
Frameworks and Protocols for
Composable Multi-Party

Computation

Zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften

von der KIT-Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Jeremias Mechler

Tag der mündlichen Prüfung: 17. April 2023
Erster Referent: Prof. Dr. Jörn Müller-Quade
Zweiter Referent: Prof. Jesper Buus Nielsen, PhD

KIT – The Research University in the Helmholtz Association www.kit.edu

I dedicate this thesis to my father, Wolfgang Mechler.

3

4

Acknowledgements

During my time at the Chair of Cryptography and Security, I was lucky enough to meet
many great people who made the time leading up to my doctorate very enjoyable.

My greatest gratitude goes to Jörn Müller-Quade, who supervised this work and
shared not only his knowledge, but also his joy in research over many years. At his
chair, I have not only enjoyed the greatest academic and personal freedom, but have
also been given the space for development in every respect. Jörn is my great role model
when it comes to what a scientist should be like and what respectful interaction in
professional life looks like.

It all started with Dirk Achenbach, who supervised my Bachelor’s thesis and hired
me as a student assistant. I have remained friends with him all these years, as well
as with Bernhard Löwe, with whom I was able to work a short time later. Matthias
Nagel, who co-supervised my Master’s thesis and for whom no problem of any kind is
too difficult, was also part of the team later on. I would like to thank them for the
enjoyable time we spent together, especially when preparing the exhibition “Global
Control and Censorship” at the ZKM!

A big thank you goes to Brandon Broadnax, who took me under his wings and taught
me Universal Composability research. Without him, this thesis would not be what it is
now. I also particularly enjoyed our chats about US politics.

Alexander Koch not only co-supervised my Master’s thesis, but also co-authored
many papers. No draft was good enough for Alex to not find room for improvement. I
thank him very much for his time and knowledge shared over the years.

Without Michael Klooß and his knowledge of rewinding, which he generously shared
with me, as well as his time, the second part of this work would not have been possible.
Many thanks to Michael for bravely plunging into the depths of Universal Composability
(and coming out unscathed)!

I would like to thank Rebecca Schwerdt for the lunches we shared, the chocolate we
ate together, the tea we drank and her friendship in general.

Carmen Manietta, Holger Hellmuth and Willi Geiselmann have always been around
since I was a student. Without you, nothing would have worked at the Chair of
Cryptography and Security—so many, many thanks for your support.

I would also like to thank my other colleagues as well as my co-authors Lukas Beeck,
Robin Berger, Dominik Doerner, Felix Dörre, Nico Döttling, Matthias Gabel,
Roland Gröll, Timon Hackenjos, Sven Maier, Anne Müller, Tobias Nilges, Markus Raiber,
Gunter Schiefer, Astrid Ottenhues, Jochen Rill and Marcel Tiepelt.

Another thank you goes to everyone involved in the doctoral process for their partici-
pation, especially to Jesper Buus Nielsen, who kindly served as second reviewer.

Finally, I would like to thank my wonderful parents.

5

6

Abstract

Secure multi-party computation (MPC) allows mutually distrusting parties to perform
computations on their private inputs, guaranteeing properties such as correctness,
privacy or independence of inputs, even if a subset of the parties is corrupted. Due
to strong feasibility results, it is known that MPC protocols exist for almost every
efficiently computable task, requiring only authenticated point-to-point communication,
but no centrally trusted entity.

In today’s highly interconnected world, one is often faced with a situation where not
only one instance of a single protocol is executed, but several different protocols are
executed at the same time. In such a setting, it is necessary that protocols are secure
under composition, i.e. even when many instances of possibly different protocols are
executed at the same time.

Building upon the established notion of Universal Composability (UC) due to Canetti
(FOCS 2001), in this thesis we present frameworks and protocols for composable multi-
party computation with novel properties and security guarantees.

Environmentally Friendly Composable Multi-Party
Computation in the Plain Model from Standard (Timed)
Assumptions

If a protocol fulfills the notion of UC security, its security holds under universal
composition, i.e. even when it is executed together with arbitrary other protocols in
a concurrent setting. While this guarantee is very strong, UC security faces a major
shortcoming: In order for a protocol to be UC-secure, its parties need access to a
so-called trusted setup, i.e. an entity that provides a certain functionality like a public
key infrastructure or a common reference string (CRS). In a setting where parties
distrust each other, i.e. the very setting of MPC, it is often unclear who could be trusted
to provide such a setup. This practical problem is exacerbated by a theoretical one,
namely the fact that setups substantially and artificially weaken a protocol’s security:
If the setup is corrupted, all security may be lost. This introduction of a single point of
failure by UC security goes against the very promise of MPC, which is for parties to
need very little or even no trust in others.

In order to reconcile the conflict between achieving composability on the one hand
and not needing strong trust assumptions on the other hand, it is highly desirable to
investigate alternative security notions for composable MPC that can be realized in the
plain model, i.e. assuming only authenticated communication and possibly cryptographic
hardness assumptions, but without setups.

7

While many approaches for composable MPC in the plain model exist, they provably
cannot achieve the same properties as UC security. One major drawback of previous
solutions is that they may negatively affect the security of protocols executed alongside,
i.e. in the “environment”, which is not the case with UC security. Canetti et al.
(FOCS 2010, FOCS 2013) proposed the notion of environmental friendliness, which
allows to judge this negative impact. Informally, limited environmental friendliness
comes from the way composability is achieved without a setup, namely by performing
superpolynomial-time computations.

The first contribution of this thesis addresses this problem of limited environmental
friendliness by providing a new notion for composable MPC in the plain model along
with protocols fulfilling this notion.

The new notion is the first one for composable MPC in the plain model that does
not negatively affect any polynomial-time security property of protocols executed
concurrently or previously, i.e. the first to achieve full environmental friendliness.
Also, it is the first to use timed assumptions, i.e. assumptions that only hold against
adversaries with a certain runtime bound, to achieve composability. In particular, we
use timed commitment schemes whose hiding property is only guaranteed for a certain
time. The key idea is to use efficient, i.e. polynomial-time, simulation techniques, which
do not affect the security of other protocols. This is in contrast to previous notions
for composable multi-party computation in the plain model adhering to the simulation
paradigm, which require inefficient computations.

As UC security has no notion of time, it is unsuitable for protocols using timed
assumptions. We suitably adapt it such that parties can set up timers counting the
computational steps performed in the current execution and check their expiry, thus
allowing to leverage the security provided by timed cryptographic assumptions. The
resulting notion is called Time-Lock UC (TLUC) security and features constant-round
general composable multi-party computation from well-studied and relatively weak (i.e.
standard) polynomial-time and timed assumptions in the plain model.

Moreover, our constructions do not require inefficient non-black-box techniques, but
use their building blocks via their input-output interface only. Also, the simulation does
not rely on inefficiently obtained advice that can be used to solve certain (uniformly)
hard problems, but may negatively affect the security of previously started protocols.
These important properties are not achieved together by previous notions for composable
MPC in the plain model.

We are also the first to enable the reuse of arbitrary UC-secure protocols. Thus, one
can often take the best UC-secure protocol for a given task and realize the setup in
TLUC, yielding a TLUC-secure protocol in the plain model with a very small overhead
for a large class of setups.

Updatable Composable Security

Orthogonal to the necessity of trusted setups for UC security is the fact that (general)
secure multi-party computation can only be performed under certain assumptions.

8

Examples include the existence of communication facilities, e.g. point-to-point authenti-
cated communication, the existence of an honest majority, or, more importantly, the
existence of hard problems.

Of course, an assumption made now may turn out to be wrong in the future—either,
for example, because it was wrong in the first place, or because the circumstances
justifying the assumption have changed. While this problem is well-understood in the
case of corruptions, where the concept of adaptive corruptions deals with a setting
where initially honest protocol parties are becoming dishonest during the execution of a
protocol, there is no general analogue concept for cryptographic hardness assumptions.

Given the insecurity of widely-used cryptographic building blocks such as DES, MD5
or SHA-1, the lack of a framework for analyzing the security of protocols in such a
setting poses a major problem, as it is currently impossible to adequately model and
quantify the consequences of a hardness assumption becoming invalid. With the future
availability of universal quantum computers, these problems will become exacerbated as
many commonly used hardness assumptions such as RSA will provably become insecure,
along with protocols using them.

Long-term Security, introduced by Müller-Quade and Unruh (TCC 2007, JoC 2010),
extends UC security to a setting where polynomial-time hardness assumptions hold
during the execution of a protocol, but all hardness assumptions become invalid after
the execution has finished. While this notion already provides much stronger guarantees
than UC security in a setting where hardness assumptions may become invalid, it is
inadequate if this loss may already occur during protocol execution.

Given that there are protocols that can provide meaningful security in such a setting
because they can be updated to new hardness assumptions, this shortcoming is not
only of theoretical nature. A very important and natural example is the computational
binding property of a statistically hiding commitment scheme that can be preserved by
(consistently) re-committing to the same value. Currently, there is no framework that
allows to analyze the composable security of such updatable commitment schemes and
protocols that can be built from them.

Unfortunately, the setting of updatable composable security is subject to the same
strong impossibility results as long-term security: Commitment schemes that are, at
the same time, composable, statistically hiding and computationally binding, cannot be
constructed solely from e.g. a CRS.

Our contribution towards solving this problem is two-fold: First, we circumvent the
impossibility results due to Müller-Quade and Unruh by using new techniques that
allow rewinding-based simulation in a way that universal composability is possible. As a
result, we are the first to construct a commitment scheme in the CRS-hybrid model that
is simultaneously statistically hiding, computationally binding and composable. For
this, we again only require well-understood and relatively weak hardness assumptions.
Moreover, the round efficiency is asymptotically optimal. Using this commitment scheme,
we can construct composable zero-knowledge as well as composable commit-and-proof
with long-term security.

Second, we extend this statistically hiding commitment scheme such that its compu-
tational binding property can be repeatedly updated by re-committing in a consistent

9

way. We propose an ideal functionality for updatable commitment schemes and prove
that our protocol realizes this functionality under Updatable UC security, our new
security notion that extends UC security and long-term security such that cryptographic
hardness assumptions can be invalidated before, during and after protocol execution.
Again, we are able to re-use large classes of UC-secure protocols.

We also prove an impossibility result, namely that oblivious transfer with long-term
security for both parties is impossible in the setting we consider. On the positive side,
we give a construction for composable oblivious transfer with long-term security for
one party, which is provably the best security guarantee. We also sketch how this
protocol can be used to achieve composable general two-party computation with long-
term security for one party. These positive and negative results thus give a complete
characterization of composable two-party computation with long-term security for the
setting we consider.

10

Zusammenfassung

Eine sichere Mehrparteienberechnung (kurz MPC für multi-party computation) erlaubt
es Parteien, die sich gegenseitig misstrauen, Berechnungen auf ihren geheimen Einga-
ben durchzuführen. Dabei werden Eigenschaften wie Korrektheit, Vertraulichkeit oder
die Unabhängigkeit der Eingaben garantiert – selbst dann, wenn eine Teilmenge der
Parteien korrumpiert ist. Aufgrund starker Möglichkeitsergebnisse ist bekannt, dass es
MPC-Protokolle für fast jede effizient berechenbare Aufgabe gibt. Dafür ist lediglich
authentifizierte Punkt-zu-Punkt-Kommunikation erforderlich, aber insbesondere keine
Entität, der alle Parteien vertrauen.

In der heutigen stark vernetzten Welt wird oftmals nicht nur eine Instanz desselben
Protokolls ausgeführt, sondern vielmehr verschiedene Protokolle gleichzeitig. Deshalb ist
es notwendig, dass Protokolle auch unter Komposition sicher sind, also selbst dann, wenn
viele Instanzen von möglicherweise verschiedenen Protokollen gleichzeitig ausgeführt
werden.

Aufbauend auf dem etablierten Begriff der Universal Composability (UC) von Canetti
(FOCS 2001) präsentieren wir in dieser Dissertation Frameworks und Protokolle für
komponierende sichere Mehrparteienberechnungen mit neuartigen Eigenschaften und
Sicherheitsgarantien.

Environmentally Friendly Composable Multi-Party
Computation in the Plain Model from Standard (Timed)
Assumptions

Wenn ein Protokoll den Begriff der UC-Sicherheit erfüllt, gilt seine Sicherheit unter
universeller Komposition, also selbst dann, wenn es zusammen mit beliebigen anderen
Protokollen gleichzeitig (englisch concurrently) ausgeführt wird. Auch wenn diese Ga-
rantie sehr stark ist, hat UC-Sicherheit doch ein erhebliches Manko: Damit ein Protokoll
UC-sicher sein kann, müssen die Protokollparteien auf ein so genanntes vertrauenswür-
diges Setup zugreifen können, also eine Entität, die eine gewisse Funktionalität wie eine
Public-Key-Infrastruktur oder einen common reference string bereit stellt. Wenn sich
die Parteien gegenseitig misstrauen, also genau der bei MPC betrachteten Situation,
ist es oftmals unklar, wer vertrauenswürdig genug sein könnte, um das Setup bereitzu-
stellen. Dieses praktische Problem wird durch ein theoretisches verschärft, denn Setups
schwächen die Sicherheit eines Protokolls substanziell und auf unnatürliche Weise: Ist
das Setup korrumpiert, so können alle Sicherheitsgarantien eines Protokolls verloren
gehen. Diese Einführung eines single point of failure steht dem Versprechen von MPC,
anderen wenig oder auch gar nicht vertrauen zu müssen, diametral entgegen.

11

Um den Konflikt zwischen dem Erreichen von Komponierbarkeit einerseits und dem
Verzicht auf starke Vertrauensannahmen andererseits aufzulösen, ist es höchst wünschens-
wert, alternative Sicherheitsbegriffe für komponierende Mehrparteienberechnungen zu
untersuchen. Interessant sind insbesondere solche, die im plain model, also nur unter der
Annahme von authentifizierter Kommunikation und möglicherweise kryptographischer
Komplexitätsannahmen erreicht werden können, aber keine Setups benötigen.

Auch wenn es viele Ansätze für komponierende Mehrparteienberechnungen im plain
model gibt, so können diese beweisbar nicht dieselben Eigenschaften wie UC-Sicherheit
erreichen. Ein großer Nachteil bisheriger Lösungen ist, dass diese die Sicherheit von
Protokollen, die nebenläufig, also in der „Umgebung“, ausgeführt werden, negativ
beeinflussen können, was bei UC-Sicherheit nicht der Fall ist. Canetti et al. (FOCS 2010,
FOCS 2013) haben den Begriff der environmental friendliness vorgeschlagen, der es
erlaubt, diesen negativen Einfluss zu beurteilen. Die eingeschränkte environmental
friendliness kommt etwa durch die Art und Weise, wie Komponierbarkeit ohne Setup
durch eine Superpolynomialzeit-Simulation erreicht wird, bedingt.

Der erste Beitrag dieser Dissertation befasst sich mit diesem Problem der einge-
schränkten environmental friendliness. Dazu wird ein neuer Begriff für komponierende
Mehrparteienberechnungen im plain model vorgestellt, zusammen mit Protokollen, die
den Begriff erfüllen.

Der neue Begriff ist der erste, der Sicherheitseigenschaften (gegenüber Polynomial-
zeitangreifern) von anderen Protokollen, die nebenläufig ausgeführt werden oder deren
Ausführung geendet hat, nicht negativ beeinflusst, also der erste, der volle environmental
friendliness erreicht. Er ist ebenso der erste, der timed kryptographische Annahmen
einsetzt, also Annahmen, die nur gegenüber Angreifern mit einer bestimmten Laufzeit-
schranke gelten, um Komponierbarkeit zu erreichen. Wir verwenden insbesondere timed
Commitment-Verfahren, deren Hiding-Eigenschaft nur für eine gewisse Zeit garantiert
ist.

Die wesentliche Idee ist die Verwendung von effizienten, also in Polynomialzeit aus-
führbaren, Simulationtechniken, die die Sicherheit anderer Protokolle nicht beeinflussen.
Dies steht im Gegensatz zu vorherigen Sicherheitsbegriffen für komponierende Mehr-
parteienberechnungen im plain model, die dem Simulationsparadigma folgen und dabei
ineffiziente Berechnungen benötigen.

Da UC-Sicherheit keinen Zeitbegriff umfasst, ist sie für Protokolle, die timed Annah-
men verwenden, ungeeignet. Wir passen den UC-Sicherheitsbegriff so an, dass Parteien
Timer aufsetzen können, die die Berechnungsschritte in der aktuellen Ausführung zählen.
Anschließend können die Parteien prüfen, ob diese Timer abgelaufen sind. So können
die Sicherheitsgarantien von timed Annahmen genutzt werden. Der resultierende Begriff
heißt Time-Lock-UC-Sicherheit (kurz TLUC-Sicherheit) und ermöglicht allgemeine
Mehrparteienberechnungen mit konstanter Rundenanzahl basierend auf sehr gut ver-
standenen und vergleichsweise schwachen kryptographischen Annahmen (so genannten
Standardannahmen) zusammen mit timed kryptographischen Annahmen im plain model.

Darüber hinaus benötigen unsere Konstruktionen keine ineffizienten so genannten
Non-Black-Box-Techniken, sondern nutzen Bausteine nur über ihre Ein- und Ausgabe-
Schnittstellen. Auch benötigt unsere Simulationstechnik im Gegensatz zu anderen

12

Ansätzen keinen ineffizienten advice, der helfen kann, bestimmte schwierige Probleme
zu lösen, dabei aber möglicherweise die Sicherheit von bereits gestarteten Protokol-
linstanzen negativ beeinflusst. Diese wichtigen Eigenschaften werden von bisherigen
Sicherheitsbegriffen für komponierende Mehrparteienberechnungen im plain model nicht
gemeinsam erreicht.

Weiterhin ist unser Ansatz der erste, der die Wiederverwertbarkeit von beliebigen
UC-sicheren Protokollen erlaubt. So ist es oftmals möglich, das Setup des besten UC-
sicheren Protokolls für eine bestimmte Aufgabe in TLUC zu realisieren. Das resultierende
Protokoll ist TLUC-sicher im plain model, wobei der zusätzliche Aufwand für eine große
Klasse von Setups sehr gering ist.

Updatable Composable Security

Orthogonal zur Notwendigkeit von Setups zum Erreichen von UC-Sicherheit ist die
Tatsache, dass sichere Mehrparteienberechnungen nur unter bestimmten Annahmen
möglich sind. Beispiele hierfür sind das Vorhandensein einer Kommunikationsinfrastruk-
tur wie authentifizierter Punkt-zu-Punkt-Kommunikation, die Existenz einer ehrlichen
Mehrheit oder, noch wichtiger, der Existenz von schwierigen Problemen.

Selbstverständlich kann sich eine heute getätigte Annahme morgen als falsch erwei-
sen – entweder, weil sie beispielsweise von vornherein falsch war, oder weil sich die
Umstände, die die Annahme gerechtfertigt haben, geändert haben. Dieses Problem ist
im Falle von Parteienkorruption mit dem Konzept der adaptiven Korruption sehr gut
verstanden. Dabei wird abgebildet, dass Protokollparteien zunächst ehrlich sind, aber
im Laufe der Protokollausführung korrumpiert werden können. Ein analoges Konzept
für kryptographische Komplexitätsannahmen gibt es jedoch nicht.

In Anbetracht der Unsicherheit von breit eingesetzten kryptographischen Bausteinen
wie DES, MD5 oder SHA-1 ist das Fehlen eines Frameworks, mit dem die Sicherheit
von Protokollen in einer solchen Situation analysiert werden kann, ein großes Problem –
im Moment ist es nämlich nicht möglich, die Folgen des Ungültigwerdens einer Komple-
xitätsannahme zu modellieren oder zu quantifizieren. Mit der zukünftigen Verfügbarkeit
von universellen Quantencomputern verschärft sich das Problem noch, da viele weit-
hin eingesetzte kryptographische Komplexitätsannahmen wie RSA beweisbar unsicher
werden, zusammen mit den Protokollen, in denen sie verwendet werden.

Langzeitsicherheit (long-term security), eingeführt von Müller-Quade und Unruh
(TCC 2007, JoC 2010) erweitert UC-Sicherheit dahingehend, dass während einer Proto-
kollausführung Polynomialzeitannahmen gelten können, nach dem Ende der Ausführung
aber alle Komplexitätsannahmen ihre Gültigkeit verlieren. Auch wenn dieser Sicherheits-
begriff viel stärkere Garantien als UC-Sicherheit bietet, wenn Komplexitätsannahmen
ihre Gültigkeit verlieren können, ist er dennoch inadäquat, wenn der Gültigkeitsverlust
schon während der Protokollausführung auftreten kann.

Bedenkt man, dass es Protokolle gibt, die in solch einem Fall sinnvolle Sicherheitsga-
rantien geben können, weil sie auf neue Komplexitätsannahmen „geupdated“ werden
können, so ist dieses Manko nicht nur theoretischer Natur. Ein wichtiges und gleichzeitig

13

natürliches Beispiel ist die Binding-Eigenschaft von Commitment-Verfahren, deren
Hiding-Eigenschaft statistisch gilt: Die Binding-Eigenschaft kann durch (konsisten-
tes) wiederholtes Committen auf denselben Wert erhalten werden. Im Moment gibt
es kein Framework, mit dem die komponierende Sicherheit von solchen updatebaren
Commitment-Verfahren sowie Protokollen, die man aus ihnen bauen kann, analysiert
werden kann.

Leider unterliegt updatebare komponierende Sicherheit denselben starken Unmög-
lichkeitsergebnissen wie Langzeitsicherheit: Commitment-Verfahren, die gleichzeitig
komponierend sind, deren Hiding-Eigenschaft statistisch und deren Binding-Eigenschaft
komplexitätstheoretisch gilt, können nicht ausschließlich beispielsweise mithilfe eines
common reference string konstruiert werden.

Unser Beitrag zur Lösung dieses Problems besteht aus den folgenden zwei Teilen: Ers-
tens umgehen wir mithilfe von neuen Techniken, die eine Rewinding-basierte Simulation
so ermöglichen, dass Universal Composability möglich ist, die Unmöglichkeitsergebnisse
von Müller-Quade und Unruh. Damit sind wir die ersten, die ein Commitment-Verfahren
im CRS-Hybridmodell konstruieren, für das die Hiding-Eigenschaft statistisch und die
Binding-Eigenschaft komplexitätstheoretisch gilt und das gleichzeitig komponierend
ist. Auch dafür benötigen wir nur sehr gut verstandene und vergleichsweise schwa-
che kryptographische Komplexitätsannahmen. Darüber hinaus ist die Rundeneffizienz
asymptotisch optimal. Unter Verwendung dieses Commitment-Verfahrens konstruie-
ren wir komponierende Protokolle für Zero-Knowledge sowie Commit-and-Proof mit
Langzeitsicherheit.

Zweitens erweitern wir das Commitment-Verfahren, dessen Hiding-Eigenschaft statis-
tisch gilt, so, dass die komplexitätstheoretische Binding-Eigenschaft durch konsistentes
wiederholtes Committen mehrmals geupdated werden kann. Wir stellen eine ideale
Funktionalität für updatebare Commitments vor und beweisen, dass unser Protokoll
diese Funktionalität relativ zu unserem neuen Sicherheitsbegriff der Updatable-UC-
Sicherheit realisiert. Dabei erweitert Updatable-UC-Sicherheit die UC-Sicherheit und
die Langzeitsicherheit so, dass kryptographische Komplexitätsannahmen vor, während
und nach der Protokollausführung ungültig werden können.

Wir beweisen auch ein Unmöglichkeitsergebnis, nämlich die Unmöglichkeit von obli-
vious transfer mit Langzeitsicherheit für beide Parteien unter den von uns betrachteten
Rahmenbedingungen. Positiv zu vermerken ist, dass wir eine Konstruktion für kompo-
nierenden oblivious transfer mit Langzeitsicherheit für eine Partei angeben können, was
beweisbar die bestmögliche Sicherheitsgarantie ist. Ebenso skizzieren wir, wie dieses
Protokoll dazu verwendet werden kann, um komponierende allgemeine Zwei-Parteien-
Berechnungen mit Langzeitsicherheit für eine Partei durchzuführen. Diese Positiv- und
Negativergebnisse stellen also eine vollständige Charakterisierung für komponierende
Zwei-Parteienberechnungen mit Langzeitsicherheit in dem von uns betrachteten Umfeld
dar.

14

Contents

1. Introduction 17

2. Preliminaries 29
2.1. Notation . 29
2.2. Basic Concepts . 30
2.3. Cryptographic Building Blocks . 31
2.4. Universal Composability and its Variants 34
2.5. Environmental Friendliness . 42

3. Environmentally Friendly Composable Multi-Party Computation in
the Plain Model from Standard (Timed) Assumptions 45
3.1. Introduction . 45
3.2. Definitions . 53
3.3. Timed Simulation-Sound Commitment Schemes 59
3.4. TLUC Security . 72
3.5. Composable Commitment Schemes in the Plain Model 84
3.6. Proof of Security . 87
3.7. Constant-Round Black-Box Composable General MPC 99

4. Updatable Composable Security 101
4.1. Introduction . 102
4.2. Definitions . 108
4.3. Concurrently Extractable Trapdoor Commitment Schemes 111
4.4. Security Notions . 125
4.5. Updatable and Long-Term-Secure Composable Commitment Schemes . 146
4.6. Long-Term-Secure Zero-Knowledge and Commit-and-Prove 161
4.7. Long-Term-Secure General Two-Party Computation 161

5. Conclusion and Outlook 177

Bibliography 181

A. Appendix 193
A.1. TLUC Security . 193
A.2. Analysis of the Committed-Value Oracle OCCA 200

15

16

1. Introduction

Whether it is our medical history, information about social interaction or financial
transactions—almost every aspect of our lives leaves behind a digital footprint. If this
data were available for analysis, society could gain many valuable insights towards
solving its most important problems. At the same time, simply pooling this data for
analysis poses a great threat due to its highly private nature, and better methods are
needed.

A cryptographic tool enabling the private computation on sensitive data is a so-called
secure multi-party computation (MPC), which allows mutually distrusting parties to
jointly perform distributed and decentralized computations on their secret inputs. Even
if a subset of the parties is corrupted, i.e. jointly controlled by an adversary, protocols
for MPC provide very strong security guarantees. In particular, participating in an
MPC protocol traditionally does not allow a malicious party to learn anything about
an honest party’s secrets that it cannot compute from the computation’s result and its
own input. Moreover, additional guarantees such as correctness and independence of
inputs are provided, all without needing to trust a central entity.

Due to strong feasibility results, (e.g. [Y86; GMW87; CLOS02]), general MPC con-
structions for (almost) every efficiently computable task are known [BKM+21; DMM22;
DKM+22; MMN18]. Additionally, many protocols for special tasks exist (e.g. [DMM23;
BMM21; BBK+23; DKM+22; AGH+19]), providing for example better efficiency than a
generic solution.

Examples for real-world problems that may be solved using MPC today include

• the intersection of private sets [DMM23], e.g. consisting of phone numbers for the
purpose of contact discovery in messenger applications,

• contact tracing [BDH+21] to warn if there have been close encounters with infected
persons or

• a “similar patient query” [AHLR18], for example with the purpose of finding an
appropriate donor of biological material, or

• computing the market clearing price [BCD+09] for sugar beets.

These examples justify not only the theoretical interest in MPC, but also illustrate
the growing practical relevance of cryptographic tools with strong privacy guarantees.

Defining Security. In order to capture (and prove) the security guarantees provided
by a cryptographic protocol, a precise and mathematical definition of security is needed.

17

1. Introduction

A popular and natural approach is the so-called real-ideal paradigm or (stand-alone)
real-ideal security [G04]. With real-ideal security, the execution of a (real) protocol π in
the presence of an adversary A (the “real execution”) is compared to an execution of
an ideal functionality F and an ideal-world adversary S that models attacks that can,
in principle, not be ruled out (the “ideal execution”).

In this ideal execution, all (honest) protocol parties directly interact with the ideal
functionality F , which is incorruptible and carries out the desired task by definition.
First, all parties send their input to F . The ideal-world adversary, also called the
simulator, is responsible for providing the inputs of the corrupted parties. After all
parties have provided their input, F performs the specified computation. The simulator
receives the outputs for the corrupted parties, while the honest parties directly receive
their outputs from F . Finally, the simulator outputs an arbitrary string of its choice.

The only possibility for the ideal-world adversary to influence the computation is by
providing an input of its choice for the corrupted parties and (usually) by suppressing
the output of a subset of the honest parties, possibly depending on the output of the
corrupted parties. Clearly, in the ideal execution, properties such as correctness, privacy
or independence of inputs, i.e. the guarantee that the input of a corrupted party does
not depend (possibly only through a relation) on the input of an honest party, are
satisfied.

In the real execution, the protocol π is executed. The adversary A is responsible for
the delivery of messages, usually being allowed to suppress, but not to change or inject
messages from honest parties. Also, A controls the corrupted parties. At the end of the
execution, the honest parties output the results of the computation.

In order to prove the security of a protocol π, one shows that it realizes an appropriate
ideal functionality F that captures the desired security guarantees. To this end, it is
necessary to prove the existence of a simulator such that the probability ensembles
consisting of

• the outputs of the honest parties in the real execution as well as the view of the
adversary in the real execution resp.

• the outputs of the honest parties in the ideal execution as well as the output of
the simulator

are indistinguishable.
If this holds, it is easy to see that all guarantees that hold in the ideal execution carry

over to the real execution—otherwise, they would not be indistinguishable.
In order to perform the simulation, the simulator typically executes π and A “in

its head” in an imaginary execution. (Because of this “simulation in the head” of the
real execution, the ideal-world adversary is called the simulator.) At the same time, it
interacts with the ideal functionality F . In the execution “in its head”, the simulator
must faithfully simulate the real execution for the adversary A by simulating the honest

18

parties, albeit without knowing their inputs and outputs1. Also, the simulator must
provide the ideal functionality with the inputs of the corrupted parties. These secret
inputs must be extracted by S through interaction with the internally emulated adversary
A. Perhaps surprisingly, all this is possible without knowing the honest parties’ inputs
and outputs if the protocol is appropriately designed—even if the adversary behaves
like an honest party.

At first glance, this requirement (and ability of the simulator) seems to contradict
the privacy requirement, as merely interacting with a party (corrupted or not) should
not enable one to learn its secrets. Indeed, if the real-world adversary could, like the
simulator, learn a (honest) party’s input by interacting with it, there would be no
security.

However, the simulator has an advantage over the real-world adversary and over
honest parties: It may rewind the execution it simulates “in its head”, i.e. reset this
simulated execution to an earlier state, send different messages and possibly observe
different answers. Clearly, this capability makes the simulator very powerful. At the
same time, it is not available to the real-world adversary, leading to a meaningful
security guarantee.

Using real-ideal security, security of important tasks such as secure function evaluation,
oblivious transfer or zero-knowledge proof systems can be captured.

Composable Security. Unfortunately, stand-alone real-ideal security is not closed
under composition, i.e. when multiple instances of a protocol are executed at the same
time. As a consequence, all security of a protocol π previously proven secure may be
lost even when only two instances of the same protocol π are executed in parallel [GK90].
Clearly, in a highly connected world such as the Internet, where arbitrary protocols are
executed concurrently, a security notion that is not closed under protocol composition
is insufficient.

Thus, it is important to consider security notions that guarantee security under
universal composition, i.e. in the presence of concurrent executions of the same or even
other protocols that may be adversarially chosen with the intent to hurt the security of
the protocol under analysis.

The established security notion for this setting is called Universal Composability
(UC) [C01]. Similar to real-ideal security, the security of a protocol π is defined by
the ideal functionality F it realizes. However, the experiment is extended to include a
so-called environment, usually denoted by Z, which serves as an interactive distinguisher,
adaptively provides inputs to the parties and communicates with the adversary. By
allowing arbitrary communication between the adversary and the environment, UC
security naturally captures a setting where arbitrary other protocols are executed with an
adversarial schedule alongside the protocol under analysis. As these other protocols are
implicitly executed inside the environment, they do not need to be explicitly considered

1Depending on the function to be computed, some information about an honest party’s secrets may be
learned. For example, computing the bit-wise exclusive-or y of two values x1 and x2 always allows to
reconstruct x2 from y and x1 and vice versa.

19

1. Introduction

during the security proof. As a consequence, protocols that satisfy UC security remain
secure under general concurrent or universal composition.

Despite these strong and desirable security guarantees, UC security is lacking in
several aspects. In the following, we discuss two major shortcomings.

Shortcoming: Necessity of Setups. The strong guarantees of UC security come
with a price to pay. While real-ideal security can be achieved in the plain model,
i.e. assuming authenticated communication only, there are well-known and strong
impossibility results with respect to UC security [CF01; CKL03; PR08; KL11]: Unless
an honest majority exists, protocols with natural properties and UC security (against
malicious adversaries) necessitate the use of a so-called trusted setup like a common
reference string (CRS), a public key infrastructure (PKI), a random oracle (RO) or
tamper-proof hardware tokens [MMN18].

With (stand-alone) real-ideal security, the extraction of inputs of corrupted parties
was possible by rewinding the adversary “in the head” of the simulator. In particular,
the adversary only interacted with the “outside world” twice when receiving its input
and giving its output. With UC security, rewinding the adversary “in the head” of
the simulator is not possible anymore: In contrast to the adversary in the real-ideal
paradigm, the UC adversary may communicate with the “outside world”, i.e. the
environment, at any time. Apart from technicalities that prevent the simulator from
also simulating the environment “in its head” in order to rewind it together with the
adversary, such a notion might not provide meaningful guarantees whatsoever, as all
protocols executed concurrently would be rewound too. Instead, UC security requires
so-called straight-line simulation, i.e. simulation without rewinding other machines.

To this end, UC-secure protocols need to be designed in a way that enables extraction
when the setup is, for example, modified to contain a hidden backdoor. In the ideal
execution, this can be done by the simulator, as it provides the setup. As each setup is
used for a single protocol instance only, the use of setups ensures independence between
different protocol sessions, enabling universal composability in the first place.

However, having to use setups is undesirable for a number of reasons. From a
theoretical perspective, introducing a setup that e.g. allows the extraction of secrets
introduces not only an arguably artificial vulnerability, but also a single point of failure.
If a setup is corrupted, e.g. because it is provided by a dishonest entity, all security
may be lost. Given the fact that non-composable MPC can be achieved without trusted
setups, this is highly unsatisfactory.

From a practical perspective, there is also the unsolved question of which entity can
be trusted enough to provide a setup. If a multi-party computation is done because the
participating parties do not trust each other, an entity trusted enough to provide the
setup might just not exist.

As a consequence, numerous notions for composable MPC in the plain model have
been investigated (e.g. [P03; BS05; LPV09; GGJS12; GKP18; DMRV13; PS04; CLP10;
CLP13a; BDH+17]). Since they do not rely on trusted setups, they are provably weaker
than UC security. In particular, they suffer from the problem of negatively affecting

20

the security of protocols that are executed alongside or have started before. This is
due to the fact that the simulator needs an advantage over the real-world adversary:
If the ability to perform rewinding is ruled out and there are no setups, one typically
provides the simulator with a computational advantage, allowing it to (indirectly)
perform inefficient, e.g. super-polynomial-time or non-uniform, computations. As the
powerful simulator may now violate assumptions made to prove the security of other
protocols executed alongside, they could become totally insecure.

Shortcoming: Indefinite Validity of Cryptographic Hardness Assumptions.
Hard problems are provably necessary for certain tasks, e.g. general MPC without an

honest majority or a very strong setup assumption. Often overlooked is the fact that
problems that are (believed to be) hard today may not be hard tomorrow: Either, the
problem may not have been hard in the first place and was only wrongfully assumed to
be so, or algorithmic or computational advancements have made the problem tractable.
Notable examples for the first case include e.g. cryptographic hash functions like MD5
[K06] or SHA-1 [SKP16], while the encryption scheme DES, which remains structurally
unbroken but suffers from short keys, is a good example for the second case.

When hardness assumptions used in a protocol become invalid, the consequences
may be manifold: If the protocol in question has finished, secret inputs and outputs
of (honest) parties may leak. If the protocol is still in progress, additional security
properties may be lost, e.g. the independence of inputs or the soundness of proof systems.

Unfortunately, the UC framework is unsuitable for analyzing the security of a protocol
in such a setting as there is no mechanism that captures hardness assumptions becoming
invalid at some point.

Long-term security introduced by Müller-Quade and Unruh [MU10] extends the notion
of UC security to consider a setting where all hardness assumptions become invalid after
a protocol execution has finished. As such, long-term security is suitable to analyze e.g.
privacy guarantees of protocols that use RSA and terminate before universal quantum
computers become available. In order to satisfy long-term security, the environment’s
view in the real execution must be statistically indistinguishable from its view in the
ideal execution.

Surprisingly, protocols satisfying this strong and desirable security notion can be
constructed, albeit using strong (and arguably impractical) setups like trusted signature
cards. At the same time, Müller-Quade and Unruh [MU10] prove that the natural class
of long-term-revealing setups, e.g. common reference strings or certain classes of public
key infrastructures, cannot be used (on their own) to construct composable commitment
schemes with long-term security, i.e. commitment schemes that statistically hide the
value committed to after protocol has finished. Given that these setups are sufficient
for standard UC security, this result may seem surprising.

Still, long-term security is inadequate to analyze the security of protocols in a setting
where some hardness assumptions may already become invalid during protocol execution,
while some remain valid at the same time, possibly beyond the end of the execution.

21

1. Introduction

For example, a protocol for instant messaging used today may have a very long runtime,
going beyond the point when universal quantum computers are available.

Not having an appropriate (i.e. general and composable) security notion for such
a setting is very unfortunate, as some building blocks naturally admit the ability to
update to a new hardness assumption. If this update is performed in time, security
may be preserved. Examples include commitment schemes with stand-alone security, a
statistical hiding property and a computational binding property that can be updated
[DL15; CDG+15; BGB17] in some way. The security of such an updatable commitment
scheme can neither be analyzed with standard UC security nor with long-term security.
The former fails to capture the possibility of hardness assumptions becoming invalid
completely, the latter is both too optimistic and pessimistic in the sense that all
hardness assumptions remain valid throughout the protocol execution, but become
invalid immediately after.

Contribution of the Thesis
The contribution of this thesis consists of new frameworks and protocols for composable
MPC that address the above shortcomings.

Environmentally Friendly Composable Multi-Party Computation in
the Plain Model from Standard (Timed) Assumptions [BMM21]

In order to achieve composable security, the simulator needs an advantage over the
environment. In the case of UC security, this advantage is the ability to simulate the
setup. For example, the simulator may embed a trapdoor into a common reference
string in a way that is undetectable for the environment.

In contrast, composable security in the plain model is usually achieved by using
a super-polynomial-time simulation, e.g. by either allowing simulators having super-
polynomial runtime complexity or by giving the polynomial-time simulator access
to super-polynomial-time resources. The inherent drawback of such approaches is
that super-polynomial-time simulation affects other polynomial-time protocols running
concurrently. The consequences are two-fold: i) A protocol π realizing some functionality
F under super-polynomial-time simulation cannot be plugged into arbitrary UC protocols
ρ in the F-hybrid model while retaining security of the composed protocol. ii) The
simulation may not be environmentally friendly, i.e. it may negatively affect the security
of polynomial-time protocols running alongside.

Our first contribution is a new approach for composable MPC in the plain model
that fully addresses these problems. To this end, we propose a dual approach that is,
to the best of our knowledge, completely novel: Instead of giving a super-polynomial
advantage to the simulator, we temporarily restrict the adversary and the environment.
These temporary restrictions allow the use of timed primitives, i.e. primitives that are
not secure against probabilistic polynomial-time (PPT) adversaries, but only against
adversaries adhering to a certain runtime bound. This is a first in the context of
composable security in the plain model.

22

In more detail, we allow parties to set up timers parameterized by a number of steps
t and require the environment to obey these timers, i.e. correctly signal if the timer has
expired because the experiment has performed t or more steps. In our constructions, we
use timers to “protect” the timed hiding property of timed commitment schemes.

Informally, a commitment scheme allows a committer to create a commitment to a
secret. Before the commitment is opened by the committer, the committed secret remains
hiding for every malicious (PPT) receiver. Conversely, commitment schemes also feature
the binding property, guaranteeing that a malicious (PPT) committer is committed to its
secret, i.e. cannot change it to a different value. Timed commitment schemes relax the
hiding property, only guaranteeing it against adversaries that adhere to a certain runtime
bound t. Additionally, it is usually guaranteed that a commitment can be extracted
within T > t steps, where T is polynomial. This property is not implied by the timed
hiding property. Also, it clearly does not hold for (non-timed) commitment schemes,
where the hiding property is guaranteed against every polynomial-time adversary.

By setting up appropriate timers, we ensure that timed commitments where the
receiver is corrupted initially remain hiding for the environment. At some point, the
environment will be able to learn the secret protected by the timed commitment.
Conversely, the simulator, which is not required to obey timers, can extract timed
commitments created by the environment. Surprisingly, this weak and only temporary
advantage is sufficient to set up a long-lived trapdoor based on standard polynomial-time
hardness assumptions, enabling composability.

These fine-grained asymmetries are not captured by previous notions for composable
security. We thus introduce the notion of Time-Lock UC (TLUC) security, which is
a variant of UC security that allows the use of building blocks with timed security
properties. As TLUC simulators run in strict polynomial time, TLUC-secure protocols
are environmentally friendly to all game-based properties against polynomial-time
adversaries of protocols running alongside.

In previous approaches, the simulator kept its advantage throughout and beyond the
protocol execution. In our setting, this is not the case anymore. Indeed, the environment
will eventually be able to break all timed assumptions and thus e.g. learn the values of
all timed commitments. We thus had to come up with a novel simulation technique that
allows the simulator to set up a trapdoor while preventing the environment, which will
eventually be just as powerful as the simulator, to do the same. At the same time, the
environment that will eventually “catch up” on the runtime advantage of the simulator,
must not be able to notice when the simulator has deviated from the protocol and set
up a trapdoor.

Combining stand-alone timed commitment schemes with stand-alone non-malleable
commitment schemes, we construct a commitment scheme that concurrently realizes
many instances of FCOM, the ideal functionality for commitments, under TLUC security
in the plain model.

Theorem 1.1 (Composable Commitments in the Plain Model, informal). If trapdoor
PRGs with dense public description, perfectly binding homomorphic commitment schemes

23

1. Introduction

and timed commitment schemes exist, then there exists a black-box constant-round
commitment scheme in the plain model that concurrently TLUC-realizes FCOM.

As TLUC simulation is strictly polynomial-time, it does not “hurt” the security of
other polynomial-time protocols running concurrently. This allows us to reuse arbitrary
UC protocols without loss of security. In particular, we can take a UC-secure protocol
ρ that uses one instance of an ideal functionality F to realize an ideal functionality G
with UC security, realize F within TLUC in the plain model with a protocol π and
plug π into ρ. Then, it follows that the composed protocol ρF→π, i.e. ρ where the
single instance of F has been replaced with the protocol π, TLUC-realizes the ideal
functionality G.

In the notation of this thesis, which will be introduced later on, this reusability of
UC-secure protocols is captured in the following proposition.

Proposition 1.1 (UC Reusability). Let ρ, σ and ϕ be PPT protocols such that ρ makes
one subroutine call to ϕ and such that ρ UC-emulates σ. Let π be a PPT protocol such
that π TLUC-emulates ϕ. Then, ρϕ→π TLUC-emulates σ.

In particular, the UC reusability often allows to “bootstrap” the best UC-secure
protocol ρ for a specific task by realizing the setup of ρ within TLUC in the plain model.
In many cases, e.g. if the setup of ρ is a CRS, the resulting overhead is (asymptotically)
very small and, in particular, independent of the inputs of the parties in ρ. We stress
that this important property is not provided for arbitrary protocols ρ by previous
notions for composable MPC in the plain model.

Using an appropriate general MPC protocol in the FCOM-hybrid model, we can
achieve composable general TLUC-secure MPC in the plain model. To this end, we can
state a constant-round protocol πBB

F for (almost) every ideal functionality F such that
πBB
F concurrently TLUC-realizes F .

Theorem 1.2 (Constant-Round MPC in the Plain Model, informal). If timed com-
mitment schemes and perfectly binding homomorphic commitment schemes as well as
enhanced trapdoor permutations with dense public descriptions exist, then for every
well-formed functionality F , there exists a constant-round black-box protocol πBB

F in the
plain model such that πBB

F concurrently TLUC-realizes F .

The resulting protocol is environmentally friendly.

Updatable Composable Security

As our second contribution, we present a framework that allows to analyze the security
of protocols in a setting where cryptographic hardness assumptions may become invalid.

In the UC framework, all entities run in probabilistic polynomial-time (PPT) and
keep their runtime complexity throughout the execution. In order to allow environment
and adversary to adaptively gain additional computational powers, we use the general
mechanism proposed by [PS04; CLP10] and introduce a so-called helper that captures a
number of stateless and deterministic complexity oracles. Initially disabled, a complexity

24

oracle can be enabled by the environment at any time and then allows environment
and adversary to perform certain (possibly inefficient) computations, e.g. to break an
instance of the RSA problem. Ideal functionalities may query which complexity oracles
are activated and change their behavior accordingly.

In such a setting where cryptographic hardness assumptions may become invalid, it is
highly desirable to provide information-theoretic security guarantees to at least a subset
of protocol parties. Unfortunately, our setting is subject to the impossibility results of
Müller-Quade and Unruh [MU10], ruling out e.g. a universally composable commitment
scheme in the CRS-hybrid model with long-term security. As this impossibility result
can be easily extended to protocols in the plain model (as long as straight-line simulation
is used), previously established techniques that allow composable MPC in the plain
model also cannot be easily used to achieve long-term security.

With the requirement of straight-line simulation being the culprit, we take a different
approach and carefully allow the simulator to rewind the execution. With this power at
hand, it can, for example, extract statistically hiding commitments, which is not possible
in a straight-line way without a setup. As discussed previously, allowing rewinding in
an UC-like execution may not provide meaningful security of other protocols if they are
affected by the rewinding.

To this end, we take several precautions. First, instead of directly providing rewinding
capabilities to the simulator, we outsource this capability to the helper that also
provides the complexity oracle. This way, we guarantee that only a very specific
rewinding technique is performed. For the used rewinding technique, we can show
several properties, in particular the k-robust quasi-PPT property and the k-robust
composition-order invariance. Using these properties, we can show that the rewinding
does not negatively affect the security of protocols executed concurrently, as long as
their (joint) round complexity is bounded by O(k) rounds. To this end, we also prove
that we fulfill environmental friendliness for k-round protocols.

While the general idea of introducing rewinding to the UC execution seems straight-
forward, it is riddled with technical difficulties stemming from the fact that we have
to deal with commitment schemes that are statistically hiding. For such commitment
schemes, it is neither straight-forward to define the value committed to nor to use
established security notions such as CCA security. Informally, this is due to the fact
that extracting such commitments requires black-box rewinding access to the malicious
committer (and possibly other entities that (indirectly) communicate with the malicious
committer), which is not possible with an ordinary oracle. To solve this problem, we
introduce the concept of pseudo-oracles, which generalizes oracles in the sense that a
pseudo-oracle may have black-box rewinding access to its caller as well as possibly other
machines as necessary.

At the same time, the rewinding techniques have to account for the possibility that
the cryptographic hardness assumptions that enable the extraction through rewinding
in the first place may become invalid at any point. In particular, we have to deal with
the possible case that an assumption becomes invalid in a side-thread when rewinding,
but not in the main thread of the execution.

25

1. Introduction

Having established the necessary techniques and game-based security notions for
commitment schemes, we incorporate them into the UC framework through the helper,
requiring subtle changes to the UC execution experiment. We call the resulting frame-
work the Updatable UC framework and the resulting notion (Long-Term) Updatable UC
security.

With this helper that provides extraction capabilities, we construct a composable
commitment scheme with long-term security in the CRS-hybrid model, circumventing
the impossibility results due to Müller-Quade and Unruh [MU10]. In particular, its
hiding property is guaranteed statistically, while its binding property is computational.

Theorem 1.3 (Long-Term-Secure Composable Commitment Scheme, informal). Let
OCCA be a black-box committed-value (pseudo-)oracle. If there exists a commitment
scheme COM that is CCA-binding and trapdoor w.r.t. OCCA and has an appropriate
message space, then there exists a protocol that long-term-Updatable-UC-realizes the
ideal functionality for commitments in the FCRS-hybrid model.

The construction requires standard assumptions only and can be instantiated based
on a number of problems, e.g. the RSA problem, the DLOG problem or a lattice-based
post-quantum assumption. Moreover, its round complexity is asymptotically optimal.

In a second step, we extend the above commitment scheme to feature an updatable
binding property. This is achieved by re-committing to the secret as well as previous
decommitments using a typed commitment scheme, i.e. a commitment scheme that
can be can be instantiated using different hardness assumptions, but otherwise follows
a common template. To define the security of this updatable commitment scheme,
we have devised an ideal functionality for updatable commitments, which is provably
realized by our updatable commitment scheme. To the best of our knowledge, we are
thus not only the first to construct a composable updatable commitment scheme, but
also the first to realize such a scheme with a statistical hiding property.

Theorem 1.4 (Long-Term-Secure Composable Updatable Commitment Scheme, in-
formal). Let OCCA be a black-box committed-value (pseudo-)oracle and let Ocomp be a
complexity oracle. If there exists a typed commitment scheme COM that is enhanced
CCA-binding and enhanced trapdoor w.r.t. OCCA and Ocomp and has an appropriate
message space, then there exists a protocol that long-term-Updatable-UC-realizes the
ideal functionality for updatable commitments in the FCRS-hybrid model.

Next to the above feasibility results, we prove a new impossibility result: Even
if rewinding is allowed, oblivious transfer with long-term security for both parties is
provably impossible, unless very strong setups are used. This implies that general
two-party computation with long-term security for both parties is impossible, too.
Nevertheless, we construct composable oblivious transfer with long-term security for
one party in the CRS-hybrid model. Given the impossibility result, this is the best
one can hope for. We also sketch how this protocol for oblivious transfer can be used
for composable (reactive) two-party computation with long-term security for one party.
Thus, we give a full characterization of general two-party computation for our setting.

26

On the positive side, we show that certain tasks can be achieved with long-term
security for both parties in the CRS-hybrid model. Examples include composable
zero-knowledge or composable commit-and-proof.

Outline of the Thesis
Starting with Chapter 2, we present preliminaries that are relevant to the following
chapters. In Chapter 3, we present our first result, namely a new notion and protocols
for composable MPC in the plain model from standard (timed) assumptions with
properties that have not been achieved before. In Chapter 4, we propose another variant
of UC security dealing with the problem that cryptographic hardness assumptions may
become invalid during the execution of a protocol. We present various protocols with
long-term security, including a composable commitment scheme whose binding property
can be updated to new cryptographic hardness assumptions. We conclude the thesis in
Chapter 5 and give an outlook to future work.

27

28

2. Preliminaries

Unless noted otherwise, this chapter is based mainly based on [BMM21] with some parts
taken from [BBK+23].

2.1. Notation

Let n ∈ N. Then, [n] denotes the set {1, . . . , n}. Let I ⊆ {0, 1}∗. Then, |I| denotes
the length of I. For I ⊆ {0, 1}∗ and i ∈ [|I|], I[i] denotes the i-th bit of I. Let Hi be
some hybrid. Then, outi(κ, z) denotes the output of Hi on input (1κ, z). For the sake of
better readability, we will often omit κ and z. negl(κ) denotes an unspecified negligible
function in the security parameter κ ∈ N. Similarly, poly(κ) denotes an unspecified
polynomial function in κ. x

$← Y denotes that x is drawn uniformly at random from
the set Y . x ← Y denotes that x is either the output of the probabilistic algorithm
Y or sampled according to the probability distribution Y . ε denotes either the empty
string or a (not necessarily negligible) function for the adversary’s advantage.

For a probabilistic machine A, we write A(x; r) for executing A on input x with
random tape r, and A(x) for (implicitly) choosing uniform r and executing A(x; r). We
write a ← A(x) for the (probabilistic) output a of A(x) and ℑ(A(x)) for the image
of A on input x. Often, we will provide Turing machines (usually the adversary, the
environment as well as entities helping them) with input (1κ, z), where 1κ denotes the
unary encoding of the security parameter κ and z is some (possibly non-uniform) input
depending on κ. We use the usual notation for probability ensembles and write c≈ for
computational and s≈ statistical indistinguishability.

Often, we consider cryptographic protocols that are parameterized by e.g. families of
message spaces {Mκ}κ∈N. For the sake of an easier notation, we usually refer only to
e.g. a single message space M instead of the associated family.

For two interactive Turing machines A and B, we write ⟨A,B⟩ to denote the system
where A and B interact. We write outB⟨A(x),B(y)⟩(1κ, z) (or similar) to denote the
output of B after interaction with A, where A and B receive common input (1κ, z), and
A (resp. B) receives private input x (resp. y). Similarly, we write viewA for the view of
party A, which consists of the party’s random tape, all its inputs and all messages it
received and τ ← ⟨A,B⟩ for the transcript of the interaction, i.e. the sequence of sent
messages. Often, we also write (viewA, viewB, τ)← out⟨A,B⟩ to obtain the view of A,
the view of B as well as the transcript τ . By abuse of notation, we sometimes write
⟨A,B⟩ for a protocol. For a treatment of interactive Turing machines, see [G01].

An oracle algorithm A has an “oracle interface” (i.e. expected input-output behavior),
which can be filled in by an oracle O (but also by a pseudo-oracle, cf. Section 4.3.2), and

29

2. Preliminaries

we write AO for the composed machine; an oracle O is itself a (potentially unbounded)
machine.

2.2. Basic Concepts
We now introduce basic concepts, starting with negligible functions. Informally, a func-
tion is called negligible if it asymptotically approaches zero faster than any polynomial.

Definition 2.1 (Negligible Function, adapted from [G01]). We call a function negl :
N→ R negligible if for every positive polynomial p(·) there exists an N such that for
every n > N , |negl(n)| < 1

p(n) .

Conversely, a function f is called overwhelming if 1− f is a negligible function.
Next, we define probability ensembles as families of random variables that are usually

indexed by a security parameter.

Definition 2.2 (Probability Ensemble [G01]). Let I be a countable index set. An
ensemble indexed by I is a sequence of random variables indexed by I. Namely, any
X = {Xi}i∈I , where Xi is a random variable, is an ensemble indexed by I.

Using the above definition, we can define computational indistinguishability. Infor-
mally, two ensembles X and Y are computationally indistinguishable if the advantage
of a computationally bounded distinguisher attempting to distinguish between X and
Y is negligible. As we consider security against non-uniform adversaries throughout
this work, we parameterize the probability ensembles accordingly.

Definition 2.3 (Computational Indistinguishability, adapted from [G01]). Two en-
sembles, X = {Xn,z}n∈N,z∈{0,1}∗ and Y = {Yn,z}n∈N,z∈{0,1}∗ are computationally in-
distinguishable if for every probabilistic polynomial-time algorithm D, every positive
polynomial p(·), every sufficiently large n and every z ∈ {0, 1}∗, it holds that

|Pr[D(1n, Xn,z, z) = 1]− Pr[D(1n, Yn,z, z) = 1]| < 1
p(n)

If the above inequality is satisfied for every unbounded algorithm D, we say that
the ensembles are statistically indistinguishable. If, additionally, the distinguishing
advantage is zero, then the indistinguishability is perfect.

2.2.1. Qualities of Security Properties

Security properties of cryptographic building blocks often come in different qualities,
e.g. with computational, long-term, statistical, perfect or unconditional security. We will
use the following informal conventions:

• Computational security considers security against (possibly non-uniform) prob-
abilistic polynomial-time (PPT) adversaries, which are admitted a negligible
advantage. Usually (but not necessarily), cryptographic hardness assumptions are
used to achieve computational security, possibly together with trusted setups such
as a common reference string (CRS).

30

2.3. Cryptographic Building Blocks

• Statistical (resp. perfect) security considers security against unbounded adversaries,
which are admitted a negligible (resp. zero) advantage. Consequently, security
cannot rely on computational hardness. However, it may still rely on model
assumptions, such as a correctly distributed CRS, and hence is not unconditional.

• Long-term [MU10] or everlasting security constitutes a relaxation of statistical
or perfect security: The adversary is split into a computationally bounded, say
non-uniform PPT, “online” attacker A during the execution of a protocol. Then,
A outputs an arbitrary string to an unbounded distinguisher B, which must
distinguish with negligible probability only.

• Unconditional security considers a setting where the security does not depend on
“what is only assumed but not known to be true”. For example, if the RSA problem
were known to be hard for PPT adversaries (in contrast to merely assuming the
hardness), then a commitment scheme using the RSA problem would be considered
unconditionally secure for PPT adversaries. From our point of view, unconditional
security rules out the use of trusted setups.

2.3. Cryptographic Building Blocks

Starting with basic cryptographic primitives, we present definitions of important cryp-
tographic building blocks that are used throughout this thesis.

2.3.1. One-Way Functions and Trapdoor Permutations

One-way functions constitute the perhaps most basic cryptographic primitive. While
we will subsequently often use stronger building blocks, their definition is important
starting point.

Definition 2.4 (One-Way Function, adapted from [G01]). A function
f : {0, 1}∗ → {0, 1}∗ is called one-way if the following conditions are satisfied:

1. There exists a (deterministic) polynomial-time algorithm F such that for every
x ∈ {0, 1}∗, it holds that f(x) = F (x).

2. For every PPT adversary A, there exists a negligible function negl such that for
every κ ∈ N and every z ∈ {0, 1}∗, it holds that

Pr[A(1κ, z, f(x)) ∈ f−1(f(x)) | x $← {0, 1}κ] ≤ negl(κ)

where the probability is over the choice of x and the coins of A.

The definition of one-way functions can easily be adapted to one-way permutations. If
there additionally exists a secret trapdoor that allows to efficiently invert the permutation,
we obtain trapdoor permutations.

31

2. Preliminaries

Definition 2.5 (Trapdoor Permutation, based on [G04]). A collection of trapdoor
permutations is a collection of permutations {fα}α accompanied by four PPT algorithms
(I, S, F, B) such that the following conditions hold:

1. On input 1κ, algorithm I selects a random κ-bit long index α of a permutation
fα, along with a corresponding trapdoor τ .

2. On input α, algorithm S samples the domain of fα, returning an almost uniformly
distributed element in it.

3. For x in the domain of fα, given α and x, algorithm F returns fα(x) (i.e. F (α, x) =
fα(x)).

4. For y in the range of fα if (α, τ) is the possible output of I(1κ), then, given τ and
y, algorithm B returns f−1

α (y) (i.e. B(τ, y) = f−1
α (y)).

5. For every PPT adversary A, there exists a negligible function negl such that for
every κ ∈ N and every z ∈ {0, 1}∗,

Pr[A(1κ, z, α, y) = f−1
α (y) | (α, τ)← I(1κ), y ← S(α)] ≤ negl(κ)

where the probability is over the coins of A, I and S.

Often, it may be desirable to relax the first condition such that the index or public
description α may be of polynomial length in the security parameter.

For some of our applications, we need trapdoor permutations with an additional
property: Even given the coins used by the sampling algorithm S, it must be hard
to invert the permutation. Trapdoor permutations satisfying this property are called
enhanced trapdoor permutations and defined as follows.

Definition 2.6 (Enhanced Trapdoor Permutation, [G04]). A collection of trapdoor
permutations is called enhanced if for every PPT adversary A, there exists a negligible
function negl such that for every κ ∈ N and every z ∈ {0, 1}∗,

Pr[A(1κ, z, α, r) = f−1
α (y) | (α, τ)← I(1κ), r

$← {0, 1}poly(κ), y = S(α; r)] ≤ negl(κ)

where the probability is over the coins of A, I and the choice of r.

We also consider trapdoor permutations with dense public description, implicitly
introduced in [DP92]. Informally, the dense public description property guarantees
that a random string α of appropriate length is computationally indistinguishable from
public descriptions output by I.

Definition 2.7 (Trapdoor Permutation with Dense Public Description). Let l : N→ N
be an efficiently computable algorithm that, given the security parameter as input,
outputs the length of public parameters α generated with this security parameter. A
collection of trapdoor permutations has a dense public description if the ensembles
{α | (α, τ)← I(1κ)}κ∈N and {α′ | α′ $← {0, 1}l(κ)}κ∈N are computationally indistinguish-
able.

32

2.3. Cryptographic Building Blocks

Due to the above condition, the (enhanced) hardness also holds for public descriptions
that are sampled uniformly at random. In particular, trapdoor permutations with dense
public description allow their public description to be sampled via a coin-toss.

2.3.2. Commitment Schemes

We start with giving an overview of commitment schemes, which are two-party protocols
between a committer and a receiver. In a first phase, the committer C commits to a
secret value, which it can unveil in the subsequent unveil phase to the receiver R.

Commitment schemes exist in various variants and with various properties. Here, we
will only give a short overview and define the most basic properties. These definitions
will be extended and adapted as needed in the following chapters.

Definition 2.8 (Interactive Commitment Scheme). An interactive commitment scheme
COM = ⟨C, R⟩ with message space M is a two-phase protocol between two interactive
Turing machines C and R. Both parties get the phase commit or unveil as well as the
security parameter κ as common input. The committer C additionally gets a value
v ∈M as input for the commit phase. We call the transcript

c← ⟨C(v), R(ε)⟩(1κ, commit)

the commitment c between C and R (to v ∈M).
We say that COM is perfectly correct if for every κ ∈ N and every v ∈M ,

Pr[v′ = v |(viewC, viewR, c)← out⟨C(v), R(ε)⟩(1κ, commit),
v′ ← outR⟨C(viewC), R(viewR)⟩(unveil)] = 1

where the probability is over the coins used by C and R. Statistical correctness is defined
analogously and admits a negligible error probability.

Definition 2.8 does not guarantee any security properties such as the hiding or
the binding property yet. Informally, the hiding property protects the committer
by guaranteeing that a (malicious) receiver does not learn anything about the value
committed to until the commitment is opened.

Definition 2.9 (Hiding). For an interactive commitment scheme COM = ⟨C, R⟩, the
random variable ExpHiding

A,COM (κ, z) is defined as follows:

1. Run A on input (1κ, find, z) and obtain (m0, m1, state).

2. Sample a uniformly random bit b
$← {0, 1}.

3. If |m0| ≠ |m1|, return b.

4. Otherwise, obtain b′ ← outA⟨C(mb),A(guess, state)⟩(1κ, commit).

5. If b = b′, output 1. Otherwise, output 0.

33

2. Preliminaries

An adversary A is called valid if m0, m1 ∈M and A eventually outputs a single bit.
Let AdvHiding

A,COM(κ, z) = |Pr[ExpHiding
A,COM(κ, z) = 1]− 1

2 | denote the advantage of a (valid)
adversary A. The probability is over the coins of A, C and the choice bit b.

We say that COM is computationally hiding if for every valid PPT adversary A,
there exists a negligible function negl such that for every κ ∈ N and every z ∈ {0, 1}κ,
it holds that AdvHiding

A,COM(κ, z) ≤ negl(κ). If the advantage is also negligible for every
unbounded adversary, then we say that COM is statistically hiding. If the advantage is
only negligible for adversaries that perform a bounded number of steps ℓ(κ), we say
that COM is (timed) ℓ(κ)-hiding.

Conversely, the binding property protects an honest receiver from a (malicious)
committer by ensuring that the committer can open the commitment to a single value
only.

Definition 2.10 (Binding). For an interactive commitment scheme COM = ⟨C, R⟩, the
random variable ExpBinding

A,COM (κ, z) is defined as follows:

1. Perform the commit phase and save the state of A as viewA, the state of R as viewR
and the commitment as c, i.e. (viewA, viewR, c)← out⟨A(z), R(ε)⟩(1κ, commit).

2. Perform the unveil phase on the previously saved states and obtain the value m0
accepted by the receiver, i.e. m0 ← outR⟨A(viewA, 0), R(viewR)⟩(unveil).

3. Perform the unveil phase again on the states from the commit phase
and obtain the value m1 accepted by the receiver, i.e. m1 ←
outR⟨A(viewA, 1), R(viewR)⟩(unveil).

4. Return 1 if the receiver accepted different valid values, i.e. if m0 ∈M ∧m1 ∈M ∧
m0 ̸= m1 and return 0 otherwise.

A and R use the same coins in each run of the unveil phase.
Let AdvBinding

A,COM (κ, z) = Pr[ExpBinding
A,COM (κ, z) = 1] denote the advantage of a possibly

malicious committer A. The probability is over the coins of A and R.
We say that COM is computationally binding if for every PPT adversary A, there

exists a negligible function negl such that for every κ ∈ N and every z ∈ {0, 1}∗,
AdvBinding

A,COM (κ, z) ≤ negl(κ). We say that COM is statistically binding if for every
unbounded adversary A, it holds that AdvBinding

A,COM (κ, z) ≤ negl(κ). If the advantage is
zero for unbounded adversaries, we say that COM is perfectly binding.

If COM is statistically binding, then a commitment c statistically defines the unique
value v committed to such that v ∈M or v = ⊥ if the commitment is invalid, except
with negligible probability.

2.4. Universal Composability and its Variants
In the following, we give a very brief introduction of the Universal Composability
framework due to Canetti [C01] and the corresponding security notion called UC

34

2.4. Universal Composability and its Variants

security. It focuses only on the aspects pertaining to this thesis, omitting other aspects
and details.

The Setting. Extending the notion of (stand-alone) real-ideal security, which considers
a single protocol execution and non-reactive functionalities only, Universal Composability
models the distributed execution of protocols in a network environment by multiple
parties. Like in the real-ideal paradigm, the security of protocols is defined through
ideal functionalities that model a trusted entity carrying out some task honestly, e.g.
commitments, authenticated message transmission or secure function evaluation. UC
security considers the security of a protocol not only when a single instance is executed
in isolation, but in a setting where multiple, possibly different and adversarially chosen,
protocols are executed concurrently.

The Machine Model. Protocol parties and other entities of the framework are
modeled as interactive Turing machines that feature several communication tapes.
Instances of interactive Turing machines (ITIs) have a party ID (PID) and a session
ID (SID) that comprise, together with their code, their extended identity, which is
unique throughout an execution. An ITI may receive input via its input tape, receive
computation results of subroutines via its subroutine output tape and receive general
messages (from the adversary) via its backdoor tape. Sending a message is performed by
writing the message, along with the recipient’s extended identity and the destination
tape, to the outgoing message tape and issuing a special external write instruction.
Messages are not delivered directly, but governed by a so-called control function, which
may allow or disallow the external write request as well as adjust certain parameters
(based on the rules of the execution experiment). All entities in the UC framework run
in (non-uniform) probabilistic polynomial time1.

The Execution Experiment. The UC execution is, apart from the challenge protocol
and its parties, defined using two further entities: An adversary that may corrupt parties
and, depending on the communication model, alter, inject or drop messages sent between
protocol parties via the backdoor tape. The adversary may freely interact with the
environment Z that is the first machine to be invoked and (adaptively) provides input
to all protocol parties and the adversary. In the end, the environment outputs a single
bit.

As environment and adversary may freely communicate throughout the execution,
the environment is able to incorporate other protocols executed concurrently next to the
challenge protocol, capturing the setting of general concurrent composition. In order to
show the UC security of a protocol, it is thus not necessary to explicitly consider different
protocols running alongside as they can, without loss of generality, be considered to be
part of the environment.

1As the exact definition of polynomial time within Universal Composability (UC) is of no concern for
the results of this thesis, we do not provide a definition and refer the interested reader to [C20].

35

2. Preliminaries

Ideal Functionalities and Protocols In contrast to stand-alone real-ideal security,
UC security does not distinguish between a real and an ideal execution experiment but
provides a uniform treatment of protocol emulation. To this end, there exists a special
class of protocols called ideal protocols. For an ideal functionality F , let IDEAL(F)
denote the corresponding ideal protocol. Informally, an ideal protocol consists of dummy
parties that have no functionality besides forwarding input to their ideal functionality
and, vice versa, forwarding output. However, they are necessary in order to establish
the proper interface to an ideal functionality.

Protocol Emulation. UC security is based on the notion of protocol emulation: Let
π and ϕ be PPT protocols, i.e. descriptions of PPT interactive Turing machines that
interact with each other. We say that π (UC-)emulates ϕ (denoted by π ≥UC ϕ) if,
informally, for every PPT adversary A, there exists a PPT simulator S such that no
PPT environment Z can distinguish if it interacts with π and A or with ϕ and S. If
π ≥UC IDEAL(F), we say that π (UC-)realizes F .

Statistical Protocol Emulation. The notion of UC protocol emulation can be
adapted to statistical emulation: We say that a PPT protocol π statistically UC-
emulates a PPT protocol ϕ if for every adversary A, there exists a simulator S with
runtime polynomial in the runtime of A such that for every environment Z, the output
of Z in the execution with π and A is statistically indistinguishable from the output of Z
in the execution with ϕ and S. If π statistically UC-emulates ϕ, we write π ≥Stat-UC ϕ.

Properties of UC Security. UC security exhibits several properties such as reflexiv-
ity or transitivity and is furthermore closed under general concurrent (i.e. universal)
composition for the class of subroutine-respecting PPT protocols. Very informally, a
protocol is subroutine-respecting if all communication with “outside” the protocol only
happens through a protocol’s main parties, i.e. the parties specified in the protocol but
not sub-parties invoked by these main parties, providing a well-defined interface. More-
over, the subroutine-respecting property guarantees that machines are only subroutine
of one protocol session, establishing intra-protocol boundaries that allow well-defined
protocol replacement in the first place.

Using these properties, one can show that one instance of π UC-emulates a single
instance of the protocol ϕ to argue that one may replace all top-level sessions (i.e.
sessions of ϕ that are not invoked by main parties of a session of ϕ) of ϕ in a protocol
ρ that makes multiple subroutine calls to ϕ (we say that ρ is in the ϕ-hybrid model)
with sessions of π without losing security, i.e. ρϕ→π ≥UC ρ. Here, ρϕ→π is the protocol
ρ where sessions of ϕ are replaced with sessions of π.

Often, this composition theorem is used together with the transitivity property to
conclude that for a protocol ρ in the F -hybrid model that UC-realizes G, one can replace
F by its realization π and the resulting protocol ρIDEAL(F)→π still UC-realizes G.

36

2.4. Universal Composability and its Variants

As the dummy adversary that reports all messages between protocol parties to the
environment and delivers all messages sent from the environment is complete, it is
sufficient to show UC security only for this dummy adversary, leading to easier proofs.

Impossibility Results. While UC security is a very strong notion, there exist a
number of impossibility results such as the ones of [CF01; CKL03; PR08; KL11]. that
imply that non-trivial functionalities such as the commitment functionality FCOM can,
under many natural circumstances, only be realized using some kind of setup, e.g. a
common reference string, a public key infrastructure or a random oracle. Lindell [L03]
has shown that these impossibilities are not due to the particular definition of UC
security, but universally apply to similar settings.

2.4.1. Variants of UC Security

Generalized Universal Composability. A major drawback of UC security is
that the composition theorem only holds for subroutine-respecting protocols. As a
consequence, ideal functionalities are always local to one protocol instance. Not only
may this exacerbate the problem of not having an entity that is trusted enough to
provide the necessary setups, but arguably does not model the reality where setups such
as public key infrastructures or smart cards are used for multiple protocols. Generalized
Universal Composability (GUC) security [CDPW07] extends UC security to a setting
where global ideal functionalities exist, which may be used by multiple protocols. Like
UC security, GUC security features universal composability for protocols that are
subroutine-respecting except with respect to the global ideal functionality G. Such
protocols are called G-subroutine-respecting. However, it is subject to even stronger
impossibility results [CDPW07]. Recently, definitional imprecisions with respect to
GUC security have been identified and subsequently addressed using a new formalism
[BCH+20]. As these problems are not of particular relevance in our setting, we will stick
to GUC security where applicable.

SPS and (Cenv, Csim) Security. The first notion for composable secure multi-party
computation (MPC) in the plain model is called security with super-polynomial sim-
ulation (SPS) and was introduced by Pass [P03]. With SPS security, the simulator
may run in super-polynomial time, circumventing the known impossibility results of
UC security. Due to the simulator being more powerful than the environment, SPS
security features no universal composability. Furthermore, the reusability of UC-secure
protocols is limited, as a protocol’s security may be affected by the powerful simulator.
The notion of SPS security has subsequently been generalized to (Cenv, Csim) security
[LPV09]. Here, Cenv and Csim denote the complexity classes of the environment and the
simulator.

Universal Composability with Super-polynomial Helpers. Defined within the
framework of GUC security, UC with super-polynomial helpers [CLP10] considers a
special global functionality called helper. In contrast to ordinary ideal functionalities,

37

2. Preliminaries

which are usually PPT, the helper of [CLP10] is able to perform inefficient (i.e. super-
polynomial-time) computations, allowing to extract statistically binding commitments
using brute force. In this setting, the impossibility results of UC security no longer
apply and composable MPC in the plain model can be achieved. A conceptually
similar approach was proposed by Prabhakaran and Sahai [PS04], where an inefficient
“Imaginary Angel” was used instead of a helper.

Long-Term Security. Long-term universal composability [MU10] extends the notion
of universal composability to a setting where all hardness assumptions eventually
become invalid. Intuitively, this captures a setting where information about a protocol
execution is stored for the future, when cryptographic hardness assumptions may be
broken due to e.g. computational advances or better methods for cryptanalysis.

Formally, the long-term execution is defined like UC protocol emulation, with the
exception that the environment outputs an arbitrary string of polynomial length instead
of a single bit. Without loss of generality, we may assume that the environment outputs
its view, which contains all its information about the protocol execution. As environment
and adversary are PPT machines (like with UC security), hardness assumptions remain
valid throughout the protocol execution.

We say that a PPT protocol π long-term-emulates a PPT protocol ϕ if for every PPT
adversary A, there exists a PPT simulator S such that for every PPT environment Z,
the output of Z in an execution with π and A is statistically indistinguishable from
the output of Z in an execution with ϕ and S. Here, the requirement of statistical
indistinguishability captures that hardness assumption no longer hold. If π long-term-
emulates ϕ, we write π ≥LT-UC ϕ.

Long-term security features the same properties as UC security like completeness of
the dummy adversary, transitivity and universal composability. For a formal treatment,
see [MU10].

Unfortunately, long-term security is subject to even stronger impossibility results
than UC security. To this end, we first recall the definition of long-term revealing
functionalities as introduced by Müller-Quade and Unruh [MU10].

Definition 2.11 (Long-Term Revealing Functionality, adapted from [MU10]). For a
given protocol execution, let trans denote the transcript of all communication between
a functionality F and all other machines (including the adversary). Let trans \µ denote
the transcript of all communication between F and all machines except the machine
with the extended identity µ. We say a functionality F is long-term revealing (LTR) for
µ if in any execution, there exists a deterministic function f (not necessarily efficiently
computable) such that with overwhelming probability, we have trans = f(κ, trans \ µ),
where κ ∈ N is the security parameter.

Intuitively, a functionality F is long-term revealing for a party P if all communication
between P and F can be computed from all other communication with F .

Remark 2.1. As we consider subroutine-respecting protocols only, the only parties
communicating with a functionality F are its dummy parties, which are part of the

38

2.4. Universal Composability and its Variants

ideal protocol IDEAL(F). Nevertheless, we will often say that F is long-term revealing
for some party P of a protocol π which is in the F -hybrid model, instead of referring to
the appropriate dummy party of P .

Many widely-used and natural ideal functionalities are long-term revealing:

Lemma 2.1 (Examples for Long-Term Revealing Functionalities, adapted from [MU10]).
Coin toss (FCT) and CRS (FCRS) with any distribution D are LTR for all parties.
Commitment (FCOM) and ZK (FZK) are LTR for the recipient/verifier. If G is a key
generation algorithm, such that the secret key depends deterministically on the public key
(e.g. for RSA, ElGamal), the PKI FKRK parameterized with G is LTR for all parties
registered with FKRK.

Functionalities that are long-term revealing for the committer (e.g. the ones in
Lemma 2.1) cannot be used to long-term-UC-realize the ideal functionality for com-
mitments FCOM [MU10]. This stands in stark contrast to the well-known feasibility
results of UC security, e.g. the possibility to construct a UC-secure commitment scheme
(solely) in the FCRS-hybrid model [CF01]. Given that statistically hiding UC-secure
commitment schemes can be constructed from standard assumptions [DN02], this impos-
sibility result seems surprising. However, the statistically hiding property of e.g. [DN02]
is only guaranteed in the real execution. In the ideal execution, the protocol may be
computationally hiding only (in order to allow straight-line extraction), incurring a
large statistical distance between the executions. A similar argument holds for the OT
protocol of Peikert, Vaikuntanathan, and Waters [PVW08], which can be instantiated
to provide statistical security for one party at the expense of composability. For a
discussion, see Remark 4.33.

To construct long-term-secure and composable commitment schemes, stronger setups
such as a signature card [MU10] or a physically unclonable function (PUF) and a CRS
[MMSU22] are necessary. One can also use protocols with statistical UC security. If
more than 2/3 of the parties are honest (in case of malicious security), such protocols
(e.g. [AL17]) can be constructed from ideal secure channels only. If no honest majority
is available, protocols such as [DKM11] again require strong setups.

2.4.2. Ideal Functionalities

As UC security (usually) considers a setting where message delivery is adversarially
controlled, it is desirable to allow the adversary suppress outputs to parties even in the
execution of the ideal protocol associated with an ideal functionality. A convenient way
to model this is through the mechanism of delayed outputs: If an ideal functionality
generates a delayed output to some party P , the adversary is first notified of this output.
It can then, at any time, notify the functionality that it allows the output. Only then,
P receives the output from the ideal functionality. We distinguish between public and
private delayed outputs. In the former case, the adversary learns the output’s value,
whereas in the latter case, the adversary may only learn some “public header” or even
nothing at all, except for the fact the functionality wants to generate an output to P .

39

2. Preliminaries

We now present important ideal functionalities that are used throughout this thesis,
starting with the ideal functionality FCRS models a common reference string that is
accessible by all parties.

Functionality FCRS

FCRS proceeds as follows, parameterized with a security parameter κ, a family of
efficiently samplable distributions {Dκ}κ∈N and an adversary S.

1. When activated for the first time on input (value, sid) by a party P , sample
a value d ← Dκ and generate a public delayed output (value, sid, d) to P .
Answer subsequent (value, sid) inputs from parties P ′ by generating a public
delayed output (value, sid, d) to P ′.

Figure 2.1.: The ideal functionality for a common reference string FCRS, adapted from
[CF01].

T ideal functionality for commitments FCOM allows a party C to commit to a bit b
and to unveil it later on.

Functionality FCOM

FCOM proceeds as follows, parameterized with a security parameter κ, running with
a committer C and a receiver R and an adversary S.

1. Upon receiving an input (commit, sid, b) from C, where b ∈ {0, 1}, record the
value b and generate a public delayed output (committed, sid) to R. Ignore
subsequent commit inputs.

2. Upon receiving an input (unveil, sid) from C, generate a public delayed output
(unveil, sid, b) to R if there has been a previously delivered committed output.
Otherwise, ignore this input. Ignore subsequent unveil inputs.

Figure 2.2.: The ideal functionality for commitments FCOM, adapted from [CF01].

Often, it may be helpful to consider a single ideal functionality that captures multiple
bilateral commitments between several parties instead of several instances of FCOM. In
particular, this may be the case if i) the same setup should be used for all commitments
or ii) if there is no universal composition theorem and it is thus beneficial to directly
show that a protocol π can be used for multiple commitments concurrently, i.e. is
concurrently self-composable. The ideal functionality FMCOM in Figure 2.3, introduced

40

2.4. Universal Composability and its Variants

by [CF01], models this. Individual commitments are distinguished by their commitment
ID cid.

Functionality FMCOM

FMCOM proceeds as follows, parameterized with a security parameter κ, running
with parties P1, . . . , Pn and an adversary S.

1. Upon receiving an input (commit, sid, cid, Pi, Pj , b) from Pi, where
b ∈ {0, 1}, record the tuple (sid, cid, Pi, Pj , b) and generate a pub-
lic delayed output (committed, sid, cid, Pi, Pj) to Pj . Ignore subsequent
(commit, sid, cid, Pi, Pj , ★) inputs.

2. Upon receiving an input (unveil, sid, cid, Pi, Pj) from Pi, proceed as follows:
If a tuple (sid, cid, Pi, Pj , b) is recorded, generate a public delayed output
(unveil, sid, cid, Pi, Pj , b) to Pj . Otherwise, do nothing. Ignore subsequent
(unveil, sid, cid, Pi, Pj) inputs.

Figure 2.3.: The ideal functionality for multiple commitments FMCOM, adapted from
[CF01].

The ideal functionality for zero-knowledge FZK allows a prover P to prove the validity
of a statement x to a verifier V relative to a relation R, ensuring that the prover knows
an appropriate witness.

Functionality FZK

FZK proceeds as follows, parameterized with a security parameter κ, a relation R,
running with a prover P , a verifier V and an adversary S.

1. Upon receiving input (ZK-prover, sid, x, w) from P , do: If R(x, w) = 1, gener-
ate a public delayed output (ZK-proof, sid, x) to V and halt. Otherwise, halt
without output.

Figure 2.4.: The ideal functionality for zero-knowledge FZK, adapted from [CLOS02].

The ideal functionality for commit-and-prove FCP combines the functionalities FCOM
and FZK, allowing a prover to repeatedly commit to values and to prove statements,
using the committed values as witnesses.

We finish this section with the following terminology.

41

2. Preliminaries

Functionality FCP

FCP proceeds as follows, parameterized with a security parameter κ, a relation R,
running with a committer C, a receiver V and an adversary S.

1. Commit phase: Upon receiving an input (commit, sid, w) from C where
w ∈ {0, 1}κ, append the value w to the list w and generate a public delayed
output (receipt, sid) to V . (Initially, the list w is empty.)

2. Prove phase: Upon receiving an input (CP-prover, sid, x) from C, where
x ∈ {0, 1}poly(κ), compute R(x, w): If R(x, w) = 1, generate a public delayed
output (CP-proof, sid, x) to V . Otherwise, ignore the input.

Figure 2.5.: The ideal functionality for commit-and-prove FCP, adapted from [CLOS02].

Terminology 1 (Constant-Round Realization). Let F be an ideal functionality. Let
π be a protocol such that π ≥ IDEAL(F), where ≥ denotes some notion of protocol
emulation. We say that π is a constant-round realization of F if for every round of F ,
π has O(n) rounds, where n is the number of main parties of π resp. F .

The above terminology is motivated by the fact that realizing F may inherently
require a super-constant number of rounds (e.g. because F is reactive and accepts an
unbounded number of inputs), even if the per-round and per-party round complexity of
the protocol π realizing F may be constant. In particular, it is in line with the notion
of constant-round protocols used in e.g. [BDH+17].

2.5. Environmental Friendliness

UC security has the desirable property of environmental friendliness [CLP13a], which,
informally, ensures that game-based security properties of protocols running along UC
protocols (“in the environment”) are not impacted by the UC execution. Unfortunately,
this property does not hold for all game-based security properties for many notions
that allow composable MPC in the plain model due to the use of super-polynomial
simulation. What is more, determining whether the game-based property holds may
be non-trivial, requiring e.g. to consider the security proof of the protocol in question
[CLP13a].

Environmental friendliness considers the validity of a game-based security property
P when the presumptively P -secure cryptographic scheme Π, where P is defined via
some security game, is executed alongside another protocol Π′ with game-based security
property Q. In particular, a UC-like execution running concurrently is considered.

First, we restate the notion of a security game as defined in [CLP13a].

42

2.5. Environmental Friendliness

Definition 2.12 (Security Game, [CLP13a]). A security game (or game) consists of an
interactive Turing machine (ITM) Chal, called the challenger, that is polynomial-time
in the length of the messages it receives, and a constant τC , called the threshold, in the
interval [0, 1). In an execution of a security game, the challenger Chal interacts with
an adversary A on common input 1n and outputs accept or reject at the end of the
interaction.

We say that An breaks Chaln with advantage ε, if An makes Chaln accept with
probability τC + ε. We say that A breaks Chal, or the game-based assumption C, if An

breaks Chaln with advantage ε(n) for infinitely many n ∈ N for a non-negligible function
ε. ε is the advantage of the adversary.

An example for such a security game could be the indistinguishability under chosen
plaintext attack (IND-CPA) game for encryption schemes with τ = 1/2, i.e. the trivial
winning probability of an adversary. However, Definition 2.12 is also valid for IND-CPA
security with τ = 1.

Based on games, one can define assumptions, which restrict the parameter τ such
that there exists a trivial strategy for adversaries to win the game with probability τ .

Definition 2.13 (Game-Based Assumptions, [CLP13a]). A game-based assumption is
simply a security game C = (Chal, τ), such that, there is a non-uniform PPT adversary
A, called the trivial strategy, satisfying that An breaks Chaln with probability at least τ
(possibly without any advantage) for every n ∈ N. We say that assumption C holds if
no non-uniform PPT adversary can break the game (Chal, τ).

Definition 2.13 rules out τ = 1 for IND-CPA security, as there is no trivial winning
strategy for the IND-CPA game with winning probability 1 (if the encryption scheme
under analysis is indeed IND-CPA-secure). However, the definition of game-based
assumptions does not rule out the existence of insecure schemes Π for which the
adversary has a non-negligible advantage over τ . This is covered in the following
definition of game-based security properties.

Definition 2.14 (Game-Based Security Property, [CLP13a]). A game-based security
property of a cryptographic scheme Π is simply a security game PΠ = (Chal, τ). We
say that the property PΠ holds if no non-uniform PPT adversary can break the game
(Chal, τ).

However, the game for IND-CPA security does not capture a setting where other
protocols are executed concurrently. In order to argue that the security of Π is not
impacted by a protocol ρ that runs concurrently and implements a functionality G, the
game PΠ has to be modified accordingly. The proceedings version [CLP13a] gives an
informal description of the associated game (see the full version [CLP13b] for a complete
description):

Similar to UC security, an environment Z that gives input to the challenger Chal as
well as ρ and may freely interact with the adversary A, is introduced. The adversary
A not only interacts with Chal, but also with ρ (which may be a “real” protocol
or the ideal protocol of some functionality G). Z may, in particular, correlate the

43

2. Preliminaries

inputs of ρ and Chal. However, Π and ρ are never sub-routines of one another. As a
consequence, environmental friendliness does not generally imply composability in the
sense of subroutine replacement. Also, the adversary A does not “attack” the execution
of ρ as in the UC execution experiment. Furthermore, there is no simulator. Like in
the security game (Chal, τ), the adversary’s success is determined by the output of Chal
and not e.g. by the output of Z.

The game ChalG/ρ is defined similar to Chal, with the exception that (the ideal
protocol of) G is replaced with ρ. In contrast to UC security, the environment Z and
the adversary know whether G or ρ are executed.

The outlined game is (implicitly) considered in the following definition.

Definition 2.15 (Environmental Friendliness, adapted from [CLP13a]). Let P =
(Chal, τ) be a game-based security property of a cryptographic scheme Π, and ρ a
protocol implementing a functionality G. Then we say that ρ is environmentally friendly
to Π with property P , if the security property P G/ρ = (ChalG/ρ, τ) holds.

44

3. Environmentally Friendly
Composable Multi-Party
Computation in the Plain Model from
Standard (Timed) Assumptions

This chapter is largely based on a major revision of the full version of the paper [BMM21]
(© IACR 2021, DOI 10.1007/978-3-030-90459-3_25).

Abstract
Starting with the work of Rivest et al. in 1996, timed assumptions have found many
applications in cryptography, building e.g. the foundation of the blockchain technology.
They also have been used in the context of classical secure multi-party computation
(MPC), e.g. to enable fairness. We follow this line of research to obtain composable
general MPC in the plain model.

This approach comes with a major advantage regarding environmental friendliness, a
property coined by Canetti, Lin and Pass (FOCS 2013). Informally, this means that
our constructions do not “hurt” game-based security properties of protocols that hold
against polynomial-time adversaries when executed alone.

As an additional property, our constructions can be plugged into any UC-secure
protocol without loss of security, which is not possible with previous approaches for
composable MPC in the plain model.

Towards proving the security of our constructions, we introduce a variant of the UC
security notion that allows the use of building blocks with timed security properties,
for example timed commitment schemes. Combining standard timed assumptions and
standard polynomial-time hardness assumptions, we construct a composable commitment
scheme in the plain model. This composable commitment scheme can then be plugged
into a UC-secure general MPC protocol in the commitment-hybrid model.

This way, we obtain the first fully environmentally friendly composable constant-round
black-box general MPC protocol in the plain model from standard (timed) assumptions.

3.1. Introduction
In order to achieve the very strong notion of Universal Composability (UC) [C01],
trusted setups are required [CF01]. However, in practice, trusted setups are often hard
to come by. Therefore, a long line of research (e.g. [P03; BS05; LPV09; GGJS12; GKP18;

45

https://doi.org/10.1007/978-3-030-90459-3_25

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

DMRV13; PS04; CLP10; CLP13a; BDH+17]) has investigated how composable MPC can
be obtained in the plain model, i.e. only assuming authenticated communication (and
possibly cryptographic hardness assumptions).

Common to their techniques is that the simulation is environmentally unfriendly, i.e.
“hurts” the security of protocols that run along-side and that rely on polynomial-time
hardness assumptions.

Formally, this is captured by the notion of environmental friendliness as defined by
Canetti, Lin, and Pass [CLP13a], which considers all game-based security properties of
a protocol against polynomial-time adversaries.

The typical reason for limited environmental friendliness is a super-polynomial simu-
lation (SPS), which can break polynomial-time assumptions used in other protocols,
therefore impacting their security properties. This holds even if the super-polynomial
resources are restricted by e.g. an “Imaginary Angel” or a super-polynomial helper.

However, SPS techniques are not the only danger to the security of other protocols:
Non-uniform advice given to the simulator (e.g. as in [LPV09]) may impact the security
of previously started protocols—even if they are concurrently composable and secure
against non-uniform adversaries. This additional property is not considered by the
definition of environmental friendliness.

Ever since composable MPC in the plain model has been investigated, the following
question has been left unanswered:

Can we achieve composable MPC in the plain model that is friendly to pro-
tocols that are executed along-side and may have started previously?

Previous results suggest that a simulation technique that runs in polynomial time and
does not rely on non-uniform advice is needed. Such a simulation cannot be achieved,
in principle, even by previous advanced approaches like Angel-based security [PS04;
CLP10; CLP13a] or shielded super-polynomial simulation [BDH+17]. Therefore, new
techniques to overcome the impossibility results of UC security are needed.

With the advent of the blockchain era, timed cryptographic assumptions, i.e. assump-
tions that are only assumed to hold against adversaries with a certain runtime bound,
have seen widespread use in the real world. A very popular example is the proof of
work protocol of the Bitcoin blockchain. Even though its hardness is not based on some
well-understood cryptographic assumption, it has proven to work nevertheless for many
years.

Timed variants of classic cryptographic primitives such as commitment schemes can
be constructed from timed assumptions that are inspired by well-understood standard
assumptions. Rivest, Shamir, and Wagner [RSW96] have initiated this study and
proposed a time-lock puzzle based on the hardness of factoring and the time required to
square modulo a composite. Based on such assumptions, timed cryptographic primitives
such as time-lock puzzles and timed-release encryption [RSW96] or timed signatures
and timed commitment schemes [BN00] can be constructed in the plain model. More
recently, stronger primitives such as non-malleable time-lock puzzles and commitment
schemes have been constructed [EFKP20; KLX20] using a setup.

46

3.1. Introduction

As timed assumptions (and primitives) often can be broken in polynomial time by
definition, they seem destined to solve the problem of limited friendliness exhibited by
previous approaches for composable MPC in the plain model. In the following, we thus
investigate the following questions:

Can we use timed assumptions to achieve composable MPC in the plain model? What
are the advantages and disadvantages of such an approach?

We answer the first question affirmatively and propose a new approach for general
MPC in the plain model based on asymmetries that are only temporary and much
smaller compared to previous approaches. Namely, these asymmetries consist of only
a polynomial number of computation steps sufficient to leverage timed cryptographic
assumptions. The very feasibility of this approach may seem surprising as timed
cryptographic primitives eventually lose (some or all) security guarantees. For example,
timed commitments will eventually leak their secret by definition. Previous constructions
crucially rely on this not to happen, i.e. the complexity asymmetry and the ensuing
hardness to hold throughout the whole execution and beyond. We side-step this problem
by using timed primitives to merely set up short-lived trapdoors that can only be used
while the primitives are secure. After their security has expired, the (now possibly
leaked) trapdoor is useless for the adversary. Yet, a simulator can use it to establish a
long-lived trapdoor based on some classical polynomial-time assumption.

We introduce the notion of Time-Lock UC (TLUC) security, which is based on UC
security and cast in the unmodified UC framework. With TLUC, honest parties may set
up timers with some timeout ℓ ∈ N that expire when all entities have spent more than
ℓ steps in total. This allows to use (stand-alone) timed primitives such as time-lock
puzzles or timed commitment schemes within larger protocols. While computations
performed by protocol parties, environment and adversary are counted against timers,
computations performed by the simulator are not. This allows simulators to break timed
assumptions “at no cost” in terms of time accounting, while remaining polynomially
bounded. Such a simulator can then, for example, extract a timed commitment while it
is still hiding for environment and adversary.

With respect to the question of environmental friendliness, it suffices to see that
the notion of TLUC security is a meaningful special case of UC security, which is
environmentally friendly according to the definition of [CLP13a]. This already implies
that our notion features the same environmental friendliness.

In order to be friendly to previously started protocols, a uniform simulation, i.e. one
that does not rely on non-uniform advice, is needed. Looking ahead, this is indeed
achieved by our constructions.

To the best of our knowledge, we are the first to achieve both of these properties
simultaneously.

Leveraging timed assumptions for composability comes with a number of additional
advantages. Namely, our notion is UC-compatible in the sense that if π UC-emulates ϕ
for arbitrary PPT protocols π and ϕ, then π also TLUC-emulates ϕ. TLUC security
allows the reuse of UC protocols in the sense that one can take a UC-secure protocol ρ

47

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

making one subroutine call to F that UC-realizes some ideal functionality G and replace
F with its TLUC realization π. The composite protocol ρF→π is then guaranteed to
TLUC-realize G. These properties are not generally offered in full by other notions that
allow composable general MPC in the plain model and are not implied by (limited)
environmental friendliness. What is more, TLUC security is meaningful for ideal
functionalities that rely on (even uniform) polynomial-time assumptions. This is in
contrast to e.g. SPS security, where such functionalities are affected by the super-
polynomial simulator or non-uniform simulation [LPV09].

Unfortunately, TLUC security is not closed under composition for protocols using
timers. Thus, one has to manually prove that multiple instances of π TLUC-realize
multiple instances of F (i.e. π̂ TLUC-realizes F̂).

Like previous approaches for general MPC in the plain model and even UC security,
TLUC security may not be friendly to timed game-based properties of other protocols,
e.g. the timed hiding property of a timed commitment scheme. This property is neither
captured by the definition of environmental friendliness nor fulfilled by any previous
notion that allows composable MPC—not even UC security.

Towards realizing composable general MPC, we first construct a commitment scheme
that TLUC-realizes the ideal functionality for multiple commitments FMCOM. In more
detail, we combine a (possibly malleable) timed commitment with a non-malleable
commitment to construct a commitment that is equivocal (i.e. can, using a trap-
door, be opened to a different value than the one committed to) and concurrently
simulation-sound, i.e. retains its binding property even if the adversary sees equivocated
commitments. We show that this suffices to replace the common reference string (CRS)
of the UC-secure commitment scheme of Canetti and Fischlin [CF01] with coin-tosses,
assuming that trapdoor permutations with dense public description [DP92] exist. The
resulting composable commitment scheme is constant-round, black-box, in the plain
model and makes use of standard polynomial-time and standard timed assumptions
only. We note that our approach is conceptually different to recent results [FKPS21;
KLX20; BDD+21; BDD+20] which define non-malleable or composable timed primitives
and realize them using a trusted setup.

Due to the reusability of UC protocols, we can plug our construction into any UC
protocol in the FMCOM-hybrid model while maintaining TLUC security. Using e.g. a
variant of the MPC protocol of Hazay and Venkitasubramaniam [HV15], we are the first
to obtain a composable constant-round, black-box and environmentally friendly general
MPC protocol from standard polynomial-time and timed assumptions that does not
impact the security of other protocols relying on (non-timed) polynomial-time hardness
assumptions.

More generally, we can “bootstrap” the most efficient UC-secure protocol for a
given task by realizing its setup within TLUC in the plain model. Depending on the
setup, e.g. in the case of a CRS, the only overhead in this case consists of an input-
independent preprocessing phase. This is not possible with previous approaches that
feature composable MPC in the plain model.

48

3.1. Introduction

3.1.1. Related Work

Informally, the very strong impossibility results for UC security [CF01; CKL03; PR08;
KL11] imply that, unless an honest majority exists, UC security can only be achieved
using some kind of trusted setup. Lindell [L03] has shown that the impossibilities are
not due to the particular definition of UC security, but apply to general concurrent
composability.

Ever since, there have been numerous attempts to circumvent these impossibility
results at least partially by considering security notions that are weaker than standard
UC security.

SPS Security, introduced by Pass [P03], considers simulators that may have a
super-polynomial runtime, giving them an advantage over the polynomially-bounded
environment at the expense of environmental friendliness and UC reusability.

While earlier approaches such as [P03; BS05] require (non-standard) super-polynomial
hardness assumptions, newer approaches such as [LPV09; GGJS12; GKP18] require only
standard polynomial-time hardness assumptions.

Due to the complexity asymmetry between environment and simulator, these con-
structions do not offer general composition. Thus, concurrent self-composability of
SPS-secure protocols is often proven in a non-modular way. The transitivity of SPS
security holds only with respect to protocols whose security is not “hurt” by the stronger
simulator, e.g. protocols that are information-theoretically secure such as [IPS08]. Thus,
(general) reusability of UC protocols is lost.

Lin, Pass, and Venkitasubramaniam [LPV09] have generalized the notion of UC
security to (Cenv, Csim) security, where Cenv and Csim denote the complexity classes of
environment resp. simulator. They present a construction for non-malleable zero-
knowledge from UC puzzles that can be plugged into an appropriate general MPC
protocol. For their construction in the plain model, [LPV09] assume simulators that
run in non-uniform polynomial time while the environment runs in uniform polynomial
time. However, the non-uniform simulation may impact the security of protocols that
have started in the past. Also, if Csim is non-uniform polynomial-time, then the security
notion is not meaningful for ideal functionalities that rely on uniform polynomial-time
hardness assumptions.

Dachman-Soled et al. [DMRV13] have extended the work of [LPV09] by considering
adaptive security. Starting with a UC puzzle, they construct a commitment scheme
satisfying their new and strong notion of non-malleability from simulatable public-key
encryption. This non-black-box and non-constant-round construction can then be
plugged into an appropriate protocol, yielding secure composable general MPC with
respect to adaptive corruptions.

Recently, Garg, Kiyoshima, and Pandey [GKP18] have presented a SPS-secure black-
box oblivious transfer (OT) protocol from constant-round semi-honest OT and collision-
resistant hash functions, i.e. standard polynomial-time hardness assumptions only. Their
construction is secure against static corruptions and has a lower round complexity than
other constant-round constructions such as [BDH+17].

49

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Angel-based Security and Environmental Friendliness. The weak composition
properties of SPS security have subsequently been improved upon by notions where the
simulator itself remains polynomially bounded, but is aided by some super-polynomial
entity that is also available to the environment. Such frameworks include Angel-based
security [PS04], or UC with super-polynomial helpers [CLP10]. [CLP10] construct a
non-constant-round commitment scheme that is secure under chosen commitment
attack (CCA) from one-way functions and use it to realize the ideal functionality for
commitments. The extractor for the CCA commitment scheme features an important
property called k-robustness (see also Definition 4.11). Informally, this means that an
adversary A with access to a CCA oracle interacting with a k-round protocol can be
replaced with an adversary B without access to the CCA oracle in an indistinguishable
way. In other words, this means that the CCA oracle does not negatively affect the
security of k-round protocols executed concurrently. By using this robustness property,
their commitment scheme can be plugged into a k-round UC protocol ρ in the FCOM-
hybrid model.

This round robustness property has been generalized by Canetti, Lin, and Pass
[CLP13a] to the property of environmental friendliness. The helper of [CLP13a] is
environmentally friendly for protocols whose security is proven via black-box reductions
to game-based cryptographic hardness assumptions with bounded polynomial round
complexity.

Shielded Oracles. Broadnax et al. [BDH+17] have introduced the notion of UC
security with shielded oracles that lies strictly between SPS security and Angel-based
security. Their construction for a composable commitment uses standard polynomial-
time hardness assumptions only, is constant-round and black-box. While their notion is
not environmentally friendly, they showed that the constructions can be plugged into a
special class of UC-secure protocols without loss of security.

Other Models and Notions. There have been proposed a number of different models
which enable (composable) MPC in the plain model. The timing model introduced
by Kalai, Lindell, and Prabhakaran [KLP05] considers a communication network with
time bounds and parties that have access to a local clock with little drift. There, non-
constant-round non-black-box MPC secure under general composition is possible. This
is done by delaying other protocols that are executed concurrently and incomparable to
our approach.

The notion of input indistinguishability, first defined by Micali, Pass, and Rosen
[MPR06] and generalized and strengthened by Garg et al. [GGJS12], is another secu-
rity notion capturing concurrent self-composition that can be achieved in the plain
model. However, the constructions of [MPR06; GGJS12] are non-black-box. Also, input
indistinguishability is weaker than UC security.

Non-Malleable Time-Lock Puzzles and Commitments. Freitag et al. [FKPS21]
have introduced the notion of non-malleable time-lock puzzles and timed commitments

50

3.1. Introduction

and present constructions in the random oracle model. Similar results have been
obtained by Katz, Loss, and Xu [KLX20] in the algebraic group model. While both
results can possibly be used as building blocks in our constructions, they are not in the
plain model.

TARDIS and CRAFT. TARDIS [BDD+21] extends the Generalized Universal
Composability (GUC) framework [CDPW07] to include a notion of abstract time and
ticked functionalities whose behavior can depend on the elapsed time. In this setting,
universally composable abstractions of time-lock puzzles can be defined and realized
in the random oracle model. We note that the goal of [BDD+21] is different from ours.
We use stand-alone-secure and possibly malleable timed primitives such as (malleable)
timed commitments in order to achieve composability in the plain model. In contrast
to TARDIS, we do not aim to define composable security notions for timed primitives.
CRAFT [BDD+20] realizes composable MPC in the TARDIS framework with additional
guarantees such as output-independent abort, also relying on a random oracle.

3.1.2. Our Results

New Security Notion for Composable Security. The notion of UC security
considers entities that are polynomially bounded and inherently unaware of other
computations, apart from what is learned through communication. In particular, there
is no notion of time. Thus, timed assumptions cannot be properly used in UC protocols.
With TLUC security, we consider a variant of UC security that allows a party P to
set up timers associated with a number of steps ℓ. At any point, P may query if the
execution experiment in total (including the environment, adversary and other protocol
parties) has performed ℓ or more steps. This allows the use of timed cryptographic
primitives such as timed commitments in a meaningful way.

Similar to SPS security, our security notion is not closed under universal composition,
but features the single-instance composition theorem (Theorem 3.3).

Environmental Friendliness. Very informally, environmental friendliness, intro-
duced by Canetti, Lin, and Pass [CLP13a], deals with the problem of negative “side-
effects” a protocol π may have on game-based properties of another protocol π′ that
runs along-side (where neither protocol is a subroutine of the other) and relies on
polynomial-time hardness assumptions. Formally, this is captured in a stand-alone
model for game-based security properties. Previous notions that feature general MPC in
the plain model suffer from limited environmental friendliness because super-polynomial
simulation, e.g. due to use of a super-polynomial helper, may break polynomial-time
hardness assumptions of other protocols that run along-side, resulting in limited environ-
mental friendliness. While not considered by the definition of environmental friendliness,
giving the simulator non-uniform advice may hurt the security of (even non-uniformly)
secure protocols or protocols that have been previously executed. Being a special case
of UC security, TLUC security is fully environmentally friendly (Proposition 3.9). Also,
TLUC security can be achieved with uniform simulation.

51

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

We note that the established notion does not consider timed game-based properties
such as the timed hiding property of a timed commitment scheme. As such, our notion
as well as all previous notions such as e.g. SPS security, Angel-based security and even
UC security are not fully friendly in this respect.

UC Compatibility and Reusability. As all UC protocols retain their security
under our notion (UC compatibility, Proposition 3.4) and TLUC simulators run in
strict polynomial time, we can realize a UC-complete functionality F in TLUC and
plug it into any existing UC-secure protocol making one subroutine call to F without
loss of security (UC reusability, Corollary 3.5). This is not implied by environmental
friendliness per se. In particular, we can use the best UC-secure protocol for a certain
task and realize its setup within TLUC. This general reusability is not possible with
other notions featuring composable MPC in the plain model as their UC reusability is
limited.

As the simulation is always polynomial-time, (even uniformly only) computationally
secure ideal functionalities are meaningful in our framework.

Composable Commitment Scheme in the Plain Model. Combining a timed
commitment scheme and a non-timed commitment scheme that is secure under parallel
chosen commitment attack (pCCA), we construct a non-malleable and partially simu-
latable coin-toss that is sufficient to “bootstrap” the CRS of a UC-secure commitment
scheme such as the UCCOneTime scheme of Canetti and Fischlin [CF01] in the plain model.
The resulting commitment scheme is concurrently composable and TLUC-realizes the
ideal functionality for multiple commitments FMCOM (Theorem 3.5). As the simulation
is uniform and requires polynomial time only, πMCOM does not hurt the security of any
protocol using polynomial-time assumptions, including uniform ones.

Our protocol can also be adapted to other security notions, e.g. SPS security (see
Section 3.6.1).

Composable Constant-Round General MPC in the Plain Model. Plugging our
construction for FMCOM into a variant of the general MPC protocol due to Hazay and
Venkitasubramaniam [HV15], we obtain a constant-round black-box and environmentally
friendly general MPC protocol from standard polynomial-time and standard timed
assumptions in the plain model (Theorem 3.6). We remark that our results are in the
static corruption setting and that we assume authenticated communication.

3.1.3. Outline

We first cover important definitions and technical aspects in Section 3.2. In Section 3.3,
we introduce the notion of timed simulation-soundness for commitment schemes and
present a construction. We continue with a presentation of TLUC security (Section 3.4),
which is a variant of UC security that allows the use of timed assumptions and is fulfilled
by our composable commitment scheme in the plain model (Section 3.5). Its security

52

3.2. Definitions

proof is presented in Section 3.6. Finally, we show how we can use this commitment
scheme to achieve composable general MPC in Section 3.7.

3.2. Definitions

In the following, we introduce definitions used in subsequent sections.

3.2.1. Machine Model, Notion of Time

When considering polynomial-time hardness assumptions, the particularities of machine
models rarely matter. This is because different (classical) machine models can be
usually emulated by each other with polynomial runtime overhead or speedup. With
polynomial time being closed under addition and multiplication, polynomial-time
hardness assumptions do not become insecure if there is a machine model where some
problem can be solved (polynomially) more efficient.

In this work, we consider timed primitives such as timed commitment schemes. For
timed primitives, security often is only guaranteed against adversaries adhering to some
kind of (concrete) runtime bound in a fixed machine model. In such a case, changing
the machine model can make the difference between security and insecurity. This is
obvious for stark differences, e.g. when going from a sequential to a parallel model of
computation when considering timed assumptions that hold only against sequential
adversaries. However, this problem also manifests with more subtle changes like allowing
a larger alphabet for Turing machines, which may result in a linear speedup.

More problems arise during security reductions that require the emulation of Turing
machines. Suppose that we want to show the security of some protocol π by using a
ℓ-bounded timed assumption. We call ℓ the timed security parameter. In the security
proof, the adversary A′ against the timed assumption has to internally emulate the
ℓ-bounded adversary A as well as (parts of) the protocol π. Just internally emulating
the ℓ-bounded adversary may incur an overhead that does not allow the reduction to go
through, because A′ may always require more than ℓ steps due to its emulation overhead,
even when just running the code of A and relaying messages. Additional overhead may
occur e.g. for extracting the correct answer based on the internally emulated adversary’s
output. These caveats have to be accounted for.

Later on, we use timed primitives in the UC framework (cf. Section 3.4). While UC
security can be stated using various machine models [C01], we adhere to the standard
model of interactive Turing machines (ITMs). However, as e.g. the particular alphabet
or the number of work tapes is left unspecified1, so is the exact notion of runtime in
that particular model. In order to argue about the security of timed assumptions in our
security notion, we thus have to map the underspecified notion of runtime of interactive
Turing machines as defined in the UC framework to the (possibly also underspecified)
notion of runtime for the timed assumption. Following the Cobham-Edmonds thesis

1Newer versions of the UC framework such as [C20] explicitly allow multiple work tapes, allowing the
emulation of other Turing machines with only additive overhead.

53

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

(see e.g. [G08]) or the extended Church-Turing thesis, we assume that this is always
possible with a polynomial overhead or speedup in a classical setting, i.e. when not
considering quantum computers.

For common machine models such as Turing machines, Boolean circuits or (parallel)
random access machines, explicit emulation constructions and bounds for the overhead
resp. speedup are known.

When constructing a protocol with security against ℓ(κ)-bounded adversaries, we
thus require the timed building blocks to be secure against adversaries with timed
security parameter ℓ′(ℓ(κ), κ)2 where ℓ′ is a sufficiently large polynomial that accounts
for possible runtime mismatches due to emulation overhead, reduction overhead or
(polynomial) efficiency changes between machine models. As we do not want to make
assumptions about the machine models being used, we do not explicitly specify ℓ′.
However, as soon as all machine models and reductions are fixed, ℓ′ is well-defined. Also,
for our constructions, we show that ℓ′ is sufficiently generic and e.g. is independent of
the TLUC environment under consideration.

Note that the timed security parameter generally grows with increasing protocol
nesting depth, similar to the tightness loss in standard reductions.

In our protocols, we use timer messages parameterized by an ID id to allow protocol
parties later check if more steps than allowed by the timed security parameter ℓ have
been elapsed by sending a message (notify, id). If the answer is (notify, id, 1), then
more than ℓ steps have passed and we say that the “timer has timed out” or “expired”.
Conversely, (notify, id, 0) denotes that the timer has not expired. Later on, we will
only consider adversaries (or environments) that handle such messages correctly.

As the default machine model and execution experiment of UC are inherently sequen-
tial, we refer to computation steps instead of runtime, as the latter may capture many
steps performed in parallel, which we want to count individually.

3.2.2. Commitment Schemes

In the following, we consider additional properties of commitment schemes that are
exclusive to this chapter.

Often, we are interested in so-called tag-based commitment schemes [DDN00; PR05a],
which are defined as follows:

Definition 3.1 (Tag-Based Commitment Scheme). A commitment scheme COM is
tag-based if the committer C and the receiver R additionally receive a tag tag from a
tag space T as common input.

While Definition 3.1 is only a syntactic extension of Definition 2.8, the inclusion of
tags allows the definition of additional security properties that are of interest in a setting
where multiple commitments are performed concurrently and security guarantees going
beyond the standard binding and hiding properties are required. In particular, it may be

2In order to capture the setting where ℓ(κ) is constant but e.g. the reduction overhead depends on κ,
we parameterize ℓ′ with both values.

54

3.2. Definitions

desirable for a commitment scheme to be non-malleable. Informally, this means that a
commitment performed with a tag tag1 cannot be transformed into a commitment with
a different tag tag2. If the tags are guaranteed to be unique throughout the execution,
the non-malleability property prevents, for example, an adversary to commit to a value
related to the value inside a commitment it concurrently performs with an honest party.
This independence is neither guaranteed by the binding nor the hiding property.

As the first tag-based property, we consider a stronger notion of the hiding and
non-malleability property called security under parallel chosen commitment attack
(pCCA) [K14; BDH+17; BFMR18]. In the pCCA hiding experiment, the adversary
may additionally interact with an (inefficient) oracle OpCCA to perform an unbounded
number of commitments in parallel, with OpCCA acting as receiver. After all commit
phases with OpCCA have finished, OpCCA outputs, for each commitment, the unique
value committed to. If no such value exists, a special symbol ⊥ is returned for this
commitment. The challenge commitment where the adversary acts as receiver must
remain hiding, even with access to OpCCA.

Definition 3.2 (pCCA Security). For a commitment scheme COM = ⟨C, R⟩, the random
variable ExppCCA-Hiding

A,COM,OpCCA
(κ, z) for the pCCA hiding experiment is defined as follows:

1. Run AOpCCA on input (1κ, find, z) and obtain (m0, m1, state).

2. Sample a uniformly random bit b
$← {0, 1}.

3. If |m0| ≠ |m1|, return b.

4. Otherwise, obtain b′ ← outA⟨C(mb),AOpCCA(guess, state)⟩(1κ, commit).

5. If b = b′, output 1. Otherwise, output 0.

The (stateful) oracle OpCCA acts as honest receiver R for multiple sessions of COM
in parallel. When all commit phases have finished, the oracle returns the unique
values committed to. If no such unique value exists, a special symbol ⊥ is output
for these commitments. An adversary A is valid if it eventually outputs a bit and
never interacts with OpCCA on the challenge tag. We say that COM is pCCA-secure or
pCCA-hiding if for every valid PPT adversary A, there exists a negligible function negl
such that for every κ ∈ N and every z ∈ {0, 1}∗, it holds that AdvpCCA-Hiding

A,COM,OpCCA
(κ, z) =

|Pr[ExppCCA-Hiding
A,COM,OpCCA

(κ, z) = 1] − 1
2 | ≤ negl(κ). The probability is over the coins of A

and the coins of the experiment, including the oracle.

We continue with a definition of trapdoor commitment schemes, i.e. commitment
schemes that a) are not binding if a secret trapdoor is known and b) fulfill the trapdoor
property, meaning that a (possibly malicious) receiver cannot distinguish between an
honestly created (and opened) commitment and a commitment created (and opened)
using the trapdoor. Looking ahead, we will need these properties to hold even if the
adversary is given access to certain oracles, e.g. a (p)CCA oracle. However, previous
definitions of trapdoor commitments such as the ones of [MY04; GMY03] do not provide

55

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

the adversary with such oracles. In the following, we define a stronger variant of the
trapdoor property where the adversary is additionally provided with an oracle.

Definition 3.3 (Trapdoor Commitment Scheme). A commitment scheme TRAPCOM =
(C, R, Ctrap) is called trapdoor for oracle O and message space M if ⟨C, R⟩ and ⟨Ctrap, R⟩
are commitment schemes with message space M such that for every valid PPT adversary
A, there exists a negligible function negl such that for every κ ∈ N and every z ∈ {0, 1}∗,
it holds that AdvTD

A,TRAPCOM,O(κ, z) = |Pr[ExpTD
A,TRAPCOM,O(κ, z) = 1] − 1

2 | ≤ negl(κ).
The probability is over the coins of A and the coins of the TD experiment. The random
variable ExpTD

A,TRAPCOM,O is defined as follows:

1. Sample b
$← {0, 1} uniformly at random.

2. Run A on input (1κ, z). A interacts with the experiment by first sending
(start, tag, v) to start the commit phase of TRAPCOM, acting as receiver. If
b = 0, the experiment runs the code of the honest committer C on input (1κ, tag, v).
If b = 1, the experiment runs the code of the trapdoor committer Ctrap on input
(1κ, tag, |v|). After the commit phase has finished, the unveil phase is performed.
At any time, A may interact with the (possibly stateful) oracle O(·, ·) which takes
a tag as first argument. Finally, A outputs a bit b′.

3. Output 1 if b = b′ and 0 otherwise.

An adversary A is called valid if it never queries O with a tag that has the tag of the
challenge commitment as prefix, if v ∈M and b′ ∈ {0, 1}.

If AdvTD
A,O,TRAPCOM is negligible for unbounded adversaries, then TRAPCOM is called

statistically trapdoor. If A is unbounded and its advantage is 0, then TRAPCOM is
called perfectly trapdoor.

We may parameterize trapdoor commitment schemes with additional parameters
related to timed security properties. However, as the trapdoor property is a polynomial-
time property, we have chosen to omit these parameters here.

It directly follows that a commitment scheme satisfying the above notion is also
hiding.

3.2.3. Timed Commitment Schemes

Boneh and Naor [BN00] have introduced the notion of timed commitment schemes.
Instead of the hiding property holding against all polynomial-time adversaries, a (T, ℓ, ε)-
timed commitment scheme guarantees the hiding property to hold only for some bound
of steps ℓ performed by an adversarial receiver, except with probability ε.

However, the (ℓ, ε)-hiding property does not guarantee that there exists a value T ∈ N
such that a valid timed commitment can be opened “forcefully” in at most T > ℓ
steps. To this end, the definition of [BN00] also requires the existence of a forced-open
algorithm that runs in time T , takes the transcript of a successful commit phase and
outputs the unique value v ∈M committed to, where M is the message space of the

56

3.2. Definitions

commitment scheme. In other words, in addition to the binding property, a malicious
committer must not be able to open its commitment to a value that is inconsistent
with the output of the forced-open algorithm. This extractability is crucial for our
simulation later on, as it guarantees that simulators can extract timed commitments in
polynomial time (if T is bounded by a polynomial in κ).

In the definition of [BN00], timed commitment schemes have to exhibit a soundness
property which requires that at the end of the commit phase, the receiver is “convinced”
that running the forced-open algorithm will produce the value v committed to. While
not formally defined, the definition of [BN00] also requires valid commitments to be
efficiently recognizable by the receiver.

Looking ahead to our construction, we do not need valid timed commitments to be
efficiently recognizable. In particular, we can deal with the over-extraction of invalid
commitments, i.e. the case where forced-open outputs a value v ∈ M , even if the
commitment cannot be unveiled. We call this property weak extractability and will
account for this in the following definition.

Also, the hiding property informally described in [BN00] seems to be relatively weak,
considering honestly created commitments only. Moreover, the adversary’s steps are
only counted after it is provided the transcript of a successful commit phase. Our
definition of timed hiding (Definition 2.9) is standard and stronger in the sense that the
commitment receiver may act maliciously. Also, we count the adversary’s steps from
the very beginning on. It is easy to see that the timed commitment scheme in [BN00]
satisfies this stronger notion.

With [BN00] not giving a formal definition, we define weakly extractable timed
commitment schemes as follows, omitting the parameter ε for the adversary’s advantage
in the hiding game. Instead, we only consider timed commitment schemes where an
adversary’s advantage is negligible.

Definition 3.4 (Weakly Extractable Timed Commitment Scheme). A tuple of ITMs
TCOM = ⟨C, R⟩ is called a (T (κ), ℓ(κ))-weakly extractable timed commitment scheme
with message space M if ⟨C, R⟩ is a ℓ-hiding commitment scheme for which there exists
a deterministic algorithm forced-open that, given a transcript c of a successful commit
phase, outputs the unique value v ∈M committed to in at most T steps.

In the following, we often explicitly consider ℓ to be part of the common input.
We say that TCOM is perfectly correct if for every κ ∈ N and every v ∈M ,

Pr[v★ = v′ = v | (viewC, viewR, c)← out⟨C(v), R(ε)⟩(1κ, commit, ℓ),
v′ ← outR⟨C(viewC), R(viewR)⟩(unveil), v★ = forced-open(c)] = 1

The perfect correctness can be naturally relaxed to statistical correctness. We also
assume that M is efficiently recognizable and that the receiver rejects an opening to a
value v /∈M .

57

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

We say that TCOM is perfectly binding and weakly extractable if for every (malicious)
committer C∗, every κ ∈ N and every z ∈ {0, 1}∗, it holds that

Pr[v★ = v′ | (viewC∗ , viewR, c)← out⟨C∗(z), R(ε)⟩(1κ, commit, ℓ),
v′ ← outR⟨C∗(viewC∗), R(viewR)⟩(unveil), v★ = forced-open(c) ∧ v′ ∈M] = 1

While the aforementioned properties do not state any requirements for the output
of forced-open on invalid commitments (i.e. allow over-extraction), it implies the
soundness requirement of [BN00] for valid commitments.

Definition 3.4 is not concerned with the committer’s runtime, which may depend
on all parameters, in particular T and ℓ. This is important for (proving) security
properties that consider more than one commitment, e.g. the timed simulation-soundness
(Definition 3.8).

Boneh and Naor [BN00] also present a constant-round construction based on the
generalized Blum-Blum-Shub (BBS) assumption [BN00] that does not use non-black-box
techniques. Also, their construction admits a super-polynomial gap between the number
of steps needed to perform the commitment and the number of steps ℓ the commitment
is secure against.

While [BN00] consider a machine model that admits parallel computations, we consider
(weaker) sequential models of computation only.

Recently, Freitag et al. [FKPS21] and Katz, Loss, and Xu [KLX20] have re-visited timed
commitment schemes, providing formal definitions and new constructions. However, as
they consider (non-interactive) timed commitment schemes with setups, their definitions
are not easily applicable to our setting.

Timed commitments can also be constructed by combining sequential functions
[MMV13] and universal hash functions. However, such a construction has the drawback
that both commit and unveil phase are computation-intensive. Still, it suffices for a
feasibility result with a symmetric assumption.

Looking ahead to our constructions, we remark that using timed commitments with
non-malleability properties in the plain model will not lead to easier definitions or proofs
due to the power of the simulator. We leave it as an open question whether there are
advantages if the simulator is restricted like e.g. in the Angel-based setting.

3.2.4. Trapdoor Pseudorandom Generators

In our construction in Section 3.5, we will use so-called trapdoor pseudorandom generators
(PRGs). Being very similar to ordinary PRGs, they additionally allow to efficiently
determine whether a value is in the range of the PRG with the help of a trapdoor.

We propose the following definition.

Definition 3.5 (Trapdoor PRG). A trapdoor PRG PRG is comprised of four PPT
algorithms (Gen, TGen, PRG, TCheck) such that the following conditions hold:

1. On input 1κ, Gen outputs a public key pk ∈ {0, 1}l(κ), where l is a polynomial in
κ denoting the key length.

58

3.3. Timed Simulation-Sound Commitment Schemes

2. On input 1κ, TGen outputs a key pair (pk, sk) ∈ {0, 1}l(κ) × {0, 1}l(κ), where l is
a polynomial in κ denoting the key length.

3. On input (pk, r) with pk in the range of Gen(1κ) and r ∈ {0, 1}κ, PRG outputs
a value r′ ∈ {0, 1}e(κ), where e is a polynomial in κ denoting the PRG’s output
length, subject to the condition that e(κ) > κ for every κ ∈ N.

4. On input (pk, sk, r′) with (pk, sk) in the range of TGen(1κ), TCheck outputs 1 if
r′ is in the range of PRG(pk, ·) and 0 otherwise.

5. The ensembles {PRG(pk, r)}
κ∈N,pk←Gen(1κ),r $←{0,1}κ

and {r∗}
κ∈N,r∗ $←{0,1}e(κ)

are
computationally indistinguishable (pseudorandomness).

6. The ensembles {Gen(1κ)}κ∈N and {pk}κ∈N,(pk,sk)←TGen(1κ) are computationally
indistinguishable.

Similar to trapdoor permutations with dense public descriptions (Definition 2.7), we
define the analogous property for PRGs.

Definition 3.6 (PRG with Dense Public Description). A PRG has a dense public
description if the following condition holds:

1. The ensembles {Gen(1κ)}κ∈N and {r}
κ∈N,r

$←{0,1}l(κ)
are computationally indistin-

guishable.

We recall the following proposition, implicit in [CF01].

Proposition 3.1. If trapdoor permutations exist, then trapdoor PRGs exist as well.

Specifically, Canetti and Fischlin [CF01] propose the Blum-Micali-Yao construction
[Y82; BM82] with a trapdoor permutation instead of a one-way permutation. It is easy
to see that if the trapdoor permutation has a dense public description, the same holds
for the resulting PRG.

3.3. Timed Simulation-Sound Commitment Schemes

Looking ahead to our construction of a composable commitment scheme (Section 3.5),
we need a commitment scheme that is equivocal for a polynomial-time simulator.
At the same time, commitments created by a malicious committer that adheres to
certain time-related rules and bounds must remain binding sufficiently long, even if
the malicious committer sees equivocated commitments. To this end, we first define
the security notion of timed simulation-soundness. Also, we present the construction
SSCOM (where SS denotes simulation-sound) that combines a possibly malleable timed
commitment scheme with a non-timed commitment scheme that is secure under parallel
chosen commitment attack [K14; BDH+17; BFMR18] and satisfies the notion of timed
simulation-soundness.

59

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

3.3.1. Timed Simulation-Soundness

Based on the established notion of simulation-soundness [MY04; GMY03] and inspired by
the non-malleability notion of Dachman-Soled et al. [DMRV13], we define a concurrent
and timed variant of simulation-soundness that is suitable for commitments where
the binding property only holds temporarily (Definition 3.8). Intuitively, this timed
simulation-soundness ensures that commitments produced by a malicious committer
remain binding for a temporarily bounded adversary even if it concurrently receives
equivocated commitments.

While somewhat similar to the notion of non-malleability with respect to unveil or
opening or decommitment ([DIO98; PR05b; OPV08; FF11]), our definition is stronger in
the sense that commit and unveil phases may be interleaved in the experiment (similar
to UC commitments or the definition of [DMRV13]).

The Experiment. In the experiment for timed simulation-soundness, a man-in-the-
middle adversary acts as receiver in an unbounded number of instances (“left sessions”)
of some trapdoor commitment scheme (cf. Definition 3.3). The adversary starts left
sessions by providing a tag of its choice, along with an efficiently samplable and length-
normal (cf. Definition 3.7) distribution. Only considering distributions facilitates easier
proofs and more general definitions and is sufficient for our application. In each left
session, the code of the trapdoor committer Ctrap is executed. After the commit phase
of a session has finished, the adversary may, at some point of its choice, start the unveil
phase. At its onset, a value from the provided distribution is sampled and unveiled by
the trapdoor committer.

In addition, the adversary acts as committer in one session (“right session”), again
using a tag of its choice that must be unique compared to all other tags that will
eventually be used in the experiment. The scheduling between all sessions and their
messages is fully controlled the adversary.

When the commit phase of the single right session has finished, the experiment
determines the value committed to. The commitment scheme is timed simulation-sound
if the adversary cannot unveil its single commitment to a value different from the
committed one, even when presented with equivocated commitments.

Timer-Related Parameters. In our setting, we do not consider simulation-soundness
against arbitrary polynomial-time adversaries. Indeed, our construction SSCOM is
(intentionally) not simulation-sound or even binding for polynomial-time adversaries:
If a corrupted receiver manages to break a timed commitment it receives from the
(honest) sender early enough, the constructed commitment becomes equivocal. In our
setting, protocol parties may set up timers and inquire at some point whether the timer
has expired. The timed simulation-soundness experiment is thus parameterized with a
timed security parameter ℓ. This timed security parameter denotes how many steps
experiment and adversary may perform before a timer set up by the honest receiver
in the right session is considered to have timed out. If no timeout occurs, the binding

60

3.3. Timed Simulation-Sound Commitment Schemes

property of the single right commitment should hold, even if left commitments are
equivocated.

Timed simulation-sound commitments that use timed building blocks such as timed
commitment schemes must choose their timed security parameter ℓ′ relative to ℓ. To
account for reduction overhead, e.g. to the timed hiding property of a timed commitment
scheme, ℓ′ must be chosen sufficiently large. As the reduction overhead may depend on
the security parameter κ but ℓ(κ) might be constant, ℓ′ is also parameterized with κ.

Depending on the construction, increasing ℓ may lead to the timer always expiring,
e.g. because a sub-protocol protected by the timer requires more than ℓ steps to execute
(e.g. the commit phase of a timed commitment scheme, which may take longer for larger
ℓ) for some values of ℓ. In this case, proving security becomes trivial as the adversary
cannot win the game. However, this also implies that scheme is secure in this case.
When using appropriate building blocks, e.g. non-interactive timed commitments or a
timed commitment scheme with a sufficiently large gap (for example, the scheme of
[BN00] has an exponential gap between the time needed to create the commitment and
its timed security), this problem does not occur for sufficiently large ℓ′.

In order to notify parties about timeouts, we require the adversary to obey the following
rules: When receiving a message (notify, id) for some ID id, it must immediately answer
(notify, id, 1) if it has previously received (timeout, id) and the whole experiment,
including the adversary and honest committers in left sessions, has performed ℓ or more
steps, where ℓ is the timed security parameter. For our construction, this can be easily
computed as the runtime of the involved algorithms do not depend on their internal
randomness or secrets. If an exact calculation is not possible, the adversary must use
an appropriate upper bound.

This is in contrast to e.g. Definition 2.9 where only the steps of the adversary are
counted. There, this is possible as only one commitment session is considered. Here, we
consider an unbounded number of sessions. In a reduction to some timed property, all
the left sessions will have to be emulated by the reduction adversary, counting against
its time limit in the reduction.

As the guarantees of timed cryptographic assumptions are only for honest parties,
the experiment does not answer notify messages (from the adversary).

In real life, one can of course not expect that a possibly malicious party obeys
these rules. However, if a timed primitive is believed to be secure for e.g. several days
considering the computation power available to the other party, assuming a timeout
after, say, one minute, should be sufficiently secure.

Relationship to Other Non-Malleability Notions. Similar to the simulation-
based non-malleability notion of [DMRV13], security must hold if the commit and
unveil phases on the left side are interleaved with the right session. However, in
contrast to [DMRV13], we do not require the commitment on the right side to be
concurrently extractable and also do not consider adaptive corruptions, leading to a
different security notion. Moreover, the notion in [DMRV13] does not consider any timed
security properties whatsoever.

61

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Formal Definition. First, we define length-normal probability distributions as distri-
butions where all elements of the sample space are of equal length.3

Definition 3.7 (Length-Normal Probability Distribution). Let D be a probability
distribution over {0, 1}∗ with sample space Ω. D is called length-normal if for every
x, y ∈ Ω, it holds that |x| = |y|. Let |D| denote |x| for x ∈ Ω.

An example for a length-normal distribution is the uniform distribution Un over
{0, 1}n with |Un| = n.

Definition 3.8 (Timed Simulation-Soundness). A trapdoor commitment scheme
TRAPCOM with message space M ⊆ {0, 1}∗ is called ℓ(κ)-timed simulation-sound
if for every legal PPT adversary A, there exists a negligible function negl such that for
every κ ∈ N and for every z ∈ {0, 1}∗, it holds that

AdvSIMSOUND
A,TRAPCOM(κ, ℓ(κ), z) = Pr[ExpSIMSOUND

A,TRAPCOM(κ, ℓ(κ), z) = 1] ≤ negl(κ)

where the probability is over the random coins of the experiment and the adversary.
An adversary A is called legal if i) it immediately sends the message (notify, id, 1)
after receiving (notify, id) and the experiment (including the adversary) has performed
more than or equal to ℓ(κ) steps after having received a message (timer, id)4, where
steps performed by the committer on left sides are counted as by the honest committer
C and ii) A sends commit-left messages only parameterized with efficiently samplable
and length-normal distributions (cf. Definition 3.7) where the sample space Ω is a subset
of the message space M and iii) the tag used in the right commitment is never used in
a left commitment.

The random variable ExpSIMSOUND
A,TRAPCOM(κ, ℓ(κ), z) is defined as follows:

1. Run the adversary A on input (1κ, ℓ(κ), z).

2. Upon receiving (commit-left, tag,Dtag) from the adversary: Start the commit
phase of TRAPCOM with common input (1κ, commit, tag, ℓ(κ)), acting as trapdoor
committer Ctrap with private input |Dtag|, unless there already is a session with
tag tag.

3. Upon receiving (commit-right, tag) from the adversary: Start the commit phase
of the right session with common input (1κ, commit, tag, ℓ(κ)), acting as honest
receiver R, unless the right session already exists or there is a left session with tag
tag. Let v′ ∈ M denote the value committed to in the right session. If no such
unique value exists, set v′ = ⊥.

4. Upon receiving (unveil-left, tag) from the adversary: Sample vtag ← Dtag and
start the unveil phase of the i-th left session with common input (unveil, tag)
and private input vtag for the trapdoor committer, unless the commit phase with
tag tag has not finished or the unveil phase has already started.

3When considering an appropriate encoding, the definition can be extended to e.g. group elements.
4We assume unique timer IDs within a protocol throughout this work.

62

3.3. Timed Simulation-Sound Commitment Schemes

5. Upon receiving (unveil-right) from the adversary: Start the unveil phase of the
right session with common input (unveil, tag), acting as honest receiver where
tag is the tag specified in the commit phase. Let u denote the value accepted by
the receiver or ⊥ in case of an abort.

6. Upon receiving (message, tag, m) from the adversary, forward the message m to
the session with tag tag. Conversely, forward messages to the adversary.

7. After the right unveil phase has finished, output 1 if the receiver in the right session
has accepted and u ̸= v′∧u ̸= ⊥, i.e. if the adversary has unveiled the commitment
in the right session to a value different from the extracted one. Otherwise, output
0.

For the sake of brevity, we also say that a commitment scheme fulfilling the above
definition is ℓ(κ)-simulation-sound or timed simulation-sound, omitting the timed
security parameter.

Like [DMRV13], we call an adversary that wins the above experiment with at most
negligible probability non-abusing, i.e. if its commitments remain binding even when
presented with equivocated commitments.

Remark 3.1. Note that Definition 3.8 does not specify how the value committed to is
determined. If the commitment scheme is statistically binding, the value committed
to is defined with overwhelming probability. In other cases, such as our commitment
scheme SSCOM, this is not possible, because it is equivocal by definition. For SSCOM,
we will thus give an explicit description of an inefficient algorithm to determine the
value committed to.

For commitment schemes that are statistically hiding, the case is more complicated as
there is no (statistical) value committed to by definition. However, the computational
value committed to can often be determined by rewinding the committer. We leave a
general definition supporting this case as future work and refer the reader to Section 4.3
for discussions and definitional challenges.

Remark 3.2. While the binding property and simulation-soundness are related, a
(timed) binding commitment scheme is not necessarily (timed) simulation-sound. In
particular, this may be the case if the equivocation is performed by an entity for which
the binding property does not hold, e.g. due to its computational resources.

3.3.2. The Construction SSCOM
In the following, we present the construction SSCOM (Construction 1) for a timed
simulation-sound string commitment scheme, which is based on the commitment scheme
due to Broadnax et al. [BDH+17], which is inspired by the construction of Damgård
and Scafuro [DS13]. Roughly, the scheme presented in [BDH+17] works as follows:
Committer and receiver perform a commitment to a random index vector I ∈ {0, 1}κ
chosen by the receiver. They then perform 2κ commitments to pair-wise shares of the
secret. In the unveil phase, the committer first sends the shares without unveiling the

63

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

share commitments. Then, the receiver unveils the commitment to I. Finally, the
committer unveils the share commitments indexed by I, while the other commitments
remain unopened. If the commitment scheme used for I is extractable, the constructed
commitment is equivocal. As inconsistent share commitments remain unopened and
hiding, a malicious receiver cannot distinguish between an equivocated and an honest
commitment. In order to achieve concurrent security, we require the share commitment
scheme to be pCCA-secure (Definition 3.2).

In contrast to the original construction of [BDH+17], we use a timed commitment
scheme for the commitment to the index vector I, which allows polynomial-time
equivocation of SSCOM commitments. Also, we move this timed commitment to I to
the end of the commit phase. Looking ahead, the receiver will only accept an opening if
the timer has not expired until the committer has sent the shares in the unveil phase.

For the sake of simpler proofs, we assume that the commitment scheme for the shares
is perfectly binding. However, this requirement can be relaxed to statistically binding.

To facilitate easy integration with our composable commitment scheme (Section 3.5)
and the timed simulation-soundness definition (Definition 3.8), SSCOM includes explicit
messages to set up timers and to check if they have expired. Again, the party answering
the timer status inquiry checks if both parties have performed ℓ or more steps since the
timer has been set up and answers accordingly. In the simulation-soundness experiment,
the answer is given by the adversary that is required to answer truthfully. It would have
been possible to only count steps by the party that has not set up the timer. However,
counting the steps of both parties is more consistent with our other definitions and
more convenient in reductions.

Construction 1 (Timed Simulation-Sound Commitment Scheme SSCOM). Parameter-
ized with a security parameter κ, a timed security parameter ℓ(κ), a commitment scheme
COMpCCA with message space M ⊇ {0, 1}κ and a (T, ℓ′(ℓ(κ), κ))-weakly extractable
timed commitment scheme TCOM with message space M ′ ⊇ {0, 1}κ.

Commit Phase. On common input (1κ, commit, tag, ℓ(κ)), the committer C and
receiver R interact as follows:

1. The committer C creates 2κ shares s1,0, s1,1, . . . , sκ,0, sκ,1 of its private input v by
sampling sm,0

$← {0, 1}|v| and setting sm,1 = v ⊕ sm,0, m = 1, . . . , κ.

2. For m = 1, . . . , κ, n = 0, 1, C and R start 2κ instances of COMpCCA on common
input (1κ, commit, (tag, m, n)) in parallel. The committer’s private input in the
instance with tag (tag, m, n) is sm,n.

3. The receiver R samples an index vector I
$← {0, 1}κ and sends (timer, tag)

to C. Then, C and R start an instance of TCOM with common input
(1κ, commit, ℓ′(ℓ(κ), κ)). The receiver R of SSCOM acts as committer with private
input I in the execution of TCOM.

64

3.3. Timed Simulation-Sound Commitment Schemes

Unveil Phase. On common input (unveil, tag), the committer C and receiver R
interact as follows:

1. The committer C sends the shares (s1,0, . . . , sκ,1) to the receiver R.

2. The receiver R sends (notify, tag) to C, which R answers with (notify, tag, b)
where b = 1 if committer and receiver have spent more than or equal to ℓ(κ)
steps since the timer has been set up. Otherwise, b = 0 indicates that less than
ℓ(κ) steps in total have elapsed. If C answers with (notify, tag, 1), R aborts.
Otherwise, the receiver checks that s1,0⊕ s1,1 = · · · = sκ,0⊕ sκ,1 and aborts if this
does not hold. Then, C and R perform the unveil phase of TCOM. The committer
C also ensures that the TCOM commitment is extractable (to the value I) in at
most T steps, e.g. by using the forced-open algorithm. If this check fails, the
committer C aborts.

3. Committer and receiver perform κ unveil phases of COMpCCA in parallel as follows:
For m = 1, . . . , κ, the commitment to sm,I[m] with tag (tag, m, I[m]) is unveiled.
Let s′m,I[m] denote the unveiled value of the commitment with tag (tag, m, I[m]).

4. After all unveil phases have finished, the receiver checks that s′m,I[m] = sm,I[m],
m = 1, . . . , κ. If this holds, the receiver outputs s1,0 ⊕ s1,1. Otherwise, it aborts.

Algorithm of the Trapdoor Committer Ctrap.

1. On private input l in the commit phase, commit honestly to 0l.

2. On private input v ∈ {0, 1}l in the unveil phase, extract the (timed) TCOM
commitment using the forced-open algorithm to obtain the index vector I. If
forced-open fails, sample I

$← {0, 1}κ uniformly at random. For m = 1, . . . , κ,
send sm,1−I[m] = v ⊕ sm,I[m] as shares that will not be unveiled. Continue the
unveil phase like the honest committer. If the timed commitment to I is opened
to a value different from the extracted one, abort.

Proof of the Trapdoor Property of SSCOM.

We first prove that SSCOM is trapdoor for the pCCA oracle of COMpCCA.

Theorem 3.1. Let COMpCCA be a pCCA-secure and perfectly binding commitment
scheme and let TCOM be a perfectly binding and weakly extractable timed commitment
scheme, both with message space {0, 1}κ. Then, the commitment scheme SSCOM is
a trapdoor commitment scheme with message space {0, 1}κ for the pCCA oracle of
COMpCCA.

Proof. As we assume TCOM to be perfectly binding and weakly extractable, Ctrap will
never abort due to an inconsistent I and we omit these straight-forward reductions.

We prove Theorem 3.1 by a reduction to the pCCA hiding property of COMpCCA. To
this end, we first define a series of hybrids. Let Hi denote the following hybrid:

65

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

1. Interact with the adversary A on input (1κ, z) as in the trapdoor game. Initially,
receive a message (start, tag, v).

2. Create the shares sm,n ∈ {0, 1}|v| according to the protocol description of SSCOM.
Continue the execution as in the trapdoor experiment, except with the following
changes:

a) Perform the commit phase of SSCOM as follows: For m = 1, . . . , i, commit
to sm,0 using COMpCCA for both the commitment with tag (tag, m, 0) and
tag (tag, m, 1). For m = i + 1, . . . , κ, commit to sm,0 for the commitment
with tag (tag, m, 0) and to sm,1 for the commitment with tag (tag, m, 1), i.e.
commit honestly.

b) At the beginning of the unveil phase, extract the index vector I stored in
the timed commitment using the forced-open algorithm.

c) In the unveil phase, send sm,n for m = 1, . . . , κ and n ∈ {0, 1}. For m ≤ i
and n ∈ {0, 1}, send s′m,I[m] = sm,0 and s′m,1−I[m] = v ⊕ sm,0, i.e. shares
consistent with v and the commitments that will be opened.

3. Provide the pCCA oracle for A by forwarding messages between A and the pCCA
oracle provided in the experiment.

4. Continue the internal execution of the trapdoor game and eventually output what
A outputs.

By definition, H0 is identical to an execution of the trapdoor game where b = 0, i.e.
the commit and unveil phase are performed honestly. Similarly, Hκ is identical to an
execution with b = 1, i.e. the commit and unveil phase are performed like the trapdoor
algorithm would.

Suppose for the sake of contradiction that there exists an adversary
that can distinguish between H0 and Hκ with non-negligible probability, i.e.
|Pr[out0 = 1]− Pr[outκ = 1]| = ν(κ) is non-negligible. Then, there exists an index
i = i(κ) such that the adversary can distinguish between Hi and Hi+1 with non-
negligible probability of at least ν(κ)/κ. We show that this contradicts the pCCA hiding
property of COMpCCA.

Claim 3.1. If COMpCCA is pCCA-secure, then outi and outi+1 are (computationally)
indistinguishable.

Proof. Suppose for the sake of contradiction that for an index i ∈ [κ], outi and outi+1
are not computationally indistinguishable, i.e. p = |Pr[outi = 1] − Pr[outi+1 = 1]|
is non-negligible. Then, we can construct an adversary A′ against the pCCA-hiding
property of COMpCCA with non-negligible advantage as follows:

On input (1κ, z), A′ externally interacts with an instance of the pCCA hiding game.
Internally, it runs an instance of the trapdoor game with adversary A on input (1κ, z)
as follows:

1. Forward oracle queries by A to the pCCA oracle of the pCCA hiding game.

66

3.3. Timed Simulation-Sound Commitment Schemes

2. Sample b′
$← {0, 1} uniformly at random.

3. Play Hi, but perform the COMpCCA commitment with tag (tag, i + 1, b′) as follows:
• Send (si+1,0, si+1,1) and tag (tag, i + 1, b′) to the pCCA hiding game as

challenge.
• Perform the commit phase for the commitment with tag (tag, i + 1, b′) with

the pCCA hiding game.

4. Continue the execution of Hi but abort the unveil phase if I[i + 1] = b′. In this
case, send b′ to the hiding experiment.

5. Otherwise, continue the execution and output whatever A outputs.

If A′ does not abort and the pCCA hiding game has the choice bit 0, i.e. commits to
si+1,0, then A’s view is distributed as in Hi. Otherwise, it is distributed as in Hi+1. Let
p denote A’s distinguishing advantage between outi and outi+1. By definition of A′, its
advantage in the pCCA hiding game is p/2, which is non-negligible if p is non-negligible,
contradicting the pCCA hiding property of COMpCCA.

We can conclude that |Pr[out0 = 1] − Pr[outκ = 1]| ≤ 2κ · neglpCCA
COMpCCA

(κ) for a
negligible function neglpCCA

COMpCCA
bounding an adversary’s advantage in the pCCA hiding

game for COMpCCA.

Theorem 3.2. Let SSCOM be a trapdoor commitment scheme for the pCCA oracle of
COMpCCA. Let TCOM be a (T, ℓ′(ℓ(κ), κ))-weakly extractable timed commitment scheme
for some polynomially bounded T > ℓ′(ℓ(κ), κ) and sufficiently large ℓ′(ℓ(κ), κ). Then,
SSCOM is an ℓ(κ)-simulation-sound commitment scheme.

Proof of the Timed Simulation-Soundness of SSCOM.

In the following, we prove that SSCOM (Construction 1) is timed simulation-sound.
The value committed to is determined as follows: Let se

0,0, . . . se
κ,1 ∈ {0, 1}κ ∪ {⊥} be

the shares committed to using COMpCCA. If there is a value v ∈ {0, 1}κ encoded by a
strict majority of the shares, we say that v is the value committed to. Otherwise, if no
such value exists, we say that the value committed to is ⊥.

Proof. We prove Theorem 3.2 using a hybrid argument. Let q = q(κ) be a bound for
the number of left commitment sessions in the timed simulation-soundness experiment.

Let Hi denote the execution of the simulation-soundness experiment where the first i
left sessions are equivocated and the remaining sessions are honest, i.e. use the code
of the honest committer C instead of Ctrap. (For the honest sessions, the committer’s
private input is sampled at commit time.) H0 refers to an execution where all left
sessions are honest, Hq to an execution where all left sessions are equivocated, i.e. the
standard execution of the simulation-soundness experiment.

67

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Let H★
i be identical to Hi, but stop the execution before the TCOM commitment to

I in the single right session is unveiled. Let Sext = (se
0,0, se

0,1, . . . , se
κ,0, se

κ,1) denote the
list of shares committed to in the right session. As COMpCCA is perfectly binding, Sext

is well-defined. Let S denote the list of shares sent in the first-round message of the
unveil phase. We say that S is consistent relative to I (which is well-defined as TCOM
is perfectly binding) if the following holds:

1. S encodes a value v′ ∈ {0, 1}κ and S is locally consistent, i.e. v′ = s0,0 ⊕ s0,1 =
· · · = sκ,0 ⊕ sκ,1 and

2. s0,I[0] = se
0,I[0]∧· · ·∧sκ,I[κ] = se

κ,I[κ], i.e. the shares are consistent with commitments
that would be unveiled.

The adversary wins in H★
i if S is consistent relative to I and reconstructs to a different

value v′ ̸= v such that v′ ∈M , where v ∈ {0, 1} is the value encoded by a strict majority
of the shares in Sext (if such a value exists) and ⊥ otherwise.

We first show that in H0, the execution where no commitments are equivocated, the
adversary A is non-abusing, i.e. does not equivocate on the right side, except with
negligible probability. Starting from H0, we will show that this property is retained in
subsequent hybrids. As a non-abusing adversary does not satisfy the winning condition
(except with negligible probability), the claim follows.

Claim 3.2. Let T (κ) > ℓ′(ℓ(κ), κ) be a polynomial in κ. If TCOM is ℓ′(ℓ(κ), κ)-hiding
for sufficiently large ℓ′(ℓ(κ), κ) and perfectly binding and if COMpCCA is perfectly binding,
then A is non-abusing in H0.

Proof. We prove Claim 3.2 by a reduction to the timed hiding property of TCOM. As
we cannot simulate H0 in the reduction to the hiding property, we instead show that A
is non-abusing in H★

0 . It then follows that A is also non-abusing in H0.
Assume for the sake of contradiction that there exists an adversary A that is abusing

in H★
0 . First, we fix the coins of A and H★

0 up to the point before the TCOM commitment
starts such that A has maximum success probability. We also fix A’s advice z. Let
rA denote these coins of the adversary and rH denote the coins of the hybrid. As the
execution of H★

0 using these coins is deterministic until the TCOM commitment starts
and COMpCCA is perfectly binding, the shares sm,n committed to in the right session
are well-defined given the coins and the advice. As before, let Sext denote the list
containing these shares. We prove Claim 3.2 by a reduction to the non-uniform timed
hiding property of TCOM. To this end, we construct an adversary A′ against the hiding
property of TCOM that is successful if A is abusing. A′ works as follows:

1. On input (1κ, (rA, rH , Sext, z)), internally start an instance of H★
0 using coins rA

for the adversary and rH for H★
0 . Externally, interact with the TCOM hiding

experiment. Run the adversary A on input (1κ, z) and emulate H★
0 using rH just

before the TCOM commitment starts.

2. Sample I
$← {0, 1}κ and send (I, I) to the timed hiding experiment.

68

3.3. Timed Simulation-Sound Commitment Schemes

3. Perform the commit phase for TCOM in the right execution with the hiding
experiment.

4. Receive the shares S in the unveil phase.

5. If A has sent a (notify, id, 1) message where id is the tag of the right commitment
in either thread, output a random bit b.

6. If S is locally consistent with I and Sext, output 0. If S is locally consistent with
I and Sext, output 1. Otherwise, output a random bit b.

In order to abuse, A must send shares in the unveil phase that are consistent with
the index vector committed to with TCOM, which is either I or I, as well as with the
extracted shares. Thus, an abusing A can be used to distinguish between a commitment
to I resp. I. (It is easy to see that if A is abusing, S cannot be locally consistent with
both I and I.) If A is unsuccessful, i.e. the sent shares are inconsistent, we output a
uniformly random bit.

It remains to show that A′ is ℓ′(ℓ(κ), κ)-bounded. By assumption, A is legal. Thus,
between the beginning of the timed commitment and the transmission of the shares
sm,n, the whole experiment, including the adversary A, has spent at most ℓ steps, unless
A has notified the receiver of a timeout. If ℓ′ is sufficiently large to account for i) the
overhead from internally emulating H★

0 and A, ii) the computations performed by A′
after the challenge commitment has been sent and iii) possible (polynomial) speed-up of
the internally emulated A due to possible differences in the machine model between A′
and A, then A′ is legal and its advantage in the hiding game is equal to the probability
that A′ is abusing, i.e. Pr[EABUSE0] = AdvHiding

A′,TCOM(κ), where EABUSE0 denotes the
event that the adversary is abusing in H0.

This leads to a contradiction of the timed hiding property of TCOM if A is abusing
with non-negligible probability. Thus, it holds that Pr[EABUSE0] ≤ neglHiding

TCOM(κ), where
neglHiding

TCOM is a negligible function denoting an adversary’s advantage in the timed hiding
game for TCOM.

By definition of H★
0 and H0, A cannot win in H0 if it cannot win in H★

0 , as COMpCCA
is perfectly binding. Thus, if A is non-abusing in H★

0 , then it is also non-abusing in H0
and the claim follows.

Remark 3.3. In order to obtain a uniform reduction, changes to the proof and an
additional assumption are necessary. With respect to the assumptions, the pCCA-secure
commitment scheme has to be extractable by the reduction adversary, e.g. via rewinding,
which is usually the case for non-malleable commitment schemes in the plain model. In
particular, the scheme due to Goyal et al. [GRRV14] satisfies this property, even if the
base commitments are not efficiently extractable. As the commit phases of COMpCCA
have finished before the challenge phase of the reduction starts, rewinding does not
interfere with the reduction.

Also, the timed hiding definition (Definition 2.9) has to be split in two phases. In a first
phase before the actual commit phase starts, the steps performed by the polynomial-time

69

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

adversary A are not counted. In this phase, the share commitments can be extracted,
e.g. via rewinding, instead of providing their value via the non-uniform advice. In the
second phase, the timed commitment is performed and the adversary’s steps are counted
as usual. As Definition 2.9 requires security against non-uniform adversaries, any timed
commitment scheme secure according to this definition is also secure when considering
the outlined variant of the timed hiding notion.

Lemma 3.1. If A is non-abusing in H0 and if SSCOM is a trapdoor commitment scheme
for the pCCA oracle of COMpCCA and COMpCCA is a perfectly binding and pCCA-secure
commitment scheme, then A is non-abusing in Hi for i > 0, i.e. Pr[outi = 1] ≤ negl(κ).

Proof. We prove Lemma 3.1 by induction. We have shown that A is non-abusing
in H0 and H★

0 . We assume that A is non-abusing in Hi−1 and H★
i−1 for some fixed

i ∈ [q(κ) − 1]. Then, we can show that A is also non-abusing in Hi and H★
i by a

reduction to the trapdoor property of SSCOM for the pCCA oracle of COMpCCA. To
this end, we construct an adversary A′ against the trapdoor property of SSCOM as
follows:

1. On input (1κ, z), internally start an execution of H★
i−1.

2. In the i-th left session, sample vi ← Di and play the commitment with the trapdoor
experiment on challenge value vi.

3. Play the single right commitment honestly, but perform the share commitments
with the pCCA oracle. After these commit phases have finished, obtain the se

m,n

from the pCCA oracle and determine the value committed to as follows: If there
is a value v ∈ {0, 1}κ encoded by a strict majority of the extracted shares, let v
be the value committed to. Otherwise, set v = ⊥. Then, continue the execution.

4. Upon receiving the s′m,n in the right session, check if they are locally consistent,
and consistent with the index vector I and the extracted shares. If they reconstruct
to a value u ∈ {0, 1}κ such that v ̸= u, output 1.

5. Otherwise, output 0.

Let pi−1 resp. pi denote the probability that A is abusing in H★
i−1 resp. H★

i . The
advantage ofA′ in the trapdoor game is p = |pi−pi−1|. If p is non-negligible, thenA′ wins
the trapdoor game with non-negligible probability, contradicting the trapdoor property
of SSCOM. It follows that the advantage of A′ in H★

i for i ≥ 1 can be bounded by a
negligible function neglTD

SSCOM,O bounding an adversary’s advantage against the trapdoor
property of SSCOM, which is negligible by assumption. As Pr[outi = 1] ≤ Pr[out★

i = 1],
the claim follows.

Let neglHiding
TCOM be a negligible function bounding a ℓ′(ℓ(κ), κ)-bounded adversary’s

advantage against the timed hiding property of TCOM. Then, it holds that
AdvSIMSOUND

A,SSCOM,ℓ (κ) ≤ neglHiding
TCOM(κ) + (q(κ)− 1) · neglTD

SSCOM,O(κ), which is negligible.

70

3.3. Timed Simulation-Sound Commitment Schemes

Looking ahead to the proof of our composable commitment scheme (Claim 3.4),
we will need SSCOM commitments to be (not necessarily straight-line) extractable.
The general setting is the following: The environment concurrently receives SSCOM
commitments from the simulator. At the same time, it commits (in one session) in
parallel using COMpCCA within SSCOM. In the reduction, the reduction adversary can
play all commitments the environment receives as they are unrelated to the reduction.
However, it has to extract the COMpCCA commitments performed in parallel by the
environment in order to embed a challenge. As the “left sides” can be played honestly
and can be rewound, we do not need the robustness guaranteed by some non-malleable
commitments (e.g. [GRRV14]) where the left sides have to be simulated by the extractor
without rewinding them. Thus, “non-robust” (parallel) extractability similar to the
notion defined by Pass and Wee [PW09] is sufficient. We also recall that extractability
for one commitment already implies parallel extractability in this setting [PW09]).

Corollary 3.1. Let E′ be an extractor for COMpCCA with overwhelming success proba-
bility (over the coins of the extractor and the adversary). Then, there exists an extractor
E for SSCOM with overwhelming success probability (over the coins of the extractor
and the adversary) with a runtime that is polynomial in the runtime of E′.

Proof sketch. We prove Corollary 3.1 by constructing an extractor E for SSCOM as
follows. Let E′ denote the extractor for COMpCCA.

• Internally execute E′ in parallel and forward all messages related to COMpCCA
instances where the adversary is the committer between E′ and the adversary.

• Execute all instances of COMpCCA where the adversary is receiver honestly, also
when rewinding.

• Emulate all other messages of SSCOM relative to the current state of the sessions
resp. to the protocol description if no such state exists for the current session.

• If there is a value v ∈ {0, 1}κ encoded by a strict majority of the shares, we say
that v is the value committed to. Otherwise, if no such value exists, we say that
the value committed to is ⊥. (While we could require that all shares reconstruct
to the same value, this would lead to underextraction: An honest receiver could
accept an unveil to v ̸= ⊥ when, say, one unveiled share is different from the share
committed to (which is not unveiled due to the choice of I), while the extractor
would output ⊥.)

The proof that a corrupted committer cannot open its commitment to a value different
from the extracted one is implicit in the proof of Theorem 3.2. Also, it is easy to see
that an adversary’s view when interacting with the extractor is (computationally)
indistinguishable from an interaction with an honest receiver.

Depending on the setting, E may also use the code of the trapdoor committer for the
left sides.

71

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

For example, the pCCA-secure commitment scheme due to Goyal et al. [GRRV14]
admits such an extractor E′. In contrast to their construction in the context of non-
malleability, our composite extractor can honestly answer challenges of concurrently
executed commitments where the adversary acts as receiver. This is because here, the
“left side” can be rewound during extraction.

Corollary 3.1 follows implicitly from the proof of Theorem 3.2.

Possible Instantiations.

Our construction SSCOM makes use of a weakly extractable timed commitment scheme
TCOM as well as a pCCA-secure and perfectly binding commitment scheme COMpCCA.
A possible instantiation for the latter is the commitment scheme of Goyal et al. [GRRV14]
which is pCCA-secure [BDH+17], constant-round, non-black-box, extractable and per-
fectly binding if using e.g. the commitment scheme due to Blum [B81] based on one-way
permutations as base commitment scheme. By instead using a perfectly binding and
homomorphic commitment scheme5, the construction becomes perfectly binding and
black-box [BGR+15; BDH+17].

Corollary 3.2. If constant-round, perfectly binding and homomorphic commitment
schemes as well as constant-round weakly extractable timed commitment schemes with
appropriate parameters exist, then SSCOM is a constant-round timed simulation-sound
commitment scheme that makes black-box use of its building blocks only.

An example for a constant-round homomorphic commitment scheme is the ElGamal
commitment scheme based on the Decisional Diffie-Hellman (DDH) assumption [E84],
which does not use non-black-box techniques. With respect to the timed commitment
scheme, we can e.g. use the scheme due to Boneh and Naor [BN00] based on the
generalized BBS assumption, which is constant-round and also does not use non-black-
box techniques.

Corollary 3.3. If the DDH assumption and the generalized BBS assumption hold for
appropriate parameters, then there exists a constant-round, timed simulation-sound
commitment scheme that makes use black-box use of its building blocks only.

3.4. TLUC Security

The commitment scheme SSCOM with timed security constructed in Section 3.3 cannot
be meaningfully used within UC-secure protocols due to the lack of a notion of time. In
this section, we adapt UC security such that honest protocol parties can set up timers,
very similar as e.g. in the definition of timed simulation-soundness (Definition 3.8). We

5Informally, a (non-interactive) commitment scheme COM with message space M is called homomorphic
if commitments c, c′ to values v, v′ ∈M can be efficiently combined to a commitment c∗ to the value
v ∘ v′ ∈M for some operation ∘, e.g. addition or multiplication. Additionally, it is usually required
that c∗ is (computationally) indistinguishable from a fresh commitment to v ∘ v′.

72

3.4. TLUC Security

call the resulting notion TLUC security, short for “time-lock UC”, which allows to
meaningfully use timed primitives within larger protocols.

As certain central definitions are easy to grasp at an intuitive level, but, at the
same time, hard to formalize, we start with an informal introduction that conveys the
necessary concepts and is sufficient to understand the following chapters.

3.4.1. TLUC Security in a Nutshell

Timed primitives such as timed commitment schemes can be meaningfully used in
practice. Consider performing a coin-toss using a timed commitment scheme secure for,
say, t = 1015 steps. Assuming that the adversary can perform at most 1010 steps per
second (equating 10 GHz, assuming that steps equate cycles)6, a coin-toss using this
timed commitment should be considered secure if the adversary’s second-round message
comes within e.g. one second of receiving the timed commitment, with plenty time left
as security margin.

TLUC Security. Unfortunately, this intuition is not easily captured in the UC
framework, which neither offers a notion of time nor makes assumptions with respect to
the (concrete) computational power of entities. Instead of considering a model with
time or modifying the framework, we propose a variant of UC security, called TLUC
security, that enables honest parties to check if more than ℓ steps have been performed
since a certain point in the execution. This allows to capture the security guarantees of
timed primitives and to use them in protocols.

With TLUC, parties can set up timers parameterized by an ID and a number of
computation steps ℓ by sending (timer, id, ℓ) to the adversary7. At any point, a party
that has set up a timer may check if it has expired, i.e. if the whole execution experiment
has performed ℓ or more steps since the timer has been set up. This is done by sending
(notify, id) to the adversary. The adversary queries the environment if the timer has
expired and answers with (notify, id, b), where b = 1 denotes an expired timer and
b = 0 an unexpired one.

Mechanisms. The correct handling of timers is ensured by considering only legal
environments and legal adversaries. Intuitively, legal environments correctly account for
timers set up by honest parties by never under-estimating the number of computation
steps performed by the execution experiment relative to a presumptive execution of a
protocol π (counting obliviously of the parties’ inputs and outputs) and adversary A,
denoted by Z[π,A]. This guarantees that timed assumptions protect against environment
and adversary, but can be broken by the simulator in polynomial time without triggering
a timeout (as the environment Z[π,A] always counts relative to π and A, even when

6This is even more plausible when using cryptographic assumptions that are belived to be hard even
for parallel adversaries.

7In contrast to stand-alone experiments where timer messages are not parameterlized with the timed
security parameter, we have chosen to do so in the TLUC setting because the mechanism should be
agnostic of the currently executed protocol and its timed security parameter.

73

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

interacting with ϕ and S). For technical reasons, we require handling of timers and
inquiries to go through the adversary. An adversary is legal if it immediately and
correctly forwards timer setup messages or status inquiries by honest parties, as well as
the environment’s responses. Based on this, we define TLUC emulation as a special
case of UC emulation, and consider legal adversaries and environments only. At first
glance, this might seem restrictive, but when considering standard UC protocols without
timers, it is easy to see that the notions are equivalent for them. Thus, the restrictions
essentially only apply when protocols with timers are executed.

Properties of TLUC Security. As we consider only a subset of UC environments
and adversaries, properties of UC security do not necessarily carry over to TLUC
security, at least for protocols using timers. To the contrary, even properties such as
the completeness of the dummy adversary are difficult to prove if concrete time bounds
must be adhered to. We show several properties such as transitivity with UC protocols,
i.e. protocols whose security does not rely on timers8, completeness of the dummy
adversary or full compatibility with UC security as well as UC reusability, meaning
that all UC-secure protocols are also TLUC-secure and can be composed with TLUC
protocols without loss of security. With respect to the latter, we state the single instance
composition theorem.

The ability of the simulator to break timed assumptions while environment and real-
world adversary are unable to do so unnoticed is sufficient to construct a composable
commitment scheme in the plain model. When, e.g. combining our commitment scheme
with a UC-secure general MPC protocol in the FCOM- or FMCOM-hybrid model9, we
obtain a TLUC-secure composable general MPC protocol in the plain model.

While composable MPC in the plain model is already possible in a number of other
frameworks, previous approaches rely on some sort of super-polynomial or non-uniform
simulation. The first may affect the security of concurrently executed protocols relying on
polynomial-time hardness assumptions, resulting in limited environmental friendliness
as defined by [CLP13a] or limited UC reusability. TLUC security only considers entities
that run in strict polynomial time. The second may affect the security of protocols that
have been previously started, even ones that are secure against non-uniform adversaries.
Our feasibility results hold for uniform adversaries, simulators and environments.

Thus, TLUC security is the first notion that features composable constant-round black-
box MPC in the plain model from standard (timed) assumptions, full UC reusability
as well as full environmental friendliness and does not hurt the security of previously
started protocols relying on polynomial-time assumptions.

We continue with an (almost) complete and formal treatment of TLUC security. The
remaining (technical) parts can be found Appendix A.1.

8A UC protocol π that UC-realizes an ideal functionality F may of course send timer messages.
However, as UC emulation also considers adversaries and environments that handle these messages
arbitrarily, the security of π cannot rely on them.

9FMCOM and the multi-session extension F̂COM of FCOM are equivalent [CR03].

74

3.4. TLUC Security

3.4.2. Protocol Emulation

We start with the definition of TLUC emulation, which is defined in analogy to UC
emulation.

Definition 3.9 (TLUC Emulation). Let π and ϕ be probabilistic polynomial-time
(PPT) protocols. We say that π TLUC-emulates ϕ if for every legal PPT adversary
A, there exists a PPT simulator S such that for every legal PPT environment Z[π,A],
there exists a negligible function negl such that for every κ ∈ N and every z ∈ {0, 1}∗ it
holds that

|Pr[Exec
(︁
π,A,Z[π,A]

)︁
(κ, z) = 1]− Pr[Exec

(︁
ϕ,S,Z[π,A]

)︁
(κ, z) = 1]| ≤ negl(κ)

If π TLUC-emulates ϕ, we write π ≥TLUC ϕ. When omitting the non-uniform input
z, the notion of protocol emulation is uniform.

Remark 3.4. In Definition 3.9, the environment Z counts the steps according to
the execution with π and A even if it actually interacts with ϕ and S. This allows
the PPT-bounded simulator S to perform more steps than the adversary A without
triggering a timeout, allowing it to break timed assumptions unnoticed. If ϕ is a UC
protocol, its security is not affected by such a powerful simulator. In contrast, if ϕ
is a protocol uses timers, honest parties of the protocol ϕ may not rely on timing
assumptions as the adversary S is allowed to violate them unnoticed.

Meaningfulness of TLUC Security. When introducing a new security notion, it is
important to argue that it does not allow to prove the security of “obviously insecure”
protocols.

The basic idea behind TLUC security is the very same as behind established simulation-
based security notions, where a protocol’s security is defined through the ideal function-
ality it realizes (together with the rules of the execution). For simulation-based security
notions, care has to be taken that the simulator’s capabilities do not affect the security
guarantees of the ideal functionality. For example, SPS security is not meaningful for
ideal functionalities that use a polynomial-time hardness assumption like a signature
scheme that can be broken by the super-polynomial simulator. As TLUC simulations
are always polynomial-time, they do not affect an ideal functionality that makes use
of polynomial-time assumptions. To this end, we had to take care that the simulator
cannot learn e.g. an honest party’s input through “timing side-channels” resulting from
timers it may set up. For a discussion, see Appendix A.1.2.

In total analogy to both UC security and other composable security notions that
admit general MPC in the plain model, we can show a strong impossibility result. This
underlines that the new mechanism of timers, if implemented correctly, does not help
the simulator per se.

Plausibility of TLUC Simulation. Canetti et al. [CDPW07] have raised the question
of simulation plausibility with respect to different simulation strategies and deniability.

75

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

They state that “if the resources required to simulate a protocol session are readily
available, then we say the protocol session is plausibly deniable (since it is plausible that
information obtained from the protocol was the result of a simulation). If the resources
required to simulate are difficult or impossible to obtain, then there is no guarantee of
plausible deniability (since it will be difficult to convince others that an incriminating
protocol transcript was the result of a simulation)” [CDPW07]. In standard UC, the
existence of a simulation strategy is “plausible” as in the presence of a trusted setup, the
task of simulation does not asymptotically require any computational power that other
entities are not capable of. In particular, protocol parties can provide “fake” transcripts
of interactions that cannot be verified by other parties that do not have access to the
setup used in the transcript. (Still, UC security does not rule out that a simulator has
to perform an “efficient” computation requiring Θ(κ100) steps, while all other entities
have runtime in e.g. Θ(κ) with a small constant factor only.)

In contrast, when considering e.g. SPS security, the simulator is required to have
computational power (i.e. online super-polynomial computation capabilities) that is not
believed to exist and which are not admitted to other entities such as protocol parties
or the environment. In this setting, a protocol transcript may be meaningful for other
parties that have not participated in the protocol execution in question: Either, the
transcript was the result of a real execution or its creation required super-polynomial
resources, which are not believed to be available. Thus, a protocol participation cannot
be plausibly denied.10

In advanced settings such as the Angel-based security framework, the question of
simulation plausibility is harder to answer as the power available to the simulator is
less clear-cut. (Moreover, a complexity advantage can often be traded for the ability
to rewind, e.g. in [CLP10; CLP13a].) Indeed, as Canetti et al. [CDPW07] argue, if the
Imaginary Angel of [PS04] “were to somehow be made practical in the real world, all
security would be lost”, making the simulation implausible. Still, Prabhakaran and
Sahai [PS04] have argued the plausibility of their Imaginary Angel by showing that it
can be realized in the FCRS-hybrid model from one-way functions. We show a similar
result for our composable commitment scheme in Section 3.6.2.

In TLUC, we believe that the plausibility of the simulation depends largely on the
size of the (only temporary) gap between simulator and environment. If this gap is
very large, i.e. if the simulator has to perform many more computation steps than
the environment is allowed to while a timer is active, simulation may be less plausible
than in a setting where this gap is very small, consisting only of very few steps. To
some extent, this can be adjusted via a protocol’s parameters and the underlying timed
assumption. However, the asymmetry can always be “caught up” by a polynomial-time
protocol party—allowing it to fake a transcript given “enough time” to internally execute
the simulator. In any case, TLUC simulators are asymptotically as efficient as UC

10This argument assumes that a simulated transcript cannot be obtained in an efficient manner.
Depending on the protocol, this may or may not be the case. For example, there may be protocols
where straight-line simulation provably require super-polynomial resources, while merely simulating a
transcript can be efficiently done using rewinding.

76

3.4. TLUC Security

simulators and their existence would never endanger other polynomial-time hardness
assumptions.

3.4.3. Properties of TLUC Security

Having defined protocol emulation, we can state important properties of TLUC security
in analogy to properties of UC security.

Proposition 3.2 (Legality of the Dummy Adversary). The dummy adversary D is
legal.

Proposition 3.2 immediately follows from the definition of the dummy adversary in
the UC framework.

As in UC security, it is sufficient to show protocol emulation with respect to the
dummy adversary.

Proposition 3.3 (Completeness of the Dummy Adversary). Let π and ϕ be PPT
protocols. Then, π ≥TLUC ϕ if and only if π TLUC-emulates ϕ with respect to the
dummy adversary.

Proof. Clearly, if π TLUC-emulates ϕ, then π TLUC-emulates ϕ with respect to the
dummy adversary. We now show the converse. Let π TLUC-emulate ϕ with respect to
the dummy adversary, i.e. there exists a simulator SD such that for every legal PPT
environment Z[π,D], it holds that

Exec
(︁
π,D,Z[π,D]

)︁
≈ Exec

(︁
ϕ,SD,Z[π,D]

)︁
(3.1)

Consider the type-1 routing environment11 ZD that expects to interact with the
dummy adversary D and protocol π as the environment that internally runs the legal
environment Z[π,A] and the legal adversary A and relays all messages between (its
internal simulation of) A and the dummy adversary D as well as (its internal simulation
of) Z[π,A] and the challenge protocol π. Eventually, ZD outputs what Z outputs.

By Proposition A.1, ZD is legal. Also, the views of Z and A remain identically
distributed and timers set up in Exec

(︁
π,A,Z[π,A]

)︁
are handled identically to timers

set up in Exec
(︁
π,D,ZD

[︁
π,D]) and vice versa.

It follows that
Exec

(︁
π,A,Z[π,A]

)︁
≡ Exec

(︁
π,D,ZD

[︁
π,D]). (3.2)

11Routing environments are special classes of environments defined in Definition A.3 that internally
execute another environment as well as a protocol (type-2) or adversary (type-1). Informally, they
are called routing environments because they only route messages between the internally emulated
machines and the challenge protocol and adversary. Clearly, the number of steps performed by a
routing environment may be differerent than the number of steps calculated by its internally executed
environment, e.g. due to emulation overhead, a different adversary or a different protocol. This
seemingly requires a legal routing environment to handle timers differently. As this would lead to
changes in the internally emulated environment’s view, this is undesirable. However, we can show
that for the cases we are interested in, the routing environment can leave the handling of timers to
its internally emulated environment.

77

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Now, consider the execution where ZD interacts with the simulator for the dummy
adversary SD and protocol ϕ. Using Equation (3.1) and the fact that ZD is legal,
it follows that Exec

(︁
π,D,ZD[π,D]

)︁
and Exec

(︁
ϕ,SD,ZD[π,D]

)︁
are (computationally)

indistinguishable. We now construct the simulator S for A and π from SD: S internally
runs instances of A and SD as follows:

• Messages from ϕ to the adversary are forwarded to SD.

• Messages from SD to ϕ are forwarded to ϕ.

• Messages from SD to the environment are forwarded to A.

• Messages from A to π are forwarded to SD.

• Messages from A to the environment are forwarded to the environment.

• Messages from the environment to the adversary are forwarded to A.

By applying Proposition A.1 again, it follows that

Exec
(︁
ϕ,SD,ZD

[︁
π,D]) ≡ Exec

(︁
ϕ,S,Z[π,A]) (3.3)

Combining Equations (3.1) to (3.3), the claim follows.

TLUC security is also compatible with UC security, meaning that UC-secure protocols
are also TLUC-secure.

Proposition 3.4 (Compatibility with UC Security). Let π, ϕ be PPT protocols such
that π ≥UC ϕ. Then, π ≥TLUC ϕ.

Proof. As TLUC emulation is a special case of UC emulation and the class of simulators
is not restricted, Proposition 3.4 trivially follows.

Transitivity. In contrast to UC security, TLUC security is not transitive.

Proposition 3.5. There exist PPT protocols π1, π2, π3 such that π1 ≥TLUC π2 and
π2 ≥TLUC π3 but π1 ̸≥TLUC π3.

Proof. Let π3 the ideal protocol of the commitment functionality FCOM. Let π2 be the
protocol πMCOM (with slight syntactical modifications towards realizing FCOM instead
of FMCOM) from Section 3.5. Let π1 be the following protocol:

• Upon receiving (commit, sid, b) as input, the committer samples b′
$← {0, 1} and

sends c = b ⊕ b′ to the receiver, which stores c and outputs (committed, sid).

• Upon receiving (unveil, sid) as input, the committer sends (b, b′) to the receiver.
If c = b⊕ b′, the receiver outputs (unveil, sid, b).

78

3.4. TLUC Security

Clearly, π1 does not realize FCOM, as the commitment is not extractable (and not even
binding for a malicious committer). However, one can show that π1 ≥TLUC π2 because,
informally, π2 gives no security guarantees in this setting, cf. Remark 3.4. Roughly, the
simulator S for π1 acts as follows: If the sender is corrupted, the simulator must be
able to equivocate the commitment in π2. This is possible as the simulator is able to
determine the output of the coin-toss for the equivocation CRS. (Here, the corrupted
committer is played by the simulator and not the environment.) Conversely, if the
receiver is corrupted, the simulator sends a random value c

$← {0, 1} in the simulation
of π1. Later on, when it learns the committed bit b in π2, the simulator sends (b, c⊕ b)
as unveil message.

Note that the above simulator is not a legal adversary. While this is not necessary to
argue that π1 ≥TLUC π2, the prerequisite π2 ≥TLUC π3 only requires the existence of a
simulator for a legal adversary for π1, which S is not.

However, we can state the following weaker and useful properties.

Corollary 3.4 (Transitivity for UC Protocols). Let π1, π2, π3 be PPT protocols. If
π1 ≥UC π2 and π2 ≥UC π3, then it holds that π1 ≥TLUC π3.

Also, TLUC emulation is transitive in conjunction with UC emulation.

Proposition 3.6 (TLUC-UC Transitivity). Let π1, π2, π3 be PPT protocols. If
π1 ≥TLUC π2 and π2 ≥UC π3, then it holds that π1 ≥TLUC π3.

Proof sketch. Let A be a legal adversary. Since π1 ≥TLUC π2, there exists a (possibly
not legal) PPT TLUC simulator S1 for every legal PPT adversary A such that for every
legal PPT environment Z[π1,A], it holds that

Exec
(︁
π1,A,Z[π1,A]

)︁
≈ Exec

(︁
π2,S1,Z[π1,A]

)︁
(3.4)

and since π2 ≥UC π3, there exists a PPT simulator S2 for every (not necessarily legal)
PPT adversary B such that

Exec
(︁
π2,B,Z

)︁
≈ Exec

(︁
π3,S2,Z

)︁
(3.5)

As Equation (3.5) quantifies over all PPT adversaries and PPT environments (including
legal ones), it implies the existence of a simulator for the PPT adversary / simulator S1.
Combining Equations (3.4) and (3.5), the claim follows.

Composition. In the following, we consider the case of a protocol ρ that makes one
subroutine call to a protocol ϕ.

Theorem 3.3 (Single Instance Composition Theorem). Let π, ϕ be subroutine-respecting
PPT protocols such that π ≥TLUC ϕ. Let ρ be a PPT protocol that makes one subroutine
call to ϕ. Then, ρϕ→π ≥TLUC ρ.

79

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Proof. In the following, we show that if π TLUC-emulates ϕ for the dummy adversary,
then ρϕ→π emulates ρ for the dummy adversary, i.e. for every legal PPT environment,
there exists a PPT simulator Sρ such that

Exec
(︁
ρϕ→π,D,Z[ρϕ→π,D]

)︁
≈ Exec

(︁
ρ,Sρ,Z[ρϕ→π,D]

)︁
. (3.6)

By Proposition 3.3, this is sufficient and implies the general case. First, we construct a
simulator Sρ for ρϕ→π. Internally, Sρ runs the simulator SD for π and handles messages
as follows:

• Messages from protocol parties of ρ are sent to the environment.

• Messages from the environment to the protocol parties of ρ are sent to these
parties.

• Messages from protocol parties of ϕ are sent to SD.

• Messages from SD to ϕ are sent to ϕ.

• Messages from the environment to the protocol parties of π are sent to SD.

• Messages from SD to the environment are sent to the environment.

We show that Sρ is a valid simulator for ρϕ→π and D by contradiction: Suppose
there exists an environment Z[ρϕ→π,D] that can distinguish between the execution
with ρϕ→π and D and the execution with ρ and Sρ, i.e.

Exec
(︁
ρϕ→π,D,Z[ρϕ→π,D]

)︁
̸≈ Exec

(︁
ρ,Sρ,Z[ρϕ→π,D]

)︁
. (3.7)

Let Z ′[π,D] be the type-2 routing environment (cf. Definition A.3) that internally
runs Z[ρϕ→π,D] and ρ.

Using Proposition A.1 and the definition of Sρ, it is easy to see that Z’s view when
emulated by Z ′ is identically distributed as in the execution of ρϕ→π and A resp. the
execution of ρ and SD, depending on the challenge protocol of Z ′. By Proposition A.1,
Z ′ is legal for π and D if Z is legal for ρϕ→π and D.

Thus, the distinguishing advantage of Z ′ for π and ϕ is identical to that of Z for
ρϕ→π and ρ and Equation (3.7) implies that

Exec
(︁
π,D,Z ′[π,D]

)︁
̸≈ Exec

(︁
ϕ,SD,Z ′[π,D]

)︁
, (3.8)

contradicting the assumption that π ≥TLUC ϕ. Overall, it follows that if π ≥TLUC ϕ,
then ρϕ→π ≥TLUC ρ.

Let ρ be a PPT protocol that UC-emulates the ideal protocol IDEAL(G) of some
ideal functionality G and makes one subroutine call to the ideal protocol IDEAL(F)
of some ideal functionality F . Using Propositions 3.4 and 3.6 and Theorem 3.3, we
can import ρ into TLUC, replace IDEAL(F) with an appropriate TLUC protocol while
preserving security and conclude that the resulting composite protocol TLUC-emulates
IDEAL(G).

80

3.4. TLUC Security

Corollary 3.5 (UC Reusability). Let π and ϕ be subroutine-respecting PPT protocols
such that π ≥TLUC ϕ. Let ρ be a PPT protocol that makes one subroutine call to ϕ such
that ρ ≥UC σ. Then, ρϕ→π ≥TLUC σ.

Unfortunately, TLUC security is not closed under universal composition. This means
that there exist subroutine-respecting protocols π and ϕ such that π ≥TLUC ϕ holds,
but ρϕ→π does not TLUC-emulate ρ, where ρ makes multiple subroutine calls to ϕ.

Proposition 3.7. Let π, ϕ be subroutine-respecting PPT protocols such that π ≥TLUC ϕ.
There exists a PPT protocol ρ that makes multiple subroutine calls to ϕ such that
ρϕ→π ̸≥TLUC ρ.

As an example, take the commitment protocol πMCOM (cf. Section 3.5) and replace the
pCCA-secure commitment scheme COMCCA used in SSCOM with a malleable extractable
commitment scheme. One can easily prove that this protocol still TLUC-realizes a
single instance of FCOM, but is not even concurrently self-composable.

If π UC-emulates ϕ, we recover a UC-like composition theorem, which does not place
a bound on the number of subroutine calls by ρ to ϕ.

Proposition 3.8 (Composition Theorem for UC Protocols). Let π, ϕ be subroutine-
respecting PPT protocols such that π ≥UC ϕ. Let ρ be a PPT protocol. Then,
ρϕ→π ≥TLUC ρ.

Proof. Using the UC composition theorem, we obtain that ρϕ→π ≥UC ρ. Using that
TLUC security is compatible with TLUC security (Proposition 3.4), it follows that
ρptp ≥UC ρ.

Environmental Friendliness.
Being a special case of UC security, TLUC security fulfills the important property of

environmental friendliness (cf. Section 2.5).

Proposition 3.9 (Environmental Friendliness of TLUC Security). Let π be a PPT
protocol that TLUC-emulates the ideal protocol of some functionality G. Then, π is
friendly to every (non-timed) game-based property P of a protocol Π with property P .

Proof. UC security is friendly to all (non-timed) game-based properties [CLP13a]. As
TLUC security is a special case of UC security (and, in particular, all entities run in
polynomial time), the claim follows.

Protocols running alongside composable MPC protocols may not only be affected by
super-polynomial simulation, but also by non-uniform simulation. For example, Lin,
Pass, and Venkitasubramaniam [LPV09] propose a variant of UC security where the
environment runs in uniform polynomial time, while the simulator runs in non-uniform
polynomial time. The non-uniform input of the simulator may impact the security of
protocols that have started before the input is given to the simulator—even if these
protocols are secure against non-uniform adversaries. As the definition of environmental
friendliness is non-uniform, it does not capture this property.

81

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

The simulation for our composable commitment scheme (Section 3.5) is uniform.
Our constructions thus do not adversely affect security properties of previously started
protocols that hold against polynomial-time adversaries.

Remark 3.5. Environmental friendliness as defined by [CLP13a] is not meaningful for
timed game-based properties such as the timed hiding property of a timed commitment
scheme.

When considering an ideal functionality F and a concurrently executed protocol
π using timed assumptions, the functionality F may already be unfriendly to timed
properties of π. For example, F may perform computations that break time-lock puzzles
used in π.

In the experiment of environmental friendliness, no simulator is used. The (presump-
tive) simulator is only used to show that a protocol π is as friendly as a functionality F
(which may already be unfriendly in our setting). Thus, the problems with respect to
environmental friendliness for timed security properties start well before considering
the effects of the simulation, which may have additional negative effects.

To the best of our knowledge, this outlined variant of environmental friendliness
for timed game-based properties is not fulfilled by any security notion for composable
MPC—not even by UC security.

Non-Triviality. While there exists no general and formal definition of non-triviality
in the UC framework, Canetti et al. [CLOS02] consider a protocol π to be a non-trivial
realization of F if π ≥UC IDEAL(F) and for every adversary A that deliver all messages
and does not corrupt any party, the simulator S allows all outputs generated by F .

With TLUC security, this notion is not sufficient as it does not consider the possibility
that a protocol execution aborts due to timeouts, which may, depending e.g. on the
environment, occur even if the adversary delivers all messages.

As an example, let π be a protocol that non-trivially UC-emulates FCOM and takes
t(κ) steps to execute successfully if all parties are honest. Now, let π′ be the protocol
that is identical to π, with the following exception. When receiving its input, the honest
committer sets up a timer with 10t(κ) steps. At the onset of the unveil phase, it checks
if the timer has expired and halts upon expiration. Clearly, π′ should be considered
non-trivial.

However, there exists a legal environment such that π′ never generates output even if
the legal adversary delivers all messages. As we do not want π′ to be considered trivial
if there also exists a legal environment Z for which π′ always generates an output under
the conditions outlined in [CLOS02], we adapt the notion of [CLOS02] to account for
this12.

Note that non-triviality may be lost under composition. To this end, take a protocol
ρ that makes one subroutine call to some protocol ϕ and is non-trivial. Replacing
ϕ in ρ with its realization π that takes more steps than ϕ may make the composed
12Legal environments count the number of computation steps independent of the parties’ inputs. If this

is done in an appropriate way, the existence of one environment that provides fixed input implies the
existence of other environments with all possible inputs such that π always generates an output.

82

3.4. TLUC Security

protocol ρϕ→π trivial as timers in ρ may always be triggered due to the additional steps
performed by the protocol π. However, that this does not render ρϕ→π insecure.

Impossibility Results. The well-known impossibility results due to Canetti and
Fischlin [CF01] state that there is no bilateral (i.e. involving two communicating parties)
and terminating (in the sense of an output for the honest receiver with a certain
probability) protocol π that UC-realizes FCOM in the plain model. This is due to the
fact that if a protocol π is in the plain model, an environment is able to internally
emulate every (presumptive) UC simulator for π.

We state the following variant of the impossibility result of [CF01] for TLUC-realizing
FCOM in the plain model:

Theorem 3.4. There exists no bilateral, non-trivial protocol π in the plain model where
at most one party sets up timers such that π TLUC-realizes FCOM.

Proof. The case where no party sets up timers is easily recovered from the proof of
Canetti and Fischlin [CF01].

We now consider the case that exactly one party sets up timers. The following proof
follows the same outline as the proof of the impossibility result in [CF01]. Suppose
that π ≥TLUC IDEAL(FCOM), i.e. for every legal PPT adversary, there exists a PPT
simulator S for every legal PPT environment. We first consider the case where the
committer is the party that sets up the timer(s). We use the presumptive simulator S to
construct a legal environment Z[π,D] expecting to interact with the dummy adversary
for which there is no simulator, contradicting the assumption.

The environment Z[π,D] works as follows: Initially, it orders the adversary to corrupt
the committer and internally executes the simulator S for the corrupted receiver to
generate an equivocal commitment. Prior to the beginning of the unveil phase, it
samples a bit b

$← {0, 1} and instructs the simulator to decommit to b. timer and
notify messages for resp. from the internal instance of S are handled by Z relative
to a real execution where the committer is honest. This is possible without b as legal
environments handle these messages independent of parties’ inputs and outputs.

As there are no “real” timers if the committer is corrupted and π is non-trivial, the
execution of π will terminate. Furthermore, Z[π,D] is a legal environment.

If the environment is in the real execution of the protocol π, then the internally
emulated simulator can, due to the correctness of the simulation, unveil the commitment
to the bit b, except with negligible probability. In particular, the timer and notify
messages are handled as in an interaction with a legal adversary relative to the internally
emulated instance of S.

If the environment is in the ideal execution of FCOM, the whole execution is indepen-
dent of b until the onset of the unveil phase. Thus, any simulator will extract the wrong
bit b′ with probability 1/2, where the probability is over the coins of the simulator and
the environment. Even if the internally emulated simulator failed during the unveil
phase with non-negligible probability, this would allow the environment to distinguish
as such a failure does not occur in the real execution, except with negligible probability.

83

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

We now consider the case that the receiver is the only party setting up timer(s). Again,
we use the presumptive simulator S ′ to construct a legal environment Z ′[π,D] expecting
to interact with the dummy adversary for which there is no simulator, contradicting the
assumption. At the onset of the execution, the environment Z ′[π,D] samples b

$← {0, 1}
and sends b as input to the honest committer. It also orders the adversary to corrupt the
receiver and internally executes the simulator S for the corrupted committer to extract
the commitment of the honest committer. Again, timers for the internally emulated
simulator are handled relative to a presumptive real execution (independent of the
honest committer’s input b). In the real execution, the internally emulated simulator
will succeed in extracting the correct bit with overwhelming probability. In the ideal
execution, the extracted bit b′ will either be independent of b or the extraction may fail
altogether, allowing Z ′ to distinguish with non-negligible probability.

In the next section, we will construct a TLUC-secure composable commitment scheme
in the plain model where both parties use timers. In such a setting, a legal environment
may not be able to internally execute the simulator without triggering a timeout for
timers set up by honest parties.

3.5. Composable Commitment Schemes in the Plain Model

We are now ready to present our construction πMCOM that TLUC-realizes the ideal
functionality FMCOM (Figure 2.3) and prove its security. Our construction is based
on the UCCOneTime commitment scheme in the FCRS-hybrid model due to Canetti and
Fischlin [CF01], which is a variant of the trapdoor commitment scheme due to Di
Crescenzo, Ishai, and Ostrovsky [DIO98], which is in turn based on the commitment
scheme due to Naor [N90].

In the original scheme UCCOneTime, which is suitable for a single commitment only,
the CRS consists of two parts: a pair of public keys (pk0, pk1) for a trapdoor PRG
(Definition 3.5) as well as a uniformly random string σ ∈ {0, 1}4κ. With the knowledge
of the associated PRG trapdoors, i.e. the secret keys (sk0, sk1), it is possible to extract
the commitment. By changing the distribution of σ in an indistinguishable way, the
commitment becomes equivocal.

To enable simulation in the case of static corruptions, the knowledge of only one
trapdoor, depending on which party is corrupted, is sufficient. The other trapdoor
does not even have to exist. Assuming trapdoor PRGs with dense public description
(Definition 3.6), we can perform two coin-tosses to generate (pk0, pk1) resp. σ. While
our coin-toss protocol (see Section 3.5.1) may, depending on the used commitment
scheme, not be fully (straight-line) simulatable, it is straight-line simulatable if the
simulator plays the initiator and the commitment scheme has a straight-line trapdoor
property. This suffices to set up the extraction trapdoor if the sender in our composable
commitment scheme is corrupted by having the commitment receiver, played by the
simulator, start the coin-toss for (pk0, pk1). The simulator can equivocate the result to
public keys for which it knows the secret keys. Conversely, the coin-toss for σ is started

84

3.5. Composable Commitment Schemes in the Plain Model

by the commitment sender. If it is honest, the simulator can simulate the coin-toss such
that σ contains an equivocation trapdoor. From that point on, the original UCCOneTime
scheme is executed, using the values obtained by this preamble phase instead of the
CRS as in the original protocol. For each new commitment between two parties, the
preamble phase is re-executed. A similar approach is used in [DMRV13].

Our coin-toss protocol πCT uses the timed simulation-sound trapdoor commitment
scheme SSCOM (see Section 3.3.2) whose equivocation trapdoor is protected by a timed
commitment that can be extracted by the simulator. As SSCOM is timed simulation-
sound, SSCOM commitments of corrupted committers remain binding in such a setting
(if opened in time).

TLUC security does not imply concurrent self-composability. Thus, we cannot simply
prove the security of a single commitment and conclude that it holds for multiple
commitments performed concurrently. Indeed, when using weaker building blocks, our
construction can be shown to securely realize one instance of FCOM, but not FMCOM,
where the latter captures concurrent self-composition.

In the following, we thus prove that πMCOM TLUC-realizes the ideal functionality
FMCOM for multiple commitments. We can thus plug πMCOM into any (UC-secure)
protocol making one subroutine call to FMCOM, achieving TLUC security.

3.5.1. The Coin-Toss Protocol πCT

One important building block towards constructing our TLUC-secure commitment
scheme is the coin-toss protocol πCT (Construction 2). It is essentially identical to the
protocol due to Blum [B81], except for the use of a string commitment scheme and with
the addition of handling the timers of SSCOM.

Construction 2 (Coin-Toss Protocol πCT). Parameterized with a security parameter
κ, a timed security parameter ℓ, a length parameter s = s(κ) and a ℓ′(ℓ(κ), κ)-timed
simulation-sound commitment scheme SSCOM with message space M ⊇ {0, 1}s.

1. On input (coin-toss, sid), the sender (also called initiator) samples r
$← {0, 1}s

uniformly at random.
2. Sender and receiver start an instance of SSCOM on common input

(1κ, commit, sid, ℓ′(ℓ(κ), κ)). The sender’s private input for the commitment is
r. All notify messages are forwarded between the adversary and the parties of
SSCOM. Messages (timer, id) coming from a SSCOM party are forwarded to the
adversary as (timer, id, ℓ), i.e. augmented with the timed security parameter ℓ.

3. After the commit phase has finished, the receiver samples r′
$← {0, 1}s uniformly

at random and sends (sid, r′) to the sender.
4. Upon receiving (sid, r′), sender and receiver perform the unveil phase of SSCOM.
5. Upon successful completion, sender and receiver each output

(coin-toss, sid, r ⊕ r′) and halt otherwise.

As SSCOM may not be straight-line extractable, we cannot show that πCT TLUC-
realizes the coin-toss functionality FCT. However, πCT exhibits the following useful

85

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

properties: If the commitment receiver is corrupted and the commitment scheme is
equivocal, the coin-toss is simulatable. If the sender is corrupted and does not abort,
the result of the coin-toss is distributed uniformly at random. Due to the simulation-
soundness of SSCOM, the result of one session is independent of all other sessions of
πCT that may run concurrently, with the exception of aborts skewing the distribution.

We do not prove these properties on their own, but show them implicitly in the proof
of the construction of the commitment scheme.

3.5.2. The Commitment Scheme πMCOM

We now present the construction of the composable commitment scheme πMCOM. We
assume that the communication between protocol parties is ideally authenticated.

Construction 3 (Commitment Scheme πMCOM). Parameterized by a timed security
parameter ℓ(κ) and a trapdoor PRG PRG with key space {0, 1}l(κ) for some polynomial
l, domain {0, 1}κ and range {0, 1}4κ.

Commit Phase.
1. Upon receiving (commit, sid, cid, Pi, Pj , b) as input for the committer Pi, committer

Pi and receiver Pj execute two instances of πCT with timed security parameter
ℓ(κ) to generate

a) (pk0, pk1) ∈ {0, 1}l(κ) × {0, 1}l(κ) (the “extraction CRS”) with the receiver
acting as initiator in πCT with session ID (sid, cid, 0), where l(κ) is the length
of public keys of PRG.

b) σ ∈ {0, 1}4κ (the “equivocation CRS”) with the committer Pi acting as
initiator in πCT with session ID (sid, cid, 1).

If both instances of πCT terminate successfully, both parties store
(sid, cid, (pk0, pk1, σ)). Otherwise, they halt the execution.

2. The committer Pi samples r
$← {0, 1}κ and sets c = PRG(pk0, r) if b = 0 and

c = PRG(pk1, r)⊕ σ if b = 1. Then, the committer sends (commitment, sid, cid, c)
to the receiver Pj . The committer stores (sid, cid, (b, r, c)), the receiver stores
(sid, cid, c) and outputs (committed, sid, cid, Pi, Pj).

Unveil Phase.
1. Upon receiving (unveil, sid, cid, Pi, Pj) as input, the committer Pi sends

(unveil, sid, cid, (b, r)) to the receiver Pj .
2. Upon receiving (unveil, sid, cid, (b, r)) from the committer Pi, the receiver Pj

checks if c = PRG(pk0, r) for b = 0 or if c = PRG(pk1, r) ⊕ σ for b = 1, relative
to the values stored for this sid and cid. If the check is successful, the receiver
outputs (unveil, sid, cid, Pi, Pj , b) and halts otherwise.

Theorem 3.5. If PRG is a trapdoor PRG with dense public description and SSCOM is a
(computationally) trapdoor, extractable and timed simulation-sound commitment scheme
with appropriate parameters, then πMCOM TLUC-realizes FMCOM in the presence of
static corruptions.

86

3.6. Proof of Security

3.6. Proof of Security
In the following, we prove Theorem 3.5. For the sake of readability, we will often omit
the parameters of random variables, ensembles or functions, in particular the security
parameter κ or the (non-uniform) input z.

Proof. First, we define the simulator for πMCOM and the dummy adversary.

Definition 3.10 (The Simulator S).
As we consider static corruptions, we distinguish between which parties are corrupted

and which parties are honest in each session. For messages sent by (simulated) honest
parties, we assume that the simulator reports these messages to the environment. Upon
confirmation, the message is delivered. Conversely, the simulator delivers messages
coming from the environment in the name of corrupted parties. For simulated honest
parties waiting for a message, the internal simulation only continues when the message
has been delivered.

Corrupted Receiver, Honest Committer. In case of a corrupted receiver and an
honest committer, the simulator must be able to perform the commit phase without
knowing the value v committed to. Later, upon learning v, it must be able to equivocate
the commitment to v. To this end, it embeds an equivocation trapdoor.

1. Upon receiving the delayed output (committed, sid, cid, Pi, Pj) from FMCOM, play
the coin-toss for the extraction CRS honestly and report all messages. In case of
an error or timeout, halt.

2. Sample r0, r1
$← {0, 1}κ and play the coin-toss for the equivocation CRS using

the algorithm of the trapdoor committer Ctrap. Equivocate the commitment such
that the result of the coin-toss is σ = PRG(pk0, r0)⊕ PRG(pk1, r1). In case of an
error, halt.

3. Perform the commit phase by reporting c = PRG(pk0, r0) as message from the
committer. Upon successful message delivery, allow the delayed output.

4. Upon receiving the delayed output (unveil, sid, cid, Pi, Pj , b) from FMCOM, report
(unveil, sid, cid, (0, r0)) if b = 0 and (unveil, sid, cid, (1, r1)) if b = 1. Upon
successful message delivery, allow the delayed output.

Corrupted Committer, Honest Receiver. In case of a corrupted committer and
an honest receiver, the simulator must be able to extract the value v committed to. To
this end, it embeds an extraction trapdoor.

1. Generate keys (pki, ski) ← PRG.TGen(1κ) for i = 0, 1 and perform πCT for the
extraction CRS using the algorithm of the trapdoor committer Ctrap. Equivocate
the commitment such that the coin-toss result is (pk0, pk1). In case of an error,
halt.

87

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

2. Play the coin-toss for the equivocation CRS σ honestly and report all messages.
In case of an error or timeout, halt.

3. Upon receiving (commitment, sid, cid, c) from the environment:
• Check, using ski, if c is in the range of PRG(pk0, ·). If this is the case, send

(commit, sid, cid, Pi, Pj , 0) to FMCOM on behalf of the corrupted committer
Pi.

• Otherwise, send (commit, sid, cid, Pi, Pj , 1) to FMCOM on behalf of the cor-
rupted committer Pi.

Subsequently, allow the public delayed output of (committed, sid, cid, Pi, Pj) of
the honest receiver.

4. Eventually, receive (unveil, sid, cid, (b, r)) from the environment. If c is a
valid commitment to b and b agrees with the value sent to FMCOM, send
(unveil, sid, cid, Pi, Pj) to FMCOM and allow the public delayed output. Other-
wise, if b = 1 does not agree with the value sent to FMCOM but r ⊕ σ is in the
range of PRG(pk1, ·), output a special error symbol ⊥FAIL. Otherwise, i.e. if the
commitment is invalid, halt.

Both Parties Honest.
This case is identical to the case of the corrupted receiver, except that the simulator
also plays the role of the honest receiver.

Both Parties Corrupted.
In this case, the simulator behaves like the dummy adversary.

We prove Theorem 3.5 by showing that the simulator given in Definition 3.10 is valid
for the dummy adversary, which is sufficient (see Proposition 3.3). First, we define a
series of hybrids for the proof, ordered by the start of the individual commitments. In
order to better distinguish between elementary (non-UC) commitments in πCT and
commitments to be performed with πMCOM, we also refer to the latter as sessions.
Starting with an all-real execution, we consecutively introduce the simulator into the
execution. Let q = q(κ) denote an upper bound for the number of sessions.

For each hybrid, we show the indistinguishability of the environment’s output com-
pared to the previous hybrid. We also show that the environment is non-abusing, i.e.
does not equivocate commitments, despite the equivocations performed by the simulator.
While both properties are related, they require separate proofs at first. The hybrids are
defined as follows:

• H0: The real execution with the dummy adversary D and protocol πMCOM.

• H i
1: The execution with a simulator Si

1 and the protocol IDEAL(F1) for the ideal
functionality F1 that gives the inputs of all honest parties to the simulator and
lets it determine all outputs. Si

1 honestly executes πMCOM but uses the code of

88

3.6. Proof of Security

the trapdoor committer Ctrap of SSCOM whenever the simulator S would do so
in the first i sessions. Outputs of simulated honest parties are forwarded to F1.

• H i
2: Identical to Hq

1 with F2 = F1 and Si
2 = Si

1, apart from the following changes
for sessions k ≤ i:

– If, in the k-th session, only the committer (of πMCOM) is corrupted, Si
2

generates (pkj , skj)← PRG.TGen(1κ) for j ∈ {0, 1} and equivocates the first
coin-toss to (pk0, pk1).

– If, in the k-th session, only the receiver (of πMCOM) is corrupted or both
committer and receiver are honest, Si

2 samples r0, r1
$← {0, 1}κ, equivocates

the second coin-toss to σ = PRG(pk0, r0) ⊕ PRG(pk1, r1) and commits by
sending c = PRG(pk0, r0) as commitment.

• H i
3: Identical to Hq

2 , but F i
3 behaves like FMCOM for the first i sessions and like

F2 otherwise. Si
3 is identical to Sq

2 , except that it runs S for the first i sessions. If
S outputs ⊥FAIL in the j-th session, output ⊥j

FAIL.

• H4: The ideal execution with the simulator S and FMCOM.

We now present the proof.

Claim 3.3. If SSCOM is (computationally) trapdoor, then outi
1 and outi+1

1 are (computa-
tionally) indistinguishable. If SSCOM is timed simulation-sound, then for an appropriate
(polynomial) timed security parameter ℓ′ for SSCOM, the environment is non-abusing
in H i

1.

Proof. We prove the indistinguishability by a reduction to the trapdoor property of
SSCOM. Then, we show that the environment is non-abusing.

Indistinguishability. Let A′ be the following adversary against the trapdoor property
of SSCOM:

1. On input (1κ, z), A′ internally starts an instance of H i
1 with input (1κ, z) for the

environment.

2. If there is a commitment in the i + 1-th session for which the trapdoor committer
Ctrap would be used, perform this commitment externally with the trapdoor
experiment.

3. Eventually, A′ outputs what the environment outputs.13

As the trapdoor property is not timed, A′, running in polynomial time, constitutes
a valid adversary. By definition of A′, its advantage in the trapdoor game is iden-
tical to the distinguishing advantage of the environment between H i

1 and H i+1
1 , i.e.

13Without loss of generality, we may assume that the environment under consideration always outputs
a bit.

89

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

AdvTD
A′,SSCOM,O(κ, z) = |Pr[outi

1 = 1] − Pr[outi+1
1 = 1]|, which is negligible as SSCOM

is trapdoor. It follows that |Pr[out0
1 = 1] − Pr[outq

1 = 1]| ≤ q(κ) · neglTD
SSCOM(κ) for a

negligible function neglTD
SSCOM.

Non-Abusing. For the use in later hybrids, we need to show that the environment does
not equivocate commitments where it is the committer, even if it receives equivocated
commitments (cf. Definition 3.8). In analogy to [DMRV13], we call this property non-
abusing. In order to show that the environment is non-abusing, we perform a reduction
to the timed simulation-soundness of SSCOM. In the reduction, the reduction adversary
A′ internally executes an instance of the TLUC execution where the legal environment
is abusing. We have to ensure that A′ is able to internally simulate the execution
without triggering a timeout in the reduction when there is no such timeout triggered
by the TLUC environment. This is generally not trivial since the TLUC environment
Z and the reduction adversary A′ may count the number of performed computation
steps differently. For example, Z may (legally) not count simulation overhead resulting
from e.g. simulating other environments and protocols. Of course, A′ has to count these
steps. To address this caveat, A′ runs, if applicable, the corresponding unrolled TLUC
execution14 where all steps are counted correctly, including the emulation overhead
resulting from A′ internally emulating said execution (cf. Proposition A.1).

Also, Z counts the steps relative to a (presumptive) execution of πMCOM and the
dummy adversary D, while A′ emulates a UC execution with an instance of IDEAL(F1)
and a simulator Si

1. For the reduction to go through even in the presence of these
discrepancies, the timed security parameter ℓ′ of SSCOM has to be chosen sufficiently
large to account for these differences.

Let EABUSEi
1

denote the event that the environment is abusing in H i
1, i.e. opens a

SSCOM commitment to a value different from the extracted one.
Suppose for the sake of contradiction that Pr[EABUSEi

1
] is non-negligible, i.e. Z is

abusing. Then, we can construct an adversary A′ against the ℓ′(ℓ(κ), κ)-simulation-
soundness of SSCOM using the following reduction:

1. On input (1κ, z), A′ chooses j
$← {1, . . . , q} uniformly at random, where q = q(κ)

is an upper bound for the number of sessions. Then, A′ internally executes an
instance of H i

1. timer and notify messages are forwarded between the internal
execution of the UC experiment and the timed simulation-soundness game as
needed. To this end, the timed security parameter ℓ is removed from timer
messages coming from UC protocol parties and added to timer messages for UC
parties.

14Informally, the unrolled execution of a routing environment is the execution where the routing
environment is ignored and its internally emulated machines are executed directly. This removes
the emulation overhead that would occur, while, due to the definition of routing environments, the
output distribution remains identically distributed. For the definition of the unrolled execution, see
Definition A.4

90

3.6. Proof of Security

2. The commitments of the sessions that are played using Ctrap in H i
1 are played as

left sides with the timed simulation-soundness game, using the uniform distribution
on bitstrings of length l(κ) resp. 4κ.

3. If all or no parties in the j-th session are corrupted, abort.

4. If there is a corrupted party in the j-th session, play the single SSCOM commitment
where the committer is corrupted as the right side in the simulation-soundness
experiment.

Clearly, Z’s view is identically distributed in the reduction and in H i
1, unless all

parties in the j-th session are honest or corrupted (and we do not need to argue the
non-abusing property for this session). If the timed security parameter ℓ′ is sufficiently
large, A′ never has to send a (notify, ★, 1) message before Z (when asked through a
notify message) does. Thus, any attack carried out by Z can be performed by A′
without having to trigger a timeout prematurely. In particular, ℓ′(ℓ(κ), κ) has to be
sufficiently large to account for the following differences between the reduction and the
presumptive execution according to which Z counts the number of steps performed:

• Overhead due to the reduction itself, e.g. interaction with the experiment and
relaying of messages between the internal UC execution and the experiment.

• Overhead due to changes in the internally emulated UC execution, e.g. additional
steps for IDEAL(F1).

We want ℓ′ to not depend on the internally emulated environment Z or the maximum
number of sessions q, but only on the reduction as well as the timeout parameter ℓ15. To
this end, we observe the following: A′ relays messages between its internal UC execution
and the experiment. For each commitment session, the overhead is independent of the
number of sessions q.
Z may schedule the sessions in a way such that when the timer in the j-th session

is active, multiple other sessions are activated. In the real execution, unless a timeout
occurs, the number of sessions activated when the timer in the j-th has not expired is
trivially upper-bounded by ℓ(κ), as each activation will consume at least one computation
step. Thus, the maximum number of active sessions (for the timer in the j-th session)
is independent of the bound for the number of challenge sessions q(κ).

We have to consider the case that Z is a routing environment (cf. Appendix A.1.2).
In this case, the steps needed by A′ to emulate the TLUC execution may be more
compared to the steps reported by Z due to unaccounted emulation overhead. However,
according to Proposition A.1, there exists an “unrolled” execution (cf. Definition A.4)
where there is no such emulation overhead and the environment’s view is identically
distributed. Due to the structure of routing environments, A′ is able to “unroll” the
execution in polynomial time before starting the internal emulation. At this point, no
15This does of course not rule out that ℓ may depend on Z and q. However, Z and q do not have to be

additionally considered for ℓ′.

91

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

timers are active. Alternatively, we may provide A′ with the necessary information via
its advice.

Thus, setting ℓ′ as ℓ(κ) plus the overhead for one single session plus some additional
(small) overhead polynomial in κ, suffices. It follows that ℓ′ is polynomially bounded,
independent of q and the particular environment. As A′ internally executes an instance
of the TLUC execution with a legal environment and adversary and timeout parameter
ℓ, A′ is also a legal adversary against the ℓ′(ℓ(κ), κ)-simulation-soundness of SSCOM
for appropriately chosen ℓ′. By definition of A′, its advantage in the simulation-
soundness experiment is equal to Pr[EABUSEi

1
]/q(κ) in H i

1. Thus, a non-negligible
probability of EABUSEi

1
contradicts the simulation-soundness of SSCOM. It follows that

Pr[EABUSEi
1
] ≤ q(κ) · neglSIMSOUND

SSCOM (κ) for a negligible function neglSIMSOUND
SSCOM and that

Z is non-abusing in H i
1.

Claim 3.4. If PRG is a trapdoor PRG with dense public description and SSCOM is
extractable, then outi

2 and outi+1
2 are computationally indistinguishable. Moreover, the

environment is non-abusing in H i
2.

Proof. Let H i,#
2 be the sub-hybrid between H i

2 and H i+1
2 where only the first public

key pk0 is replaced with a public key originating from PRG.TGen.
We start by proving the non-abusing property.

Non-Abusing. In order to show that the environment is non-abusing in H i
2 (the

argument for H i,#
2 is analogous), we cannot directly reduce to the simulation-soundness

of SSCOM as in the previous step. This is because we do not know the correct distribution
of the equivocated commitment beforehand, as it depends on the second-round message
of the coin-toss.

For i = 0, we have shown that the environment is non-abusing in H0
2 = Hq

1 . If the
environment were to become abusing in H1

2 , we could use the environment to break
the assumptions stated in Claim 3.4, namely the indistinguishability of keys output by
PRG.TGen and uniformly random strings of appropriate length or the pseudorandomness
of PRG, respectively. To this end, it is important that the reduction adversary is able to
extract commitments created by the environment in order to determine if the environment
is abusing in the first place. While SSCOM is not straight-line extractable, we require
it to be extractable, e.g. via rewinding, in strict polynomial time. This can be achieved
by using appropriate building blocks (cf. Corollary 3.1). As the properties we reduce to
have non-interactive challenge phases, the reduction adversary is able to execute the
extractor without having to rewind the reduction. (In other words, the extraction is
trivially robust with respect to the “left sides” consisting of the experiments.) Thus, a
strict polynomial-time reduction with only a polynomial loss of security is possible. As
the aforementioned properties are not timed but hold for polynomial-time adversaries
in general, we do not have to argue that the reduction adversary is able to provide its
answer in time.

For i > 1, we can use this same strategy to create a contradiction to the assumptions
of Claim 3.4 by using the fact that in the previous hybrid (i.e. H i

2 or H i,#
2), the

92

3.6. Proof of Security

environment was non-abusing. To this end, the adversary A′ chooses a random index
j

$← [q] and extracts the environment’s commitment in the j-th session. All messages in
other sessions are answered as usual. If no party is corrupted or the extraction fails,
the adversary outputs a random bit b. If the environment is abusing in the j-th session
(determined by the same criterion as in Definition 3.8), it outputs 1, otherwise it outputs
0.

Thus, it holds that Pr[EABUSEi
2
] ≤ Pr[EABUSE0

2
] + 2 · i(κ) · q(κ) · (2 · neglPRGKEY

PRG (κ) +
neglPRGVAL

PRG (κ) + 2 · neglEXT
SSCOM(κ)) for negligible functions neglPRGKEY

PRG , neglPRGVAL
PRG and

neglEXT
SSCOM bounding an adversary’s advantage distinguishing between uniformly random

public keys and public keys originating from PRG.TGen resp. between random and
pseudorandom values and the extraction error.

Note that in order to show the non-abusing property, it was not necessary to first
show the indistinguishability of the adjacent hybrids. We will do this in the following,
using the non-abusing property.

Indistinguishability, Corrupted Committer. Suppose for the sake of contradiction
that outi

2 and outi,#
2 are not computationally indistinguishable. We can then construct

an adversary against the indistinguishability of uniformly random public keys16 and
public keys originating from PRG.TGen.

The reduction adversary A′ works as follows:

1. On input (1κ, z), internally start an execution of H i
2 with input (1κ, z).

2. Obtain the challenge pk0 from the experiment and also sample r
$← {0, 1}l(κ).

3. Equivocate the commitment in the i-th coin-toss such that it has the result (pk0, r)
and continue the execution of H0

i as specified.

4. Output what the environment outputs.

If pk0 is a uniformly random string, then the environment’s view is identically distributed
as in H i

2. If pk0 originates from PRG.TGen, then the environment’s view is identically
distributed as in H i,#

2 . Thus, the distinguishing advantage of A′ is the same as the
environment’s, contradicting the indistinguishability of PRG keys with trapdoor and
uniformly random strings.

As the proof for the indistinguishability of H i,#
2 and H i+1

2 is similar, we omit it.
All in all, as PRG keys with and without trapdoor are indistinguishable, we conclude
that |Pr[outi

2 = 1] − Pr[outi+1
2 = 1]| ≤ 2 · neglPRGKEY

PRG (κ) (where neglPRGKEY
PRG is a

negligible function bounding an adversary’s distinguishing advantage between public
keys originating from PRG.TGen resp. uniformly random strings of appropriate length),
which is negligible.
16By Definition 3.6, we assume that uniformly random keys and keys output by PRG.Gen are compu-

tationally indistinguishable. Due to the transitivity of indistinguishability and the fact that both
experiments have the same number of rounds, it suffices to consider uniformly random public keys in
this reduction.

93

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Indistinguishability, Corrupted Receiver. The proof of indistinguishability for a
corrupted receiver is more involved, since reducing to the pseudorandomness property
of the PRG leads to a change in the distribution of one PRG key. Let H i,PRGKEY

2 be a
sub-hybrid where only the PRG key is changed. As the proof for the indistinguishability
of outi

2 and outi,PRGKEY
2 is very similar as in the case of the non-abusing property (as

we need to use the extractability property of SSCOM in order to embed the challenge),
we omit it. Also, it is easy to see that the environment is non-abusing in this sub-hybrid.
Let H i,PRGVAL

2 denote the hybrid after H i,PRGKEY
2 that is, with the exception of the

PRG key distribution, identical to H i+1
2 .

Suppose for the sake of contradiction that outi,PRGVAL
2 and outi,PRGKEY

2 are not
computationally indistinguishable, i.e. there exists a non-negligible function ν(κ) that
lower-bounds Z’s distinguishing advantage. We construct an adversary A′ against the
pseudorandomness property of PRG with non-negligible advantage ν ′(κ).
A′, on input (1κ, z), acts as follows:

1. Obtain the challenge public key pk from the PRG experiment as well as a challenge
value s. Also, sample pk′

$← {0, 1}l(κ).

2. Internally, start an instance of H i,PRGKEY
2 with input (1κ, z). At the beginning

of the i-th session, play the πCT instance for the extraction trapdoor as follows:
First, use the extractor E of SSCOM (cf. Corollary 3.1) to obtain the value v
committed to by the environment. Simulate all protocol messages not related to
SSCOM as in H i

2. If E outputs v = ⊥, i.e. the extraction fails, output a uniformly
random bit to the PRG experiment. Otherwise, send v ⊕ (pk0, pk1) with pkb = pk′

and pk1−b = pk as second-round message. Let v′ denote the value unveiled by
the environment. Let EINCON denote the event that v ≠ v′ or that the extraction
fails. If EINCON occurs, or Z does not open the commitment, output a uniformly
random bit b′.

3. Sample r
$← {0, 1}κ and equivocate the equivocation CRS σ to PRG(pkb, r)⊕ s.

4. Continue the execution, but commit as follows: If b = 0, send PRG(pk0, r) as c. If
b = 1, send PRG(pk1, r)⊕ σ = s as c.

5. Finally, obtain the output b′ of Z and output b′.

If s is a uniformly random string, then Z’s view is distributed as in H i,PRGKEY
2 :

• σ is a uniformly random element (and so is σ ⊕ c).

• If b = 0, c is always in the range of PRG(pk0, ·).

• If b = 1, c ⊕ σ = s ⊕ (PRG(pk1, r) ⊕ s) = PRG(pk1, r) is always in the range of
PRG(pk1, ·).

If s is distributed pseudorandomly, i.e. is in the range of PRG(pk, ·), then Z’s view is
distributed as in H i,PRGVAL

2 :

94

3.6. Proof of Security

• There exists r′ ∈ {0, 1}κ such that σ = PRG(pkb, r)⊕ PRG(pk, r′)

• If b = 0, c is always in the range of PRG(pk0, ·).

• If b = 1, c is always in the range of PRG(pk0, ·) and c⊕σ = s⊕(PRG(pk1, r)⊕ s) =
PRG(pk1, r) is always in the range of PRG(pk1, ·).

If EINCON does not occur, A′’s advantage in the PRG game is identical to Z’s
distinguishing advantage between H i,PRGKEY

2 and H i,PRGVAL
2 . If EINCON occurs, A′’s

advantage is 0. We can thus use A′ to bound the distinguishing advantage of Z as
follows, using the pseudorandomness of PRG and the extractability of SSCOM:

|Pr[outi,PRGKEY
2 = 1]− Pr[outi,PRGVAL

2 = 1]|

≤Pr[EINCON] + |Pr[outi,PRGKEY
2 = 1 ∧ ¬EINCON]− Pr[outi,PRGVAL

2 = 1 ∧ ¬EINCON]|

≤Pr[EINCON] + |Pr[outs is uniformly random
A′ = 1 ∧ ¬EINCON]−

Pr[outs is pseudorandom
A′ = 1 ∧ ¬EINCON]|

≤Pr[EINCON] + neglPRGVAL
PRG (κ)

The last inequality holds due to the pseudorandomness of PRG.
As SSCOM is simulation-sound and extractable, we can bound Pr[EINCON] by

Pr[EABUSEi,PRGKEY
2

] + neglEXT
SSCOM(κ) (as the execution is identically distributed to

H i,PRGKEY
2 when the extraction occurs), where neglEXT

SSCOM is a function bounding the
extraction error.

Going from H i,PRGVAL
2 to H i+1

2 requires changing the PRG key distribution again
and we omit the reduction.

It thus holds that

|Pr[outi
2 = 1]− Pr[outi+1

2 = 1]|
≤Pr[EINCON] + neglPRGVAL

PRG (κ) + 2 · neglPRGKEY
PRG

≤Pr[EABUSE0
2
] + 2 · i(κ) · q(κ) · (2 · neglPRGKEY

PRG (κ) + neglPRGVAL
PRG (κ) + 2 · neglEXT

SSCOM(κ))

+ neglEXT
SSCOM(κ) + neglPRGVAL

PRG (κ) + 2 · neglPRGKEY
PRG

≤Pr[EABUSE0
2
] + 2 · q2(κ) · (4 · neglPRGKEY

PRG (κ) + 2 · neglPRGVAL
PRG (κ) + 3 · neglEXT

SSCOM(κ))

which is negligible as the environment is non-abusing in H0
2 . Here, neglPRGKEY

PRG denotes
the function for the maximum advantage of an adversary distinguishing between uni-
formly random strings of appropriate lengths (i.e. PRG keys resulting from a coin-toss)
as well as PRG keys that enable extraction resp. PRG keys originating from PRG.Gen.

In particular, it follows that |Pr[out0
2 = 1]− Pr[outq

2 = 1]| is negligible too, as there
exists a common bound for adjacent hybrids.

Claim 3.5. If the environment is non-abusing in Hq
2 , then outi

3 and outi+1
3 are compu-

tationally indistinguishable. Moreover, the environment is non-abusing in H i
3.

95

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

Proof. As the only possible difference between H i
3 and H i+1

3 is the simulator outputting
a special error symbol ⊥i+1

FAIL if the environment is able to open a commitment of a
corrupted committer to a value different from the one extracted by the simulator in the
i + 1-th session, the proof is straight-forward. Let Ei+1

FAIL denote this event.

Non-Abusing. If Z is non-abusing in Hq
2 , then it is also non-abusing in H i+1

3 . This
is due to the fact that outi

3 and outi+1
3 are identically distributed unless Ei+1

FAIL occurs.
If Ei+1

FAIL occurs, the execution halts without giving Z the opportunity to equivocate a
commitment that it has not been able to equivocate in the previous hybrid.

Indistinguishability. If Ei+1
FAIL does not occur, H i

3 and H i+1
3 are identically distributed.

It thus suffices to bound Pr[Ei+1
FAIL].

Corrupted Committer. If Ei+1
FAIL occurs, then there exist r0, r1 ∈ {0, 1}κ such that

σ = PRG(pk0, r0)⊕ PRG(pk1, r1) in the i + 1-th session, which we call a collision. Let,
for fixed pk0 and pk1, S = {σ′ | ∃r0, r1 : σ′ = PRG(pk0, r0)⊕ PRG(pk1, r1)} denote the
set of collisions and let ECOL denote the event that σ ∈ S. As the size of PRG’s image
is upper-bounded by the size of its domain, i.e. 2κ, we can bound |S| by 22κ. Thus, in a
coin-toss for σ where the commitment is not equivocated and the second-round message
is chosen uniformly at random, the probability Pr[ECOL] ≤ 22κ/24κ is negligible.

In order for Pr[Ei+1
FAIL] to be non-negligible, the environment must bias the coin-

toss either by only finishing sessions where the result is a collision or by equivocat-
ing its commitment such that a collision occurs. Let Ei+1

INCON denote the event that
the environment equivocates the commitment in πCT in the i + 1-th session. We
can upper-bound bound Pr[Ei+1

FAIL] by Pr[Ei+1
COL ∧ ¬Ei+1

INCON ∨ Ei+1
INCON]. As Z is non-

abusing in H i
3, it follows that Pr[Ei+1

INCON] ≤ Pr[EABUSEq
2
], which is negligible. As

Pr[ECOL] ≤ 2−2κ, it follows that Pr[ECOL ∧ ¬EINCON] ≤ 2−2κ. All in all, we have
|Pr[outi

3 = 1]− Pr[outi+1
3 = 1]| = Pr[Ei+1

FAIL] ≤ 2−2κ + Pr[EABUSEq
2
], which is negligible

as the environment is non-abusing.
As there exists a common bound for the distinguishing advantage between the hybrids

H i
3 and H i+1

3 for every i ∈ {0, . . . , q − 1}, it follows that |Pr[out0
3 = 1]− Pr[outq

3 = 1] is
negligible.

Corrupted Receiver. If the receiver is corrupted, the simulation is identical to
the previous hybrid. Thus, Z’s view is identically distributed and its distinguishing
advantage is 0.

As H4 is identical to Hq
3 , except for syntactical changes subject to events with

negligible probability (the final simulator outputs ⊥FAIL when the previous one would
output ⊥i

FAIL) it holds that out4 and outq
3 are computationally indistinguishable.

As there exists a common bound for the distinguishing advantage between the
individual hybrids, out0 and out4 are computationally indistinguishable and the claim
follows.

96

3.6. Proof of Security

Remark 3.6. Our proof differs from the one in [CF01] in a number of ways:

• In the proof for the UCCOneTime scheme, the reduction adversary has to guess
the bit committed to by the honest committer when embedding the public key
from the PRG reduction into the CRS. In our reduction, this is different as the
reduction adversary knows the bit committed to by the honest party beforehand.

• The UCCOneTime scheme requires a PRG with a stretch of 3κ that expands strings
of length κ to strings of length 4κ. This is due to the fact that the UCCOneTime
simulator always embeds an equivocation trapdoor into the CRS, even if the
receiver is honest. In our case, this is not only impossible if the committer is
corrupted, but the analysis is also somewhat different, allowing the use PRGs
with a stretch of 2κ only.

3.6.1. Generalizing Our Result

Our protocol πMCOM uses a timed simulation-sound commitment scheme SSCOM to
TLUC-realize FMCOM. However, it can be generalized to realize FMCOM under other
security notions, depending on the properties of SSCOM and the existence of certain
cryptographic hardness assumptions.

If one desires a setting where there is no (even temporary) complexity asymmetry
between simulator and environment, one can replace SSCOM with a UC-secure commit-
ment scheme and obtains a commitment scheme that UC-realizes FMCOM. Following
the impossibility results of e.g. [CF01], this requires a setup.

The other extreme is to consider large complexity asymmetries that hold throughout
the whole execution. This is the general setting of (Cenv, Csim)-security introduced by
[LPV09]. In this setting, Cenv denotes the complexity class of the environment and Csim

the complexity class of the simulator. If Cenv = Csim, one achieves a framework with
universal composition. In the case of UC security, the complexity class considered is
(non-uniform) probabilistic polynomial time.

If Cenv is e.g. (non-uniform) polynomial-time and Csim is quasi-polynomial-time, then
we can realize FMCOM in the plain model, assuming that trapdoor permutations with
dense public description and subexponential hardness exist. Moreover, we require
commitment schemes that are extractable in quasi-polynomial time.

Indistinguishability is even guaranteed if the environment passes its view after the
execution to a distinguisher with complexity Csim, which is not usually guaranteed by
other approaches.

In between these extremes, more fine-grained solutions are possible, e.g. by considering
different security parameters for environment and simulator. In a very practical setting,
one might believe that e.g. RSA-4096 is secure even for adversaries able to break RSA-
1024. Our protocol can be adapted to this setting, using a simulator that is able to
efficiently break RSA-1024 but not RSA-4096.

Remark 3.7. Our technique also weakens the assumptions for practical complexity
leveraging: We can replace the timed commitment scheme with a “weak” commitment

97

3. Environmentally Friendly Composable Multi-Party Computation in the Plain Model
from Standard (Timed) Assumptions

scheme that is initially hiding for every polynomial-time environment and adversary,
but extractable for the simulator (that must not be able to break the other hardness
assumptions used in the protocol). The security of this “weak” commitment scheme
thus can be very low, as the simulation remains indistinguishable as long as the “weak”
commitments remain hiding during their use in the coin-toss. Afterwards, they do not
need to be hiding anymore.

3.6.2. Obtaining a Timer-Obeying Simulator Using a Setup

We have stated in Section 3.3.2 that a potential candidate for the weakly extractable
timed commitment scheme TCOM used in SSCOM is the timed commitment scheme of
Boneh and Naor [BN00], which is in the plain model.

In order to argue for the plausibility of their plain-model MPC protocol, Prabhakaran
and Sahai [PS04] outline how to realize their Imaginary Angel in the FCRS-hybrid model,
essentially resulting in a UC protocol.

We discuss how to cast our protocol πMCOM in the FKRK-hybrid model (i.e. using a
setup for key registration with knowledge) when using the timed commitment scheme of
[BN00], resulting in a composable commitment that is simulatable even for simulators
that obey to timers.

The changes to the commitment scheme of [BN00] are as follows: Instead of having
the committer sample primes p1, p2 such that p1 ≡ p2 ≡ 3 mod 4 and send N = p1 · p2
to the receiver, we use the FKRK functionality to provide a public key N for each
committer (to all parties) as well as the secret φ(N) (to the committer only) according
to the aforementioned distribution.

Informally, the extraction trapdoor φ(N) is protected by the BBS assumption, which
is believed to be hard for classic polynomial-time adversaries with only the knowledge of
N . Otherwise, the protocol remains unmodified. Each N can even be used for multiple
TCOM commitments [BN00], i.e. as sole setup for πMCOM.

The new simulator does not have to use the costly (but still polynomial-time)
forced-open algorithm, but can use φ(N) to very efficiently extract timed commitments
from malicious committers. Otherwise, the simulation remains unmodified. It is easy to
see that the resulting simulator can obey all timers if the timed security parameter ℓ is
chosen such that there is sufficient time for the timed commitment to be extracted using
φ(N) while still guaranteeing its timed hiding property without the knowledge of φ(N).

While this modified protocol still crucially relies on timers to prevent the environment
from extracting timed commitments created by the simulator and is thus not UC-secure,
the simulation strategy is as “plausible” as any UC simulation strategy relying on a
trusted setup.

98

3.7. Constant-Round Black-Box Composable General MPC

3.7. Constant-Round Black-Box Composable General
MPC

In order to achieve composable general MPC, we can plug the construction πMCOM into
any UC-secure general MPC protocol that makes one subroutine call to FMCOM

17 while
maintaining security (using Corollary 3.5).

Hazay and Venkitasubramaniam [HV15] have presented a constant-round and black-
box general MPC protocol in the FCRS-hybrid model based on public-key encryption
and semi-honest oblivious transfer. Following the approach used in [BDH+17], we can
generate the CRS of the [HV15] protocol with a simulatable coin-toss, assuming that
public-key encryption (PKE) schemes with indistinguishability under chosen plaintext
attack (IND-CPA) security and oblivious public-key generation exist, thus casting the
protocol in the FMCOM-hybrid model.

Theorem 3.6. If timed commitment schemes with appropriate parameters and perfectly
binding homomorphic commitment schemes as well as pseudorandom generators with
dense public description and IND-CPA-secure PKE schemes with oblivious public-key
generation exist, then for every well-formed18 functionality F , there exists a constant-
round protocol πBB

F in the plain model such that π̂BB
F ≥TLUC IDEAL(F̂) and πBB

F uses
its building blocks in a black-box way only.

In Theorem 3.6, F̂ denotes the multi-session existence of F (cf. [CR03]) that naturally
captures concurrent self-composition.

Considering possible candidates for timed commitments and perfectly binding homo-
morphic commitment schemes, we obtain the following corollary.

Corollary 3.6. If the generalized BBS assumption and the DDH assumption hold and
trapdoor permutations with dense public description exist, then for every well-formed
functionality F , there exists a constant-round protocol πBB

F in the plain model such that
π̂BB
F ≥TLUC IDEAL(F̂) and πBB

F does not use non-black-box techniques.

Alternative and more practically efficient constructions for composable general MPC
in the plain model are possible. For example, one can use our composable commitment
scheme to bootstrap the CRS of the OT protocol of Peikert, Vaikuntanathan, and Waters
[PVW08]. The resulting protocol can then be combined with an arbitrary (efficient)
UC-secure general MPC protocol in the FOT-hybrid model, resulting in a TLUC-secure
general MPC protocol.

17As FMCOM models multiple commitments between multiple parties, a single instance of FMCOM is
usually sufficient.

18Informally, a functionality F is well-formed if its behavior is independent of which parties are corrupted
[CLOS02].

99

100

4. Updatable Composable Security
Parts of this chapter are based on an extended full version of the paper [BBK+23] (©
IACR 2023, DOI 10.1007/978-3-031-48624-1_19). In particular, [BBK+23] and the full
version do not include the notion of Updatable UC Security and the required technical
enhancements.

Robin Berger has contributed a treatment of timestamping, which will be part
of a future paper, but not part of this thesis. I would like to thank him for helpful
discussions on the ideal functionality for updatable commitments. Brandon Broadnax has
contributed to an earlier version of this work. I would also like to thank him for helpful
discussions. Michael Klooß and I have equally contributed to game-based definitions and
security notions concerning commitment schemes. While I have contributed through
many technical discussions, the sections on rewinding as well as pseudo-oracles are
overwhelmingly his contribution. In particular, it was his idea to use the commitment
scheme of Goyal et al. [GLP+15] instead of the construction of Canetti, Lin, and
Pass [CLP10]. Discussions with Michael on other parts have been particularly helpful.
Jörn Müller-Quade has contributed the overall idea, its technical aspects and, in
particular, to the notion of Updatable UC security. Markus Raiber has contributed the
general idea behind the security definition in Section 4.7.1 and provided preliminary
versions of Definition 4.26 and Construction 6 that are not part of this thesis. I
would also like to thank him for our discussions regarding Sections 4.7.2 and 4.7.3.
Astrid Ottenhues has contributed by identifying possible instantiations. I would like to
thank her for discussions on instantiations.

Abstract
Protocols for secure multi-party computation rely on assumptions such as an honest
majority of protocol parties or the hardness of certain problems. These cryptographic
hardness assumptions are usually believed to hold throughout and even after protocol
execution. However, this is not necessarily true: A number of cryptographic assumptions,
e.g. the security of SHA-1 or 512-bit RSA, turned out to be wrong in the first place
or became insecure due to increased computational resources or algorithmic advances—
even when the assumptions were still used. With the availability of universal quantum
computers, this problem will be exacerbated.

Long-term security, introduced by Müller-Quade and Unruh (TCC 2007, JoC 2010),
considers a setting where all hardness assumptions become invalid after the protocol
execution has finished. While achieving such a strict notion is highly desirable, it is
inadequate when assumptions may become invalid during protocol execution. Moreover,
there is a class of building blocks, e.g. commitment schemes, whose security can be

101

https://doi.org/10.1007/978-3-031-48624-1_19

4. Updatable Composable Security

preserved by “updating” to a new hardness assumption in time (e.g. from RSA-512 to
RSA-4096) during protocol execution and whose security is not appropriately captured
by long-term security.

To analyze the security of such protocols, we propose a variant of (long-term) UC
security where hardness assumptions may adaptively become invalid at any point
during or after a protocol execution. We call the resulting notion Updatable Universal
Composability.

Unfortunately, the setting of updatable and composable security is subject to the
known impossibilities of long-term security, ruling out the natural class of long-term
revealing setup assumptions such as common reference strings to achieve updatable
security. In order to circumvent this impossibility result, we make use of new techniques
allowing rewinding-based simulation in a way that universal composability is possible.
As a result, we are the first to construct a commitment scheme that is both statistically
hiding and composable from only standard polynomial-time hardness assumptions in the
CRS-hybrid model. Furthermore, we enhance the security of this commitment scheme
with an updatable binding property. This is the first construction of an updatable
composable commitment scheme.

Additionally, we construct protocols for composable zero-knowledge and commit-
and-proof with long-term security. We also give an impossibility result for our setting,
namely the impossibility of long-term-secure oblivious transfer. We also construct
protocols for composable reactive two-party computation with long-term security for
one party, which is the best one can hope for in our setting.

4.1. Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to perform
computations on their private inputs, guaranteeing properties such as correctness,
privacy or independence of inputs.

Unless an honest majority [BGW88] or very strong setup assumptions such as trusted
initializers [B97] or tamper-proof hardware tokens [DKM11] exist, building blocks such
as one-way functions or semi-honest oblivious transfer are necessary for MPC [N91; K88].
Unfortunately, it is not known if hard problems yielding these building blocks actually
exist—if this question could be answered one way or the other, the consequences for
complexity theory would be huge. In the meantime, the best we can do is to resort to
making assumptions about the hardness of certain problems. Often, the hardness is
based on or related to the perceived (but unproven) hardness of mathematical problems,
e.g. the RSA problem. In other cases, the arguments are more of a heuristic nature, e.g.
in the case of hash functions or block ciphers. Historically, a number of widely-used
candidates for cryptographic building blocks has either turned out to be insecure in
the first place (e.g. MD5 [K06] or SHA-1 [SKP16]) or to be inadequate because a) the
concrete choice of the “security parameter” has become too low due to advancements in
computational performance (e.g. in the case of DES with 56 bit key size) or b) algorithmic
advancements have led to new assessments of the security of certain parameter sets (e.g.

102

4.1. Introduction

the security estimates of RSA [RSA78]). In the face of the possible advent of (universal)
quantum computers, the danger of assumptions and thus protocols becoming insecure
will be exacerbated. Indeed, many of today’s hardness assumptions do not hold for
bounded-error quantum polynomial-time (BQP) algorithms, and further advances are
hard to predict.

If an assumption turns out to be invalid, one is faced with a number of problems.
First of all, an adversary who is in possession of protocol messages may obtain past
secrets. Given the actions of intelligence agencies that are known to capture large
amounts of traffic and store it for later processing, this is a real threat, even if the
parties participating in a protocol are honest.

This setting where (all assumed) cryptographic hardness assumptions hold during
protocol execution but all hardness assumptions become invalid is captured by the
notion of long-term or everlasting security [MU10]. While long-term security is often
possible for a subset of protocol parties, e.g. for commitment schemes that statistically
protect either the committer or the receiver, giving all parties this strong level of security
may be impossible.

However, we notice that some security properties like the soundness of a proof system
or the binding property of a commitment scheme are only important while the protocol
is still executed. For such properties, computational security that can be “updated” to
new hardness assumptions may be sufficient for many applications. Taking a closer look,
it turns out that merely requiring “cryptographic agility” [ABBC10; OP19], i.e. being
able to use different cryptographic algorithms for a specific task, is often insufficient:
When updating e.g. the binding property of a commitment scheme, it is crucial that the
update is performed consistently, preventing a malicious committer from committing to
a different value during the update. This example illustrates that the update process
not only must already be taken care of at protocol design time, but also needs to be
considered when defining and analyzing a protocol’s security.

Updating cryptographic protocols, e.g. commitment schemes [BGB17] or capturing
security in a setting where some cryptographic hardness assumption become invalid
[BFG19] have been considered before. However, previous approaches only consider a
stand-alone setting where only one protocol is executed at any time. In a setting where
multiple, possibly different protocols may be executed concurrently, stand-alone security
is insufficient. It is well known that there exist protocols that are secure when executed
on their own, but become completely insecure when two instances of the same protocol
are executed in parallel [GK90].

While the notion of long-term security [MU10] implies universal composability, it
is too weak in the sense that it cannot capture cryptographic hardness assumptions
becoming invalid during protocol execution, and, at the same time, too strong in the
sense that all hardness assumptions eventually become invalid. Thus, it is not suitable
for the analysis of protocols with updatable security. This leads to our first research
question:

How can we generalize the notion of long-term security to a setting that fa-
cilitates the analysis of protocols with updatable security, in particular where a) some

103

4. Updatable Composable Security

hardness assumptions may become invalid already during protocol execution, while
b) other hardness assumptions may continue to be valid after the protocol execution has
finished?

The notion of long-term security faces a number of impossibility results. In
particular, many commonly used and natural setup assumptions (e.g. common reference
strings) are too weak to construct long-term-secure composable commitment schemes,
i.e. commitment schemes that are both long-term hiding and computationally binding
as well as straight-line equivocal and extractable.

As we will see, composable and updatable commitment schemes need to feature very
similar properties, and indeed, the impossibility results of long-term security apply to
our setting, too, raising our main research question:

Can we circumvent the impossibility results of [MU10] that rule out compos-
able and long-term-secure commitment schemes from many natural setups?

Perhaps surprisingly, we can answer this question affirmatively and construct
long-term-secure composable commitment schemes in the CRS-hybrid model. In order
to circumvent this impossibility result, we propose new techniques and a new security
notion based on UC security which covers the possibility of extracting statistically
hiding commitment schemes via rewinding. While it may sound counterintuitive at
first, our notion remains closed under protocol composition like UC security.

Using this long-term-secure composable commitment scheme, we construct the first
composable commitment scheme whose binding property can be updated to new hardness
assumptions. Based on these updatable and long-term-secure commitment schemes, we
construct a variety of protocols achieving long-term or updatable security.

4.1.1. Outline and Contribution

In this chapter, we construct protocols with composable updatable and long-term
security for many important tasks. Our main contributions are as follows:

1. As a building block for the long-term-secure commitment scheme, we construct a
statistically hiding and equivocal CCA-secure commitment scheme (in the CRS-
hybrid model) in Section 4.3. As the committed value is only computationally
determined in this setting, we use a rewinding-based committed-value “oracle”
OCCA. To enable a formal analysis in this setting, we introduce pseudo-oracles
and show important properties of these.

2. We extend the notions of Universal Composability [C01] and long-term security
[MU10] to a setting where cryptographic hardness assumptions may become
invalid at any point in the execution in Section 4.4. Like in [CLP10], we enable the
extraction of commitments through a helper. In contrast to [CLP10], the helper
carefully uses rewinding for extraction. As the helper is accessible by environment

104

4.1. Introduction

and adversary, we retain universal composability. We call the resulting security
notion Updatable Universal Composability.
We provide several justifications for our notion in Section 4.4, i.e. can show that our
notion implies established security notions for large classes of protocols. Examples
include UC security or stand-alone real-ideal security, i.e. notions that do not
feature the helper H. Intuitively, this shows that the helper does not affect the
security of these protocol classes. Moreover, our notion features environmental
friendliness [CLP13a] for a large class of security properties, similar to the notion
of [CLP10].

3. In Updatable UC, we construct a composable commitment scheme which is long-
term-secure in the FCRS-hybrid model, circumventing the impossibility results of
Müller-Quade and Unruh [MU10] in Section 4.5. To the best of our knowledge,
we are the first to achieve this strong notion of security for commitment schemes
without resorting to hardware assumptions (or assumptions that are sufficient for
statistical UC security).

4. In Section 4.5, we also extend the long-term-secure commitment scheme to an
updatable commitment scheme that repeatedly allows to update the computational
binding property to new hardness assumptions.

5. We present several applications of the commitment schemes in our framework.
We obtain composable oblivious transfer with long-term security for one party
in Section 4.7. As we will show in Section 4.4, this is provably the best possible
security in our setting. We extend the protocol for oblivious transfer to a protocol
for composable reactive general two-party computation with long-term security
for one party.
Further applications include zero-knowledge or commit-and-prove, which we again
realize with long-term security for both parties.

Unless noted otherwise, we assume ideally authenticated communication and consider
static corruptions only.

4.1.2. Related Work

Long-Term Security. As outlined in the introduction, the notion of long-term
security as introduced by Müller-Quade and Unruh [MU10] is closely related to our
setting. In [MU10], a composable long-term-secure commitment scheme is constructed
from a trusted signature card. Conversely, large classes of setup assumptions, namely
long-term revealing setups (Definition 2.11), have been shown to not admit long-term-
secure composable commitment schemes. In contrast to standard UC security [CLOS02],
where composable general MPC protocols can be constructed in the FCOM-hybrid model
assuming semi-honest stand-alone-secure oblivious transfer, long-term-secure composable
commitment schemes do not admit composable general multi-party computation with
long-term security.

105

4. Updatable Composable Security

Composable long-term-secure commitment schemes also have previously been con-
structed from other hardware assumptions, e.g. fully malicious physical unclonable
functions (PUFs) (together with a CRS) [MMSU22].

Statistical Security. Assuming the existence of ideally secure communication and
an honest majority of more than 2/3, composable general MPC with even statistical
security is possible [AL17]. When there is no honest majority, strong setups such as
tamper-proof hardware tokens (e.g. [DKM11]) also admit statistically secure composable
general MPC. However, the use of such token-based protocols is often impractical,
in particular when computations with many participants are desired. An alternative
approach for statistical security is the use of pre-distributed correlated randomness [B97].
However, if the party providing the randomness is untrusted or becomes corrupted at
any point, all security may be lost.

Peikert, Vaikuntanathan, and Waters [PVW08] have presented several composable
OT protocols. By using a CRS with appropriate distribution, statistical security for
either the OT sender or the OT receiver is possible, at the expense of composability
(see Remark 4.33 for a discussion). The same holds for many composable commitment
schemes with statistical security for one party, e.g. [DN02], as discussed and proven in
[MU10].

Breakdown Resilience. Brendel, Fischlin, and Günther [BFG19] have extended the
established stand-alone security model for key exchange [BR94] to a setting where the
adversary may adaptively break the security of primitives or assumptions used in the
protocol under analysis. While our motivation for the setting considered is similar,
the technical details differ: In [BFG19], the proposed break oracle for the adversary
is highly stateful and closely linked with the protocol execution. For example, the
oracle may allow the adversary to program an idealized hash function or return the
secret keys to all previously generated public keys. The same holds for explicit hardness
assumptions such as the discrete logarithm (DLOG) assumption, where the oracle of
[BFG19] only provides discrete logarithms of values previously generated through an
explicit GroupExp operation. In contrast, we envision our “complexity oracles” to be
deterministic and stateless and, in particular, independent of the current execution’s
state. For an example oracle in our framework, see Definition 4.6.

Reconfigurable Cryptography. Proposed by Hesse, Hofheinz, and Rupp [HHR16],
reconfigurable cryptography allows the update of encryption and signature schemes by
changing a single central parameter in a public key infrastructure. The authors propose
concrete schemes and hardness assumptions in a stand-alone setting. In contrast to
our goal, Hesse, Hofheinz, and Rupp [HHR16] aim to protect the security of long-term
secrets that are used to derive short-term keys based on “reconfigurable” assumptions.
Protecting the security of ciphertexts or signatures created with short-term keys is not
intended.

106

4.1. Introduction

Updatable Commitment Schemes. First introduced as commitment schemes with
prolongable binding by Demirel and Lancrenon [DL15], the authors of [DL15] intend to
prolong the security of statistically hiding commitment schemes by recommitting to the
same value in a consistent way using a new and stronger commitment scheme. In [DL15],
this update is performed for the Pedersen commitment scheme [P92] using a higher
security parameter while proving consistency using a novel perfect zero-knowledge proof
scheme.

Cabarcas et al. [CDG+15] construct updatable commitment schemes that are post-
quantum-secure. Again, consistency is achieved using a suitable proof scheme. Their
construction updates a specific DLOG-based (Pedersen) commitment to a specific
(plausibly post-quantum-secure) lattice-based commitment.

Buldas, Geihs, and Buchmann [BGB17] propose a different approach to achieve con-
sistency, namely by repeatedly committing to the message and to the decommitments of
all previous commitments. We use the same technique for our updatable commitment
scheme in Section 4.5. They prove the security of their construction in the concrete secu-
rity setting and also introduce the notion of extractable-binding security for commitment
schemes, which we adapt to our setting in Definition 4.14.

Rewinding and Composable Security. With respect to concurrent self-compos-
ability, in particular for game-based security notions, several approaches using rewinding
exist, e.g. for the case of commitment schemes [CLP10; GLP+15] or zero-knowledge
[K20; OOR+14]. To this end, a very helpful tool is a robust extraction lemma [GLP+15],
which allows rewinding-based extraction without disturbing “left sides” up to a certain
round complexity. We also use a variant of [GLP+15] (cf. Appendix A.2.2).

Allowing a UC simulator to rewind the execution has first been proposed by Nielsen
[N03], leading to a security notion with properties reminiscent of SPS security, namely
limited composability.

Canetti, Lin, and Pass [CLP10] have proposed the notion of chosen commitment
attack (CCA) security for commitment schemes and also given the first construction.
Informally, CCA security guarantees the hiding property even for adversaries that have
access to a committed-value oracle that extracts commitments created by the adversary,
subject to the condition that the identity or tag of the challenge commitment is never
used when querying the oracle. The commitment scheme in [CLP10] can be extracted
either straight-line by inefficient computations or efficiently using rewinding. With this
commitment scheme, they realize composable general MPC in the plain model, using
the inefficient but straight-line extraction. Instead of allowing the simulator to perform
these inefficient computations itself, they are performed by a special party called the
helper, that allows corrupted parties to extract their own commitments. By also giving
the environment access to the helper, the notion achieves universal composability.

A drawback of the proposed approach is that UC compatibility is limited. Informally,
this means that there exists a protocol π that UC-emulates a protocol ϕ, but that does
not emulate ϕ under the new notion. However, for any polynomial k, the notion can be
adapted such that any k-round UC-secure protocol is also secure under their notion, at

107

4. Updatable Composable Security

the expense of a higher round complexity of the CCA-secure commitment scheme. This
has subsequently been improved, e.g. by Canetti, Lin, and Pass [CLP13a].

We use an approach that is reminiscent of the techniques of [CLP10]. In particular,
we also use a helper to enable the extraction of commitments. As we are interested in
commitment schemes with a statistical hiding property, straight-line extraction is not
possible anymore. Instead, we let the helper rewind the execution, requiring adjusted
definitions as well as changes to the execution experiment. For details, see Sections 4.3
and 4.4.

4.2. Definitions

We now discuss preliminaries relevant to this chapter and provide necessary definitions.

4.2.1. Some (Machine) Modelling Details

Composition and interaction of machines can be specified very abstractly [MR11] or very
concretely [C01]. In Sections 4.2 and 4.3, we take a middle ground: For concreteness,
we assume that “direct interfacing” with machines such as oracles happens through a
single external message tape, where a sender sends a message to a receiver by writing
its own address, the receiver’s address, and the message on the tape. Moreover, there is
some mechanism which ensures that only admissible messages are allowed (e.g. because
machine B may not have access to oracle O of AO). This modelling works nicely
with black-box access to an interactive machine, especially since we can also interpret
inputs and outputs of machines as special addresses, providing a uniform mechanism for
modelling (non-interactive) algorithms with or without input and/or output. Moreover,
in order to consider composed machines, say AO, or ⟨B,A⟩, or ⟨B,AO⟩ as a single entity,
we allow a machine to have multiple addresses. In case of ⟨B,A⟩, the addresses of B
and A.

Definition 4.1 (Indistinguishable w.r.t. rewinding). Two (interactive oracle) algorithms
A0, A1 are perfectly (resp. statistically) indistinguishable w.r.t. rewinding, if for every
unbounded distinguisher D which gets black-box (rewinding) access to A0 or A1, there
exists a negligible function negl such that for every security parameter κ ∈ N and every
z ∈ {0, 1}∗, the distinguishing advantage of D on input (1κ, z) is 0 (resp. bounded
by negl(κ)). Formally, black-box (rewinding) access to Ab is defined by access to the
next-message function of Ab (with uniformly sampled and fixed random tape). In
particular, D learns all messages Ab would send (including oracle queries) and responds
in place of all communication partners (including oracles).

Corollary 4.1. Let A0 and A1 be oracle algorithms and suppose they are perfectly
indistinguishable w.r.t. rewinding. Then AO0 and AO1 are again perfectly indistinguishable
w.r.t. rewinding for any (potentially unbounded) oracle O.

108

4.2. Definitions

4.2.2. Typed Commitment Schemes

In our constructions, we often need to consider joint properties of commitment schemes
COM1, . . . , COMn. To formalize this setting (and simplify its notation), we introduce
typed commitment schemes. These are minor variations of ordinary commitment schemes
parameterized with a type parameter T , denoting which type is to be used. Ordinary
commitment schemes are recovered by choosing T = {0}. Unless stated otherwise, we
consider commitment schemes with setup.

In contrast to the definitions in Section 2.3.2, we employ a slightly different syntax in
the following.

Definition 4.2 (Typed Commitment Schemes). A typed commitment scheme (with
setup), non-interactive unveil phase, message space M and type space T is a tuple
(Setup, C, R), where

1. Setup is a PPT algorithm which on input (1κ, t) outputs a commitment key ck for
type t ∈ T .

2. ⟨C, R⟩ is an interactive protocol with PPT machines.

3. The protocol has two phases: a commit phase and an unveil phase. In both phases,
C and R receive common input (1κ, ck, t), where κ is a security parameter, t ∈ T
is the type, and ck the commitment key (for type t). C additionally receives a
private input v ∈M to be committed.

4. The commit phase results in a joint output c, called the commitment, a private
output d for C, called decommitment or unveil information. Without loss of
generality, c can be the full transcript of the interaction between C and R. As a
shorthand to refer to the type of c, we write type(c).

5. In the unveil phase, committer C sends the pair (v, d) to the receiver R, which
decides to accept or reject the decommitment or opening (c, v, d) deterministically.
We let OPEN denote the function that verifies the validity of (v, d) w.r.t. ck; the
receiver accepts (v, d) if OPEN(ck, c, v, d) = 1, and rejects otherwise.

If C and R do not deviate from the protocol, then R should accept (with probability 1)
during the unveil phase, where the probability is over the coins used to generate ck, the
coins of C and the coins of R. Moreover, we assume that M is efficiently recognizable
and R rejects a decommitment if v /∈M .

Definition 4.3 (Stateless and Public-Coin Receivers). A commitment scheme ⟨C, R⟩ is
stateless, or more concretely, has a stateless receiver, if every message and output of
the receiver is computed from the current (possibly empty) transcript. If, additionally,
the receiver’s messages are a (fixed) portion of its random tape (independent of the
transcript), we call it a public-coin receiver.

Many commitment schemes, in particular all non-interactive ones, are public-coin.
The definitions of the binding and hiding property are very similar to the ones in

Section 2.3.2 and therefore omitted.

109

4. Updatable Composable Security

4.2.3. Cryptographic Hardness Assumptions

We want to analyze security in a setting where cryptographic hardness assumptions may
become invalid throughout a protocol execution. While the exact definition of what
is considered to be a cryptographic hardness assumption is not important, we re-state
definitions from [GK16] as possible examples.

Definition 4.4 (Privately-Verifiable Search Complexity Assumption, adapted from
[GK16]). An assumption is a privately-verifiable search complexity assumption if it
consists of a pair of probabilistic polynomial-time algorithms (D,R), and it asserts that
for any efficient algorithm M there exists a negligible function negl such that for every
κ ∈ N and z ∈ {0, 1}∗,

Pr[R(x, y, r) = 1 | x← D(1κ; r); y ←M(1κ, z, x)] ≤ negl(κ)

where the probability is over the coins of D and M.

Examples of search complexity assumptions include factoring, the RSA assumption
and its variants, the DLOG assumption or the LWE assumption [GK16].

To capture decision-based assumptions such as the decisional Diffie-Hellman assump-
tion or the quadratic residuosity (QR) assumption, the following definition is useful
[GK16]:

Definition 4.5 (Decisional Complexity Assumption, adapted from [GK16]). An as-
sumption is a decisional complexity assumption if it is associated with two probabilistic
polynomial-time distributions (D0,D1), such that for any efficient algorithm M there
exists a negligible function negl such that for every κ ∈ N and z ∈ {0, 1}∗,

Pr[M(1κ, z, x) = b | b $← {0, 1}, x← Db(1κ)] ≤ 1
2 + negl(κ)

where the probability is over the choice of b, the coins of Db and the coins of M.

In order to model that a hardness assumption becomes invalid, we provide the
adversary with a (deterministic and stateless) “complexity oracle” (Section 4.3.1) for
the problem. It is parameterized with the security parameter, receives auxiliary input z
and performs computations on the input provided by the adversary. For example, we
consider the following oracle for the RSA problem:

Definition 4.6 (RSA Complexity Oracle). Let Gen be a parameter generation algorithm
for the RSA problem that, on input 1κ, generates instances of the RSA problem with
security parameter κ. ORSA is defined as follows:

1. On input (1κ, z, N, e, J), check that (N, e) ∈ Im(Gen(1κ)) ∧ gcd(J, N) = 1 and
abort otherwise.

2. Output x such that xe ≡ J mod N . If no such x exists, output a special error
symbol ⊥.

110

4.3. Concurrently Extractable Trapdoor Commitment Schemes

Discussion. Throughout this chapter, the adversary will be provided with various
complexity oracles. Before the adversary has access to an oracle for a problem P,
we usually assume that P is hard for PPT adversaries without access to complexity
oracles. This is in line with how hardness assumptions are usually used in cryptographic
protocols. The case of relative hardness is analogous.

While the formalism can deal with probabilistic stateful oracles, we only consider
deterministic stateless complexity oracles in order to avoid problems when an adversary
with access to a complexity oracle is rewound. For a discussion, see Section 4.3.2.

On the one hand, oracles may not only solve specific problems, but may encompass
whole complexity classes (e.g. stateless BQP with classical input and output, EXP
or PSPACE). On the other hand, they may be limited to very specific tasks, e.g. the
finding of hash collisions.

We are also interested in relative hardness. Possible examples include the RSA
assumption and post-quantum assumptions such as LWE [R05]: If LWE is hard for
BQP adversaries, then LWE is also hard for adversaries with access to an RSA oracle,
as the RSA problem is in BQP [S94]. Conversely, there exist assumptions which are not
believed to be relatively hard, e.g. DLOG in Zp and the RSA assumption.

Remark 4.1 (Quantumness). Due to our reliance on rewinding of the adversary, we
cannot handle stateful (quantum) oracles well. However, our techniques allow to handle
stateless (quantum) oracles with classical input and output, e.g. factoring or DLOG
oracles from [S94] as well as e.g. an oracle for Grover’s algorithm [G96].

4.3. Concurrently Extractable Trapdoor Commitment
Schemes

In this section, we define security notions of commitment schemes, in particular, security
in the presence of a “complexity oracle”, which will be denoted as enhanced security.
We begin by outlining the notion of complexity oracles. Then we define pseudo-oracles,
which capture oracles which use rewinding. With these preliminaries at hand, we define
enhanced CCA security of commitment schemes. Lastly, we construct a commitment
scheme which is computationally CCA-binding and CCA-trapdoor (and, in particular,
statistically CCA-hiding).

4.3.1. Complexity Oracles

To model hardness assumptions becoming invalid, we augment PPT adversaries with a
complexity oracle that can be used to solve problems that (are believed or assumed to
be) hard for (non-uniform) PPT adversaries. For example, a complexity oracle could
solve instances of the RSA problem or execute (stateless) BQP algorithms with classical
input or output.

The complexity oracles we consider consist of a “shell” complexity oracle Ocomp(1κ, z),
which encapsulates a set of (specific) stateless complexity oracles Oname. For this, Ocomp
responds to (oracle, name, m) with Oname(1κ, z, m) (if Oname exists, else ⊥), where κ

111

4. Updatable Composable Security

is the security parameter and z is some (possibly non-uniform) auxiliary input. We
have two interpretations of Ocomp.

The stateless interpretation separates the stateful bookkeeping of L into another
party HL as follows:

• Party HL: Upon receiving (invalidate, name), add name to L, thereby invali-
dating assumption name. Initially, L is empty.

• Oracle Ocomp(1κ, z): Upon receiving (oracle, name, m), respond with
Oname(1κ, z, m) (if Oname exists, else ⊥).

Since Ocomp is stateless (and cannot check if name ∈ L), we have to restrict to admissible
adversaries (or algorithms) for Ocomp in this setting.

Definition 4.7. Let Ocomp be a stateless complexity oracle with bookkeeping party
HL. An admissible adversary A for Ocomp only queries the Ocomp with (oracle, name,
m) if name ∈ L, i.e. if name was previously invalidated.

In the stateful interpretation of Ocomp, Ocomp implements HL and enforces the
restrictions, i.e. Ocomp(1κ, z) handles two types of messages:

• Upon receiving (invalidate, name), add name to L, thereby invalidating assump-
tion name. Initially, L is empty.

• Upon receiving (oracle, name, m), check if name ∈ L. If true, then respond with
Oname(1κ, z, m) (if Oname exists, else ⊥), else return ⊥.

Clearly, any adversary interacting with stateful Ocomp can be transformed into an
admissible adversary interacting with stateless Ocomp and HL.

Remark 4.2. Usually, complexity oracles are supposed to solve problems related only
to the current security parameter (e.g. RSA instances of size κ (but not larger instances,
e.g. of size κ2), or exponential-time computations bounded by 2κ). Thus, Ocomp receives
the security parameter as first unary input. Moreover, Ocomp receives non-uniform input
like other adversarial parties.

Remark 4.3. We consider only deterministic stateless oracles, because they clearly
behave well under rewinding. See Appendix A.2.3 for a discussion and how to relax the
restriction to probabilistic stateless oracles.

4.3.2. Pseudo-Oracles

For our protocols, we must offer the adversary access to a commitment-extraction oracle.
However, the commitments are statistically hiding, so it is evidently impossible for
any (unbounded) oracle to extract them. Thus, we relax the notion of “oracle-ness”
to pseudo-oracles. The core idea is to make the view of the adversary accessible to
the pseudo-oracle. Thus, it can execute and rewind it in its head. With this ability,
appropriately designed statistically hiding commitments can be extracted.

112

4.3. Concurrently Extractable Trapdoor Commitment Schemes

There is some freedom in the definition of pseudo-oracles and their properties. Our
definition intentionally limits the power of pseudo-oracle as much as possible, see
Remark 4.5 for a brief discussion. In particular, all our constructions should be robust
to changes to the definition of pseudo-oracles.

Definition 4.8 ((Pseudo-)Oracle). Suppose A is an (interactive) oracle algorithm.
Suppose O is a (stateful) algorithm which behaves like an oracle, i.e. interfaces with A
by responding to a query x with response y.

• For (stateful) oracles, y is computed from O’s state, randomness, and query x.

• For (stateful) pseudo-oracles, y is computed from O’s state, randomness, and the
current view of A (which includes the query x to O) as well as A’s code.

Remark 4.4 (Alternative Interpretation). We give pseudo-oracles access to their caller’s
code and view. Alternatively, we may restrict to admissible callers, which pass their
code and current view to the oracle (turning the pseudo-oracle into an ordinary oracle).
Evidently, any oracle algorithm which uses a pseudo-oracle can be turned into an
admissible oracle algorithm which uses an ordinary oracle.

Remark 4.5. Our definition of pseudo-oracles limits their power as much as possible:
Their only advantage over oracles is that they can access their caller’s view. This is
sufficient to handle a rewinding-based setting.

A naïve but natural alternative definition is the following: A pseudo-oracle O might
be an algorithm which is given full (black-box) access to its caller A and replaces its
caller ; AO denotes the resulting algorithm. In a sense, “AO” now actually denotes OA,
since O can freely act in place of A. While this significantly broadens the scope of what
is considered a pseudo-oracle, the extraordinary power O wields over its caller makes
any reasoning about “AO” basically impossible. For example, AO may behave entirely
differently depending on O. Hence, for such a relaxed notions, oracle-like behavior must
explicitly be imposed, e.g. by requiring that the behavior of “AO” is explainable by A
receiving oracle responses. While such conceptual relaxations may be of interest, they
seem harder to tame than our more restrictive approach, and unless applications are
known which require them, they offer no real advantage.

In summary, we intentionally choose a notion of pseudo-oracles whose sole advantage
over a standard oracle is that it learns the caller’s view (and the caller does not need to
pass its view explicitly, and thus cannot lie about it).

The behavior of pseudo-oracles is quite different from ordinary oracles. For example,
they allow to capture rewinding-based properties. Consequently, the familiar properties
of ordinary oracles do not carry over in general, and we must make explicit the properties
which (pseudo-)oracle should have.1 In our setting, all pseudo-oracles of interest are
black-box.

1For example: If oracle algorithm A requires multiple (pseudo-)oracles, say oracle O1 and pseudo-oracle
O2, one should compose the pseudo-oracle last, i.e. use the system composition (AO1)O2 . By definition,
in AO2 , the pseudo-oracle O2 does not have access to O1. In many cases, e.g. rewinding-based O2,
this means that AO2 will not work as expected, cf. Remark 4.10.

113

4. Updatable Composable Security

Definition 4.9 (Black-Box Pseudo-Oracle). A (possibly stateful) pseudo-oracle O is
black-box, if its output y is computed from O’s state, randomness, black-box (rewinding)
access to A, and the current view of A but with A’s randomness removed (i.e. only all
inputs and messages which A received).

Like ordinary oracles, black-box pseudo-oracles are independent of implementation
details of their caller (such as its code). We state the following trivial consequence.
Corollary 4.2. Let O be a black-box pseudo-oracle. Let A and B be oracle algorithms
which are perfectly indistinguishable w.r.t. rewinding. Then, AO and BO are again
perfectly indistinguishable w.r.t. rewinding.

In this thesis, we only consider pseudo-oracles that fulfill the black-box property.
Another property of ordinary oracles is composition-order invariance, which asserts

that, in a larger system of composed machines, it does not matter when a (pseudo-)oracle
is connected to its caller.

As composition-order invariance may only hold for protocols with a certain (bounded)
round complexity, we first define protocol rounds.
Definition 4.10 (k-Round Protocol). Let A and B be interactive (PPT) algorithms.
A round in ⟨B,A⟩ is defined as one message sent either from A to B or from B to A.

If ⟨B,A⟩ has at most k = k(κ) rounds, we say that it is a k-round protocol.
Definition 4.11 (k-Robust Composition-Order Invariance (COI)). A pseudo-oracle O
is k-robust composition-order invariant w.r.t. PPT algorithms, if for a pair of interacting
PPT algorithms A, B, where ⟨B,A⟩ has at most k rounds, we have

{outB,A⟨B(x), AO(y)⟩(1κ, z)}κ∈N,x,y,z∈{0,1}∗

s≈ {outB,A⟨B(x), A(y)⟩O(1κ, z)}κ∈N,x,y,z∈{0,1}∗ .

Phrased intuitively, it is statistically indistinguishable whether the system was composed
as

• ⟨B,AO⟩, that is, first the pseudo-oracle O is composed with A, and then AO is
composed with B, or

• ⟨B,A⟩O, that is, first A is composed with B, and then the pseudo-oracle O is
composed with ⟨B,A⟩.

We note that in the above, ⟨B,A⟩ is considered as a single entity, i.e. it is a single
machine which emulates both B, A and their interaction. Consequently, for ⟨B,AO⟩, the
pseudo-oracle has access to viewA only, whereas in ⟨B,A⟩O it has access to view⟨B,A⟩
(where, by abuse of notation, we write view⟨B,A⟩ for the view of the entity ⟨B,A⟩ as
explained above).
Remark 4.6. Definition 4.11 is quite abstract. It helps to consider the pseudo-oracle
OCCA from Section 4.3.3. There, the core difference between ⟨B,AO⟩ and ⟨B,A⟩O is,
whether it is possible to rewind B alongside A, or not (because B is an external entity).
Composition-order invariance for OCCA intuitively ensures that, despite this difference,
the values extracted by OCCA for A remain unchanged.

114

4.3. Concurrently Extractable Trapdoor Commitment Schemes

Remark 4.7 (Relation to Oracles). Ordinary oracles are evidently black-box and
∞-robust composition-order invariant (w.r.t. unbounded algorithms).

Remark 4.8. We stress that composition-order invariance is a non-trivial property of
pseudo-oracles. Indeed, to verify that the committed-value pseudo-oracle OCCA satisfies
composition-order invariance, we crucially rely on computational assumptions. For that
reason, Definition 4.11 restricts to PPT algorithms.

Another useful property allows the elimination of a pseudo-oracle altogether. This
corresponds to the k-robustness property of [CLP10; GLP+15].

Definition 4.12 (k-Robust Quasi-PPT). A black-box pseudo-oracle is k-robust quasi-
PPT if for every (interactive) PPT oracle algorithm A, there exists a PPT algorithm S
such that for every interactive PPT algorithm B interacting with A in at most k rounds,
we have

{outB,A⟨B(x), AO(y)⟩(1κ, z)}κ∈N,x,y,z∈{0,1}∗

s≈ {outB,S⟨B(x), S(y)⟩(1κ, z)}κ∈N,x,y,z∈{0,1}∗ .

Terminology 2 (Asymptotics). We say that a pseudo-oracle O is O(k)-robust
composition-order-invariant resp. quasi-PPT if O is f -robust composition-order-invariant
resp. quasi-PPT for every f ∈ O(k).

All properties exist in an enhanced form, where the algorithms are given access to a
complexity oracle Ocomp.

Definition 4.13 (Enhanced properties). Let O be a black-box pseudo-oracle and Ocomp
be a deterministic stateless complexity oracle with bookkeeping algorithm HL. Let A be
a PPT oracle machine which is admissible for Ocomp and let B be a PPT machine. Let
k = kB + kass bound the rounds of interaction kB between B and A plus the maximal
number kass of invalidation queries (i.e. |L|).

In this situation, we define

• k-robust composition order invariance w.r.t. PPT algorithms (Definition 4.11)

• k-robust quasi-PPT (Definition 4.12)

analogous to the original definitions with AOcomp in place of A (where HL always remains
an external party interacting with AOcomp or ⟨B,AOcomp⟩). The resulting notion N is
called enhanced N w.r.t. complexity oracle Ocomp.

Remark 4.9. Definition 4.13 uses the stateless interpretation of Ocomp with an explicit
left sideHL because otherwise, invalidation of assumptions could be undone by rewinding,
which renders our security notions nonsensical. Consequently, the number of invalidated
assumptions becomes part of the robustness parameter k.

Remark 4.10. In Definition 4.13, the resulting machines (AOcomp)O and ⟨B,AOcomp⟩O
are again admissible w.r.t. Ocomp. This is non-trivial, but easy to verify. It is a
consequence of the perfect guarantees of admissibility. If admissibility were non-perfect,

115

4. Updatable Composable Security

e.g. allow a negligible probability of violating the bookkeeping guarantee (i.e. accessing
Ocomp with name ̸∈ L), then standard pathological attacks exploiting rewinding would
violate the guarantee with probability 1, and thus not be admissible.

Remark 4.11. The composition order (AOcomp)O in Definition 4.12 is a necessity for
rewinding-based O: To execute A in its head, O has to answer queries of A to Ocomp,
which can be hard. (Giving O direct access to Ocomp empowers O beyond a mere
pseudo-oracle. It is an option, but one must be very careful not to accidentally trivialize
security notion. For example, the admissibility of AO w.r.t. Ocomp would depend on O
and not be automatic anymore.)

4.3.3. Properties of Commitment Schemes

We require a commitment scheme which is concurrently extractable and long-term
trapdoor2 to achieve concurrently composable multi-party computation with long-term
security (Sections 4.4 and 4.5).

Consequently, we define security notions in the presence of a committed-value oracle
OCCA (and a complexity oracleOcomp to model invalidation of assumptions). The security
w.r.t. a committed-value oracle will be important, as it allows to concurrently extract
adversarially created commitments, while, at the same time, simulating commitments of
honest parties. The committed-value oracle OCCA for COM plays the receiver of COM
in an arbitrary number of sessions. Upon completion of a commit phase in session s,
OCCA outputs (End, s, vs, viewRs). (The view of the receiver is returned for technical
reasons. For public-coin COM, it contains no additional information anyway.)

Let insecure be a family of predicates (for t ∈ T) such that insecuret(L) = 1 if
the binding property of commitments of type t is considered not to hold due to the
invalidated assumptions L. If Ocomp is a trivial oracle, e.g. Ocomp = ⊥, one recovers the
usual notions of binding, etc.

Definition 4.14 (CCA-Binding). Let COM be a typed commitment scheme with
message space M . Let OCCA be a (pseudo-)oracle whose interface is described below.
Let ExpCCA-bind

A,COM,OCCA
(κ, z) be the output of the following experiment:

1. Run the adversary A on input (1κ, z) with access to a (committed-value) (pseudo-)
oracle OCCA provided through the game G. Formally, this is the interaction
⟨G,A⟩OCCA where the game G passes messages between A and OCCA as follows:

• Through G, OCCA allows A to choose common inputs (1κ, t) and interact with
an honest receiver Rs in session s (for arbitrarily many concurrent sessions).
For this, OCCA first generates a fresh setup cks ← Setup(1κ, t) and sends it
to A (through G)).

2Looking ahead, the commitment scheme we construct is actually statistically trapdoor according
to the standard definition of trapdoor commitment schemes where no committed-value oracle is
provided.

116

4.3. Concurrently Extractable Trapdoor Commitment Schemes

• Whenever a session s is finished, OCCA responds with (End, s, vs, viewRs),
where vs is the extracted value of commitment (which may be ⊥, e.g. if
the receiver does not accept) or ⊥ext if extraction failed. The game passes
(End, s, vs) to A (but not viewRs).

2. In any session s whose commit phase has finished, the adversary may complete
the unveil phase for s. This phase is simulated by the game (which has access to
viewRs). Suppose the receiver Rs accepts a decommitment to v ̸= ⊥. If v ̸= vs

and v ∈M , then the game outputs 1, i.e. A wins. (For v = ⊥, A does not win.)

3. If A stops, the game outputs 0, i.e. A loses the game.

We say COM is CCA-binding w.r.t. OCCA if for every PPT adversary A, there exists
a negligible function negl such that for every κ ∈ N and every z ∈ {0, 1}∗, it holds
that Pr[ExpCCA-bind

A,COM,OCCA
(κ, z) = 1] ≤ negl(κ). We then call OCCA a committed-value

(pseudo-)oracle.

Some remarks are in order: First, Definition 4.14 is the binding analogue to CCA-
hiding of [CLP10]. Second, it is a multi-challenge variant (but as usual, multi- and
single-challenge are equivalent by a standard hybrid argument). Third, it would have
been more straightforward to have the game or OCCA play the honest receivers in both
commit and unveil phase. However, we want a committed-value pseudo-oracle with the
interface as in Definition 4.14, i.e. only the commit phase. Last, OCCA rewinds even the
game, only strengthening the notion of binding. If OCCA is O(1)-robust COI, then a
game with a constant number of challenges can be handled as a left side, so that OCCA
does not rewind the game anymore. In contrast to other definitions of CCA oracles,
OCCA only provides the value committed to, but not the decommitment.

The definition of enhanced CCA-binding w.r.t. a complexity oracle Ocomp is straight-
forward. We use stateless Ocomp and let the game handle invalidations.

Definition 4.15 (Enhanced CCA-Binding). Let COM and OCCA be as in Def-
inition 4.14. Let Ocomp be a deterministic stateless complexity oracle. Define
Expenh-CCA-bind

A,COM,Ocomp,OCCA
(κ, z) to be the output of the following experiment, which is identical

to the experiment from Definition 4.14, except for following modifications:

1. The adversary has oracle access to Ocomp(1κ, z).3

2. OCCA: If the commit phase in session s is completed and insecuret(L) = 1 for
t = type(s) holds, then output (End, s, vs, viewRs) with vs = broken.

3. The adversary may send (invalidate, name) to the game, which adds name to
the list L of invalidated assumption.

4. To win in session s, additionally insecuret(L) = 0 for t = type(s) must hold.
3OCCA has black-box access to ⟨G,AOcomp⟩, but no direct access to Ocomp, cf. Remark 4.10.

117

4. Updatable Composable Security

We call an adversary admissible if it only queries Ocomp on (oracle, name, m) after it
sent (invalidate, name) to the game to invalidate assumption name.

We say COM is enhanced CCA-binding w.r.t. OCCA and Ocomp if for every admissible
PPT adversary A, there exists a negligible function negl such that for every κ ∈ N and
every z ∈ {0, 1}∗, it holds that Pr[Expenh-CCA-bind

A,COM,Ocomp,OCCA
(κ, z) = 1] ≤ negl(κ).

Terminology 3 (Value Committed To). Let COM be a (typed) commitment scheme
with message space M which is (enhanced) CCA-binding w.r.t. committed-value oracle
OCCA and complexity oracle Ocomp. Let v ∈M ∪ {⊥,⊥ext, broken} be the value which
is part of the output of OCCA in an interaction with a (possibly malicious) committer.
If v ∈M , we say that v is the value committed to. If v /∈M , i.e. v ∈ {⊥,⊥ext, broken},
we do not consider the commitment to have a value.

We define now define trapdoor commitment schemes that allow to generate (indistin-
guishable) dummy commitments that can later be opened to an arbitrary value. Again,
we consider a variant where the security holds in the presence of a committed-value
oracle OCCA and a complexity oracle Ocomp.

Definition 4.16 (Enhanced Trapdoor Commitment Scheme). Let (Setup, C, R) be
a typed commitment scheme with message space M and type space T , and let
(TSetup, Ctrap) be algorithms which can be used in place of (Setup, C). Let Ocomp
be a (stateful) complexity oracle and OCCA be a committed-value (pseudo-)oracle. Then,
TRAPCOM = (Setup, C, R, TSetup, Ctrap) is called enhanced trapdoor w.r.t. OCCA and
Ocomp if

• ⟨C, R⟩ and ⟨Ctrap, R⟩ are typed commitment schemes with message space M and
types T , and

• for every admissible PPT adversary A, it holds that

{ExpETD
A,TRAPCOM,Ocomp,OCCA,(κ, 0, z)}κ∈N,z∈{0,1}∗

s≈ {ExpETD
A,TRAPCOM,Ocomp,OCCA,(κ, 1, z)}κ∈N,z∈{0,1}∗

that is, the ensembles are statistically indistinguishable.

The experiment (and random variable) ExpETD
A,TRAPCOM,Ocomp,OCCA,(κ, b, z) is defined as

follows:

1. Run AOcomp(1κ, z) where AOcomp interacts with the game G as follows.

2. First, AOcomp sends (Setup, t). If b = 0, set ck ← Setup(1κ, t). Otherwise, set
(ck, td)← TSetup(1κ, t). The experiment sends ck to A.

3. By sending (Start, v) to G, AOcomp starts the commit phase of TRAPCOM, acting
as receiver. If b = 0, the game G runs the code of the honest committer C on
input (1κ, ck, t, v). If b = 1, the game G runs the code of the trapdoor committer
Ctrap on input (1κ, ck, t, |v|, td).

118

4.3. Concurrently Extractable Trapdoor Commitment Schemes

4. After the commit phase has finished, wait for a message (unveil) and perform
the unveil phase. If b = 1, the trapdoor committer receives v as additional private
input.

5. The experiment gives AOcomp access to a committed-value (pseudo-)oracle OCCA
as in Definition 4.14. Concretely, we consider ⟨G,AOcomp⟩OCCA as the complete
experiment.

6. The experiment outputs the view of A.

Again, as in the CCA-binding experiment, OCCA rewinds the whole game. This only
makes the adversary (and hence security notion) stronger.

Remark 4.12. We require the trapdoor property to hold even if all hardness assumptions
in Ocomp are invalidated. The intuition is that honest parties do not know whether a
hardness assumption is broken, and thus, for the commitment scheme to protect the
committed value, it must be (statistically) hidden even if the assumptions were broken
before the commit phase. Perhaps surprisingly, we do not simply consider unbounded
adversaries. The reason is that we prove composition-order invariance by reduction to
enhanced binding. Against unbounded adversaries, our commitments are not binding,
and COI may not hold. However, without COI, OCCA is not very useful.

Remark 4.13. As we consider PPT adversaries A but require their views to be statis-
tically indistinguishable, Definition 4.16 captures a long-term variant of the trapdoor
property (and not a statistical one which holds against unbounded adversaries).

Remark 4.14 (Multi-Challenge Experiments). In the multi-challenge enhanced binding
experiment, the malicious committer may concurrently engage with arbitrarily many
honest receivers (and on different types). It wins if it wins in any session. In the
multi-challenge trapdoor experiment, the malicious receiver may concurrently engage
with arbitrarily many committers (and on different types).

By a standard hybrid argument, multi-challenge security follows from single-challenge
security.

4.3.4. Constructions

We first recall the definition of a (typed) PRS commitment for µ-bit messages
from [GLP+15].

Construction 4 (PRS Commitment Scheme (adapted from [GLP+15])). Let κ ∈ N
be a security parameter. Let COM′ = (Setup′, C′, R′) be a typed commitment scheme
with message space M = {0, 1}µ(κ) for polynomial µ and type space T . Let ℓ = ℓ(κ)
denote a round parameter. The (typed) PRS commitment scheme with ℓ rounds and
base commitment COM′ is denoted by PRSℓ or just PRS. It has message space M and
type space T and is defined as follows.

Setup. Generate ckb
i,j ← Setup′(1κ, t) for b ∈ {0, 1}, i ∈ [κ], j ∈ [ℓ].

119

4. Updatable Composable Security

Commit Phase. On common input (1κ, t) and private input v ∈M for C:
1. The committer C chooses κ · ℓ pairs of random shares (s0

i,j , s1
i,j) of v, i.e. for

every i, j it holds that s0
i,j ⊕ s1

i,j = v. Then, C and R run COM′ to commit
to sb

i,j for b ∈ {0, 1}, i ∈ [κ], j ∈ [ℓ] under commitment key ckb
i,j and type t

(in parallel) to obtain commitments cb
i,j .

2. For j = 1, . . . , ℓ sequentially:

a) The receiver R sends a challenge string rj = (r1,j , . . . , rκ,j) $← {0, 1}κ.
b) The committer C unveils the commitments c

r1,j

1,j , . . . , c
rκ,j

κ,j . The receiver
aborts if any unveil is invalid.

Unveil Phase. 1. The committer unveils all remaining shares that have not been
opened in the commit phase.

2. The receiver accepts a value v if u0
1,1 ⊕ u1

1,1 = · · · = u0
κ,ℓ ⊕ u1

κ,ℓ = v, where
ub

i,j is the message unveiled for commitment cb
i,j .

Terminology 4. In the following, we call the commitment schemes used within the
PRS commitment scheme base commitment schemes, to distinguish them from the PRS
commitment scheme itself.

Theorem 4.1. Let k ∈ N be a parameter (which may depend on κ). Let Ocomp be a
complexity oracle. Let COM′1, . . . , COM′n be base commitment schemes such that for
every t ∈ {1, . . . , n}:

1. COM′t has a stateless receiver.

2. The commit phase of COM′t has at most k rounds and the first message is sent by
the committer C′t.

3. COM′t has a non-interactive unveil phase.

4. COM′t is enhanced binding w.r.t. Ocomp.

5. COM′t is trapdoor w.r.t. Ocomp with trapdoor committing algorithm C′trapt
.

Define a typed commitment scheme COM with types {1, . . . , n} and round parameter
ℓ ∈ ω(k(κ) log(κ)) as follows:

• Inputs: Common input is (1κ, t). Private input to C is v.

• Setup: Setup for PRSℓ (i.e. for base commitment COM′t and ℓ rounds).

• Commit Phase:
1. PRS commit: Run the (typed) PRS commit phase of PRSℓ for type t. Let

τprs be the PRS commitment transcript.

120

4.3. Concurrently Extractable Trapdoor Commitment Schemes

2. Argument of Knowledge (AoK): Run Blum’s graph hamiltonicity AoK
protocol κ-fold in parallel with base commitments COM′t to prove: τprs is a
valid PRS commitment to some value v ∈M .

• Unveil Phase: Run the corresponding PRS unveil phase.

Let OCCA be the following pseudo-oracle, where A denotes its caller:

• OCCA allows A to choose common inputs (1κ, t) and interact with an honest
receiver Rs in session s in arbitrarily many concurrent sessions. For this, OCCA
first generates a fresh setup cks ← Setup(1κ, t) (per type and session) and sends
it to A.

• OCCA runs the rewinding-based extraction of PRS commitments as in [GLP+15],
cf. Appendix A.2.1 for more details. Let vs denote the extracted value (which may
be ⊥) received in (main thread) session s. (If extraction failed, vs is the special
symbol ⊥ext.)

• When the commit phase of session s completes, OCCA outputs (End, s, vs, viewRs)
where vs is replaced by

– ⊥ if R rejected (the AoK), or
– broken if insecuretype(s)(L) = 1, where L is the list of invalidated assump-

tions.4

We only consider adversaries are admissible w.r.t. Ocomp and which invalidate at most
O(k) assumptions. Then the following holds for COM w.r.t. OCCA and Ocomp and such
adversaries:

1. COM has at most O(k + ℓ) rounds.

2. COM has a non-interactive unveil phase.

3. COM is enhanced CCA-binding w.r.t. OCCA and Ocomp.

4. COM is enhanced trapdoor w.r.t. Ocomp and OCCA for some trapdoor committing
algorithm Ctrap.

5. OCCA is black-box and O(k)-robust composition-order invariant.

6. OCCA is O(k)-robust quasi-PPT.

Note that in Theorem 4.1, we use a parallel repetition of Blum’s graph hamiltonicity
protocol instead of a general AoK. This is only for simplicity and to avoid even more
enhanced definitions.

Proof. The claims in Items 1 and 2 follow immediately.
4Note that any (black-box) OCCA can trivially reconstruct L, i.e. by recomputing all (invalidation)
messages A sent.

121

4. Updatable Composable Security

Claim 4.1 (Item 3). COM is enhanced CCA-binding w.r.t. OCCA and Ocomp.

Proof. This follows immediately from Lemma A.2, the enhanced version of the gen-
eralized robust extraction lemma of [GLP+15]. (Namely, an adversary only wins if
the extracted value differs from its unveiled value, hence if it violates the validity
constraint.)

In order to prove the trapdoor property, we must first establish the properties of
OCCA.

Claim 4.2 (Item 6). OCCA is black-box and ∞-robust quasi-PPT.

Proof. By definition, OCCA only uses the adversary in a black-box way (namely as a
next-message function), hence is a black-box pseudo-oracle. Moreover, since OCCA is
rewinding-based and the rewinding schedule is already implemented in polynomial time,
it is ∞-robust quasi-PPT. (Unlike [GLP+15], there is no brute-force oracle as a part of
OCCA.)

Claim 4.3 (Item 5). OCCA is O(k)-robust composition-order invariant w.r.t. PPT
algorithms.

Proof sketch. We only give a brief proof sketch, assuming familiarity with PRS preamble
extraction via the recursive rewinding schedule defined by recurse, e.g. from [PTV14;
GLP+15]. For simplicity, we ignore the complexity oracle Ocomp. A more detailed proof
is given in Appendix A.2.4. For composition-order invariance, we consider a pair A, B
of interacting PPT algorithms, such that ⟨B,A⟩ is at most k rounds, and show that

{outB,A⟨B(x),AOCCA(y)⟩(1κ, z)}κ∈N,x,y,z∈{0,1}∗

s≈ {outB,A⟨B(x),A(y)⟩OCCA(1κ, z)}κ∈N,x,y,z∈{0,1}∗ .

Note that the rewinding schedule will be different for ⟨B,AOCCA⟩ and ⟨B,A⟩OCCA , because
in the former, OCCA cannot rewind the “left side” B, and in the latter, there is no “left
side”, and OCCA will rewind B and A together.

By fixing the randomness of B and A, and assuming suitably partitioned and fixed
randomness of OCCA, one sees that the main thread of execution of ⟨B,AOCCA⟩ and
⟨B,A⟩OCCA is identical, until an extracted value vs of session s differs.5 Thus, it suffices
to bound the probability (over the randomness of OCCA) of this failure event E. Since
the AoK is extractable, it ensures that PRS preambles are well-formed and consistent,
the failure event is subsumed by the following failure events:

• PRS extraction in either ⟨B,AOCCA⟩ or ⟨B,A⟩OCCA fails. Since ℓ ∈ ω(k(κ log(κ)))
by definition of ℓ, this happens with negligible probability by the generalized
robust extraction lemma (Lemma A.1).

5Note that it suffices to consider the main thread only. Look-ahead threads can differ (and will differ,
since the rewinding schedule is different).

122

4.3. Concurrently Extractable Trapdoor Commitment Schemes

• PRS extraction succeeds with value vs,0 resp. vs,1 but vs,0 ̸= vs,1. This yields two
failure events when extracting the respective AoK:6

– AoK extraction fails. This has negligible probability.
– AoK extraction succeeds. Then the extracted value v′s of the PRS commitment

disagrees with either the extraction in ⟨B,AOCCA⟩ or ⟨B,A⟩OCCA . As internally,
the PRS extractor provides a decommitment for some slot (and the AoK
extraction as well), this constitutes a break of the binding property of some
COM′t. Thus, this happens with negligible probability.

Overall, we see that Pr[E] ≤ neglPRS(κ) + neglAoK(κ) + neglBinding(κ). Thus, except
with negligible probability, the view (of the main thread of execution) of ⟨B,AOCCA⟩ and
⟨B,A⟩OCCA is identical, and the claim follows.

To deal with Ocomp, consider deterministic stateless Ocomp with bookkeeping algorithm
HL (and (auxiliary) input (1κ, z)), and let HL be part of the left side (where it is always
present). Note that at most O(k) assumptions are invalidated, so the left side still has
O(k) rounds asymptotically. Thus, an analogous argument shows

outB,A⟨HL ‖ B,AOCCA,Ocomp⟩ s≈ outB,A⟨HL, ⟨B,A⟩OCCA,Ocomp⟩

for admissible PPT adversaries A, B, where we omitted all inputs for conciseness.

Finally, we show the enhanced trapdoor property, Item 4. The trapdoor commitment
setup is obtained by (in the PRS commitment) replacing Setup′ with TSetup′ and C′ with
C′trap, i.e. simply using the trapdoor commitment algorithms of the base commitment
COM′, in the PRS commitments and the AoK commitments

Claim 4.4 (Item 4). COM is enhanced trapdoor w.r.t. OCCA and Ocomp for trapdoor
commitment algorithm Ctrap.

Proof. To prove indistinguishability, we consider the following hybrids.

• Hybrid G0: Real game, i.e. the bit b in ExpETD
A,COM,Ocomp,OCCA

is 0.

• Hybrid G1: Same as G0, except that the AoK also uses TSetup′ and C′trap (and
trapdoor unveil) instead of the real algorithms.

• Hybrid G2: Same as G1, except that the AoK is simulated using the (perfect)
special honest-verifier zero-knowledge (SHVZK) simulation for Blum’s graph
hamiltonicity, by equivocating commitments after the challenge was received.

• Hybrid Hj : Same as H0 := G2, except that for PRS slots j′ ≤ j, the hybrid
executes the left commit phase using trapdoor algorithms TSetup′ and C′trap (and
trapdoor unveil) instead of the real algorithms.

6To extract the AoK, one uses that the rewinding-based implementation of OCCA leads to a PPT
algorithm, e.g. S = ⟨B,AOCCA⟩, when steps of OCCA are included (effectively, this is k-robust quasi-
PPT). The AoK extraction is again rewinding-based, but rewinds S. Observe that for extracting the
AoK, we can freely rewind the left side B, since AoK extraction happens only in the proof that Pr[E]
is small, but is not part of OCCA. So extracting the AoK is unrelated with k-robustness properties.

123

4. Updatable Composable Security

• Hybrid G3 := Hℓ: The simulation, i.e. the bit b in ExpETD
A,COM,Ocomp,OCCA

is 1.

All hybrids output the view of A, denoted by viewA. Intuitively, indistinguishability
of G0 and G1, as well as Hi and Hi+1 obviously follows from the enhanced trapdoor
property (Definition 4.16). However, the presence of the pseudo-oracle OCCA that uses
rewinding makes the argument non-trivial and we have to rely on the composition-order
invariance. We demonstrate the argument for the hybrids Hi; the completely analogous
case of G0

s≈ G1 is left to the reader.
From Hi to Hi+1, the only change is that in PRS slot i + 1, hybrid Hi uses the

real algorithms, whereas Hi+1 uses the trapdoor algorithms. To argue statistical
indistinguishability of the outputs outi of Hi, we proceed in three steps:

(a) Move all commitments in PRS slot i + 1 out of the hybrid game and into an
external committer on the left; more concretely, use the interface from the enhanced
trapdoor experiment.

(b) Switch the (now external) algorithm from real to trapdoor algorithms.

(c) Move the (external) committer on the left back into the hybrid game.

We introduce the reduction between Hi and Hi+1: Let Hi be the experiment Hi with
OCCA factored out, i.e. Hi = HOCCA

i , and let Eb := ExpETD
Hi,COM′2κ,Ocomp,OCCA

(1κ, b, z) be
the ETD experiment from Definition 4.16, where COM′2κ denotes the 2κ-fold parallel
composition of COM′. (While OCCA is made explicit, Ocomp and HL are left implicit
for readability.) Finally, let Bi be defined such that Hi = ⟨E0,Bi⟩, i.e. make session i
explicit and “move” it into E0. Also observe that Hi+1 = ⟨E1,Bi⟩. This gives us

Hi = HOCCA
i = outBi⟨E0,Bi⟩OCCA

s≈ outBi⟨E0,BOCCA
i ⟩,

where the first equality holds by definition, the next equality follows by black-boxness
of OCCA (Corollary 4.2), and the statistical indistinguishability follows from O(k)-
robust composition-order invariance of OCCA (for PPT algorithms). We stress that this
indistinguishability is not automatic for pseudo-oracles and requires justification, given
by the composition-order invariance. e.g. we write Hi = GOCCA

i instead of (GOcomp
i)OCCA .

Note that the experiment Eb has, compared to COM′, additional rounds of interaction,
but it is still in O(k) rounds, so O(k)-robust properties of OCCA are still applicable.

Next, we find
outBi⟨E0,BOCCA

i ⟩ s≈ outBi⟨E1,BOCCA
i ⟩,

by first using the k-robust quasi-PPT property of OCCA established in Claim 4.2 to
replace ⟨E0,BOCCA⟩ by ⟨E0,S ′⟩. S ′ is a PPT adversary in the enhanced trapdoor game
w.r.t. Ocomp (with many commitments in parallel). Using that COM′ is an enhanced
trapdoor commitment scheme7 by assumption (and applying another hybrid argument

7It is easy to see that a 2κ-fold parallel composition of COM′ is still a trapdoor commitment (w.r.t.
OCCA).

124

4.4. Security Notions

over the commitment instances), the switch from the left side E0 to E1 is statistically
indistinguishable.

Now, we reverse the previous steps, with the same arguments but E1 as left side to
find

outBi⟨E1,BOCCA
i ⟩ s≈ outBi⟨E1,Bi⟩OCCA = HOCCA

i+1 = Hi+1.

Thus, we have shown that H0
s≈ Hℓ, via uniform reductions Hi

s≈ Hi+1 (for 0 ≤ i ≤ ℓ−1).
As noted, G0

s≈ G1 follows completely analogously.
It remains to show that G1

s≈ G2, i.e. that we can simulate the AoK. To do so,
instead of unveiling the real values (using the algorithm of the trapdoor committer), we
instead use the special honest-verifier zero-knowledge (SHVZK) simulator for Blum’s
graph hamiltonicity protocol to generate the messages to unveil. Since the SHVZK
simulation is perfect (given perfectly hiding commitments), for any challenge the
distribution of unveiled messages is identical for real and simulated commitments. Thus,
we can let Ctrap unveil the simulation, instead of the real messages. Again, due to the
presence of the pseudo-oracle (which may rewind the interaction, breaking the perfect
indistinguishability), we formally argue this by first moving COM′ to the left side, doing
the switch, and then moving it back to the right side. This is done completely analogous
to the hybrid steps. This finishes the proof of Claim 4.4.

With this, the proof of Theorem 4.1 is complete.

The base commitment COM′ in Theorem 4.1 can be instantiated using a number
of assumptions. We note that COM′ is a stand-alone-secure commitment scheme, in
particular, it need not be universally composable

Proposition 4.1 (Possible Instantiations). Under the RSA assumption, the DLOG
assumption and the SIS assumption, there exist commitment schemes COM′RSA [HW09],
COM′DLOG [P92] and COM′SIS [GVW15] in the CRS-hybrid model with

1. a stateless receiver and non-interactive unveil phase,

2. a commit phase of O(1) rounds where the first message is sent by the committer,

3. a computational binding property and

4. a statistical trapdoor property.

4.4. Security Notions
With UC security and its variants, all entities keep their runtime complexity throughout
the whole execution, making them unsuitable to analyze the security of protocols in
a setting where cryptographic hardness assumptions may become invalid during the
execution.

We extend the established notions of Universal Composability [C01] and long-term
security [MU10] to capture a setting where (some) hardness assumptions may adaptively

125

4. Updatable Composable Security

become invalid throughout or after a protocol execution. To this end, we take a route
similar to [PS04; CLP10] and provide environment and adversary with a (possibly
inefficient) entity called the helper H. This helper may provide the (PPT) environment
and adversary with complexity oracles that can be used to solve certain problems which
are assumed to be hard otherwise. Formally, our notion is cast in the Generalized UC
framework [CDPW07], allowing both the use of the helper H as well as other global
ideal functionalities. We assume that the reader is familiar with the basic concepts of
(G)UC security. For a short overview, see Section 2.4.

Invalidating Hardness Assumptions. To model that hardness assumptions become
invalid, the helper H may provide several deterministic and stateless complexity oracles
(Section 4.3.1). For example, H may provide an oracle that solves instances of the DLOG
problem. Even in the presence of such an oracle, some cryptographic assumptions are
believed (and often assumed) to retain their hardness (e.g. post-quantum assumptions),
while others are believed to become invalid (e.g. the RSA assumption).

For assumptions A and B, where B is assumed to be hard relative to A, the security
of protocols using B (and A) in the presence of an oracle breaking A can be analyzed
within our framework. Typically, such a setting can be encountered when A is an “older”
assumption used in a protocol, where it is “updated” to a “newer” assumption B.

More generally, H could also provide oracles capturing whole complexity classes, e.g.
via a BQP or EXP oracle.8

Our notion can thus be seen as a generalization of everlasting or long-term secu-
rity [MU10]: Instead of all hardness assumptions eventually becoming invalid, we model
a setting where some assumptions may be come invalid even while the protocol under
analysis is executed and other hardness assumptions still exist.

In this chapter, we only consider protocols where the honest parties are classical and
run in polynomial time. The helper H is intentionally not available for honest parties,
as they do not need it for protocol execution and any use of H would constitute a
deviation from the honest execution.

At the beginning of the execution, all complexity oracles provided by H are disabled.
This models an execution where all (assumed) hardness assumptions against PPT
adversaries are still valid. Throughout the execution, the environment may invalidate
assumptions by enabling the corresponding complexity oracle. Whenever the environ-
ment invalidates an assumption, the adversary is notified, but protocol parties remain
oblivious.

Extracting (Statistically Hiding) Commitments. Apart from complexity oracles
dealing with (invalidated) hardness assumptions, H also provides a (pseudo-)oracle
that allows the extraction of commitments (cf. Section 4.3.3), similar to a CCA oracle.
This part is analogous to the helper of [CLP10], with the following differences: The

8Note that the entities accessing H are classical and polynomially bounded. Thus, they can only
provide and receive classical inputs resp. outputs of polynomial length, even if the oracle would accept
longer or non-classical inputs, e.g. quantum states.

126

4.4. Security Notions

helper of [CLP10] is able to extract statistically binding commitments by inefficient
computations. In contrast, we want to consider commitments that are statistically
hiding. Such commitments cannot be extracted by brute force, but require different
techniques such as an appropriate setup allowing for straight-line extraction (see [MU10]
for an example) or rewinding. More specifically, we adapt the rewinding-based extraction
techniques of [GLP+15] to our setting, via pseudo-oracles and a suitably adapted analysis
in Section 4.3 and Appendix A.2. We provide the helper with the views of all ITIs that
may be affected by a performed rewinding.

While we do not (intend to) achieve composability in the plain model, the resulting
security notion has properties and limitations similar to Angel-based security [PS04]
or UC with super-polynomial helpers [CLP10], e.g. with respect to protocol reusability,
due to the presence of the helper H.

We also have to deal with the case that the assumptions requiring for the extractability
become invalid during the extraction, making extraction impossible. The committed-
value (pseudo-)oracle is thus aware of invalidated assumptions and may abort the
extraction.

In a setting where we want to update commitments, the helper may not only be
parameterized with a single commitment scheme, but possibly with multiple ones.
Typically, different schemes may be associated with different hardness assumptions
that are assumed to be independent. Thus, a commitment scheme COMb may remain
extractable even if COMa has lost its extractability.

As we will later use commitment schemes in the FCRS-hybrid model, we have adapted
the helper accordingly. When a corrupted party starts a new commitment session
with H, the committed-value (pseudo-)oracle OCCA within H honestly executes the
commitment key generation algorithm of the desired commitment scheme and H returns
the resulting commitment key ck to the party initiating the session.

As the commitment key is generated honestly, it is guaranteed to be independent of
all other commitment keys. Thus, a corrupted party cannot take a key ck′ from another
session (e.g. where the sender is honest) and have H extract commitments using ck′ (if
the commitment scheme is secure in the presence of OCCA). A similar policy is enforced
in [CLP10] by the use of tags, which we omit as they are not necessary (with different
sessions distinguished by their commitment keys).

Consistent with the setting of Section 4.3, we consider typed commitment schemes
(Definition 4.2) in the following. To establish meaningful properties, we require the typed
commitment scheme to feature a committed-value (pseudo-)oracle which is black-box
(Definition 4.9) and enhanced k-robust composition-order invariant and k-robust quasi-
PPT (Definitions 4.11 and 4.12). This allows to a) import protocols with appropriate
round complexity into our framework without loss of security due to the committed-
value (pseudo-)oracle and b) prove the security of protocols within our framework
by reducing to security properties with a certain (bounded) round complexity. The
robustness property guarantees that we can efficiently simulate the committed-value
(pseudo-)oracle without having to rewind the challenger in a reduction. Moreover, we
say that H is black-box if all of its (pseudo-)oracles are black-box.

127

4. Updatable Composable Security

The helper H is formally defined in Figure 4.1. For the sake of an easier definition
and notion, we assume that all (pseudo-)oracles (corresponding to used and possibly
invalid hardness assumptions) as well as commitment schemes are fixed and cannot be
extended dynamically throughout the execution. However, H can be easily modified to
capture an adaptive setting.

In the following, we only consider helpers with (pseudo-)oracles that have appropriate
properties and are, in particular, black-box.

Remark 4.15. The helper H in Figure 4.1 is parameterized with a (typed) commitment
scheme COM and contains a committed-value (pseudo-)oracle OCCA for COM. For
analyzing the security of protocols in a setting where cryptographic hardness assumptions
may become invalid, inclusion of OCCA is not necessary per se. However, by having H
provide OCCA, we can construct protocols with strong (composable) security properties
from natural setups, which would have been impossible otherwise in a setting where
cryptographic hardness assumptions may become invalid.

In the following, we first introduce changes to the framework that are necessary to
enable the extraction of statistically hiding commitments. Then, we adapt the definitions
of protocol emulation from [CLP10; CDPW07; MU10] and discuss the properties of the
new notion.

4.4.1. Changes to the Framework.

Due to the technicalities of pseudo-oracles outlined in Section 4.3.2, we need to slightly
adapt the model of execution, so that the pseudo-oracle (and implicitly the helper H)
have access to the view(s) of all (possibly dynamically created) instances of interactive
Turing machines (ITIs) that may be affected by the rewinding.

Execution ITI. We assume that all ITIs, with the exception of H, are emulated
within a special “execution ITI” E . In particular, E executes the control function,
the environment, the adversary as well as all other entities like protocol parties and
(global) ideal functionalities. E also appropriately maps the communication between
internally emulated ITIs and H, which is not governed by the (G)UC control function
anymore, but is subject to the usual mechanisms and rules of communication in the
(G)UC framework. H can then provide its internal execution of OCCA with the necessary
view(s), cf. Definition 4.11. Clearly, the introduction of E incurs only at most a
polynomial overhead compared to an execution without E , i.e. where all entities run
on individual ITIs and H is provided with the necessary randomness via some other
mechanism.

Changes to the Execution Experiment. We modify the execution experiment to
use E as follows:

1. E is the first ITI (initial ITI) to be invoked on input (1κ, z).

128

4.4. Security Notions

Helper H

H is parameterized with

• a security parameter κ ∈ N,

• auxiliary input z ∈ {0, 1}∗,

• a set of tuples P where each tuple is of the form (name,Oname), where Oname
is a deterministic stateless oracle,

• a typed commitment scheme COM = (COM1, . . . , COMn) with committed-
value (pseudo-)oracleOCCA. Each COMi is associated with a list of assumptions
Li.

Complexity Oracles.
Initially, set L = ∅.

• Upon receiving (query) from some ideal functionality F , answer with L.

• Upon receiving (invalidate, name) from the environment such that there ex-
ists a tuple (name,Oname) in P , add name to L and send (invalidated, name)
to the adversary.

• Upon receiving (oracle, name, m) from the environment or the adversary,
send (1κ, z, m) to Oname and send the answer to the environment or the
adversary. If Oname does not exist or name /∈ L, return ⊥.

Committed-Value Oracle.

• Upon receiving an input (corrupt, Pi, sid) from the environment, record
(corrupt, Pi, sid).

• Upon receiving an input (ext-init, Pi, sid, k, l) from a corrupted party Pi in
the protocol with SID sid: If Ll ∩ L ̸= ∅, ignore this message. If there is a
recorded session (Pi, sid, k), ignore this message. Otherwise, initialize the k-th
sub-session of (Pi, sid) and type l with OCCA and receive a commitment key
ck. Record session (Pi, sid, k) and return (setup, sid, k, ck) to Pi.

• Upon receiving an input (ext-mesg, Pi, sid, k, m) from a corrupted party Pi in
the protocol with SID sid: If there is no recorded session (Pi, sid, k), ignore
the message. If Ll ∩ L ̸= ∅, also ignore this message. Otherwise, send
(sid, k, m) to OCCA and possibly obtain a reply m′. If m′ is a special message
(End, s, vs, viewRs), return (ext-val, Pi, sid, k, vs) to Pi. Otherwise, return
(ext-mesg, Pi, sid, k, m′) to Pi.

Figure 4.1.: The helper H.

129

4. Updatable Composable Security

2. On invocation, E immediately invokes H, giving its code9 and input to H as first
input.

3. On its first activation, H immediately activates E again.

4. E continues the internal execution of the (G)UC experiment, interacting with H.

5. H has read-only access to the random tape of E .

6. Eventually, E outputs what the internally executed environment outputs.

The random variable Exec(π,A,Z)(κ, z) is re-defined accordingly.
As E is merely a wrapper that does not affect the (G)UC execution it emulates in any

way, we will ignore it from now on. In particular, we will adhere the usual conventions
and notation.

We call the framework resulting from this modification the Updatable UC framework.

4.4.2. Protocol Emulation

We continue with the definition of protocol emulation, adapted from [CLP10].

Definition 4.17 (Updatable UC Protocol Emulation). Let π and ϕ be PPT protocols
and let H be the helper of Figure 4.1. We say that π Updatable-UC-emulates ϕ if for
every PPT adversary A, there exists a PPT simulator S such that for every H-aided10

balanced PPT environment Z, there exists a negligible function negl such that for every
κ ∈ N, z ∈ {0, 1}∗ it holds that

|Pr[Exec
(︁
π,A,Z

)︁
(κ, z) = 1]− Pr[Exec

(︁
ϕ,S,Z

)︁
(κ, z) = 1]| ≤ negl(κ)

If π emulates ϕ in the Updatable UC framework under this notion of protocol
emulation, we write π ≥Upd-UC ϕ. If π emulates IDEAL(F), i.e. the ideal protocol of a
functionality F , then we say that π Updatable-UC-realizes F . We call the resulting
security notion Updatable UC security.

We also define a notion of protocol emulation where the environment never sends
invalidate messages to H. Intuitively, this captures a setting where (rewinding-based)
extraction of commitments is possible via H, but hardness assumptions remain valid all
time. In Berger et al. [BBK+23], this is modeled via a helper that is very similar to the
one in Figure 4.1, but does not contain any complexity oracles. In line with [BBK+23],
we call this notion UC security with Rewinding or Rewinding UC security. It is easy to
see that both notions are equivalent.

9Actually, it suffices to give H black-box (rewinding) access to E .
10We restate the definition of H-aided environments due to Canetti, Lin, and Pass [CLP16] with minor

syntactic modifications: a) Z invokes a single instance of H immediately after invoking the adversary.
b) As soon as a party (i.e. an ITI) P is corrupted (i.e. P receives a corrupted message), Z lets H
know of this fact. H interacts only with the environment, the adversary, and the corrupted parties.

130

4.4. Security Notions

Definition 4.18 (Rewinding UC Protocol Emulation). Let π and ϕ be PPT protocols
and let H be the helper of Figure 4.1. We say that π Rewinding-UC-emulates ϕ if
for every PPT adversary A, there exists a PPT simulator S such that for every H-
aided balanced PPT environment Z that never sends invalidate to H, there exists a
negligible function negl such that for every κ ∈ N, z ∈ {0, 1}∗ it holds that

|Pr[Exec
(︁
π,A,Z

)︁
(κ, z) = 1]− Pr[Exec

(︁
ϕ,S,Z

)︁
(κ, z) = 1]| ≤ negl(κ)

If π Rewinding-UC-emulates ϕ, we write π ≥R-UC ϕ. If π emulates IDEAL(F), i.e.
the ideal protocol of a functionality F , then we say that π Rewinding-UC-realizes F .

Long-Term Protocol Emulation. Often, we want to analyze the security of protocols
that provide long-term or even statistical security for at least a subset of parties while
using hardness assumptions. For this setting, Definition 4.17 is not appropriate, as the
distinguisher (i.e. the environment) may not be powerful enough, depending on which
oracles H provides.

Thus, we also define long-term protocol emulation in our framework in analogy to
the established definition due to Müller-Quade and Unruh [MU10]. In contrast to
Definition 4.17, long-term emulation allows the environment to output an arbitrary
string of polynomial length and requires statistical indistinguishability of the resulting
ensembles. Intuitively, this means that there are no hard problems whatsoever anymore
after the protocol execution has finished. To this end, let ExecS denote the random
variable that is identically defined to Exec, except that the environment outputs an
arbitrary string (of polynomial length).

Definition 4.19 (Long-Term Updatable UC Protocol Emulation). Let π and ϕ be
PPT protocols and let H be the helper of Figure 4.1. We say that π long-term-
Updatable-UC-emulates ϕ if for every PPT adversary A, there exists a PPT sim-
ulator S such that for every H-aided balanced PPT environment Z, the ensem-
bles {ExecS

(︁
π,A,Z

)︁
(κ, z)}κ∈N,z∈{0,1}∗ and {ExecS

(︁
ϕ,S,Z

)︁
(κ, z)}κ∈N,z∈{0,1}∗ are sta-

tistically indistinguishable.

If π long-term-Updatable-UC-emulates ϕ, we write π ≥LT-Upd-UC ϕ.

Remark 4.16. In contrast to the definition of long-term security in [MU10], the
environment in Definition 4.19 has access to the helper H, enabling it to invalidate
(some) hardness assumptions during protocol execution. Additionally, the helper provides
a committed-value (pseudo-)oracle, which also does not exist in the original definition.

Often, we are interested in a setting where the environment a) has access to the
committed-value (pseudo-)oracle (to circumvent the impossibility results of [MU10]) but
b) never invalidates hardness assumptions during the protocol execution. This setting
is comparable to the original definition of long-term security, with the addition of the
committed-value (pseudo-)oracle. We state the following notion of protocol emulation
that captures this setting.

131

4. Updatable Composable Security

Definition 4.20 (Long-Term Rewinding UC Protocol Emulation). Let π and ϕ be PPT
protocols and let H be the helper of Figure 4.1. We say that π long-term-Rewinding-
UC-emulates ϕ if for every PPT adversary A, there exists a PPT simulator S such that
for every H-aided balanced PPT environment Z that never sends invalidate to H,
the ensembles {ExecS

(︁
π,A,Z

)︁
(κ, z)}κ∈N,z∈{0,1}∗ and {ExecS

(︁
ϕ,S,Z

)︁
(κ, z)}κ∈N,z∈{0,1}∗

are statistically indistinguishable.

If π long-term-Rewinding-UC-emulates ϕ, we write π ≥LT-R-UC ϕ. Again, it is easy
to see that Definition 4.20 is equivalent to the one proposed in [BBK+23].

As (long-term-) Rewinding UC security is a special case of (long-term-) Updatable
UC security, (long-term-) Updatable UC security implies (long-term-) Rewinding UC
security.

Proposition 4.2. Let π and ϕ be PPT protocols. If π (long-term-)Updatable-UC-
emulates ϕ, then π (long-term-)Rewinding-UC-emulates ϕ.

It is easy to see that long-term emulation implies classical emulation:

Proposition 4.3 (Long-term Emulation Implies Classical Emulation). Let π and ϕ
be PPT protocols. If π ≥LT-Upd-UC ϕ resp. π ≥LT-R-UC ϕ and H is black-box, then
π ≥Upd-UC ϕ resp. π ≥R-UC ϕ (for the same helper H).

The proof of Proposition 4.3 is simple and we omit it.

4.4.3. Properties of Our Notions

We now discuss the properties of our notions, which are mostly similar to the properties
of (G)UC resp. long-term security.

Proposition 4.4 (Completeness of the Dummy Adversary). If H is black-box, then the
dummy adversary is complete.

The proof is identical to the one for GUC security and we omit it.
Also, our notions are transitive.

Proposition 4.5 (Transitivity). Let π1, π2, π3 be PPT protocols. If π1 (long-term-)
Updatable-UC-emulates π2 and π2 (long-term-) Updatable-UC-emulates π3 (for the same
black-box helper H), then π1 (long-term-) Updatable-UC-emulates π3.

As the proof is very similar to the one for transitivity of GUC security, we omit it. It
is easy to see that (long-term-) Rewinding UC security is transitive, too.

Like GUC security (and UC security with superpolynomial helpers [CLP10] and long-
term security [MU10]), our notions are closed under general concurrent (i.e. universal)
composition.

Theorem 4.2 (Composition Theorem (based on [CDPW07])). Let H be a helper with
a black-box committed-value (pseudo-)oracle. Let ρ, π, ϕ be PPT protocols where π
and ϕ are G-subroutine-respecting for some global functionality G. If π (long-term-)
Updatable-UC-emulates ϕ, then, ρϕ→π (long-term-) Updatable-UC-emulates ρ.

132

4.4. Security Notions

It is easy to see that (long-term-) Rewinding UC security is also closed under universal
composition.

Proof sketch. We give a proof sketch of Theorem 4.2. To this end, we revisit parts of the
proof of the GUC composition theorem in [CDPW06, Proof of Theorem 2.3] pertaining
to the helper.

The overall idea of the proof of the GUC composition theorem is as follows. Suppose
that there is an environment Z (possibly with access to global functionalities) that can
distinguish between an execution of ρ and ρϕ→π. Then, we can construct an environment
Zπ that can distinguish between an execution of π and D and an execution of ϕ and a
simulator Sπ with the same non-negligible probability.

To this end, Zπ internally emulates Z, (possibly several instances of) ρ and a special
adversary Âρ and externally interacts with either (possibly several instances of) π and
the dummy adversary D or with (possibly several instances of) ϕ and a simulator Sπ

for π and D, as well as the global functionalities. All messages are routed such that Z
is presented an execution of ρ or ρϕ→π and the global functionalities. In particular, Âρ

acts as the adversary for Z. Messages pertaining to sessions of ϕ that are sub-sessions
of instances of ρ are forwarded to the external adversary. Messages for other protocols
(e.g. for ρ) are handled like by the dummy adversary. It remains to be shown that Z’s
view when emulated by Zπ is identically distributed as in a “real” execution with ρϕ→π

and D resp. ρ and S and the global ideal functionalities. In the case of standard GUC
security, this is easy to establish.

In our case, we additionally need to argue that this proof still goes through in the
presence of the helper H, similar to the proof of the composition theorem in [CLP10].

Like in [CLP10], it is necessary to show that

1. calls from Z to H can be correctly handled by Zπ and

2. calls from internally emulated corrupted parties (e.g. from ρ or from “external”
sessions invoked by Z) to H can also be correctly handled by Zπ.

Additionally, we need to prove that the distribution of the helper’s responses in an
execution with Zπ resp. Z (as described above) does not change.

To this end, we distinguish between the following cases:

• When Z wants to send (corrupt, Pi, sid) to H:

1. If the party with identity (Pi, sid) does not exist, invoke it. This may
involve the invocation of an “external” session of the protocol of (Pi, sid).
Subsequently, corrupt the party (Pi, sid).

2. Send (corrupt, Pi, sid) to H.

• When an internally emulated corrupted party (Pi, sid) wants to send
(ext-init, Pi, sid, k) or (ext-mesg, Pi, sid, k, m) to H, forward this message to
H on behalf of (Pi, sid) (which has been invoked in the previous step).

133

4. Updatable Composable Security

• Appropriately forward messages from H for a party (Pi, sid) (Zπ only sees these
messages if (Pi, sid) is an internally emulated corrupted party which Zπ also has
invoked externally) to the internally emulated (corrupted) party (Pi, sid).

• Messages between Z and H pertaining to complexity oracles are simply forwarded.

It follows that the views of the internally emulated environment Z and the internally
emulated corrupted parties remain correctly distributed if the answers from H remain
identically distributed. This follows from the black-box property of the pseudo-oracle
OCCA within H, which we assume to be black-box (see Definition 4.9).

Also, it is easy to see that if Z is H-aided (which holds by assumption), then so is
Zπ.

Remark 4.17. The proof of the UC composition theorem uses a hybrid argument to
replace sessions of ϕ step by step with sessions of π. To this end, it is necessary that
the environment Z can also incorporate the simulator Sπ. While the proof of the GUC
composition theorem is done without a hybrid argument (all sessions of ϕ resp. π can
be replaced in a single step as there may be multiple challenge sessions), we stress
that environments in our notion can internally execute simulators accessing H. The
argument is similar to the above.

Remark 4.18. For the above proof sketch, we only require the pseudo-oracle to be
black-box, but do not need additional properties such as the composition-order invariance.
To this end, we recall that we have re-defined the execution experiment in Section 4.4.1.
As such, switching from the execution with Z to the execution with Zπ does not involve
the creation of any new “real” machines, as the whole execution experiment (with the
exception of H) is emulated on a single machine. Thus, OCCA always interacts with
exactly one machine, without any changes in the order of composition. (However, the
composition-order invariance may be needed to prove the security of a protocol in the
first place.)

UC Compatibility. When introducing a new security notion that features modular
design, a natural question to ask is which existing protocols (that are secure according
some other notion) can be reused without loss of security.

Let π and ϕ be PPT protocols such that π ≥UC ϕ. Due to the helper H, just as
in [PS04; CLP10], we cannot hope that we can import an arbitrary UC protocol π
securely, i.e. that π ≥UC ϕ implies that π ≥Upd-UC ϕ. This is because an Updatable UC
environment is more powerful than a normal UC environment due to the access to H:
First, the complexity oracles of H could break computational assumptions of π or ϕ,
making an indistinguishable simulation impossible. Second, the committed-value oracle
of H could also invalidate assumptions made in the security proof.

Nevertheless, we can show the compatibility of Updatable UC security with UC
security for large classes of protocols, namely those whose i) hardness assumptions are
not affected by the complexity oracles of H and ii) have less than or equal to k rounds
if the committed-value (pseudo-)oracle provided by H is black-box (Definition 4.9),

134

4.4. Security Notions

enhanced k-robust composition-order invariant (Definitions 4.11 and 4.13) and enhanced
k-robust quasi-PPT (Definitions 4.12 and 4.13). In particular, the first criterion is
fulfilled by information-theoretically secure protocols. The second criterion is essentially
the same as in [CLP10], except for the additional requirements due to the (pseudo-)oracle
OCCA within H.

Before stating the theorem, we give a formal definition of k-round protocols. As the
model of execution in Updatable UC is different from the model of stand-alone execution,
we cannot simply reuse the stand-alone definition of k-round protocols (Definition 4.10).

As we eventually want to use the k-robust composition-order invariance (Defini-
tion 4.11), we need a definition of k-round protocols within Updatable UC that is
compatible with the stand-alone definition. In particular, this compatibility needs to
hold in the case where protocol and (dummy) adversary are considered as a “left side”
and everything else (i.e. environment and helper) as a “right side”.

The same is necessary to argue the compatibility with UC security in e.g. [CLP10].
Unfortunately, Canetti, Lin, and Pass [CLP10] do not give a definition of k-round UC
protocols.11 We thus provide a possible definition here. We stress that any definition
that works for [CLP10] works for our setting and vice versa.

Definition 4.21 (Protocol Round). Let π be a subroutine-respecting PPT protocol.
We define a round of π to be one of the following:

1. Input given to a main party.

2. Subroutine output given by a main party.

3. Input and subroutine output between (dummy) parties and ideal functionalities.

4. Messages between (sub-)parties of π and the adversary.

5. Messages between the adversary and an ideal functionality.

Remark 4.19. Unless governed by Item 3, “immediate” communication between honest
(sub)parties within a protocol (i.e. through inputs and subroutine outputs) is not counted
towards the number of protocol rounds, as it is not externally visible (even if a party is
corrupted).

With a definition of protocol rounds at hand, we state the following definition of
k-round protocols.

Definition 4.22 (k-Round Protocol). Let π be a subroutine-respecting PPT protocol.
We say that π is a k-round protocol if for every environment Z and every adversary A
interacting with π, there exists

• for each (honest) main party Pi of π a bound nI
i for the number of inputs for Pi,

11Canetti, Lin, and Pass [CLP10] focus on constant-round protocols, which are usually easy to define
and recognize. However, they state that their result can be extended to the general case.

135

4. Updatable Composable Security

• for each (honest) main party Pi of π a bound nO
i for the number of subroutine

outputs by Pi,

• for each (honest) main party Pi of π (and its sub-parties) a bound ni for the
number of rounds according to Items 3 and 4 in Definition 4.21,

• for each (honest) main party Pi of π (and its sub-parties) a bound nAi for the
number of rounds for communication with the adversary according to Item 4 in
Definition 4.21,

• a bound nA for the communication of an ideal functionality F with the adversary
according to Item 5 in Definition 4.21 if π is the ideal protocol of F or IDEAL(F)
is a subroutine of π.

such that the number of rounds of π is bounded by k = k(κ) = nA +
∑

Pi∈P nI
i + nO

i +
ni + nAi . Here, P denotes the set of main parties of π that may be jointly invoked.

Remark 4.20. Definitions 4.21 and 4.22 impose hard restrictions on the number of
protocol rounds. For example, a (main) party P of a k-round two-party protocol will
halt after receiving (at most) k messages from the adversary, regardless of whether these
messages are valid in the context of π. This could be possibly modified to only count
“valid” protocol messages at the sake of a more complicated definition and the possible
challenge to identify “valid” protocol messages.

Remark 4.21. Other definitions of protocol rounds and k-round protocols are conceiv-
able. In particular, it may hold that protocols that are (informally) considered to be
k-round are not so according to our definition. However, we believe that our notion
is sufficiently general as it naturally covers many protocols (in particular if they are
adapted to halt after a certain number of rounds).

Throughout this chapter, we assume that protocols and functionalities with a bounded
round complexity adhere to their natural bound of rounds, in particular counting bogus
messages (from the adversary) towards the number of rounds.

Example 4.1. We analyze the round complexity of several protocols, subject to the
conditions of Remark 4.21:

• IDEAL(FCOM) where the commit and unveil phase are performed has eight rounds:
– Two rounds for the input of the committer.
– Two rounds for the output of the receiver.
– Four rounds for the communication between FCOM and the adversary (i.e.

the delayed outputs).

• IDEAL(FAUTH) where the message is delivered has four rounds:
– Two rounds for input and output.

136

4.4. Security Notions

– Two rounds for the communication between FAUTH and the adversary (i.e.
the delayed output).

• Let π be the protocol that has two main parties P1 and P2. P1 accepts one input,
invokes an instance of FAUTH to send its input it to a (sub-party of) P2. Upon
receiving subroutine output y from (its sub-party of FAUTH), P2 outputs y and
both parties halt. π has five rounds:

– Two rounds for input and subroutine output of P1 and P2.
– Two rounds for input and subroutine output via FAUTH.
– Two rounds for the communication between FAUTH and the adversary (i.e.

the delayed output).

We stress that, in order to be a k-round protocol according to Definition 4.22, the
protocols above need not accept additional messages after k rounds have been performed
in total. This may not be satisfied by the usual definitions of e.g. IDEAL(FCOM) or
IDEAL(FAUTH).

Remark 4.22. Note that the numbers of rounds of a protocol π may change under
composition, i.e. when a sub-protocol ϕ of π is replaced with a sub-protocol σ with a
different number of rounds.

Remark 4.23. Often, we consider a protocol π that executes several instances of a
sub-protocol ϕ in parallel, e.g. a commitment scheme. While we would like to count all
messages of the l-th round of all m instances of ϕ executed in parallel as one round, this
is technically incorrect: In the UC framework, only one external write instruction
can be issued at the same time, formally leading to O(m) rounds in π for every (parallel)
round of ϕ.

If the number of instances m executed in parallel is known at the time of invocation
of ϕ, sender and receiver have the same party ID in all instances and are sub-parties of
the same party of π, we can instead consider a wrapper protocol ϕ′ that includes all
m instances of ϕ and performs all communication in parallel. By modifying π to use
instance of ϕ′ instead of (several parallel instances of) ϕ, we obtain a protocol with the
“correct” round complexity.

We will implicitly use this transformation in the following.

With the above definition at hand, we are ready to state the following theorem.

Theorem 4.3 (UC Compatibility). Let ϕ be a subroutine-respecting PPT protocol and
let π be a subroutine-respecting PPT protocol with k1 rounds according to Definition 4.22.
Let H be the helper that is parameterized with a constant number of complexity oracles
k2 and typed commitment scheme COM that features a black-box enhanced O(k)-robust
composition-order invariant and enhanced O(k)-robust quasi-PPT committed-value
(pseudo-)oracle OCCA, where k = k1 + k2 and k ∈ O(poly(κ)). If

• π ≥Stat-UC ϕ, then, π ≥LT-Upd-UC ϕ.

137

4. Updatable Composable Security

• π ≥LT-UC ϕ, then π ≥LT-R-UC ϕ.

• π ≥UC ϕ, then π ≥R-UC ϕ.

• π ≥UC ϕ for environments with access to a complexity oracle Ocomp that captures
the complexity oracles of H, then π ≥Upd-UC ϕ.

Here, ≥UC denotes (computational) UC emulation, ≥Stat-UC denotes statistical UC
emulation and ≥LT-UC denotes long-term UC emulation.

Proof. We only prove the first part of Theorem 4.3, as the other parts are very simi-
lar. Let π be a subroutine-respecting PPT protocol with up to k1 rounds such that
π ≥Stat-UC ϕ. Let S be the (PPT) simulator for the dummy adversary in the UC
execution. We transform S to a (presumptive) simulator S ′ in the Updatable UC
execution. Namely, S ′ is identical to S but additionally handles messages between
H and corrupted parties like the dummy adversary. We recall that, according to the
definition of statistical UC security, the runtime of S is polynomial in the runtime of
the adversary it simulates. As we consider only polynomial-time adversaries, S ′ is PPT.

First, we note that the round complexity between the environment and π and D in
a UC execution of π and D (for messages concerning π) is bounded by O(k1) if π is a
k1-round protocol according to Definition 4.22.

As π statistically UC-emulates ϕ, this also holds in the UC execution with ϕ and the
simulator S for the dummy adversary. Moreover, the number of invalidate queries
sent to H for any Updatable UC environment is bounded by k2, where k2 is the number
of complexity oracles within H.

For the sake of contradiction, assume that π ̸≥LT-Upd-UC ϕ for the dummy adversary
and simulator S ′ and some Updatable UC environment Z. Let D be an (unbounded)
distinguisher that distinguishes with non-negligible advantage, given the output of the
Updatable UC environment.

We construct an (unbounded) UC environment Z ′ that uses the Updatable UC
environment Z and the distinguisher D to break the statistical UC emulation of π and
ϕ.

First, we split the helper H into two interactive Turing machines (ITMs) H1 and H2,
where H1 is responsible for the complexity oracles of H and H2 is responsible for the
committed-value (pseudo-)oracle.

Let E1 be an ITM that is identical to E as defined in Section 4.4.1, but interacts with
H1 and H2 instead of H. E1 also informs H2 of invalidated assumptions and only allows
queries to Ocomp through H1 if an appropriate invalidate message has been previously
sent. Clearly, E1 is PPT and using the black-box property of OCCA (within H resp. H2),
we obtain that the outputs of E and E1 are identically distributed.

Let Ocomp be the complexity oracle associated withH1 and let OCCA be the committed-
value (pseudo-)oracle associated with H2. We transform E1 to an ITM E2 that interacts
with Ocomp instead of H1 and OCCA instead of H2, i.e. (EOcomp

2)OCCA . Since OCCA is
black-box, this is possible without affecting the output’s distribution.

138

4.4. Security Notions

We now “externalize” the challenge protocol and the dummy adversary resp. simulator
and treat them as a left side. Note that this does not work directly for S ′, as S ′ may
perform queries to H for the environment, leading to more than O(k1) rounds to be
performed in the external interaction. However, we can avoid the problem in the
following by differently handling these messages.

Towards this, we state and prove the following proposition.

Proposition 4.6. Let π be a subroutine-respecting k1-round PPT protocol according
to Definition 4.22. Let OCCA be a black-box pseudo-oracle and let Ocomp be an oracle
capturing k2 ∈ O(1) complexity oracles. Let T1 be the Turing machine comprised of (the
honest parties of) π and an adversary D1 with the interface of the dummy adversary
and T2 be the Turing machine comprised of the environment Z, where T1 and T2 are
defined as follows.

• T1:
– On input (1κ, z), internally, execute a protocol π and an adversary D1 inter-

acting with π.
– Receive inputs for parties of π from an external entity and forward outputs

of parties of π to an external entity.
– Forward messages from π to the adversary to D1 and vice versa.
– Forward messages from D1 intended for the environment to an external

identity.
– Forward messages from an external entity marked as coming from H or from

the environment to D1.
– Messages forwarded from T1 to an external entity are subject to the (per-

entity) bounds of π according to Definition 4.22.

• T2:
– On input (1κ, z), run the environment Z on input (1κ, z).
– Messages from the environment for H (and vice versa) are forwarded between
Ocomp, OCCA and the environment.

– Messages from the environment to H via corrupted parties are forwarded to
OCCA (and vice versa).

– Messages from Ocomp intended for the adversary to notify that an assumption
has been invalidated are forwarded to OCCA and an external entity.

– Messages from the environment to the dummy adversary (not intended for
H) are forwarded to an external entity.

– Forwarded messages to an external entity are subject to the (per-entity)
bounds of π according to Definition 4.22.

– Eventually output what the environment outputs.

139

4. Updatable Composable Security

T1 and T2 also implement their respective part of the UC control function. Then, the
interaction ⟨T1, T

Ocomp
2 ⟩OCCA(1κ, z) has O(k1 + k2) rounds according to Definition 4.10.

Proof. By definition, the communication between T1 and T2 consists of the following
messages:

• Messages from H intended for the adversary to notify that an assumption has
been invalidated. The number of such messages is bounded by k2. Furthermore,
by Proposition 4.6, D1 does not send or receive other messages related to H.

• Inputs and outputs of (honest) main parties of π.

• Messages reported by the dummy adversary to the environment related to π.

• Messages sent from the environment to the dummy adversary related to π.

Using Definition 4.21 and the fact that π is a k1-round protocol, it is easy to see that
the number of these messages is bounded by O(k1 + k2) ∈ O(k1).

We now split up E2 like in Proposition 4.6. To this end, let E3 be an ITM that is
identical to T2 that internally emulates the environment Z and externally interacts with
a protocol (π) and an adversary (D).

Formally, this is the execution ⟨π ‖ D, EOcomp
3 ⟩OCCA (with omission of the input). We

can see the external protocol and dummy adversary resp. simulator for the dummy
adversary as machine T1 and E3 as T2 in Proposition 4.6 and conclude that the interaction
between external protocol and adversary on the left side and E3 has O(k) rounds. Also,
it is easy to see that E3 is PPT. By using the black-box property, it thus follows that
the statistical distance between the outputs of E2 and E3 is negligible.

By using the enhanced O(k)-robust composition-order invariance, the enhanced O(k)-
robust quasi-PPT property (Definitions 4.12 and 4.13) and the black-box property of
OCCA, we can first restrict the access of OCCA to EOcomp

3 and replace (EOcomp
3)OCCA with a

PPT ITM E4 with only access to Ocomp, incurring a negligible change in the statistical
distance between the outputs only.

Finally, E4 with access to Ocomp can be replaced by an unbounded TM E5 without
access to Ocomp, but with an identical output distribution.

Let Z ′ be the UC environment that internally executes E5 and relays messages between
E5 and the challenge protocol and adversary appropriately. Eventually, Z ′ runs the
(unbounded) distinguisher D on the output of E5 and outputs what D outputs. We
obtain a distinguishing UC environment Z ′ from an Updatable UC environment Z and
distinguisher D, leading to a contradiction of the fact that π statistically UC-emulates
ϕ.

We note that in each step, the machine interacting with Ocomp behaves like an
admissible adversary.

140

4.4. Security Notions

Theorem 4.3 can be easily adapted to e.g. analogous cases of GUC security. Of course,
compatibility is not limited to the cases mentioned in Theorem 4.3 and its variants.
However, manual proofs may be necessary.

Meaningfulness. Just like the Imaginary Angel in [PS04] or the helper in [CLP10], our
helper may negatively affect the security guarantees provided by ideal functionalities. To
illustrate this, consider a variant F ′COM of the ideal functionality for commitments FCOM,
which we extend to accept a CRS from the adversary. When the honest committer
provides its input v, F ′COM first checks if the CRS is a valid CRS for the statistically
hiding commitment scheme COM1 of H12. Then, it performs the commit phase with
the adversary, acting as an honest committer with input v.

In the presence of H, F ′COM provides no meaningful security for an honest committer.
The adversary simply can start a new session with the committed-value (pseudo-)oracle
provided by H, receiving a valid CRS which it provides to F ′COM. Then, it can forward
all commitment-related messages between H and F ′COM. In the end, the adversary will
learn v from H, the value committed to by the honest committer. (The argument for
[CLP10; PS04] is analogous.)

Thus, Updatable UC security may only guarantee meaningful security for ideal
functionalities with less than or equal to k1 rounds, where k = k1 + k2, k2 ∈ O(1) and if
OCCA (in H) is black-box, enhanced O(k)-robust quasi-PPT and enhanced O(k)-robust
composition-order invariant. Note that very similar limitations with respect to the
meaningfulness apply to e.g. [CLP10; PS04].

Justification. We now discuss under which circumstances our notion implies existing
security notions for (composable) multi-party computation. This is helpful to grasp the
(intuitive) security guarantees of Updatable UC security. First, we show that Updatable
UC security implies UC security for a large class of protocols.

Proposition 4.7 (Justification: UC Security). Let π, ϕ be PPT protocols such that
π ≥Upd-UC ϕ (resp. π ≥LT-Upd-UC ϕ) and i) π and ϕ do not call global functionalities
and ii) the simulator never interacts with H on the committed-value (pseudo-)oracle for
the challenge session and iii) H is black-box. Then, π ≥UC ϕ (resp. π ≥LT-UC ϕ).

Proof. We prove Proposition 4.7 only for the standard non-long-term notion. The proof
for the other case is similar.

Let π, ϕ be protocols such that π ≥Upd-UC ϕ and the simulator S (for the dummy
adversary) never queries H on the committed-value (pseudo-)oracle for the challenge
session. Suppose that for the sake of contradiction it holds that π ̸≥UC ϕ, i.e. for
every (presumptive) PPT UC simulator S ′ for the dummy adversary, there exists an
environment Z that can distinguish between the UC execution of π and D and the UC
execution of ϕ and S ′.
12Here, we assume that a CRS that leads to a statistically hiding commitment scheme is efficiently

recognizable.

141

4. Updatable Composable Security

We construct an environment Z ′ that distinguishes between the Updatable UC
execution of π and D and the Updatable UC execution of ϕ and S as follows:

• On input (1κ, z), activate Z on input (1κ, z).

• Whenever Z corrupts a party, send an appropriate corrupt message to H.

• Relay all messages between Z, the challenge protocol and the adversary.

• Output whatever Z outputs.

As Z is a UC environment, it never queries H or instructs the dummy adversary to do
so. By assumption, neither does S query the committed-value (pseudo-)oracle of H.
When interacting with an environment that never sends invalidate messages to H, S
also never queries H on the complexity part. Thus, in the execution with Z ′, S behaves
like a UC simulator and the view of Z is correctly distributed as in a UC execution
with the challenge protocol and the dummy adversary resp. the (presumptive) simulator
with the dummy adversary. As a consequence, the distinguishing advantage of Z ′ in
the Updatable UC execution is identical to the distinguishing advantage of Z, leading
to a contradiction.

For the case of ideal functionalities that can be expressed by stand-alone real-ideal
security (see e.g. [G04; L16]), the following holds regardless of the simulator using the
committed-value (pseudo-)oracle of H or the environment invalidating assumptions.

Proposition 4.8 (Justification: Stand-Alone Security for SFE). Let H be a helper
with a committed-value (pseudo-)oracle that is black-box and enhanced O(1)-robust
composition-order invariant and enhanced O(1)-robust quasi-PPT. Let π be a N -party
PPT protocol in the FCRS-hybrid model such that π (long-term-) Updatable-UC-realizes
FSFE (with H) for some function f : ({0, 1}κ)N × {0, 1}poly(κ) → ({0, 1}κ)N . Then, π
securely computes f with abort in the presence of static malicious adversaries.

In particular, Proposition 4.8 captures the stand-alone real-ideal security of e.g.
oblivious transfer and zero-knowledge proof systems. The restriction to protocols in the
FCRS-hybrid model can be relaxed to other hybrid functionalities that can be expressed
by stand-alone real-ideal security.

We omit the proof of Proposition 4.8, but note that that the distinguisher in the
real-ideal security notion is not provided with a committed-value (pseudo-)oracle (cor-
responding to an Updatable UC environment that never queries the committed-value
(pseudo-)oracle of H). Thus, the (PPT) simulator may only need to extract commit-
ments for its own simulation, which it can do efficiently via rewinding, regardless of the
number of rounds of π.

Environmental Friendliness. Similar to [CLP10], our notion partially fulfills the
notion of environmental friendliness [CLP13a] (see also Section 2.5 for a short introduc-
tion). Suppose that the committed-value (pseudo-)oracle of H is black-box, enhanced
O(k)-robust quasi-PPT and enhanced O(k)-robust composition-order invariant and

142

4.4. Security Notions

that a PPT protocol π (long-term-) Updatable- or Rewinding-UC-realizes an ideal
functionality G. Then, we can show that for every k-round game-based property of
a protocol that is executed concurrently (outside the Updatable UC execution), the
protocol π does not affect this game-based property if it is not already affected by G (in
an execution without H).

Proposition 4.9 (Environmental Friendliness of Updatable UC Security). Let H be a
helper where the committed-value (pseudo-)oracle provided by H is black-box (Defini-
tion 4.9), enhanced O(k)-robust composition-order invariant (Definitions 4.11 and 4.13)
and enhanced O(k)-robust quasi-PPT (Definitions 4.12 and 4.13). Let π be a protocol
that Updatable-UC-emulates the ideal protocol of some functionality G (with respect to
H). Then π is friendly to every k-round game-based property P of a protocol Π with
property P .

The intuition behind Proposition 4.9 is as follows. Suppose that a game-based
property P holds in the execution with G, but not in the execution with π. We can then
use the Updatable UC simulator and G to emulate π (with the help of H), incurring
at most a negligible difference in the adversary’s success. As a next step, we use the
robustness of OCCA within H to replace the simulator S with access to H with an
efficient simulator13 S ′. This again incurs only a negligible difference in the adversary’s
success. We again arrive at an execution with G and a PPT adversary, leading to a
contradiction because P holds in an execution with G by assumption.

The proof of Proposition 4.9 is very similar to the proof in [CLP13b] and the proof of
Theorem 4.3 and we thus omit it.

Impossibility Results. While the addition of the helper H, which allows the extrac-
tion of statistically hiding commitments, suffices to “circumvent” the impossibility results
of Müller-Quade and Unruh [MU10], our setting still faces an important impossibility
result for long-term Rewinding UC security.

Theorem 4.4 (Impossibility of Oblivious Transfer with Long-Term Security). Let F be
a functionality that is long-term revealing (Definition 2.11) for any party. Then, there is
no nontrivial,bilateral14 PPT protocol πOT that long-term-Rewinding-UC-realizes FOT
in the F-hybrid model (assuming ideally authenticated communication).

Theorem 4.4 is a direct consequence of the folklore impossibility result of correct
statistically secure oblivious transfer in the plain model (even with passive security only).
In the following, we give a formal proof, using a similar approach to the one in [MU10].
We note that we can extend Theorem 4.4 to the case of ideally secure communication
using a slightly different proof (where the adversary passively corrupts parties to obtain
the communication).
13For this argument, we only need the committed-value (pseudo-)oracle of H, but not its complexity

oracles.
14We recall the definition of a bilateral protocol [CF01]: “[A] protocol π between n parties P1, . . . , Pn is

bilateral if all except two parties stay idle and do not transmit messages.”

143

4. Updatable Composable Security

Proof. For a protocol πOT to long-term-Rewinding-UC-realize FOT, πOT must simultane-
ously fulfill the properties of i) correctness, ii) long-term sender security and iii) long-term
receiver security. We show that these properties cannot be fulfilled simultaneously if F
is long-term revealing for either party.

To this end, we consider an execution of πOT with an environment Z and the dummy
adversary on security parameter κ where Z (i) instructs the dummy adversary to
immediately deliver all messages, (ii) never instructs the dummy adversary to corrupt a
party and (iii) never interacts with H (i.e. does not extract commitments and also does
not invalidate assumptions), (iv) receives (external) input (m0, m1, b) and uses (m0, m1)
as input for the (honest) OT sender and b as input for the (honest) OT receiver. As
usual, all communication between parties goes either through the adversary or through
F .

We use the following notation, based on [MU10, Section 4.1]:

• COMm0,m1,b(. . .) denotes the communication of the parameterized machine pairs
in the above execution when the OT input of the receiver is b and the input
of the sender is (m0, m1). For example, COMm0,m1,b(Z S, SA, SF) contains all
communication of the sender, which consists of the communication between Z
and S (inputs and subroutine outputs), between S and A (messages) and S and F
(inputs and subroutine outputs).

• OUTm0,m1,b denotes the output of the receiver.

• For families of variables Aκ,z and Bκ,z, we write A▷B if there is some probabilistic
function G such that Bκ,z

s≈ G(κ, Aκ,z) (and vice versa for ◁). It is easy to see
that ▷ and ◁ are transitive. For the sake of an easier notation, we will ignore κ
from now on.

We first establish several properties.
For an OT protocol with long-term receiver security, it holds for every m0, m1 that

COMm0,m1,0(Z S, SA, SF) s≈ COMm0,m1,1(Z S, SA, SF) (4.1)

Conversely, for long-term sender security, it holds for every mb, m1−b, m′1−b and
b ∈ {0, 1} that15

COMm0,m1,b(Z R, RA, RF) s≈ COMmb,m′
1−b,b(Z R, RA, RF) (4.2)

For a correct protocol, it must hold that for every m0, m1 and every b ∈ {0, 1} that

mb
s≈ OUTm0,m1,b ◁ COMm0,m1,b(RA, RF) (4.3)

COMm0,m1,b(SA, SF) ▷ mb (4.4)

and, if m0 ̸= m1,
m0

s≈ OUTm0,m1,0 ̸ s≈ OUTm0,m1,1 s≈ m1 (4.5)
15In abuse of notation, we write COMmb,m′

1−b
,b to denote COMm0,m′

1,0 resp. COMm′
0,m1,1.

144

4.4. Security Notions

where Equation (4.3) means that the receiver’s output (but not necessarily b) can
be reconstructed with overwhelming probability from the receiver’s communication,
Equation (4.4) means that (at least) the result mb can be reconstructed from the sender’s
communication (including its communication with F) and Equation (4.5) guarantees
that if m0 and m1 differ, then for different choice bits, the output of the receiver will
be (statistically) different.

Claim 4.5. If F is long-term revealing for R and πOT is long-term receiver-secure, then
πOT cannot be correct.

Proof. If F is long-term revealing for R, it holds that

COMm0,m1,b(RA, RF) ◁ COMm0,m1,b(RA, SF) (4.6)

i.e. the communication between R and F can be computed from the communication
between S and F . As the communication between R and A can be computed from the
communication between S and A, it holds that

COMm0,m1,b(RA, SF) ◁ COMm0,m1,b(SA, SF) (4.7)

Combining Equations (4.1), (4.3), (4.6) and (4.7), using the definition of ◁ and the
transitivity of indistinguishability, we obtain

m0
s≈ OUTm0,m1,0 s≈ G(COMm0,m1,0(SA, SF))
s≈ G(COMm0,m1,1(SA, SF)) s≈ OUTm0,m1,1

s≈ m1

(4.8)

which contradicts Equation (4.5), i.e. the correctness, if m0 ̸= m1.

Claim 4.6. If F is long-term revealing for S and πOT is correct and long-term receiver-
secure, then πOT cannot be long-term sender-secure.

Proof. Using that F is long-term revealing for S and that the communication between
S and A can be computed from the communication between R and A, it follows that
for b ∈ {0, 1}

COMm0,m1,b(RA, RF) ▷ COMm0,m1,b(SA, SF) ▷ mb (4.9)

Combining Equations (4.1), (4.4) and (4.9) and using the definition of ▷ and the
transitivity of indistinguishability, it follows that

m0
s≈ G(COMm0,m1,1(RA, RF)) (4.10)

which contradicts Equation (4.2), i.e. the sender security (because m0 can be computed
from R’s interaction with A and F , even though its choice bit was 1).

145

4. Updatable Composable Security

Combining Claims 4.5 and 4.6, the theorem follows.

Remark 4.24. While we have considered the case of long-term security, the proof
similarly holds for statistical security. As all parties are honest and by considering an
appropriate environment, there is no communication with H and it can thus be ignored.

4.5. Updatable and Long-Term-Secure Composable
Commitment Schemes

When (solely) constructed using (possibly only assumed) hardness assumptions, com-
mitment schemes can be either statistically hiding or statistically binding, but not both.
If the hiding property of a commitment scheme requires a hardness assumption, the
value committed to may be released as soon as the assumption can be broken. In such
a setting, we cannot hope to meaningfully “update” the commitment’s security using a
new assumption that is believed to be valid.

In contrast, if the commitment scheme is statistically hiding and computationally
binding, updates are possible: While the original assumption still holds, one can commit
to the same value using a commitment scheme which relies on a different hardness
assumption. If the two commitments are consistent, it does not matter if the first one
eventually loses its binding property (while the problem for the binding property of the
second commitment is still valid).

In the following, we first give an ideal functionality FUpdCOM for updatable com-
mitments and a construction that long-term-Updatable-UC-realizes FUpdCOM in the
FCRS-hybrid model. Using very similar techniques, we also construct a commitment
scheme that long-term-Updatable-UC-realizes FCOM in the FCRS-hybrid model for en-
vironments that do not invalidate hardness assumptions during the protocol execution.

4.5.1. The Ideal Functionality for Updatable Commitments

The ideal functionality for commitments FCOM (Figure 2.2) captures a single bit
commitment between a committer and a receiver, providing information-theoretic
security for both parties. If FCOM is realized by a protocol that makes use of hardness
assumptions, all security may be lost if the used hardness assumption turns out to be
wrong.

In the following, we modify FCOM to capture a setting where the hiding property is
guaranteed perfectly, but the (ideal) binding property may be lost if any underlying
hardness assumption loses its validity. In such a setting, we want to be able to update
the commitment by migrating to new assumptions while (some of) the old ones are
still valid. This task is captured by the ideal functionality for updatable commitments
FUpdCOM in Figure 4.2.

Remark 4.25. Being a reactive functionality, FUpdCOM may receive inputs when
previous phases, e.g. updates, have not completed. In particular,

• the commitment may be unveiled while an update is still in progress and

146

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

Functionality for Updatable Commitments FUpdCOM

Parameterized by a security parameter κ, a message space M = {0, 1}κ and n sets
of hardness assumptions L1, . . . ,Ln. FUpdCOM proceeds as follows, interacting with
a committer C, a receiver R and an adversary S. Initially, set cnt = 1, cnttemp = 1
and insecure = false.

• Upon receiving (commit, sid, v) from C, where v ∈ {0, 1}κ:
– Record the tuple (sid, v) and generate a public delayed output

(committed, sid) to R. Ignore further commit inputs.

• Upon receiving (unveil, sid) from C:
– If there has been no delivered output (committed, sid), ignore this input.
– Generate a public delayed output (unveil, sid, v) to R and halt.

• Upon receiving (unveil, sid, v′) with v′ ∈ {0, 1}κ from C and C is corrupted,
proceed as follows:

– If there has been no delivered output (committed, sid), ignore this input.
– If insecure = false, send (query) toH and receive L′. If for every j ∈ [cnt]

it holds that L′ ∩ Lj ̸= ∅, set insecure = true.
– If insecure = true, generate a public delayed output (unveil, sid, v′) to

R and halt. Otherwise, halt without output.

• Upon receiving (update, sid) from party P ∈ {C, R}:
– If there has been no delivered output (committed, sid), ignore this input.
– If cnttemp = n, also ignore the input.
– Set cnttemp = cnttemp + 1 and generate a public delayed output

(updated, sid) to R, also informing the adversary of the caller P .
– When the adversary allows the delivery of the output:

∗ If insecure = false, send (query) to H and receive L′. If L′ ∩
Lcnttemp ̸= ∅ or for every j ∈ [cnt] it holds that L′ ∩ Lj ̸= ∅, set
insecure = true.

∗ Set cnt = cnt + 1 and give the output (updated, sid) to R.

• Upon receiving (status, sid) from C:
– If there is an outstanding status message from the adversary, ignore the

input.
– Send (status, sid) to the adversary.
– Eventually receive an answer (status, sid) from the adversary.
– Generate an output (status, sid, cnt) for C.

Figure 4.2.: Functionality for Updatable Commitments FUpdCOM. 147

4. Updatable Composable Security

• the status may be queried while an update is in progress.

Variants of FUpdCOM with different behavior are possible.

FUpdCOM extends FCOM in a number of ways. First, FUpdCOM is parameterized
with sets of hardness assumptions L1, . . . ,Ln, tracking the assumptions for the binding
property of real commitment schemes later to be used to realize FUpdCOM. Based on
the validity of these assumption throughout the execution, FUpdCOM determines if the
commitment is still considered to be binding.

Initially, the committer commits to a value v ∈ {0, 1}κ.16 Subsequently, either party
may trigger updates to “update” the hardness assumption used for the binding property.
To this end, FUpdCOM keeps a counter cnt which tracks the current set of hardness
assumption Lcnt that is incremented after a successful update phase. Also, a second
counter cnttemp is used to track incomplete update phases. A variable insecure, which
is initially set to false, tracks whether the commitment is still considered to be binding.

Also, an interface for the committer to check an update’s status is provided17. This
is necessary to avoid inconsistencies in protocols where the committer needs to know if
the update was successful. For example, the adversary could choose not to deliver the
last message of the committer to the receiver. The committer would then consider the
update to be completed, while the receiver would not.

An update is considered successful if

• the new hardness assumption is valid and

• at least one of the previous hardness assumptions is still valid when the update
has finished.

This is motivated by the intuition that an adversary (in an appropriate real protocol)
is unable to inconsistently commit if at least one of the previous commitments is still
considered to be binding.

In the unveil phase, the receiver learns the original value v, unless the committer is
corrupted and insecure = true because

• one of the updates was unsuccessful or

• for every i ∈ [cnt], at least one assumption in Li is invalid, where cnt is the counter
for the last used hardness assumptions.

In this case, a corrupted committer may change the unveiled value because we consider
the commitment to be no longer binding.
16Usually, FCOM allows committing to a bit only. Often, it is useful to support committing to strings

instead of obtaining a string commitment scheme via the composition theorem.
17In the UC framework, only one message can be sent at the same time. We thus cannot easily make
FUpdCOM notify both the committer and the receiver of a successful update without the risk of
inconsistencies. As the receiver is the party being protected by updating the binding property, we
have chosen that it will receive an output by FUpdCOM when the update has finished.

148

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

Remark 4.26. The criteria for when an update is successful or the commitment is
no longer considered to be binding may seem somewhat arbitrary, given that the ideal
functionality does not rely on hardness assumptions. However, they are motivated by
the properties of two possible realizations:

1. In Section 4.5.2, we realize FUpdCOM by repeatedly committing to the value v
as well as all previous decommitments d1, . . . , dj in the j + 1-th commitment
(where each commitments is based on a new assumption) using an extractable
commitment scheme. Eventually, the last commitment is opened, containing v as
well as decommitments d1, . . . , dcnt. For j = 1, . . . , cnt, the receiver checks that
the j-th commitment is to (v, d1, . . . , dj−1). If this holds, the receiver accepts v.
In order to unveil to a different value, one of the following events must occur:

• There is some index l such that at the end of the l − 1-th update, the l-th
commitment is to a value v′ ̸= v and valid decommitments (d1, . . . , dl−1). If
this happened when the new l-th as well as any of the previous commitment
schemes were (still) considered to be extractable (i.e. the update being suc-
cessful), we could construct a successful adversary against the extractability
if one of the commitment schemes with index < l that are still considered to
be extractable.

• There is no such index l such that the values committed to lead to a contra-
diction, but the commitment eventually opened is to a value v′ ̸= v and valid
decommitments (d1, . . . , dl−1). If at least one commitment scheme were still
considered to be extractable, we could reduce to the extractability property.

2. Alternatively, one could update the commitment by repeatedly committing to
v and using an argument of knowledge (using the new commitment scheme) to
prove that the previous and the new commitment are consistent. Eventually, all
commitments are unveiled. The requirements for a cheating committer are similar
as in the previous point.

Different protocols for updatable commitment schemes may provide different security
guarantees, possibly requiring adjustments to FUpdCOM.

4.5.2. The Updatable Commitment Scheme πUpdCOM

Having defined the ideal functionality for updatable commitments in Figure 4.2, we con-
tinue with a description of the protocol πUpdCOM that long-term-Updatable-UC-realizes
FUpdCOM, i.e. guarantees a statistical hiding property and an updatable computational
binding property.

πUpdCOM is parameterized with a typed commitment scheme COM (Definition 4.2)
that has a non-interactive unveil phase, i.e. where the committer only sends a single
message to decommit. For the sake of a simpler notation, let COMi denote the i-th
type of COM.

For the initial commitment to v, the first commitment scheme COM1 is used. Let
c1 denote this first commitment and d1 the decommitment. For the first update, the

149

4. Updatable Composable Security

commitment scheme COM2 is used to commit to v and d1, resulting in decommitment d2.
We refer to this commitment as the second commitment. For subsequent updates, the
next type of COM is used to commit to v and all previous decommitments d1, . . . , dk−1.
In the unveil phase, the committer sends v along with d1, . . . , dcnt. The receiver accepts
v if cj is a commitment to (v, d1, . . . , dj−1) using decommitment dj for every j ∈ [cnt].
We want to show that πUpdCOM long-term-Updatable-UC-realizes FUpdCOM, i.e. that
the view of an environment Z in either execution is statistically indistinguishable from
the other.

The intuition behind this protocol’s security is as follows: If COM is statistically
hiding, so is πUpdCOM.

We can show that if COM is extractable, then a corrupted committer cannot unveil a
different value v′ unless

• all COMi are no longer binding (and extractable), presumably allowing the cor-
rupted committer computing different d′i consistent with v′, or

• if one update is performed with a commitment scheme that is not extractable
(and binding) during the update, or

• if one update finished “too late”, i.e. if for the k-th update, all COM1, . . . , COMk

were no longer binding. In this case, the committer can again compute match-
ing decommitments d′i for i = 1, . . . , k and commit to (v′, d′1, . . . , dk) using the
(computationally binding) commitment scheme COMk+1.

Remark 4.27. Before presenting our constructions, we introduce the following conven-
tions. Let COM be a typed commitment scheme, cf. Definition 4.2. We import COM
into the Updatable UC framework as follows:

• COM induces the description of an ITM for a protocol πCOM. As usual, ITIs of
instances πCOM are associated with a session ID sid ′ = (sid||n) and a party ID
pid, distinguishing between the committer C and the receiver R. The type t used
for COM is selected by the postfix of the session ID (i.e. sid ′ = (sid||n) selects the
n-th type) and we informally denote the scheme as COMt. (As we do not consider
tag-based commitment schemes, the session ID is only used to identify the correct
ITI and commitment type, but not used within COM.)

• The CRS of the n-th type is not provided as common input to C and R, but
supplied by an instance of FCRS with SID sid ′ = (sid||n||crs) parameterized with
the Setup algorithm of type n of COM.

By abuse of notation, we subsequently continue to refer to COM instead of πCOM.

Construction 5 (Protocol πUpdCOM). Parameterized by a security parameter κ and
a typed commitment scheme COM = (COM1, . . . , COMn) with non-interactive unveil
phase.
Initially, the committer C sets cntC = 1, continueC = false and the receiver R sets
cntR = 1, continueR = false. (Here, cntC and cntR are counters for the index of the

150

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

current type and continue tracks if a commit phase has finished and the protocol may
continue with a new phase.)

• On input (commit, sid, v) for C:

1. C and R execute COM with SID (sid||1) and input v for the committer.
Let d1 denote the decommitment. If the sub-party of the receiver in COM
accepts, R outputs (committed, sid) and sets continueR = true. Similarly, C
sets continueC = true. Subsequent commit inputs are ignored.

• On input (update, sid) for R:

1. If the commit phase has not finished, ignore the input.

2. If cntR = n or continueR = false, ignore the input.

3. If R has previously sent (update, sid) to the committer C and the respective
update has not finished, also ignore the input.

4. Otherwise, send (update, sid) to C.

• On input (update, sid) for C or message (update, sid) from R for C:

1. If cntC = n or continueC = false, ignore the input resp. message. Otherwise,
set continueC = false.

2. C starts an instance of COM with SID (sid||cntC + 1) and input
(v, d1, . . . , dcntC) for the committer.

3. If cntR = n or continueR = false, the receiver R ignores the starting commit-
ment. Otherwise, it sets continueR = false and participates in the commit-
ment as receiver.

4. At the end of this commit phase, let dcntC+1 denote the decommitment of
the finished commitment. C sets cntC = cntC + 1 and continueC = true.

5. When the sub-party of the receiver of COM with SID sid||cntR + 1 accepts, R
sets cntR = cntR+1, continueR = true and outputs (updated, sid). Otherwise,
R halts.

• On input (status, sid) for C:

1. C sends (status, sid) to R.

2. On receiving (status, sid) from C, R sends (status, sid, cntR) to C if
continueR = true. Otherwise, the message is ignored.

3. On receiving (status, sid, i′) from R, C outputs (status, sid, i′) if i′ = cntC.
Otherwise, it outputs nothing.

• On input (unveil, sid) for C:

1. C sends (unveil, sid, v, d = (d1, . . . , dcntC)) to R.

151

4. Updatable Composable Security

2. R outputs (unveil, sid, v) if |d| = cntR and the j-th commitment opens to
(v, d1, . . . , dj−1) using decommitment dj for every j ∈ [cntR]. Otherwise, it
halts without output.

We can now state our main theorem. In the following, we always assume that the
protocol under consideration, helper and ideal functionality are consistent, i.e. param-
eterized with the same typed commitment scheme COM and associated assumptions
L.

Theorem 4.5. Let Ocomp be a deterministic stateless complexity oracle capturing all
complexity oracles of the helper H. Let OCCA be a black-box committed-value pseudo-
oracle for the typed commitment scheme COM = (COM1, . . . , COMn).

If COM is an enhanced CCA-binding and enhanced trapdoor typed commitment scheme
(Definitions 4.15 and 4.16) with respect to OCCA and Ocomp and has an appropriate
message space, then πUpdCOM long-term-Updatable-UC-realizes FUpdCOM.

Proof. We assume static corruptions and can thus distinguish between the corrupted
parties in the following proof. We obtain a simulator S for all possible corruptions
by combining the individual simulators. As the dummy adversary is complete (see
Proposition 4.4), we consider simulators for the dummy adversary.

Corrupted Committer. We now state the simulator for the dummy adversary and
a corrupted committer.

Definition 4.23 (Simulator for the Dummy Adversary, Corrupted Committer, Honest
Receiver).

1. Handle messages between Z and H like the dummy adversary.

2. Report all messages coming from internally simulated honest parties to the
environment and wait for its confirmation to deliver them. Until the reported
message of the honest party is delivered, pause the simulation of this party.

3. Deliver messages as instructed by the environment to internal simulations of the
honest party.

4. Initialize variables insecure = false, cnt = 1 and L = ∅.

5. When receiving a message (invalidated, name) from H, add name to L.

6. Send (ext-init, C, sid, r
$← {0, 1}κ, 1) to H in the name of C and receive

(setup, sid, 1, ck) from H. Report ck as output of FCRS with SID sid||1||crs.
For j = 2, . . . , n, sample ckj ← Setup(1κ, j). (If the environment has already
queried H on sub-session (r, 1) or later does so, output a special error symbol
⊥.)18

18Looking ahead to the proof, we will ignore the negligible error incurred by this abort.

152

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

7. Commit phase: Let m denote a commitment message received from the cor-
rupted committer and send (ext-mesg, C, sid, r, m) to H. If H answers with
(ext-mesg, C, sid, r, m′), report m′ as message from R to C. If H answers with
(ext-val, sid, r, v′, view),

• output a special symbol ⊥ if v′ = ⊥ext,
• halt the simulation of the receiver if v′ = ⊥, i.e. the receiver would not accept

the commitment,
• set v = 0 if v′ = broken and v = v′ otherwise.
• Send (commit, sid, v) to FUpdCOM on behalf of C. Also allow the committed

output of FUpdCOM for the receiver.

8. Update phases: Report ckcnt+1 as output of FCRS with SID sid||cnt+1||crs. When
the corrupted committer initiates the commit phase of COM with SID (sid||cnt+1),
act like R. When the cnt + 1-th commit phase has finished successfully (from the
perspective of R), update insecure like FUpdCOM would and set cnt = cnt + 1. If
this update has been triggered by an output request (update, sid), allow the output.
Otherwise, send (update, sid) to FUpdCOM on behalf of C and subsequently allow
the output.

9. Handle status messages from the committer like the honest receiver would.

10. Eventually receive a message (unveil, sid, v′, d′1, . . . , d′j) from the committer and
proceed as follows:

• If j ̸= cnt, halt the simulation of the receiver.
• If the honest receiver would not accept, halt the simulation of the receiver.
• If v′ = v and the honest receiver would accept, send (unveil, sid) to FUpdCOM

and allow the output.
• If v′ ≠ v and the honest receiver would accept, check insecure like FUpdCOM

would.
– If insecure = true, send (unveil, sid, v′) to FUpdCOM and allow the

output.
– If insecure = false, output a special symbol ⊥.

In order to prove the validity of the simulator S in Definition 4.23, we define a number
of hybrids. We start with the real execution of πUpdCOM and the dummy adversary D
and gradually change it to an execution of FUpdCOM and the simulator S. For each pair
of hybrids, we prove the statistical indistinguishability.

• H0: The real execution with πUpdCOM and D.

• H1: Execution with the ideal functionality F1 that lets the adversary determine
all inputs and learn all outputs. S1 is the simulator that executes the protocol

153

4. Updatable Composable Security

πUpdCOM honestly on behalf of the honest party, using the inputs learned from F1
and making the outputs through F1. Messages related to H are handled like by
the dummy adversary.

• H2: The ideal execution with FUpdCOM and S.

Claim 4.7. If OCCA is black-box, then out0 and out1 are identically distributed.

Proof. As the changes between H0 and H1 are only syntactic and oblivious for the
environment, the claim follows due to the black-box property of OCCA.

Claim 4.8. Let Ocomp be a deterministic stateless complexity oracle capturing all
complexity oracles of the helper H. Let OCCA be a black-box committed-value pseudo-
oracle for COM. If COM is an enhanced CCA-binding typed commitment scheme
(Definition 4.15) with respect to OCCA and Ocomp, then out1

s≈ out2.

Proof. It is easy to see from the definition of S and the black-box property of OCCA
that out1 and out2 are identically distributed unless S outputs ⊥ in H2. Let E⊥ denote
this event.

We show that Pr[E⊥] ≤ negl(κ) for some negligible function negl. To this end, we
construct an adversary B against the enhanced CCA binding property that includes
the execution H1, but plays all commitment it receives from the corrupted committer
with the experiment. After each commit phase has finished, it receives either the
extracted value ek ∈ {0, 1}κ (for the k-th commitment), a special error symbol ⊥ext (if
the commitment could not be extracted but the commitment scheme is still considered
to be extractable), ⊥ if the receiver did not accept or broken if the commitment is
considered to be insecure due to invalidated assumptions. We distinguish between the
following cases for the extracted value:

• ek = ⊥: The receiver would not accept and the execution would not continue.
Thus, also halt.

• ek = broken: If the receiver would have accepted in the commit phase (this can
be determined by the provided view of the receiver if the commitment scheme is
stateless or public-coin), continue the execution. If the receiver would not have
accepted (which can be determined similarly), halt.

• ek = ⊥ext: Do nothing in this session (yet). If this commitment gets unveiled
later on or a valid decommitment is extracted later on, send the decommitment
to the game for the associated session, winning it.

• ek = (v, d1, . . . , dk−1): Perform the following consistency check if k > 1: For each
previously performed commitment ci (i ∈ [k− 1]), B checks if (v, d1, . . . , di−1) can
be used to unveil ci to a different value than the extracted one if the hardness
assumptions Li associated with ci are still valid, i.e. ci is still supposed to be
extractable. If B encounters such an inconsistency for a commitment ci, it sends
((v, d1, . . . , di−1), di) to the game for the session associated with ci, winning the
game.

154

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

• ek is of a different format: Do nothing in this session (yet). If this commitment
gets unveiled to a different value later on or a valid decommitment is extracted
later on, send the decommitment to the game for the associated session, winning
it.

For E⊥ to occur in H2, either a) the first commitment is not extractable (despite its
assumptions being valid), or b) the corrupted committer must be able to open the last
commitment such that the honest receiver would accept a value different from the one
committed to in the first commitment, even though the (updatable) commitment is
considered to be consistent. In more detail, this means that

• there exists a smallest index i such that ei (i.e. the value committed to in
commitment ci) is inconsistent with e1 and

• the assumptions for COMi were valid when the update using COMi had finished,
i.e. L′ ∩ Li = ∅ and there was a commitment scheme COMj with j < i such that
the update to COMj was successful and COMj was still binding after the update
to COMi had finished, i.e. L′ ∩ Lj = ∅.

By definition, B would win the enhanced CCA-binding game if one of these conditions
were met. Thus, Pr[E⊥] can be bounded by the success probability of an adversary in
the enhanced CCA-binding game.

We now give a formal proof based on the above intuition.
Let L1, . . . ,Ln denote the sets of hardness assumptions associated with COM =

(COM1, . . . , COMn). Define V (cki, ci, vi, di) = vi if OPEN(cki, ci, vi, di) = 1 and ⊥
otherwise.

Let B be the following adversary against the enhanced CCA-binding property of
COM.

1. Initially, set e1, . . . , en = ⊥, where ei denotes the (extracted) value committed to
in commitment ci.

2. On input (1κ, z), emulate an execution of H1 with input (1κ, z) for the environment.
In deviation from H2, perform all commitments with the corrupted committer
with OCCA. We only sketch how the challenge session is handled. To this end,
start a session with type i with OCCA for the i-th commitment. Initially, receive a
CRS cki from OCCA. Report cki as output of FCRS with SID sid||i||crs where sid
is the SID of the challenge session in H1. At the end of the i-th commit phase, set
ei to the extracted value returned by OCCA and let ci denote the corresponding
transcript.

3. Simulate H has follows:
• Whenever the environment sends (invalidate, name) to H, send

(invalidate, name) to the game.
• Let m be a query for Oname. If Z has previously sent (invalidate, name) to
H, send (oracle, name, m) to Ocomp and forward the answer to Z as coming
from Oname. Otherwise, ignore the query.

155

4. Updatable Composable Security

• Appropriately forward ext-init and ext-mesg messages between OCCA and
Z, exposing the same interface to Z as with H.

4. After each commit phase has finished, do the following, where i is the current
index:

• If ei = ⊥, i.e. the receiver would not accept, halt.
• If ei = broken: If the receiver would have accepted in the commit phase (this

can be determined by the provided view of the receiver if the commitment
scheme is stateless or public-coin), continue the execution. If the receiver
would not have accepted (which can be determined similarly), halt.

• If ei = ⊥ext, also continue.
• If ei = (vi, di

1, . . . , di
i−1) do for l = 1, . . . , i − 1: Let vl =

V (ckl, cl, (vi, di
1, . . . , di

l−1), di
l). If vl ̸= ⊥ ∧ vl ̸= el and no assumption in

Ll has been invalidated, send ((vj , di
1, . . . , di

l−1), di
l) to the enhanced CCA

binding game as unveil message for session l.
• Otherwise, i.e. if ei is of a different format, continue with the execution.

5. If the corrupted committer eventually performs the unveil phase by
sending (v′, d′1, . . . , d′i), do the following: For l = 1, . . . , i: Let
vl = V (ckl, cl, (v′, d′1, . . . , d′l−1), d′l) If vl ̸= ⊥ ∧ vl ̸= el and no assumption in
Ll has been invalidated, send ((v′, d′1, . . . , d′l−1), d′l) to the enhanced CCA binding
game as unveil message for session l.

It is easy to see that B is an admissible adversary and that the view of the internally
simulated environment Z is distributed as in H1. By the definition of B and the
black-box property of OCCA

19, it thus holds that its advantage in the enhanced CCA
binding game is greater than or equal to Pr[E⊥]. As COM is enhanced CCA-binding
by assumption, we can thus bound Pr[E⊥] by a negligible function neglenh-CCA-binding

COM
for the advantage of an adversary in the enhanced CCA-binding game. The claim
follows.

As the number of hybrids is constant, it follows that out0
s≈ out2 in case of a corrupted

committer.

Corrupted Receiver. We now state the simulator for the dummy adversary and a
corrupted receiver.

Definition 4.24 (Simulator for the Dummy Adversary, Corrupted Receiver). Let f :
N×N→ N be the function that, on input (κ, i), returns the length of the decommitment
19Formally, we cannot apply the black-box property as-is. This is due to the fact that the number of

queries to OCCA changes between hybrids H1 and H2. This problem can be solved by introducing an
intermediate hybrid where all commitments with the corrupted committer are forwarded to OCCA,
but the extracted value discarded. Clearly, this does not change the distribution. Coming from this
hybrid, we can apply the black-box property.

156

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

of the i-th type of COM for a commitment to a message with length κ and security
parameter κ for i = 1 resp. for a commitment to a message with length κ + f(κ, 1) +
· · ·+ f(κ, i− 1) and security parameter κ for i > 1.20

• Handle messages between Z and H like the dummy adversary.

• Report all messages coming from internally simulated honest parties to the
environment and wait for its confirmation to deliver them. Until the reported
message of the honest party is delivered, pause the simulation of this party.

• Deliver messages as instructed by the environment to internal simulations of the
honest party.

• Initially, set cnt = 1. For j = 1, . . . , n, sample (ckj , tdj)← TSetup(1κ, j). Report
cki as output of FCRS with SID sid||i||crs.

• When receiving the message (committed, sid) from FUpdCOM, use the trapdoor
committer algorithm Ctrap of COM on input (1κ, ck1, 1, κ, td1) to perform the
commitment with the corrupted receiver. After the commit phase has finished
and all messages have been delivered, increment cnt and allow the output.21

• When receiving the output notification (updated, sid) from FUpdCOM (as input to
C), perform the same checks as the honest committer in πUpdCOM would. If they
succeed, perform the (cnt + 1)-th commit phase using the trapdoor committer
Ctrap of COM on input (1κ, ckcnt+1, cnt + 1, f(κ, cnt), tdcnt+1). After the commit
phase has finished, increment cnt and allow the output of FUpdCOM.

• Upon receiving the message (update, sid) from R, act as in the previous step,
except with the following change: After the commit phase has finished, additionally
send (update, sid) to FUpdCOM on behalf of R and allow the subsequent output.

• Upon receiving (status, sid) from FUpdCOM, perform the same steps as the honest
committer. When receiving the (status) message from R, perform the same checks
as the honest committer. Upon success, send (status, sid) to FUpdCOM, allowing
the output.

• When receiving the message (unveil, sid, v) from FUpdCOM: For j = 1, . . . , cnt,
use the trapdoor committer Ctrap of COM to create a decommitment dj for
a commitment to (v, d1, . . . , dj−1) and eventually send (v, d1, . . . , dcnt) to the
receiver.

To show that the simulator is valid, we consider the following hybrids and prove their
statistical indistinguishability:

• H0: The real execution with πUpdCOM and D.
20The existence of such a function f is an additional (but natural) assumption.
21As R is corrupted, allowing the output has no visible effect. However, it is necessary for FUpdCOM to

continue.

157

4. Updatable Composable Security

• H1: Execution with the ideal functionality F1 that lets the adversary determine
all inputs and learn all outputs. S1 is the simulator that executes the protocol
πUpdCOM honestly on behalf of the honest party, using the inputs learned from F1
and making the outputs through F1. Messages related to H are handled as by
the dummy adversary.

• H2: F2 is identical to F1. S2 is defined as S1, but creates all but the n-th
commitment honestly. For the last commitment, it uses the algorithm of the
trapdoor committer of COM like the simulator in Definition 4.24.

• For i = 1, . . . , n− 1: H2+i: F2+i = F2. S2+i is defined as S2, but creates only the
first n− i + 1 commitments honestly. For the remaining commitments, use the
algorithm of the trapdoor committer like in Definition 4.24.

• Hn+2: The ideal execution with FUpdCOM and S.

Claim 4.9. If OCCA is black-box, then out0 and out1 are identically distributed.

Proof. As the changes between H0 and H1 are only syntactic and oblivious for the
environment, the claim follows.

Claim 4.10. Let Ocomp be a deterministic stateless complexity oracle capturing all
complexity oracles of the helper H. Let OCCA be a black-box committed-value pseudo-
oracle for COM. If COM is an enhanced trapdoor commitment scheme with respect to
OCCA and Ocomp, then out1 and out2 are statistically indistinguishable.

Proof. First, we note that out1 and out2 are identically distributed if the last update
phase (i.e. the n-th commitment) is not performed. In the following, we thus consider
the case that it is performed.

We prove Claim 4.10 by a reduction to the enhanced trapdoor property of COM
(Definition 4.16) with respect to the oracle Ocomp and pseudo-oracle OCCA.

Let (BOcomp)OCCA be the following PPT adversary against the enhanced trapdoor
property (Definition 4.16) of the typed commitment scheme COM:

1. Handle messages for H like the dummy adversary. In order to emulate H, use the
oracles Ocomp and OCCA provided by the game.

2. On input (1κ, z), internally start an execution of H2, but perform the last com-
mitment with the game. More specifically, send (Setup, n) to obtain a setup ck
and report ck as output of the instance of FCRS with SID sid||n||crs.

3. At the beginning of the n-th commit phase, send (Start, n, (v, d1, . . . , dn−1)) as
challenge to the game and forward messages between the game and the corrupted
receiver.

4. When receiving the message (unveil, sid, v) from F2, send (unveil) to the game
and obtain the decommitment dn. Send (v, d1, . . . , dn) to the corrupted receiver.

158

4.5. Updatable and Long-Term-Secure Composable Commitment Schemes

5. Continue the execution.

It is easy to see that B is an admissible adversary. If the challenge bit b in the
enhanced trapdoor game is 0, then the view of the internally emulated environment is
distributed as in an execution of H1 due to the black-box property of OCCA. If b = 1, it
is distributed in H2. It follows from a standard argument that if out1(κ, z) ̸ s≈ out2(κ, z),
then outETD

0 (κ, z) ̸ s≈ outETD
1 (κ, z), i.e. the output of the enhanced trapdoor game with

choice bit b and input (κ, z), contradicting the enhanced trapdoor property of COM.

Claim 4.11. Let Ocomp be a deterministic stateless complexity oracle capturing all
complexity oracles of the helper H. Let OCCA be a black-box committed-value pseudo-
oracle for COM. If COM is an enhanced trapdoor commitment scheme with respect to
OCCA and Ocomp, then for i = 1, . . . , n− 1, it holds that out2+i−1

s≈ out2+i.

We omit the proof of Claim 4.11 as it is very similar to the proof of Claim 4.10.

Claim 4.12. If OCCA is black-box, then out2+n−1 and outn+2 are identically distributed.

Proof. As the changes between H2+n−1 and Hn+2 are only syntactic and oblivious for
the environment, the claim follows from the black-box property of OCCA.

As there is a common bound for the distinguishing advantage between adjacent
hybrids, it follows that out0

s≈ outn+2 and the claim follows.

Both Parties Honest. This case is very similar to the case of the corrupted receiver
and we omit it.

Remark 4.28. Using a typed commitment scheme COM that is statistically hiding, we
were able to show that πUpdCOM long-term-Updatable-UC-realizes FUpdCOM.

Unfortunately, one cannot hope to show that πUpdCOM computationally Updatable-
UC-realizes FUpdCOM (i.e. πUpdCOM ≥Upd-UC FUpdCOM) if COM is computationally
hiding only. If only the receiver is corrupted, the simulator must create the commitment
without knowing the honest committer’s input. When the hiding property of this
commitment is lost (because the underlying hardness assumption gets invalidated), this
becomes easily recognizable.

Remark 4.29. Special care has to be taken when replacing FCRS by a protocol π.
In particular, it is necessary that π long-term- (or even statistically) realizes FCRS.
Otherwise, the commitment scheme may lose its statistical hiding property (even if the
distribution of the CRS is computationally indistinguishable).

4.5.3. A Composable Long-Term Secure Commitment Scheme

Using the same building blocks as for Construction 5, we can construct a composable
commitment scheme πLT-COM that is long-term-Updatable-UC-secure for environments
that do not invalidate hardness assumptions during the protocol execution.

159

4. Updatable Composable Security

Let πLT-COM be the protocol that simply executes an appropriate commitment scheme
COM (embedded into the execution like denoted in Remark 4.27). Let S be the simulator
that is identical to the simulator for πUpdCOM, except that all update-related messages
are ignored. It then follows as a direct corollary from the proof of Theorem 4.5 that the
following theorem also holds:

Theorem 4.6. Let OCCA be a black-box committed-value pseudo-oracle for the com-
mitment scheme COM. If COM is a CCA-binding and trapdoor commitment scheme
with respect to OCCA and has an appropriate message space, then πLT-COM long-term-
Rewinding-UC-realizes FCOM.

Remark 4.30. The property of the environment not sending invalidate messages
can be relaxed. In particular, Theorem 4.6 also holds for environments that do send
invalidate messages during the protocol execution, as long as they do not invalidate
assumptions necessary for the (enhanced) CCA-binding property of the commitment
scheme COM.

Alternatively, one could relax FCOM similar to FUpdCOM to allow a corrupted com-
mitter to unveil its commitment to a different value if the assumption(s) for (enhanced)
CCA-binding no longer hold.

4.5.4. Possible Instantiations

As stated in Theorem 4.1, the typed PRS commitment scheme (Construction 4) can be
instantiated with “base commitment schemes” that are

1. computationally biding and statistically hiding,

2. admit an efficient straight-line trapdoor committer algorithm (in the FCRS-hybrid
model) and

3. have stateless receivers and non-interactive unveil phases.

As we construct our commitment schemes in the FCRS-hybrid model, there are
many such candidate commitment schemes from different assumptions. The stateless
requirement is trivial, since our candidate commitment schemes are non-interactive
and the receivers are deterministic. Building on Proposition 4.1, we give the following
exemplary theorem.

Theorem 4.7. Let COMRSA, COMDLOG and COMSIS be computationally binding
and statistically hiding trapdoor commitment schemes with stateless receiver and non-
interactive unveil phase based on the RSA assumption resp. the DLOG assumption.
resp. the SIS assumption. Let

• the RSA assumption hold w.r.t. a complexity oracle for SIS,

• the DLOG assumption hold w.r.t. a complexity oracle for RSA and SIS and

• the SIS assumption hold w.r.t. a complexity oracle for RSA and DLOG,

160

4.6. Long-Term-Secure Zero-Knowledge and Commit-and-Prove

Let COM be the typed PRS commitment with base commitments COMRSA, COMDLOG
and COMSIS. Let L1 = {RSA, DLOG}, L2 = {DLOG}, L3 = {SIS}. Then, πUpdCOM
long-term-Updatable-UC-realizes FUpdCOM for an appropriate helper H parameterized
with COM, L1,L2,L3 and complexity oracles for RSA, DLOG and SIS.

A direct consequence of Theorems 4.6 and 4.7 is the following corollary.

Corollary 4.3. Let COMRSA, COMDLOG and COMSIS be computationally binding
and statistically hiding trapdoor commitment schemes with stateless receiver and non-
interactive unveil phase based on the RSA assumption resp. the DLOG assumption.
resp. the SIS assumption. Then, there exist protocols πRSA

LT-COM, πDLOG
LT-COM, πSIS

LT-COM that
long-term-Rewinding-UC-realize FCOM.

4.6. Long-Term-Secure Zero-Knowledge and
Commit-and-Prove

By plugging in our long-term-secure commitment scheme πLT-COM into an appropriate
zero-knowledge proof system in the FCOM-hybrid model with statistical UC security,
e.g. the construction of Canetti and Fischlin [CF01], we obtain the following theorem.

Theorem 4.8. If computationally binding, statistically hiding trapdoor commitment
schemes with stateless receiver and non-interactive unveil phase exist (in the FCRS-hybrid
model), then for every NP relation R, there exists a protocol πR

ZK in the FCRS-hybrid
model such that πR

ZK long-term-Rewinding-UC-realizes FR
ZK.

The resulting protocol πR
ZK thus features statistical zero-knowledge and knowledge

soundness against computationally bounded provers.
Using a similar approach, we obtain a protocol that long-term-Rewinding-UC-realizes

the ideal functionality for commit-and-prove (Figure 2.5) for a bounded number of
proofs per instance.

Theorem 4.9. Let k ∈ poly(κ). If computationally binding, statistically hiding trapdoor
commitment schemes with stateless receiver and non-interactive unveil phase exist (in
the FCRS-hybrid model), then there exists a protocol πCP (accepting at most k inputs)
in the FCRS-hybrid model such that πCP long-term-Rewinding-UC-realizes FCP (for up
to k inputs).

Being a long-lived functionality, we leave the definition of an updatable variant of
FCP and its realization in the FUpdCOM-hybrid model for future work.

In the following, we discuss feasibility results with respect to composable general
two-party computation in our framework.

4.7. Long-Term-Secure General Two-Party Computation
Building on the constructions presented in Section 4.6, we now consider protocols for
general two-party computation.

161

4. Updatable Composable Security

We recall our impossibility result (Theorem 4.4), which states that we cannot realize
oblivious transfer with long-term security for both parties within our framework from
long-term revealing functionalities. In this section, we first consider possible security
definitions and then construct a protocol for composable oblivious transfer in the FCRS-
hybrid model where one party is protected with long-term security, which is the best
we can hope for in this setting. Using this protocol, we present a protocol for general
two-party computation with long-term security for one party.

4.7.1. Defining Security.

A challenge arises when modeling long-term security in a setting where both parties have
secret inputs: In order to simulate the party that is only computationally protected,
the simulation needs to depend on the party’s secrets, as they will eventually leak.
Otherwise, the distribution of the environment’s view would change between the real
and the ideal execution. To this end, a possibility is to adapt the ideal functionality to
leak these secrets to the simulator.

In such a setting, trivial (and yet provably secure) protocols realizing such a “leaky”
functionality are possible. In these protocols, the party that is supposed to be protected
computationally has no security at all. To rule out such protocols, we consider protocols
that not only long-term-(Rewinding)-UC-realize the (leaky) long-term functionality, but
also computationally realize a related functionality without leakage. Additionally, we
require that essentially the same simulator works in both cases.

In more detail, we consider, without loss of generality, two functionalities for determin-
istic reactive two-party secure function evaluation (short 2PC SFE), namely a standard
UC functionality F2PC together with a long-term variant Flt2PC (see Figure 4.4) that
models the long-term security guarantees and also captures the inevitable (long-term)
information leakage.

The functionality F2PC is parameterized with functions f1, . . . , fl to be evaluated in
each round and, in the k-th round, evaluates fk on the provided inputs as well as the
previous round’s state. After a round has completed, the adversary may request all
outputs (including the outputs of the honest parties). Providing the adversary with the
outputs enables simulation in the first place.22 F2PC captures the security properties
that can be guaranteed computationally, i.e. without the leakage making long-term
emulation possible in the first place.

In contrast, Flt2PC will also leak, each round, the input of the one party without
long-term security, but only after the other party has provided input, guaranteeing the
independence of inputs.

In order to see that there are computational security guarantees for parties that are
not long-term-protected in the execution with of a protocol πlt2PC that long-term-realizes
22We remark that such a functionality can still be used to perform secure function evaluation for

secret outputs. Instead of evaluating f : (x1, x2) ↦→ (y1, y2), the parties evaluate a function g :
((x1, s1), (x2, s2)) ↦→ (f(x1, x2)1 ⊕ s1), (f(x1, x2)2 ⊕ s2)) (where (f(·, ·)i denotes the i-th element of
f ’s output)), i.e. mask each party’s output using a one-time pad provided with the actual input.
Then, the leaked output perfectly hides the “real” output yi, which can be easily reconstructed.

162

4.7. Long-Term-Secure General Two-Party Computation

Flt2PC, we require that essentially the same simulator is used for both functionalities.
To this end, we trivialize the simulator that is supposed to interact with Flt2PC by
providing random input leakage when actually interacting with F2PC.

Functionality for Reactive Two-Party SFE F2PC

F2PC proceeds as follows, parameterized with a security parameter κ, efficiently
computable functions f1, . . . , fl, where fi : (1κ, xi

1, xi
2, statei−1) ↦→ (yi

1, yi
2, statei),

running with parties P1 and P2 and an adversary S.

1. Initialize a round counter k = 1 and set state0 = ⊥.

2. When party Pi gives input (input, sid, x) in the k-th round, store x as xk
i

and send (input-provided, sid, Pi) to the adversary. If xk
i is already defined,

ignore the input.

3. When all parties (both honest and corrupted) have provided input in the
k-th round, mark the k-th round as “input finished” and set (yk

1 , yk
2 , statek) =

fk(1κ, xk
1, xk

2, statek−1).

4. Upon receiving the input (output, sid) from a party Pi, generate a public
delayed output (output, sid, k, yk

i) to Pi.

5. Upon receiving (output, sid, k) from the adversary, send (output, sid, k, Yk) to
the adversary, where Yk is the set of the outputs in round k. If the k-th round
is not marked as “input finished”, send (output, sid, k,⊥) to the adversary.

6. When all parties (both honest and corrupted) have received output in the
k-th round and k < l, set k = k + 1.

Figure 4.3.: Ideal Functionality for Reactive Two-Party SFE F2PC.

We start with a definition of F2PC in Figure 4.3 and continue with the definition
of an ideal functionality for reactive SFE with long-term security guarantees for one
of the two parties in Figure 4.4. To this end, we fix the domain of each party’s input
and introduce a lt-query interface that leaks inputs of the party without long-term
security and the outputs of all parties. For the party with long-term protection, the
leaked inputs are random and independent of the real inputs. To this end, we assume
the domains of the parties’ inputs and outputs to be efficiently samplable. For the party
without long-term protection, the real inputs and outputs are provided.

Remark 4.31. Given that the adversary may learn secrets of an honest party via the
lt-query interface, Flt2PC may not provide sufficient guarantees to be meaningfully
used a hybrid functionality.

163

4. Updatable Composable Security

Functionality for Long-Term Reactive Two-Party SFE FP
lt2PC

FmsP
lt2PC proceeds as follows, parameterized with a security parameter κ, efficiently

computable functions f1, . . . , fl, where fi : (1κ, xi
1, xi

2, statei−1) ↦→ (yi
1, yi

2, statei),
running with parties P1 and P2 and an adversary S. Let Ij

i be the domain of Pi’s
(private) input in the j-th round.

1. Initialize a round counter k = 1 and set state0 = ⊥.

2. When party Pi gives input (input, sid, x) in the k-th round, store x as xk
i

and send (input-provided, sid, Pi) to the adversary. If xk
i is already defined,

ignore the input.

3. When all parties (both honest and corrupted) have provided input in the
k-th round, mark the k-th round as “input finished” and set (yk

1 , yk
2 , statek) =

fk(1κ, xk
1, xk

2, statek−1).

4. Upon receiving the input (output, sid) from a party Pi, generate a public
delayed output (output, sid, k, yk

i) to Pi.

5. When all parties (both honest and corrupted) have received output in the
k-th round and k < l, set k = k + 1.

6. Upon receiving the message (lt-query, sid) from the adversary:
a) Let k′ be the index of the last round marked as “input finished”.
b) For j = 1, . . . , k′ and for i ∈ {1, 2}:

• If P = Pi and Pi is honest, set x′ji
$← Ij

i and y′ji = yj
i .

• If P ̸= Pi or Pi is corrupted, set x′ji = xj
i , y′ji = yj

i .
c) Send (lt-query, sid, ((x′11 , x′12), . . . , (x′k′

1 , x′k
′

2)), ((y′11 , y′12), . . . , (y′k′
1 , y′k

′
2)))

to the adversary.

Figure 4.4.: Ideal Functionality for Long-Term Reactive Two-Party SFE FP
lt2PC.

We now introduce trivialized simulators. Let SP be a simulator expecting to interact
with an instance of Flt2PC with long-term security for party P. The trivialized simulator
SP,′ for the interaction with F2PC internally executes SP, but returns random inputs
for all honest parties in (simulated) lt-query outputs. Again, the simulator learns the
correct outputs, as they are not protected by definition.

164

4.7. Long-Term-Secure General Two-Party Computation

Definition 4.25 (Trivialized Simulator). Let SP be a simulator expecting to interact
with FP

lt2PC. Let Ij
i be the domain of Pi’s (private) input in the j-th round as in FP

lt2PC.
Let SP,′ be the trivialized simulator for SP and FP

lt2PC that acts as follows:

• Internally, execute SP.

• After the i-th round has completed, send (output, sid, i) to F2PC to learn that
round’s outputs.

• Answer (lt-query, sid) messages intended for FP
lt2PC as follows:

– For i ∈ {1, 2}:

∗ Set x′ji
$← Ij

i . If xj
i has been learned due to party corruption, set x′ji = xj

i .

∗ yj
i has been learned as part of the output query to F2PC for round j.

– Return (lt-query, sid, ((x′11 , x′12), . . . , (x′k′
1 , x′k

′
2)), ((y1

1, y1
2), . . . , (yk′

1 , yk′
2))).

• Forward all other messages intended for FP
lt2PC to F2PC and report messages

coming from F2PC as coming from FP
lt2PC.

• Relay all other messages appropriately.

Remark 4.32. Looking ahead to our constructions, it is important that the simulator
may depend on the party P with long-term security: In a two-party protocol in the
FCRS-hybrid model, the CRS distribution may change depending on which party has
long-term security.

We now define the notion of non-trivial23 long-term-UC-secure function evaluation
with long-term security for one party. Informally, this notion is satisfied by a protocol
πP

lt2PC if πP
lt2PC long-term-UC-realizes FP

lt2PC and, for the trivialized simulator, also (non-
long-term-) UC-realizes F2PC. If a protocol π satisfies the proposed notion, then it is
easy to see that all protocol parties in the long-term execution of π enjoy computational
security, even if the simulator always learns the inputs of one party in the ideal execution
with FP

lt2PC.

Definition 4.26. Let F2PC be the two-party (reactive) FSE functionality. We say that
a protocol π non-trivially long-term-UC-realizes F2PC with long-term security for P if
the following holds:

1. π ≥LT-UC FP
lt2PC, where FP

lt2PC is the long-term variant (Figure 4.4) of F2PC
(Figure 4.3) with long-term security for P. Let SP denote the simulator.

2. π ≥UC F2PC for the trivialized simulator SP,′ of SP.
23Here, non-triviality is related to the question whether the protocol is trivial in the sense that it

prematurely discloses honest parties’ secrets. It is not to be confused with the notion of non-triviality
in Section 3.4.3.

165

4. Updatable Composable Security

A variant for non-trivial long-term-Rewinding-UC-secure function evaluation with
long-term Rewinding UC security for one party is defined in total analogy by considering
long-term Rewinding UC emulation instead of long-term UC emulation.

For the sake of an easier exposition, we will consider the simpler notion of long-term
security of Müller-Quade and Unruh [MU10]. Using Theorem 4.3, long-term Rewinding
UC security can be inferred.

Towards realizing F2PC and FP
lt2PC, we now present a protocol for oblivious transfer

with long-term security for one party.

4.7.2. Oblivious Transfer with Long-Term Security for One Party

Even given a commitment scheme that is long-term-(Rewinding-)UC-secure, we provably
cannot achieve long-term-secure oblivious transfer from long-term revealing setups.

Instead, we construct an OT protocol πltOT that guarantees long-term security for
one party only. To this end, we use a (UC) protocol πOT in the FCRS-hybrid model
that has the following properties, depending on how the CRS is distributed:

• πOT UC-realizes FOT and

• in the mode for statistical sender security, denoted by πS
OT, it holds that πS

OT
statistically UC-realizes FOT if the OT receiver is corrupted and the OT sender is
honest resp.

• in the mode for statistical receiver security, denoted by πR
OT, it holds that πR

OT
statistically UC-realizes FOT if the OT sender is corrupted and the OT receiver is
honest and

• it is possible to prove the correctness of the execution relative to committed
inputs.24

The dual-mode construction of Peikert, Vaikuntanathan, and Waters [PVW08] satisfies
these conditions. In particular, it can be switched between statistical security for
the sender resp. the receiver and is in the FCRS-hybrid model. If the helper under
consideration has appropriate properties (see Theorem 4.3), we can import πOT into our
framework, achieving Rewinding UC security resp. long-term Rewinding UC security.

Remark 4.33. The protocol of Peikert, Vaikuntanathan, and Waters [PVW08] achieves
statistical UC security only when either the receiver is corrupted (and the sender is
honest and enjoys statistical security) or when the sender is (passively) corrupted (and
the receiver honest and enjoys statistical security): Due to the corruption, the simulator
learns the secrets of the party without statistical security and can perform a statistically
correct simulation. If the party without statistical security were not corrupted, this
would be impossible. Conversely, simulation in [PVW08] is not possible when the party
with statistical security is corrupted. (Of course, computational security with arbitrary
24This may not be possible depending on the used setup, e.g. in the case of random oracles. In the

following, we consider protocols in the FCRS-hybrid model where this is possible.

166

4.7. Long-Term-Secure General Two-Party Computation

corruptions is achieved by [PVW08].) We will enable extraction of all corrupted parties
through the use of FCP, which we can later on replace with a long-term-secure protocol
in the FCRS-hybrid model.

The protocol πltOT works as follows. First, each party uses an instance of the commit-
and-prove functionality FCP to commit to its input and its randomness. Subsequently,
both parties execute πOT on their committed inputs and randomness. After each sent
message, the message sender proves the correctness relative to the committed input and
randomness as well as the previously received messages. The use of FCP allows for easy
extraction resp. equivocation.

We use the definitional approach outlined in Section 4.7.1. To this end, we consider
the ideal functionality for SFE F2PC with the following parameters:

• I1
R = {0, 1}, I1

S = {0, 1}κ × {0, 1}κ,

• f1 : (1κ, (m0, m1), b,⊥) ↦→ (⊥, mb,⊥).

In the following, we consider the long-term variants FR
lt2PC and FS

lt2PC, where the
first long-term-protects the receiver and the second long-term-protects the sender. Note
that the other party is not long-term-protected, even when both parties are honest. In
the following, we will refer to these long-term variants of OT by FR

ltOT and FS
ltOT.

Construction 6 (The OT Protocol π′ltOT).
Parameterized with an OT protocol πOT.

1. On input (input, sid, b), the OT receiver R samples randomness rR and sends
(commit, sid||R, (b, rR)) to an instance of FCP with SID sid||R.

2. On input (input, sid, (m0, m1)), the OT sender S samples randomness rS and
sends (commit, sid||S, (m0, m1, rS)) to an instance of FCP with SID sid||S.

3. R and S keep a list of received messages mR resp. mS.

4. S and R execute πOT on their respective private inputs and randomness rS resp.
rR.

5. For every message m sent to R by S, S sends (CP-prover, sid||S, (m, mS)) to FCP
with the relation RπOT

S = {(m, mS), (m0, m1, rS) | m = πOT((m0, m1), mS; rS)}
to prove to R that m is consistent relative to the committed inputs and
the received messages. R only continues the execution when it has received
(CP-proof, sid||S, (m, mS)) from FCP.

6. Similarly, for every message m sent to S by R, R sends (CP-prover, sid||R, (m, mR))
to FCP with the relation RπOT

R = {(m, mR), (b, rR) | m = πOT(b, mR; rR)} to prove
to S that m is consistent relative to the committed inputs and the received messages.
S only continues the execution when it has received (CP-proof, sid||R, (m, mR))
from FCP.

167

4. Updatable Composable Security

7. When the receiver of πOT outputs mb, R stores mb.

8. On input (output, sid), R outputs (output, sid, 1, mb) and S outputs
(output, sid, 1,⊥).

Theorem 4.10. Let πOT be a protocol in the FCRS-hybrid model such that

• πOT ≥UC IDEAL(FOT) and

• πS
OT ≥Stat-UC IDEAL(FOT) if the sender is honest and the receiver is corrupted

resp.

• πR
OT ≥Stat-UC IDEAL(FOT) if the receiver is honest and the sender is corrupted,

where πS
OT is πOT in the mode for statistical sender security and πR

OT is πOT in the mode
for statistical receiver security. Then, π′ltOT is a protocol in the (FCRS,FCP)-hybrid
model such that

• π′,SltOT ≥Stat-UC IDEAL(FS
ltOT) and π′,SltOT ≥UC IDEAL(FOT) for the trivialized

simulator resp.

• π′,RltOT ≥Stat-UC IDEAL(FR
ltOT) and π′,RltOT ≥UC IDEAL(FOT) for the trivialized

simulator.

Here, π′,PltOT uses πP
OT as sub-protocol.

Looking ahead, we will obtain a protocol πltOT with long-term Rewinding UC security
by plugging in the construction for FCP in the FCRS-hybrid model from Theorem 4.9
into π′ltOT.

First, we provide a sketch of the proof of Theorem 4.10.

Proof sketch. We state the necessary simulators and give an intuition why the simulation
is correct.

Definition 4.27 (Simulator for the Dummy Adversary, Corrupted Sender).

1. Simulate the instance of FCRS which is part of πOT by returning a CRS that is
distributed as the CRS in πOT.

2. Appropriately simulate both instances of FCP.

3. When receiving (input-provided, sid, R) from FltOT, report (receipt, sid||R) as
output from FCP.

4. Read the first input to FCP with SID sid||S to obtain m0, m1 and send m0, m1 to
FltOT as input of the corrupted sender.

5. When receiving the output request for R, send lt-query to FltOT and receive
(lt-query, sid, ((m0, m1), b), (⊥, mb)).

168

4.7. Long-Term-Secure General Two-Party Computation

6. Execute π′ltOT as the honest receiver would, using input b obtained from the
lt-query answer.

7. When the internally emulated honest receiver has finished, allow the output of
FltOT for R.

The simulator for the corrupted sender learns the correct input of the corrupted
sender through FCP. If FltOT models long-term sender security, the simulator learns the
correct input of R. Otherwise, the leaked input of R is random. Thus, if πOT provides
statistical sender security, the correct input for R is used. If πOT provides statistical
receiver security, it does not matter if b is correct, as it is statistically protected (and
the correct (m0, m1) are used).

Definition 4.28 (Simulator for the Dummy Adversary, Corrupted Receiver).

1. Simulate the instance of FCRS which is part of πOT by returning a CRS that is
distributed as the CRS in πOT.

2. Appropriately simulate both instances of FCP.

3. When receiving (input-provided, sid, S) from FltOT, report (receipt, sid||S) as
output from FCP.

4. Read the first input to FCP with SID sid||R to obtain b and send b to FltOT as
input of the corrupted receiver.

5. When the sender has provided its input, send lt-query to FltOT and receive
(lt-query, sid, ((m0, m1), b), (⊥, mb)).

6. Execute πltOT as the honest sender would, using
• m0 from the receiver output mb and m1 from the sender input in the lt-query

answer if the extracted b is 0,
• m1 from the receiver output mb and m0 from the sender input in the lt-query

answer if the extracted b is 1.

7. When the internally emulated honest sender finished, allow the output of FltOT
for S.25

The simulator for the corrupted receiver learns the correct input of the corrupted
receiver through FCP. If FltOT models long-term sender security, then the reported
sender input (m0, m1) is random. If FltOT models long-term receiver security, then
the reported sender input (m0, m1) is correct. In any case, the receiver’s output mb

is correct. Thus, the simulator always uses mb from the receiver’s output and m1−b

from the sender input. If πOT provides statistical sender security, m1−b is statistically
protected and it does not matter whether this value is correct or not. If πOT provides
statistical receiver security, m1−b leaks but is correct. Conversely, b and mb are always
correct.
25This output is ⊥, but per definition of F2PC/Flt2PC, all parties get output.

169

4. Updatable Composable Security

Definition 4.29 (Simulator, Both Parties Honest).

1. Simulate the instance of FCRS which is part of πOT by returning a CRS that is
distributed as the CRS in πOT.

2. Appropriately simulate both instances of FCP.

3. When receiving (input-provided, sid, S) resp. (input-provided, sid, R), report
(receipt, sid||S) resp. (receipt, sid||R) as output from FCP.

4. When both parties have provided input, send lt-query to FltOT and receive
(lt-query, sid, ((m0, m1), b), (⊥, mb)).

5. Honestly execute the protocol using the following inputs:
• Use b from the receiver’s input
• Use mb from the receiver’s output.
• Use m1−b from the sender’s input, where b is from the receiver’s input.

6. When the protocol execution has finished, allow the outputs of FltOT.

The simulator for the case that both parties are honest can only rely on inputs
and outputs learned from FltOT. If FltOT models long-term receiver security, then the
reported sender input (m0, m1) is correct (and so is mb). Thus, the correct input for
the sender is used. Conversely, when FltOT models long-term sender security, then the
correct b and mb are used.

We now consider UC security with the trivialized simulator. To this end, we define
the following hybrids for P ∈ {S, R}:

• H0: The real UC execution with π′,PltOT and the dummy adversary D.

• H1: The ideal UC execution with FOT and a simulator S1 that is defined as
follows: Execute the UC simulator S for πOT, but additionally simulate FCP. In
particular, simulate the outputs of FCP for simulated messages of honest protocol
parties.

• H2: The ideal UC execution with FOT and the simulator S2 = S1. The honest
parties’ inputs to FOT are changed as the trivialized simulator would report them
as the result of a lt-query message. The honest parties’ outputs are generated
relative to their real (unchanged) inputs.

• H3: The ideal UC execution with FOT and the trivialized simulator SP,′ .

It is easy to see that the outputs of the environment in H0 and H1 are computationally
indistinguishable due to the UC security of πOT.

As the environment’s view is identically distributed in H1 and H2 by definition, its
outputs in both hybrids are identically distributed.

170

4.7. Long-Term-Secure General Two-Party Computation

In H3, the execution is distributed like a real execution with the same inputs and
outputs as in H2 due to the definition of the trivialized simulator. As πOT UC-realizes
FOT, the (computational) indistinguishability of the environment’s output follows.

The case of statistical UC security is trivial and we omit it.

We note that π′ltOT is constant-round if πOT is constant-round, a property fulfilled
by the construction in [PVW08]. If the committed-value oracle of H has appropriate
properties, π′ltOT fulfills long-term Rewinding UC security and we can use the composition
theorem to replace FCP with an appropriate protocol that long-term-Rewinding-UC-
realizes FCP. The resulting protocol πltOT then non-trivially realizes FOT with long-term
Rewinding UC security.

4.7.3. Two-Party Secure Function Evaluation with Long-Term Security
for One Party

We can use a similar approach to construct composable (reactive) two-party secure
function evaluation with long-term (Rewinding) UC security for one party. In the
following, we describe shortly the conceptual idea to highlight the adaptions.

As we are interested in protocols with as few rounds as possible, we explore an
approach based on garbled circuits [Y86]. First, we note that most garbling schemes
only provide computational security. While constructions with information-theoretic
security exist (e.g. [K05]), they suffer from efficiency problems, especially as the circuit
depth grows. Given the fact that we only can construct OT with long-term security
for one party, the garbling scheme, interestingly, does not need to provide information-
theoretic security. Indeed, if the party P with information-theoretic security is known in
advance (as we assume for the OT protocol), we let the other party perform the garbling.
If the OT protocol provides long-term security for P , then there is no information flow
depending on P ’s input to the other party, except when it learns the result.

Non-Reactive Two-Party Computation. We start with a sketch of the construction
πnr2PC for non-reactive two-party computation. πnr2PC uses a projective garbling scheme
(see [BHR12] for an introduction and definitions) with privacy as well as an OT protocol
with long-term receiver security in the FCRS-hybrid model as building blocks.

First, P1 and P2 commit to their input and randomness using FCP like in Construc-
tion 6. Without loss of generality, we assume that P1 is the party with long-term security.
Let f : (1κ, x1, x2) ↦→ (y1, y2) be the function P1 and P2 jointly want to evaluate.

The general idea is as follows: P2 prepares a garbled circuit for f as well as input
labels. It sends the garbled circuit to P1, along with the labels for its input x2. Also,
P2 proves via FCP that the garbling was performed correctly relative to (x2, r2), where
x2 is P2’s actual input and r2 is a random string that is used as random tape in the
subsequent execution. Then, P1 and P2 use instances of πR

OT that provide long-term
receiver security. In each instance, (a sub-party of) P2 acts as OT sender, using the
input labels for P1’s input as the OT sender’s input. Conversely, (a sub-party of) P1

171

4. Updatable Composable Security

uses the corresponding bit of x1 as choice bit. For each step, like in Construction 6,
both parties prove the correctness using FCP relative to their corresponding inputs and
randomness. Also, P2 sends the output labels to P1, allowing it to later reconstruct the
output. Again, correctness is proven via FCP. P1 can now evaluate the circuit, learning
its own output y1 and the output y2 of P2. It sends the output y2 to P2, again proving
via FCP that y2 was obtained correctly. With the exception of the final message for
P2’s output, there is only a (long-term) information flow from P2 to P1 in the above
protocol, but not vice versa.

Let Fltnr2PC resp. Fnr2PC denote the non-reactive variants of Flt2PC resp. F2PC. It
is easy to prove that this protocol long-term-UC-realizes Fltnr2PC: If P1 is honest and
P2 is corrupted, the simulator learns P1’s input (which is not long-term-protected) via
Fltnr2PC and can simulate P1 by essentially executing the real protocol of P1. P2’s input
is learned via its input to FCP. If P1 is corrupted, the simulator can extract its input
via its input to FCP. In order to simulate the message for P2’s output, it can simply
use the output y2 learned from Fltnr2PC and simulate the message from FCP that y2 is
correct. If both parties are honest, the simulator learns P2’s input x2 from Fltnr2PC and
can construct a correctly distributed circuit with corresponding labels. For the final
message for P2’s output, it uses y2 learned from Fltnr2PC.

Unfortunately, it is not possible to prove that this protocol (non-long-term-)UC-
realizes Fnr2PC for essentially the same simulator as in the long-term case: In the
above sketch, the simulator garbles the circuit dependent on the garbler’s input, which
it does not know when interacting with Fnr2PC. In principle, a simulation using the
simulator for the garbled circuit scheme (which does not depend on the garbler’s input) is
possible—however, this would lead to a different simulator not fulfilling the requirements
of Definition 4.26.

To address this problem, we evaluate a function g instead of f , where g performs an
additional masking step of the outputs, always leading to results that looks uniformly
random for the evaluator, i.e. P1. In more detail, g takes input x1 from P1 and (x2, s1, s2)
from P2 and returns y′1 = y1 ⊕ s1 as output for P1 and y′2 = y2 ⊕ s2 as output for P2,
where y1 and y2 are the outputs of f for P1 and P2 on inputs x1 and x2. Finally, P1
sends y′2 to P2 and P2 sends s1 to P1, allowing each party to obtain and unmask the
result, which they can then return as output. Additionally, the parties prove via FCP
that y′2 resp. s1 are correct in the sense that they correspond to the garbled circuit’s
output resp. input. The simulator, when learning the result from the ideal functionality,
can send simply compute and send an appropriate s2 to equivocate P1’s result resp. an
appropriate y′2.

For the sake of an easier presentation, we assume that the inputs x1 and x2 are
bitstrings of length κ.

Construction 7 (The Protocol πnr2PC). Let G = (Gb, En, De, Ev, ev) be a garbling
scheme according to [BHR12]. Let f : (x1, x2) ↦→ (y1, y2) be the function P1 and P2
want to evaluate.

1. On input (input, sid, x1) for party P1, P1 samples r1
$← {0, 1}poly(κ) and sends

(commit, sid||P1, x1, r1) to an instance of FCP with SID sid||P1.

172

4.7. Long-Term-Secure General Two-Party Computation

2. On input (input, sid, x2) for party P2, P2 waits for (receipt, sid||P1) from an
instance of FCP with SID sid||P1 and then samples s1, s2, r2

$← {0, 1}poly(κ) and
sends (commit, sid||P2, x2, s1, s2, r2) to an instance of FCP with SID sid||P2.

3. Let f(x1, x2)i = yi, i.e. the output of f for party P on input (x1, x2). Define
g(x1, (x2, s1, s2)) := (f(x1, x2)1 ⊕ s1, f(x1, x2)2 ⊕ s2).

4. After having received (receipt, sid||P1) from FCP with SID sid||P1, P2 computes
(F, e = X1,0

1 , X1,1
1 , . . . , Xκ,1

1 , X1,0
2 , . . . , X l,1

2 , . . . , d)← Gb(1κ, g), using a fresh part
of r2 as randomness. Here, l denotes the length of x2, s1 and s2.

5. P2 sends (F, (X1
2 = X

1,x′
2[1]

2 , . . . , Xκ
2 = X

l,x′
2[l]

2)), d) to P1, proving correctness via
FCP. Here, x′2 denotes (x2, s1, s2).

6. P1 and P2 start κ sessions of πR
OT in parallel with P1 acting as receiver and P2 as

sender. In the i-th session, P1 uses x1[i] ∈ {0, 1} as input while P2 uses (Xi,0
1 , Xi,1

1)
as input. Let (X1

1 , . . . , Xκ
1) denote the result for P1. As in Construction 6, both

parties prove correctness via FCP relative to their initial input.26

7. P1 computes Y = Ev(F, (X1
1 , . . . , Xκ

1 , X1
2 , . . . , X l

2)) and (y′1, y′2) = De(Y, d).

8. P1 sends y′2 to P2 and proves correctness via FCP.

9. Upon receiving y′2 and the proof of correctness via FCP, P2 stores y2 = y′2 ⊕ s2 as
result and sends s1 to P1.

10. Upon receiving s1 from P2, P1 stores y1 = y′1 ⊕ s1 as result.

11. On input (output, sid), Pi outputs (output, sid, yi) if yi has been previously
stored.

Proposition 4.10. Let πOT be a protocol in the FCRS-hybrid model such that

• πOT ≥UC IDEAL(FOT) and

• πR
OT ≥Stat-UC IDEAL(FOT) if the receiver is honest and the sender is corrupted,

where πR
OT is πOT in the mode for statistical receiver security. Then, the protocol πnr2PC

in the (FCRS,FCP)-hybrid model non-trivially long-term-realizes F2PC for non-reactive
computations with long-term security for P1.

Proof sketch. We begin the proof sketch with constructions of simulators for the dummy
adversary.
26Unfortunately, it is not possible to reuse Construction 6 directly. This is due to the fact that we need

to use the same instances of FCP in πnr2PC and the OT protocol.

173

4. Updatable Composable Security

P1 Corrupted and P2 Honest. If P1 is corrupted and P2 is honest, the simulator
extracts the correct input of P1 and, in the long-term simulation, receives the correct
input of P2. Thus, real and ideal execution are identically distributed.

With respect to the non-long-term emulation, the circuit is garbled (and evaluated)
with a possibly incorrect input for P2. However, by sending an appropriate mask s1, P1
reconstructs the correct result. Due to the privacy property of the garbling scheme, the
simulation is computationally indistinguishable from the real execution.

Definition 4.30 (Simulator for the Dummy Adversary).

1. Extract P1’s input x1 via P1’s input to FCP and send (input, sid, x1) to Flt2PC
on behalf of P1.

2. When receiving (input-provided, sid, P2) from Flt2PC, send (lt-query, sid) to
Flt2PC and receive answer (lt-query, sid, (x′11 , x′12), (y′11 , y′12)).

3. Continue the protocol execution like an honest P2 would, using x′12 as its input.
Appropriately continue to simulate instances of FCP.

4. After receiving y′2 from P1, send s1 ⊕ f(x′11 , x′12)1 ⊕ y′11 to P1 and simulate the
corresponding message from FCP.

5. On subsequent activations, allow a possible output from Flt2PC for P2.

P1 Honest and P2 Corrupted. If P1 is honest and P2 is corrupted, the simulator
extracts the correct input of P2, but does not know the correct input of P1. However,
if the OT protocol has appropriate properties, namely long-term security for P1, the
simulated view is statistically indistinguishable. In particular, the view is independent
of P1’s input until P2 obtains the output of the garbled circuit’s evaluation. However,
this output is simulated appropriately and does not affect the indistinguishability.

Definition 4.31 (Simulator for the Dummy Adversary).

1. Extract P2’s input x2 as well as s1, s2 via P2’s input to FCP and send
(input, sid, x2) to Flt2PC on behalf of P2.

2. When receiving (input-provided, sid, P2) from Flt2PC, send (lt-query, sid) to
Flt2PC and receive answer (lt-query, sid, (x′11 , x′12), (y′11 , y′12)).

3. When receiving (input-provided, sid, P1) from Flt2PC, perform the protocol like
an honest P1 would, using random choice bits for the OT protocol.

4. Send y′2 = y′12 ⊕ s2 to P2 and simulate the corresponding message from FCP.

5. When receiving s1 from P2 and the corresponding message from FCP, allow a
possible output from Flt2PC for P1.

174

4.7. Long-Term-Secure General Two-Party Computation

Both Parties Honest. This case is very similar to the first case (P2 honest and P1
corrupted), except that the simulator also plays the honest party P1, using random choice
bits in the sessions of πOT. In order to simulate y′2, the simulator sends y′2 = y′12 ⊕ s2.
For s1, the value chosen by the internally emulated honest party P1 is used.

Again, we obtain a protocol with non-trivial long-term Rewinding UC security for P1
in the FCRS-hybrid model by replacing FCP with an appropriate protocol.

Reactive Two-Party Computation. The above strategy can be extended to reactive
secure function evaluation using a folklore technique (used e.g. in [BKM+21]). To
this end, let Σ = (Gen, Sign, Verify) be an EUF-CMA-secure signature scheme with a
deterministic27 and length-regular28 signing algorithm.

First, P1 and P2 use πnr2PC to obtain a public key pk of Σ, along with shares ski

of the secret key sk and a dummy state statei for Pi. In subsequent rounds, P1 and
P2 use pk, their share ski of the secret key, their share of the previous round’s state
as well as a signature of the previous state’s share under sk as input, together with
their actual input xj

i . As output, they receive yj
i , as well as a share of the state statej

and a signature on the state. By signing the state’s share together with the current
round number as well as the number i of the party, share re-use of a corrupted party is
prevented.

In more detail, the evaluation is performed as follows.

1. Upon their first activation, P1 and P2 use πnr2PC to evaluate the function f that
• takes as input a tuple ((r0

1, r1
1), (r0

2, r1
2)),

• computes (pk, sk)← Gen(1κ; r0
1 ⊕ r0

2),
• sk1 = r1

1 ⊕ r1
2, sk2 = sk1 ⊕ sk,

• state1 = state2 = 0κ and
• returns (pk, ski, σi = Sign(sk, (i||0||statei)), statei) for i = 1, 2.

where r0
i , r1

i are sampled uniformly at random. After evaluating f , the parties
recover pk, sk0

i = ski, σ0
i = σi, state0

i = statei.

2. To perform the j-th input evaluation round with j ≥ 1, i.e. to evaluate fj on
input xj

i , P1 and P2 use πnr2PC to evaluate the function gj that
• takes as input a tuple (pk′i, x′i, state′i, σ′i, sk′i, r′i) for i = 1, 2,
• returns a special error symbol ⊥ if pk′1 ̸= pk′2,
• returns a special error symbol ⊥ if Verify(pk′1, (i||j − 1||state′i), σ′i) ̸= 1 for

i = 1 or i = 2,
• otherwise, evaluates fj on input (x′1, x′2, state′1 ⊕ state′2), resulting in

(y1, y2, state′′),
27Assuming a deterministic signing algorithm simplifies the presentation, but is not required.
28A deterministic signing algorithm is length-regular if for every κ ∈ N, every m0, m1 ∈M and every

(pk, sk)← Gen(1κ), it holds that if |m0| = |m1|, then |σ0 = Sign(sk, m0)| = |σ1 = Sign(sk, m1)|.

175

4. Updatable Composable Security

• sets state′′1 = r′1 ⊕ r′2, state′′2 = state′′1 ⊕ state′′,
• computes signatures σ′′i = Sign(sk′1 ⊕ sk′2, (i||j||state′′i)) for i = 1, 2 and
• returns (yi, state′′i , σ′′i) as result for Pi.

To evaluate gj , Pi uses pk′ = pk, sk′i = ski, σ′i = σj−1
i and state′i = statej−1

i as
well as uniformly random ri of appropriate length for r′i. After evaluating gj , the
parties recover yj

i , statej
i and σj

i . As result of the j-th round, Pi returns yj
i .

Let πrSFE denote the above protocol. We can then state the following proposition:

Proposition 4.11. Let πOT be a protocol in the FCRS-hybrid model such that

• πOT ≥UC IDEAL(FOT) and

• πR
OT ≥Stat-UC IDEAL(FOT) if the receiver is honest and the sender is corrupted,

where πR
OT is πOT in the mode for statistical receiver security. Then, the protocol

πrSFE in the (FCRS,FCP)-hybrid model non-trivially long-term-realizes F2PC for reactive
computations with long-term security for P1.

By replacing FCP with an appropriate protocol, we obtain a protocol that non-trivially
long-term-Rewinding-UC-realizes F2PC for reactive computations with long-term security
for P1 in the FCRS-hybrid model.

We leave a detailed protocol description as well as a security proof for future work.

176

5. Conclusion and Outlook

In today’s highly connected world, it is very important that cryptographic protocols
remain secure even when they are executed alongside other protocols in a possibly
adversarial scheduling. While the notion of Universal Composability (UC) provides
very strong composable security guarantees, it suffers from several drawbacks. In this
thesis, we presented two new frameworks and notions for composable secure multi-party
computation (MPC) along with protocols for important tasks satisfying these notions.

Environmentally Friendly Composable Multi-Party
Computation in the Plain Model from Standard (Timed)
Assumptions

As our first contribution, we provided a novel solution for the important problem of
attaining composable security without the use of setups.

By combining standard (non-timed) hardness assumptions with standard timed
hardness assumptions, we were able to achieve composable MPC in the plain model with
important properties not provided by any previous notion. In particular, our notion
Time-Lock UC (TLUC) security is fully environmentally friendly and thus does not
negatively affect polynomial-time game-based properties of other protocols. Featuring
full UC reusability, we can take the best UC-secure protocol for a given task and realize
its setup within TLUC, leading to a protocol in the plain model that is secure under
composition. This property is only possible due to our novel simulation technique and
not generally possible with previous approaches.

We constructed a TLUC-secure composable commitment scheme from standard and
standard timed assumptions that is constant-round and uses its building blocks in a
black-box way. Using this commitment scheme, we presented a protocol for constant-
round composable general MPC in the plain model.

Outlook

The first result of this thesis raises a number of possible research questions.

Environmental Friendliness for Timed Properties. The established notion of
environmental friendliness is only applicable to non-timed game-based properties. An
open question is how environmental friendliness can be generalized to also capture timed
game-based properties, e.g. the timed hiding property offered by timed commitment

177

5. Conclusion and Outlook

schemes. As a second step, it remains to investigate to what extent such a new notion
is satisfied by TLUC security.

Weaker Hardness Assumptions. Apart from timed commitment schemes, our
constructions rely on the specific assumption of trapdoor permutations with dense
public description. We currently investigate if similar results can be achieved e.g. with
(stand-alone-secure) oblivious transfer instead.

Complexity Leveraging. Finally, we currently work on adapting our protocol to the
shielded oracles security notion combined with complexity leveraging, i.e. a setting where
the simulation is performed with a (large) complexity advantage. In such a setting, we
can replace timed assumptions with better-studied non-timed ones.

Historically, complexity leveraging suffers from the problem of correctly choosing the
involved security levels. If the “low” security level (that can be broken by the simulator)
turns out to be too low, it leads to protocols becoming completely insecure. Conversely,
if the “low” security level is chosen too closely to the “high” one (that should not be
broken by the simulator), it is conceivable that there is no gap whatsoever and the
simulator is able to break both levels, negatively affecting security.

We intend to replace the timed commitment scheme in our constructions with a
(non-timed) commitment scheme that is extractable with appropriate resources. Given
that our proposed composable commitment scheme retains its security even when the
timed commitment eventually loses its hiding property (as long as the coin-toss has
been completed before), there is, intuitively, little risk involved when using a very low
security level for the extractable commitment scheme. Conversely, due to the use of
shielded oracles (that “shield” the extraction power), possible negative consequences
of the levels being too close are also reduced in our proposed approach, as the values
extracted by the shielded oracles are never directly observed, unless the commitment in
question is opened.

Updatable Composable Security

With the availability of universal quantum computers, many of today’s widely used
cryptographic hardness assumptions such as RSA or the discrete logarithm problem
will become invalid. Thus, it is important to start considering this problem today, by
designing protocols with appropriate security guarantees, possibly including the ability
to later update to a new cryptographic hardness assumption. Until now, no general
security notion for this setting existed, neither with nor without composability.

By carefully incorporating rewinding into the UC execution, we obtained the first
commitment scheme in the CRS-hybrid model that is both composable and statistically
hiding at the same time, circumventing the long-standing impossibility results of Müller-
Quade and Unruh [MU10]. The resulting commitment scheme not only has optimal
asymptotic round complexity, but also requires standard assumptions only.

178

By extending the model to provide the environment with complexity oracles, we
obtained a security notion that captures a setting where cryptographic hardness assump-
tions may become invalid at any time, i.e. before, during and after protocol execution.
We showed that in even such a challenging setting, meaningful composable security guar-
antees can be obtained. In particular, we constructed a composable commitment scheme
with a statistical hiding property whose binding property can be updated and proved
that it realizes our newly introduced ideal functionality for updatable commitments.

We also gave an impossibility result for composable two-party computation with
long-term security for both parties, namely that composable oblivious transfer with
long-term security for both parties is already impossible in the considered setting.
However, we constructed composable oblivious transfer with long-term security for one
party, which is the best guarantee in our setting. Using this protocol for oblivious
transfer, we sketched how composable (reactive) general two-party computation with
long-term security for one party can be achieved. For the special cases of composable
zero-knowledge and composable commit-and-proof, we provided constructions with
long-term security for both parties.

Outlook

We intend to investigate the following open problems.

Constructions in the Plain Model. Given the drawbacks of trusted setups and
the fact that the extraction technique we built upon allows composable MPC in the
plain model (albeit known results do not achieve long-term security), a natural question
to ask is whether our constructions can be adapted accordingly, yielding a notion for
composable long-term security in the plain model. In such a setting, equivocation via
the CRS is not possible anymore, requiring a more complex construction as well as an
even more involved security proof.

Updatable Security for Other Tasks. Apart from commitment schemes, it remains
to investigate which other tasks can be achieved with meaningful (composable) updatable
security. Natural candidates are “long-living” tasks, e.g. commit-and-prove as well as
general two-party computations.

179

180

Bibliography

[ABBC10] T. Acar, M. Belenkiy, M. Bellare, and D. Cash. “Cryptographic Agility
and Its Relation to Circular Encryption”. In: Advances in Cryptology –
EUROCRYPT 2010. Ed. by H. Gilbert. Vol. 6110. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Germany, 2010, pp. 403–422. doi:
10.1007/978-3-642-13190-5 21.

[AGH+19] D. Achenbach, R. Gröll, T. Hackenjos, A. Koch, B. Löwe, J. Mechler, J.
Müller-Quade, and J. Rill. “Your Money or Your Life - Modeling and
Analyzing the Security of Electronic Payment in the UC Framework”. In:
FC 2019: 23rd International Conference on Financial Cryptography and
Data Security. Ed. by I. Goldberg and T. Moore. Vol. 11598. Lecture Notes
in Computer Science. Springer, Heidelberg, Germany, 2019, pp. 243–261.
doi: 10.1007/978-3-030-32101-7 16.

[AHLR18] G. Asharov, S. Halevi, Y. Lindell, and T. Rabin. “Privacy-Preserving
Search of Similar Patients in Genomic Data”. In: Proc. Priv. Enhancing
Technol. 2018.4 (2018), pp. 104–124. doi: 10.1515/popets-2018-0034. url:
https://doi.org/10.1515/popets-2018-0034.

[AL17] G. Asharov and Y. Lindell. “A Full Proof of the BGW Protocol for Perfectly
Secure Multiparty Computation”. In: Journal of Cryptology 30.1 (2017),
pp. 58–151. doi: 10.1007/s00145-015-9214-4.

[B81] M. Blum. “Coin Flipping by Telephone”. In: Advances in Cryptology –
CRYPTO’81. Ed. by A. Gersho. Vol. ECE Report 82-04. U.C. Santa Barbara,
Dept. of Elec. and Computer Eng., 1981, pp. 11–15.

[B97] D. Beaver. “Commodity-Based Cryptography (Extended Abstract)”. In:
29th Annual ACM Symposium on Theory of Computing. ACM Press, 1997,
pp. 446–455. doi: 10.1145/258533.258637.

[BBK+23] R. Berger, B. Broadnax, M. Klooß, J. Mechler, J. Müller-Quade, A. Otten-
hues, and M. Raiber. “Composable Long-Term Security with Rewinding”.
In: Theory of Cryptography - 21st International Conference, TCC 2023,
Taipei, Taiwan, November 29 - December 2, 2023, Proceedings, Part IV.
Ed. by G. N. Rothblum and H. Wee. Vol. 14372. Lecture Notes in Computer
Science. Springer, 2023, pp. 510–541. doi: 10.1007/978-3-031-48624-1\ 19.
url: https://doi.org/10.1007/978-3-031-48624-1%5C 19.

181

https://doi.org/10.1007/978-3-642-13190-5_21
https://doi.org/10.1007/978-3-030-32101-7_16
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1515/popets-2018-0034
https://doi.org/10.1007/s00145-015-9214-4
https://doi.org/10.1145/258533.258637
https://doi.org/10.1007/978-3-031-48624-1_19
https://doi.org/10.1007/978-3-031-48624-1%5C_19

Bibliography

[BCD+09] P. Bogetoft, D. L. Christensen, I. Damgård, M. Geisler, T. Jakobsen,
M. Krøigaard, J. D. Nielsen, J. B. Nielsen, K. Nielsen, J. Pagter, M. I.
Schwartzbach, and T. Toft. “Secure Multiparty Computation Goes Live”.
In: FC 2009: 13th International Conference on Financial Cryptography and
Data Security. Ed. by R. Dingledine and P. Golle. Vol. 5628. Lecture Notes
in Computer Science. Springer, Heidelberg, Germany, 2009, pp. 325–343.

[BCH+20] C. Badertscher, R. Canetti, J. Hesse, B. Tackmann, and V. Zikas. “Universal
Composition with Global Subroutines: Capturing Global Setup Within Plain
UC”. In: TCC 2020: 18th Theory of Cryptography Conference, Part III.
Ed. by R. Pass and K. Pietrzak. Vol. 12552. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2020, pp. 1–30. doi: 10.1007/978-
3-030-64381-2 1.

[BDD+20] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. “CRAFT:
Composable Randomness and Almost Fairness from Time”. Cryptology
ePrint Archive, Report 2020/784. https://eprint.iacr.org/2020/784. 2020.

[BDD+21] C. Baum, B. David, R. Dowsley, J. B. Nielsen, and S. Oechsner. “TARDIS:
A Foundation of Time-Lock Puzzles in UC”. In: Advances in Cryptology
– EUROCRYPT 2021, Part III. Ed. by A. Canteaut and F.-X. Standaert.
Vol. 12698. Lecture Notes in Computer Science. Springer, Heidelberg, Ger-
many, 2021, pp. 429–459. doi: 10.1007/978-3-030-77883-5 15.

[BDH+17] B. Broadnax, N. Döttling, G. Hartung, J. Müller-Quade, and M. Nagel.
“Concurrently Composable Security with Shielded Super-Polynomial Simu-
lators”. In: Advances in Cryptology – EUROCRYPT 2017, Part I. Ed. by
J.-S. Coron and J. B. Nielsen. Vol. 10210. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2017, pp. 351–381. doi: 10.1007/
978-3-319-56620-7 13.

[BDH+21] W. Beskorovajnov, F. Dörre, G. Hartung, A. Koch, J. Müller-Quade, and
T. Strufe. “ConTra Corona: Contact Tracing against the Coronavirus by
Bridging the Centralized-Decentralized Divide for Stronger Privacy”. In:
Advances in Cryptology – ASIACRYPT 2021, Part II. Ed. by M. Tibouchi
and H. Wang. Vol. 13091. Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2021, pp. 665–695. doi: 10.1007/978-3-030-92075-
3 23.

[BFG19] J. Brendel, M. Fischlin, and F. Günther. “Breakdown Resilience of Key
Exchange Protocols: NewHope, TLS 1.3, and Hybrids”. In: ESORICS 2019:
24th European Symposium on Research in Computer Security, Part II. Ed.
by K. Sako, S. Schneider, and P. Y. A. Ryan. Vol. 11736. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 2019, pp. 521–541. doi:
10.1007/978-3-030-29962-0 25.

182

https://doi.org/10.1007/978-3-030-64381-2_1
https://doi.org/10.1007/978-3-030-64381-2_1
https://eprint.iacr.org/2020/784
https://doi.org/10.1007/978-3-030-77883-5_15
https://doi.org/10.1007/978-3-319-56620-7_13
https://doi.org/10.1007/978-3-319-56620-7_13
https://doi.org/10.1007/978-3-030-92075-3_23
https://doi.org/10.1007/978-3-030-92075-3_23
https://doi.org/10.1007/978-3-030-29962-0_25

Bibliography

[BFMR18] B. Broadnax, V. Fetzer, J. Müller-Quade, and A. Rupp. “Non-malleability
vs. CCA-Security: The Case of Commitments”. In: PKC 2018: 21st Inter-
national Conference on Theory and Practice of Public Key Cryptography,
Part II. Ed. by M. Abdalla and R. Dahab. Vol. 10770. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 2018, pp. 312–337. doi:
10.1007/978-3-319-76581-5 11.

[BGB17] A. Buldas, M. Geihs, and J. A. Buchmann. “Long-Term Secure Com-
mitments via Extractable-Binding Commitments”. In: ACISP 17: 22nd
Australasian Conference on Information Security and Privacy, Part I. Ed.
by J. Pieprzyk and S. Suriadi. Vol. 10342. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2017, pp. 65–81.

[BGR+15] H. Brenner, V. Goyal, S. Richelson, A. Rosen, and M. Vald. “Fast Non-
Malleable Commitments”. In: ACM CCS 2015: 22nd Conference on Com-
puter and Communications Security. Ed. by I. Ray, N. Li, and C. Kruegel.
ACM Press, 2015, pp. 1048–1057. doi: 10.1145/2810103.2813721.

[BGW88] M. Ben-Or, S. Goldwasser, and A. Wigderson. “Completeness Theorems
for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended
Abstract)”. In: 20th Annual ACM Symposium on Theory of Computing.
ACM Press, 1988, pp. 1–10. doi: 10.1145/62212.62213.

[BHR12] M. Bellare, V. T. Hoang, and P. Rogaway. “Foundations of garbled circuits”.
In: ACM CCS 2012: 19th Conference on Computer and Communications
Security. Ed. by T. Yu, G. Danezis, and V. D. Gligor. ACM Press, 2012,
pp. 784–796. doi: 10.1145/2382196.2382279.

[BKM+21] B. Broadnax, A. Koch, J. Mechler, T. Müller, J. Müller-Quade, and M. Nagel.
“Fortified Multi-Party Computation: Taking Advantage of Simple Secure
Hardware Modules”. In: Proceedings on Privacy Enhancing Technologies
2021.4 (2021), pp. 312–338. doi: 10.2478/popets-2021-0072.

[BM82] M. Blum and S. Micali. “How to Generate Cryptographically Strong Se-
quences of Pseudo Random Bits”. In: 23rd Annual Symposium on Founda-
tions of Computer Science. IEEE Computer Society Press, 1982, pp. 112–
117. doi: 10.1109/SFCS.1982.72.

[BMM21] B. Broadnax, J. Mechler, and J. Müller-Quade. “Environmentally Friendly
Composable Multi-party Computation in the Plain Model from Standard
(Timed) Assumptions”. In: TCC 2021: 19th Theory of Cryptography Con-
ference, Part I. Ed. by K. Nissim and B. Waters. Vol. 13042. Lecture Notes
in Computer Science. Springer, Heidelberg, Germany, 2021, pp. 750–781.
doi: 10.1007/978-3-030-90459-3 25.

[BN00] D. Boneh and M. Naor. “Timed Commitments”. In: Advances in Cryptology
– CRYPTO 2000. Ed. by M. Bellare. Vol. 1880. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2000, pp. 236–254. doi: 10.1007/3-
540-44598-6 15.

183

https://doi.org/10.1007/978-3-319-76581-5_11
https://doi.org/10.1145/2810103.2813721
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/2382196.2382279
https://doi.org/10.2478/popets-2021-0072
https://doi.org/10.1109/SFCS.1982.72
https://doi.org/10.1007/978-3-030-90459-3_25
https://doi.org/10.1007/3-540-44598-6_15
https://doi.org/10.1007/3-540-44598-6_15

Bibliography

[BR94] M. Bellare and P. Rogaway. “Entity Authentication and Key Distribution”.
In: Advances in Cryptology – CRYPTO’93. Ed. by D. R. Stinson. Vol. 773.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 1994,
pp. 232–249. doi: 10.1007/3-540-48329-2 21.

[BS05] B. Barak and A. Sahai. “How To Play Almost Any Mental Game Over The
Net - Concurrent Composition via Super-Polynomial Simulation”. In: 46th
Annual Symposium on Foundations of Computer Science. IEEE Computer
Society Press, 2005, pp. 543–552. doi: 10.1109/SFCS.2005.43.

[C01] R. Canetti. “Universally Composable Security: A New Paradigm for Cryp-
tographic Protocols”. In: 42nd Annual Symposium on Foundations of Com-
puter Science. IEEE Computer Society Press, 2001, pp. 136–145. doi:
10.1109/SFCS.2001.959888.

[C20] R. Canetti. “Universally Composable Security”. In: J. ACM 67.5 (2020),
28:1–28:94. doi: 10.1145/3402457. url: https://doi.org/10.1145/3402457.

[CDG+15] D. Cabarcas, D. Demirel, F. Göpfert, J. Lancrenon, and T. Wunderer.
“An Unconditionally Hiding and Long-Term Binding Post-Quantum Com-
mitment Scheme”. Cryptology ePrint Archive, Report 2015/628. https://
eprint.iacr.org/2015/628. 2015.

[CDPW06] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. “Universally Composable
Security with Global Setup”. Cryptology ePrint Archive, Report 2006/432.
https://eprint.iacr.org/2006/432. 2006.

[CDPW07] R. Canetti, Y. Dodis, R. Pass, and S. Walfish. “Universally Composable
Security with Global Setup”. In: TCC 2007: 4th Theory of Cryptography
Conference. Ed. by S. P. Vadhan. Vol. 4392. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2007, pp. 61–85. doi: 10.1007/978-
3-540-70936-7 4.

[CF01] R. Canetti and M. Fischlin. “Universally Composable Commitments”. In:
Advances in Cryptology – CRYPTO 2001. Ed. by J. Kilian. Vol. 2139.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2001,
pp. 19–40. doi: 10.1007/3-540-44647-8 2.

[CKL03] R. Canetti, E. Kushilevitz, and Y. Lindell. “On the Limitations of Univer-
sally Composable Two-Party Computation without Set-up Assumptions”. In:
Advances in Cryptology – EUROCRYPT 2003. Ed. by E. Biham. Vol. 2656.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2003,
pp. 68–86. doi: 10.1007/3-540-39200-9 5.

[CLOS02] R. Canetti, Y. Lindell, R. Ostrovsky, and A. Sahai. “Universally composable
two-party and multi-party secure computation”. In: 34th Annual ACM
Symposium on Theory of Computing. ACM Press, 2002, pp. 494–503. doi:
10.1145/509907.509980.

184

https://doi.org/10.1007/3-540-48329-2_21
https://doi.org/10.1109/SFCS.2005.43
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3402457
https://doi.org/10.1145/3402457
https://eprint.iacr.org/2015/628
https://eprint.iacr.org/2015/628
https://eprint.iacr.org/2006/432
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/978-3-540-70936-7_4
https://doi.org/10.1007/3-540-44647-8_2
https://doi.org/10.1007/3-540-39200-9_5
https://doi.org/10.1145/509907.509980

Bibliography

[CLP10] R. Canetti, H. Lin, and R. Pass. “Adaptive Hardness and Composable
Security in the Plain Model from Standard Assumptions”. In: 51st Annual
Symposium on Foundations of Computer Science. IEEE Computer Society
Press, 2010, pp. 541–550. doi: 10.1109/FOCS.2010.86.

[CLP13a] R. Canetti, H. Lin, and R. Pass. “From Unprovability to Environmen-
tally Friendly Protocols”. In: 54th Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press, 2013, pp. 70–79. doi:
10.1109/FOCS.2013.16.

[CLP13b] R. Canetti, H. Lin, and R. Pass. “From Unprovability to Environmentally
Friendly Protocols, full version”. 2013. url: https://www.cs.cornell.edu/
~rafael/papers/EnvFriendly-proc.pdf.

[CLP16] R. Canetti, H. Lin, and R. Pass. “Adaptive Hardness and Composable
Security in the Plain Model from Standard Assumptions”. In: SIAM J.
Comput. 45.5 (2016), pp. 1793–1834. doi: 10.1137/110847196. url: https://
doi.org/10.1137/110847196.

[CR03] R. Canetti and T. Rabin. “Universal Composition with Joint State”. In:
Advances in Cryptology – CRYPTO 2003. Ed. by D. Boneh. Vol. 2729.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2003,
pp. 265–281. doi: 10.1007/978-3-540-45146-4 16.

[DDN00] D. Dolev, C. Dwork, and M. Naor. “Nonmalleable Cryptography”. In: SIAM
Journal on Computing 30.2 (2000), pp. 391–437.

[DIO98] G. Di Crescenzo, Y. Ishai, and R. Ostrovsky. “Non-Interactive and Non-
Malleable Commitment”. In: 30th Annual ACM Symposium on Theory of
Computing. ACM Press, 1998, pp. 141–150. doi: 10.1145/276698.276722.

[DKM+22] N. Döttling, A. Koch, S. Maier, J. Mechler, J. Müller-Quade, and M. Tie-
pelt. “Towards Everlasting Bit Commitment from Quantum Decoherence”.
unpublished. 2022.

[DKM11] N. Döttling, D. Kraschewski, and J. Müller-Quade. “Unconditional and
Composable Security Using a Single Stateful Tamper-Proof Hardware To-
ken”. In: TCC 2011: 8th Theory of Cryptography Conference. Ed. by Y.
Ishai. Vol. 6597. Lecture Notes in Computer Science. Springer, Heidelberg,
Germany, 2011, pp. 164–181. doi: 10.1007/978-3-642-19571-6 11.

[DL15] D. Demirel and J. Lancrenon. “How to Securely Prolong the Computational
Bindingness of Pedersen Commitments”. Cryptology ePrint Archive, Report
2015/584. https://eprint.iacr.org/2015/584. 2015.

[DMM22] D. Doerner, J. Mechler, and J. Müller-Quade. “Hardening the Security of
Server-Aided MPC Using Remotely Unhackable Hardware Modules”. In:
GI Sicherheit. 2022.

185

https://doi.org/10.1109/FOCS.2010.86
https://doi.org/10.1109/FOCS.2013.16
https://www.cs.cornell.edu/~rafael/papers/EnvFriendly-proc.pdf
https://www.cs.cornell.edu/~rafael/papers/EnvFriendly-proc.pdf
https://doi.org/10.1137/110847196
https://doi.org/10.1137/110847196
https://doi.org/10.1137/110847196
https://doi.org/10.1007/978-3-540-45146-4_16
https://doi.org/10.1145/276698.276722
https://doi.org/10.1007/978-3-642-19571-6_11
https://eprint.iacr.org/2015/584

Bibliography

[DMM23] F. Dörre, J. Mechler, and J. Müller-Quade. “Practically Efficient Private
Set Intersection from Trusted Hardware with Side-Channels”. In: Advances
in Cryptology - ASIACRYPT 2023 - 29th International Conference on the
Theory and Application of Cryptology and Information Security, Guangzhou,
China, December 4-8, 2023, Proceedings, Part IV. Ed. by J. Guo and R.
Steinfeld. Vol. 14441. Lecture Notes in Computer Science. Springer, 2023,
pp. 268–301. doi: 10.1007/978-981-99-8730-6\ 9. url: https://doi.org/
10.1007/978-981-99-8730-6%5C 9.

[DMRV13] D. Dachman-Soled, T. Malkin, M. Raykova, and M. Venkitasubramaniam.
“Adaptive and Concurrent Secure Computation from New Adaptive, Non-
malleable Commitments”. In: Advances in Cryptology – ASIACRYPT 2013,
Part I. Ed. by K. Sako and P. Sarkar. Vol. 8269. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2013, pp. 316–336. doi: 10.1007/
978-3-642-42033-7 17.

[DN02] I. Damgård and J. B. Nielsen. “Perfect Hiding and Perfect Binding Univer-
sally Composable Commitment Schemes with Constant Expansion Factor”.
In: Advances in Cryptology – CRYPTO 2002. Ed. by M. Yung. Vol. 2442.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2002,
pp. 581–596. doi: 10.1007/3-540-45708-9 37.

[DP92] A. De Santis and G. Persiano. “Zero-Knowledge Proofs of Knowledge
Without Interaction (Extended Abstract)”. In: 33rd Annual Symposium
on Foundations of Computer Science. IEEE Computer Society Press, 1992,
pp. 427–436. doi: 10.1109/SFCS.1992.267809.

[DS13] I. Damgård and A. Scafuro. “Unconditionally Secure and Universally Com-
posable Commitments from Physical Assumptions”. In: Advances in Cryp-
tology – ASIACRYPT 2013, Part II. Ed. by K. Sako and P. Sarkar. Vol. 8270.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2013,
pp. 100–119. doi: 10.1007/978-3-642-42045-0 6.

[E84] T. ElGamal. “A Public Key Cryptosystem and a Signature Scheme Based
on Discrete Logarithms”. In: Advances in Cryptology – CRYPTO’84. Ed. by
G. R. Blakley and D. Chaum. Vol. 196. Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 1984, pp. 10–18.

[EFKP20] N. Ephraim, C. Freitag, I. Komargodski, and R. Pass. “Non-Malleable
Time-Lock Puzzles and Applications”. Tech. rep. 2020.

[FF11] M. Fischlin and R. Fischlin. “Efficient Non-Malleable Commitment
Schemes”. In: Journal of Cryptology 24.1 (2011), pp. 203–244. doi: 10.1007/
s00145-009-9043-4.

[FKPS21] C. Freitag, I. Komargodski, R. Pass, and N. Sirkin. “Non-malleable Time-
Lock Puzzles and Applications”. In: TCC 2021: 19th Theory of Cryptography
Conference, Part III. Ed. by K. Nissim and B. Waters. Vol. 13044. Lecture

186

https://doi.org/10.1007/978-981-99-8730-6_9
https://doi.org/10.1007/978-981-99-8730-6%5C_9
https://doi.org/10.1007/978-981-99-8730-6%5C_9
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/978-3-642-42033-7_17
https://doi.org/10.1007/3-540-45708-9_37
https://doi.org/10.1109/SFCS.1992.267809
https://doi.org/10.1007/978-3-642-42045-0_6
https://doi.org/10.1007/s00145-009-9043-4
https://doi.org/10.1007/s00145-009-9043-4

Bibliography

Notes in Computer Science. Springer, Heidelberg, Germany, 2021, pp. 447–
479. doi: 10.1007/978-3-030-90456-2 15.

[G01] O. Goldreich. “Foundations of Cryptography: Basic Tools”. Vol. 1. Cam-
bridge, UK: Cambridge University Press, 2001, pp. xix + 372.

[G04] O. Goldreich. “Foundations of Cryptography: Basic Applications”. Vol. 2.
Cambridge, UK: Cambridge University Press, 2004.

[G08] O. Goldreich. “Computational complexity - a conceptual perspective”.
Cambridge University Press, 2008. doi: 10.1017/CBO9780511804106. url:
https://doi.org/10.1017/CBO9780511804106.

[G96] L. K. Grover. “A Fast Quantum Mechanical Algorithm for Database Search”.
In: 28th Annual ACM Symposium on Theory of Computing. ACM Press,
1996, pp. 212–219. doi: 10.1145/237814.237866.

[GGJS12] S. Garg, V. Goyal, A. Jain, and A. Sahai. “Concurrently Secure Computation
in Constant Rounds”. In: Advances in Cryptology – EUROCRYPT 2012.
Ed. by D. Pointcheval and T. Johansson. Vol. 7237. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 2012, pp. 99–116. doi:
10.1007/978-3-642-29011-4 8.

[GK16] S. Goldwasser and Y. T. Kalai. “Cryptographic Assumptions: A Position
Paper”. In: TCC 2016-A: 13th Theory of Cryptography Conference, Part I.
Ed. by E. Kushilevitz and T. Malkin. Vol. 9562. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2016, pp. 505–522. doi: 10.1007/
978-3-662-49096-9 21.

[GK90] O. Goldreich and H. Krawczyk. “On the Composition of Zero-Knowledge
Proof Systems”. In: Automata, Languages and Programming, 17th Inter-
national Colloquium, ICALP90, Warwick University, England, UK, July
16-20, 1990, Proceedings. Ed. by M. Paterson. Vol. 443. Lecture Notes in
Computer Science. Springer, 1990, pp. 268–282. doi: 10.1007/BFb0032038.
url: https://doi.org/10.1007/BFb0032038.

[GKP18] S. Garg, S. Kiyoshima, and O. Pandey. “A New Approach to Black-Box
Concurrent Secure Computation”. In: Advances in Cryptology – EURO-
CRYPT 2018, Part II. Ed. by J. B. Nielsen and V. Rijmen. Vol. 10821.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2018,
pp. 566–599. doi: 10.1007/978-3-319-78375-8 19.

[GLP+12] V. Goyal, H. Lin, O. Pandey, R. Pass, and A. Sahai. “Round-Efficient
Concurrently Composable Secure Computation via a Robust Extraction
Lemma”. Cryptology ePrint Archive, Report 2012/652. https://eprint.iacr.
org/2012/652. 2012.

187

https://doi.org/10.1007/978-3-030-90456-2_15
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1017/CBO9780511804106
https://doi.org/10.1145/237814.237866
https://doi.org/10.1007/978-3-642-29011-4_8
https://doi.org/10.1007/978-3-662-49096-9_21
https://doi.org/10.1007/978-3-662-49096-9_21
https://doi.org/10.1007/BFb0032038
https://doi.org/10.1007/BFb0032038
https://doi.org/10.1007/978-3-319-78375-8_19
https://eprint.iacr.org/2012/652
https://eprint.iacr.org/2012/652

Bibliography

[GLP+15] V. Goyal, H. Lin, O. Pandey, R. Pass, and A. Sahai. “Round-Efficient
Concurrently Composable Secure Computation via a Robust Extraction
Lemma”. In: TCC 2015: 12th Theory of Cryptography Conference, Part I.
Ed. by Y. Dodis and J. B. Nielsen. Vol. 9014. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2015, pp. 260–289. doi: 10.1007/
978-3-662-46494-6 12.

[GMW87] O. Goldreich, S. Micali, and A. Wigderson. “How to Play any Mental Game
or A Completeness Theorem for Protocols with Honest Majority”. In: 19th
Annual ACM Symposium on Theory of Computing. Ed. by A. Aho. ACM
Press, 1987, pp. 218–229. doi: 10.1145/28395.28420.

[GMY03] J. A. Garay, P. D. MacKenzie, and K. Yang. “Strengthening Zero-
Knowledge Protocols Using Signatures”. In: Advances in Cryptology – EU-
ROCRYPT 2003. Ed. by E. Biham. Vol. 2656. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2003, pp. 177–194. doi: 10.1007/3-
540-39200-9 11.

[GRRV14] V. Goyal, S. Richelson, A. Rosen, and M. Vald. “An Algebraic Approach to
Non-malleability”. In: 55th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, 2014, pp. 41–50. doi: 10.1109/
FOCS.2014.13.

[GVW15] S. Gorbunov, V. Vaikuntanathan, and D. Wichs. “Leveled Fully Homomor-
phic Signatures from Standard Lattices”. In: 47th Annual ACM Symposium
on Theory of Computing. Ed. by R. A. Servedio and R. Rubinfeld. ACM
Press, 2015, pp. 469–477. doi: 10.1145/2746539.2746576.

[HHR16] J. Hesse, D. Hofheinz, and A. Rupp. “Reconfigurable Cryptography: A
Flexible Approach to Long-Term Security”. In: TCC 2016-A: 13th Theory
of Cryptography Conference, Part I. Ed. by E. Kushilevitz and T. Malkin.
Vol. 9562. Lecture Notes in Computer Science. Springer, Heidelberg, Ger-
many, 2016, pp. 416–445. doi: 10.1007/978-3-662-49096-9 18.

[HV15] C. Hazay and M. Venkitasubramaniam. “On Black-Box Complexity of Uni-
versally Composable Security in the CRS Model”. In: Advances in Cryptology
– ASIACRYPT 2015, Part II. Ed. by T. Iwata and J. H. Cheon. Vol. 9453.
Lecture Notes in Computer Science. Springer, Heidelberg, Germany, 2015,
pp. 183–209. doi: 10.1007/978-3-662-48800-3 8.

[HW09] S. Hohenberger and B. Waters. “Short and Stateless Signatures from the
RSA Assumption”. In: Advances in Cryptology – CRYPTO 2009. Ed. by S.
Halevi. Vol. 5677. Lecture Notes in Computer Science. Springer, Heidelberg,
Germany, 2009, pp. 654–670. doi: 10.1007/978-3-642-03356-8 38.

[IPS08] Y. Ishai, M. Prabhakaran, and A. Sahai. “Founding Cryptography on Obliv-
ious Transfer - Efficiently”. In: Advances in Cryptology – CRYPTO 2008.
Ed. by D. Wagner. Vol. 5157. Lecture Notes in Computer Science. Springer,

188

https://doi.org/10.1007/978-3-662-46494-6_12
https://doi.org/10.1007/978-3-662-46494-6_12
https://doi.org/10.1145/28395.28420
https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1007/3-540-39200-9_11
https://doi.org/10.1109/FOCS.2014.13
https://doi.org/10.1109/FOCS.2014.13
https://doi.org/10.1145/2746539.2746576
https://doi.org/10.1007/978-3-662-49096-9_18
https://doi.org/10.1007/978-3-662-48800-3_8
https://doi.org/10.1007/978-3-642-03356-8_38

Bibliography

Heidelberg, Germany, 2008, pp. 572–591. doi: 10.1007/978-3-540-85174-
5 32.

[K05] V. Kolesnikov. “Gate Evaluation Secret Sharing and Secure One-Round
Two-Party Computation”. In: Advances in Cryptology – ASIACRYPT 2005.
Ed. by B. K. Roy. Vol. 3788. Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2005, pp. 136–155. doi: 10.1007/11593447 8.

[K06] V. Klima. “Tunnels in Hash Functions: MD5 Collisions Within a Minute”.
Cryptology ePrint Archive, Report 2006/105. https://eprint.iacr.org/2006/105.
2006.

[K14] S. Kiyoshima. “Round-Efficient Black-Box Construction of Composable
Multi-Party Computation”. In: Advances in Cryptology – CRYPTO 2014,
Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 2014, pp. 351–368. doi:
10.1007/978-3-662-44381-1 20.

[K20] S. Kiyoshima. “Statistical Concurrent Non-Malleable Zero-Knowledge from
One-Way Functions”. In: Journal of Cryptology 33.3 (2020), pp. 1318–1361.
doi: 10.1007/s00145-020-09348-x.

[K88] J. Kilian. “Founding Cryptography on Oblivious Transfer”. In: 20th Annual
ACM Symposium on Theory of Computing. ACM Press, 1988, pp. 20–31.
doi: 10.1145/62212.62215.

[KL11] D. Kidron and Y. Lindell. “Impossibility Results for Universal Composability
in Public-Key Models and with Fixed Inputs”. In: Journal of Cryptology
24.3 (2011), pp. 517–544. doi: 10.1007/s00145-010-9069-7.

[KLP05] Y. T. Kalai, Y. Lindell, and M. Prabhakaran. “Concurrent general com-
position of secure protocols in the timing model”. In: 37th Annual ACM
Symposium on Theory of Computing. Ed. by H. N. Gabow and R. Fagin.
ACM Press, 2005, pp. 644–653. doi: 10.1145/1060590.1060687.

[KLX20] J. Katz, J. Loss, and J. Xu. “On the Security of Time-Lock Puzzles and
Timed Commitments”. In: TCC 2020: 18th Theory of Cryptography Confer-
ence, Part III. Ed. by R. Pass and K. Pietrzak. Vol. 12552. Lecture Notes
in Computer Science. Springer, Heidelberg, Germany, 2020, pp. 390–413.
doi: 10.1007/978-3-030-64381-2 14.

[L03] Y. Lindell. “General Composition and Universal Composability in Secure
Multi-Party Computation”. In: 44th Annual Symposium on Foundations of
Computer Science. IEEE Computer Society Press, 2003, pp. 394–403. doi:
10.1109/SFCS.2003.1238213.

[L16] Y. Lindell. “How To Simulate It - A Tutorial on the Simulation Proof
Technique”. Cryptology ePrint Archive, Report 2016/046. https://eprint.iacr.
org/2016/046. 2016.

189

https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/978-3-540-85174-5_32
https://doi.org/10.1007/11593447_8
https://eprint.iacr.org/2006/105
https://doi.org/10.1007/978-3-662-44381-1_20
https://doi.org/10.1007/s00145-020-09348-x
https://doi.org/10.1145/62212.62215
https://doi.org/10.1007/s00145-010-9069-7
https://doi.org/10.1145/1060590.1060687
https://doi.org/10.1007/978-3-030-64381-2_14
https://doi.org/10.1109/SFCS.2003.1238213
https://eprint.iacr.org/2016/046
https://eprint.iacr.org/2016/046

Bibliography

[LPV09] H. Lin, R. Pass, and M. Venkitasubramaniam. “A unified framework
for concurrent security: universal composability from stand-alone non-
malleability”. In: 41st Annual ACM Symposium on Theory of Computing.
Ed. by M. Mitzenmacher. ACM Press, 2009, pp. 179–188. doi: 10.1145/
1536414.1536441.

[MMN18] J. Mechler, J. Müller-Quade, and T. Nilges. “Reusing Tamper-Proof Hard-
ware in UC-Secure Protocols”. In: PKC 2018: 21st International Conference
on Theory and Practice of Public Key Cryptography, Part I. Ed. by M.
Abdalla and R. Dahab. Vol. 10769. Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 2018, pp. 463–493. doi: 10.1007/978-3-319-
76578-5 16.

[MMSU22] B. Magri, G. Malavolta, D. Schröder, and D. Unruh. “Everlasting UC
Commitments from Fully Malicious PUFs”. In: J. Cryptol. 35.3 (2022),
p. 20.

[MMV13] M. Mahmoody, T. Moran, and S. P. Vadhan. “Publicly verifiable proofs of
sequential work”. In: ITCS 2013: 4th Innovations in Theoretical Computer
Science. Ed. by R. D. Kleinberg. Association for Computing Machinery,
2013, pp. 373–388. doi: 10.1145/2422436.2422479.

[MPR06] S. Micali, R. Pass, and A. Rosen. “Input-Indistinguishable Computation”.
In: 47th Annual Symposium on Foundations of Computer Science. IEEE
Computer Society Press, 2006, pp. 367–378. doi: 10.1109/FOCS.2006.43.

[MR11] U. Maurer and R. Renner. “Abstract Cryptography”. In: ICS 2011: 2nd
Innovations in Computer Science. Ed. by B. Chazelle. Tsinghua University
Press, 2011, pp. 1–21.

[MU10] J. Müller-Quade and D. Unruh. “Long-Term Security and Universal Compos-
ability”. In: Journal of Cryptology 23.4 (2010), pp. 594–671. doi: 10.1007/
s00145-010-9068-8.

[MY04] P. D. MacKenzie and K. Yang. “On Simulation-Sound Trapdoor Commit-
ments”. In: Advances in Cryptology – EUROCRYPT 2004. Ed. by C. Cachin
and J. Camenisch. Vol. 3027. Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2004, pp. 382–400. doi: 10.1007/978-3-540-24676-
3 23.

[N03] J. Nielsen. “On Protocol Security in the Cryptographic Model”. English.
PhD thesis. 2003.

[N90] M. Naor. “Bit Commitment Using Pseudo-Randomness”. In: Advances in
Cryptology – CRYPTO’89. Ed. by G. Brassard. Vol. 435. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 1990, pp. 128–136. doi:
10.1007/0-387-34805-0 13.

[N91] M. Naor. “Bit Commitment Using Pseudorandomness”. In: Journal of
Cryptology 4.2 (1991), pp. 151–158. doi: 10.1007/BF00196774.

190

https://doi.org/10.1145/1536414.1536441
https://doi.org/10.1145/1536414.1536441
https://doi.org/10.1007/978-3-319-76578-5_16
https://doi.org/10.1007/978-3-319-76578-5_16
https://doi.org/10.1145/2422436.2422479
https://doi.org/10.1109/FOCS.2006.43
https://doi.org/10.1007/s00145-010-9068-8
https://doi.org/10.1007/s00145-010-9068-8
https://doi.org/10.1007/978-3-540-24676-3_23
https://doi.org/10.1007/978-3-540-24676-3_23
https://doi.org/10.1007/0-387-34805-0_13
https://doi.org/10.1007/BF00196774

Bibliography

[OOR+14] C. Orlandi, R. Ostrovsky, V. Rao, A. Sahai, and I. Visconti. “Statistical
Concurrent Non-malleable Zero Knowledge”. In: TCC 2014: 11th Theory
of Cryptography Conference. Ed. by Y. Lindell. Vol. 8349. Lecture Notes in
Computer Science. Springer, Heidelberg, Germany, 2014, pp. 167–191. doi:
10.1007/978-3-642-54242-8 8.

[OP19] D. Ott and C. Peikert. “Identifying Research Challenges in Post Quan-
tum Cryptography Migration and Cryptographic Agility”. In: CoRR
abs/1909.07353 (2019). arXiv-id: 1909.07353. url: http://arxiv.org/abs/
1909.07353.

[OPV08] R. Ostrovsky, G. Persiano, and I. Visconti. “Constant-Round Concurrent
Non-Malleable Commitments and Decommitments”. Cryptology ePrint
Archive, Report 2008/235. https://eprint.iacr.org/2008/235. 2008.

[P03] R. Pass. “Simulation in Quasi-Polynomial Time, and Its Application to
Protocol Composition”. In: Advances in Cryptology – EUROCRYPT 2003.
Ed. by E. Biham. Vol. 2656. Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 2003, pp. 160–176. doi: 10.1007/3-540-39200-9 10.

[P92] T. P. Pedersen. “Non-Interactive and Information-Theoretic Secure Verifi-
able Secret Sharing”. In: Advances in Cryptology – CRYPTO’91. Ed. by
J. Feigenbaum. Vol. 576. Lecture Notes in Computer Science. Springer,
Heidelberg, Germany, 1992, pp. 129–140. doi: 10.1007/3-540-46766-1 9.

[PR05a] R. Pass and A. Rosen. “Concurrent Non-Malleable Commitments”. In: 46th
Annual Symposium on Foundations of Computer Science. IEEE Computer
Society Press, 2005, pp. 563–572. doi: 10.1109/SFCS.2005.27.

[PR05b] R. Pass and A. Rosen. “New and improved constructions of non-malleable
cryptographic protocols”. In: 37th Annual ACM Symposium on Theory of
Computing. Ed. by H. N. Gabow and R. Fagin. ACM Press, 2005, pp. 533–
542. doi: 10.1145/1060590.1060670.

[PR08] M. Prabhakaran and M. Rosulek. “Cryptographic Complexity of Multi-Party
Computation Problems: Classifications and Separations”. In: Advances in
Cryptology – CRYPTO 2008. Ed. by D. Wagner. Vol. 5157. Lecture Notes
in Computer Science. Springer, Heidelberg, Germany, 2008, pp. 262–279.
doi: 10.1007/978-3-540-85174-5 15.

[PRS02] M. Prabhakaran, A. Rosen, and A. Sahai. “Concurrent Zero Knowledge
with Logarithmic Round-Complexity”. In: 43rd Annual Symposium on
Foundations of Computer Science. IEEE Computer Society Press, 2002,
pp. 366–375. doi: 10.1109/SFCS.2002.1181961.

[PS04] M. Prabhakaran and A. Sahai. “New notions of security: Achieving universal
composability without trusted setup”. In: 36th Annual ACM Symposium
on Theory of Computing. Ed. by L. Babai. ACM Press, 2004, pp. 242–251.
doi: 10.1145/1007352.1007394.

191

https://doi.org/10.1007/978-3-642-54242-8_8
https://arxiv.org/abs/1909.07353
http://arxiv.org/abs/1909.07353
http://arxiv.org/abs/1909.07353
https://eprint.iacr.org/2008/235
https://doi.org/10.1007/3-540-39200-9_10
https://doi.org/10.1007/3-540-46766-1_9
https://doi.org/10.1109/SFCS.2005.27
https://doi.org/10.1145/1060590.1060670
https://doi.org/10.1007/978-3-540-85174-5_15
https://doi.org/10.1109/SFCS.2002.1181961
https://doi.org/10.1145/1007352.1007394

Bibliography

[PTV14] R. Pass, W.-L. D. Tseng, and M. Venkitasubramaniam. “Concurrent Zero
Knowledge, Revisited”. In: Journal of Cryptology 27.1 (2014), pp. 45–66.
doi: 10.1007/s00145-012-9137-2.

[PVW08] C. Peikert, V. Vaikuntanathan, and B. Waters. “A Framework for Effi-
cient and Composable Oblivious Transfer”. In: Advances in Cryptology
– CRYPTO 2008. Ed. by D. Wagner. Vol. 5157. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Germany, 2008, pp. 554–571. doi:
10.1007/978-3-540-85174-5 31.

[PW09] R. Pass and H. Wee. “Black-Box Constructions of Two-Party Protocols
from One-Way Functions”. In: TCC 2009: 6th Theory of Cryptography
Conference. Ed. by O. Reingold. Vol. 5444. Lecture Notes in Computer
Science. Springer, Heidelberg, Germany, 2009, pp. 403–418. doi: 10.1007/
978-3-642-00457-5 24.

[R05] O. Regev. “On lattices, learning with errors, random linear codes, and
cryptography”. In: 37th Annual ACM Symposium on Theory of Computing.
Ed. by H. N. Gabow and R. Fagin. ACM Press, 2005, pp. 84–93. doi:
10.1145/1060590.1060603.

[RSA78] R. L. Rivest, A. Shamir, and L. M. Adleman. “A Method for Obtaining
Digital Signatures and Public-Key Cryptosystems”. In: Communications of
the Association for Computing Machinery 21.2 (1978), pp. 120–126.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. “Time-lock puzzles and timed-
release crypto”. 1996.

[S94] P. W. Shor. “Algorithms for Quantum Computation: Discrete Logarithms
and Factoring”. In: 35th Annual Symposium on Foundations of Computer
Science. IEEE Computer Society Press, 1994, pp. 124–134. doi: 10.1109/
SFCS.1994.365700.

[SKP16] M. Stevens, P. Karpman, and T. Peyrin. “Freestart Collision for Full SHA-
1”. In: Advances in Cryptology – EUROCRYPT 2016, Part I. Ed. by M.
Fischlin and J.-S. Coron. Vol. 9665. Lecture Notes in Computer Science.
Springer, Heidelberg, Germany, 2016, pp. 459–483. doi: 10.1007/978-3-662-
49890-3 18.

[Y82] A. C.-C. Yao. “Theory and Applications of Trapdoor Functions (Extended
Abstract)”. In: 23rd Annual Symposium on Foundations of Computer Sci-
ence. IEEE Computer Society Press, 1982, pp. 80–91. doi: 10.1109/SFCS.
1982.45.

[Y86] A. C.-C. Yao. “How to Generate and Exchange Secrets (Extended Ab-
stract)”. In: 27th Annual Symposium on Foundations of Computer Sci-
ence. IEEE Computer Society Press, 1986, pp. 162–167. doi: 10.1109/
SFCS.1986.25.

192

https://doi.org/10.1007/s00145-012-9137-2
https://doi.org/10.1007/978-3-540-85174-5_31
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1007/978-3-642-00457-5_24
https://doi.org/10.1145/1060590.1060603
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1007/978-3-662-49890-3_18
https://doi.org/10.1007/978-3-662-49890-3_18
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1982.45
https://doi.org/10.1109/SFCS.1986.25
https://doi.org/10.1109/SFCS.1986.25

A. Appendix

The appendix contains technical elaborations not found in the main body of this thesis.

A.1. TLUC Security

In the following, we discuss aspects of the framework and notion that are not found
in the main body. In particular, we provide formal definitions of legal adversaries and
environments as well as how computation steps are counted.

Remark A.1. We have chosen to model TLUC security using the mechanisms available
in the UC framework. However, it is conceivable to achieve a similar notion of security
using different mechanisms. To this end, an anonymous reviewer has suggested the use
of shells, which have seen heavy use in recent iterations of the UC paper to transparently
enforce rules of the security notion.

However, there is no indication that resorting to shells would lead to easier definition
or improve the notion’s properties. Indeed, composition is limited because environments
cannot internally execute simulators that break timed assumptions without affecting
the number of counted steps. In any setting where the steps of the environment are
counted correctly, this would affect timed assumptions of the challenge protocol, leading
to limited composition.

A.1.1. Legal Adversaries

We first define legal adversaries, i.e. adversaries that correctly handle timer-related
messages:

Definition A.1 (Legal Adversaries). An adversary A is called legal if

1. upon receiving (timer, µ, id, t) from some ITI with extended identity µ via the
backdoor tape, A immediately sends (timeout, µ, id, t) to the environment once.

2. it does not send the message (timer, µ, id, t) to the environment if the party with
extended ID µ is honest and has not sent (timer, µ, id, t) to the adversary.

3. upon receiving (notify, µ, id) from some ITI with extended identity µ via the
backdoor tape, A immediately sends (notify, µ, id) to the environment once.

4. upon receiving (notify, µ, id, b) from the environment, A immediately delivers
(notify, µ, id, b) to the backdoor tape of the ITI with extended identity µ once.

193

A. Appendix

A.1.2. Legal Environments

The definition of legal environments is more involved and requires several auxiliary
definitions and discussions, starting with how computation steps are counted.

Counting Computation Steps. When an honest party P sets up a timer with
timeout ℓ, we want P to be able to learn when the timer has expired. To this end, it is
first necessary to define how computation steps are counted against the timer by the
environment, which is ultimately responsible to signal if a timeout has occurred.

Suppose that we want to prove that a protocol π using a timed assumption emulates
a protocol ϕ. At some point in the reduction, we may have to construct a stand-alone
adversary A′ against the timed assumption that incorporates the whole TLUC execution
and uses a distinguishing environment to contradict the security of the timed assumption.
In this situation, the counting of steps by Z and by A′ has to be compatible in the
sense that if Z never triggers a timeout, neither does A′ in its game.

While the intuition is clear, the definition must account for the fact that adversary and
protocol under consideration might change, e.g. when considering protocol emulation.
To this end, we explicitly parameterize environments with a protocol and adversary to
make clear relative to which ones the number of performed steps is counted. Let Z[π,A]
denote the environment Z that expects to interact with protocol π and adversary A
and counts its steps accordingly.

Note that an environment may not have enough information to precisely calculate the
correct number of steps performed by other entities, e.g. if the protocol is probabilistic.
Considering the security guarantee we want to capture, this is no problem as long as
the environment does not under-estimate the number of steps performed. In particular,
security is not affected if the number of steps performed is estimated too high, leading
to a timeout triggered too early. This is accounted for in Definition A.5.

We also require environments to perform the calculation independent of the protocol
parties’ inputs and outputs. (For a discussion, see Remark A.3.) Otherwise, we would
introduce a side-channel (in the ideal execution) which might help the adversary to learn
a party’s secrets by observing if timeouts are triggered or not. In this setting, one could
design clearly insecure protocols that e.g. realize the ideal commitment functionality
FCOM and prove their security in TLUC.

To this end, consider the following example which illustrate that this is necessary
in order to achieve a meaningful notion of security. If environments were to count the
actual number of steps depending on the input, this would introduce a side-channel that
could leak the secret of honest parties even in the ideal execution. As a consequence,
obviously insecure protocols could be proven secure.

As an example, we consider a commitment scheme in the plain model that is clearly
insecure but can be shown to realize FCOM if legal environments count the actually
performed steps instead of an upper bound independent of a party’s input.

The protocol π between a committer and a receiver is defined as follows:

194

A.1. TLUC Security

• Upon receiving (commit, sid, b), the committer sends a message (init, sid) to the
receiver. The receiver then samples r0, r1

$← {0, 1}κ and sends (timer, r0, 10000κ)
to the adversary. Upon its next activation, the receiver sends (timer, r1, 1000κ)
to the adversary. Upon its next activation, it sends (init, sid) to the committer.
If b = 0, the committer performs 1000κ + 1 steps. If b = 1, the committer
performs 10000κ + 1 steps. Afterwards, it sends (done, sid) to the receiver. The
receiver checks the status of both timers, remembers the result and outputs
(committed, sid).

• Upon receiving (unveil, sid) as input, the committer sends (sid, b) to the re-
ceiver. If b = 0 and the first timer has timed out but the second has not, it
outputs (unveil, sid, 0). If b = 1 and both timers have timed out, it outputs
(unveil, sid, 1). Otherwise, it halts.

Let S be the following simulator for π and the dummy adversary.

• If the committer is corrupted, internally run the protocol of the honest receiver.
After having received (done, sid), interact with FCOM as follows: If only the first
timer has timed out, send (commit, sid, 0) to FCOM on behalf of the corrupted
sender. Otherwise, send (commit, sid, 1). Upon receiving the bit b′ during the
unveil phase, do the following checks: If b′ = 0 and only the first timer has timed
out, send (unveil, sid) to FCOM on behalf of the corrupted committer and allow
the receiver’s output. If b′ = 1 and both timers have timed out, send (unveil, sid)
to FCOM on behalf of the corrupted committer and allow the receiver’s output.
Otherwise, halt.

• If the receiver is corrupted, internally run the protocol of the honest committer
on input b = 0 after getting the request for the receiver’s output from FCOM.
When receiving the output request (unveil, sid, b) from FCOM, send (sid, b) to
the corrupted receiver.

• If both parties are honest, follow the strategy for the corrupted receiver and
additionally simulate the messages of the honest receiver. Eventually, allow the
output of FCOM if the honest receiver would accept.

Now, consider that we require environments to always count the steps relative to the
actual steps performed by the protocol parties. Clearly, the protocol is non-trivial (cf.
Section 3.4.3).

If the sender is corrupted, any legal environment Z will handle the timers as in the
real execution. Thus, the receiver’s output is identically distributed as the simulator
S can extract the bit that will be accepted by the receiver (if it exists). Conversely,
if the receiver is corrupted, the environment will also count the steps relative to the
real execution and, in particular, in dependence of the honest committer’s secret and
consistent with the value sent by the simulator. Again, the environment’s view is
identically distributed. The case when both parties are honest is similar.

195

A. Appendix

It follows that any legal environment’s view in an execution with π and D is identically
distributed to an execution with IDEAL(FCOM) and S if the steps counted by Z depend
on secret inputs.

Remark A.2. At first glance, the above protocol seems to contradict the impossibility
result of Theorem 3.4 since only one party sets up a timer. However, in the presence
of “timing side-channels”, the ideal execution of FCOM may not provide meaningful
security for the committer. Thus, the setting is different from the one considered in
Theorem 3.4, making it inapplicable for this discussion.

Before defining legal environments, we look ahead to the proofs of various properties of
our notion. In the proof of the completeness of the dummy adversary (Proposition 3.3),
an environments ZD interacting with a protocol π and the dummy adversary D internally
runs an adversary A and a legal environment Z and appropriately routes all messages.
As ZD does not perform any meaningful computations on its own but only routes
messages, we call it a routing environment. In the proof, we have to show that ZD
is a legal environment. Clearly, the number of steps performed in the interaction of
ZD with D is greater than the number of steps in the execution of Z with A. As Z is
oblivious of the fact that it is emulated, it cannot possibly account for this difference.
In particular, in the “outer” execution with ZD, additional steps are performed by ZD
due to emulation overhead as well as due to the additional steps performed by the
dummy adversary D. Still, we want both executions to count the same number of
computation steps. Otherwise, the view of the “inner” environment Z would not be
identically distributed when emulated or ZD would not be a legal environment.

In the proof of the single-instance composition theorem (Theorem 3.3), a similar
situation arises where an environment Z ′ internally emulates an environment Z and a
protocol ρ.

In the following, we thus define the class of routing environments, which are allowed
to count steps identically to their internally emulated environment (see Definition A.5),
even though more steps are actually performed. This is justified as in every execution
with a routing environment, there exists a corresponding “unrolled” execution without
routing environments (see Definition A.4) for which the number of counted steps is
correct when this “unrolled” execution is emulated by a single machine. This unrolled
execution can then be used e.g. in a reduction, resulting in the same distinguishing
advantage, already accounting for the emulation overhead of the reduction adversary.

Non-Routing Environments. We start with the definition of the base case, i.e. legal
non-routing environments. Informally, a non-routing environment Z is treated “as-is”
without accounting for possible other environments, protocols or adversaries internally
emulated by Z. We also define what constitutes a legal non-routing environment.

Definition A.2 (Legal Non-Routing Environment). Z[π,D] is a legal (type-0) non-
routing environment if it expects to interact with challenge protocol π and adversary A
and, upon receiving (notify, µ, id) from the adversary, immediately sends

196

A.1. TLUC Security

• (notify, µ, id, 0) to the adversary if the party with extended identity µ is honest
and the (presumptive) execution of the UC execution experiment with π and A
will have performed less than ℓ steps since

– Z has received (timer, µ, id, ℓ) from the adversary and
– A has written (notify, µ, id, ★) to the backdoor tape of µ,

where the steps are counted as if the whole execution experiment were emulated
by a single Turing machine1. The calculation of all steps is performed obliviously
of the protocol parties’ inputs’ values, randomness and relative to the first message
(timer, µ, id, ★) from µ with ID id.

• (notify, µ, id, 1) to the adversary otherwise.

Remark A.3. Definition A.2 is somewhat imprecise with respect to the influence
of inputs to the calculation of the performed steps. Intuitively, we do not want this
computation to depend on an input’s actual value that is not known to the adversary,
e.g. a committer’s private input, as the number of steps performed by the committer
could be different depending on the input.

At the same time, we (usually) do not want the computation to be independent
of the very fact that an input has (not) been given. In many natural protocols, this
information is available to the adversary, e.g. from the communication, and thus does
(in contrast to the input’s value) not need to be protected.

We stress that, at least for protocols with an a priori bounded number of inputs (for
all parties), the notion is meaningful also if the calculation is performed such that is
independent of the given number of outputs, i.e. by always assuming that the maximum
number has been given. If, however, reactive protocols with an unbounded number
of possible inputs or protocols with an unbounded number of parties are considered,
determining an upper bound of steps possibly performed independent of the number of
inputs given may not be possible.

We leave the final choice of how steps should be calculated to the protocol designer,
based on the desired security guarantees.

Remark A.4. While we specify that computation steps have to be counted as if the
whole TLUC experiment were executed on a single Turing machine, we do not fix the
concrete machine model (e.g. the alphabet or the number of tapes). The actual machine
model we are interested in depends on the timing assumption used in the protocol π (if
there are any) such that the environment Z always counts the correct number of steps
if some reduction adversary A′ internally emulates the TLUC execution experiment.
As established by Canetti [C01], a Turing machine emulating a UC execution where all
entities are PPT is PPT, too.

Routing Environments. With the base case at hand, we can define routing envi-
ronments that internally emulate routing or non-routing environments as well as an

1It is possible to admit a negligible error to these calculation to get a definition that captures more
“intuitively secure” protocols.

197

A. Appendix

adversary or a protocol. As the definition of legal routing environments is more involved,
we defer this to a separate definition.

Definition A.3 (Type-1 and Type-2 Routing Environments). Z ′[π,D] is a type-1
(routing) environment if it expects to interact with challenge protocol π and the dummy
adversary D and internally emulates a type-0 legal environment Z[π,A] and adversary
A that is not the dummy adversary, and routes messages as follows:

• Outputs from the challenge protocol to the environment are forwarded as outputs
to the internal environment Z.

• Inputs from the internal environment Z to the challenge protocol are forwarded
to the challenge protocol as inputs of Z ′.

• Inputs from the internal environment Z to the adversary are forwarded to the
internal emulation of A.

• Messages from the internal adversary A to the environment are forwarded to the
internal environment Z.

• Messages from the internal adversary A to the challenge protocol are forwarded
to the external adversary as coming from Z ′.

• Messages from the adversary to the environment are forwarded to the internal
adversary A as coming from the challenge protocol π.

• Eventually, Z ′ outputs what Z outputs.

Z ′[π,D] is a type-2 routing environment if it expects to interact with a challenge protocol
π and the dummy adversary D, internally emulates an environment Z[ρϕ→π,D] that
is either a non-routing environment, a type-1 routing environment or a type-2 routing
environment and protocol ρ that makes one subroutine call to ϕ and routes messages as
follows:

• Outputs from the challenge protocol to the environment are forwarded as output
to the appropriate party of ρ coming from π.

• Inputs from the protocol ρ to π are forwarded to the challenge protocol as input
coming from Z ′.

• Inputs from Z to the adversary pertaining ρ are forwarded to ρ as coming from
the dummy adversary D.

• Inputs from Z to the adversary pertaining π are forwarded to the adversary as
coming from the environment Z ′

• Messages from ρ to the adversary are forwarded as input to Z as coming from
the dummy adversary D.

198

A.1. TLUC Security

• Messages from the adversary to the environment are forwarded to Z.

• Eventually, Z ′ output what Z outputs.

We will use type-1 (legal) environments in the proof of the completeness of the dummy
adversary (Proposition 3.3). Type-2 (legal) environments will be used in the proof of
the single-instance composition theorem (Theorem 3.3).

As TLUC inherits the notion of polynomial time of the UC framework, routing
environments are inherently polynomially bounded. Thus, the nesting depth of routing
environments is also polynomially bounded. Also, there always exists an innermost
non-routing environment. As routing environments only route messages between the
outside and internally emulated entities, there exists an “unrolled” execution without
routing environments. In the unrolled execution, the innermost environment interacts
with the actual challenge protocol (which may have been split into several parts hosted
by different routing environments before) and an adversary which may not be the
dummy adversary. We formally define the unrolled execution as follows:

Definition A.4 (Unrolled Execution). Let Z,Z ′ be environments, let ρ, π, ϕ be PPT
protocols and let A be a PPT adversary. We define the unrolled execution of Z ′ as
follows:

• If Z ′ is a (type-0) non-routing environment, the unrolled execution is the execution
with environment Z ′[π,A], protocol π and adversary A.

• If Z[π,A] is a (type-0) non-routing environment emulated by a type-1 routing
environment Z ′[π,D], then the unrolled execution of Z ′[π,D] is the execution
with environment Z[π,A], protocol π and adversary A.

• If Z[ρϕ→π,A] (possibly with A = D) is a (type-0) non-routing environment
(transitively) emulated by a type-2 routing environment Z ′[π,D] that externally
interacts with a protocol π or ϕ, then the unrolled execution of Z ′[π,D] is the
execution with environment Z[ρϕ→π,A], protocol ρϕ→π resp. ρ and adversary A.

We are now ready to define the class of legal routing environments, namely routing
environments that correctly handle timers set up by honest parties.

Definition A.5 (Legal Routing Environment). A routing environment Z expecting to
interact with protocol π and adversary A, denoted by Z[π,A], is called legal if upon
receiving (notify, µ, id) from the adversary, it immediately sends

• (notify, µ, id, 0) to the adversary if the party with extended identity µ is honest
and the (presumptive) execution of the UC execution experiment with π and A
will have performed less than ℓ steps since

– Z has received (timer, µ, id, ℓ) from the adversary and

– A has written (notify, µ, id, ★) to the backdoor tape of µ,

199

A. Appendix

where the steps are counted as if the whole unrolled experiment (cf. Definition A.4)
were emulated by a single Turing machine. The calculation of all steps is performed
obliviously of the protocol parties’ inputs’ values, randomness and relative to the
first message (timer, µ, id, ★) from µ with ID id.

• (notify, µ, id, 1) to the adversary otherwise.

As a consequence of Definitions A.2 to A.5, we establish the following proposition.

Proposition A.1 (Properties of Legal Routing Environments). Let Z be the outer-
most legal non-routing environment that is (transitively) emulated by a legal routing
environment Z ′. Then,

• the number of steps counted by Z is correct for the unrolled execution run on a
single Turing machine and

• the view of Z in the unrolled execution is identically distributed as when (transi-
tively) emulated by Z ′.

Proposition A.1 directly follows from the definition of (legal) routing environments
and the definition of the unrolled execution.

Let π be a protocol where no party sends timer or notify messages to the adversary.
Then, every UC environment and every UC adversary is legal for π.

Proposition A.2. Let Z be a probabilistic polynomial-time (PPT) environment and
let A be a PPT adversary. Let π be a PPT protocol such that no (sub-)party of π sends
timer or notify messages to the adversary. Then, A is a legal adversary and Z is a
legal environment.

A.2. Analysis of the Committed-Value Oracle OCCA

In this section, we first recall the robust extraction lemma from [GLP+15] and extend it
to our setting. Then, we show that the committed-value oracle OCCA from Theorem 4.1
satisfies composition-order invariance.

A.2.1. The Robust Extraction Lemma from [GLP+15]

We recall the rewinding schedule of [GLP+15], which itself is based on [PRS02; PTV14].
In [GLP+15], an adversary A interacting with an external party B and an (external)
PRS receiver is considered. Thus, A can send messages to

• the PRS receiver, which offers rewinding slots,

• the external party B, which is a barrier to rewinding.

200

A.2. Analysis of the Committed-Value Oracle OCCA

As usual, we assume (for presentational simplicity) that PRS messages from (and to)
A are of the form (Type, values). Moreover, since we need PRS commitments w.r.t.
different base commitments, we make the type of the PRS session explicit. Thus, we
have following message types, where m is the “actual” message. Firstly, messages which
are irrelevant to the rewinding schedule:

• (Init, s, type): Initiate PRS session s of type type

• (Other, s, m): These are all other messages (to and from A) which are not covered
below (e.g. the commit phase step 1).

The messages related to the challenge-response phase/the slots, and message to the
external party B, are used in the rewinding schedule. These are the following:

• (Start, s, m): Start of challenge-response in PRS session s.2 (Sent by A.)

• (Challi, s, m): Challenge for i-th slot of PRS session s. (Sent by PRS oracle.)

• (Respi, s, m): Response to i-th slot of PRS session s. (Sent by A.)

• (End, s, m): Extracted PRS session result. (Sent by PRS oracle.)

• (ExtSendi, m): The i-th message from A to B. (Sent by A.)

• (ExtRespi, m): The i-th response from B to A. (Sent by PRS oracle.)

Remark A.5. The usual PRS preamble definition and analysis does not consider
commitment schemes with a CRS as setup. However, such setups do not affect the
rewinding schedule in any way, since they occur before the (Start, s, type) message (for
session s) which start the cut-and-choose phase—the rewinding schedule and extraction
analysis is only concerned with the challenge-response slots. Indeed, for our purposes,
the CRS is communicated to the adversary by the PRS oracle anyway.

Remark A.6 (Simplifying Assumptions). We assume for simplicity that A sends
the first message to B, and that B always responds. Moreover, we consider w.l.o.g.
well-behaved adversaries A, which never send a message which is not expected. They
never send a message for a non-existing session, or start the same session multiple times,
or skip a response, or continue aborted sessions, etc. The PRS receiver could check this
and ignore bad messages (or abort session, depending on the PRS preamble behavior),
but it simplifies the description to put these validity checks into the adversary.

With notation in place, we recall the rewinding schedule of [GLP+15] (adapted to
our notation and typed base commitments). We ignore the messages (Init, s, type)
and (Other, s, m) in the description, as they are simply handled “honestly” and do
not affect the rewinding schedule in any way. Rewinds only happen to sample fresh

2Either m is the last message of the commit phase step 1. Or one lets (Other, s, m) finish that step
and sets m = ⊥ here. Either way, the message is a “start marker” initiating the first challenge. The
choice does not affect the rewinding schedule of admissible adversaries.

201

A. Appendix

challenges (Challi, s, m) and gather (fresh) responses, while respecting external messages
(ExtRespi, m) which cannot be rewound. We use the PRS preamble as defined in
Construction 4. The procedure recurse(t, st, T , f, aux, id) is recursively defined with
base case for step size t = 1. We assume w.l.o.g. that t is a power of 2.

Base Case: procedure recurse(1, st, T , f, aux, id)

1. If the next message is (Start, s, m, type), start a new session s:3

• Let type(s,id) = type. (Record the session type explicitly.)
• Send (Chall1, s, r1) for r1 ← C, where C = {0, 1}κ.
• Add ((s, id), 1, r1, m) to T .

2. If the next message is (Respi, s, m):
• If the simulated PRS receiver in session s would abort (due to a failing check),

abort session s and add (s, i,⊥,⊥) to T . Otherwise, m is a “good” response
and continue.

• If i ∈ {1, . . . , ℓ}
– Add (s, i, ri, m) to T
– If i < ℓ: Send (Challi, s, ri) for ri ← C.
– If i = ℓ: Send (End, s, extract(s, id, T , aux)).

3. If the next message is (ExtSendi, m):
• If f = 0, i.e. this is a look-ahead thread, return (st, T). (Early return.)
• If f = 1, i.e. this is the main thread, then:

– For every live session s ∈ LIVE(st) do:4

∗ Set ×s,id′ = 1 for every block id ′ that contains id, including id ′ = id.
– Send m to B and receive response m′. Forward (ExtRespi, m′) to A.

4. If not early returned, update the state st to be the current state of A and return
(st, T).

Note that whenever we record a response of sessions s, we also remember the identity
id of the block where this has occurred. This is used to disambiguate sessions which
occur in parallel in different look-ahead threads. For example, the third session on a
look-ahead thread and on the main thread may be completely different sessions. This
ensures that (s, id) is a unique identifier across all threads.

3W.l.o.g., we assume that s uniquely identifies a session among all threads. This can be achieved by
using (s, id) instead of s as the unique handle for a session. (For any id ′, there is a unique id, such
that id and id ′ lie on the same thread and ((s, id), 1, · , ·) ∈ T ; namely, id is the elementary block
where session s started (on this thread). This disambiguates identifier s to (s, id) in all situations.)

4LIVE(st) denotes all initiated sessions s which are alive (i.e. not completed or aborted) at atomic
block st.

202

A.2. Analysis of the Committed-Value Oracle OCCA

Recursive Case: procedure recurse(t, st, T , f, aux, id)

// Rewind the first half twice:

1. (st1, T1)← recurse(t/2, st, T , 0, aux, id ‖ 1) (look-ahead block)

2. Let aux2 = (aux, T1 \ T)
(st2, T2)← recurse(t/2, st, T , f, aux2, id ‖ 2) (main block)

// Rewind the second half twice:

3. Let T ∗ = T1 ∪ T2
(st3, T3)← recurse(t/2, st2, T ∗, 0, aux, id ‖ 3) (look-ahead block)

4. Let aux4 = (aux, T3 \ T ∗)
(st4, T4)← recurse(t/2, st2, T ∗, f, aux4, id ‖ 4) (main block)

Extraction: procedure extract(s, id, T , aux)

1. Search in T for a pair of ((s, id ′), i, ri, m), ((s, id ′′), i, r′i, m′) with r′i ̸= ri and such
that id ′, id ′′ lie after id. If found, extract that pair and return an extracted value.

2. If no such pair exists in T , consider every block id1 for which ×s,id1 = 1.
• Let id ′1 be the sibling5 of id1 with input/output tables Tin, Tout respectively.
• Attempt to extract (as before) from auxid′

1
:= Tin \ Tout.

• If all attempts fail, return ExtFail, otherwise return the extracted value.

Remark A.7 (Ambiguous Extraction). In extract(s, id, T , aux), it can happen that
multiple distinct values could be extracted, e.g. because the PRS preamble was incon-
sistent, and different values were shared in different slots or within a slot. We do not
specify which value should be extracted in this case; any choice is fine.

Remark A.8 ((Hierarchically) Structured Randomness). The procedure recurse is
deterministic in all recursive calls, except the base calls. It will be helpful to assume
that recurse interprets its randomness in a structured manner into disjoint/independent
parts as follows:

• A tuple (rChall
id)id which specifies challenge messages the for slot in atomic block

id, i.e. base call ids (i.e. strings in {1, 2, 3, 4}log(t)).

• A tuple (rOther
id)id which specifies randomness for all other probabilistic computa-

tions, e.g. the receiver randomness used in base commitments in the PRS commit
phase.

5The sibling of a block/identity if the other block/identity in the paired calls, e.g. the sibling of id ‖ 1
is id ‖ 2 and vice versa.

203

A. Appendix

In particular, it is possible to identify and fix the randomness of the main thread, and
thus all messages and challenges “sent” by recurse on the main thread. This separation
of randomness into atomic blocks will be conceptually helpful later.

We recall the robust extraction lemma of [GLP+15].

Lemma A.1 (Robust Concurrent Extraction, adapted from [GLP+15]). Let COM′ be
the base commitment used in the PRS commitment and suppose that COM′ has a stateless
receiver. Let ℓ be the number of rounds of the PRS preamble. Let E be a black-box
extractor with extraction based on the rewinding schedule recurse with extraction method
extract. Let A be a (not necessarily efficient) well-behaved adversary which expects
access to a PRS extraction oracle. Let M = 2m be a bound on the maximal number of
messages sent by A, and let k bound the maximal number of (ExtSendi, m) messages
of A.

1. Extraction failure. Let EExtFail be the event that in the execution EA, the
extraction returned ExtFail. Then

Pr[EExtFail] ≤ 2−ℓ+(k+2) log(M) + M2/|C|

2. Extraction efficiency. The number of oracle calls to A by E is bounded by M2.
Aside from that, E emulates the honest PRS receiver and does some bookkeeping.
Thus, if A is PPT, then asymptotically E runs in time roughly M(κ)2poly(κ) where
poly(κ) is the worst-case runtime of A plus the PRS receiver and bookkeeping
overhead per message.

3. Validity constraint (on the main thread). Let B be the event that in an
execution, in some session s on the main thread the value v ̸= vs is opened in the
unveil phase (and v ̸= ⊥), where vs is the extracted value. Then

Pr[B] ≤ 1
M · ℓ · 2κ

AdvBinding
B,COM′(κ)

where the adversary B has runtime roughly that of E applied to A.

Proof. The extraction failure probability follows from the proof of [GLP+15, Lemma 1].
The efficiency can be derived from recurse directly (and is also part of [GLP+15,
Lemma 1]). In both cases, our expression differs slightly, since we use M , an up-
per bound on the number of messages, instead of T , an upper bound on the number of
sessions.

The validity constraint follows by a straightforward reduction, namely, guess the (first)
session s∗, the (first) slot ℓ∗, and the index (i∗, b∗) of a commitment which is broken,
and embed the (external) receiver from the binding game on the main thread. Observe
that this is possible, because the base commitment is stateless by assumption. Thus,
look-ahead threads can perfectly simulate embedded (honest) receiver as well.6 Recall

6In Lemma A.4, it is described in more detail how to embed the reduction so that the PRS analysis
still applies. Statelessness is used in to ensure look-ahead threads can continue the challenge receiver’s
interaction. In [GLP+15], stateless receivers are not explicitly required for the validity constraint.
See Remark A.13 for a discussion.

204

A.2. Analysis of the Committed-Value Oracle OCCA

that the base commitment scheme has non-interactive decommitments by assumption.
Moreover, if the guess was correct, the extractor finds a valid decommitment d′ (for
value vs) of the commitment in session s∗, slot ℓ∗ and index (i∗, b∗) and the base
decommitment d (for session s∗, slot ℓ∗, index (i∗, b∗)) unveiled later by A is to a
different value v ̸= vs (and v ̸= ⊥). Thus, d′ and d constitute a binding break, and the
reduction adversary B wins the binding game.

We remark that the loss factor 1/(M · ℓ · 2κ), could be replaced by 1/(T · ℓ · 2κ), where
T is the maximal number of sessions opened by A (on the main thread). Or, one could
strengthen validity to all threads; this increases the loss to 1/(M2 · ℓ · 2κ), since some
sessions may exist in look-ahead threads only.

A.2.2. Enhanced Robust Extraction Lemma

In this section, we consider an adversary which has access to a deterministic stateless
complexity oracle Ocomp which allows to break assumptions. Let HL denote the
bookkeeping algorithm for Ocomp, i.e. the algorithm which keeps track of invalidated
algorithms. We consider w.l.o.g. admissible adversaries, which only query Ocomp for
oracles Oname which they have previously enabled by sending (invalidate, name) to
HL (analogous to Definition 4.15). More concretely:

• When receiving (invalidate, name), the bookkeeping algorithm HL adds name
to L, thereby invalidating assumption name. Initially, L is empty.

• The adversary A may (legally) query the complexity oracle Ocomp with
(oracle, name, m) only if name ∈ L, i.e. if name was previously invalidated.
Admissible adversaries obey this restriction.

In our security games, we always composed the pseudo-oracle OCCA with AOcomp (for
admissible adversaries). That is, the power of Ocomp is encapsulated within AOcomp .
This requires us to rewind Ocomp, which is in general not desirable. Fortunately, since
by assumption Ocomp is deterministic and stateless, rewinding Ocomp does not lead to
any artifacts, since it does not affect the behavior of Ocomp at all. We discuss possible
generalizations in Appendix A.2.3.

The following is the statement of enhanced robust concurrent extraction, where
changes w.r.t. Lemma A.1 are highlighted.

Lemma A.2 (Enhanced Robust Concurrent Extraction). Let Ocomp be a determin-
istic stateless complexity oracle. Let COM′ be the base commitment used in the PRS
commitment and suppose that COM′ has a stateless receiver. Let ℓ be the number of
rounds of the PRS preamble. Let E be a black-box extractor with extraction based on the
rewinding schedule recurse with extraction method extract. Let A be a (not necessarily
efficient) well-behaved adversary which expects access to a PRS extraction oracle. Let
M = 2m be a bound on the maximal number of messages sent by A, and let k bound the
maximal number of (ExtSendi, m) messages of A, and let kass be the maximal number
of assumptions which A invalidates.

205

A. Appendix

1. Extraction failure. Let EExtFail be the event that in the execution EAOcomp , the
extraction returned ExtFail. Then

Pr[EExtFail] ≤ 2−ℓ+(kass+k+2) log(M) + M2/|C|

2. Extraction efficiency. The number of oracle calls to A by E is bounded by M2.
Aside from that, E emulates the honest PRS receiver and does some bookkeeping.
Consequently, if S bounds the worst-case runtime of AOcomp plus the PRS receiver
and bookkeeping overhead per message. then E runs in time roughly M2S.

3. Validity constraint (on the main thread). Let B be the event that in an
execution, in some session s on the main thread the value v ̸= vs is opened in the
unveil phase, where vs is the extracted value, and v ̸= ⊥, and the base commitment
is not trivially broken w.r.t. Ocomp (i.e. insecuretype(s)(L)). Then

Pr[B] ≤ 1
M · ℓ · 2κ

Advenh-Binding
B,COM′,Ocomp

(κ)

where the adversary B has runtime roughly that of E applied to A.

Proof. This follows completely analogous to Lemma A.1. Indeed, one simply considers
the parallel composition HL ‖ B as the left side, and observes that:

• AOcomp sends at most kass + k messages to the left side.

• If B occurs, then the pair (v, vs) breaks the enhanced binding property of COM′
in the analogous reduction (because the type type(s) of the commitment is not
broken by definition of B).

A.2.3. Oracles and Rewinding: Design Decisions

We explain why we will consider deterministic stateless (complexity) oracles only, how
this relates to a different definition of extractors, and how we could handle probabilistic
stateless oracles. We take a look at different ways to handle (complexity) oracles for
the rewinding-based extraction procedure.

Oracles and Rewinding. In our rewinding-based extraction, we only consider an
algorithm B. Whether B is a machine or B = AO is an oracle machine with access to
O makes no difference. However, in the latter case, rewinding B, intuitively, requires
rewinding A and O, so if we implemented black-box rewinding access to B given only
black-box rewinding access to A and oracle access to O, then we would be in big
trouble if O were stateful. Unfortunately, this is the most natural interpretation: While
formally, there is no problem in providing black-box rewinding access to O, morally,
this is of very different quality compared to black-box access to A. The entity A is an
ordinary machine whose code we should know. But, a priori, an oracle is something

206

A.2. Analysis of the Committed-Value Oracle OCCA

extraordinary and should always be seen as external—it is meant to encapsulate some
special power after all. Thus, there is a huge difference between ordinary oracle access
to O and black-box rewinding access to O, which gives an oracle O′ = bbrw(O) far more
powerful than O. Indeed, following the “empowered” extractor definition is a natural
alternative to our choice.

Empowered Extractors. Let O be any deterministic stateless oracle O. In the
above, we considered AO as the adversary and the extractor E received access to AO
only. That is, E was denied direct access to the oracle O. We could alternatively
consider an extractor E ′ which is given access to O and black-box (rewinding) access
to A, and must implement queries to O for A. Since O is stateless and deterministic,
it is trivial for E ′ to implement O for A. We stress that the notion using E ′ strictly
empowers the extractor (hence weakens the security), since in principle, E ′ could use O
with queries which A would never use, perhaps trivializing the task of extraction. Thus,
this additional power must be treated with care and is best avoided.

We stress that the “empowered” extractor E ′ is only more powerful than E because we
assume a (deterministic) stateless oracle O. If the oracles were stateful, E ′ might not be
able to emulate E , because black-box rewinding access to AO cannot be emulated with
black-box rewinding access to A and ordinary oracle access to O. Then, the powers of
E ′ and E are incomparable.

Probabilistic Oracles. By our definition of black-box (rewinding) access to B, the
random tape of B is chosen uniformly and then fixed. (In particular, the random tape
of B is not provided to or given by the calling party.) This allows to handle stateless
probabilistic oracles O basically the same as deterministic ones. Indeed, we already
argued that we can w.l.o.g. consider only deterministic adversaries B for extraction.
The same applies to B = AO when O is probabilistic.

Remark A.9. The setting where the oracle O uses fresh random coins in every call is
not immediately captured by stateless O. Due to statelessness, identical queries lead to
the same results. However, this is easily resolved by adding a nonce (and partitioning
the random tape or having a random oracle baked into O) to provide a mechanism to
separate all queries. Any algorithm which expects access to (stateful) O which uses
fresh randomness in every call is easily adapted to this setting (e.g. by using a counter
as nonce).

A.2.4. Composition-Order Invariance of OCCA

In this section, we prove the k-robust composition-order invariance of OCCA from
Theorem 4.1. For this, we consider an adversary A with access to OCCA and an external
protocol B, so that the interaction ⟨B,A⟩ has at most k rounds. Again, we start with
the simpler variant without complexity oracle, and then outline the changes required to
handle the complexity oracle.

207

A. Appendix

Remark A.10. The switch from A interacting with external B to ⟨B,A⟩ as a composed
system effectively corresponds to making the previously external messages between A
and B “internal”, hence they are not visible to recurse anymore. For example, in a
system composed of three machines and a pseudo-oracle OCCA, we can compose the
system in several ways:

• ⟨C, ⟨B,AOCCA⟩⟩: Here, all messages from A and to B or C are external (for OCCA),
whereas C and B are the single external entity to OCCA. Indeed, this is equivalent
to ⟨C ‖ B,AOCCA⟩.

• ⟨C, ⟨B,A⟩OCCA⟩: Here, all messages from A or B (i.e. from the composed system
⟨B,A⟩) to C are external (for OCCA).

• ⟨B, ⟨C,A⟩OCCA⟩: Same as above, with roles of B and C swapped.

• ⟨B, ⟨C,A⟩⟩OCCA : Here, there are no external messages. Indeed, this is equivalent
to (C ‖ B ‖ A)OCCA .

We restate the definitions of COM and OCCA from Theorem 4.1. Recall that the
construction of COM from typed base commitment COM′ (with at most k rounds) with
round parameter ℓ ∈ ω(k(κ) log(κ)) is as follows:

• Inputs: Common input is (1κ, t). Private input to C is v.

• Setup: Setup for PRSℓ (i.e. for base commitment COM′t and ℓ rounds).

• Commit Phase:
1. PRS commit: Run the (typed) PRS commit phase of PRSℓ for type t. Let

τprs be the PRS commitment transcript.
2. Argument of Knowledge (AoK): Run Blum’s graph hamiltonicity AoK

protocol κ-fold in parallel with base commitments COM′t to prove: τprs is a
valid PRS commitment to some value v ∈M .

• Unveil Phase: Run the corresponding PRS unveil phase.

The oracle OCCA is defined as:

• OCCA allows A to choose common inputs (1κ, t) and interact with an honest
receiver Rs in session s in arbitrarily many concurrent sessions. For this, OCCA
first generates a fresh setup cks ← Setup(1κ, t) (per type and session) and sends
it to A.

• OCCA runs the rewinding-based extraction of PRS commitments as in [GLP+15],
cf. Appendix A.2.1 for more details. Let vs denote the extracted value (which may
be ⊥) received in (main thread) session s. (If extraction failed, vs is the special
symbol ⊥ext.)

208

A.2. Analysis of the Committed-Value Oracle OCCA

• When the commit phase of session s completes, OCCA outputs (End, s, vs, viewRs)
where vs is replaced by

– ⊥ if R rejected (the AoK), or
– broken if insecuretype(s)(L) = 1, where L is the list of invalidated assump-

tions.7

Note that OCCA generates the setup and outputs the receiver’s view viewRs , unlike the
PRS extractor. This does not affect security in any way. Indeed, setup generation
is clearly not a problem. And outputting the receiver’s view is also trivial, since in
Theorem 4.1, it is assumed that receivers are stateless anyway.

The Basic Lemma

We first prove composition-order invariance in the standard setting, i.e. without a
complexity oracle.

Lemma A.3. Let A, B, OCCA as above and recall that ⟨B,A⟩ has at most k rounds.
Suppose that COM′ has a stateless receiver. Suppose M = 2m is an upper bound on the
number of messages A sends to the PRS oracle or to B. Let T be an upper bound of the
number of sessions started by A on the main thread. Define the random variables

• out1(κ, x, y, z) as outB,A⟨B(x), AOCCA(y)⟩(1κ, z), and

• out2(κ, x, y, z) as outB,A⟨B(x), A(y)⟩OCCA(1κ, z).

Then, there exists an adversary ACOM′ against the binding property of COM′ with
expected8 runtime bounded roughly by the (strict) runtime of extractor E⟨B,A⟩ (cf.
Lemma A.1). Concretely, if ⟨B,A⟩ has worst-case runtime S, then E⟨B,A⟩ and ACOM′

have expected runtime bounded roughly by 2 ·M2S. In particular, if B and A are PPT,
then ACOM′ is expected polynomial time. For ACOM′, it holds that for every κ ∈ N and
every z ∈ {0, 1}∗:

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ 2 · (2−ℓ+(k+2) log(M) + M2/|C|) + 2−κ

+ 1
T · poly(κ) ·AdvBinding

ACOM′ ,COM′(κ, z)

where poly(κ) = polyAoK(κ) + κ · ℓ(κ) and polyAoK is a bound on the number of commit-
ments made during in the AoK step and ∆ denotes the statistical distance.

The proof idea is straightforward: Whenever extract is called for a session which is
visible on the main thread and thus part of the view, the extracted value must be the
same for both Π1 = ⟨B,AOCCA⟩ and Π2 = ⟨B,A⟩OCCA . Indeed, running the extractor,

7Note that any (black-box) OCCA can trivially reconstruct L, i.e. by recomputing all (invalidation)
messages A sent.

8Expected runtime stems from extraction of the AoK via rewinding. It can be traded for only one
rewind, hence strict PPT, but with a quadratic loss in advantage.

209

A. Appendix

i.e. recurse, with fixed randomness for E , and A and B (and fixed inputs x, y) either
the outputs of Π1 and Π2 are identical, or at some point, the result of an extraction,
i.e. the output of OCCA, on the main thread must have been different. Since extraction
succeeds with overwhelming probability (statistically), the only failure case is a break
of the binding property of the base commitment or an inconsistent PRS commitment,
which is a break of the AoK (which reduces to a binding break). Moreover, despite
the different rewinding schedules, OCCA (i.e. E) sends the same challenges on the main
thread. This is a simple consequence of the “disjoint partition of randomness” we
postulated in Remark A.8. The claim follows. When embedding the binding game on
the main thread, one must simulate the receiver in look-ahead threads (in such a way
that the PRS analysis still applies). This is where the stateless receiver property is
used, as it ensures that anyone can continue the receiver’s interactions. A more detailed
proof is provided below.

Proof. Suppose w.l.o.g. that A resp. B are deterministic and fix inputs x resp. y. Draw
and fix the random tape r for recurse and all other randomness of OCCA. Note that
we assume (Remark A.8) that the randomness r is of the form r = (rid)id∈{1,2,3,4}log(M)

such that all atomic blocks use disjoint randomness. W.l.o.g., the rewinding sets t = M .
Let Π1 = ⟨B,AOCCA⟩ and Π2 = ⟨B,A⟩OCCA . Since the extractor E , i.e. recurse, is used to
implement the PRS extraction in OCCA, we will talk about threads of Π1 resp. Π2 by an
abuse of notation.

Now, compare the main thread on Π1 and Π2. Since randomness r for recurse is fixed
and A and B assumed deterministic, we observe (by induction) that:

1. If all messages received by A or B in Π1 resp. Π2 on the main thread are identical,
then the next message of A or B will again be identical.

2. Only OCCA may send messages which are not identical in Π1 and Π2. We say that
(the responses of OCCA in) Π1 and Π2 diverge.

Thus, we will in the following view the execution of Π1 and Π2 in parallel and in lockstep
on the main thread, until they diverge.

There are two possible cases for diverging responses on the main thread: For some
session s, the AoK was accepting but

1. extraction via recurse failed for one of Π1 or Π2, but not both. Denote such an
extraction failure event in Πi by Fi for i = 1, 2. Clearly, the event by F1 ∨ F2 is a
superset of this case of divergence.

2. extraction via recurse succeeds for both sessions, but extracted values are unequal,
i.e. v1 ̸= v2. Denote this event by F̸=.

By Lemma A.1 and a union bound, the probability of an extraction failure for the run
with Π1 or Π2 is at most

Pr[F1 ∨ F2] ≤ 2 · (2−ℓ+(k+2) log(M) + M2/|C|).

210

A.2. Analysis of the Committed-Value Oracle OCCA

In the following, we consider modified outputs out1, out2 which always output 0 if
F1 ∨ F2 occurred. (For this, they run both Π1 and Π2 with the same randomness.) The
change in statistical distance is at most Pr[F1 ∨ F2]. Thus, from now on, we can ignore
the failure case F1 ∨ F2.

Next, we show following claim:

Claim A.1. Pr[F ̸=] ≤ 2−κ + 1
poly·T ·AdvBinding

ACOM′ ,COM′(κ).

The lemma then immediately follows. To prove Claim A.1, first denote by s∗ the first
session (on the main thread) where the divergence of Π1 and Π2 occurs. Consider the
experiment G where after the occurrence of F ̸=, the corresponding AoK gets extracted,
and if extraction is successful, let (d′′i,j)κ

i=1 be the extracted decommitments in session
s∗ slot j ∈ {1, . . . , ℓ}. Note already here that, even though the extraction of the AoK
uses rewinding, it will never rewind before the PRS commit phase step 1 ended (on the
main thread).

Observe that F ̸= implies that at least one of the following is true.

• If the AoK extraction fails, then for our concrete instantiation, either
– no two different responses were found (during rewinding), which happens

with negligible probability 2−κ.9 Call this event Fcoll.
– or two different responses were found but they were inconsistent, i.e. the

decommitments they had in common were not all to the same values. Thus,
this yields a binding break.

• If AoK extraction succeeds, then at least one extracted decommitment d′′i,j unveils
to a different value than recurse extracted for Π1 or Π2. Again, this yields a
binding break.

We let experiment G output 1 if one of the above happens, and 0 otherwise. Then, by
definition,

Pr[F ̸=] ≤ Pr[outG = 1].

Now, we construct an adversary ACOM′ against the binding property of COM′, which
essentially runs G. Note that ACOM′ will have to rewind A, but cannot rewind the
embedded binding game, so this requires some care. Unsurprisingly, ACOM′ runs Π1
and Π2 in lockstep, also simulating B, and then embeds its binding challenge in a
random instance of COM′ on the main thread. It does so by passing the (external)
messages for COM′ from A to the game and returning the challenge receiver’s responses.
However, ACOM′ must also play the receiver in look-ahead threads, where it cannot
embed the binding game anymore. That is, ACOM′ must procure responses for A whose
distribution is identical to that of the receiver of COM′ (with the same state as that
in the “past” of the thread under consideration). For this, we exploit that COM′ has
stateless receivers. Thus, ACOM′ can simply continue the execution of any COM′ receiver.

9Resampling challenges uniformly with replacement, the probability of a collision is 1/n if there are n
accepting challenges, and n/2κ is the probability that the verifier accepted the AoK (and extraction
was started). Thus max2κ

n=1 2−κn/n = 2−κ is an upper bound on failure.

211

A. Appendix

Observe, that since the randomness in all atomic blocks is independent (cf. Remark A.8),
the embedding of the COM′ challenger in the main thread and computing the stateless
receiver responses in look-ahead threads does not affect the distribution (in fact, it is
possible to map random tapes from one execution to the other and vice versa). Thus,
the probability for F̸= is unchanged. In full, ACOM′ works as follows:

• Pick a random commitment index t∗ on the main thread. That is, pick
a random session s∗ ← {1, . . . , T} and index i∗

$← {1, . . . , poly(κ)}, where
poly(κ) = polyAoK(κ) + κ · ℓ(κ) is an upper bound for the number of COM′
commitments made in a PRS commit phase (i.e. both in step 1 and the AoK).

• Run Π1 and Π2 in parallel and synchronized on the main thread.

• If F̸= occurs before session s∗, output ⊥ to the challenger.10

• Emulate the rest of the extractor/rewinding schedule essentially unchanged.

• Embed the binding challenge in session s∗ and commitment with index i∗.

• After session s∗, extract the AoK (via rewinding) and output a potential binding
break for commitment i∗ to the challenger, or ⊥ if none occurred or extraction of
the AoK failed. Observe that:

– The rewinding-based AoK extraction occurs strictly after the embedded
challenge commitment completed, hence ACOM′ never attempts to rewind
the challenger.

– The reduction ACOM′ never provides (End, s∗, vs∗ , viewRs∗) to A. Indeed, it
could not provide viewRs∗ , since in general, viewRs∗ is only known to the
binding challenger.

Overall, this yields our adversary ACOM′ against the binding game with the claimed
advantage. In more detail: Let B be the event that a binding break is found on the
main thread when the AoK for the first diverging session s∗ is extracted. We find that

Pr[F ̸=] ≤ Pr[Fcoll] + Pr[B] ≤ 2−κ + 1
poly(κ) · T ·AdvBinding

ACOM′ ,COM′(κ).

Putting everything together, we find that for every κ ∈ N and every z ∈ {0, 1}∗, it holds
that

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ Pr[F1 ∨ F2 ∨ Fcoll ∨ B]
≤ 2 · (2−ℓ+(k+2) log(M) + M2/|C|) + 2−κ

+ 1
poly(κ) · T ·AdvBinding

ACOM′ ,COM′(κ, z)

This proves the claimed advantage of ACOM′ .
10If F1 ∨ F2 occurs before F ̸=, the modified experiment immediately outputs 0, so F ̸= will not occur

and this case is irrelevant.

212

A.2. Analysis of the Committed-Value Oracle OCCA

Lastly, observe that if B and A are PPT, then Π1 and Π2 are (overall) PPT algorithms,
since OCCA is k-robust quasi-PPT. Since ACOM′ essentially runs Π1 and Π2 (with minor
modifications for embedding its challenge), it is clear that ACOM′ is PPT until the
point the AoK extraction starts. (Indeed, ACOM′ makes at most about M2S steps up
to this point, by Lemma A.1.) By the usual argument, in expectation only 1 rewind
happens for AoK extraction. (If p is the probability that an AoK challenge is answered
acceptingly, then p−1 is the expected number of rewinds to obtain another accepting
transcript, hence (1− p) · 0 + p · p−1 = 1 rewinds in expectation.) Thus, in expectation,
ACOM′ makes at most about 2M2S steps, as claimed.

Somewhat tighter reductions are possible by exploiting additional properties of the
commitment scheme and the protocol. Most importantly, public-coin receivers can be
exploited to embed challenge commitments in every main thread commitment, thus
exploiting multi-challenge binding.

The Enhanced Lemma

Now, we consider the enhanced version of Lemma A.3. We define admissible adversaries
as in Appendix A.2.2. For simplicity, we restate most of the lemma and highlight the
changes.

Lemma A.4. Let Ocomp be a deterministic stateless complexity oracle and let A be
admissible (w.r.t. Ocomp). Suppose that A invalidates at most kass assumptions. Let B,
OCCA as in Lemma A.3 and recall that ⟨B,A⟩ has at most k rounds. Suppose that COM′
has a stateless receiver. Suppose M = 2m is an upper bound on the number of messages
A to the PRS oracle or to B. Let T be an upper bound of the number of sessions started
by A on the main thread. Define the random variables

• out1(κ, x, y, z) as outB,A⟨HL ‖ B(x), (AOcomp)OCCA(y)⟩(1κ, z), and

• out2(κ, x, y, z) as outB,A⟨HL ‖ B(x), AOcomp(y)⟩OCCA(1κ, z).

Then, there exists an adversary ACOM′ against enhanced binding property of COM′
w.r.t. Ocomp with expected runtime bounded roughly by the (strict) runtime of extractor
E⟨B,AOcomp ⟩ (cf. Lemma A.1). Concretely, if ⟨B,AOcomp⟩ has worst-case runtime S, then
E⟨B,AOcomp ⟩ and ACOM′ have expected runtime bounded roughly by M2S. For ACOM′, it
holds that for every κ ∈ N and every z ∈ {0, 1}∗:

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ 2 · (2−ℓ+(kass+k+2) log(M) + M2/|C|) + 2−κ

+ 1
T · poly(κ) ·Advenh-Bind

ACOM′ ,COM′(κ, z).

where poly(κ) = polyAoK(κ) + κ · ℓ(κ) and polyAoK is a bound on the number of commit-
ments made during in the AoK step.

It is possible to handle probabilistic stateless complexity oracles as noted in Ap-
pendix A.2.3.

213

A. Appendix

Proof sketch. We only explain how to adapt the proof of Lemma A.3. Again, we exploit
that, w.l.o.g., AOcomp is an admissible adversary. Observe that OCCA outputs broken if
a base commitment was insecure, thus, this will never result in divergent main threads
for Π1 and Π2.

Overall, the proof of Lemma A.3 is only minimally modified. Clearly, the presence
of HL, Ocomp, and kass in several expressions must be added. Moreover, the events F ̸=
and B are slightly adapted to deal with broken assumptions, but since broken cannot
lead to divergence, as noted above, these changes hardly affect the proof.

With this, the same analysis for the AoK (and its extraction success) goes through,
except that the reduction is now to the enhanced binding property w.r.t. complexity
oracle Ocomp.

A.2.5. Substitution Rules

Oftentimes, one wants to modify some game by moving some computation into or out
of an oracle, e.g. the game may compute encryptions itself or query the oracle instead.
For “ordinary” oracles, such changes are often trivially justified. With pseudo-oracles,
the same problems as with composition-order invariance resurface. Thus, we have
to establish substitution rules explicitly. With our committed-value oracle OCCA, the
substitution rule of interest allows to move an honest receiver session into the OCCA
oracle, or a session out of the OCCA oracle provided that the extracted committed-value
is ignored.

This intuition can be formalized as follows: Let Wb for b ∈ {0, 1} be a wrapper for
OCCA and R, such that

• to start a new session, Wb expects an additional bit e ∈ {0, 1} as input, which
indicates whether the session’s committed-value will be extracted and returned
(upon completion of the commit phase) as in OCCA, or whether it will be ignored
(i.e. replaced by ⊤).

• W0 forwards everything to OCCA.

• W1 forwards only sessions with e = 1 to OCCA, and runs R for e = 0.

By an argument similar to k-robust composition-order invariance, one obtains a
k-robust substitution rule, which asserts that ⟨B,AW

OCCA
0 ⟩ s≈ ⟨B,AW

OCCA
1 ⟩. Note that

rewriting a game so as to introduce or remove W0 (resp. W1) can be justified by the
black-boxness of OCCA.

Lemma A.5. Let Ocomp be a deterministic stateless complexity oracle and let A be
admissible (w.r.t. Ocomp). Suppose that A invalidates at most kass assumptions. Let B,
WOCCA

0 and WOCCA
1 as described above and suppose that ⟨B,A⟩ has at most k rounds.

Suppose that COM′ has a stateless receiver. Suppose M = 2m is an upper bound on
the number of messages A to the PRS oracle or to B. Let T be an upper bound of the
number of sessions started by A on the main thread. Define the random variables

214

A.2. Analysis of the Committed-Value Oracle OCCA

• out1(κ, x, y, z) as outB,A⟨HL ‖ B(x), AW
OCCA
0 (y)⟩(1κ, z), and

• out2(κ, x, y, z) as outB,A⟨HL ‖ B(x), AW
OCCA
1 (y)⟩(1κ, z).

Then, there exists an adversary ACOM′ against enhanced multi-binding (Remark 4.14)

with runtime roughly upper bounded by the maximal runtime of ⟨HL ‖ B, EA
W

OCCA
b ⟩ (for

b = 0 or 1) (cf. Lemma A.1) in expectation (in particular, if W0, W1, B, A are PPT, so
is ACOM′ (as an oracle algorithm)) such that for every κ ∈ N and every x, y, z ∈ {0, 1}∗,
it holds that

∆(out1(κ, x, y, z), out2(κ, x, y, z)) ≤ 2 · (2ℓ−(kass+k+2) log(M) + M2/|C|) + 2−κ

+ Advenh-multi-Binding
ACOM′ ,COM′ (κ, z).

where poly(κ) = polyAoK(κ) + κ · ℓ(κ) and polyAoK is a bound on the number of commit-
ments made during in the AoK step, as in Lemma A.3.

Proof sketch. The argument is similar to k-robust composition-order invariance,
Lemma A.3. Again, one fixes the randomness of B and A. Instead of “matching” the
randomness of the main threads of OCCA in two different executions, as in Lemma A.3,
one (fixes and) “matches” the randomness of Wb and OCCA. (Recall that the randomness
of OCCA is can be structured suitably to simplify this matching, cf. Remark A.8.) That
is,

• WOCCA
0 simply runs everything through OCCA. Let r′ be the randomness of the

main thread of OCCA, i.e. the challenges sent by OCCA.

• WOCCA
1 runs sessions with e = 1 through OCCA and those with e = 0 are emulated

by W1 itself. Let r′OCCA
be the randomness in the main session of OCCA and r′W be

the randomness in the sessions run by W1, i.e. the challenges sent by OCCA resp.
W1.

Observe that there is an obvious mapping between r′ and (r′OCCA
, r′W). Moreover, both

specify behavior on the main thread completely as long as extracted values on the main
threads do not diverge,11 as in Lemma A.3. Following the proof of Lemma A.3, we get a
statistical bound on divergence plus a reduction to the binding property of the base
commitment COM′ (which includes soundness of the AoK) which ensures that divergent
extractions on the main thread happen with probability at most

2 · (2−ℓ+(kass+k+2) log(M) + M2/|C|) + 2−κ + Advenh-multi-Binding
ACOM′ ,COM′ (κ, z)

for a suitable (expected-time) adversary ACOM′ . Thus, the claim follows.
11This mapping is not strictly a bijection, since r′ and r′

OCCA already have the same size. However, the
“actually used” prefixes of the main thread randomness r′ and (r′

OCCA , r′
W) are evidently in bijection.

After the main thread terminates, the mapping is unspecified—but then it is also irrelevant for the
output.

215

A. Appendix

Remark A.11. We formulated Lemma A.5 with k-robustness for B for convenience. As
a corollary of composition-order invariance, B could be introduced anyway. Yet, unlike
composition-order invariance, no “break-points” change and thus, OCCA is essentially
unaffected by B. Thus, it may be possible to make Lemma A.5 independent of k. For
now, this setting appears to be of little interest.

A.2.6. Asides

Example A.1 (PRS is not necessarily COI). The composition-order invariance of PRS
commitments depend on their definition of extract (which, following [GLP+15], we left
open in cases of ambiguities). If extract outputs the value of a random extracted slot, the
following is an attack on COI: External algorithm B does nothing, except acknowledge
receipt of a message. The adversary A runs a single PRS commitment to value 1 almost
honestly, except in a random slot, where it commits to 0. Moreover, A wraps that
random slot in external messages to B. Now in case ⟨B,AOCCA⟩, all extracted slots
yield 1. In case ⟨B,A⟩OCCA , there is a non-negligible probability that the slot with 0 is
extracted and returned.

Small variations of this example show that it does not help to output ⊥ if not all
extracted values are consistent, nor does a simple majority decision avoid an attack.
Nevertheless, this does not rule out COI for a suitable extract.

Remark A.12. It is not obvious how far the requirements in Lemmata A.3 and A.4
could be relaxed, i.e. whether a reduction to binding is strictly necessary, or if it is
possible to avoid it, and a similar result holds unconditionally.

Remark A.13 (Necessity of Special Commitment Schemes). While a stateless receiver
of COM′ may be traded for other (stronger) notions of binding in Lemma A.3, it
seems necessary to impose requirements beyond generic binding. Consider following
pathological example: The receiver “protects” its messages by using a signature (or
MAC) on the partial transcript and its response. The committer and receiver check
these authentications, and halt if they are invalid. Clearly, the receiver is not stateless
anymore. Moreover, suppose the commitment has many rounds, e.g. by adding dummy
rounds. Now, embedding a binding challenge is not as simple anymore: The scheduling
chosen by A might require the reduction to continue a partially completed embedded
challenge commitment in a look-ahead thread, but with different responses from A
(e.g. add some garbage to make sure A sends different messages with overwhelming
probability). While continuing the receiver was trivial for stateless receivers, now, the
reduction has to break EUF-CMA security of the signature (or MAC) scheme. This
seems to preclude simple (black-box) reductions.

We also note that similar problems apply when establishing the “validity constraint”
for Lemma 6 of [GLP+12] (the full version of [GLP+15]). The idea to circumvent
problems by moving the binding challenger to the left side runs afoul to composition-
order invariance. Indeed, examples which show that COI fails for PRS preamble
extraction in general (e.g. Example A.1), can be adapted to this setting. Thus, some

216

A.2. Analysis of the Committed-Value Oracle OCCA

non-trivial justification (or the restriction of COM′) is required for [GLP+12, Lemma 6]
as well.

Remark A.14 (Relation to [GLP+12, Lemma 6]). At first glance, Lemmata A.3 and A.4
might be superfluous as the generalized robust concurrent extraction lemma in [GLP+12]
(the full version of [GLP+15]) could be used instead. However, we ran into some obstacles.
Firstly, we failed to justify [GLP+12, Lemma 6] for general commitment schemes as
noted in Remark A.13. And secondly, there are unfortunate ambiguities in [GLP+12],
so it is not clear if and how their generalized robust concurrent extraction lemma would
apply. More precisely:

• The extractor E in [GLP+12] merely interacts with the adversary. As such, it is
impossible for E to run the (rewinding-based) simulation for statistically hiding
PRS preambles. To fix this, we view E as a black-box pseudo-oracle.

• The formal statement that [GLP+12, Lemma 6] claims in constraint (b) is that
for every statistically hiding preamble, the extracted value will coincide with
a potential value unveiled by A. This suggests that constraint (b) holds with
probability 1, but evidently, it only holds by reduction to the binding property,
so with overwhelming probability (at best). While missing in the statement of
[GLP+12, Lemma 6], it is clearly explained before and after [GLP+12, Lemma 6].
Indeed, a proof sketch is given which hints at a reduction (which, as noted before,
we could only justify for stateless commitment schemes).

• With the proposed corrections to the statement and the extractor (and assuming
stateless commitment schemes), one observes that it is not (obviously) possible to
swap out the external protocol Π from the rewinding (of the simulator S) anymore,
because the extractor E (which is not straight-line anymore) acts exactly as S for
statistically hiding preambles, and thus also uses rewinding and is dependent on
the external protocol Π.12

Thus, at least when the ambiguities are resolved as suggested, there is still a gap we
have to fill for our proofs to work. This is addressed by Lemmata A.3 and A.4.

12In the non-generalized robust extraction lemma [GLP+12, Lemma 1], E is a normal oracle and
extraction is straight-line. As such, it is trivial to see that “swapping out” which protocol parts are
considered the external protocol does not affect REALA

E,Π. Consequently, “swapping out” the external
protocol also works for simulations, simply by arguing through the extractor E and indistinguishability
of E and the respective simulator S.

217

	Title page
	Acknowledgements
	Abstract
	Zusammenfassung
	Contents
	Introduction
	Preliminaries
	Notation
	Basic Concepts
	Cryptographic Building Blocks
	Universal Composability and its Variants
	Environmental Friendliness

	Environmentally Friendly Composable Multi-Party Computation in the Plain Model from Standard (Timed) Assumptions
	Introduction
	Definitions
	Timed Simulation-Sound Commitment Schemes
	TLUC Security
	Composable Commitment Schemes in the Plain Model
	Proof of Security
	Constant-Round Black-Box Composable General MPC

	Updatable Composable Security
	Introduction
	Definitions
	Concurrently Extractable Trapdoor Commitment Schemes
	Security Notions
	Updatable and Long-Term-Secure Composable Commitment Schemes
	Long-Term-Secure Zero-Knowledge and Commit-and-Prove
	Long-Term-Secure General Two-Party Computation

	Conclusion and Outlook
	Bibliography
	Appendix
	TLUC Security
	Analysis of the Committed-Value Oracle OCCA

