESx + Sk + 2.37) + 0.77 0.931 exceed references

∆Θ+ = 6.02

(
ks

(
−0.18 Sk +

kz

krms

))0.138

0.827 missing Pr

Channel Flow Machine Learning Further Steps References

9/15 09.09.2024 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach



Symbolic Correlation

Correlation R2 Result

kr =
ks

k99
= ESx ( −ESx + Sk + 2.37) + 0.77 0.931 exceed references

∆Θ+ = 6.02

(
ks

(
−0.18 Sk +

kz

krms

))0.138

0.827 missing Pr

Measure of Height

◦ k99: confidence interval
◦ kz: mean peak-to-valley
◦ krms: root-mean-square

Measure of Slope

ESx =
1

A

∫

A

∣∣∣∣
∂h

∂x

∣∣∣∣ dA

◦ Related to frontal solidity

Measure of Shape

Sk =
1

A

∫

A

h3

krms
dA

◦ Asymmetry in height
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Simulation Tool
Demand:

temperature as passive scalar

fast for database generation → GPGPU

arbitrary roughness description → immersed boundary method
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Simulation Tool
Demand:

temperature as passive scalar

fast for database generation → GPGPU

arbitrary roughness description → immersed boundary method

Canonical Navier-Stokes (CaNS) (Costa, 2018)

second-order finite-differences, eigenfunction expansion for
Poisson equation

Fortran90 OpenACC directives and cuDecomp library

cuDecomp for hardware-adaptive pencil decomposition

IBM and passive scalar (Habibi Khorasani, 2024)
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Validation at Reτ = 180

Surface Velocity
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Conclusion
→ GPU code is able to compete with predecessors (Theobald et al., 2021)

→ Successful run on 4 NVIDIA A100 GPUs (1 node) on HoreKa
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Preliminary Results

Mean velocity around the truncated
cone

Lack of resolution in CaNS simulation
➙ Enhanced simulation is running

General trends
Recirculation zone
increased velocity above element
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Summary and Outlook

Roughness function prediction

✔ Good tools (Neural network, correlation) for
velocity augmentation

✘ Correlation for ∆Θ+ missing Pr number

Numerical tools

➙ Passive scalar: Source term problems

✔ Significantly faster than predecessors (wall
clock time)

✔ IBM: Fully working
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