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Abstract This paper experimentally studies escape
mechanisms in a bi-stable potential well, focusing on
critical forcing values depending on system damping,
excitation frequency, and initial phase. The experimen-
tal setup has a rotational degree of freedom. It com-
prises a vertical shaft with adjustable air bearings and
a copper disk that increases the moment of inertia and
serves as an adjustable eddy current brake. The sys-
tem also includes two coil springs that provide restor-
ing moments. External momentum is provided by an
electric motor controlled through a function genera-
tor. The paper describes the identification of system
parameters and compares numerical and experimen-
tal results, validating previous theoretical and numeri-
cal findings regarding the saddle and maximum escape
mechanisms.
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1 Introduction

Escape from a potential well is a fundamental problem
in science and engineering, with applications ranging
from celestial dynamics to the behavior of molecules.
It is crucial in energy harvesting, transient resonance
dynamics, and the stability of structures such as ships
and MEMS devices [1–11].
The study of forced escape phenomena began with
Kramers’ work on thermal activation of chemical reac-
tions in the 1940s [12]. Significant challenges remain
in understanding the escape process, even under quasi-
steady-state conditions. Constant forcing can cause
bifurcations due to slow variations in system parame-
ters [6,13,14]. The situation is even more complicated
if transients are involved due to small or no damping
[15–17].

Analytical and numerical studies have extensively
explored the escape dynamics of harmonically forced
and damped particles [13,17–19]. Analytical expres-
sions for escape criteria have been developed, although
these often require empirical adjustments [20]. A
notable observation in these studies is that the critical
forcing amplitude curve usually exhibits a sharp min-
imum at frequencies lower than the natural frequency
of small oscillations within the potential well, a pattern
also seen in MEMS devices [6]. Two primary mecha-
nisms for approaching the escape threshold have been
identified: the maximum mechanism, where the trajec-
tory reaches the boundary of the potential well, and
the saddle mechanism, where the trajectory reaches a
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saddle point on the resonance manifold, leading to a
significant increase in response amplitude and subse-
quent escape [21–23].

Modern computational techniques have significantly
advanced our understanding of dynamic systems.How-
ever, experimental validation remains crucial. Experi-
ments provide concrete evidence supporting theoretical
models and simulations, ensuring real-world accuracy.

There are only a few studies that experimentally
investigate escape. Some of the most significant ones
are presented below. Shaw et al. investigated ’roller-
coaster’ type models as analog devices for nonlinear
oscillators [24], Gottwald et al. confirmed theoretical
observations using amechanical system to study escape
from a potential well [25], and Virgin et al. illustrated
nonlinear dynamicswith a ball rolling on a surface [26].

More recent studies on vortex-induced vibrations
have revealed escape phenomena similar to Duffing-
type dynamics, enhancing our understanding of escape
through both experiments and numerical computations
[27–29].

In this paper, we extend the theoretical insights
of [21–23,30] through experimental validation using
a modified test rig of the Institute of Engineering
Mechanics at the Karlsruhe Institute of Technology.
This experiment aims to replicate theoretical condi-
tions and provide a detailed analysis of escape mech-
anisms. We describe the experimental setup, followed
by a detailed description of the parameter identification
procedure for a double-well Duffing oscillator model.

We perform two types of experiments. The first one
examines transient dynamics, starting with zero initial
velocity in one of the stable equilibria and applying har-
monic excitation with specific phase, amplitude, and
frequency. A grid search in the amplitude-frequency
plane explores escape conditions for twoviscous damp-
ing values and two initial phases. The second series
of experiments examines steady-state dynamics with a
slowly increasing force amplitude, recording the small-
est amplitude at which escape occurs. This procedure
is done for two damping values, with the initial phase
irrelevant.

Our setup offers precise damping control, which is
essential for studying its impact on escape dynamics. In
shaker-based systems, damping parameters are usually
fixed and hard to adjust (cf. [24–26]). While an eddy
current brake might provide control, the alteration in
the equation of motion, experienced in shaker-based
systems, complicates the comparison with the damped

Duffing oscillator. Similarly, the modeling and control-
ling of friction is more straightforward in our current
system.

Thepaper is structured as follows. Section2describes
the fundamentals of a bistable potential well, the
escape phenomenon and escapemechanisms. Section3
describes the experimental setup. Section4 details
parameter identification and numerical model develop-
ment. Section5 compares experimental and numerical
results. Section6 discusses further examples of non-
linear phenomena observed in the measurements. Sec-
tion7 concludes the paper and gives scope for future
research.

2 Theoretical background

The symmetric twin-well Duffing oscillator is a widely
used mathematical model representing systems with
two stable states of equal importance. It is often derived
as the nonlinear Taylor series expansion of some more
complex physical system [31]. The dynamics of a par-
ticle in the twin-well Duffing oscillator has several
aspects. The conservative autonomous system is solv-
able in terms of Jacobi elliptic functions [32]. How-
ever, including damping forces and excitation compli-
cates the problem such that only approximate analytical
methods are viable. For example, [33] investigates the
impacts of damping in the capture of a particle in one of
the wells without external excitation using asymptotic
methods.

On the other hand, [14] investigates the global
dynamics of the excited, damped double-well Duff-
ing oscillator in an extensive study showing for the
first time that strange attractors can exist in second-
order nonautonomous dynamical systems. Focusing on
escape from one well introduces an asymmetry in the
twin-well potential, although symmetric in complete
form; thus, many findings about escape from an asym-
metric potential well apply to this case as well [13].
Observations made by [34] for the weakening one-well
potential, and later generalized by [35] for arbitrary
polynomial potentials of order up to four, show that
harmonically driven escape from conservative wells
exhibit two primary escapemechanisms: themaximum
mechanism and the saddle mechanism. Farid and Gen-
delman [17] revealed by multiple-scales analysis that
these mechanisms also persist in the slightly damped
case. In what follows, we give a simplified short theo-
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retical overview of the level-crossing mechanisms for
a symmetric, weakly nonlinear conservative potential
based on [22]. By level crossing, we understand a weak
definition of escape, in which some observable of the
system (in our case, the displacement) leaves a safe
zone. Please refer to the references above for a more
comprehensive analysis and detailed derivations.

2.1 Example with quadratic-quartic potential

The equation of motion is given by

ẍ + x − εx3 = f sin(�τ + β), (1)

x(0) = ẋ(0) = 0. (2)

The absolute value of the critical displacement is one,
that is,

ξcrit,1,2 = ±1. (3)

Assuming the excitation frequency is in the vicinity of
the eigenfrequency of the linearized system and that
the excitation force amplitude is small, i.e.

� = � − 1

ε
∈ O(1), and F = f

ε
∈ O(1), (4)

we can apply the method of averaging. Assuming the
motion is quasi-harmonic with slowly changing ampli-
tude and phase difference, we can write

x = A(t) sin(�τ + β + �(t)),

ẋ = A(t) cos(�τ + β + �(t)).
(5)

We apply the Van der Pol transformation to express the
slow variables A and � and note that the right-hand
side only has small terms, thus, averaging the equations
results in

ξ̇ = −ε

2
F sin(ψ),

ψ = −ε� − ε
3

8
ξ2 − ε

2

F

ξ
cos(ψ),

(6)

where ξ = < A >, ψ =< � > and < · > denotes the
average. Elimination of the time yields the differential
equation

dξ

dψ
= F sin(ψ)

2� + 3
4ξ

2 + F
ξ
cos(ψ)

. (7)

Eq. (7) is solved by

C(ψ, ξ) = ξF cos(ψ) + �ξ2 + 3

16
ξ4 = const. (8)

With zero initial conditions, we have C(ψ, ξ) = 0.
Equation (8) is a first integral to the averaged equa-
tions, and its level sets determine the trajectories for
any given initial condition on theψ −ξ phase cylinder.
The level sets can be connected or disjoint depending
on the parameters and initial conditions. The first case
is simpler and leads to the maximum mechanism: for
level crossing, the highest value of ξ along a trajectory
must reach ξcrit = 1. In the critical forcing case, based
on Eq. (8), the trajectory becomes tangetial to ξ = 1,
taking place either at ψ = 0 (for � � 0, cf. Fig. 1a)
or at ψ = π (for � > 0 or even for small negative
�, cf. Fig. 1c). However, for slightly negative values
of �, a saddle appears along ψ = 0 and the level set
described by Eq. (8) can become disjoint (cf. Fig. 1b).
Thus, an additional level-crossing condition becomes
relevant. Reaching the critical level can only occur if
Csaddle > 0, leading to the saddle mechanism. In sum-
mary, based on the above conditions, the critical forcing
is given by

Fcrit(�) =

⎧
⎪⎨

⎪⎩

� + 3
16 for � < �SM,2,

8
9 (−�)3/2 for �SM,2 ≤ � ≤ �SM,1,

−� − 3
16 for �SM,1 < �,

(9)

with

�SM,1 = − 9

64
, and �SM,2 = − 9

16
. (10)

Equation (9) is shown graphically in Fig. 2.
These two mechanisms seem universal for escape,

as one might find them in various kinds of systems,
not only in the example of the quadratic-quartic well
[21,35,36].

3 Experimental setup

The following section describes the setup used to exper-
imentally validate the two distinct escape mechanisms
identified theoretically. The experiment utilizes a Duff-
ing oscillator test rig (see Figs. 3, 4).
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Fig. 1 Three types of mechanisms with critical forcing for dif-
ferent values of � and ε = 0.05. The level sets of C(ψ, ξ) are
represented in black, the trajectory with zero initial conditions in

green, and the critical level in red. For (a), the saddle level set is
shown in blue

Fig. 2 Critical forcing amplitude depicted against the discrep-
ancy between excitation frequency and the linearized natural fre-
quency of the potential well for homogeneous initial conditions.
Three concurring level-crossing mechanisms can be observed

The configuration includes a vertical shaft equipped
with two air bearings, which can be adjusted from 0 to
6 bars, to prevent radial displacement. In the absence
of air pressure, the shaft is supported by ball bearings;
as air pressure increases, the ball bearings disengage,
considerably minimizing friction. The axial support of
the shaft is provided by a ball bearing located at its
bottom. A copper disk on the shaft serves a dual pur-
pose; first, it increases the moment of inertia; second,
when an electromagnet is activated, it generates vis-
cous damping through eddy currents. A DC generator
can adjust the damping strength by setting voltageUD .

Fig. 3 Experimental setup of a double-well oscillator created by
the geometrical nonlinearities of coil springs

Two coil springs attach the shaft to the test rig frame,
creating symmetric restoring moments and resulting in
two stable equilibria in addition to an unstable one. The
springs experience both compression and expansion. It
is crucial to prevent excessive compression, as it can
cause the springs to buckle, which would substantially
change the system’s behavior. A schematic is shown in
Fig. 5. The system has a rotational degree of freedom ϕ.
A disk with moment of inertia J is attached to a spring
with stiffness c. In the unstable equilibrium, the com-
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Fig. 4 Sketch of the experimental setup

Fig. 5 Mechanical system schematic

pressed spring length is d; in the stable equilibrium,
the relaxed spring length is l0. The spring is fixed at
a distance R from the center of the disk. The system
experiences dry friction with coefficient μ and vari-
able viscous dampingwith coefficient k ∈ [kmin, kmax].
With the eddy current brake off, k = kmin.

An electric motor, consisting of an electromagnet as
a stator and a copper core as a rotor, provides external
momentumM(t). The rotor voltage uM (t) is controlled
by the signal of a function generator uS(t) augmented
suitably by a power amplifier.

The motor torque is linearly proportional to the cur-
rent of the rotor. The relationship between the voltage
and the current of the motor can be described by the

equation:

V = I Rm + L
dI

dt
+ E, (11)

where V is the applied voltage, I is the current, Rm is
the motor’s internal resistance, L is the inductance, and
E is the back EMF. However, in our operating speed
range, both inductive effects (L dI

dt ) and back EMF
(E) are negligible, which assumption simplifies the
torque to a linear relationship with the applied voltage,
as the dominant factor becomes the resistive voltage
drop. Thus, precise motor torque control is achieved
by directly varying the rotor voltage through the sig-
nal generator. However, within the specified frequency
range, the power amplifier cannot be treated as a sim-
ple constant voltage multiplier. Therefore, a detailed
power amplifier model will be provided in Sect. 4.1.

Measurement of the rotation angle and the signal
generator’s output voltage is essential for parameter
identification. The rotation angle is measured with a
21-bit digital encoder from Netzer Precision using the
SSI protocol. Data are read with an ArduinoTM Mega
2560 Rev 3 and transferred via serial communication
to MATLABTM. The Arduino board with an ADS1115
16-bit ADC measures the signal generator’s output
voltage. The setup supports a 200 Hz maximum sam-
pling frequency, accurately capturing the mechanical
system’s dynamics. Measurements were taken at 100
Hz.

4 Parameter identification

Based on the mechanical model in Fig. 5, a mathemat-
ical model of the experiment must be formulated first
to compare the experimental results with the numerical
ones, resulting in the following equation of motion.

J ϕ̈ + kϕ̇ + μsignϕ̇ + cR(R + d)×
(

1 − l0
√
2R2 + d2 + 2Rd − 2R(R + d) cosϕ

)

× sin ϕ = M(t). (12)

The system’s equilibria are in

ϕ1,2 = {0, π}, (13)
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ϕ3,4 = ± arccos

(
2R2 + d2 + 2Rd − l20

2R(R + d)

)

. (14)

ϕ2 = π cannot exist with the physical values of the
parameters since the spring does not allow such expan-
sion. For d < l0, the equilibrium ϕ1 = 0 is unstable,
and ϕ3,4 are stable. We utilized a double-well Duffing
model to simplify the model while maintaining accu-
racy. The simplified equation of motion is:

ϕ̈(t) + Dϕ̇(t) + E sign(ϕ̇)(t)) − A(ϕ(t) − C)

+ B(ϕ(t) − C)3 = FuM (t).
(15)

with parameters

– A – coefficient of the linear restoring moment,
– B – coefficient of the cubic restoring moment,
– C – bias term to align the coordinate system with
the encoder’s zero position,

– D – viscous damping coefficient per unit moment
of inertia,

– E – dry friction coefficient per unit moment of iner-
tia,

– F – voltage-torque proportionality factor per unit
moment of inertia.

The excitation moment is not precisely known due to
the missing motor torque constant, but modeling the
system’s dynamics can be done without it. By Ohm’s
law, the motor voltage uM (t) is linearly proportional
to the current, neglecting back electromotive force and
rotor inductance at low frequencies (cf. Fig. 6). Since
the voltage is measured instead of the current, F is
related but not equivalent to the torque constant.

Equation (15) describes a system with an unstable
equilibrium at ϕ1 = C and stable equilibria at ϕ2 =
C + √

A/B and ϕ3 = C − √
A/B. The linearized

angular eigenfrequency around each stable equilibrium
is given by

√
2A. This equation holds for ϕ̇ �= 0.

Parameters A, B,C, D, E , and F must be estimated
to align the system with numerical simulations. Fur-
thermore, since the direct measurement is not feasible,
uM (t) needs to be assessed based on the recorded signal
of the signal generator uS(t).

4.1 Estimation of the motor voltage

The Brüel & Kjær type 2706 power amplifier manual
indicates that a constant voltage on the function gener-
ator does not produce motor torque and results in zero

Fig. 6 Back electromotive force from manual shaft rotations,
observed values are 2–3 orders of magnitude lower than experi-
mental voltages

Fig. 7 Measurement of uM (t) at different frequencies of uS(t)
with a constant 50 mV amplitude

voltage on the rotor, as no current flows through the
armature; the amplifier acts as a high-pass filter, reduc-
ing signals below 10 Hz [37]. Our experiment runs at
1.4 −2.5 Hz, where the amplifier still amplifies signals
but with reduced and frequency-dependent amplifica-
tion.

Due to the absence of a Bode diagram in the power
amplifier’s datasheet, a measurement was performed to
determine its amplification. A 50mVharmonic voltage
with varying frequency was generated and amplified.
The output signal amplitude was measured for each
frequency. Figure7 shows the measurement data, and
Fig. 8 depicts the amplification function.

For numerical analysis, the power amplifier was
modeled using a DT1 elementwith the transfer function
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Fig. 8 Frequency-dependent amplification function of the
power amplifier

expressed as:

G(s) = KDs

1 + T1s
, (16)

where KD = 1.02 and T1 = 0.05, based on measure-
ments (cf. Fig. 8). The impulse response is defined as:

g(t) = KDδ(t)

T1
− KDe

− t
T1

T 2
1

. (17)

By substituting s = jω, the amplification and phase
shift can be calculated as:

G(jω) = KDω
√

1 + T 2
1 ω2

e
j arctan 1

T1ω , (18)

leading to:

A(ω) = KDω
√

1 + T 2
1 ω2

, θ(ω) = arctan
1

T1ω
. (19)

Assuming zero initial conditions, it becomes feasible
to calculate the excitation signal uM (t) based on uS(t)
and the transfer function.

UM (s) = G(s)US(s) = KDs

1 + T1s
US(s),

uM (t) = L−1
{ KDs

1 + T1s
US(s)

}
,

uM (t) =
∫ t

0
g(t − τ)uS(τ )dτ,

Fig. 9 Phase portrait of the shaft’s rotation after manual pertur-
bation

uM (t) = KD

T1

(

uS(t) − 1

T1

∫ t

0
e
− t−τ

T1 uS(τ )dτ

)

.

(20)

Equation (20) shows that uM (t) is not merely a scaled
version of uS(t) but also includes an additional integral
term. To identify the remaining parameters, the convo-
lution integral will be numerically evaluated since the
signal generator controls only the input of the power
amplifier uS(t), not themotor voltage uM (t), thus uS(t)
is considered the input and the results shall be inter-
preted accordingly.

4.2 Identification of the remaining parameters

The further parameter identification follows a two-step
method. First, the parameters A, B,C, D, E and F are
identified usingmeasured acceleration. Then, estimates
are refined by comparing measured to estimated angle
values based on Eq. (15). Given precise angle mea-
surement and low numerical differentiation noise, the
parameters in Eq. (15) are determined using the least-
squaresmethod tominimize the squared errors between
the measured and predicted acceleration values. For
greater precision, initial parameter identification is per-
formed without external excitation; first, the manually
perturbed decaying motion is recorded; then the data
are cleaned by removing the initial pushing phase to
focus on free motion, as shown in Fig. 9.

This experiment is repeated multiple times, and the
data is consolidated into a single vector with which the

123



A. Genda et al.

following optimization problem is solved:

min
pa

Ja(t;pa) = 1

N

∑

ti∈t

(
ϕ̈(ti ) − ˆ̈ϕ(ti ,pa)

)2
, (21)

where N is the number of data points, pa =
[A, B,C, D, E]�, and t contains all measurement time
instances. The acceleration is estimated based on Eq.
(15). Despite being a simplified version of Eq. (12)
and only an approximation of the actual system, Eq.
(15) has a high R2 = 0.996, indicating that it closely
approximates reality. The 2D surface for UD = 30 V
represented by ˆ̈ϕ(ϕ, ϕ̇) and the measured data is shown
in Fig. 10.

Although this fit yields estimates for [A, B,C, D, E],
the values of D and E remain somewhat uncertain due
to the similar effects of viscous and dry friction for
energy dissipation at large-amplitude vibrations.

Instead, the dry friction coefficient E is estimated by
simple static means: shifting the shaft out of its equi-
librium at ϕ3 to both directions and letting the spring
to return it to equilibrium reveals the width of the stic-
tion zone (�ϕ3 = 0.4264◦ = 0.007442 rad), where
the dry friction exceeds the spring force which directly
allows calculation of E . After the linearization of the
conservative restoring force around ϕ3 and assuming
no external excitation, Eq. (15) can be written as:

ϕ̈ + Dϕ̇ + Esign(ϕ̇) + 2A(ϕ − ϕ3) = 0. (22)

At the angle corresponding to the half-width of the stic-
tion region, the restoring torque equals the maximum
friction value in equilibrium:

E3 = 2A�ϕ3

2
= A�ϕ3 = 0.58. (23)

Repeating the static experiment around ϕ2 results in
a lower friction coefficient than this value; therefore,
the final estimate for further numerical validation is
E = 0.5.

Similarly, the parameter F can be identified. By
exciting the systemwith a harmonic voltage, the result-
ing acceleration data, and its least-square fit is shown
in Fig. 11.

A further step is to improve the parameter estimates
obtained from acceleration data by minimizing the
error between the measured angle data and the solution

Fig. 10 Measured versus predicted angular acceleration values
with added viscous damping (UD = 30 V )

Fig. 11 Measured versus fitted datawith an excitation frequency
of f = 1.75 Hz, voltage range �uS = 750 mV, and starting
phase β = 0, with additional damping (UD = 30 V ). R2 =
0.999

of Eq. (15)while including initial conditions in the opti-
mization, estimated from themeasured initial angle and
the numerically calculated initial velocity. Figures12,
13 show the results for both free and excited systems
that match nearly perfectly. The estimated parameter
values from distinct optimizations are close but never
equal due to model sensitivities and noise. Therefore,
in the numerical model, some rounded values that are
close to the findings are used, as listed in Table 1.
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Table 1 Optimal parameter values used in simulations

Parameters UD = 0 V UD = 30 V

A 84 84

B 1600 1600

C 0 0

D 0.25 1

E 0.5 0.5

F -0.9 -0.9

Fig. 12 Comparison of the measured data and numerical simu-
lation with optimized parameters, without added damping

Fig. 13 Comparison of themeasured data and numerical simula-
tionwith optimized parameters under external excitation uS(t) =
2.5+0.375 sin(1.75 ·2π t) and added dampingUD = 30 V . The
initial motion before excitation is observed due to the Coulomb
friction implementation in Eq. (15), valid only for ϕ̇ �= 0

5 Model validation

5.1 Measurement of the critical � − FS curve with
initial conditions at a stable equilibrium

The following presents the measurement results for the
critical forcing values. The shaft starts at ϕ3. The signal
generator is configured as follows:

uS(t) =
{

FS
2 sin (2π�t + β) , for 0 ≤ t

0, for t < 0,
(24)

with β as 0 or π . In practice, when starting an exper-
iment, it has to be ensured that the signal generator
voltage has been on zero for a sufficiently long time,
letting any effect of the convoluted power amplifier
signal decay. The numerical simulations assumed that
the signal generator history was at zero voltage for
t ∈ (−∞, 0]. Two voltages were applied to the eddy
current brake: UD = 0 V or UD = 30 V . Escape
was recorded if the shaft left the well corresponding
to ϕ3. Otherwise, if in 50 s the shaft did not leave, no
escape was recorded since all transient processes had
decayed. Figure14 shows in deep blue color escape,
in yellow no escape, and in turquoise the instances
where both outcomes occurred under the same param-
eters in consecutive tests, indicating sensitivity near
the escape boundary. Figure15 presents the � − FS

curves from the numerical integration of the model
with parameters from Table 1. Note that the power
amplifier’s frequency-dependent amplification factor
is not included in the scale, but it was considered in
the numerical simulations to approximate the system’s
dynamics.

The good agreement between experimental and sim-
ulation results, shown in Figs. 14, 15, respectively, val-
idates the numerical system model. When comparing
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Fig. 14 Measured� [Hz]−FS [V] map with equilibrium initial conditions. uS(t) = FS
2 sin(2π�t+β). Yellow color shows no escape,

blue shows escape, and turquoise shows both outcomes occurred with the same parameters in consecutive measurements

Fig. 15 Simulated � [Hz]− FS [V] map for uS(t) = FS
2 sin(2π�t +β) with equilibrium initial conditions (ϕ(0) = ϕ3 and ϕ̇(0) = 0).

The color scale shows the escape time. Yellow indicates that there was no escape within 50s

thefigures, the following similarities in the critical exci-
tation amplitudes between the numerical and experi-
mental results are observed:

– On the right branch of the V-shaped curve, the
maximum mechanism prevails, meaning that the
amplitude directly grows until it reaches the poten-
tial boundary (cf. Fig. 15a). On the left branch of
the V-shaped curve, the saddle mechanism domi-
nates, meaning that, in the beginning, the amplitude
seems to converge to some stationary value, still far
from the potential boundary. However, it suddenly
increases without caution and reaches the potential
boundary (cf. Fig. 17).

– Amarkedminimumoccurs,with the critical forcing
boundary on the � − FS plane forming a V-shape
that is uneven on its right-hand side due to the max-
imum mechanism, caused by separatrix crossing
resulting in a cascade of period-doubling bifurca-
tions and subsequent chaos [13]

– The curve’s minimum shifts left from the lin-
earized eigenfrequency. At ϕ3, this is

√
2A =

12.96 rad/s = 2.06 Hz, while the measured min-
imum is 1.7 − 1.8 Hz, depending on damping.

– To the right of the critical force’s minimum, the
boundary distinguishing the escape and non-escape
zones is irregular. Parameter regions with escape
(blue ’bays’) and no escape (yellow ’peninsulas’)
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Fig. 16 Time series comparison of measurements with parameters from an escape ’bay’ and a no-escape ’peninsula’ for � = 2.15 Hz,
UD = 0 V, β = 0. The top graph illustrates the rotation angle, while the bottom graph shows the excitation signals

Fig. 17 Experimental
time-series data showing
escape through the saddle
mechanism for FS = 375
mV, � = 1.65 Hz, UD = 30
V, β = 0.The top graph
illustrates the rotation angle,
while the bottom graph
shows the excitation signals

mix together. In this way, an increase in the exci-
tation amplitude can cause an escaping scenario to
’stabilize’ and revert to a non-escaping one (passing
from a ’bay’ to a ’peninsula’ when moving upward
in the diagram).

– The initial phase β minimally impacts the loca-
tion of the V-shaped critical forcing curve, mainly
affecting the curve’s right-hand side.

– The required excitation amplitude increases with
damping, from FS = 0.4 without damping to
FS = 0.7 with damping. The damping also shifts
the curve’s minimum left from 1.8 Hz to 1.7 Hz.

– Escape ’bays’ and no-escape ’peninsulas’ persist
with increased viscous damping (cf. Fig. 16). A
larger excitation amplitude can increase the vibra-
tion amplitude more rapidly. Still, the highest enve-

lope point is not necessarily always greater than the
one corresponding to a smaller excitation ampli-
tude, as the latter’s peak may occur sooner, allow-
ing transients to decay further. Changing the initial
excitation phase shows that the V-shape’s location
and form are consistent near the sharp minimum.
Still, the curve changes farther away, especially
on the right-hand side of the curve, aligning with
numerical predictions (cf. Figs. 14, 15).

These experimental results match the findings of many
previous numerical and analytical studies on the loca-
tion and shape of the critical forcing curve [17,21,22].
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5.2 Determination of the critical � − FS curve for
quasi-steady excitation amplitude

This section determines the critical excitation ampli-
tude for escape without transient effects by grad-
ually increasing the harmonic excitation amplitude
and allowing the transients to subside. Depending on
the excitation frequency, the so-far-attracting periodic
solution loses stability at a certain amplitude, leading to
rapid escape (saddle mechanism) or a period-doubling
cascade and chaos (maximum mechanism). This latter
phenomenon is related to the crossing of the separatrix
and was accurately described analytically byMelnikov
analysis for a similar damped bi-stable Duffing oscil-
lator [14].

To provide conditions similar to the experimental
ones, in simulations, the function generator’s output is

uS(t) = Fmax

2

t

tmax
sin(2π�t), (25)

where Fmax and tmax are sufficiently large to ensure
that the particle is driven out of its initial well with a
quasi-statically increasing amplitude.

Figure18 shows the critical forcing amplitude val-
ues for the numerical and experimental results, indicat-
ing a sharp minimum that simulations accurately pre-
dict. This minimum is shifted when the eddy current
brake acts with additional viscous damping on the sys-
tem (cf. Fig. 18b). The excitation amplitude increases
from FS = 0.5 V to FS = 0.8 V, and the frequency
shifts leftward from approximately �min = 1.75 Hz
to �min = 1.65 Hz, which is significant consider-
ing the system’s linearized eigenfrequency of about
�lin = 2.05 Hz.

The initial excitation phase is irrelevant because
the system’s vibrations quickly adapt, as evidenced in
experiments and simulations, with or without viscous
damping, as shown in Figs. 19, 20.

6 Further observations and discussion

In addition to the experimentally observed escape
mechanisms reported in the previous section, several
other nonlinear phenomena were observed in this sim-
ple system. We report on the most interesting ones in
the following.

Figure21 shows the amplitude increasing slowly,
then rapidly, nearly reaching the saddle but falling back.
Over several cycles, the transients damp out, leading
to periodic motion. In contrast, Fig. 22 shows a rather
chaotic scenario in which the system escapes from its
initial well after more than 30 excitation periods. In
Fig. 23, another example is given to illustrate the sensi-
tivity and chaotic behavior of the system, showing that
it can either stay in the original well or escape despite
seemingly unchanged ambient conditions.

Although escape time was not directly measured, a
trajectory’s escape is usually determinedwithin the first
few excitation periods. Numerical simulations confirm
that escape times longer than 20s are rare, with few
trajectories persisting within the well for more than
30-50 excitation periods. Such trajectories, if any, are
chaotic, as shown in Fig. 22. Typically, if a trajectory
does not escape within the first few attempts, as shown
in Figs. 15b and 21, it reaches a periodic steady state
vibration due to damping. However, unlike the lin-
ear system investigated in [15], escape can still occur
later due to large nonlinearities, as shown in Figs. 15a,
where only the third amplitude envelope peak resulted
in escape.

Measurement data suggest several attractors in the
phase space, with complex interconnected regimes
that depend on initial conditions, system parameters,
and excitation parameters. As shown in Fig. 24, there
is a coexistence of periodic solutions and possibly
chaotic attractors, a determination that is challenging
to make based on experiments due to the long tran-
sients before reaching a periodic solution. For example,
Fig. 25 presents data where the motion does not exhibit
discernible patterns, making it uncertain whether con-
tinued observation would reveal a periodic solution.

It should be noted that the above findings highlight
deviations from the 1:1 resonance regime, indicating
that the actual escape dynamics is more complex than
the one dictated by pure 1:1 transient resonance.

7 Conclusions and scope for future research

This research aimed to experimentally confirm the
escape mechanisms documented in the literature [13,
21,22] by developing a setup comprising a test rig
with a high precision capacitive angle encoder, pre-
cisely adjusted viscous damping through eddy currents,
and an electromotor applying arbitrary-shaped torque,
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Fig. 18 Comparison of numerical results with experimental
ones by gradually increasing the excitation amplitude and noting
its value at the point of escape. Despite some quantitative differ-

ences, the prediction of the sharp minimum’s location and value
shows good agreement

Fig. 19 Numerical simulation time-series data with amplitude
sweep at � = 1.4 Hz, D = 1. The initial phase is irrelevant in
this case. Escape occurs at FS,crit = 1.601 V. The saddle mech-
anism is observed, with a sudden increase in oscillation ampli-

tude occurring far from the well’s boundary. After the transient
process following the escape, the solution stabilizes around a
periodic, full-well oscillation

using adouble-wellDuffingoscillatormodel for system
identification and validation. The chosen experimental
setup is simpler than many previous experiments [24–
26], yet more universal, as damping (with simple mod-
ifications, even friction) can be precisely controlled.
Furthermore, the excitation can take an arbitrary shape
and is not limited to a harmonic one.

The experimental findings reveal several key aspects.
First, the two analytically found escape mechanisms,
the saddle and maximum mechanisms, were con-
firmed by experiments. The saddle mechanism allows
escape without precaution in both types of experimen-
tal setups. Meanwhile, the maximum mechanism is
identifiable through large oscillations approaching the
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Fig. 20 Experimental time-series data with amplitude sweep at � = 2.0 Hz, UD = 0 V. Escape occurs at FS,crit = 1.070 V. Before
escape, a cascade of period-doubling bifurcations is observed

Fig. 21 Non-escaping
experimental scenario
where both the saddle and
the maximum mechanism
are insufficient to lead to an
escape with FS = 350 mV,
� = 1.7 Hz, UD = 30 V,
β = 0

Fig. 22 Experimental
time-series data of chaotic
escape through the
maximum mechanism for
FS = 425 mV, � = 2.05
Hz, UD = 0 V, β = 0
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Fig. 23 A chaotic
experimental scenario
where, under the same
parameters and initial
conditions, the system
sometimes remains within
the well and sometimes
escapes. FS = 500 mV,
� = 2.1 Hz, UD = 30 V,
β = π

Fig. 24 Time-series data with amplitude sweep at � = 1.4
Hz, UD = 0 V. Initial phase is irrelevant. Escape occurs at
FS,crit = 1.244 V. The saddle mechanism shows a sudden
increase in oscillation amplitude far from the well boundary.

After transient decay, periodic full-well oscillation stabilizes and
remains stable even when excitation amplitude is reduced. Upon
losing stability, vibrations continue in a single well with reduced
amplitude

potentialwell boundary.When the excitation amplitude
gradually increases, an additional cascade of period-
doubling bifurcations may also be observed. These
effects remain robust even with increasing damping;
however, the minimum of the V-curve shifts to higher
forces and lower frequencies.

Second, a good alignment between the experimen-
tal results and the simulations could only be reached
through thorough analysis and modeling of the entire
experimental setup, including the power amplifier, the
electric motor, and the mechanical system. A careful

analysis of friction mechanisms would be necessary to
improve the theoretical model further.

Third, irregular escapeboundaries, such as nonescap-
ing ’peninsulas’ and escape ’bays,’ are accurately iden-
tified. The occurrence of ’peninsulas’ and ’bays’ is
likely associated with the phase of the oscillations. It is
important to recall that these experiments are designed
with a suddenly activated forcing signal, the phase of
which can have an effect on the escape behavior. Fur-
thermore, when started in equilibrium, the appearance
of escape ’bays’ at lower amplitude values (cf. Fig. 14)

123



A. Genda et al.

Fig. 25 Measured time-series data with harmonic excitation. � = 1.6 Hz, FS = 1.5 V, UD = 30 V, β = π/2 and added dry friction
(non-quantified). The motion appears chaotic and does not settle into a recognizable pattern

than those needed for escape from a quasi-steady-state
solution (cf. Fig. 18) suggests that transients induce
escape in this regime, as the vibration envelope exhibits
several peaks before reaching a periodic steady-state
solution.

This research opens several promising avenues for
future studies. The proximity of 1:1 resonance was
examined, but the potential for sub- or super-harmonic
resonance and its impact on the critical � − F
curve is also a fascinating topic. Investigating escape
under frequency-modulated signals, particularly sweep
signals, is of significant technical importance since
machinery operating at a specific speed must pass
through resonance to reach its operational point. Simi-
larly, power-off involves passing through resonance in
the opposite direction. Understanding the dynamics of
the saddle and maximum mechanisms can help antici-
pate system responses in both directions.
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