

Data-driven correlations for thermohydraulic roughness properties

1st European Fluid Dynamics Conference | 18.09.2024

Simon Dalpke¹, Jiasheng Yang¹, Pourya Forooghi², Bettina Frohnapfel¹, Alexander Stroh¹

¹Institute of Fluid Mechanics, Karlsruhe Institute of Technology ²Department of Mechanical & Production Engineering, Aarhus University

Reynolds Analogy: Velocity and Heat

Example: Heat Exchanger

Reynolds analogy

- Heat and momentum transfer are proportional
- Reynolds analogy factor:

$$RA = \frac{2St}{C_f} = \frac{2Nu}{C_f \operatorname{Re} \operatorname{Pr}} \tag{1}$$

Classical application: smooth surfaces

Rough cł ●000	nannel flow	Machine Learning	Symbolic Regression	Exploration 000	References
2/15	18.09.2024	Simon Dalpke – Data-driven correla	tions for thermohydraulic roughness proper	ties	

Reynolds Analogy: Velocity and Heat

Rough surface

Rough channel flow ○●○○	Machine Learning	Symbolic Regression	Exploration 000	References

3/15 18.09.2024

.09.2024

Simon Dalpke - Data-driven correlations for thermohydraulic roughness properties

Reynolds Analogy: Velocity and Heat

Question

- → How does the presence of rough surfaces influence velocity and temperature distribution?
- Is everything from the rough surface important? \rightarrow

Rough channel flow Machine Learning Symbolic Regression References Exploration 0000 3/15 18.09.2024 Simon Dalpke - Data-driven correlations for thermohydraulic roughness properties

Roughness Influence on Channel Flow I

Velocity Augmentation:

L

Roughness function (Hama, 1954; Clauser, 1954)

$$\Delta U^{+} = U_{\rm S}^{+} - U_{\rm R}^{+}$$

= $\frac{1}{\kappa} \ln \left(k_{\rm s}^{+} \right) + A - B(k_{\rm s}^{+})$

 $\bullet \ B(\infty) = 8.5$ in fully rough regime \rightarrow only $k_{\rm s}$ necessary for ΔU^+

Roughness Influence on Channel Flow II

Temperature Augmentation:

 Equations following Dipprey and Sabersky (1963), Brutsaert (1975) and Yaglom (1979)

$$\Delta \Theta^{+} = \Theta_{\rm S}^{+} - \Theta_{\rm R}^{+}$$

= $\frac{1}{\kappa_{\theta}} \ln \left(k_{\rm s}^{+}\right) + A_{\theta}(Pr) - g(k_{\rm s}^{+}, Pr)$
= $\frac{1}{\kappa_{\theta}} \ln \left(y_{\rm I}^{+}\right) + A_{\theta}(Pr) - \Theta_{\rm I}^{+}(k_{\rm s}^{+}, Pr)$

Empirical and phenomenological relations

Important

- → Breakdown of Reynolds analogy for flow with rough surfaces (e.g. Hantsis and Piomelli (2024))
- \twoheadrightarrow Predict ΔU^+ and $\Delta \Theta^+$ without detailed simulation

 Rough channel flow 000
 Machine Learning 00
 Symbolic Regression 00
 Exploration 00
 References 00

 5/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 For the properties

Procedure:

Data:

- 4200 rough surfaces and 93 high-fidelity simulations ($Re_{\tau} \approx 800, Pr = 0.71$) (Yang et al., 2023)
- External data set for additional testing

 Rough channel flow
 Machine Learning
 Symbolic Regression
 Exploration
 References

 6/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 Exploration
 References

Procedure:

Neural Network:

Data-driven function approximation given powerful statistical measures

 Rough channel flow
 Machine Learning
 Symbolic Regression
 Exploration
 References

 6/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 For thermohydraulic roughness properties
 For the determine

Procedure:

Symbolic Regression:

Convert hidden function in human-understandable symbolic expression

 Rough channel flow
 Machine Learning
 Symbolic Regression
 Exploration
 References

 6/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 References

Procedure:

Exploration:

Use predictive tools on rough surfaces

 Rough channel flow
 Machine Learning
 Symbolic Regression
 Exploration
 References

 6/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 For thermohydraulic roughness properties

Neural Network Prediction

Rough channel flow

Machine Learning

Symbolic Regression

Exploration 000

References

7/15 18.09.2024

2024 S

Simon Dalpke - Data-driven correlations for thermohydraulic roughness properties

Neural Network Prediction

Rough cl	nannel flow	Machine Learning ○●	Symbolic Regression	Exploration 000	References
7/15 18.09.2024 Simon Dalpke – Data-driven correla		tions for thermohydraulic roughness proper	ties	CDL/12	

Karlsruhe Institute of Technology

Neural Network Prediction

Neural Network Prediction

7/15 18.09.2024

Simon Dalpke - Data-driven correlations for thermohydraulic roughness properties

Symbolic Regression

Goal

- → Translate network to correlation using simple statistical properties
- Statistical parameters vs. power spectrum & probability density function
- Genetic Programming
- Python library PySR (Cranmer, 2023)

Exploration

 Rough channel flow
 Machine Learning
 Symbolic Regression

 0000
 00
 00

18.09.2024

Simon Dalpke - Data-driven correlations for thermohydraulic roughness properties

Results

Correlation	R^2	Result
$k_{\rm r} = \frac{k_{\rm s}}{k_{99}} = ES_x \left(-ES_x + Sk + 2.21 \right) + 0.819$	0.931	exceed references

Rough channel flow		Machine Learning	Symbolic Regression ○●	Exploration 000	References
9/15 18.09.2024 Simon Dalpke – Data-driven		Simon Dalpke – Data-driven correla	tions for thermohydraulic roughness proper	ties	

Results

→ Selected statistical parameters align with conclusion by Flack and Chung (2022) and other correlations (Chung et al., 2021)

Rough channel flow Machine Learning Symbolic Regression References Exploration 9/15

Results

Correlation	R^2	Result
$k_{\rm r} = \frac{k_{\rm s}}{k_{\rm 99}} = ES_x \left(-ES_x + Sk + 2.21 \right) + 0.819$	0.931	exceed references
$\Delta \Theta^+ = 6.02 \left(k_{\rm s} \left(-0.18 \ Sk \ + \frac{k_{\rm z}}{k_{\rm rms}} \right) \right)^{0.138}$	0.827	less powerful

- → Limited reference data
- → Missing Pr-dependency ($\Delta \Theta^+ = f(Pr)$)

Rough cha	annel flow	Machine Learning	Symbolic Regression ○●	Exploration 000	References	-
9/15 18.09.2024		Simon Dalpke – Data-driven correla	ations for thermohydraulic roughness proper	ties	lostitute	PLUS

Explore Symbolic Expression

Velocity Augmentation

Temperature Augmentation

Observation

→ Velocity correlation follows known behaviors (Kuwata et al., 2023); temperature is limited

 Rough channel flow
 Machine Learning
 Symbolic Regression
 Exploration
 References

 10/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 For the second sec

Explore Predictive Tools

Explore Predictive Tools

Rough channel flow Machine Learning Symbolic Regression Exploration References 0000 00 00 00 00 00 00	11/15 18.09.2024		Simon Dalpke – Data-driven correla	ations for thermohydraulic roughness proper	ties	Bui!
	Rough channel flow		Machine Learning	Symbolic Regression	Exploration ○●○	References

Explore Predictive Tools

11/15 18.09.2024

Simon Dalpke - Data-driven correlations for thermohydraulic roughness properties

12/15

Rough channel flow

Machine Learning

Symbolic Regression

Exploration 000

References

Summary

Summary

- → Different features of rough surface are important for ΔU^+ and $\Delta \Theta^+$
- Prediction without detailed simulation
- Correlation aligns with literature and simulations
- $\pmb{\times}$ Limitation in generalization for $\Delta\Theta^+$

References I

References

...

- Brutsaert, W. (1975). A theory for local evaporation (or heat transfer) from rough and smooth surfaces at ground level. <u>Water Resources Research</u>, 11(4):543–550.
- Chung, D., Hutchins, N., Schultz, M. P., and Flack, K. A. (2021). Predicting the Drag of Rough Surfaces. <u>Annual Review of Fluid Mechanics</u>, 53(Volume 53, 2021):439–471. Publisher: Annual Reviews.
- Clauser, F. H. (1954). Turbulent Boundary Layers in Adverse Pressure Gradients. Journal of the Aeronautical Sciences, 21(2):91–108.
- Cranmer, M. (2023). Interpretable Machine Learning for Science with PySR and SymbolicRegression.jl. Issue: arXiv:2305.01582 arXiv:2305.01582 [astro-ph, physics:physics].
- Dipprey, D. F. and Sabersky, R. H. (1963). Heat and momentum transfer in smooth and rough tubes at various prandtl numbers. International Journal of Heat and Mass Transfer, 6(5):329–353.
- Flack, K. A. and Chung, D. (2022). Important Parameters for a Predictive Model of ks for Zero-Pressure-Gradient Flows. <u>AIAA Journal</u>, 60(10):5923–5931. Publisher: American Institute of Aeronautics and Astronautics __eprint: https://doi.org/10.2514/1.J061891.
- Hama, F. R. (1954). Boundary Layer characteristics for smooth and rough surfaces. <u>Iowa Instutute of Hydraulic, State</u> University of Iowa, Published by: The Society of Naval Architects, SNAME, Paper No. 6, New York. Paper: T1954-1 <u>Transactions.</u>

 Rough channel flow
 Machine Learning
 Symbolic Regression
 Exploration

 13/15
 18.09.2024
 Simon Dalpke – Data-driven correlations for thermohydraulic roughness properties
 Exploration

References II

- Hantsis, Z. and Piomelli, U. (2024). Numerical Simulations of Scalar Transport on Rough Surfaces. Fluids, 9(7):159.
- Kuwata, Y., Yamamoto, Y., Tabata, S., and Suga, K. (2023). Scaling of the roughness effects in turbulent flows over systematically-varied irregular rough surfaces. International Journal of Heat and Fluid Flow, 101:109130.
- Yaglom, A. M. (1979). Similarity Laws for Constant-Pressure and Pressure-Gradient Turbulent Wall Flows. <u>Annual Review</u> of Fluid Mechanics, 11(1):505–540.
- Yang, J., Stroh, A., Lee, S., Bagheri, S., Frohnapfel, B., and Forooghi, P. (2023). Prediction of equivalent sand-grain size and identification of drag-relevant scales of roughness – a data-driven approach. <u>Journal of Fluid Mechanics</u>, 975:A34.

Rough channel flow OOO Symbolic Regression OOO References

Data-driven correlations for thermohydraulic roughness properties

1st European Fluid Dynamics Conference | 18.09.2024

Simon Dalpke¹, Jiasheng Yang¹, Pourya Forooghi², Bettina Frohnapfel¹, Alexander Stroh¹

¹Institute of Fluid Mechanics, Karlsruhe Institute of Technology ²Department of Mechanical & Production Engineering, Aarhus University

