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Abstract
Recent advances have enabled powerful distributed SAT solvers to emit proofs of unsatisfiability,
which renders them as trustworthy as sequential solvers. However, this mode of operation is still
lacking behind conventional distributed solving in terms of scalability. We argue that the core limiting
factor of such approaches is the requirement of a single, persistent artifact at the end of solving that is
then checked independently (and sequentially). As an alternative, we propose a bottleneck-free setup
that exploits recent advancements in producing and processing LRAT information to immediately
check all solvers’ reasoning on-the-fly during solving. In terms of clause sharing, our approach
transfers the guarantee of a derived clause’s soundness from the sending to the receiving side via
cryptographic signatures. Experiments with up to 2432 cores (32 nodes) indicate that our approach
reduces the running time overhead incurred by proof checking by an order of magnitude, down to a
median overhead of ≤ 42% over non trusted solving.

2012 ACM Subject Classification Hardware → Theorem proving and SAT solving; Theory of
computation → Automated reasoning; Computing methodologies → Distributed algorithms

Keywords and phrases SAT solving, distributed algorithms, proofs

Digital Object Identifier 10.4230/LIPIcs.SAT.2024.25

Supplementary Material Collection (Experimental data and links to software): https://github.
com/domschrei/mallob-impcheck-data

archived at swh:1:dir:d1ea41171e7e9f185b5930797c61a5be40dc0f6b

Funding This project has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement No. 882500).
This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research
and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research.

Acknowledgements The author thanks Marijn J. H. Heule, who inspired and encouraged this work;
Florian Pollitt, Mathias Fleury, and Armin Biere who enabled this work with their enhancements to
CaDiCaL [39]; Peter Sanders for helpful discussions and valuable remarks; Patrick Hegemann for
double-checking cryptographic details; and all anonymous reviewers for their valuable feedback.

1 Introduction

The Boolean Satisfiability (SAT) problem, i.e., to satisfy a given Boolean expression or to
report its unsatisfiability, is an essential building block at the core of automated reasoning,
symbolic AI, and formal verification [18]. Due to its high practical relevance, increasingly
efficient SAT solving approaches have emerged over the last decades, prompting a plethora of
applications [11, 34, 35, 41, 42, 49, 52] to use SAT solvers as efficient blackbox engines. Today,
researchers and industrial users increasingly aim to exploit distributed environments [9, 13, 20]
to push the frontier of problems that are feasible to solve.

An important topic in SAT research is the reliability and trustworthiness of solvers [6, 8,
33, 36]. In particular, sequential solvers have been able for many years to output proofs of
unsatisfiability – witnesses for a formula’s unsatisfiability that can be verified by independent
and even formally verified proof checkers [30]. For the longest time, the best performing
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parallel and distributed solvers have been missing this crucial feature (cf. [26]). Only recently,
Michaelson et al. proposed a feasible approach to produce proofs with parallel and distributed
clause-sharing SAT solving [36]. The technology enabling this approach is a clausal proof
format called LRAT [14], where each clause derivation has a unique ID and explicitly
references the prior clauses required to check the derivation. This information allows to
feasibly reconstruct a single proof from many LRAT-producing SAT solvers that run in
parallel and periodically exchange clauses in an all-to-all fashion [36].

Even after these advances, the scalability of trustworthy parallel and distributed solving
remains lacking. In Michaelson et al.’s procedure, all relevant proof information is funneled
into a single process and then output sequentially. As such, the production and checking of a
combined proof is invariably throttled by the (I/O) bandwidth at the final process. Likewise,
to our knowledge all LRAT checkers so far are sequential. Note that proof size increases both
with solving time and, to a lesser degree, the number of solvers [36]. Maintaining the active
clauses in huge proofs may further slow down the proof checker or even cause main memory
shortage at some point. For all these reasons put together, we argue that the production
and checking of proofs currently poses a distinct bottleneck for trusted distributed solving.

To address this conceptual problem, we believe that it is sensible to slightly relax the
task at hand. Even if trusting a solver’s result is crucial, a witness for this result in the
shape of a persistent artifact may often be expendable – for instance, in continuous software
verification [10]. Dropping this requirement, we are able to replace Michaelson et al.’s
three-stage procedure with a single-stage procedure that finishes whenever solving finishes
(see Fig. 1). We build upon a suggestion by Marijn Heule to check proofs during solving
via inter-process communication and raise this idea to a scalable level: Each solver thread
now forwards each derivation to a checker process, which checks the derivation at once. To
transfer the guarantee of a clause’s soundness from one checker to another, each checker
outputs a cryptographic signature for each clause it checked. The receiving solver’s checker
then validates the signature by recomputing it. Given a secret key shared among all checkers,
we show this procedure to be as trustworthy as post mortem proof checking: Any bug or error
that happens to create an unsound clause with a valid signature is substantially less likely
than a trusted checker program is to “hallucinate” unsatisfiability due to a hardware-side
memory error. Our critical code is a small, isolated, and simple C99 codebase whose formal
verification we believe to be a distinct possibility in the near future.

We implemented our approach using the LRAT-producing solver CaDiCaL [39] and the
distributed system MallobSat [44, 45]. For a fair comparison, we applied a number of
updates to MallobSat with proof production [36]. Experiments on up to 2432 cores (32
nodes) indicate that our approach incurs a median slowdown of 40% (at 76 cores) to 42% (at
2432 cores) over conventional, non trusted solving. In comparison, the median slowdown of
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Figure 1 Schematic overview on a prior approach [36] (left) and our new approach (right) to
trusted parallel solving. Each line, very roughly speaking, corresponds to an execution thread.
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producing and checking a combined proof surpasses 330% at 76 cores and 750% at 1216 cores.
As such, our approach’s overhead is smaller by an order of magnitude and can enable trusted
solving in cases where explicit proof production is infeasible. We anticipate a number of use
cases for this technology, ranging from debugging parallel solvers over distributed solving
with error-prone or insecure communication to formally verified scalable SAT solving.

In Section 2, we introduce preliminaries and prior work on the subject. We describe our
approach in Section 3 and present an experimental evaluation in Section 4. In Section 5, we
discuss the possible ramifications of our contributions. Section 6 concludes our work.

2 Preliminaries

We discuss some relevant preliminaries to the work at hand with a focus on proofs of
unsatisfiability in sequential, parallel, and distributed SAT solving.

2.1 SAT Solving
We consider formulas in conjunctive normal form (CNF), i.e., of the form F =

∧k
i=1

∨ni

j=1 lij ,
where each of the k disjunctions is called a clause of length ni and each literal lij is a Boolean
variable or its negation. The Boolean satisfiability (SAT) problem is to assign a value to all
Boolean variables in F such that F evaluates to true or to recognize that this is impossible.
F is called satisfiable if such an assignment exists and unsatisfiable otherwise. We say that
a clause c is sound (w.r.t. F ) if and only if c is a logical consequence of F , i.e., F ∧ ¬c is
unsatisfiable. As a special case, F is unsatisfiable if and only if clause c = ∅ is sound w.r.t. F .

Today’s most popular and most efficient sequential SAT solvers build upon the Conflict-
Driven Clause Learning (CDCL) paradigm: The solver searches the space of partial variable
assignments and derives a redundant conflict clause whenever it encounters a conflict with
the current assignment [15]. These redundant clauses are crucial for pruning search space and
for eventually deriving the empty clause, i.e., the contradiction in an unsatisfiable formula.

The currently most scalable parallel and distributed SAT solvers are clause-sharing
portfolio solvers, where many (mostly CDCL) solver threads run in parallel on the original
formula and, crucially, periodically exchange promising learned conflict clauses [2]. We
recently confirmed that clause sharing is in fact the main driver of the scalability of the
state-of-the-art distributed solver MallobSat and can achieve decent performance even
if running identical, i.e., non diversified solver threads [45]. There are other parallelization
approaches to SAT with explicit search space splitting [25, 48], which we do not cover here.

We refer to the author’s dissertation [43] for a more detailed introduction to sequential,
parallel, and distributed SAT solving in the context of the work at hand.

2.2 Proofs of Unsatisfiability
If a formula F is satisfiable, any found satisfying assignment can be verified in linear time
by evaluating F under the assigned values. Since today’s solvers commonly output such a
satisfying assignment when reporting satisfiability, we do not consider their trustworthiness to
be a notable issue for satisfiable problems. By contrast, if F is unsatisfiable and a justification
for the claimed result is desired, the solver must produce a proof of unsatisfiability. Such a
proof contains the solver’s chain of reasoning that lead to the empty clause. Proofs can be
checked by independent and sometimes formally verified proof checkers [30]. They can also be
useful for reasons beyond trust, e.g., for Minimally Unsatisfiable Subset (MUS) extraction [3]
or for analyzing the efficiency [47] or scalability [28] of solving approaches.

SAT 2024
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In this work we focus on the LRAT (Linear Reverse Asymmetric Tautology) clausal proof
format [14]. Simply put, LRAT proof information output by a solver reflects the solver’s
changes to its clause set: If a new clause is derived, a clause addition (or derivation) is
appended to the proof, and if a clause is discarded, a corresponding deletion statement is
appended to the proof. The LRAT format requires each derivation of a clause c to be labeled
with a unique ID, id(c), and to explicitly include the required dependencies for this derivation,
often called hints, in the form of a sequence Dc of clause IDs. A deletion statement features
a sequence of IDs that refer to the clauses to delete.

LRAT proof checkers traverse the proof information at hand in a single linear pass.
A checker first receives all original problem clauses F and initializes its own clause set
C := F . It then successively applies the proof’s individual clause additions and deletions to
C. Clause deletions are strictly speaking not required but are important in practice since
they significantly reduce the memory footprint of proof checking [23]. Each clause addition is
checked using the LRAT criterion or, in many cases, a simpler special case named the LRUP
criterion. While the former corresponds to the most powerful proof format known [29], the
latter currently covers most solvers’ reasoning, including CaDiCaL’s (which we use for our
study) [39]. For a derivation of clause c with dependencies Dc, LRUP requires that the clause
set {{l̄} : l ∈ c} ∪ {c′ : id(c′) ∈ Dc, c′ ∈ C} results in an efficiently computable conflict:
Asserting the negated literals of c, the sequence of clauses referenced by Dc must break down
into unit clauses and, finally, the empty clause. As such, the checker confirms that C ∧ ¬c

results in unsatisfiability. Therefore, c is sound w.r.t. C. The derivation of the empty clause
c̃ := ∅ poses a special case where the unsatisfiability of C, and hence F , is testified.

Few parallel solvers support proof production. One of them is Gimsatul [19], an
integrated shared-memory solver written from scratch. Its architecture allows for outputting
a single consistent DRAT proof from all solver threads. Unlike LRAT, the earlier DRAT
format [22] does not feature any explicit dependency information, which renders DRAT proofs
easier to produce but substantially more expensive to check [14]. Gimsatul’s approach is
limited to shared memory, and combining multiple DRAT proofs into a single proof has, so
far, largely resulted in proofs that are infeasible to check [26, 36].

Michaelson et al. [36] recently proposed a more general approach to proof production
that is viable in distributed environments. It features the following stages:
1. Solving: All solver threads write their LRAT proof information to individual partial

proof files. Clause IDs are assigned in a globally unique manner: All clause IDs produced
by a certain solver are pairwise congruent modulo the total number of solvers.

2. Combination: As soon as a solver finds the empty clause, the solving procedure is
rewound. All solver threads read their respective partial proofs in reverse and trace all
transitive dependencies of the found empty clause. Each clause sharing operation is
reversed by redistributing the IDs of required remote clauses back to their origin. All
clause derivations identified as required are funneled into a single process, which writes
the combined and dependency-ordered LRAT proof information to a single file. Note
that this information cannot be streamed to a checker directly since it is still reversed.

3. Checking: The combined proof is read from back to front, which amounts to the correct
chronological order, and is validated by a sequential LRAT checker.

In its original form, this proof production approach featured additional pre– and postpro-
cessing stages (such as exhaustive unit propagation prior to solving), which were required due
to limitations of the used solver backend [36]. Since then, Pollitt et al. published a version
of CaDiCaL with full LRAT support [39] that renders these steps obsolete. We outline
according updates of Michealson et al.’s approach in some more detail in Section 4.2.1.
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Figure 2 Information flow in a solver process with our approach. Each SAT solver thread emits
LRAT proof information, which is streamed to the solver thread’s corresponding checker instance
(red pipe downwards). A checker produces signatures for checked clauses (green pipe upwards).
Some of the signed clauses are exported and exchanged across processes. Incoming shared clauses are
forwarded to the corresponding solvers. Successfully imported clauses, together with their signatures,
are as well streamed to the respective checker.

3 Trusted Solving Approach

We now present our approach to trusted parallel and distributed solving.

3.1 Overview

Our approach exploits a suggestion by Marijn Heule for the setting of sequential SAT solving:
Given a SAT solver that “natively” produces LRAT information [39], its proof output can
be redirected to a concurrently running LRAT checking process that checks the solver’s
reasoning on-the-fly.1 This can be achieved with inter-process communication (e.g., UNIX
pipes) and hence without writing proof information to disk. Note that this method is not
necessarily viable for the earlier and still more widely used DRAT proof format [22] since
DRAT checking is substantially more expensive and therefore likely to stall solving.

Our distributed solver employs p solver threads distributed across m processes, with
t = p/m solver threads per process. Each solver thread produces a stream of LRAT proof
information, assigning globally unique clause IDs just like in Michaelson et al.’s approach
(Section 2.2). We suggest to perform the on-the-fly checking outlined above for each solver
thread, running one associated checker instance (i.e., LRAT checking process) each.

An important observation for our approach is that a sound clause is sound globally: Once
established to be implied by the input formula, a clause can safely be used regardless of its
particular dependencies or a checker’s internal state. As such, once a derived clause has
been checked by some checker instance, other checker instances can add the clause without
checking, i.e., as if it were an axiom or an original problem clause. The clause can then be
referenced in subsequent derivations just like locally produced clauses.

Fig. 2 illustrates the resulting solving and checking setup. All produced clause derivations
are first redirected to the solver’s associated checker instance. Clauses can only be exported
and shared after they have been checked. (This is ensured not only by the proposed
architecture but also by a signing mechanism that we explain in detail further below.)

1 https://github.com/marijnheule/coch-demo
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By checking each clause before exporting it to other solvers, it appears obvious that each
clause used in the distributed solving procedure has been checked at some point, and one
may argue that this is sufficient to render distributed solving trustworthy. However, we do
not want to rely on the correctness of distributed clause sharing and its underlying buffering
and communication mechanisms. For instance, a single flipped bit in a clause sharing buffer
can result in an allegedly sound clause that in fact induces a wrong result. Perhaps a more
realistic scenario, a programming error that (under rare circumstances) causes reading of a
buffer beyond its limit can result in “garbage clauses”. As an example, the distributed solver
MallobSat [45] features multithreading, multi-processing, inter-process communication
with UNIX pipes and shared memory, and distributed asynchronous message passing. All
of these mechanisms are involved in clause sharing. Programming such systems can be
challenging, and formally verifying distributed programs is laborious and only covers selected
aspects of the used technology stack [32, 51]. Even if application code is provably correct,
implementations of the Message Passing Interface (MPI) are known to suffer from bugs [16].
For these reasons put together, we suggest to not make any assumptions on the behavior nor
the correctness of a distributed solver and its underlying communication mechanisms.

Our aim is to transfer the guarantee of a clause’s soundness from one checker instance to
another without relying on correct transmission of clauses. To this end, we have each checker
module emit a signature S(c) for a checked produced clause c. Just like its LRAT clause
ID [36], this signature is considered part of the clause during sharing. At the receiving side,
the checker module validates the incoming clause’s signature upon its import. Under the
guarantee that only trusted modules are able to compute clause signatures, we show that
this method grants full confidence in the soundness of all clauses leaving a solver-checker
unit. We also use the same signing mechanism for a second purpose, namely to ensure that
all solvers indeed operate on the same, intended input formula.

3.2 Interface
Our solving procedure features three kinds of trusted modules: one parser at one particular
process; p checkers I1, . . . , Ip (t per process, i.e., one per solver thread); and, optionally, a
confirmer at some process. We assume that our distributed solving procedure has a private
input to these p+2 modules, namely a 128-bit key K that will be used to compute signatures.2
K is handed to our trusted modules directly and must be inaccessible otherwise.

First, a parser takes a path to the input formula F . It parses F , computes the signature
S(F ) for F , and returns the pair (F , S(F )), which can then be distributed to all processes.

Next, we describe the interface of each checker I, shown in Fig. 3. Note that this interface
generalizes the LRAT proof format: load corresponds to specifying the formula, produce
corresponds to adding clause derivations, and delete corresponds to deleting clauses.

The first call a checker expects is init, where the caller commits to the formula’s
signature S(F ) in advance. I then receives F via load. Our interface supports multiple
subsequent calls to load, which allows reading large formulas in chunks. Loading F must be
concluded with end_load, at which point I recomputes the signature on the loaded literals
to support that the loaded formula is indeed the one parsed before. The remaining methods
are used during solving to process LRAT proof information. At each call to produce, the
flag share indicates whether the produced clause c is intended to be shared. If this flag

2 We do not consider the problem of secure key distribution (e.g., [53]). This problem heavily depends on
choosing a specific attacker model, which is not the focus of our work.
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Requires UNINITIALIZED - Ensures INITIALIZING
init(sig: Signature) → void

Requires INITIALIZING - Ensures INITIALIZING
load(formula: ClauseSet) → void

Requires INITIALIZING - Ensures VALID or INVALID according to output
end_load() → bool

Requires VALID - Ensures VALID or INVALID according to output
produce(id: ID, lits: Clause, hints: IDList, share: bool) → (bool, Signature?)

Requires VALID - Ensures VALID or INVALID according to output
import(id: ID, lits: Clause, sig: Signature) → bool

Requires VALID - Ensures VALID or INVALID according to output
delete(ids: IDList) → bool

Requires VALID - Ensures VALID or INVALID according to output
validate_unsat() → (bool, Signature?)

Terminates checker module from any state
terminate() → void

INITIALIZING VALID

INVALID TERMINATED

init

load

end load

end load

validate unsat
delete
import
produce

validate unsat

terminate

terminate

produce
import
delete

terminate

*

Figure 3 Checker interface with basic contracts (top) and corresponding state machine (bottom).
Some directives can cause a VALID or INVALID state based on the operation’s success. Transitions
that violate a contract, e.g., calling load from VALID, all lead to INVALID and are omitted.

is true, the call returns signature S(c) on success. Each incoming clause c, before being
referenced in subsequent derivations, must be introduced via import together with S(c),
which the receiving checker validates by recomputing S(c). Deletion of clauses (delete)
works exactly as in usual LRAT proofs. Finally, if a solver thread returns from solving and
reports unsatisfiability, validate_unsat can be queried to confirm that the empty clause has
indeed been found and validated through load/endload, produce, or import. On success, a
special signature ŝ based on S(F ) is output, certifying the unsatisfiability of F .

All methods that allow for a failure state return a truth value indicating whether the
respective operation was successful. A checker instance I that returned false at any point
from any call will never return true from subsequent calls, in particular to validate_unsat.

Lastly, the confirmer can be invoked after solving to validate an alleged unsatisfiability
signature ŝ. It takes ŝ and the path to F , parses F and computes S(F ), internally re-computes
ŝ based on S(F ), and outputs whether it found ŝ to be sound. We consider this step of
confirmation a necessity only if the output obtained from a parallel solver cannot be trusted.

SAT 2024
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3.3 Signatures
We now describe how we define the signature function S in such a way that only our trusted
modules can compute it – effectively ensuring that only checked clauses can be imported.

Our signature function S(·) := SK(·) is parametrized with secret key K and evaluated in
three different contexts: on a formula F , on a single clause c, or to certify unsatisfiability
(“⊥”). We define SK based on cryptographic Message Authentification Codes (MACs) [21],
where a sender and a receiver uphold a message’s authenticity by computing a signature
based on a shared secret key. Specifically, we use SipHash [1], a fast and popular keyed
pseudo-random function (PRF) that only uses addition, rotation, and XOR (“ARX”). For
highest confidence, we use the SipHash variant that produces 128-bit signatures.

Let HK : {0, 1}∗ → {0, 1}128 be the SipHash-2-4-128 function with key K and let “||”
denote concatenation of data. We define SK for the three above contexts as follows:

SK(F ) := HK( F ), SK(c) := HK( id(c) || c || SK(F )), SK(⊥) := HK( 20 || SK(F )).

Defining SK(c) relative to SK(F ) is optional hardening to ensure that interacting checkers
indeed operate on the same key and the same formula. We define SK(⊥) rather arbitrarily
to sign the customary return code “20” for unsatisfiability. Adding SK(F ) to an input does
not weaken the MAC – since HK(x) is a PRF, HK(x ||α) is also a PRF for any α that does
not leak information on K.3 We also ensure that all inputs are unambiguous and that our
definitions have disjoint inputs: F is encoded as 4-byte integers ending with a 2-byte zero,
20 || SK(F ) is 1 + 16 = 17 bytes long, and clause signatures are based on 8 + 4|c|+ 16 bytes.

3.4 Correctness
We now establish the correctness of our approach given idealized signature guarantees.

▶ Theorem 1. Consider our trusted solving setup for formula F . Assume that each string s

that constitutes a valid signature for object x with key k indeed originates from computing
s← Sk(x) within our trusted code. If the solving setup outputs SK(⊥), then F is unsatisfiable.

Proof. We assume the above prerequisites. First, since only checkers can output SK(⊥),
there is a checker Î that answered to a query validate_unsat with SK(⊥). This implies
that Î received the empty clause ĉ := ∅ (a) via load/end_load, (b) via produce_clause, or
(c) via import_clause.4 Case (a) directly implies the unsatisfiability of F : end_load must
have been called after all load calls but before validate_unsat, and end_load checks via
S(F ) that all loaded clauses, and ĉ in particular, belong to F . In case (b), Î checked ĉ, and
in case (c), another checker I ′ signed ĉ and therefore checked ĉ. In both cases (b) and (c), ĉ

was checked, which renders ĉ sound if the clauses Dĉ in the derivation of ĉ are sound. For
each clause in Dĉ that is not an original problem clause, we recurse on the argument we just
made for ĉ itself. Since each derived clause c relies on |Dc| > 0 prior clauses and is added to
a checker only after its checking, the dependencies across clauses must form a DAG whose
source nodes are clauses added without checking nor dependencies, i.e., via load. As such,
the derivation of ĉ is sound if all clauses added via load by any contributing checker are
original clauses of F . Since any contribution by a checker requires a prior call to end_load
(see case (a)), which validates the loaded formula, all contributing checkers indeed operate
on the intended F . The derivation of ĉ is thus sound and F is in fact unsatisfiable. ◀

3 By contradiction: Any strategy distinguishing g(x) := HK(x || α) from true randomness can be modified
into a distinguisher for f(x) := HK(x) just by replacing each call g(x) with a call f(x || α).

4 The empty clause is usually not shared since its derivation renders any further sharing obsolete.
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For the reverse direction, our approach can preserve a sequential solver’s completeness:

▶ Theorem 2. Consider an error-free execution of the described trusted solving setup for
formula F where one solver thread is complete. If F is unsatisfiable, then SK(⊥) is output.

Proof. Consider the checker instance Î of a complete sequential solver S. Î functionally
subsumes a plain LRAT checker that mirrors the reasoning of S. Assuming sound proof
logging, Î will thus receive and validate the empty clause ĉ, which S derives eventually. S then
terminates with unsatisfiability, which our setup confirms by querying validate_unsat in
Î. The added capabilities of our checker over plain LRAT checking cannot obstruct any of
these operations. In particular, error-free clause imports can only accelerate the progress
towards unsatisfiability. As such, Î will indeed output SK(⊥). ◀

Note that any call to import with an incorrect signature functionally disables the checker,
which makes it impossible to export further clauses or report unsatisfiability from the
respective solver. Our underlying design decision is that we aim to notice every error and
hence interrupt solving globally even if the solving procedure is in principle recoverable. In
other settings, perhaps when faced with error-prone communication or exascale computing,
it may be sensible to let checkers continue normally after rejecting a particular import.

3.5 Confidence
Let us now discuss the conditions causing the above assumptions to break in such a way that
our trusted code reports unsatisfiability for a certain satisfiable formula F . We still assume
that our p + 2 trusted processes are sound, uncompromised, and the only actors knowing K.
Under these assumptions, we can discern the following attack vectors:
1. An unsatisfiability certificate SK(⊥) is obtained for F (although F is satisfiable).
2. A checker imports a clause-signature pair (c, s) where c is unsound w.r.t. F but SK(c) = s,

which can lead to incorrect results and hence enable attack 1 (in particular if c = ∅).
3. A formula F ′ ̸= F results in a collision SK(F ) = SK(F ′), which allows to re-use signed

outputs related to F ′ for F . This enables attacks 1 (if F ′ is unsatisfiable) and 2.
4. The secret key K is recovered, which in particular trivially enables attack 1.

All of the outlined attacks involve either to obtain K or to otherwise forge a pair (o,SK(o))
for an object o chosen by the attacker. (For attack 3, finding the desired second preimage
F ′ for SK(F ) implies such a forgery for o := F ′.) MAC schemes such as SipHash claim
protection against both forgery and key recovery. Specifically, if an attacker is able to guess
and test 2x 128-bit SipHash signatures for an object o of their choosing, they can find a
valid signature for o with probability 2−128+x. Likewise, if an attacker can guess and test
2x values of K, they succeed at obtaining K with probability 2−128+x [1]. This presumably
holds even if the attacker can query signatures for objects o′ ≠ o at will. Assuming that a
single invalid signature aborts the solving procedure and that a different key K is used for
each solving attempt, we have x = 1, which yields a success probability of around 10−38. As
such, successful forgery or key recovery can be ruled out for all practical purposes.5

We argue that the deliberate attacks outlined above cannot be outdone by inadvertent
bugs or errors during distributed solving. In particular, data corruption that happens to
result in a forged signature must be by pure chance (2−128) as long as K is not accessed.

5 Schroeder et al. [46] estimate that around 104 to 105 DRAM errors occur per 109 device hours, translating
to roughly 10−8 memory errors per second. Even if only a byte out of a terabyte (10−12) in a device’s
main memory was critical to a checker’s correctness, a memory error leading to an incorrect result
would be a quintillion times more likely (10−8 · 10−12 = 10−20) than 10−38.
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Accidental reading of K, in turn, is ruled out since K is available only within the confined
address spaces of our trusted modules. For practical purposes, if no protection against
malicious intent is required, we consider the use of one fixed K for all solving attempts to be
sufficient for highest confidence in the produced results.

3.6 The Road To Verified Distributed Solving
We now briefly discuss how our work relates to potential efforts towards formally verified
and, in particular, provably correct parallel and distributed SAT solving.

As of yet, neither our on-the-fly checking approach nor its particular implementation are
formally verified. We do consider such an undertaking a distinct possibility for future work.
In particular, we believe that formal verification efforts for prior LRAT checkers [24, 50] are
extensible to the additional interface methods in our trusted modules – under the assumption
that our signing scheme guarantees perfect authenticity – with modest effort. Such prior
works used verified toolchains like ACL2 or CakeML to produce verified code down to the
machine instruction level [24, 50]. Alternatively, we may pursue direct verification of our
critical code (see Section 4.1), combined with the use of a verified compiler [31].

Verified SAT solving usually encompasses the aspects of correctness (separable into the
correctness of SAT and UNSAT results) and termination [6]. Verifying the correctness of our
approach would equate to obtaining a verified distributed SAT solver in terms of UNSAT
correctness. This can easily be extended to SAT correctness by checking the found satisfying
assignment in the corresponding checker instance.6 We consider verification in terms of
termination to be of less practical interest for parallel solvers. That being said, verified
termination could be achieved by running an isolated verified SAT solver, e.g., IsaSAT [6],
next to the portfolio and terminating globally when that solver exits.

4 Evaluation

We now present the evaluation of our approach, beginning with a discussion of our imple-
mentation, then outlining our experimental setup and the changes we made to Michaelson et
al.’s proof production approach, and finally presenting results. Our experimental data and
all our code can be found via https://github.com/domschrei/mallob-impcheck-data.

4.1 Implementation
Our implementation bases on MallobSat [44, 45], the state of the art in distributed SAT
solving, with LRAT-producing CaDiCaL [39] as a solver backend. We connected CaDiCaL’s
LRAT proof tracer interface, where each derivation and deletion arrives, to an interface that
connects to the solver thread’s checker sub-process. The solver thread itself writes each
emitted LRAT directive to a single-producer, single-consumer ring buffer R and is then free
to continue solving. A dedicated thread polls directives from R and forwards them to the
sub-process; another thread reads responses from the sub-process and reacts accordingly,
e.g., by exporting a derived clause with the returned signature. As such, a solver thread
only needs to wait for its checker sub-process if the solver produces proof information faster
than can be processed (in which case the solver thread blocks waiting for free space in R).
No unsound derivation nor UNSAT result can ever leave a solver-checker unit; both cases
require a valid signature and thus an explicit confirmation from the checker.

6 We have in fact integrated such a mechanism into our checker interface (see Section 4.1), with the caveat
that (at least) one checker per SAT process is required to preserve all original problem clauses, which
are needed to check an assignment. Our experimental evaluation does not yet include this feature.

https://github.com/domschrei/mallob-impcheck-data
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Our trusted modules are written in pure C99, which is well supported for future efforts on
verification [4] and verified compilation [31]. We kept this trusted codebase isolated, small,
and simple. We only use few standard library features such as memory allocation and file
I/O. In terms of program instructions, our inter-process communication via named pipes is
indistinguishable from plain, linear file I/O and thus does not expose any private memory
segments. Our implementation amounts to around 1000 effective lines of code (ELOC). In
comparison, we counted around 40k ELOC in CaDiCaL, 60k ELOC in Mallob [40], and
over 300k ELOC in Open MPI (ompi and opal). As such, our approach may reduce the
code critical for a distributed solver’s correctness by two orders of magnitude.

We tested our code with small random manipulations during a solving procedure (e.g.,
inserting a superfluous dependency in a derivation or tampering with a clause literal during
clause sharing), confirming that an appropriate error is output and that solving aborts.

4.2 Experimental Setup
We run all experiments on a high-performance cluster called HoreKa located in Karlsruhe,
Germany. Each used compute node has access to 256 GB of main memory and features two
Intel Xeon Platinum 8368 sockets with 38 cores each. Each core consists of two hardware
threads, leading to a total of 152 hardware threads per compute node. Nodes can communicate
via an InfiniBand 4X HDR interconnect.7 We made sure that high-bandwidth output, such
as proofs, is written to local disks (960 GB NVMe SSD) rather than a network file system.

We consider two solver systems in their latest version: the shared-memory solver Gim-
satul [19] and the distributed solver MallobSat. Since we are unsure how well Gimsatul
handles 76 cores across two sockets, we run this solver in two modes: on all 76 cores of
a node, and on one socket (38 cores) only. Regarding MallobSat, we use 1–32 compute
nodes (76–2432 cores) at once, thus covering the range from moderate parallelism up to a
massively parallel scale. We spawn two processes per node (one per socket), run up to 38
solvers per process, and leave the remaining hardware threads to other concurrent tasks such
as LRAT checking and clause sharing. This is in line with MallobSat’s deployment in most
earlier works [40, 44, 45], the only difference being that hardware threads not occupied with
SAT solving now need to perform more work, which may in turn slow down solver threads.

Regarding MallobSat, we focus on a CaDiCaL portfolio, which proved to perform
competitively in recent experiments [36, 45]. We refer to our approach as M-ImpChk
(“MallobSat with immediate massively parallel propositional proof checking”), to
MallobSat with explicit proof production as M-Proof, and to MallobSat without
any proof processing as M-nt (“non trusted”). Our version and configuration of Mal-
lobSat is similar to the one described recently [45] apart from the updated CaDiCaL
backend (Section 4.1). Since M-ImpChk requires more RAM due to concurrent checking, we
halved M-ImpChk’s memory threshold per solver, which implies that the largest instances
(hundreds of megabytes) are solved with fewer solvers than in M-nt or M-Proof.

We use the 400 benchmark instances from SAT Competition 2023. Note that these
benchmarks contain some crafted instances that are designed to be difficult to solve with
general resolution [7, 12]. MallobSat can solve some of them when using its Lingeling
backend, which features some non-standard reasoning techniques without proof support [5, 27].
Since we use CaDiCaL without any extended resolution features, we ignore the according
offset in performance and leave trusted solving with such advanced reasoning for future work.

7 https://www.nhr.kit.edu/userdocs/horeka/hardware/
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We allow up to 300 s of wallclock time for solving and up to 1500 s of wallclock time each for
combining and for checking a proof. For M-Proof we consider three timings: the solving
time (ST), which is the time span from program start to a solver reporting a result; the “time
until proof ” (TuP), which is the time span from program start to the presence of a single
proof artifact that is checkable in a single linear pass; and the “time until validation” (TuV),
which corresponds to the TuP plus the time required to check the proof. For M-ImpChk,
there is no TuP; its TuV corresponds to its ST, since we stop the ST at the point where an
unsatisfiability result is confirmed by a checker instance. We primarily assess an approach in
terms of its ST / TuP / TuV overhead, which is the ratio between its ST / TuP / TuV and
the ST of M-nt, minus one.

4.2.1 Updates to Proof Production
We now outline the changes we made to M-Proof in order to make its running times more
competitive and to render proof production and checking more feasible in our experiments.
Note that these changes will shortly be published separately and in more detail [37].

The updated CaDiCaL backend allowed us to remove a previously required sequential
preprocessing step that exhaustively performed unit propagation on the input. We corres-
pondingly do not need to produce and prepend a proof for this preprocessing. Moreover, the
original setup featured postprocessing where the inverted combined proof is un-inverted and
syntactically transformed to feature a compact domain of IDs. This step was a necessity
because of relatively poor tool support for the kind of LRAT proofs M-Proof emits (albeit
perfectly valid in principle). Specifically, lrat-check from the drat-trim toolbox is not
able to gracefully handle large gaps between subsequent clause IDs. The more recent checker
lrat-trim [39] operates on 32-bit IDs and is hence not suitable either. In our setup, we use
a standalone, fast LRAT checker crafted from MallobSat code that can operate directly
on the compressed and inverted proof. As such, we measure the TuP up to the point where
the combined, compressed, and reversed proof has been written. The TuV then adds a single
linear read of the proof file,8 thus minimizing I/O operations.

4.3 Results
We first compare the solving times (ST) of all considered approaches. Fig. 4 provides an
overview, with exact values provided in Tab. 1. Note again that this does not include the
time required by M-Proof to combine and check proofs nor the DRAT proof checking time
for Gimsatul. All approaches consistently show improved performance when increasing the
computational resources. Gimsatul did not reach the performance of MallobSat. As a
side note, we consider it notable that running Gimsatul across both sockets does perform
better than only using a single socket. M-Proof now performs very similarly to M-nt
following our updates (cf. [36]). The overhead of M-ImpChk, which we analyze below, is
more noticeable. Still, M-ImpChk at 16 (4) nodes is able to outperform all approaches at 4
(1) nodes, and M-ImpChk at 32 nodes is on par with M-nt at 16 nodes.

Fig. 5 provides a detailed comparison of M-nt vs. M-ImpChk solving times at the
smallest and largest scale considered. The incurred overhead is consistent, stable, and does
not correlate with M-nt’s solving times (Pearson’s r: -0.11 at 1 node, -0.16 at 32 nodes).

Fig. 6 (leftmost plot) shows the per-instance overhead of M-ImpChk. At all scales, the
observed overhead is below 70% (i.e., slowdown 1.7) for three out of four instances and at
most 42% for the median instance. Specifically, the median overhead ranges from 37.1%

8 Our reverse file parser uses buffering to reverse-read roughly as fast as usual forward reading.
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Figure 4 Pure solving times of M-nt, M-Proof (excluding proof combination and checking),
M-ImpChk, and Gimsatul (excluding proof checking), on 1–32 nodes. Colors delineate the ap-
proaches, line styles indicate the scale of solving. “16×76 proof” is omitted to reduce clutter; the
corresponding curve is closely aligned with “16×76 nt”.

(at four nodes) to 42.1% (at 32 nodes), with the geometric mean ranging from 37.7% (at
16 nodes) to 45.6% (at one node). In addition, we averaged the checker processes’ CPU
utilization during a solving attempt to analyze how much time the checkers spend on actual
processing vs. waiting for the next directive. We arrived at a median utilization from 11.2%
at one node to 12.4% at 32 nodes (geometric mean 10.4%–11.0%), which indicates that our
checkers are mostly idle9 and, in turn, have no difficulties with processing the produced
proof information and computing signatures on-the-fly. The increased communication volume

9 The low CPU ratio is not a consequence of over-subscribed hardware threads. All non-solver, non-checker
threads use little CPU time and thus leave plenty of CPU time for the checkers.

Table 1 Solved instances (“#”) and PAR-2 scores (“PAR”) of each run, only considering pure
solving times (excluding proof combination/checking for M-Proof and Gimsatul).

all satisf. unsat.
# nodes # PAR # PAR # PAR

M-nt
1 257 241.5 120 248.7 137 234.3
4 275 211.5 124 233.9 151 189.1

16 283 196.2 126 229.2 157 163.3
32 293 184.2 128 222.6 165 145.7

M-Proof
1 253 250.0 119 254.1 134 245.9
4 272 216.7 122 239.1 150 194.3

16 282 197.4 126 228.5 156 166.4

M-ImpChk
1 257 251.5 122 250.2 135 252.7
4 271 222.3 124 235.0 147 209.6

16 283 201.0 128 225.8 155 176.3
32 285 195.3 129 221.5 156 169.1

Gimsatul
1/2 226 286.3 120 250.5 106 322.1

1 234 279.1 122 246.7 112 311.6
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Figure 5 Solving times of M-nt vs. M-ImpChk on one (left) and 32 nodes (right). Points on the
central diagonal denote instances solved equally fast; the dotted diagonal shows where M-ImpChk
takes twice as long. Blue “+” denote satisfiable, orange “×” unsatisfiable instances.

(with each clause now carrying 192 bits of metadata) appears to be unproblematic as well,
which is unsurprising considering that MallobSat does not even remotely exhaust the
communication bandwidth of HPC interconnects [45]. All of these observations support that
our approach to trusted solving is scalable and bottleneck-free.

Fig. 6 (right) shows the overhead incurred by M-Proof. The median ST overhead is
below 11% at all scales, which indicates that producing and writing LRAT proof information
is inexpensive in and of itself. The TuP overhead, by contrast, is substantial and increases
with the scale of solving; even at a single node (median 104%), it surpasses the TuV overhead
of our approach at any scale. Going from 4 to 16 nodes, the growing TuP overhead (median
196% to 275%) even causes a decreasing number of successfully produced proofs (146 to 141).
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Across the 127 instances where M-Proof produced a proof at all three tested scales, the
mean proof size increases from 7.33 GiB at one node to 10.73 GiB (+46%) at four nodes and
finally to 14.46 GiB (another +35%) at 16 nodes. As such, it became increasingly challenging
to store and/or check all produced proofs, which exceed 4.5 TiB for the 16-node run alone.
Therefore, for all runs beyond a single node, we only retained the size (in bytes) of a proof
and then deleted it without checking. To still gain an impression on the TuV at 4 and
16 nodes, we extrapolated estimates based on the assumption that, for a fixed instance, a
proof’s checking time grows linear in the proof’s file size. We estimated an instance’s TuV
at 4 (16) nodes by its TuP plus its one-node proof checking time, scaling the time needed
to traverse the proof by the obtained proof size at 4 (16) nodes. This extrapolation only
covers instances where already the single-node run produced and checked a proof, and the
estimates can exceed our actual proof checking time limit of 1500 s. The estimated median
TuV overhead increases steeply with the scale of solving – from 233% at one node to 416%
at four nodes and to 657% at 16 nodes. Overall, our experiments and analysis have fully
confirmed our concerns with respect to the scalability of M-Proof.

The complete DRAT proofs output by Gimsatul average 2.36 GiB for the 38-core variant
and 3.10 GiB for the 76-core variant. Out of 97 38-core proofs that drat-trim deemed
complete and sound, only 65 proofs were checked successfully, at a median overhead of 475%
(geometric mean 629%), while 32 checking attempts timed out. This confirms that checking
DRAT proofs from parallel solvers can at times border on infeasible [19, 26].

Lastly, we tracked MallobSat’s peak global RAM usage (measured once a second).
For the median instance at 32 nodes, M-ImpChk increased the RAM usage over M-nt by
around 60%. Note that we reduced M-ImpChk’s per-solver memory threshold (Section 4.2),
which however was only triggered in four cases. By contrast, M-Proof incurs virtually no
RAM overhead (median < 3% at all scales) since all proof information is written to disk and
processed with external-memory data structures [43, Sect. 5.5].

5 Discussion

In the following, we discuss the merits and the limitations of the proposed approach.
We believe that our approach can be applied to many other clause-sharing solvers. Its

requirements are that each solver thread outputs LRAT information and that each clause
is shared with its LRAT ID and its signature. Unlike M-Proof, whose proof combination
is based on periodic all-to-all clause sharing, our checking can be used with any clause
sharing, including exchanges along rings [54] or communication graphs [17]. On a pragmatic
level, we release our trusted modules (Section 4.1) together with introductory examples and
documentation on how developers can integrate them into a parallel solver.

Our approach does not rely on I/O speed nor large amounts of disk space. While not yet
implemented, it is also entirely possible to perform on-the-fly checking while additionally
writing partial proofs to later serve as witnesses. Moreover, on-the-fly checking easily allows
for malleable setups, where solvers may be added or removed during solving. This is useful
for scheduling and solving many SAT instances at once [40] and for reacting to main memory
shortages [45]. In addition, we anticipate our approach to be useful for solver development.
Pollitt et al. found on-the-fly checking to be “dramatically reducing the implementation effort
(particularly for debugging)” [39], which is now possible at a distributed level.

A limitation of our approach in its current form is its relatively high RAM usage. While
the asymptotic memory usage of solving remains the same, an increase by a constant factor
is to be expected since we now maintain two clause databases per solver thread – one within
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the solver and one in the LRAT checker. A possible measure to make RAM usage less of
an issue would be to let the solver threads within a process share data structures, as in
Gimsatul [19]. Similarly, our t checker sub-processes per SAT process could be combined
into a single checker process. This process may need to be multi-threaded in order to achieve
the required throughput. Still, memory usage could be reduced significantly by storing
equivalent clauses only once while reference-counting them for safe deletion (cf. [26]). To
further reduce our approach’s memory footprint, it may also be worthwhile to compress the
checkers’ clause databases in some inexpensive manner (cf. [38]).

All in all, our impression is that, in a few years, on-the-fly proof checking may be
sufficiently advanced and widely supported that the International SAT Competition is in
a position to require verified results across all principal tracks (sequential, parallel, cloud).
We would consider this a significant advancement in terms of reliable and trustworthy SAT
solving that can be used even for critical matters in a carefree manner.

6 Conclusion

Motivated by the insufficient scalability of producing proofs in distributed systems, we
have presented a novel approach to trusted distributed clause-sharing solving where LRAT
information is checked on-the-fly. The critical code is small, simple, and kept separate from
solver code, and the solver’s clause sharing does not need to be trusted. We confirmed our
approach to be bottleneck-free and to scale drastically better than prior trusted approaches
with explicit proof combination. To the best of our knowledge, this is the first instance of a
trustworthy parallel solver whose running times are dominated by solving, not checking.

Regarding future work, we aim to formally verify our approach in order to obtain a
provably correct SAT solver (see Section 3.6). In addition, we are interested in adding LRAT
support to further solvers, in particular Gimsatul and Kissat, to make our approach more
broadly applicable, boost its performance, and reduce its main memory requirements. Lastly,
we intend to add full LRAT (rather than LRUP) checking to our approach, which may help
with integrating solvers with advanced reasoning into parallel and distributed solvers.
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