

Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach

NHR Conference '24 | 09.09.2024

Simon Dalpke, Jiasheng Yang, Bettina Frohnapfel, Alexander Stroh

Institute of Fluid Mechanics, Karlsruhe Institute of Technology

Turbulent Flow above Realistic Roughness

Ship hull^a

a Dall-E 3: "Create a realistic image of a small fishing ship, where small mussels generate a rough and patchy ship surface only on the submerged ship hull below the water line"

Heat exchanger^b

^b Dall-E 3: "Create a realistic picture of a heat pump unit for heating a house to visualize the heat flow and transfer from the unit to the surrounding. Show the air flow"

Atmospheric science^c

^C Dall-E 3: "Create a realistic picture of the Austrian alps, where lots of clouds flowing over the mountains showing the turbulent air flow"

Question

Predict roughness influence to velocity and temperature distribution without costly simulations

Channel Flow

Machine Learning

Further Steps

References

2/15 09.09.2024

)24 Sir

Turbulent Channel Flow with Smooth Wall

Simulation Setup

Channel Flow 0€00		Machine Learning	Further Steps 0000	References O	istm
3/15	09.09.2024	Simon Dalpke - Predicting Roughness Effects on	Dalpke - Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach		Institute of Fluid Mechanics

Turbulent Channel Flow with Smooth Wall

Mean Velocity Profile

Smooth Wall

Mean velocity and temperature follows distinct profile with known relations (log-law)

 Channel Flow
 Machine Learning
 Further Steps
 References

 0000
 3/15
 09.09.2024
 Simon Dabke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach
 References

Roughness Influenced Channel Flow I

Roughness characterization

→ multiscale phenomenon with diverse subclasses (isotropic, homogenous, patchy, anisotropic)

 Channel Flow
 Machine Learning
 Further Steps
 References

 4/15
 09.09.2024
 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach
 References

Roughness Influenced Channel Flow II

Effect:

- Increased friction
- Increased heat transfer

Roughness function ΔU^+ , $\Delta \Theta^+$:

 Characterized shift in logarithmic layer (Hama, 1954; Clauser, 1954)

Research question

 \rightarrow Predict shift ΔU^+ and $\Delta \Theta^+$ (and hence C_f and St) given a roughness height profile

Channel Flow

Machine Learning

Further Steps

Approach

Procedure:

Data:

- 4200 rough surfaces (S) and 93 high-fidelity simulations (\tilde{S}) (Yang et al., 2023)
- External data set $(\tilde{\mathcal{E}})$ for additional testing

 Channel Flow
 Machine Learning
 Further Steps
 References

 6/15
 09.09.2024
 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach

Approach

Procedure:

Neural Network:

• Data-driven function approximation given powerful statistical measures

 Channel Flow
 Machine Learning
 Further Steps
 References

 6/15
 09.09.2024
 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach

Approach

Procedure:

Symbolic Regression:

Convert hidden function in human-understandable symbolic expression

 Channel Flow
 Machine Learning
 Further Steps
 References

 6/15
 09.09.2024
 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach

Channel Flow

Machine Learning

Further Steps

References o

7/15 09.09.2024

.2024

Channel Flow OoO Machine Learning OoO Further Steps OoO References Oo Reference

Channel Flow Machine Learning Further Steps References 0000 7/15 Institute of Fluid Me

Symbolic Regression

Goal

- → Translate network to applicationoriented correlation
- Statistical parameters vs. power spectrum & probability density function
- Genetic Programming
- Python library PySR (Cranmer, 2023)

Channel Flow

Machine Learning 0000

Further Steps

References

8/15

Symbolic Correlation

Institute of Eluin

Correlation	R^2	Result
$k_{\rm r} = \frac{k_{\rm s}}{k_{\rm so}} = ES_x \left(-ES_x + Sk + 2.37 \right) + 0.77$	0.931	exceed references
$\Delta \Theta^{+} = 6.02 \left(k_{\rm s} \left(-0.18 \ Sk \ + \frac{k_{\rm z}}{k_{\rm rms}} \right) \right)^{0.138}$	0.827	missing Pr

Symbolic Correlation

9/15

09.09.2024

Simulation Tool

Demand:

- temperature as passive scalar
- fast for database generation \rightarrow GPGPU
- $\hfill arbitrary roughness description \rightarrow immersed boundary method$

Channel Flow 0000

Machine Learning 0000

Further Steps 0000

References 0

Channel Job Steps

Channel Flow

Channel Steps

Simulation Tool

Demand:

- temperature as passive scalar
- fast for database generation \rightarrow GPGPU
- $\hfill arbitrary roughness description <math display="inline">\rightarrow$ immersed boundary method

Canonical Navier-Stokes (CaNS) (Costa, 2018)

- second-order finite-differences, eigenfunction expansion for Poisson equation
- Fortran90 OpenACC directives and cuDecomp library
- cuDecomp for hardware-adaptive pencil decomposition
- IBM and passive scalar (Habibi Khorasani, 2024)

Channel Flow

Machine Learning

Further Steps

References

Validation at $Re_{\tau} = 180$

Conclusion

- ightarrow GPU code is able to compete with predecessors (Theobald et al., 2021)
- ightarrow Successful run on 4 NVIDIA A100 GPUs (1 node) on HoreKa

 Channel Flow
 Machine Learning
 Further Steps
 R

 0000
 09.09.2024
 Simon Dalpke – Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach
 R

References

Karlsruhe Institute of Technology

Preliminary Results

Mean velocity around the truncated cone

- Lack of resolution in CaNS simulation
 - → Enhanced simulation is running
- General trends
 - Recirculation zone
 - increased velocity above element

Channel Flow

Machine Learning

00

12/15 09.09.2024

Summary and Outlook

Roughness function prediction

- Good tools (Neural network, correlation) for **V** velocity augmentation
- **X** Correlation for $\Delta \Theta^+$ missing Pr number

Numerical tools

- → Passive scalar: Source term problems
- Significantly faster than predecessors (wall **V** clock time)
- IBM: Fully working 1

13/15 09.09.2024

Arlsruhe Institute of Technology

References I

- Clauser, F. H. (1954). Turbulent Boundary Layers in Adverse Pressure Gradients. Journal of the Aeronautical Sciences, 21(2):91–108.
- Costa, P. (2018). A FFT-based finite-difference solver for massively-parallel direct numerical simulations of turbulent flows. <u>Computers & Mathematics with Applications</u>, 76(8):1853–1862.
- Cranmer, M. (2023). Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. Issue: arXiv:2305.01582 arXiv:2305.01582 [astro-ph, physics:physics].
- Habibi Khorasani, S. M. (2024). <u>Turbulent flows over permissive boundaries and porous walls</u>. Doctoral thesis, KTH Royal Institute of Technology, Stockholm, Sweden. Publisher: KTH Royal Institute of Technology.
- Hama, F. R. (1954). Boundary Layer characteristics for smooth and rough surfaces. <u>Iowa Instutute of Hydraulic, State</u> <u>University of Iowa, Published by: The Society of Naval Architects, SNAME, Paper No. 6, New York. Paper: T1954-1</u> <u>Transactions.</u>
- Theobald, F., Schäfer, K., Yang, J., Frohnapfel, B., Stripf, M., Forooghi, P., and Stroh, A. (2021). COMPARISON OF DIFFERENT SOLVERS AND GEOMETRY REPRESENTATION STRATEGIES FOR DNS OF ROUGH WALL CHANNEL FLOW. In <u>14th WCCM & ECCOMAS Congress 2020</u> : virtual congress, <u>11-15 January</u>, <u>2021 / IACM</u>, <u>ECCOMAS. Ed.</u>: F. Chinesta. International Centre for Numerical Methods in Engineering (CIMNE).
- Yang, J., Stroh, A., Lee, S., Bagheri, S., Frohnapfel, B., and Forooghi, P. (2023). Prediction of equivalent sand-grain size and identification of drag-relevant scales of roughness – a data-driven approach. <u>Journal of Fluid Mechanics</u>, 975:A34.

Channel Flow Machine Learning Further Steps OSO References

Predicting Roughness Effects on Velocity and Temperature in Turbulent Flow - A Data-Driven Approach

NHR Conference '24 | 09.09.2024

Simon Dalpke, Jiasheng Yang, Bettina Frohnapfel, Alexander Stroh

Institute of Fluid Mechanics, Karlsruhe Institute of Technology

