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Demonstrating the Suitability of the Radiance-
Based Method for Assessing the Accuracy of
MODIS Land Surface Temperature Products
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and Lluís Pérez-Planells

Abstract— Validation of satellite land surface temperature
(LST) products is usually performed through direct comparison
with ground-measured LSTs (temperature-based or T-b valida-
tion) and with the radiance-based (R-b) method where reference
ground LSTs are obtained from at-sensor radiances, atmospheric
temperature and water vapor profiles, and emissivity measure-
ments. While T-b is the preferred method, it is only applicable to
a few, single-component covers that are thermally homogeneous
from the ground measurement scale (a few m) to the satellite
scale (usually 1 km). The indirect R-b method is an alternative to
extend the LST validation at a global scale over cover types where
the T-b method is not feasible. In this study, we used ground LST
measurements taken in a thermally homogeneous site coincident
with moderate resolution imaging spectroradiometer (MODIS)
Terra and Aqua overpasses (86 matchups) to assess the accuracy
of the R-b LSTs derived from MODIS data. Mean bias (ground
minus R-b LSTs) of −0.1 K and root mean square error (RMSE)
of 0.8 K were obtained, showing good performance against
ground measurements. Then, we apply operationally the R–b
method for validating MODIS Level 2 LST products M*D11 and
M*D21 over six test sites comprising a varied range of surfaces
(4267 cases). The emissivity values necessary for the R-b calcu-
lations were obtained from 1) the M*D11 and M*D21 emissivity
product and 2) an independently modeled emissivity using ground
measurements and vegetation cover fraction estimates. For the
M*D11 product, we obtained an overall bias (product minus R-b
LST) of −0.5 K and RMSE of 0.9 K with either the product or
the modeled emissivities. However, a significant difference was
found between daytime and nighttime bias (−1.0 and 0.0 K,
respectively). The daytime cold bias of M*D11 was attributed
to an ill-tuning of the algorithm for high surface temperature
and atmospheric humidity conditions. For the M*D21 product,
the overall bias (RMSE) was 0.2 K (0.6 K) with the product
emissivity, and 0.6 K (1.1 K) with the modeled emissivity, both
in nighttime and daytime. These results compare well with recent
studies and contribute to the global assessment of MODIS LST
uncertainty.
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I. INTRODUCTION

LAND surface temperature (LST) is a key magnitude for
many of Earth’s sciences. The Global Climate Observing

System and the European Space Agency’s Climate Change Ini-
tiative program have recognized LST as an Essential Climate
Variable for the monitoring of the Earth’s climate [1], [2].
The availability of global, highly repetitive, long-term, and
consistent LST data provided by thermal infrared (TIR) satel-
lite sensors has increased their use in different applications in
recent years, including estimation of evapotranspiration and
soil moisture, monitoring of agricultural drought, urban heat
island, thermal anomalies, and climate change indexes [3]. One
of the key points conditioning the use of satellite LSTs is the
necessity of a consistent assessment of the LST uncertainty.
In addition, continuous evaluation of satellite LST esti-
mates may help to improve and refine existing LST retrieval
algorithms.

The committee on Earth observation satellites (CEOSs)
compiled a best practice protocol for satellite LST valida-
tion [4] where two main validation methods are generally
considered: The temperature-based (T-b) and the radiance-
based (R-b) methods. T-b is the preferred validation method [4]
and consists of a direct comparison of satellite LST with con-
current ground LST measurements in thermally homogenous
test sites. The T-b method requires ground TIR radiometers
calibrated against traceable standards [5], in situ measurements
of surface emissivity and downwelling sky radiance for emis-
sivity correction of radiometric temperatures, and especially
that the ground measurements, which correspond to a small
field of view (typically few m2), represent the satellite-scale
LST (usually 1 km2).

Lagouarde et al. [6], [7] showed that atmospheric
turbulence might induce high-frequency temporal fluctuations
of surface temperature at the ground instrument scale even
for single-component homogeneous surfaces. They proposed
frequent sampling using 2–3 instruments per site at distances
enough to avoid correlation in surface temperatures and
averaging during a few minutes around the satellite overpass
to reduce the uncertainty in the ground-measured LSTs. More-
over, a comprehensive uncertainty assessment of the ground
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LSTs must be provided [8], showing the significance of the
ground data with regard to the satellite LSTs. The uncertainty
of ground LST measurements includes calibration and emissiv-
ity correction errors, plus spatial-temporal variability of LST
within the satellite pixel area at the acquisition time, which
can only be accounted for by multiinstrument and frequent
sampling and it is usually the largest source of error. The above
issues make the collection of ground LSTs a highly demanding
task in terms of resources. It is limited to a few cover types,
with single-component temperature, spatially uniform from
a few meters to 1 km such as lakes, dense vegetation, and
bare surfaces [9], [10], [11]. This limits the applicability of
the T-b method for global scale validation of satellite LSTs.

As an alternative, the R-b method [12] does not rely on
ground LST measurements. Instead, it uses the brightness
temperatures in two bands in the 10–12.5 µm atmospheric
window, coincident atmospheric profiles of pressure, tempera-
ture, and water vapor, and emissivity in the considered bands to
simulate the LST through radiative transfer modeling. Strictly,
the R-b method cannot be considered as a direct, independent
validation in comparison with the T-b method. However, it can
be a useful alternative when ground measurements of LST are
not viable. The R-b method is affected by several sources
of uncertainty, especially the atmospheric profiles used for
radiative transfer simulation and the emissivity values. Such
uncertainties can be assessed through the difference between
LSTs derived in two bands of the 10–12.5 µm window (δ),
which should be close to zero in ideal cases. Therefore, we can
define a δ threshold value to filter out cases with excessive
error [12]. Since emissivity in the 10–12.5 µm window shows
small variations among most natural land covers, sites with
uniform emissivity are more frequent than thermally homoge-
neous sites, so the R-b method can be potentially applied to
a larger number of sites than the T-b method.

In this article, we focused on the moderate resolution
imaging spectroradiometer (MODIS) onboard Terra and Aqua
satellites, which currently provides two global, long-term, four
times a day LST and emissivity products at 1 km resolu-
tion: M*D11_L2 and M*D21_L2 (here M*D11 and M*D21,
with MOD for Terra and MYD for Aqua), Collection C6.1.
M*D11 is probably the most extensively used and validated
satellite LST product and is usually considered a reference
for intercomparison with other satellite LST products [3].
The more recent M*D21 LST product has been validated
in comparatively fewer studies. The CEOS LST validation
protocol [4] defined four validation stages. Stage 1 means
that only a small (<30) set of sites and times have been
evaluated. Stage 2 implies that a significant set of locations
and times have been evaluated as well as the spatial and
temporal consistency against similar products at a global scale.
Stage 3 is achieved when uncertainties are well quantified
and statistically characterized in a robust way over global
conditions. Finally, stage 4 requires that stage 3 be updated
for new versions and time series. According to the MODIS
data web page (https://modis.gsfc.nasa.gov/), the M*D11 LST
product is currently in validation stage 2, while M*D21 was
recently promoted from stages 1 to 2. Thus, it is worthwhile
pursuing the validation of the M*D11 and M*D21 LST

products for different biomes and atmospheric conditions in
order to promote the validation stage of the products. In order
to accomplish this goal, the R-b validation method appears as
the most suitable and operational possibility for global LST
validation.

The objective of this article is twofold. First, demonstrating
the feasibility of the R-b method applied to MODIS data
through a comparison with ground LSTs measured in a homo-
geneous site in order to assess the uncertainty of the method
and the threshold for the δ difference. To our knowledge,
this is the first study where T-b and R-b LSTs are compared
in an experimental test site. Second, showing the operational
application of the R-b method for M*D11 and M*D21 LST
validation in different test sites encompassing various surface
types and atmospheric conditions during a two-year period.
Novelties of the article include: 1) a simplified formulation of
the R-b method and the δ difference; 2) validation of R-b LSTs
with ground-measured LSTs in a thermally homogeneous site;
and 3) operational R-b validation of M*D11 and M*D21 LST
products, and evaluation of the impact of emissivity inputs.

The article continues with a description of the simplified
R-b method and the datasets used in the present study.
Section III shows the results of the comparison of R-b LSTs
against ground-measured LSTs and the operational validation
of M*D11 and M*D21 LSTs. Section IV discusses the results
obtained and Section V gives the main conclusions of the
study.

II. METHOD AND MATERIALS

A. Simplified R-b Method

The R-b method [12] starts from the top-of-atmosphere
(TOA) thermal radiance measured in band i of a satellite
sensor, Lsen

i , which can be written as

Lsen
i =

[
εi Bi

(
Tg

)
+ (1 − εi )Lsky

i

]
τi (θ) + Latm

i (θ) (1)

where subindex i denotes a band-averaged magnitude accord-
ing to the band’s response function, εi is the emissivity,
Tg is the LST, Bi is the Planck function for blackbody
radiance, Lsky

i is the downwelling sky irradiance divided
by π , τi (θ), and Latm

i (θ) are respectively the atmospheric
transmittance and upwelling radiance at the zenith angle θ .
If surface emissivity is known and atmospheric transmittance
and radiances can be calculated from atmospheric profiles and
a radiative transfer model, the reference LST can be obtained
from (1) according to

Tig = B−1
i

[
Lsen

i − Latm
i

εiτi (θ)
−

1 − εi

εi
Lsky

i

]
(2)

where B−1
i is the inverse Planck function. The LST obtained

from (2) is represented by Tig since it may depend on the band
used for the retrieval. Typically, the R-b method is applied
separately to two bands splitting the 10–12.5 µm atmospheric
window (e.g., MODIS bands 31 and 32), hereafter referred to
as bands i = 1 and 2, respectively.

In an ideal case, Tig should be identical in both bands
but they are affected by uncertainties in the emissivity and
atmospheric profiles. For most natural surfaces such as water,
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vegetation, and soils, emissivity in the 10–12.5 µm window
are close to unity and show small variability among surface
types [13], [14], [15]. Therefore, emissivity uncertainties can
be kept within reasonable limits. More critical is the need
for accurate concurrent atmospheric profiles. The accuracy of
the radiative transfer calculations can be assessed through the
difference in the LST obtained from the two window bands,
δ = T1g − T2g . Atmospheric effects in the window region
are mainly due to the continuum absorption of water vapor,
so they are highly correlated between bands and they are larger
at 12 µm than at 11 µm. So, when the atmospheric profile
used is overcorrecting the real atmospheric effect in band 1,
that is, the difference between the actual and derived LST,
Tg − T1g , is negative, the overcorrection in T2g will be larger
and then δ < 0. The reverse is true in the case of under
correction in band 1 (Tg − T1g > 0), which will yield to a
larger underestimation in band 2 and thus δ > 0. Therefore, the
difference δ = T1g −T2g should be within a small range around
zero when atmospheric profiles are accurate and uncertainties
in surface emissivities are small.

The δ threshold that determines the valid cases can be
obtained through an uncertainty analysis of the various factors
involved in the derivation of Tig , so a range of δ values can be
defined in order to keep the uncertainty in T1g within certain
limits [12], [16]. In this article, we adopted a different strat-
egy using ground-measured LSTs for validating the derived
temperatures and establishing the valid δ range.

The simplified R-b method can be summarized in three steps
as follows.

1) Using the at-sensor radiances in bands 1 and 2, atmo-
spheric parameters, and emissivity data, the surface
temperature is obtained for both bands, T1g and T2g (2).

2) The difference δ = T1g −T2g is calculated and only cases
for which δ is within a small interval around zero are
selected as valid cases.

3) For the valid cases, the calculated temperature in band 1,
T1g , is considered the reference LST for satellite LST
validation. Band 1 is selected because atmospheric cor-
rection errors are smaller than in band 2.

In the original formulation [12], δ was defined as the
brightness temperature difference (T1 − T2) obtained from the
actual satellite data minus the value calculated from direct
(upward) simulation using T1g as input LST in (1). The new δ

definition seems more straightforward and relies on the same
rationale behind the original definition. In addition, we used
an approximation for the band-averaged Planck function, Bi ,
as an analytical function of temperature (e.g., [8]) so Tig can
be readily inverted from (2) and the iterative procedure to
calculate Tig [12] is not necessary.

Fig. 1 shows a flow diagram of the methodology applied in
this study. Sections II-B–II-D describe the different datasets
used.

B. MODIS Data and Atmospheric Profiles

MODIS products were downloaded from https://modis.gsfc.
nasa.gov/data/ and include M*D21KM (Level 1B calibrated
TOA radiances), M*D03 (Geolocation), and M*D11 and

Fig. 1. Flow diagram showing the steps of the methodology used.

TABLE I
TEST SITES FOR R-b VALIDATION, SHOWING THE LOCATION,

NUMBER OF SCENES, COMPONENT EMISSIVITIES,
AND RANGE OF FVC. ∗WET BARE SOIL

M*D21 LST products, all at 1 km resolution. The M*D11
product uses the generalized split-window method [17] with
the brightness temperatures in bands 31 (10.8–11.3 µm) and
32 (11.8–12.3 µm) and a priori classification-based band
emissivities. The M*D21 product [18], [19] uses a physics-
based temperature-emissivity separation algorithm [20] with
the three MODIS TIR bands 29 (8.4–8.7 µm), 31 and 32. The
M*D21 algorithm simultaneously retrieves LST and emissiv-
ities in the three bands involved. Both products provide the
LST, the band emissivities, and a theoretical estimation of the
LST uncertainty on a pixel basis.

Two different MODIS datasets were used in this study. First,
a limited dataset corresponds to a large and homogeneous
rice field in Valencia, Spain where simultaneous ground LST
measurements were performed (see Section II-D). The dataset
includes 65 Terra cases and 21 Aqua cases from 2002 to 2022,
all daytime. They were used to compare the R-b LSTs against
independent T-b LSTs to assess the uncertainty of the method
and select the δ threshold. Second, an extended dataset cover-
ing six selected test sites (see Table I) in the years 2020 and
2021 was used for operational R-b validation with a total of
4267 cases with approximately the same number for Terra and
Aqua, daytime, and nighttime in each site. We checked that
all pixels covering the test sites were classified as cloud-free
and flagged with the highest quality in the auxiliary data.
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Fig. 2. (Top) Location and (bottom) detailed views of the test sites. The rice
field is shown in conditions of dry bare soil.

The test sites are located within large uniform areas containing
at least 5 × 5 pixels (3 × 3 for the lake site). Fig. 2 shows
the locations of the sites and detailed views of the different
covers. For each site and scene, we extracted the four pixels
closest to the coordinates of the test site to obtain the satellite
value by weighted spatial interpolation.

While the test sites of Table I are restricted to a lim-
ited geographical area, they encompass a significant variety
of surface covers, from water and nearly full vegetation
conditions to partial vegetation covers and practically bare
soils. As an indicator of the variety of conditions included,

brightness temperatures in band 31 ranged from approximately
280–320 K in daytime, and from 270 to 290 K in nighttime.

We used atmospheric profiles from the National Centers for
Environmental Prediction (NCEP) global model. It provides
atmospheric profiles over a 1◦

× 1◦ grid at 00:00, 06:00,
12:00, and 18:00 UTC, which were spatially and temporally
interpolated to the coordinates of each site and the time
of sensor overpass. The atmospheric profiles were input
in the radiative transfer code MODTRAN 5 [21] to obtain
spectral transmittances and radiances. As NCEP profiles only
arrive up to 29 km over ground level, upper atmospheric
levels were added from the mid-latitude summer and winter
standard atmospheres, depending on the date. We added
the vertical distribution of CO2, O3, and other minor gases
included in the MODTRAN code. The atmospheric spectral
transmittances and radiances were integrated into the MODIS
bands 31 and 32 using the corresponding response functions.
The total column water vapor (W ) ranged from 0.3 to 3.5 cm
in the study period, showing a wide range of mid-latitude
atmospheric conditions.

C. Emissivity Data

An important issue of the R-b method is the emissivity
inputs required to derive the reference LSTs. For the
operational R-b validation, we have considered two options:
1) the emissivity data provided by each LST product, that
is, a priori classification-based emissivity for M*D11 and
the physics-based derived emissivity for M*D21 and 2) a
dynamic emissivity database defined for each site taking
into account the nature of the site and available ground or
laboratory emissivity measurements for water, vegetation, and
soil components.

For partially vegetated surfaces, emissivities were modeled
with the vegetation cover method (VCM, [22]) which relies
on the fractional vegetation cover (FVC). Since MODIS
does not provide an operational FVC product, we used the
Level 2 LST product of Sentinel-3, which includes FVC at
1 km as an auxiliary dataset. Sentinel-3 FVC estimates are
based on vegetation indexes obtained from the near-infrared
bands (0.66 and 0.87 µm) of the Sea and LST Radiometer.
FVC values are provided with a temporal resolution of ten
days acquired from a moving temporal window of 30-day
composites. The FVC values for the MODIS observation dates
were obtained by linear interpolation from the closest cloud-
free Sentinel-3 dates, usually around three days before the
MODIS overpass. Table I shows the approximate range of
FVC for the land sites.

The product emissivities are closely related to the LSTs
provided by each product, either because they are used as
inputs for LST derivation in the M*D11 product or calculated
simultaneously with LST in the M*D21 product. Thus, such
emissivity data may be considered a favorable case for R-b
validation. Since the modeled emissivities are independent of
the products, they are useful to check the impact of emissivity
on the validation.

Water emissivity and its angular dependence are well known
(e.g., [23]), and it is spatially uniform and constant in time.
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In the lake site, we applied the parametrization of [24] to
calculate water emissivity as a function of observation zenith
angle from 0◦ to 65◦ in bands 31 and 32. The rice field site
is the same as used for ground measurements (Section II-D)
showing different covers through the year from water, wet and
dry bare soil, and rice crops in various stages with FVC rang-
ing roughly from 0 to 1. For this site, we measured emissivity
values in the field for full vegetation and wet and dry bare soil
conditions (Table I) using the box method and the TES method
applied to multiband field radiometer CIMEL CE-312 [25]
as described in [26]. Emissivity measurements were repeated
during the campaigns, Table I shows the average emissivity
values at nadir for CE-312 bands B3 (10.2–11.0 µm) and
B2 (10.9–11.7 µm), which are comparable to MODIS
bands 31 and 32, respectively. For water-flooding conditions,
we modeled the emissivity in the same way as for the lake
site. Field emissivity measurements are not usually available
for most land sites, so we can consider the rice field site as
an ideal case for R-b validation.

The shrubland and forest are natural evergreen vegetation
showing seasonal variability in FVC, with maximum values
of 0.3 for the shrubland in spring and 0.5 for the forest in
summer, and minimum values over 0.2. The vineyard and olive
grove are dryland crops, with minimum FVC values lower
than 0.1 and not exceeding 0.2 during the year, so they can be
considered representative of arid or semi-arid conditions. For
these sites, the band i emissivity εi was modeled from VCM
according to [15]

εi = εvi f + εsi (1 − f ) + 4(−0.435εsi + 0.4343)(1 − f ) f

(3)

where f is FVC and εvi (εsi ) is the vegetation (soil) compo-
nent emissivity. Component emissivities are shown in Table I
for each site. Emissivity values for the vineyard and shrubland
sites were obtained from ground measurements [15], [27],
whereas they were taken from [28] for the olive grove sites and
from [29] for the forest. Given the emissivity and FVC values
of the different test sites (Table I), we have estimated that an
uncertainty of 0.1 in FVC leads to an average uncertainty of
0.005 in emissivity according to (3).

The emissivity model of (3) is simple and easy to apply, only
depending on FVC and vegetation and soil emissivities that
are considered static for each site during the year. However,
leaf emissivities depend on the growing conditions, usually
decreasing from fresh to dry and senescent stages. Emissivity
variations during the growing season depend on the vegetal
species and are difficult to know, so they have not been
considered in the model. Vegetation emissivities of Table I
correspond to full development conditions so the resulting
modeled emissivities can be overestimated in some sites during
dry and senescent periods.

Fig. 3 shows a comparison of the MOD11, MOD21, and
the modeled emissivity values in band 31 (similar results were
obtained for Aqua and band 32). For the lake site, MOD11
and modeled emissivities only depend on the zenith angle
and agree very well up to 40◦; however, MOD11 appears
to overestimate emissivity for larger zenith angles. For the
land sites, the MOD11 and modeled emissivities show small

variability during the year. The modeled emissivity takes into
account the different stages of the rice field site (water, bare
soil, and vegetation) and changes in FVC for the other land
sites resulting in relatively small seasonal variability with
maximum values in spring-summer, while MOD11 shows
mostly constant emissivity values for each site. In general,
the agreement between MOD11 and the modeled emissivity is
reasonable for sites with medium to high vegetation cover (rice
fields in summer, shrubland, and forest), the largest differences
being found for the vineyard and olive grove sites with small
FVC. In these cases, MOD11 emissivities are higher and close
to vegetation values, whereas the modeled emissivities are
closer to those of bare soil due to the low FVC. On the other
hand, modeled emissivities for the evergreen shrubland site are
somewhat higher than MOD11 emissivities, which are closer
to bare soil.

Oppositely, MOD21 emissivities show values smaller than
the MOD11 and modeled emissivity data and a large vari-
ability with no correlation with the zenith angle in the lake
site nor with day of year in the land sites. The reason for
the large variability is that MOD21 emissivities are physically
retrieved together with LST so they vary from case to case
as they are affected by several sources of uncertainty such
as instrumental noise, atmospheric correction, and algorithm
error [19]. Therefore, we also show in Fig. 3(a) the smoothing
of the daily MOD21 emissivities using a moving average
over intervals of 5◦ in viewing angle for the lake site and
of ten days for the land sites in order to match the temporal
resolution of the FVC data used for the modeled emissivities.
According to Fig. 3, the MOD21 emissivity variability appears
to be larger in spring-summer (larger atmospheric humidity)
and the maximum values are usually close to MOD11 and
modeled emissivities. The smoothed emissivities show better
consistency with regard to the other emissivity databases and
a clearer seasonal dependence than the daily MOD21 product.

The impact of the emissivity inputs on the R-b method
can be assessed through a sensitivity analysis of (2). The
uncertainty in T1g corresponding to an uncertainty of 0.005 in
ε1 is 0.37 K for the average atmospheric conditions of the
dataset. Assuming the same uncertainty for ε2 and that emis-
sivity uncertainties are uncorrelated in both bands, the impact
of emissivity uncertainty alone on δ is 0.52 K. This shows
that emissivity is a crucial input, especially, for the calculation
of δ, and that R-b validation results depend on the emissivity
database used.

D. Ground LST Measurements

The rice field site has been used as a T-b validation site for
different TIR sensors since 2002 [10], [16], [26], [27], [30],
[31], [32], [33]. In order to assess the accuracy of the R-b
derived LSTs with regard to independent ground data, we used
65 cases of ground measurements concurrent with Terra in
2002–2022, and 21 cases concurrent with Aqua in 2016–2022.
All cases correspond to daytime, cloud-free conditions with
overpass time between 10:10 and 11:40 UTC for Terra and
12:40 and 13:45 UTC for Aqua. Most of the data correspond
to full vegetation cover conditions (75%), but there are a few
cases for water (13%) and bare soil (12%).
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Fig. 3. Emissivity in MODIS band 31 from MOD11 (blue), MOD21 (red), and MOD21 smoothed with moving average (green) and modeled (black) for
(a) water as a function of zenith observation angle, (b) rice field with water (W ), bare soil (BS) and vegetation (V ) stages indicated, (c) shrubland, (d) forest,
(e) vineyard, and (f) olive grove as a function of the day of year.

Ground LST measurements were performed using two
to four portable radiometers CE-312 [25]. Instruments
were calibrated against absolute standards in the TIR
instrumentation comparisons held by CEOS in the National
Physical Laboratory (NPL) in 2009, 2016 [8], and more
recently in 2022 [5]. According to these results, the calibration
uncertainty of the CE-312 radiometers was better than 0.20 K
in the 273–323 K range. In the NPL comparisons, we also
checked the accuracy of the Landcal P80P blackbody
(https://www.ametek-land.com), which showed good stability
and an error smaller than 0.15 K compared with the NPL
standard. The Landcal P80P blackbody source is used for
CE-312 calibration in our laboratory on a yearly basis, so the
calibration of the radiometers can be regularly updated and
reliably estimated for each measurement campaign.

Field measurements were made close to the nadir, so we
checked that the corresponding MODIS zenith observation
angle was lower than 40◦ in order to avoid thermal anisotropy
effects [6]. The field of view of CE-312 is 10◦, which
corresponds to a sampling area of about 30 cm in diameter.
To assess the variability of the ground temperatures within
the satellite pixel, radiometers were assigned to different parts
of the test site and carried on along predetermined transects
taking measurements each 5–10 m and at a rate of five
measurements/min approximately [10], [32].

We corrected radiometric temperatures for surface emissiv-
ity effects using ground measurements of emissivity (Table I)
and downwelling sky radiance. The final ground LST was
calculated as the mean value of the individual LSTs taken
by all ground radiometers during 5 min around the satellite
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Fig. 4. Difference between measured and R-b surface temperatures in band 31
against the difference in R-b surface temperatures in bands 31 and 32. Terra
(Aqua) cases are marked with open (closed) circles. The linear regression and
determination coefficient (R2) are shown.

overpass. The uncertainty of the ground LSTs was estimated
considering the following sources of error: 1) calibration of
ground radiometers; 2) emissivity measurements; 3) down-
welling sky radiance measurements; and 4) spatial-temporal
LST variability. The latter was taken as the standard deviation
of the LSTs measured by the different radiometers during the
5 min period. Sources (1–3) typically accounted for an error of
0.5 K [8], while the total uncertainty in the ground-measured
LST dataset ranged from 0.7 to 1.4 K, the largest source being
the spatial and temporal variability.

III. RESULTS

A. Comparison of R-b and Ground-Measured LSTs

We applied the R-b method to the dataset with concurrent
ground LST measurements to compare both LSTs. Fig. 4
plots the difference between the ground-measured LSTs (Tg)

and R-b reference LSTs (T31g) against the difference δ =

T31g−T32g for all available cases. It shows a good correla-
tion between both magnitudes, with large negative (positive)
δ values usually corresponding to large negative (positive)
values in Tg − T31g , while we have small Tg − T31g values for
δ around 0. The linear regression in Fig. 4 yields an acceptable
determination coefficient (R2

= 0.54) and an intercept close to
zero (0.15 K) as expected. The slope of the linear regression is
close to 2, which suggests that the range in δ should be ±0.5 K
to keep the LST uncertainty within ±1.0 K (comparable
with ground measurements). This threshold coincides with
that considered by [19] and [34] from theoretical sensitivity
analysis.

In Fig. 4, a few points with δ values close to zero have
negative values of Tg − T31g in excess of −1.5 K. Such cases
(1 Terra and 4 Aqua) correspond to summer conditions (warm
and wet atmosphere), with ground LST uncertainties between
1.0 and 1.2 K, so the large differences between the ground and

R-b LSTs may be compatible with the combined uncertainty
of Tg − T31g .

Taking only the cases meeting −0.5 K ≤ δ ≤ 0.5 K, the
mean value or bias and root mean square error (RMSE) of
Tg − T31g were respectively 0.0 and 0.8 K for Terra (48 valid
cases), −0.4 and 0.9 K for Aqua (19 valid cases), and −0.1 and
0.8 K overall. These results show that the accuracy that can
be obtained with R-b LSTs is comparable to that of ground-
measured LSTs. Therefore, the R-b ground temperatures can
be used as an alternative to T-b LSTs for validation when
δ is within ±0.5 K.

B. Application of the R-b Method for Operational Validation

The R-b method was applied to the extended dataset
for operational validation of MODIS LST products. Figs. 5
(MOD11) and 6 (MOD21) plot the difference between the
product LST (TMOD11 or TMOD21) and the R-b LST (T31g)

against the difference δ = T31g−T32g for each test site (daytime
and nighttime data combined). In each case, we show the
results obtained from the product emissivity and the modeled
emissivity. Only Terra data are presented, results for Aqua
were mostly similar. Figs. 5 and 6 show a similar relationship
between the temperature differences as displayed in Fig. 4. The
best correlations were obtained for MOD21 using the product
emissivities, where coefficients of determination (R2) were in
the 0.7–0.8 range (Fig. 6). However, they were lower (0.2–0.5)
when we used the modeled emissivity data. For the MOD11
product (Fig. 5), R2 values ranged roughly between 0.3 and
0.5 depending on the site, with a small difference between the
product emissivity and the modeled emissivity.

Taking into account only the cases passing the δ condition,
we calculated the mean bias and RMSE of the product
minus R-b LST differences for M*D11 (Table II) and M*D21
(Table III). Results are shown for each site and all sites
combined, and for daytime, nighttime, and all together. Terra
and Aqua data are considered separately. Results obtained
when using the product and the modeled emissivities are
shown.

Tables II and III also show the fraction (in %) of valid cases
passing the δ condition for each site and instrument (MOD and
MYD) with the product and modeled emissivities. In general,
valid cases were more than 70% for all sites and emissivity
databases. The only exceptions were the vineyard and olive
grove sites with the modeled emissivities (24%–56%). The
lower number of valid cases in such sites may be due to
the dissimilarity between modeled and product emissivities,
especially with regard to M*D11 [Figs. 3(e) and (f), 5(e)
and (f), and 6(e) and (f)]. This means that the validation
database could be significantly different for the vineyard and
olive grove sites when comparing the different emissivity
databases, which may affect the validation results. However,
the validation databases contain more than 100 data points per
site and instrument even in the worst case. It is also noticeable
that nighttime datasets generally had a larger fraction of valid
cases than daytime datasets, the most favorable being MYD
at nighttime.

In Sections III-C and III-D, we describe the validation
results of Tables II and III.
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Fig. 5. Difference between MOD11 and R-b LSTs in band 31 against the difference δ = T31g− T32g for the six test sites when the MOD11 emissivity data
(blue) and the modeled emissivity values (red) are used. The linear regression and determination coefficient (R2) are shown for each case. (a) Lake. (b) Rice
field. (c) Shrubland. (d) Forest. (e) Vineyard. (f) Olive grove.

C. M*D11 Validation

Table II shows a good consistency between Terra and Aqua
M*D11 LSTs both in the daytime and nighttime. Generally,
Aqua provided slightly better results than Terra, but differences
in bias and RMSE were below 0.2 K in absolute value for
most of the sites, with maximum differences of 0.3 K for
the shrubland site and usually within 0.1 K for the other
sites. Validation results were mostly similar with either the
product or the modeled emissivities, as anticipated in Fig. 5.
Considering the results from the product emissivity for all
sites, daytime, nighttime, and Terra and Aqua combined, the
overall bias was −0.5 K with RMSE of 0.9 K. Per site, biases
varied from −0.2 K for the forest to −0.8 K for the lake, while
RMSEs ranged from 0.6 K for the forest to 1.1 K for the olive
grove. Considering the daytime data only, we found negative
biases (product colder than R-b LST) of −1.0 K for all sites
combined, ranging between −0.5 K for the forest and −1.4 K
for the olive grove. However, the overall bias was 0.0 K for
nighttime data, the extreme case being −0.4 K for the lake site
and ranging between −0.1 and 0.2 K for the other land sites.

The different daytime and nighttime biases of M*D11 can be
noticed in Fig. 5, where two clusters of data corresponding
to the two conditions are clearly visible, especially for the
vineyard and olive grove sites.

D. M*D21 Validation

According to Table III, Terra and Aqua results were very
similar as well for the M*D21 using the product emissivity
data, with biases and RMSEs within ±0.1 K on average for all
sites, in daytime and nighttime. When the modeled emissivities
were used, Terra-Aqua differences were slightly larger in
some cases, especially for the vineyard and the olive grove
at nighttime. It may be because such cases had the lowest
number of data points passing the δ threshold as mentioned
in Section III-B. However, Terra-Aqua differences were still
within ±0.3 K on average. On the other hand, the impact of
the emissivity database was larger for the M*D21 product than
for M*D11, with the lowest biases and RMSEs being obtained
from the product emissivities.
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Fig. 6. Difference between MOD21 and R-b LSTs in band 31 against the difference δ = T31g − T32g for the six test sites when the MOD21 emissivity data
(blue) and the modeled emissivity values (red) are used. The linear regression and determination coefficient (R2) are shown for each case. (a) Lake. (b) Rice
field. (c) Shrubland. (d) Forest. (e) Vineyard. (f) Olive grove.

Considering the results with the product emissivities for all
sites, all acquisition times and platforms combined, the overall
bias was 0.2 K with RMSE of 0.6 K. Considering the sites
separately, biases ranged from 0.1 K for the shrubland and
forest sites to 0.3 K for the rice field site, while RMSEs ranged
between 0.4 K for the forest site and 0.7 K for the lake, rice
field and olive grove site. Unlike M*D11, differences between
nighttime and daytime results were not significant, the daytime
(nighttime) bias being 0.1 K (0.3 K) for all sites, Terra and
Aqua combined. When using the modeled emissivities, we can
see a uniform increase of about 0.6 K in bias and RMSEs with
regard to the product emissivities for most sites.

IV. DISCUSSION

A. Comparison With LST Product Uncertainty

The M*D11 and M*D21 products provide an estimate of the
LST uncertainty for each LST value. An example is shown for
the olive grove site in Fig. 7(a), where the LST uncertainties
of MOD11 and MOD21 LSTs (Terra only) are plotted against

the day of the year. The M*D11 LST uncertainty was uniform
with a value around 0.5 K for all test sites, daytime and
nighttime, Terra, and Aqua data. The M*D21 LST uncertainty
was typically larger, with minimum values around 1 K and
high variability at the central days of the year where the
uncertainty may reach over 3 K, and an average value of 1.3 K
for all sites, acquisition times, and platforms.

In Fig. 7(b), the product LST uncertainties are plotted
against W /cosθ , which represents the atmospheric water
vapor content in the satellite-viewing path. We can see that
the MOD21 LST uncertainty increases clearly with W /cosθ
since the uncertainties in the atmospheric correction process
required for the M*D21 product increase for high atmospheric
water vapor loads and surface temperatures, as is the case for
summer and early autumn. For the M*D11 uncertainty, there
is only a small increase from 0.4 to 0.7 K with atmospheric
humidity.

The RMSEs found for M*D11 (Section III-C) are compat-
ible with the product uncertainty for the nighttime data only,
while they are larger for daytime due to the relatively large
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TABLE II
MEAN BIAS AND RMSE (ALL IN K) OF THE M*D11 PRODUCT MINUS R-b

LSTS FOR EACH SITE AND ALL SITES COMBINED WITH THE
PRODUCT EMISSIVITY AND THE MODELED EMISSIVITY, FOR

DAYTIME, NIGHTTIME AND ALL COMBINED, AND FOR
TERRA (MOD) AND AQUA (MYD). THE FRACTION

(IN %) OF MOD AND MYD VALID CASES IN
EACH SITE IS GIVEN IN PARENTHESES

cold biases obtained in most sites. For the M*D21 product, the
RMSEs obtained here with both the product and the modeled
emissivity are smaller than the product uncertainty for most
sites in daytime and nighttime.

B. Impact of Emissivity on R-b Validation

For M*D11 (Table II), validation results were slightly better
for the product emissivities than for the modeled emissivities,

TABLE III
MEAN BIAS AND RMSE (ALL IN K) OF THE M*D21 PRODUCT MINUS R-b

LSTS FOR EACH SITE AND ALL SITES COMBINED WITH THE
PRODUCT EMISSIVITY AND THE MODELED EMISSIVITY, FOR

DAYTIME, NIGHTTIME AND ALL COMBINED, AND FOR
TERRA (MOD) AND AQUA (MYD). THE FRACTION

(IN %) OF MOD AND MYD VALID CASES IN
EACH SITE IS GIVEN IN PARENTHESES

but the difference was rather small, with changes within
±0.2 K in biases and ±0.1 K in RMSEs for most of the
sites, all acquisition times, and platforms. This is because
the two emissivity databases were similarly defined through
classification and show comparable values (Fig. 3). The impact
of emissivity was larger for M*D21, the best validation results
being obtained from the product emissivity (overall RMSE of
0.6 K). This shows the consistency of the LST and emissivities
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Fig. 7. Uncertainty of the LST products MOD11 (blue) and MOD21 (red)
for the olive grove site as a function of (a) day of the year and (b) water
vapor content in the satellite viewing path W /cosθ . All data points available
for the site are included.

of the M*D21 product, which are simultaneously obtained
from the physics-based TES method. As noted before, the bias
and RMSE increased when using the independently modeled
emissivities. For the overall dataset, the bias was 0.6 K and
RMSE was 1.1 K, still showing an acceptable performance.
Per site, biases ranged from 0.4 K (vineyard) to 0.9 K (rice
field) and RMSEs from 0.8 K (forest) to 1.4 K (rice field).
The increase in bias is explained since, according to Fig. 3,
the modeled emissivities are typically larger than M*D21
emissivities, thus yielding smaller R-b LSTs. As with the
product emissivities, no significant differences were found
between daytime and nighttime biases.

C. M*D11 Daytime Bias

Section III-C shows a cold daytime bias of about −1.0 K
on average for M*D11. The daytime bias may be related to
the underestimation of product LSTs at high temperatures,
as shown in Fig. 8(a) where the difference TMOD11 − T31g

(with T31g obtained from the product emissivities) is plotted
against the brightness temperature T31 for the olive grove site.
Results for the other sites and MYD11 data were comparable.
We can see that the negative bias occurs for brightness
temperatures higher than 295 K, which correspond mostly to
daytime. In Fig. 8(b) the differences TMOD11 − T31g are plotted
against the brightness temperature differences T31 −T32, which
play an important role in the M*D11 split-window algorithm.
Typically, large values of T31 − T32 correspond to daytime

Fig. 8. Difference between the MODIS LST product and the R-b reference
temperature T31g for MOD11 (blue) and MOD21 (red) in the olive grove
site as a function of (a) MODIS brightness temperature in band 31 and
(b) brightness temperature difference T31 − T32. Only data points passing
the δ condition are included.

cases in summer. According to Fig. 8(b), the underestimation
of TMOD11 appears to increase linearly with the bright-
ness temperature difference. This may indicate an ill-tuning
of the split-window coefficients in the M*D11 algorithm
for high surface temperatures and atmospheric water vapor
contents.

Water emissivity is uniform, constant, and well-known,
so the modeled emissivities should be close to the real value.
However, daytime and nighttime biases were considerable
(−1 and −0.5 K, respectively in Table II). Part of the negative
bias could be due to the overestimation of M*D11 emissivity
for viewing angles higher than 40◦ shown in Fig. 3(a). Taking
into account only the cases with θ < 40◦, the daytime bias
decreased to −0.8 K, while the nighttime bias increased to
−0.7 K. The similar negative biases can be due to water
temperatures being in the 295–300 K range for more than
50% of both daytime and nighttime cases analyzed here.

Oppositely, the M*D21 product showed no significant dif-
ference in daytime and nighttime biases. In Fig. 8, we plotted
as well the differences TMOD21 −T31g against T31 and T31 −T32
for the olive grove site showing no correlation. Dispersion
increased for higher values of T31 and T31 − T32, which
typically correspond to spring and summer with humid atmo-
spheres, in concordance with the M*D21 product uncertainty
patterns shown in Fig. 7. Results were mostly similar for the
other sites and MYD data.
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D. Comparison of R-b Validation Results With Previous
Studies

Wan [35] validated the product M*D11 using the R-b
method and found biases mostly within ±0.6 K for several
desert sites in North Africa for daytime, nighttime, Terra, and
Aqua data. While daytime cases correspond to high temper-
atures (up to 320 K), low atmospheric humidity conditions
make the brightness temperature difference T31 − T32 negative
(see [35, Tables 3 and 4]) so LST biases should be close to zero
according to Fig. 8(b). Duan et al. [36] applied the R-b method
to M*D11 data showing mean biases between −0.4 and 0.7 K
and RMSEs smaller than 1.0 K. They found similar daytime
and nighttime biases, oppositely to the results shown here.
R-b validation of MYD11 over sand dunes in China [34]
showed negative biases in daytime and nighttime (−1.3 and
−0.7 K, respectively for all sites combined). However, biases
varied from site to site, with daytime (nighttime) values about
−3 and −4 K (−1 and −3 K) for three sites and better than
−1.0 K (−0.5 K) for the other sites. The large cold bias of
MYD11 LST was attributed to an overestimation of emissivity
for the three sites in the MYD11 product. However, emissivity
in MODIS bands 31 and 32 shows small variability among
different types of soils [13], [14], [15] and cannot totally
account for the large observed biases. Perez-Planells et al. [15]
analyzed MYD11 daytime LSTs for shrubland and vineyard
sites using different sets of emissivity inputs and showed a
similar temperature-depending bias as in Fig. 8(a), regardless
of emissivity. In addition, the difference between nighttime
and daytime bias in [34] is similar to that reported here and
may be related to high temperature and atmospheric humidity
conditions prevailing in daytime.

In [19], the R-b method was applied to the M*D21 product
over desert dunes, vegetated surfaces, and water, using emis-
sivity data from ground measurements. They showed biases
within ±0.9 K and RMSEs from 0.5 to 1.5 K depending on the
site for daytime and nighttime data combined. More recently,
[34] showed R-b results for MYD21 over sand dunes using
ground-measured emissivities. Biases and RMSEs were quite
consistent among sites and between daytime and nighttime,
with a mean bias of 0.5 K (0.7 K) and RMSE of 1.1 K
(0.9 K) for all daytime (nighttime) cases. Dune sites in desert
atmospheric conditions are likely an optimal case for the
MOD21 algorithm because of the high spectral contrast of
sand emissivity between bands 31–32 and 29, and the low
impact of atmospheric water vapor [19]. The validation sites
of the article include cases of vegetated and water surfaces
with near gray-body spectrum in humid atmospheres, which
are the less favorable cases for M*D21. Nevertheless, the
results shown in Table III with the modeled emissivities are
comparable to those of [19] and [34] for all sites considered.

E. Comparison of R-b and T-b Validation

The R-b results obtained here compare well with previous
T-b validation results of [19] with daytime and nighttime
ground measurements in Lake Tahoe and Salton Sea. For
MYD11, they found a bias (RMSE) of 0.2 K (0.5 K) in Lake
Tahoe (low-temperature range) and −1.1 K (1.5 K) in Salton

Sea (high-temperature range). For MYD21, results were 0.7 K
(0.9 K) and 0.2 K (1.2 K), respectively. Such error figures
are comparable as well to the R-b validation results of [19]
mentioned earlier. In the same way, [30] showed T-b validation
for MOD11 and MOD21 daytime data over the same rice field
site used here for R-b validation, with bias (RMSE) of 0.1 K
(0.6 K) for MOD11 and 0.5 (0.6 K) for MOD21.

Several studies on T-b validation of satellite LSTs rely on
ground measurements performed by single, tower-mounted
pyrgeometers (flux-meters) in meteorological stations instead
of radiometers (directional radiance-meters) [34], [37], [38].
Pyrgeometer measurements represent a broadband, hemi-
spherically integrated value while satellite measurements are
narrow-band and of directional nature, depending on the zenith
and azimuth viewing and solar angles. Therefore, they are
not necessarily comparable, especially in the case of sparse
vegetation areas. Moreover, climatological stations are not
usually located in thermal homogeneous areas so it is not
straightforward to assign the ground-measured LST to the
whole satellite pixel.

The effect of thermal heterogeneity at the subpixel scale
was analyzed in [38] through the standard deviation of
11 × 11 pixels of 90-m ASTER temperatures coincident with
a MODIS pixel. However, single-point ground measurements
correspond to areas of a few meters and there may be still a
large heterogeneity from the ground scale to the 90-m scale.
Daytime results showed M*D11 RMSEs larger than 2 K for
most sites and biases from −0.1 to −4.7 K, while nighttime
RMSEs were <2 K for all sites. Duan et al. [38] attributed the
big daytime LST inaccuracies to the thermal heterogeneity of
the sites. The selected cases where the ASTER LST standard
deviation was <1 K provided the best results, with close to
zero bias and RMSE < 1.3 K. For comparison, typical daytime
standard deviations of ASTER LSTs for the rice field site used
here were about 0.5 K [10].

Li et al. [34] showed T-b validation for MYD11 and MYD21
LSTs using ground measurements in four desert sites carried
out by single, mast-mounted instruments with no information
provided about the thermal heterogeneity at the sub-pixel
scale. Daytime MYD11 LSTs showed large cold biases close
to −3 K and RMSE close to 4 K for the four sites on average.
For nighttime MYD11 LSTs, the average bias reduced to
−1.4 K and the RMSE to 1.7 K. Li et al. [34] attributed
such cold biases to emissivity problems with MYD11 in barren
surfaces, where they found MYD11 emissivities overestimat-
ing MYD21 emissivities by 0.01. While this may account
for a part of the nighttime bias, it cannot explain alone the
large daytime bias and RMSEs observed. Such errors include
a considerable component due to sub-pixel thermal hetero-
geneity, possible algorithm problems with high temperatures
mentioned before, and probably thermal directional effects
from comparing nadir ground measurements with satellite
measurements at different zenith angles. The T-based valida-
tion of MYD21 showed daytime bias of −0.5 K and RMSE
of 2.5 K and nighttime bias of 0.2 K and RMSE of 1.0 K.
We can see that the daytime bias was reduced considerably,
but still, the RMSE is large and may contain heterogeneity
and anisotropy issues. The nighttime MYD21 results were
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optimum and only comparable to the R-b validation results
of [34] discussed in Section IV-D.

V. CONCLUSION

The R-b method was used for the validation of M*D11
and M*D21 LST products. First, we applied the R-b method
to a set of Terra and Aqua daytime data to derive the R-b
reference LSTs that were compared with a dataset of coinci-
dent ground-measured LSTs in a homogeneous rice field. The
comparison showed an agreement between R-b and T-b LSTs
better than 1.0 K in RMSE (i.e., similar to typical uncertainty
in ground measurements) when the δ difference was within
±0.5 K. Then, we applied the R-b method to six test sites
including water, homogeneous rice paddy, and partially veg-
etated areas with FVC ranging from nearly zero to 0.5. All
sites were at mid-latitudes but still covering a wide range of
LST (270–320 K), and atmospheric humidity (0.5–3.5 cm).
For each LST product, two emissivity datasets were used for
R-b calculations: the corresponding product emissivity and the
modeled emissivity using component emissivity measurements
and FVC.

According to the results shown here, daytime M*D11 LSTs
showed an average bias of −1.0 K (product LST colder than
reference LST) and RMSE of 1.2 K for all sites, Terra and
Aqua data combined, with either the product or the modeled
emissivities. The daytime cold bias was attributed to the
unfitting of the MOD11 LST algorithm for high temperatures
and atmospheric humidities. For nighttime data, the overall
M*D11 LST bias was 0.0 K (ranging from −0.4 to 0.2 K
among sites) and RMSE was 0.5 K. M*D21 LSTs showed
great stability among sites and between daytime and nighttime,
with daytime (nighttime) bias of 0.1 K (0.3 K) and RMSE of
0.7 K (0.5 K) for all sites, Terra and Aqua data combined,
when the product emissivities were used. For the modeled
emissivities, bias, and RMSE increased consistently for all
sites, times of day, and platforms, but still provided acceptable
overall bias (0.6 K) and RMSE (1.1 K).

For a meaningful validation of LST products, the
uncertainty of the LSTs used as a reference (either T-b or R-b)
must be fully characterized and reliably estimated. In the R-b
method, uncertainties mainly include atmospheric correction
errors coming from inaccurate atmospheric profiles, radiative
transfer model errors, and emissivity input uncertainties.
Emissivity has an important impact, especially on the
δ calculations. For bare surfaces (rock, soil, sand), emissivity
and its spectral variation within the 10–12.5 µm band depend
on many factors such as composition, moisture, and texture,
so uncertainties may be larger than for vegetated or partially
vegetated surfaces. Atmospheric correction errors also have
an effect on the R-b LSTs, which tend to be larger for warm,
humid atmospheres, and high surface temperatures. However,
the impact of the error sources can be limited to a useful
range through the δ condition. In the T-b method, sources
of error include calibration of ground radiometers, emissivity
measurement, and most importantly, the LST spatial-temporal
variability within the pixel scale. The sub-pixel LST variability
can only be fully assessed through multispatial and frequent

temporal sampling in single-component thermal homoge-
neous areas. On the other hand, ground LST measurements are
usually performed at the nadir while satellite viewing zenith
angles may exceed 60◦, so there may be directional effects,
especially for partially vegetated surfaces. These issues limit
the application of the T-b method, especially in the daytime.

The T-b method must be considered as the reference, inde-
pendent validation method for satellite LSTs, so long-term and
accurate ground-LST measurements in highly homogeneous
test sites are necessary. However, the R-b method provides
a valuable alternative for most worldwide surface covers and
atmospheric conditions, and the accuracy of the R-b derived
LSTs can be checked against ground-measured LSTs in
selected test sites as in the present article. However, more stud-
ies are required for different ground covers in warm and humid
tropical environments where atmospheric effects may be larger
thus being a challenging case for satellite LST retrieval.
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