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ABSTRACT: The ternary sulfido chromate (II), K2[Cr3S4], was
synthesized through a straightforward solid-state method as the first
alkali metal chalcogenido chromate with the formal oxidation state +2,
which was verified by X-ray absorption spectroscopy. Single-crystal
diffraction analysis reveals the chromium ions to be coordinated by sulfur
in two geometric arrangements: square planar and square pyramidal. Both
environments are unusual for transition metal complexes with a d4
electron configuration. Structural distortions from the ideal arrangement
are present in both coordination environments. Measurement of the
magnetic moment indicates a value of 3.60 μB per chromium ion, which
appears at first glance to contradict the standard ligand field theory.
Quantum chemical calculations suggest high-spin states for both
coordination geometries with a spin delocalization due to Cr−Cr interactions, leading to an intermediate-spin state with magnetic
moment values very close to the experimental results, and attributing the structural distortions as the first example of the Jahn−
Teller active d4 system with nonoctahedral coordination geometries. The optical, dielectric, and impedance measurement results
indicate the potential as a synergic insulator, capacitor, and high-dielectric-constant material.

■ INTRODUCTION
Inorganic metalate salts of 3d transition metals are a well-
known class of solid-state materials, including unique
candidates for electronic1 and spintronic2 applications. These
materials can be obtained incorporating various elemental
constituents at different ratios, yielding a large number of
different structure types, which allow the design of chemical
and physical properties accordingly.3,4 Most of the literature-
known chromate salts are based on chalcogenido and
halogenido chromate anions. The well-known oxido chromate
(VI) anion, [CrO4]2−, and oxido dichromate (VI) anion,
[Cr2O7]2−, can be found in many laboratories, as well as be
employed for corrosion protection coating and as oxidizing
agents.5,6 Although chromium ions, in general, can obtain
several formal oxidation states, ranging from −4 to +6, the
most common ones are +2, + 3, and +6.7 Chromate (VI)
compounds usually have less stability compared to chromates
(III). Compounds containing chromium in the formal
oxidation state +2 are mainly unstable and comparably
uncommon as they are prone to rapid oxidation or
decomposition to chromium(III), especially when exposed to
air.8 The toxicity of the chromium-containing compounds is
reduced by decreasing the oxidation states. While the

chromates (VI) are very toxic and carcinogenic, chromates
(III) are typically nontoxic.9

There are several known oxido- and chalcogenido chromates
(III): K[CrO2],

10 Na[CrO2],
11 K[Cr5S8],

12 Rb[Cr5S8],
12

Cs[Cr5S8],
12 Li[CrS2],

13 Rb[Cr5Se8],
14 and K[CrSe2].

15 In
contrast, chromate (II) compounds are very rare, and the only
literature-reported ternary alkali metal chromates are halogen-
ido chromates: Rb[CrCl3],

16 Cs[CrCl3],
16 Rb[CrI3],

17 Rb-
[CrBr3],

18 Li2[CrCl4],
19 Na[CrF3],

20 and K[CrF3].
21 The

chromium ions in all of these compounds, similar to the
chromates (III), are octahedrally coordinated by halogens and
typically crystallize in the double perovskite structure type.22

These compounds, containing octahedral chromium(II), are
well-known for exhibiting the Jahn−Teller effect, which is a
structural distortion resulting from an asymmetric electron
configuration.19−21 The energetic degeneration of the eg
representation (ideal high-spin case) is lost, resulting in
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different levels of distortion in the crystal structure as well as
variations in the electronic and magnetic properties.20,21 To
the best of our knowledge, potential impacts of the different
coordination environments of chromates (II) are still
unknown, as neither nonhalide chromate (II) of alkali metals
nor nonoctahedrally coordinated chromate (II) salts are
reported so far. One of the unique aspects of chromium
chemistry lies in its diverse coordination environments, which
can significantly influence the physical properties of its
compounds. In particular, chromium(II) tends to exhibit a
range of coordination geometries, including octahedral,
tetrahedral, and square planar, depending on the ligands and
overall structure of the compound.5,7,16 The coordination
environment directly affects the electronic structure of
chromium, leading to variations in properties such as
magnetism, electronic band structure, and optical behavior.20,21

This is especially relevant in compounds where nonhalide
ligands, such as chalcogenides, are involved, as they can
introduce new bonding interactions and distortions that are
distinct from those observed in more common halide
chromates. Thus, the exploration of chalcogenido chromates
(II), such as K2[Cr3S4] (1), opens up new avenues for
understanding how these coordination environments affect the
overall behavior of the material.

Based on our previous investigations on sulfido metalates of
the transition metals,23 we were interested to expand these
investigations to the electron poorer transition metals, i.e.,
chromium. In this work, we report the synthesis of the first
alkali metal chalcogenido chromate (II), 1, in a multigram
scale through a straightforward and time-efficient synthetic
method. The structural investigations and further evaluations
of the magnetic, electronic, and optical properties as well as

quantum chemical calculations were conducted to reveal their
correlations.

■ RESULTS AND DISCUSSION
Synthesis and Structural Properties. 1 was synthesized

through a straightforward solid-state reaction by fusion of an
intimate mixture of K2S, Cr, and S with the stoichiometric ratio
of 1:3:3 at a temperature of around 1273 K for approximately
10 min under a constant flow of argon, according to the
following reaction equation:

K S 3Cr 3S K Cr S2 10min

1273K
2 3 4+ + [ ] (1)

The reaction yielded 15.36 g (93% yield) of 1 as a metallic
shiny powder of dark gray color. The reaction can be scaled up
by using larger reaction containers. The mass loss originates
from a residual material at the wall of the container. Single
crystals of 1, obtained via a solvothermal post-synthetic
treatment in pyridine at 423 K for 48 h, indicate a needle-
shaped morphology and dark gray color. 1 crystallizes in the
monoclinic space group C2/m according to the single-crystal
X-ray diffraction (SC-XRD) results. Information about the
refinement procedure and structural parameters are available in
the Supporting Information. Figure 1 displays an excerpt of the
crystal structure. The Cr ions are located in two coordination
geometries: square planar (Cr1) and square pyramidal (Cr2;
Figure 1a). In the square planar and square pyramidal
polyhedra the chromium ions are coordinated by four and
five sulfur ions, respectively. The square pyramidal polyhedra
are connected to each other by edge-sharing to yield two
antiparallel strands (Figure 1b). These strands are intercon-
nected via the square planar polyhedra by additional edge-
sharing along the crystallographic a-axis (red arrow line, Figure

Figure 1. Excerpts of the crystal structure of 1. (a) Depicted along the (111) direction, indicating the edge and/or corner sharing square planar and
square pyramidal polyhedra. (b) The edge-sharing square pyramidal polyhedra, creating antiparallel strands along the b-axis. (c) Depicted along the
b axis, displaying anionic layers propagating in the ab plane (red arrow line depicts interconnection of strands). (d) Depicted along the c axis,
displaying the anionic substructure. (e) The anionic layers and layers of potassium ions positioned in between.
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1c). This interconnection of pyramidal and planar polyhedra
creates overall two-dimensionally extended anionic layers
(Figure 1d,e). Within these anionic layers, there are two
square pyramidal polyhedra of [CrS5]8− per square planar
polyhedron of [CrS4]6−. Within the square planar polyhedra
(Figure 2a), the chromium−sulfur bond lengths are
2.3720(11) Å for Cr1−S1 and 2.4767(9) Å for Cr1−S2,
indicating a small distortion from the ideal square planar
geometry. The squares are slightly distorted to a rhombus
shape with corner angles of 92.501(33) and 87.499(31)°, while
the bond angles of adjacent S1−Cr1−S2 and S2−Cr1−S1 are
81.636(32) and 98.364(32)°, respectively. Within the square
pyramidal polyhedra (Figure 2b,c), the chromium−sulfur bond
lengths are 2.4264(7) Å for Cr2−S1 and 2.4324(8) Å for
Cr2−S2, in the basal planes, while the chromium ions are
positioned out of the basal planes (0.3677 Å above the plane,
see Figure 2c) with the angle of S2−Cr2−S1′ of 101.977(8)°.
The corner angles of the square basal planes are 90.000(14)°,
indicating an ideal square shape without distortion. The Cr2−
S1′ bond lengths are 2.5540(11) Å. The polyhedra are slightly
distorted by elongation toward the apical sulfide ligand.
Potassium ions are located in between such [Cr3S4]-layers with
the closest sulfur neighbors forming face-sharing distorted
octahedra. The coordination geometries of square planar and
square pyramidal are more common for electron-rich 3d-
transition metals such as Co and Cu,24,25 while 1 is the first 3d4
system indicating these coordination environments. Based on
standard ligand field theory (vide inf ra), in both the low-spin
and the high-spin states, the electron configurations are
symmetric, preventing Jahn−Teller effects as an origin of the
experimentally observed distortions.

The phase purity of 1 was evaluated by using powder X-ray
diffraction (P-XRD). The Rietveld refinement (Figure S1)
shows the purity of 1 of around 98 wt % with a negligible
amount (less than 3 wt %) of literature-known KCrS2 as a side
product. Due to the considerable impact of preferential
orientations (needle-shaped crystals), this quantification is
not fully reliable and can only serve as an estimate. The
Rietveld refinement of 1 indicates a crystallinity degree of 85 ±
2% and an average crystallite size of 557 ± 16 nm. The
elemental ratios in 1 were analyzed based on energy-dispersive
X-ray spectroscopy (EDX), verifying the stoichiometric ratio of
2:3:4 for K:Cr:S (Figure S2). More details of the P-XRD and
EDX measurements are provided in the Supporting Informa-
tion.

The thermal stability profile of 1 was evaluated by
thermogravimetry coupled with differential scanning calorim-
etry (TG/DSC) measurements. No observable phase trans-
formation or mass loss occurred up to 1000 K (upper limit of
the measurement). According to the obtained sum formula of
1, based on the SC-XRD and EDX results, the nominal average
oxidation state of Cr ions is +2, when considering the
oxidation states of potassium and sulfur ions equal to +1 and
−2, respectively. To experimentally prove the oxidation state of
chromium ions in 1, the shifts of the X-ray absorption edges
were investigated in the X-ray absorption near-edge structure
spectroscopy (XANES) region.

Figure 3a shows the XANES region of the XAS spectra of 1
in comparison to the measured spectra of elemental

Figure 2. ORTEP diagram of the chromium coordination in 1, displaying the bond lengths and angles in (a) the square planar coordination
geometry of [CrS4]6−, (b, c) the square pyramidal coordination geometry of [CrS5]8−. Deviations in the bond lengths and angles in both square
planar and square pyramidal environments indicate slight distortions in the crystal structure compared to the ideal geometries.

Figure 3. X-ray absorption near-edge structure spectroscopy
(XANES) of (a) normalized XAS spectra (energy calibrated) of the
chromium K-edge of 1 and reference materials, and (b) the second
derivative of normalized XAS spectra of 1 and reference materials:
chromium metal foil (black), Cr2O3 (blue), CrO2 (green), and 1
(red).
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chromium(0), chromium(III) oxide, Cr2O3, and chromium-
(IV) oxide, CrO2, as reference materials. E0 was determined
after energy calibration for CrO2, Cr2O3, and 1 from the zero
crossing of the respective main feature26 of the second
derivative of the XAS spectra (Figure 3b). Further information
about the preparative procedure and details on the measure-
ments can be found in the Supporting Information.

For the two reference materials Cr2O3 and CrO2, the energy
shifts, ΔE, are 10.6 and 11.6 eV, respectively, which were
experimentally determined relative to the energy position of
the elemental chromium K-edge (5989.0 eV). To determine
the oxidation state of chromium ions in 1, these values can be
compared with the value of ΔE (1) = 5.6 eV, experimentally
determined for 1, as well as the reported values in the literature
for various chromium compounds.26

The ΔE value of 1 is in between the ΔE values of elemental
chromium and Cr2O3, suggesting the oxidation state of
chromium ions in 1 being between 0 and +3. The energy
positions of the measured reference materials (Figure S3) can
be described with a linear function that shows that for 1, an
oxidation state of +2 tends to be in the slightly upper range of
the energy position of ΔE (1), in agreement with the
literature-reported prediction of the energy shifts for
compounds with different chromium oxidation states.26

Magnetic Properties. Figure 4a shows the field-dependent
magnetization hysteresis curves of 1 by applying a magnetic
field up to 5.00 T at temperatures of 4, 30, and 300 K. At low
temperatures, the curves illustrate linear trends with the
saturation region beginning at applied magnetic fields higher
than 2.00 T. At high temperatures (300 K), the magnetization
curve is fully linear with very low magnetic susceptibilities and
without any saturation, indicating a paramagnetic structure of
1. The temperature-dependent magnetization plots, including
field cooling (FC) and zero field cooling (ZFC) are shown in
Figure 4b. By increasing the temperature, the magnetization
values in both FC and ZFC curves are increased from around
10−50 K and then sharply decreased to a plateau level up to
370 K (the measurement upper limit), indicating an
antiferromagnetic (AFM) structure. The initial decrease of
magnetization values in the range of 4−10 K, often termed a
Curie tail,27 might be attributed to the minor effects of KCrS2
impurity or other by P-XRD undetectable impurities. Further
discussions on the potential effects of impurities on the
magnetic properties are provided in the Supporting Informa-
tion. The inverse magnetic susceptibility (Figure S7) can be
fitted according to the Curie−Weiss law on the FC curve at
temperatures higher than 100 K, suggesting a Neél temper-
ature of around 100 K. The effective magnetic moment,
calculated from the inverse susceptibility curve, is 3.60 μB per
chromium ion. This value is lower than expectations from the
standard ligand field theory for d4 systems. The high-spin
electron configurations in both square planar and square
pyramidal geometries would predict 4.89 μB per chromium
ion. According to standard ligand field theory, the square
planar and square pyramidal geometries of 1 provide two
different orbital splittings (Figure 4b-inset). At first glance, this
appears contradicting and suggests an uncommon magnetic
behavior of chromium ions in 1. The low-spin and high-spin
states in both coordination geometries would be expected to
give magnetic moments of around 1.86 and 4.89 μB per
chromium ion, respectively, which contradict the experimen-
tally obtained value (3.60 μB). In the literature, such a
contradiction between experimentally measured magnetic

moments and the calculated ones is reported for Y2CrS4.
28,29

The oxidation state of chromium ions in Y2CrS4 is given as 2+,
with an octahedral coordination of chromium ions. In 2007,
Tezuka et al. reported the effective magnetic moment of 3.27
μB for chromium ions in Y2CrS4 according to the powder
neutron diffraction results measured at 10 K.28 A few years
later, Liu et al. reported the magnetic moments of 3.53 μB for
chromium ions in Y2CrS4, experimentally measured according
to the magnetic susceptibility curve in the range of 150−300
K.29 In both studies, a Neél temperature of around 65 K is
reported. Additionally, signs of ferromagnetic components at
temperatures lower than the Neél temperature are mentioned,
which is in agreement with the observed Curie tail in the
present study. However, within the studies on Y2CrS4, no
explanations about the differences between the measurements
results and theory are given.
Density Functional Theory Calculations. To investigate

the apparent discrepancy of the magnetic results with the

Figure 4. (a) Field-dependent magnetization curves for 1 at different
temperatures as a function of the external applied field up to 5.00 T.
(b) Zero field cooling (ZFC) and field cooling (FC) plots of 1 as a
function of measurement temperature under an applied field of 0.05
T. (b-inset) Molecular orbital diagrams according to standard ligand
field splitting for d4 square planar coordination geometry with a high-
spin state (left side) and the square pyramidal coordination geometry
when the center metal ion is out of the basal coordinating plane,
showing a high-spin state (right side).

Chemistry of Materials pubs.acs.org/cm Article

https://doi.org/10.1021/acs.chemmater.4c01764
Chem. Mater. XXXX, XXX, XXX−XXX

D

https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.4c01764/suppl_file/cm4c01764_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.4c01764/suppl_file/cm4c01764_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.4c01764/suppl_file/cm4c01764_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.4c01764/suppl_file/cm4c01764_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/acs.chemmater.4c01764/suppl_file/cm4c01764_si_001.pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01764?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01764?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01764?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.4c01764?fig=fig4&ref=pdf
pubs.acs.org/cm?ref=pdf
https://doi.org/10.1021/acs.chemmater.4c01764?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


ligand field theory as well as the unexpected structural
distortions, the electronic structure of 1 was explored using
density functional theory (DFT)-based means (see the
Supporting Information). In the framework of these
computations, the structure models were also optimized so
that the overall geometry was kept in the final circles of the
calculations. The DFT results indicate an indirect band gap
with an energy of 1.52 eV (Figure 5a) at an optimized U-value

of 3.7 to match the experimental optical band gap (Figure S4).
The computed densities-of-states (DOS) (Figure 5b) display
the dominant contributions of Cr-d and S-p in both conductive
and valence bands. Calculations were carried out based on the
different starting models of low-, intermediate-, and high-spin
states by inputting the initial magnetic moments of 0, 2.8, and
3.7 (both for intermediate-spin), and 4.9 μB (obtained
according to standard ligand field theory), respectively. In all
cases, the final values of computed magnetic moments were
around 3.64 μB, which is in a good agreement with the
experimentally obtained magnetic moment (3.60 μB) and
confirms a deviation from the pure high-spin states.

A closer inspection of the electronic situation indicates Cr−
Cr interactions and partial delocalization of the spin states. The
experimentally obtained distance between Cr1 and Cr2 is
around 2.8468(2) Å. Such an interaction explains the structural
distortions in the coordination environment of chromium ions,
as well as the unexpected magnetic moment of 1. The Cr−Cr
interactions might cause a partial delocalization in the spin
states in the square planar and square pyramidal molecular
orbitals. The delocalized spin state systems of the square planar
environments can lead to asymmetric electron configurations
and thus Jahn−Teller-like distortion. The above-mentioned
spin state delocalization changes the final magnetic moments,
while the calculated average magnetic moment for these
molecular orbitals is around 3.87 μB, which is comparable to
the experimental value of 3.60 μB. Further experimental
analysis, including neutron powder diffraction, is planned.

Electrical Properties. Motivated by high k values and
outstanding electrical conductivities found for metalate salts
with 2D extended anionic sublattices,23 the dielectric and
impedance properties of 1 were investigated. The dielectric
constant of 1 at a frequency of 1 kHz is around 437, which is
remarkably high compared to the reference material SiO2 (k =
3.6−3.9).30,31 The electrical resistivity as well as dielectric
constant and loss values of 1 decrease by increasing the
frequency in the range of 0.10−100 kHz (Figure S5). The
results of the complex impedance spectroscopy of 1 (Figure
S6) indicate a semicircular arc with bulk resistivity and ionic
conductivity values of around 28 kΩ and 66 μS·cm−1,
respectively. The semicircular trend of the Nyquist plot
indicates the ionic nature of the conductivity as a dominant
mechanism of the electrical conductivity. Due to the layered
structure of 1, potassium ion migration within the cationic
layers, between anionic layers, could be considered as the main
ionic conducting process. Further details of the electrical
measurements and results are available in the Supporting
Information.

■ CONCLUSIONS
In the current work, the first alkali metal chalcogenido
chromate, K2[Cr3S4], with chromium ions in the formal
oxidation state of +2 was obtained through a large-scale
synthetic method. K2[Cr3S4] is the first metalate with d4
configuration of the center metal ion with square planar and
square pyramidal coordination environment including a slight
structural distortion. Partially delocalized intermediate-spin
states explain the structural distortion as well as the unexpected
magnetic moments. This work presents a novel compound
with unexpected structural distortions, coordination environ-
ments, and magnetic properties, as well as the first electrical
characteristics of a nonhalide chromate (II).

■ EXPERIMENTAL SECTION
Materials and Synthetic Approaches. The starting materials

including potassium (Acros Organics, 98%), chromium (Merck,
99.5%), and sulfur (abcr, 99%) were purchased commercially and
utilized without further purifications. As a binary starting material, K2S
was synthesized by reacting the stoichiometric ratio of potassium (2
equiv, 0.513 mol, 20.26 g) and sulfur (1 equiv, 0.257 mol, 8.30 g) in
liquid ammonia at temperature of 235 K, according to the literature.32

Before using, the purity of the as-synthesized product is evaluated and
confirmed using the P-XRD technique. Due to the sensitivity of some
starting materials as well as products to air/moisture exposure, all
preparation and manipulation steps were conducted inside an argon-
filled glovebox and/or under argon flow through the Schlenk-line
technique.

To synthesize 1, the stoichiometric ratio of K2S (1 equiv, 0.047
mol, 5.270 g), Cr (3 equiv, 0.136 mol, 7.073 g), and S (3 equiv, 0.135
mol, 4.362 g) was homogeneously mixed, transferred to a silica glass
ampule, and heated up to around 1273 K for 10 min under constant
flow of argon, using an oxygen−methane flame torch. After cooling
the ampule down to room temperature, it was transferred to a
glovebox, carefully broken, and the crude product was manually
selected and ground to a fine powder. The single crystals of 1 were
obtained from a solvothermal treatment by placing around 125 mg of
fine powder and 2 mL of pyridine into a 10 mL glass vial with a
designed pressure release cap (>3 bar) and heating at 423 K for 48 h.
Characterization Techniques. To determine the crystal

structure of 1, the single crystals were isolated and picked under a
light microscope and mounted in Paraton oil. The picked crystals
were measured using a Bruker D8 Venture diffractometer with Mo−
Kα radiation (λ = 0.71073 Å) at 100 K. The crystal structure was

Figure 5. (a) Spin-polarized electronic band structure and (b)
densities-of-states (DOS) curves of 1. (c) The projected crystal
orbital Hamilton populations (pCOHP) and (d) integrated crystal
orbital bond indices (ICOBI), which have been provided for one of
the spin channels.
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solved and refined in Olex233 using ShelXT34 and ShelXL,35

respectively. To present the depictions of the crystal structure, it
was depicted using DIAMOND4.5.2.36 The phase purities of the
starting materials as well as 1, finely ground powders were investigated
using a Malvern Panalytical Empyrean using Cu−Kα radiation (λ =
1.54184 Å) at 293 K. The samples were prepared by placing
approximately 50 mg powder on a self-printed PLA sample-holder
according to the reported protocol.37 The P-XRD results were refined
based on the Rietveld structure refinement38 technique using GSAS
II39 to extract the crystallographic parameters such as crystallinity
degree and crystallite size. Additionally, an evaluation of the elemental
ratio of 1 was conducted using energy-dispersive EDX. More details of
the SC-XRD, P-XRD, and EDX measurements and results are
provided in the Supporting Information.

To carry out the XANES measurements, chromium K-edge
(5989.0 eV) XAS was measured on the KMC-2 beamline40 at
BESSY II synchrotron at Helmholtz-Zentrum Berlin. This beamline
operates a graded SiGe monochromator constructed of two
independent crystals (energy resolution of E/ΔE = 4000). The
beam intensity at KMC-2 is stabilized to an accuracy of 0.3%. The
Athena software from the Demeter 0.9.26 software suite41 was used
for normalization and energy calibration. For the energy calibration, a
Cr metal foil was measured simultaneously as a reference material in
each case of XAS measurements. For all samples, XAS measurements
were conducted in transmission mode. To prepare sample for the
XANES measurements, fine powder of 1 and the reference materials
were brushed onto a Kapton tape. For 1, the sample preparation was
done in a glovebox, and the Kapton tape with the sample was then
subsequently sealed in an airtight sample container in the glovebox.

The UV−visible spectroscopy measurements were conducted by
placing around 5 mg of fine powder into a Praying Mantis accessory
by recording the optical reflection spectra using a Varian Cary 5000
UV/vis/NIR spectrometer in the wavelength range of 200−1400 nm.
The plotted results of the UV−vis measurements are available in the
Supporting Information. Magnetic measurements were carried out by
preparing samples of around 15−20 mg of fine powder into a
polyethylene capsule and then transferred to a superconducting
quantum interference device magnetometer (SQUID, MPMS3-7T
Quantum Design). The measurements were done at different
temperatures of 4, 30, and 300 K under an applied field of up to
5.00 T. The FC and ZFC measurements were conducted under an
applied field of 0.05 T.

To measure the electrical resistivity, dielectric, and impedance
properties of 1, approximately 400 mg of fine powder was placed in a
stainless-steel mold with the diameter of 13 mm and pressed as pellets
by applying pressure up to 80 kN·cm−1 using a uniaxial hydraulic
press. The pressed pellets were sintered at a temperature of 973 K for
12 h under an argon atmosphere, covered on both sides by silver paste
(abcr, sheet resistivity <3.8 × 10−3 Ωcm−1, for the layer thickness of
3.8 × 10−4 cm), as electrodes, and then dried at 373 K for 60 min.
The dielectric properties of pellets were measured at room
temperature and in the frequency range of 0.10−100 kHz using an
LCR meter (East Tester, ET4410), while the impedance properties
were measured at the same temperature and in the frequency range
100 mHz to 100 MHz using an electrochemical impedance analyzer
(EIS, BioLogic MTZ-35). Analyzing and simulating the complex
impedance plots were carried out utilizing ZSimpWin program.42 The
corresponding ionic conductivity values were calculated based on the
Nyquist equation.43
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Rüger, R.; Kuc, A.; Guo, W.; Zhou, W.; Lukose, B.; Wang, Z.;
Weidler, P. G.; Pöppl, A.; Ziese, M.; Heine, T.; Wöll, C. Linear
Chains of Magnetic Ions Stacked with Variable Distance:
Ferromagnetic Ordering with a Curie Temperature above 20 K.
Angew. Chem., Int. Ed. 2016, 55, 12683−12687.
(4) Herrmann, W. A. Multiple Bonds between Transition Metals

and “Bare” Main Group Elements: Links between Inorganic Solid
State Chemistry and Organometallic Chemistry. Angew. Chem., Int.
Ed. 1986, 25, 56−76.
(5) Arévalo-López, A. M.; Alario-Franco, M. A. Reliable Method for

Determining the Oxidation State in Chromium Oxides. Inorg. Chem.
2009, 48, 11843−11846.
(6) Brett, C. M. A.; Gomes, I. A.; Martins, P. The Electrochemical

Behavior and Corrosion of Aluminum in Chloride Media. Corros. Sci.
1994, 36, 915−923.
(7) Vincent, J. B. The Bioinorganic Chemistry of Chromium; John

Wiley & Sons, Ltd: Chichester, UK, 2013 ISBN 978−0-470−66482−
7.
(8) Holleman, A. F.; Wiberg, E.; Wiberg, N. Lehrbuch der
Anorganischen Chemie, 91−100 ed. De Gruyter: Germany, 1985
ISBN 978−3-11−007511−3.
(9) Banci, L. Metallomics and Cellular Metal Homeostasis; Springer

Dordrecht 2013
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