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Zusammenfassung

Kunden erwarten heutzutage hochkonfigurierbare Produkte, die mit Hilfe von Pro-
duktlinien entwickelt werden können. Produktlinien beschreiben verschiedene Pro-
duktvarianten und Versionen dieser Varianten und drücken damit die Variabilität
im Raum durch Varianten und die Variabilität in der Zeit durch Versionen aus.
Eine Produktlinie kann in einen Problemraum, der die für die Nutzer sichtbaren
Eigenschaften oder Verhaltensweisen eines Produktes, die sogenannten Features, und
deren Abhängigkeiten beschreibt, und einen Lösungsraum, der die Realisierungsarte-
fakte darstellt, unterteilt werden. Der Stand der Technik lässt folgende ungelöste
Herausforderungen erkennen: das Fehlen einer Validierung und Prüfung der Re-
alisierbarkeit von Varianten im Zeitverlauf sowie das Fehlen eines einzigen Instru-
ments, das eine Lösung für diese Herausforderung bietet und zudem mit etablierten
Werkzeugen kompatibel ist. In dieser Arbeit gehen wir die beschriebenen Heraus-
forderungen an, indem wir ein bestehendes Metamodell, das Unified Conceptual
Model (UCM), erweitern. Dafür bieten wir eine Implementierung des UCM an,
die wir durch die Integration bestehender Konzepte zum Ausdruck von Variabilität
im Raum erweitern, um unsere Implementierung an bekannte Werkzeuge, wie Fea-
tureIDE, anzupassen. Wir integrieren auch die Konzepte der Deltamodellierung,
um den Unterschied zwischen zwei Versionen im UCM zu beschreiben, und wir
verwenden das Modell der System Generation Engineering (SGE)-Variationsarten,
um Änderungen für die weitere Analyse mit Nominaltypen zu kategorisieren. Wir
zeigen die Anwendbarkeit unserer Implementierung, indem wir eine Realisierungs-
analyse an einer Erweiterung der bekannten Body Comfort System (BCS) Case
Study durchführen. Wir verwenden das erweiterte BCS, um zu zeigen, dass wir die
SGE-Variationsarten auf ein domänenübergreifendes Produktline anwenden können,
und zeigen, dass unsere UCM-Implementierung den semantischen Unterschied zwis-
chen zwei Versionen korrekt beschreibt, indem wir eine Realisierungsanalyse unter
Verwendung der UCM-Instanz durchführen, die die Version durch Deltas beschreibt.
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Abstract

Nowadays, customers expect highly configurable products, which can be developed
using the approach of product lines. Product lines describe different product variants
and versions of these variants, thus expressing variability in space through variants
and variability in time through versions. A product line can be divided into prob-
lem space, where the user-visible characteristics or behaviours of a product, called
features, and their dependencies are described, and the solution space, which rep-
resents the realisation artefacts. The state of the art reveals the following unsolved
challenges: the lack of validation and realisability testing of variants over time, and
the lack of a single instrument that provides a solution to this challenge and is also
compatible with established tools. In this thesis, we approach the described chal-
lenges by extending an existing metatmodel, the UCM. Therefore, we propose an
implementation of the UCM, which we extend by integrating existing concepts for
expressing variability in space in order to adapt our implementation to known tools,
such as FeatureIDE. We also integrate the concepts of delta modelling to describe
the difference between two versions in the UCM, and we use the model of SGE
variation types to categorise changes for further analysis with nominal types. We
show the applicability of our implementation by reproducing a realisation analysis
on an extension of the well-known BCS Case Study. We use the extended BCS to
show that we can apply the SGE variation types to a cross-domain product line,
and show that our UCM implementation correctly describes the semantic difference
between two versions by performing a realisation analysis using the UCM instance
that describes the version by deltas.
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1. Introduction

Product lines (PLs) are a way of organising the development of software and hard-
ware products that share a common set of configuration options and components
[NC13]. This approach can be used to reduce development costs, time-to-market and
improve product quality by utilising common components and considering variabil-
ity early in the development process. Variability refers to the potential for multiple
product variants and versions of variants, which is a common challenge in the devel-
opment of mass-customized hardware and software products, such as automotive,
robotics, embedded systems, and production systems [ABKS13].

PLs can be divided into problem space and solution space. The problem space
describes the user visible characteristics or behaviours of the product, called features,
and their dependencies in the feature model. The solution space represents the
realisation artefacts of the features and their dependencies between those artefacts.
The artefacts are related to the features in the problem space, linking the conceptual
definition in the problem space to the concrete implementation in the solution space
[ABKS13].

In the problem space, the features of a PL and their dependencies are described in
a feature model (FM). An example for a FM of a Car PL is shown in Figure 1.1.
The first version of the Infotainment subsystem of the Car (left side of Figure 1.1),
requires the selection of the Radio feature, the Navigation feature, or both features
at the same time. If the Navigation feature is selected the Voice Navigation

feature can be chosen optionally. This results in five possible configurations of the
Infotainment subsystem. The existence of different variants of one system at a
certain point in time is called variability in space. The challenge of variability in
space is to manage the almost infinite number of configurations that result from
the combinatorial explosion as the number of features in the product line increases
[KTS+20].

The transformation of a valid configuration in the problem space into a concrete
product in the solution space is a process known as realization. Therefor it is neces-
sary to consider the problem space and the solution space together, which intensifies
the challenges of managing variability in space. Figure 1.1 shows that the Radio fea-
ture, the Navigation feature and the Voice Navigation feature are developed on
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Figure 1.1: FM of a car PL

the same electronic computing unit (ECU), which may cause realisability issues of
some configurations. For instance, assume that the ECU provides 2 gigabyte (GB)
of random access memory (RAM), the Radio feature requires 1 GB, and the Nav-

igation feature requires 2 GB. Then a product variant with a radio is realisable.
A variant with the Navigation feature can be realised as well, but as the Radio

feature and Navigation feature together require 3 GB of RAM, a variant with both
features is not realisable. This realisability problem can only be found if problem
space and solution space are analysed together.

The Unified Conceptual Model (UCM) provides a unified representation of the prob-
lem and solution space. Figure 1.2 shows the UCM with the visualisation of the
problem space on the left and the visualisation of the solution space on the right
side. Connections between the left and the right side, represent relationships and
dependencies between features and hardware and software components. This uni-
fied view enables the modelling of dependencies between problem space and solution
space and the development of further analysis methods [WKR22].
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Figure 1.2: Unified Conceptual Model according to [WKR22]
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Besides variability in space, product line engineering must also consider the contin-
uous evolution of systems, called variability in time. Variability in time can lead
to structural changes in the FM, affecting not only individual features but also the
overall organisation and relationships between them. This dynamic evolution re-
flects the continuous adaptation of products to changing needs and market trends.
For example, if to the mandatory Manual PW feature a new option, as the Automatic
PW feature is added, the structure of the Power Window subsystem may need to be
adjusted to consider the new dependency. This structural change can be seen in
Figure 1.1 from Version 1 to Version 2.

The dimension of variability in time also brings with it the challenge of maintaining
compatibility between different product versions and ensuring that they work to-
gether. The difference in time could, for example, be due to a software update that
was installed to vehicles via an over-the-air update for the Infotainment subsystem
to provide better and more advanced path finding at Navigation (Version 1 to Ver-
sion 2 in Figure 1.1). The update requires more hardware resources, which the older
versions of the Car PL (Version 1) cannot provide with the ECU-1. Therefore the
update can only be applied to later versions of the vehicle equipped with ECU-2.

The challenges of variability are compounded by the interplay of variability in space
and time, which increases the complexity of product development and maintenance.
For example, a manufacturing system must support a variety of product configura-
tions while adapting to changes in production processes and software versions.

Within the domain of mechanical engineering, the System Generation Engineering
(SGE) Model (SGEM) is a descriptive model that provides a systematic approach
to analyse the evolution of system generations over time. The development of new
system generations in the SGEM is based on reference (sub-) system and consists
of variations of (sub-) systems for reuse (Carryover Variation (CV)) or development
through Embodiment Variation (EV) and Principle Variation (PV) which can change
the functional principle of (sub-) systems [ABR17]. The model can be used to express
and track variability in time by analyzing changes in system generations over time.

Goal of this Thesis

Analyzing the state of the art reveals the following still unsolved challenges:

• an almost infinite number of configurations

• unifying the problem space and solution space

• validation and realisability testing of variants over time

• lack of a single instrument that offers solutions for all the challenges described

In this bachelor thesis we address these four challenges by implementing tool support
for an integrated management of variability in time and space. Therefore, we define
the following four Subgoals (SGs), which represent the tasks to be done in this
bachelor thesis.
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Subgoal 1

Implementation of the UCM in the Eclipse Modeling Framework (EMF).

An instantiable model of the UCM in EMF opens up the possibility of combined
analysis across problem and solution space, in particular for realisability testing as
proposed by Ochs [Och23]. Our contribution also includes implementing adapters
to import data from FeatureIDE and exchange formats such as CSV and exports
them back to FeautreIDE data. The evaluation of this contribution is addressed in
SG 2.

Subgoal 2

Application study of the implementation (SG 1) based on the Body Comfort
System (BCS) with regard to realisability.

We will evaluate our implementation of the UCM with a replication study. The
study aims to replicate existing results of realisation analysis presented by Ochs
[Och23], which will serve as Ground Truth (GT). For the evaluation, we instantiate
our implemented UCM with an extension to the well known BCS1-Case Study (CS)
and apply the realisation analysis method from Ochs [Och23]. By comparing our
results with those of Ochs [Och23], we can draw conclusions about the expressiveness
of our implementation.

Subgoal 3

Development of a concept for the integration of the SGEM into the UCM
with regard to variability in time.

In SG3 we integrate concepts of managing variability in time from the SGEM into
the UCM. Therefore we identify similarities between both modelling concepts by
comparing their variability management mechanisms. The resulting unified model
will describe PL-artefacts over time using concepts from the SGEM as additional
attributes.

Subgoal 4

Further development of the BCS by adding evolution.

In SG4 we extend the BCS-CS from SG 2 by introducing several new system ver-
sions, that are intended to represent the evolution of the system over time. To this
evolution we add SGE variation types to show that this SGE concept can be applied
to other domains. We then implement the unified model from SG 3 and instan-
tiate it with two versions of the extended BCS to show how accurate our model
implementation can express variability in time.

Structure of the Thesis

The following thesis is structured as follows: Chapter 2 introduces the basic concepts
that have been touched in this introduction. Chapter 3 covers the design choices

1https://github.com/TUBS-ISF/BCS-Case-Study-Full/

https://github.com/TUBS-ISF/BCS-Case-Study-Full/
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we made to extend the UCM with the goal of FM integration in Section 3.1, the
integration of SGE concepts through time deltas in Section 3.2 and the unification
of the integration together with the linking of the problem and solution space with
mappings to allow the realisation analysis. Chapter 4 describes the implementation
of our previously designed solution approaches, as well as the implementation of
the tools required for the evaluation and the evolution of the BCS, where we added
new versions and solution space artefacts. In Chapter 5 we evaluate and discuss our
contributions. Chapter 6 gives an overview of related work. Chapter 7 summarises
the thesis and gives an outlook on future work.
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2. Basics

This chapter covers the basic terms and concepts of this thesis. Section 2.1 in-
troduces basic concepts such as variability in time and space, problem space and
solution space. Section 2.2 introduces the FM as a way of dealing with variability
in space and Section 2.3 discusses the SGE approach as an approach of managing
variability in time from a mechanical engineering perspective. Section 2.4 introduces
deltas as another way of dealing with variability in time. Section 2.5 introduces the
UCM as a model in which variability in space and time as well as problem and
solution space can be combined.

2.1 Product Line Engineering

PLs, according to [NC13], provide an approach to mass customisation of (software)
systems by constructing the system from reusable parts across a family of related
products. This could be, as in our running example, a car PL where each customer
can individually customise the car they want to order.

Apel et al. [ABKS13] distinguish product line engineering between requirements,
known as the problem space, and artefacts that addresses those requirements, known
as the solution space. Within this framework the problem space represents the
different needs and constraints of user visible characteristics or behaviours of the
product, called features, such as whether the car has a radio or not. The solution
space comprises the artefacts and design decisions that make up the implementation
of the PL, including code, components, architectures and configurations.

Variability refers to the ability of PLs to derive different products from a common
set of artefacts [ABKS13]. The variability of a PL spans two dimensions, one in
space, including product configurations and one in time, including the evolution of
PLs over time. Variability in space includes product configurations that arise due
to constraints between features. These constraints can be satisfied by selecting and
deselecting features, resulting in various products, such as a car configuration with
and without a radio. Variability in time occurs in a PL through updates, enhance-
ments and adaption from one version to another, leading to products from different
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versions. Considering the dimensions of variability in time and space together en-
ables a better understanding of how different product configurations are affected by
temporal changes and contributes to better decisions in the development process.

2.2 Feature Model

The problem space describes the user visible characteristics or behaviours of the
product, called features, and their dependencies. These features and dependencies
can be described in a FM. According to Apel et al. [ABKS13], each feature can be
referred to by its name. Each feature in a FM can be selected or not, leading to
various configurations within a FM. This selection is limited by relations between
features, groups of features or constraints that are also part of a FM.

A FM can be represented by propositional formulas, resulting from the dependencies
between features, in conjunctive normal form (CNF) or by a graphical representation
like the feature diagram (FD). In the FD features and dependencies are represented
as a tree, where each node represents a feature and is labelled with the corresponding
feature name. Those dependencies are distinguished in hierarchical tree constrains
and cross-tree constrains. The hierarchical tree constrains are categorised in manda-
tory, optional, or-groups and alternative groups and give the tree its structure.

Tree Structure Logic Term

mandatory feature fi of parent p f ⇔ p

optional feature fi of parent p f ⇒ p

or-group of features f1, f2, . . . fk
of parent p

(
k∨
i

fi

)
⇔ p

alternative-group of features
f1, f2, . . . fk of parent p

((
k∨
i

fi

)
⇔ p

)
∧

(
k∧

i,j,i¬j
¬ (fi ∧ fj)

)

Table 2.1: Propositional Logic Representation of a FM [ABKS13].

The mandatory attribute of a feature is represented by a filled circle in the FD. In our
running example, Figure 2.1, the feature Finger Protection is mandatory. This
means the feature must be selected if the parent feature is selected, what corresponds
to an equivalence in logic terms as seen in Table 2.1. If the feature is optional the
feature can be selected if the parent feature is selected, which corresponds to an
implication. An optional feature, in the FD, is represented by an unfilled circle on
the feature, as feature Power Window, in Figure 2.1.

In an or-group at least one of the features must be selected if the parent feature
is selected, as logic term, shown in Table 2.1, the or-group is represented by a
disjunction over the features in the group which needs to be equivalent to the parent.
In the FD an or-group is represented by a filled semicircle on the parent feature, as
below feature Infotainment in Figure 2.1. If Infotainment is selected either Radio
or Navigation or both need to be selected. An alternative-group is represented by
an unfilled semicircle on the parent feature, as in the running-example below Power

Window. Here exactly one of the features must be selected if the parent feature is
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Car

Infotainment

Radio Navigation

Voice Navigation

Power Window

Automatic PW

Finger Protection

Manual PW

requires

Figure 2.1: FD of the second version of the running example

selected. As a logic term an alternative group is an exclusive or over the group which
needs to be equivalent to the parent.

Besides the hierarchical tree constrains, there are also constrains which do not fit
into the structure of the tree. Those cross-tree constrains can either be represented
by a labelled arrow as in the running example where the feature Voice Navigation

requires the features Radio, or by logic term written below the FD.

2.3 System Generation Engineering

In the domain of mechanical engineering, SGE is used to describe the development of
products in product generations. Albers [ABR17] defines SGE as the development of
new product generations based on reference systems. The idea is that every concept
added to a product has a reference system, either from another product that has
already implemented the same concept, or as an evolution of an existing concept.

The SGE is used to describe generations through CVs, EVs and PVs. A generation
Gn+1, with a previous generation Gn, can be understood as set of all variations
Gn+1 = CVn+1 ∪ EVn+1 ∪ PVn+1 where CVn+1 is the set of CVs , EVn+1 is the set
of EVs and PVn+1 the set of PVs.

As an example, we consider the development of a new generation of our car example
to go through the three types of variation. The power window in the first generation
(G1) has a hand crank to move the window up and down manually. In the second
generation (G2) the window can be moved automatically by pressing a button. The
system uses hydraulics to raise and lower the window in both the first and second
generation, but is controlled once manually and once electrically.

Carryover Variations (CVs) reuse the reference system, changing only the interface
for integration. In our example, this would be the window itself, which remains the
same from the first to the second generation.

Embodiment Variations (EVs) change the shape of the subsystem but keep the
principle of the solution. In the example this would be the hydraulics used to raise
and lower the window. The principle of the hydraulics does not change but the
shape changes because it needs to be controlled electrically.

Principle Variations (PVs) vary the solution principle by using new ones. A PV
always goes with a EV. In the power window example, the hand crank that drives
the hydraulics is replaced by a motor that can be controlled by a button, which is a
new way of interacting with the power windows hydraulics.
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These variation types allow us to calculate the complement of the degree of change
over generations, where δCV,n+1 = 100% is an adaptive design and δCV,n+1 = 0% is
a complete redesign of the system. δCV,n+1 is calculated as follows

δCV,n+1 =
|CVn+1|
|Gn+1|

=
|CVn+1|

|CVn+1 ∪ EVn+1 ∪ PVn+1|

Applied to our example we would get a degree of change of 33.33% as only one of
our three variation types were a CV, resulting in δCV,2 =

1
3
= 33.33%.

2.4 Deltas

Deltas represent the specific changes or variations to accommodate different features,
configurations or requirements based on a core model. With regards to PLs this
means deltas are the element containing the change for a modeling element from
one configuration to another or from one version to another.

Version 1

Car

Infotainment

Radio Navigation

Voice Navigation

Power Window

Manual PW

Version 2

Car

Infotainment

Radio Navigation

Voice Navigation

Power Window

Automatic PW

Finger Protection

Manual PW

requires requires

Figure 2.2: FD of the running example

In our running example in Figure 2.2 deltas would describe what changes from
Version 1 to Version 2. The feature Manual PW will no longer be mandatory, but in
an alternative-group. The feature Automatic PW is added to the same alternative-
group and serves as parent of the new mandatory feature Finger Protection. The
modification and the additions can be described by deltas.

Independent of FMs a general model M , according to Schaefer [Sch10], is a tuple
M = (E,R) of modeling elements E and a relation between those elements R ⊆
E × E.

A ∆-Model over a model M is a tuple ∆ = (δ, Op), where δ is a constraint over E
and Op = {op1, op2, . . . , opn} is a set of delta operations over the model M which
can either add, modify or remove an element e or add or remove a relation between
two elements r(e1, e2).

The Table 2.2 shows the delta operations Op of our running example. op1 is a modi-
fication operation, that changes the mandatory tree constraint to an alternative-
group. Then the two new features Automatic PW and Finger Protection are
added as op2 and op3 and a new mandatory tree constraint is added as op4. To
the mandatory tree constraint a relation is added from Automatic PW as op6 and
a relation from the tree constraint to Finger Protection as op7. This sub-tree
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i opi e1 e2

1 mod e1 mandatory tree constraint
above Manual PW to
alternative-group

2 add e1 Automatic PW

3 add e1 Finger Protection

4 add e1 mandatory tree constraint

5 add r(e1, e2) alternative-group from op1 Automatic PW

6 add r(e1, e2) Automatic PW mandatory tree
constraint from op3

7 add r(e1, e2) mandatory tree constraint
from op3

Finger Protection

Table 2.2: Delta Operations of the running example

starting at Automatic PW is connected to the rest of the FD by a relation from the
alternative-group from op1 to Automatic PW as op5.

The application of the operations creates a new model with, depending on the oper-
ation, a new element or dependency added, removed or in case of the modification
operator first removed and then the modified one added. In our example the model
would be Version 1 and after the deltas are applied the new model would be Version
2.

2.5 Unified Conceptual Model

The UCM was created to unify the problem and solution space in one model and
also contain concepts for variability in space and time.

configs*

Configuration

Unified System

Mapping

us us

us us

Fragment

Product

<<derive>>

refs
System Revision

us

Option
*opts

*opts

<<derive>>

Revision

*succs

Constraint

preds*

*constrs

Feature Option

Feature Revision

*opts

Feature
feat

revs*
*feats

Problem Space (SPLE) / Version Space (SCM) Solution Space (SPLE) / Product Space (SCM)

*fragments

*

*

*

*revs
*constrs

enables

enables

Concepts for Variability in Space Concepts for Variability in Time Unified ConceptsConcepts for Variability in Space & Time

Figure 2.3: UCM according to Ananieva et al. [AGK+22]

Figure 2.3 shows the UCM as class diagram according to Ananieva et al. [AGK+22].
The model allows, similarly to the FM, to include features that are distinguished by
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their names. The dependencies between features are represented by the class Con-
straint. Each feature dependency is represented, similarly to the CNF, by a logical
term contained in the Constraint. Instances of the class System Revision can be
understood as versions of the unified system. They refer to other System Revision

instances and to Feature Revision instances. The concepts of variability in space
are part of the problem space. The solution space in the model contains products,
fragments and classes such as Configuration and Mapping to connect the two
spaces. The Product is derived from Configuration and Fragment where a
configuration is a selection of Options and a Fragment is a concrete part of the
product. Such a fragment can be lines of code or other model elements and gets
mapped to an Option by Mapping. This ensures that each selectable Option has a
corresponding counterpart in the solution space.

Wittler et al. [WKR22] and Ochs [Och23] have further developed the UCM, which
is shown in Figure 2.4. The class Product is derived from a class Configura-

tion, which refers to the problem space and Components of the solution space. The
class Component can either be a Software Component and demand Resources or
a Hardware Component and grant them. The class Resource consists of a value
and a type. The class Resourcetype consists of a name, a unit of measurement,
a boundary type, an the boolean attributes isAdditive and isExclusive. The
boundary type can either be LOWER, UPPER or EXACT. LOWER states that a re-
quested resource needs to be fulfilled with a provision that is greater than or equal to
the requested one. EXACT requires that the provided resource value is equal to the
requested one and UPPER requires the provided resource to be less or equal to the
requested one. For example the response time type must be boundary type LOWER,
because if a software component requires a response time of 12ms, a hardware com-
ponent with a lower value such as 10ms will satisfy the demand, while a higher value
such as 13ms will not. The attribute isAdditive determines whether or not it is
allowed to add resources to satisfy a software components demands. For example, if
a software component requires 100W of power and two hardware components each
provide 70W, then the component’s requirements can only be met if the addition
of the resource is allowed. The attribute isExclusive determines whether its the
resource that can satisfy the demands of multiple Software Components or not.

Our contribution mainly relies on the UCM by Ochs [Och23] but also takes parts of
concepts considered by Ananieva et al. [AGK+22].

Product

<<derive>>
<<derive>>

 Solution Space

Hardware
Component
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Component
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value: Number
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name: String

unit: Unit
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Figure 2.4: UCM according to Ochs [Och23]
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In this chapter the solution approaches are introduced. We extend the UCM to
achieve the importation of FeatureIDE data that we addressed in SG1 in Section
3.1. We further extend the UCM to integrate the SGE and add evolution what we
formulated in SG3. This solution approach takes place in Section 3.2. In Section
3.3 the design is unified and a specialised mapping is added to connect the problem
and solution spaces.

3.1 Feature Model Integration

With respect to SG1, we modify the problem space of the UCM so that it repre-
sents a feature metamodel. Figure 3.1 shows an excerpt of the UCM with relevant
parts concerning the representation of a feature meta-model. The following section
describes the design decisions we made to achieve this goal.

A feature, according to the FM introduced in Section 2.2, has a name and can
optionally have realisation artefacts in the solution space. Therefore, in the feature
metamodel we represent a feature with a name and a boolean property isAbstract.

Apel et al. [ABKS13] proposed the FD as representation of the FM which differen-
tiates between feature dependencies represented by tree hierarchy and by cross-tree
constraints. Another representation of FMs would be through CNFs. The represen-
tation through CNFs would simplify the design effort, since we only need to design
cross-tree constrains. But we not only want to represent FMs, but also want to
enable the management of variability in space through our model. Therefore we
adopt the differentiation of feature dependencies and introduce two specialisations
of constraints to the feature meta-model: Hierarchical tree constraints and cross-tree
constraints as detailed in the following.

Hierarchical tree constrains are described through hierarchy types as or-groups,
alternative-groups, mandatory and optional, which where introduced in Section 2.2.
Such a hierarchical tree constraint is always associated to exactly one parent feature
and, depending on the hierarchy type, to at least one child feature. In our design,
we distinguish between associated features and hierarchy types, as all hierarchical
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Unified System

Option

Feature Option

1 feats

Tree Constraint

Cross Tree Constraint

feats 1..*

* treeCons
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Or
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Equals
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feats 1

Logic Node

1 expression
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Constraint Type
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OPTIONAL, OR,
ALTERNATIVE

1 type

Constraint

expression

Concepts for Variability in Space Unified Concepts

 Problem Space

2 nodes

2 nodes

2..* nodes

2..* nodes

1 nodes

Feature

name: String

isAbstract: Boolean

* cons

Solution Space

Figure 3.1: Extended UCM showing only the FM extensions

tree constraints share the characteristic of having associated features. This leads us
to the class Tree Constraint which represents the hierarchical tree constraint and
needs exactly one Feature as a parent and refers to at least one Feature. The type
is represented by a type attribute, which is a reference to an enumerated class Con-
straint Type that represents the different hierarchy types, mandatory, optional,
or, alternative, as names. This structure can be seen in Figure 3.1 represented by
the associations between the classes Feature, Tree Constraint and Constraint

Type.

A cross-tree constraint is a propositional logic term with features as literals. There-
fore, we introduce an adapted model of a propositional logical formula as follows: A
literal can be encapsulated by logical connectives such as not, and, or, implies and
equals (¬,∧,∨,⇒,⇔). The type of logical connectives determines the number of
outgoing nodes. A not node has only one child, implies and equals have two outgo-
ing nodes and or and and have at least two outgoing nodes. A propositional logic
term constructed in this way can then be encapsulated again by logical connectives,
building up to a tree with a logical connective as root node. The tree constructed
in this way is known as a concrete syntax tree [AA07] and can be used to represent
propositional logic terms. It has the advantage that the order of evaluation of the
term is ensured by traversing the concrete syntax trees and no brackets are required.
We adapt the idea of concrete syntax trees in our design through the abstract class
Logic Node, which represents the nodes of the tree. A node can be either a logi-
cal connective or a literal. We design this specialisation through specialised Logic

Nodes. Each specialisation of the class Logic Node consists of a different number of
children, which are references back to the class Logic Node. The class Not consists
of one child, the class Implies and the class Equals consist of exactly two children,
the class And and the class Or of at least two children and class Literal has no
children but needs a reference to the class Feature instead. The class Cross Tree
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Constraint represents the cross-tree constraints and consists of a reference to the
class Logic Nodeas the propositional logic term. This design ensures the consistency
of an expression even if, for example, the name of the feature changes.

Figure 3.2 shows the object diagram resulting from the parsed FD of Version 1
of our running example. The features of the FD are represented as instances of
the class Feature. For example, the feature Voice Navigation is represented by
feats3 and is illustrated by the green arrow. You can see the structuring proper-
ties of the tree constraints in treeCons0 and treeCons1 where, as in the FD, the
feature Car has two children with different hierarchy types. treeCons2 represents
an alternative-group and like the hierarchical tree constraint, has the parent feature
Infotainment and two children. The red arrows show how the hierarchical tree
constraints are mapped to instances of the class Tree Constraint. Finally, the re-
quires cross tree constraint is represented by cons0, an instance of the class Cross
Tree Constraint. A requires cross tree constraint can be understood as an im-
plication and is therefore represented as such in the unified system by expression0

as an instance of Implies. The structure of the concrete syntax tree can be seen in
expression0 by having exactly two children which are instances of Literal and
each refer to their corresponding features.

cons0:Cross Tree Constraint
feats0:Feature

name="Car"
isAbstract=true

expression0:Implies

nodes0:Literal nodes1:Literal
feats1:Feature

name="Infotainment"
isAbstract=true

...

feats3:Feature

name="Voice Navigation"
isAbstract=false

treeCons0:Tree Constraint

type=MANDATORY

treeCons2:Tree Constraint

type=ALTERNATIVE

treeCons1:Tree Constraint

type=OPTIONAL

...

feats2:Feature

name="Radio"
isAbstract=false

system:UnifiedSystem

name="Version 1"

Figure 3.2: Representation of the FM of the first version of the running example as
object diagram of the extended UCM

The object diagram clearly shows that no information is lost in the transformation
from the FD to the unified system. The distinction between tree and cross-tree
constrains plays an important role here, as without it the reconstruction of the
structure would be almost impossible. This will allow us in the next chapter not
only to parse the FD into a unified system, but also to parse a unified system back
into a FD.
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3.2 Integration of SGE Concepts through Time Deltas

This sections aims to achieve SG 3, where we formulated the goal of developing a
concept to model the SGE by integrating the concepts of managing variability in
time from the SGE into the UCM.

In Section 2.3 we introduced the term generation Gn+1 that can be understood as set
of all carryover, embodiment and principle variations Gn+1 = CVn+1∪EVn+1∪PVn+1

based on a predecessor generation Gn. For simplicity, we divide these variations into
two categories: those that keep the (sub-)system as it is, which are CVs, and those
that introduce changes, that are PVs and EVs. Consequently, a new generation can
be conceptualised as the old (sub-)system with the applicable changing variations
applied. This concept corresponds to the concept of deltas introduced in Section
2.4.

We modify the concept of ∆-models introduced in Section 2.4 to describe changes
of the unified system over time. We understand an instance of the UCM as a model
M = (E,R) with the model elements E (e.g. instances of classes Feature and
Tree Constraint) and the relations R between elements (e.g. the references of an
instance of the class Feature to instances of the class Tree Constraint). In the
according ∆-model ∆ = (δ, Op|R|Deltaable

) we restrict the delta operations Op to only
be defined for R|Deltaable. R|Deltaable is a subset of R and is defined in Equation 3.1.
This allows us to store the ∆-Model as an ordered list of operations and elements of
R|deltaable, where the first element is a reference to an existing element in our model
and the second element is either a new element or an existing element we wish to
remove.

R|Deltaable =(Feature× Tree Constraint)

∪ (Tree Constraint× Feature)

∪ (Software Component× Resource) (3.1)

∪ (Unified System× (Feature ∪ Cross Tree Constraint

∪ Mapping ∪ Component ∪ Resourcetype))

Figure 3.3 shows the changes we performed on the UCM to add this modified ∆-
model. The ∆-model is represented by the class Version with an ordered list of
references to Delta as the attribute deltas. As with delta modelling the deltas

can be applied. In the class Version we have added the method applyDeltas for
this purpose.

The class Delta represents the delta operations and has the attributes type, po-
sition, value and valueRef. The attribute type is a reference to Delta Type,
which indicates whether the Delta adds, removes or modifies an element. The at-
tribute position of the class Delta, has the same function as the first element of
the relation tuple e1 of R|Deltaable i.e. to point to the element that has or will have
a reference to e2 which is represented by value and valueRef. To ensure that
(position, value) is in R|deltaable each class marked with an orange ∆ in Figure 3.3
implements the interface Delta Operations and can be set as position. The type
of value depends on the generic type of Delta Operations which must be the
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Figure 3.3: Extended UCM showing only the delta relevant part

same type as the generic type of Delta. The binding can be seen in the legend at
the bottom right of Figure 3.3.

We integrate concepts of the SGE into delta-modelling by labelling each delta with
a SGE variation type. We can consider the class Delta as variation and the class
Version as generation, since it is made up of instances of the class Delta. To distin-
guish between the variation types of the class Delta, we add an attribute variation
as a reference to a class Variation Type, which can be either PRINCIPLE, EMBODY-
MENT or CARRYOVER, matching the variation types PV, EV and CV we introduced
in Section 2.3.

We illustrate the functionality of deltas using the object diagram shown in Figure
3.4. The left-hand side of the object diagram shows Version 1 of the running example
as described in Section 3.1 and the right-hand side shows the version with its delta.
delta0 modifies the instance of the class Tree Constraint referenced by valueRef,
i.e. it deletes it and then adds a new instance of the same class referenced by value

to the feature referred to by position. As the Figure shows, a delta can take an
entire sub-tree and add it to the unified system, rather than just adding one element
at a time as suggested by the delta operations in Table 2.2.
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position

delta0:Delta

type=MOD

feats6:Feature

name="Automatic PW"

feats8:Feature

name="Finger Protection"

feats7:Feature

name="Manual PW"

treeCons5:Tree Constraint

type=OR

treeCons6:Tree Constraint

type=MANDATORY

versions:Version

name="Version 2"

value

cons0:Cross Tree Constraint system:UnifiedSystem

name="Car"

...

...

treeCons0:Tree Constraint

type=MANDATORY

treeCons1:Tree Constraint

type=OPTIONAL

feats1:Feature

name="Power Window"

feats4:Feature

name="Manual PW"

treeCons3:Tree Constraint

type=MANDATORY

valueRef

Figure 3.4: Representation of the FM of the first version of the running example
with a delta to version two as object diagram of the extended UCM

3.3 Unifying Variability in Space and Time in Problem

and Solution Space

We want to extend the concepts of managing variability in space (Section 3.1) and
time (Section 3.2) beyond the boundaries of the problem space. Therefore, we
specialise the class Mapping, which is used to connect the problem and solution
spaces, by the class Resource Mapping. This class maps a feature to a resource
demand, which consists of the value of the demanded resource, the resource type
and the id of the software component in which the feature is implemented. We need
to use the mapping and not the class Software Component because we still want
to be able to manage variability. Therefore, the final resource demand of a software
component depends on the version and configuration.

The resulting metamodel, which incorporates all our changes and allows for the
management of variability in space and time in the problem and solution space, is
shown in Figure 3.5. Appendix A.5 shows the full diagram.
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Figure 3.5: Extended UCM
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4. Implementation

This chapter presents the code artefacts we created to implement and evaluate the
UCM in Section 4.1 and the addition of resources to the various versions of the BCS
and some new versions in Section 4.2.

4.1 Unified Conceptual Model Implementation

This section presents the code artefacts and tools used to implement and evaluate
our extended version of the UCM.

4.1.1 Eclipse Modeling Framework

In SG1 we already specified that we are using the Eclipse Modeling Framework1.
The EMF is used to create and edit models and then generate Java code based on
the model. This model-centered view allows to concentrate on the design (Chapter
3), although Java has some limitations that made it necessary to adapt the design.

In Chapter 3 we designed the Delta with two generic types to ensure that deltas
are only applied to relations that are elements of R|Deltaable. The first generic S
is the type of e1, if we consider (e1, e2) as the relation tuple that is an element
of R|Deltaable and the second generic T is the type of e2. Delta Operations is
an interface with a generic type T and the generic type S extends Delta Oper-

ations with the generic type T of Delta bound to the generic type T of Delta

Operations. This ensures that classes that should be e1, implement the inter-
face Delta Operations with the generic T of Delta Operations bound to the
type of e2. Java does not allow the same interface to be instantiated with another
generic class, as class Unified System needs to do, because, as we saw in Section
2.4, it implements Delta Operations<Feature>, Delta Operations<Cross Tree

Constraint>, Delta Operations<Mapping>, Delta Operations<Component> and
Delta Operations<Resource Type>. We can get around this limitation of Java by
implementing the interface with the super type Object as Delta Operations<Object>

and then distinguish in the methods add and remove the interface implements,

1https://eclipse.dev/modeling/emf/

https://eclipse.dev/modeling/emf/
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which instance the argument passed is of. The method modify does not need to
be touched since it calls the methods add and remove which then differentiate the
instance.

For the serialisation of the unified system, we want the unified system to be build
in such a way that when we serialise an instance of it, everything that is relevant
to the instance is held by it. In Java we cannot specify whether a variable holds an
object or just the reference to it. But EMF has this specification via the containment
property. This property requires each object to be contained within another object
to be able to save the objects properly. For the class Delta this means that we
need to have two different attributes to refer to the value we want to either add or
remove. When we want to remove a value we refer to it as valueRef as it is a
reference to another object and is already contained in the Unified System. But if
we want to add a value, the class Delta contains the value as the attribute value.
Since an object cannot be contained in more than one object, the attribute value

is removed when the delta is applied, because then the value is contained in the
object referred to as position.

To be able to save and load an instance of the unified system and connect to other
tools, we want to serialise the unified system. The EMF allows us to save and
load the contents of the model to and from a Extensible Markup Language (XML)
Metadata Interchange (XMI) 2 file. Listings 4.1 shows the XMI file containing the
parsed UCM representation of Version 1 of our running example (Figure 3.1). The
containment property of the EMF plays an important role here, as we want to
serialise all references only through the unified system instance. Listing 4.1 shows
this containment in the unified system by the fact that every element in the XMI
file is at least one level below the unified system instance. An element consists of
either a start-tag < name > and an end-tag < /name > or, if there are no elements
contained in between those tags, an empty-tag < name/ >. Each element in the
XMI file is named similarly to the name of the reference. For example the Tree

Constraint is referenced as treeconstraint from the class Feature and so the
element name is also treeconstraint. The attributes of the class, such as the type
attribute of Tree Constraint are represented in the tags as XMI attributes. The
attributes consist of a name-value pair of the form name = value. The name and
value are similar to the name and value in the instance of the class in the unified
system.

4.1.2 Adapters

FeatureIDE3 is the state of the art tool for creating and displaying FDs. It is an a
Eclipse plugin and we can use the libraries it provides for our adaptation.

Therefore we deserialise a FeatureIDE FD file with the libraries provided by the
plugin. The adapter then translates the FD similar to what we have done with
our running example in Figure 3.2. We extend this adapter further by allowing
it to take into account the attributes in the FeatureIDE FD Ochs [Och23] uses to
store the resource type mappings. To integrate the resource type mappings, we
also need to add resource types to the model to give the mapping a resource to

2https://www.omg.org/spec/XMI/
3https://github.com/FeatureIDE/FeatureIDE

https://www.omg.org/spec/XMI/
https://github.com/FeatureIDE/FeatureIDE
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1 [...]
2 <ucm:UnifiedSystem [...] name="Car">
3 <feats name="Car" isAbstract=" true ">
4 <treeconstraint type="MANDATORY">
5 <feature name=" Infota inment " isAbstract=" true ">
6 <treeconstraint type="OR">
7 <feature name="Radio" isAbstract=" f a l s e "/>
8 <feature name="Navigat ion " isAbstract=" f a l s e ">
9 <treeconstraint type="OPTIONAL">
10 <feature name="Voice ␣Navigat ion " isAbstract=" f a l s e "/>
11 </treeconstraint>
12 </feature>
13 </treeconstraint>
14 </feature>
15 </treeconstraint>
16 <treeconstraint type="OPTIONAL">
17 <feature name="Power␣Window" isAbstract=" true ">
18 <treeconstraint type="MANDATORY">
19 <feature name="Manual␣PW" isAbstract=" f a l s e "/>
20 </treeconstraint>
21 </feature>
22 </treeconstraint>
23 </feats>
24 <cons id="0">
25 <expression xsi:type=" ucm:Impl ies ">
26 <nodes xsi:type=" ucm:L i t e ra l " featureoption="//@feats . 0/

@t r e e cons t ra in t . 0/ @feature . 0/ @t r e e cons t ra in t . 0/ @feature . 1/
@t r e e cons t ra in t . 0/ @feature . 0 "/>

27 <nodes xsi:type=" ucm:L i t e ra l " featureoption="//@feats . 0/
@t r e e cons t ra in t . 0/ @feature . 0/ @t r e e cons t ra in t . 0/ @feature . 0 "/>

28 </expression>
29 </cons>
30 </ucm:UnifiedSystem>

Listing 4.1: Parsed UCM representation of Version 1 of the running-example

reference. So we use the opencsv4 library to deserialise the resource types stored in
a comma-separated values (CSV) file. The same deserialiser can be used to read the
CSV file in which Ochs [Och23] has stored the resource provisions of the hardware
components.

In the CSV resource type file, each line represents a resource type. Each line consists
of four values, the first one being the ID of the resource, the second the binary value
isAdditive, the third the binary value isExclusive and the last value is boundary
where the three possible values are represented by the numbers LOWER : 0,UPPER : 1
and EXACT : 2.

In the resource provisioning file, each row represents a hardware component and each
column represents the resource type whose ID matches the corresponding column
number when numbered consecutively from zero in ascending order. The value in
each cell then represents the quantity or value of the corresponding resource type
provided by the hardware component.

4https://opencsv.sourceforge.net/

https://opencsv.sourceforge.net/


24 4. Implementation

The resource demands of a feature are represented by its attributes in the Fea-
tureIDE FD. The name of the attribute consists of a tuple (i, j), where i is the ID
of the software component and j is the ID of the resource type. The value of the
attribute is the demanded number or value of the resource.

We also wrote an adapter the other way around in order to get a FeatureIDE FD
out from a unified system instance. So we read the UCM XMI file and deserialise it
with the tools provided by the EMF to a unified system instance. After adapting,
the FeatureIDE FD instance is serialised using the libraries provided by FeatureIDE.

4.1.3 Combined Problem Solver

The combined problem solver tool was implemented by Ochs [Och23] to calculate all
realisable and valid configurations of a FeatureIDE FD with corresponding resource
types, and resources provisions and a CNF representation of the FM. We modified
his tool to instead take our XMI representation of the unified system to calculate
all valid and realisable configurations. We later use this tool to calculate the valid
and realisable configurations using the unified system representation for evaluation
purposes and to replicate the results of Ochs [Och23] achieved using the unmodified
combined problem solver tool. Therefore we need to make the following adjustments:

Extract the resource types from Resourcetypes

The resource types are extracted from the serialised unified system instead of the
resource type CSV file Ochs [Och23] used.

Extract the feature demands from Mappings and the resource provisions from
Hardware Components

To extract the corresponding data from the mappings and cross-tree constraints we
need to resolve the references in the XMI file, as in line 26 of Listings 4.1. The
references are built as concatenations of elements of the tree. In the example in line
26 //@feats.0 stands for the first feats element of the root, the ucm, element.
The / stands for going into the selected element and the treeconstraint.0
stands for the first treeconstraint element below the current element.

Calculate the a CNF of the FM from Cross Tree Constraints and Tree Con-

straints.

The CNF is constructed by conjuncting the logical term representation of tree con-
straints and cross-tree constraints. The cross-tree constraints can be transformed
into CNF by traversing each concrete syntax tree that presents each cross-tree con-
straint. The logic terms of a tree-constraint are looked up by the type of the tree-
constraint in Table 2.1. And then build according to the logic term with the features
in the tree-constraint and the parent feature.

4.2 Evolution of the Body Comfort System

This section describes how the existing evolution of the BCS is extended by adding
more versions, resource provisions and demands, and how evolution can be classified
through SGE operations.
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Version 1.0

The base version of the BCS Version 1.0 consists of a 27 features which split up
in tree subsystems Security, DoorSystem and HMI, as you can see in the FM in
Figure 4.1. The feature DoorSystem has electric adjustable Exterior Mirrors (EMs)
that optional can be heatable and Power Windows (PW) can be either automatic
or manually controlled and need to have a Finger Protection (FP). The feature
Security is optional and consists of functionality for Alarm System (AS), Remote
Control Key (RCK) or Central Locking System (CLS). The feature HMI consists of
multiple StatusLEDs which can be chosen individually via an or-group representing
status and signal lights. There are six cross-tree constraints in the FM of the BCS
CS.

BodyComfortSystem

HMI StatusLED

LED FP

LED PW

LED EM

LED AS

LED CLS

LED Heatable

DoorSystem

EM
Electric

Heatable

PW
FP

PW Control
Manual PW

Automatic PW

Security

CLS Automatic Locking

RCK

Control Automatic PW

Safety Function

Adjust EM

Control AS

AS Interior Monitoring

LED_AS ⇒ AS

LED_Heatable ⇒ Heatable

Control_Automatic ⇒ ¬ Manual_PW
LED_CLS ⇒ CLS

RCK ⇒ CLS
Control_AS ⇒ AS

Figure 4.1: FM of BCS
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ID isAdditive isExclusive boundary Unit Description

0 True False LOWER no. Interface Slots
1 True False LOWER W Power Specification
2 True True LOWER no. Security Comm. Channels
3 False True LOWER MHz Security Processing Core Clock
4 False True UPPER min Security Automatic Relock Time
5 True True EXACT no. Security Video Cameras
6 True False LOWER no. Window Movement Sensors
7 True False LOWER kbit/s Bandwidth

Table 4.1: Resource Types of Version 1.0

Hardware Component (hwj) Provisions (rpjk)

infotainment-hardware(hw0)

rp00 = 8
rp01 = 25
rp06 = 4
rp07 = 16

security-hardware(hw1)

rp21 = 16
rp13 = 700
rp14 = 1
rp15 = 4

Table 4.2: Resource Provisions of Version 1.0
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Feature Software Component swi Resource Demands rdik

LED AS sw0 rd00 = 2

LED FP sw0 rd00 = 1

LED CL sw0 rd00 = 1

LED PW sw0 rd00 = 1

LED EM sw0 rd00 = 1

LED Heatable sw0 rd00 = 1

Electric sw1
rd71 = 10
rd11 = 5

Heatable sw1 rd11 = 20

FP sw2 rd26 = 1

Manual PW sw2 rd26 = 2

Automatic PW sw2
rd27 = 5
rd26 = 3

RCK sw3
rd32 = 2
rd33 = 10

Control Automatic PW
sw1 rd17 = 5
sw3 rd32 = 2

Adjust EM
sw2 rd27 = 10
sw3 rd32 = 2

Control AS sw3
rd32 = 2
rd32 = 2

Safety Function sw3 rd32 = 2

AS sw3
rd33 = 100
rd35 = 4

Interior Monitoring sw3
rd33 = 700
rd35 = 1

CLS sw3 rd33 = 10

Automatic Locking sw3 rd34 = 1

Table 4.3: Resource Demands of Version 1.0

In the solution space Ochs [Och23] added four software components. The hmi-

controller (sw0) controls the Human Machine Interface (HMI) and all StatusLEDs.
The power-window-controller (sw1) controls the PW and exterior-mirror-controller
(sw2) the EM. At last the security-controller (sw3) controls the Security sub-
tree.
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In Table 4.1 the resource types are specified. As introduced in Section 2.5, a re-
source type has an identifier k and the three resource type properties isAdditive,
isExclusive and boundary.

The resource demands can be found in Table 4.3. The resources are provided by
the hardware components in Table 4.2 where each hardware component provides an
amount or number of resources.

The resource provisions are designed to not fulfil all resource demands thus not
all valid configurations are also realisable. In this version the resource demands
of the feature Interior_Monitoring, rd35 = 1, can not be fulfilled. The resource
type r5 describing the number of Security Video Cameras has an EXACT boundary.
In the resource provisions only hw1 provides rp15 = 4 which does not match the
request exactly. This means that out of 11616 valid configurations only 6528 different
configurations are realisable.

Version 1.1

Version 1.1 makes changes of the architecture because of new passenger safety regula-
tions. The new safety regulations require a dedicated hardware, to separate security
and safety. For this purpose hardware safety-hardware is added and takes over all
resource provisions related to passenger safety.

Appendix A.1.2 shows the details in tables.

Version 2.0

In Version 2.0 Figure 4.2 shows, that the subsystem rooted in feature Wiper is added
as a mandatory feature. The feature Wiper needs either a High_Quality_Sensor

or a Low_Quality_Sensor to detect rain and a High_Quality_Wiper or a Low_-

Quality_Wiper to remove rain from the windshield. The low quality wiper can only
be on or off and the low quality wiper only detects rain or not, while the high quality
features can be more granular. Optionally a Clean feature can be chosen to clean
the windshield.

The extension of the BodyComfortSystem through Wiper is a PV. All the features
that are PVs have a green border in Figure 4.2. The StatusLED Feature itself is
only an EV. All the feature that are EVs have an orange border in Figure 4.2.
Everything else is not changed and thus are CVs.

From this example we can generalise rules to classify the variation types in FDs.
A feature that is adding a new concept or solution principle to the system can be
considered as PV. Parent features of such a PV are at least an EV since their shape
needs to change if a new feature is added. Only if the variation is not present or
minimised to only a change of parameters the variation is a CV.
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BodyComfortSystem

Wiper

Clean

Sensor
Low Quality Sensor

High Quality Sensor

Frost Protection

Clean Protection

Sensor Protection

Permanent Protection

Permanent Intensity

Wiper Quality
Low Quality Wiper

High Quality Wiper

HMI StatusLED

LED Wiper

LED Frost Protection

LED Clean

. . .
DoorSystem . . .

Security . . .

Legend:

Embodiment Variation (EV)

Principle Variation (PV)

Carryover Variation (CV)

Clean_Protection ⇒ Clean

Permanent_Protection ⇒ Permanent

LED_Frost_Protection ⇒ Frost_Protection

LED_Clean ⇒ Clean
. . .

Figure 4.2: FM of BCS Version 2.0

ID isAdditive isExclusive boundary Unit Description

8 True True LOWER no. Pumps
9 True False LOWER no. Temperature Sensors
10 True False LOWER no. Liquid Level Sensor

Table 4.4: Resource Types added in Version 2.0
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Feature Software Component swi Resource Demands rdik

LED Wiper sw0 rd00 = 1

LED Frost Protection sw0 rd00 = 1

LED Clean sw0 rd00 = 1

Clean sw4
rd48 = 1
rd410 = 1

Frost Protection sw4 rd49 = 1

Low Quality Wiper sw4
rd41 = 10
rd47 = 5

High Quality Wiper sw4
rd41 = 10
rd47 = 10

Low Quality Sensor sw4 rd47 = 5

High Quality Sensor sw4 rd47 = 10

Table 4.5: Resource Demands added in Version 2.0

Hardware Component (hwj) Provisions (rpjk)

infotainment-hardware(hw0)
rp00 = 8
rp01 = 35
rp07 = 16

security-hardware(hw1)

rp12 = 16
rp13 = 700
rp14 = 1
rp15 = 4

safety-hardware(hw2)

rp23 = 10
rp26 = 4
rp28 = 1
rp29 = 1
rp210 = 1

Table 4.6: Resource Provisions of Version 2.0

As software component the wiper−controller (sw4) is added to control the
wiper subsystem. The Wiper feature can be seen as a feature for passenger safety
because the driver can see better with a clean windshield. This is the reason why
the required resource demands of Table 4.5, except for the LEDs, are provided by
the safety-hardware as you can see in Table 4.6.

The model has nine StatusLEDs but safety-hardware only provides eight. There-
fore not every configuration is buildable.
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Version 3.0

Version 3.0 adds electric seat adjustment with memory function on the driver’s key.
Therefore, a new feature Seat is added as optional child of the feature BodyComfort-
System and the resource types number of motors and long-term memory are added.
These are demanded by a new software component seat-controller (sw5) and get
fulfilled by the infotainment-hardware.

Appendix A.1.4 shows the details in tables and diagrams.

Version 3.1

It was discovered that there was no hardware component that satisfies the de-
mand of exactly one security camera for Interior_Monitoring, why in this Version
security-hardware-2 was added which fulfills the demand of the feature Inte-

rior_Monitoring. In addition, demands for the response time to the finger protec-
tion functionality are added.

Appendix A.1.5 shows the details in tables.

Version 4.0

In Version 4.0 a new feature Windows_Heatable is added as an optional child of
BodyComfortSystem with its own StatusLED. A new software component windows-
heat-controller (sw6) is added, which demands the use of a temperature sensor
that is already included by the wiper update.

Appendix A.1.6 shows the details in tables and diagrams.

Version 5.0

In Version 5.0 a new feature Automatic_Headlights is added as an optional child
of BodyComfortSystemand the resource types number of parking lights, number of
daytime running lights, number of low beams, number of high beams, number of am-
bient light sensors and number of front proximity sensors are added. These resource
types are demanded by a new software component, the headlight-controller

(sw7), and provided by a new hardware component, headlight-hardware.

Appendix A.1.7 shows the details in tables and diagrams.

Version 5.1

In response to customer feedback requesting more granular control over lighting op-
tions, Automatic_Headlights gets divided into three distinct choices: Beam, Park-
ing_Lights, and Daytime_Running_Lights. Instead of a binary decision of whether
to have automatic headlights or not, customers can now select from a range of au-
tomatic lighting options, tailoring their vehicle’s lighting setup to better suit their
needs and preferences.

Now the corresponding resource types can be removed and only number of ambient
light sensors and number of front proximity sensors are kept from the previous
version but with another ID. Also the headlight-controller (sw7) now requests a
certain Power Specification to light up or dim the different headlight features. The
headlight-hardware now needs to provide a lot of Power instead of the Lights.

Appendix A.1.8 shows the details in tables and diagrams.
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5. Evaluation

In this chapter we evaluate the implementation of the UCM described in Chapter
3 (SG 1 & 2) and the SGE described in Chapter 3 through the extended BCS-CS
implemented in Chapter 4 (SG 4). For the evaluation of our SGs we derive the
following Research Questions (RQs):

RQ 1: Can the UCM be used to reproduce realisation analysis?

With RQ 1 we evaluate the first SG which aims to unify and simplify existing tools
and considerations as the four file solution of Ochs [Och23] for realisation analysis
using FDs with corresponding resource provisions and demands. We will evaluate
this goal, by replicating the results of Ochs [Och23] (SG2). Therefore, we compare
the sets of valid and realisable configurations of two CSs, once calculated from the
four files and once calculated from our one file solution. We expect the sets to match
exactly and then we can consider the implementation of the UCM as complete and
accurate in the parts the CSs are covering.

RQ 2: Can concepts of delta modelling be used to express variability in time in
the extended UCM?

With RQ 2 we evaluate the third SG which aims to include concepts of the SGE
to manage variability in time and transfer these concepts to the UCM using time
deltas. These deltas can express the SGE variation types. We will evaluate this
goal by verifying the capability to manage variability in time of our implementation
with the BCS-CS evolution we created in SG 4. We consider the sets of valid
and realisable configurations of two successive versions of the BCS-CS as GT. To
calculate the GT we use the approach provided by Ochs [Och23]. We then use our
approach to identify the valid and realisable configurations for the CS evolution an
compare our results to the GT. We expect the sets to match exactly and then we
can consider the implementation of the UCM as able to express variability in time.
We also calculate the degree of change, a metric to express how much of the system
changes from one system generation to another, for the BCS evolution to show that
the concepts of variation types of the SGE can be used for cross-domain PLs.
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5.1 Experiment Setup

5.1.1 Research Question 1

Ochs [Och23] used four files to compute all the valid and realisable configurations,
whereas our unified approach requires only one file containing the instance of the
UCM. This instance is instantiated with the FM, the resource provisions and the
resource types. The unified system model was developed in version 2.36.0.v20231107-
0612 of the EMF using Java version 1.8. The combined problem solver used to
compute the GT and the modified version of the combined problem solver, which
takes the serialised unified system as input and computes our results, were run in
Python 1.10.

Ochs [Och23] used two CSs, CS 1 and the BCS-CS, to evaluate his results. The
first CS, CS 1, is used to maximize the coverage of the developed concepts and the
BCS-CS to show that his work also scales to a typically used case study. The CSs
are explained in more detail below:

Case Study 1

Even though we only need one file, we will spread the explanation of CS 1 over several
representations for better clarity as we did before in Section 4.2 for the BCS-CS.

CS 1 covers a car PL that aims to cover the twelve possible characteristics of re-
source types. Table 5.1 shows these characteristics, which are the combination of
the different values of the attributes isAdditive, isExclusive and boundary. The
meaning of these attributes was discussed in Section 2.5.

The FD of the CS includes 13 features and no cross-tree constraints, as shown
in Figure 5.1. The customer can choose between a big and a small infotainment
system and whether or not he wants a tyre-pressure monitor and electric adjustable
seats. If the customer decides to have electric adjustable seats there can be chosen
between a 6-way and a 10-way seat adjustment and between front and back or only
front motorization. Mandatory for all configurations is the monitoring for critical
components. The allocation of resources to the features together with a software
component is shown in Table 5.3 and the resource provisions are shown in Table 5.3.

parent

critical-component-monitoring

infotainment
infotainment-small

infotainment-big

electric-seats

seat-adjustment
seat-adjustment-6way

seat-adjustment-10way

seat-motorization
seat-motorization-front

seat-motorization-front-back
tyre-pressure-monitoring

Figure 5.1: FM of CS1
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ID isAdditive isExclusive boundary Unit Description

0 False False LOWER MBit/s Communication Bandwidth
1 False False UPPER ms Response Time
2 False False EXACT GHz Infotainment Core Clock
3 False True LOWER Mbit/s CCM Communication Bandwidth
4 False True UPPER CCM Screen Resolution
5 False True EXACT Screen Resolution
6 True False LOWER GByte Memory
7 True False UPPER no. Touchscreens
8 True False EXACT no. Screens
9 True True LOWER no. Seat Adjustment Actuators
10 True True UPPER no. Seats
11 True True EXACT no. Tyre Pressure Sensors

Table 5.1: Resource Types of CS1

Hardware Component (hwj) Provisions (rpjk)

infotainment-hardware (hw0)

rp00 = 15
rp01 = 50
rp02 = 3
rp06 = 8
rp07 = 1

ccm-hardware (hw1)

rp13 = 5
rp14 = 1
rp16 = 4
rp18 = 1

car-periphery-hardware (hw2)

rp25 = 1
rp29 = 6
rp210 = 2
rp211 = 4

Table 5.2: Resource Provisions of CS1

Body Comfort System-Case Study Version 1.0

We use Version 1.0 of the BCS evolution history, which we described in detail in
Section 4.2.

Ochs [Och23] used a modified version of the BCS-CS. Instead of the cross-tree
constraint Control_Automatic ⇒ ¬ Manual_PW seen in Figure 4.1 he used Con-

trol_Automatic ⇔ ¬ Manual_PW. This modification results in less valid and realis-
able configurations, because an equation is more stringent than an implication.

To obtain the corrected GT consisting of the set of valid and realisable configurations
we ran the combined problem solver of Ochs [Och23] with the corrected data and
collected the results as GT.
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Feature Software Component swi Resource Demands rdik

infotainment-small sw0

rd00 = 5
rd01 = 100
rd02 = 1
rd06 = 2
rd07 = 1

infotainment-big sw0

rd00 = 10
rd01 = 100
rd02 = 3
rd06 = 6
rd07 = 3

critical-component-monitoring

sw1

rd14 = 1
rd16 = 2
rd18 = 1

sw2
rd23 = 2
rd26 = 1

electric-seats sw3 rd35 = 1
seat-adjustment-6way sw3 rd39 = 6
seat-adjustment-10way sw3 rd39 = 10
seat-motorisation-front sw3 rd310 = 2
seat-motorisation-front-back sw3 rd310 = 4
tyre-pressure-monitoring sw4 rd411 = 4

Table 5.3: Resource Demands of CS1

5.1.2 Research Question 2

To show that the deltas in the UCM are working as intended we create two serialised
instances of the unified system to compare them to our GT. The first instance
consists of Version 1.0 of the BCS-CS and contains deltas representing what changes
from Version 1.0 to Version 2.0, which adds the wiper system. The second instance
consists of the first instance but the deltas are applied. We take the tool of Ochs
[Och23] to create the GT consisting of the set of valid and realisable configurations
for Version 1.0 and Version 2.0. For the evaluation we compare the sets of valid and
realisable configurations of Version 1.0 (GT) with the unified system instance with
unapplied deltas and the sets of valid and realisable configurations of Version 2.0
(GT) with the applied deltas instance. If the sets of realisable configurations are the
same in each case we assume that our delta model works as intended.

Besides the verification of the integration of deltas we want to show that SGE vari-
ation types can be applied to models outside the domain of mechanical engineering.
Therefore, we calculate the complement of the degree of change, of the FDs of the
BCS evolution we implemented in Chapter 4. We introduced the complement of the
degree of change in Section 2.3 as the share of CVs, δCV, i. Based on the size of
the change, we expect a larger (more than 20%) or smaller (less than 20%) value
for the degree of change. This expectation will serve as GT for the comparison. For
Version 1.0 we expect the degree of change to be at 100% because the whole system
is new. For Version 1.1 we expect the degree of change to be 0% because no features
are modified. For Version 2.0 we expect a high degree of change because many fea-
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tures are added, where the change to Version 3.0 is very small. The difference from
Version 3.0 to Version 3.1 is expected to be 0% as no features are modified. The
degree of change for Version 4.0 is expected to be low, but higher than of Version
3.0 and the degree of change of Version 5.0 is expected to be as low as the degree of
change of Version 3.0. The degree of change of Version 5.1 is expected to be higher
than the degree of change of Version 5.0 but lower than of Version 2.0.

5.2 Experiment Execution

For the first two experiments we need to calculate the valid and realisable con-
figurations that will serve as GT and our results. The GT is calculated with the
combined problem solver and our results are calculated with the modified combined
problem solver, taking as input the unified system instances representing the CSs.
To compare these sets we need to introduce a compare operator. According to Ochs
[Och23] two configuration sets (CS) are equal, A ≡CS B, if the cardinality of the
sets are equal and for each configurations from the first set A there needs to be the
same configuration in the second set B. A configuration is equal to another if both
configurations have the same features selected.

For the GT of the first experiment we run the combined problem solver of Ochs
[Och23] with the FD and the CNF representation of the CS provided by the Fea-
tureIDE and the CSV files representing the resource types and resource provisions of
the CSs. The files are provided by Ochs [Och23]. The files can also be rebuilt based
on the figure and tables that describe each CS. To calculate the valid and realisable
configurations with the new method we first parse the files used to calculate the
GT into a unified system instance with the adapter tool we wrote and then serialise
this instance to a file with the unified system serialise tool. The serialised file is
processed by the modified version of the combined problem solver, that calculates
our result. The GT and our results are then compared by the evaluation tool we
wrote.

For the second experiment we calculated the set of valid and realisable configurations
that build the GT for Version 1.0 and Version 2.0 of the BCS-CS with the combined
problem solver. To calculate the GT for Version 1.0 we can use the same files as
before, and for Version 2.0 we obtain the necessary files by creating them based
on the figure and tables of the CS described in Section 4.2. To create the unified
system instance with deltas we take the unified system of Version 1.0 of the BCS and
add deltas describing the added and modified features, mappings, resource types
and resource provisions. We then serialise the unified system instance and apply
the deltas we added to serialise the new state of the unified system instance. We
calculate the sets of valid and realisable configurations based on the two unified
system instances as in the experiment before. We then compare the set of valid
and realisable configurations obtained from the unified system instance with the
unapplied deltas with Version 1.0 of the GT and the set of valid and realisable
configurations obtained from the unified system instance with applied deltas with
Version 2.0 of the GT.

In the last experiment we calculated the degree of change or more specifically the
complement of the degree of change for the FDs of the BCS to address the second
part of the second RQ. Therefore we counted the amount of features labelled as
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CV, EV and PV and then calculated according to the formula in Section 2.3 δCVi

for every FD.

5.3 Results

Table 5.4 shows the evaluation results for the first experiment. The number of valid
configurations of CS1 is |CSCS1| = 20 and of the BCS is |CSBCS−V 1| = 11616. The
number of valid and realisable configurations are expected to be |RSGT

CS1| = 4 for
CS1 and |RSGT

BCS| = 6528 for the BCS.

Case Study CS1 BCS

Valid Configurations (|CS|) 20 11616

Realisable Configurations Ground Truth (|RSGT |) 4 6528
Our Results (|RSR|) 4 6528
Equality (RSR ≡CS RSGT ) True True

Table 5.4: Quantitative results of our results compared to the GT for CS1 and BCS.

We computed |RSR
CS1| = 4 valid and realisable configurations for CS1 and |RSR

BCS| =
6528 for the BCS. The number of valid and realisable configurations for both CSs is
equal to the expected number of the GT. We then compared the sets of configura-
tions with the set of the GT and found an exact coverage (RSR

CS1 ≡CS RSGT
CS1 and

RSR
BCS ≡CS RSGT

BCS).

Table 5.5 shows the evaluation results for the second experiment, including the
GT for Version 1.0 and 2.0 of the BCS and the BCS with deltas unapplied and
deltas applied. The number of valid configurations for Version 1.0 of the BCS is
|CSBCS−V 1| = 11616 and for Version 2.0 is |CSBCS−V 2| ≥ 115055. The number of
valid and realisable configurations are expected to be |RSGT

BCS−∆| = 6528 for Version
1.0 of the BCS and |RSGT

BCS−∆−Applied| = 55296 for Version 2.0 of the BCS.

Case Study BCS-∆ BCS-∆-Applied

Valid Configurations (|CS|) 11616 ≥ 115055

Realisable Configurations Ground Truth (|RSGT |) 6528 55296
Our Results (|RSR|) 6528 55296
Equality (RSR ≡CS RSGT ) true true

Table 5.5: Quantitative results of our results compared to the GT for unapplied and
applied deltas to BCS.

We computed |RSR
BCS−∆| = 6528 valid and realisable configurations for the BCS

with unapplied deltas and |RSR
BCS−∆−Applied| = 55296 for the BCS with applied

deltas. The number of valid and realisable configurations for both versions is equal
to the expected number of the GT. We then compared the sets of configurations
with the set of the GT and found an exact coverage (RSR

BCS−∆ ≡CS RSGT
BCS−∆ and

RSR
BCS−∆−Applied ≡CS RSGT

BCS−∆−Applied).
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Table 5.6 shows the share of CVs in the different versions of the FM of the BCS we
calculated as the third experiment. The share of CVs, δCV,i is the complement of
the degree of change.

i Version |Gi| |PVi| |EVi| δCV,i degree of change GT

0 Version 1 28 28 0 0% 100% 100%
1 Version 1.1 28 0 0 100% 0% 0%
2 Version 2 45 17 3 55.56% 44.44% >20%
3 Version 3 46 1 1 95.65% 4.35% <20%
4 Version 3.1 46 0 0 100% 0% 0%
5 Version 4 48 2 3 89.58% 10.42% <20%
6 Version 5 49 1 1 95.92% 4.08% <20%
7 Version 5.1 52 3 2 90.38% 9.62% <20%

Table 5.6: Share of CVs of the BCS FMs

The proportion of CVs in the first version is 0%, which corresponds to a degree of
change of 100%, as in the GT. The proportion of CVs in Version 1.1 and Version
3.1 is also in line with the GT at 100%. For Version 2 we can see from the table,
almost half of the variations were not carried over, which is a high degree of change.
Version 3.0 and Version 5.0 have a low degree of change of about 5%. Version 4.0
has a higher degree of change for than Version 3.0, but is also low at about 10%, as
in Version 5.1.

5.4 Discussion

In the following we will answer the RQs and discuss our results.

RQ 1: Can the UCM be used to reproduce realisation analysis?

As shown in the section above, the UCM can be used to reproduce realisation anal-
ysis. We showed that the implemented UCM can be used for the computation of all
valid and realisable features by reproducing the realisation analysis of Ochs [Och23].
We calculated the same sets of valid and realisable configurations using our unified
system instances, leading to the conclusion that the UCM can be used to repro-
duce realisation, which answers our first RQ. We also showed the correctness of our
UCM implementation with respect to the representation of FDs and solution space
artefacts.

RQ 2: Can concepts of delta modelling be used to express variability in time in
the extended UCM?

We integrated the concepts of delta modelling into the UCM to express variability
in time. To show that our implementation is capable of semantically expressing
the differences between two versions, we performed a realisation analysis on the
two versions and compared the resulting sets of valid and realisable configurations
with the GT. The exact coverage of the two sets leads to the conclusion that delta
modelling concepts can be used to express variability in time in the UCM, which
answers the second RQ. The third experiment showed that SGE variation types can
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be applied to FDs. Therefore, we calculated the degree of change between successive
versions of FDs, which were in the range we expected for each version as our GT.
This shows that the concepts of SGE can be applied to models outside the domain of
mechanical engineering. Although we have applied these concepts to another model,
they cannot be applied in the same way to the variation we have implemented in
the UCM, because deltas in the UCM may contain whole sub-trees or modelling
elements that are not comparable to FDs. Further work can start here to develop
appropriate concepts.

5.5 Threats to Validity

In this section we will discuss threats to validity. Firstly we will discuss internal
threats relating to the the design and conduct of the evaluation and secondly external
threats relating to generalisability.

5.5.1 Internal Threats to Validity

Our evaluation primarily focused on comparing sets of valid and realisable configura-
tions, focusing mainly on features, constraints, resource types, mappings, hardware
components, deltas and versions. This evaluation does not provide full coverage of
all implemented classes in the UCM, as certain elements such as Software Compo-

nent and specific methods of the Delta Operations interface were not included.
However, the classes and methods not included in the evaluation have very similar
functionality to the classes covered by the evaluation. The included elements are
therefore a representative sample of the system functionality, minimising the risk
of malfunction in the elements not included. In addition, potential inconsistencies
in the models and tools could lead to biases or errors. To counter this, we rely on
existing and state of the art models and tools, which we only need to integrate or
modify. This reduces risk as we do not have to develop everything from scratch.
In addition, our reliance on the GT formed by Ochs [Och23] carries a significant
risk, as any inaccuracies or discrepancies in this reference could affect our evalua-
tion results. The risks may be migrated for the GT formed by Ochs [Och23] for the
following reasons. The set of valid and realisable configurations is always smaller
than the set of valid configurations. This is by design, because the CSs were created
in such a way that not every configuration is realisable even if it is valid. Also, the
rule of which configurations are not realisable where made as simple as possible to
allow manual verification. The valid configurations, unlike the valid and realisable
configurations, were computed by the FeatureIDE which is a widely used tool. We
also minimised the risk of errors in our model by using bi-directional parsing from
FeatureIDE FDs into a unified system instance. This parsing ensures that no data
is lost in the parsing process and that the features and constraints work as intended.

5.5.2 External Threats to Validity

External threats to validity could limit the generalisability of the research findings.
Firstly, the focus on the BCS-CS means that the findings may not be generalisable
to other contexts. Focusing primarily on one CS is not representative of other
PLs. However, we used the BCS-CS in particular because, according to Müller et
al. [MLD+09], it was developed with experts to mimic a real PL, which increases
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the generalisability of the results of our experiment. Another threat to external
validity are scalability issues, as the analysis is limited to computing the valid and
realisable configurations for Version 1.0 and 2.0 of the BCS-CS, with later versions
shown as too complex to compute in an acceptable time. This limitation can be
explained by combinatorial explosion, where the number of possible combinations
grows exponentially. Although we have not been able to compute the valid and
realisable configurations for later versions, we have been able to model them as a
unified system and, as demonstrated with Version 1.0 and Version 2.0 of the BCS-
CS, given enough time it would be possible to compute the results for later versions.
However, our work focuses on modelling and replicating existing results and since
we have shown that our work can be used to replicate existing CSs and we have
not changed any analysis algorithms, as long as realisation analysis is possible with
other methods, we can also perform it with our method.
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6. Related Work

This chapter presents concepts and models that are relevant to our work. We anal-
ysed concepts that express variability in time or space within the domains of software
engineering and mechanical engineering and approaches that introduce metamodels
related to the UCM.

Concepts to express Variability in Time and Space

Apel et al. [ABKS13] divide PL into problem and solution space and introduce the
FM as a model that allows the management of variability in space by the FD as a
graphical representation. The SGE is a concept of expressing variability in time in
the domain of mechanical engineering by expressing successor generations through
different types of variations, starting from a previous generation, according to Albers
et al. [ABR17]. The concept of delta modelling express the change operations to a
system instance, this can be applied either to configurations to manage variability
in space according to Schaefer [Sch10] or to versions to manage variability in time
according to Lity et al. [LKS16]. These concepts and models provide solutions for
expressing variability in time or space. However, these preceding approaches cannot
cover variability in time and space at the same time as in the case of the FM and
SGE, or cannot provide realisation analysis because they do not cover problem and
solution space. We integrated the expression of variability in time by adopting the
idea of FD and integrated the SGE variation types through time deltas, which we
also used to express variability in time. This allows us to cover variability in time
and space and to cover problem and solution space through the unified approach of
the UCM.

Combined Variability Models

The UCM is a metamodel proposed by Ananieva et al. [AGK+22] to express vari-
ability in time and space in PLs. The solution space of this model was extended
by Wittler et al. [WKR22] and Ochs [Och23] with a more precise model that allow
analyses such as realisation analysis. Our work replicates the realisation analysis by
implementing the UCM and performing the analysis directly on an instance of the
UCM, which was previously performed outside the boundaries of the model.
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Consistency Models

Atkinson et al. [ASB10] proposed the approach of a Single Underlying Model (SUM)
where a single, unified model serves as the foundation for multiple perspectives in
view-based development. Burger [Bur13] introduces Virtual SUM (VSUM) as a
unified metamodel which is constructed by defining consistency relations between
involved metamodels. The UCM we developed can be seen as a SUM, since the
UCM is the foundation for multiple different perspectives we combine, as variants
through the integration of the FD or versions through delta modelling. The UCM
already includes approaches for the mapping between features and the concrete
realisation in the solution space by software and hardware components, but lacks a
concrete realisation for maintaining constancy between features and their realisation
in software and hardware components.



7. Conclusion and Outlook

This thesis addresses the description and management of variability in space and
time of a generic PL in a unified model. The UCM is a model that unifies the
problem and solution space and is able to describe variability in space and time.
FDs enable the management of variability in space and the SGE is used in the
domain of mechanical engineering to manage variability in time. We integrate these
concepts into the UCM to enable the management of variability in time and space.

We structured this thesis along the following SGs we introduced in Chapter 1:

SG1 Implementation of the UCM in the EMF

SG2 Application study of the implementation (SG 1) based on the BCS with regard
to realisability

SG3 Development of a concept for the integration of the SGEM into the UCM with
regard to variability in time

SG4 Further development of the BCS by adding evolution

We addressed SG 1 in Section 3.1 and Section 4.1. Therefore, we extended the UCM
to allow us to manage variability in time. We then implemented the UCM in the
EMF and also implemented adapters to import and export from and to FeatureIDE
FD serialisations. We also added adapters to import resource types and resource
provisions from CSV files as used by Ochs [Och23]. These adapted files can then be
saved as serialised instance of UCM to allow the application of analysis techniques
such as realisation analysis.

SG 2 was addressed in Chapter 5 and Section 4.1. We implemented the tool support
for the replication study of the solution space analysis proposed by Ochs [Och23],
where the realisation of valid configurations is addressed. We used the serialisation
of the UCM implemented in SG 1 as input for the modified analysis method. In
the evaluation, we investigated whether our implementation of the UCM is able to
reproduce existing realisation analysis results from Ochs [Och23]. We applied the
realisation analysis method to two CSs and then compared our results with the GT,
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provided by Ochs [Och23]. We found exact coverage in the sets of valid and realisable
configurations of both CSs, thus proving the applicability of our implementation of
the UCM.

SG 3 was addressed in Section 3.2, where we used delta modelling to describe changes
between two versions of a PL. We integrate this concept into the UCM, which
enables it to express variability in time. The deltas, designed in the UCM, can be
labelled with the SGE variation types, allowing the description of variation types in
cross-domain PLs.

We addressed SG 4 in Section 4.2 and Chapter 5, where we applied our implementa-
tion of variability in time in the UCM to the BCS-CS. Therefore, we extended the
BCS in terms of evolution and solution space artefacts, which allowed us to perform
realisability analysis on the different versions of the BCS. We used this realisability
analysis to evaluate whether the implementation of the UCM was able to semanti-
cally express differences between two versions with our concept of variability in time.
We found an exact coverage of the sets of valid and realisable configurations, which
we expressed by delta modelling and compared with the GT. Thus, we showed that
our concept of variability in time in the UCM is capable of correctly specifying all
changes between two versions of the subject system.

At the current state of our work, if a mapping points to a feature and the feature
is removed, the model is inconsistent because the mappings feature reference points
to a removed feature but is not itself removed. To circumvent such inconsistencies
structure-preserving deltas could be added, which enable cascading deletions.
With the extended UCM, we provide a metamodel that covers the management of
variability in space and time in both the problem and solution space. This opens
up opportunities for further development of tools for joint analysing of the problem
and solution space, such as combined realisation analysis.
The SGE variation types in our work are applied only to features, while originally
in the domain of mechanical engineering the SGE variation types were applied to
hardware components. Since we label deltas with variation types and deltas can be
applied to arbitrary elements in a metamodel, other elements could be considered
for change analysis in future work.
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A. Appendix

A.1 Body Comfort System-Case Study

A.1.1 Version 1.0

See Section 4.2.

A.1.2 Version 1.1 - Safety

Hardware Component (hwj) Provisions (rpjk)

infotainment-hardware(hw0)
rp00 = 8
rp01 = 25
rp07 = 16

security-hardware(hw1)

rp12 = 16
rp13 = 700
rp14 = 1
rp15 = 4

safety-hardware(hw2)
rp23 = 10
rp26 = 4

Table A.1: Resource Provisions of Version 1.1

A.1.3 Version 2.0 - Wiper System

See Section 4.2.
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A.1.4 Version 3.0 - Electric Seat Adjustment Based on Key IDs

BodyComfortSystem

Wiper . . .

HMI . . .

DoorSystem . . .

Security . . .

Seat

Seat ⇒ RCK
. . .

Figure A.1: FM of BCS Version 3.0

ID isAdditive isExclusive boundary Unit Description

11 True True LOWER no. Motors
12 True False LOWER KB Long Term Memory

Table A.2: Resource Types added in Version 3.0

seat−controller (sw5)

Feature Software Component swi Resource Demands rdik

Seat sw5

rd511 = 1
rd512 = 2
rd57 = 5

Table A.3: Resource Demands added in Version 3.0
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Hardware Component (hwj) Provisions (rpjk)

infotainment-hardware(hw0)
rp00 = 8
rp01 = 35
rp07 = 16
rp011 = 1
rp012 = 1

security-hardware(hw1)

rp12 = 16
rp13 = 700
rp14 = 1
rp15 = 4

safety-hardware(hw2)

rp23 = 10
rp26 = 4
rp28 = 1
rp29 = 1
rp210 = 1

Table A.4: Resource Provisions of Version 3.0

A.1.5 Version 3.1 - Safer Passengers 2

ID isAdditive isExclusive boundary Unit Description

13 True False UPPER ms Response Time

Table A.5: Resource Types added in Version 3.1

Feature Software Component swi Resource Demands rdik

FP sw2
rd26 = 1
rd213 = 2

Table A.6: Resource Demands added in Version 3.1
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Hardware Component (hwj) Provisions (rpjk)

infotainment-hardware(hw0)
rp00 = 12
rp01 = 35
rp07 = 16
rp011 = 1
rp012 = 1

security-hardware(hw1)

rp12 = 16
rp13 = 700
rp14 = 1
rp15 = 4

safety-hardware(hw2)

rp23 = 10
rp26 = 4
rp28 = 1
rp29 = 1
rp210 = 1
rp213 = 2

security-hardware-2(hw3) rp35 = 1

Table A.7: Resource Provisions added in Version 3.1

A.1.6 Version 4.0 - Heatable Windows

BodyComfortSystem

Wiper . . .

HMI StatusLED
. . .

LED Window Heatable

DoorSystem . . .

Security . . .

Seat

Window Heatable

LED_Window_Heatable ⇒ Window_Heatable
. . .

Figure A.2: FM of BCS Version 4.0

windows−heat−controller (sw6)

Feature Software Component swi Resource Demands rdik

LED Heatable sw0 rd00 = 1

Window Heatable sw6 rd69 = 1

Table A.8: Resource Demands added in Version 4.0
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A.1.7 Version 5.0 - Automatic Headlights

BodyComfortSystem

Wiper . . .

HMI . . .

DoorSystem . . .

Automatic Headlights

Security . . .

Seat

Window Heatable

. . .

Figure A.3: FM of BCS Version 5.0

ID isAdditive isExclusive boundary Unit Description

14 True True LOWER no. Parking Lights
15 True True LOWER no. Daytime Running Lights
16 True True LOWER no. Low Beam
17 True True LOWER no. High Beam
18 True False LOWER no. Ambient Light Sensor
19 True False LOWER no. Front Proximity Sensor

Table A.9: Resource Types added in Version 5.0

headlight−controller (sw7)

Feature Software Component swi Resource Demands rdik

Automatic Headlights sw7

rd714 = 1
rd715 = 1
rd716 = 1
rd717 = 1
rd718 = 1
rd719 = 1

Table A.10: Resource Demands added in Version 5.0



54 A. Appendix

Hardware Component (hwj) Provisions (rpjk)

headlight-hardware(hw4)

rp414 = 1
rp415 = 1
rp416 = 1
rp417 = 1
rp418 = 1
rp419 = 1

Table A.11: Resource Provisions added in Version 5.0

A.1.8 Version 5.1 - Automatic Headlights Decisions

BodyComfortSystem

Wiper . . .

HMI . . .

DoorSystem . . .

Automatic Headlights

Parking Lights

Daytime Running Lights

Beam

Security . . .

Seat

Window Heatable

. . .

Figure A.4: FM of Version 5.1 BCS

ID isAdditive isExclusive boundary Unit Description

14 True True LOWER no. Parking Lights
15 True True LOWER no. Daytime Running Lights
16 True True LOWER no. Low Beam
17 True True LOWER no. High Beam

��18 14 True False LOWER no. Ambient Light Sensor

��19 15 True False LOWER no. Front Proximity Sensor

Table A.12: Resource Types added and removed in Version 5.1
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Feature Software Component swi Resource Demands rdik

Parking Lights sw7
rd71 = 5
rd714 = 1

Beam sw7

rd71 = 55
rd714 = 1
rd715 = 1

Daytime Running Lights sw7

rd71 = 5
rd714 = 1
rd715 = 1

Automatic Headlights sw7

Table A.13: Resource Demands added and removed in Version 5.1

Hardware Component (hwj) Provisions (rpjk)

headlight-hardware(hw4)
rp47 = 100
rp414 = 1
rp415 = 1

Table A.14: Resource Provisions modified in Version 5.1

A.2 Modified Unified Conceptual Model Full
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