
Free Facts: An Alternative to Inefficient
Axioms in Dafny

Tabea Bordis1(B) and K. Rustan M. Leino2

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
tabea.bordis@kit.edu

2 Amazon Web Services, Seattle, WA, USA
leino@amazon.com

Abstract. Formal software verification relies on properties of functions
and built-in operators. Unless these properties are handled directly by
decision procedures, an automated verifier includes them in verification
conditions by supplying them as universally quantified axioms or theo-
rems. The use of quantifiers sometimes leads to bad performance, espe-
cially if automation causes the quantifiers to be instantiated many times.

This paper proposes free facts as an alternative to some axioms. A
free fact is a pre-instantiated axiom that is generated alongside the for-
mulas in a verification condition that can benefit from the facts. Replac-
ing an axiom with free facts thus reduces the number of quantifiers in
verification conditions. Free facts are statically triggered by syntactic
occurrences of certain patterns in the proof terms. This is less powerful
than the dynamically triggered patterns used during proof construction.
However, the paper shows that free facts perform well in practice.

Keywords: SMT-based reasoning · proof brittleness · Dafny · formal
verification

1 Introduction

Complex software is used in almost every domain, including safety-critical or
security-critical domains that require strong guarantees of correctness. Formal
methods have successfully been applied to guarantee correctness of large-scale,
complex software (e.g., [12,13,21,22,26,31,36,37]). Especially successful are Sat-
isfiability Modulo Theories (SMT) solvers [5,9,33] and SMT-based, automated
program verifiers, such as Dafny [29], Frama-C [25], AutoProof [19], VeriFast [24],
and F* [39]. In Dafny, for example, the developer writes specifications and code,
which are then translated into proof obligations that are automatically checked
by an SMT solver. The verification result is displayed in the IDE, including
descriptive error messages in case of a negative result.

The underlying idea of automated verifiers is to transfer most of the verifica-
tion effort from the developer to the SMT solver, i.e., to automate the verification
task as much as possible. For instance, axioms for properties that are known to be
c© The Author(s) 2025
A. Platzer et al. (Eds.): FM 2024, LNCS 14933, pp. 151–169, 2025.
https://doi.org/10.1007/978-3-031-71162-6_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-71162-6_8&domain=pdf
http://orcid.org/0009-0003-2886-0862
http://orcid.org/0000-0003-2872-8039
https://doi.org/10.1007/978-3-031-71162-6_8

152 T. Bordis and K. R. M. Leino

true are automatically generated such that the developer does not have to spec-
ify and prove said properties themselves. As a result, automation has increased
user-friendliness, leading to more users and the application to larger and more
complex systems, including their application in industry. However, with increas-
ing complexity, a certain proof brittleness1 has been observed among SMT-based
verifiers [22,30]. Proof brittleness describes a problem where seemingly irrelevant
changes, such as renaming a variable or using a newer version of the tool, can
lead to a variation in the verification time and even result. The impact of this
is severe, as it drastically increases debugging time and may even require refac-
toring of the code and specification. Additionally, confidence in the tool and the
user experience decreases, as the focus shifts from developing correct software
to refactoring the code to make the proof complexity manageable for the solver.

In Dafny, many axioms, for example, describing properties for collection
types, are automatically defined in the background whenever a proof is trig-
gered. The solver can then use this information provided by the axiom to prove
the correctness of the program. There are some problems with axioms that affect
proof brittleness, and which we found during our experiments to remove certain
axioms from Dafny. (1) Axioms increase the complexity of the proof obligations.
The more information there is for the solver, the more options there are to
discharge a proof. (2) Universally quantified axioms provide properties and the
solver decides where to instantiate the property. Therefore, the developer cannot
control this. (3) Not every property is easily expressible in an axiom, because
the solver can quickly run into matching loops, where the SMT solver keeps
instantiating quantified axioms for new terms.

In this paper, we propose free facts as an alternative automatic mechanism
for giving properties similar to those defined in axioms, but on concrete instances
of the program code. For example, when we detect a set union of sets A and B,
we generate a property describing how to retain the original sets from the union;
the property specifically mentions the instances A and B, rather than using an
axiom that quantifies over any two sets. The advantage is that the property is
already instantiated without giving the solver the option to use it elsewhere.
Furthermore, the developer does not have to change their behavior because the
behavior is fully automated.

In this paper, we make the following contributions:

– We introduce free facts as an alternative to universally quantified axioms.
– We define free facts for properties of different collection types in Dafny.
– We provide an implementation of free facts in Dafny as a proof of concept.
– We evaluate the impact of free facts with regard to proof brittleness in Dafny

and compare them to universally quantified axioms.

2 Dafny and Its Verifier

Our work is in the context of the Dafny programming language. Dafny supports
formal reasoning about programs and for that purpose features an automated
1 Also referred to as proof instability.

Free Facts: An Alternative to Inefficient Axioms in Dafny 153

program verifier. The verifier operates in two phases: it first prescribes proof obli-
gations (using the intermediate verification language Boogie) and then attempts
to discharge these proof obligations using automatic decision procedures (which
are provided in an SMT solver). In this section, we describe the general structure
of how the proof obligations are prescribed. The full details of how (an early ver-
sion of) Dafny is translated into the intermediate verification language Boogie
are recorded in Marktoberdorf Summer School lecture notes [28].

2.1 Proof Obligations

To prescribe proof obligations, Dafny uses the Boogie intermediate verification
language [6]. Boogie features first-order declarations of types, functions, and
axioms, as well as imperative procedures. Procedure bodies consist of statements
from a simple while language. The Boogie tool generates a verification condition
for each procedure. More precisely, given axioms A, and with a procedure whose
pre- and postconditions are Pre and Post, respectively, and whose body is a
statement S, Boogie generates the logical verification condition

A ∧ Pre =⇒ wp[[S, Post]]

where wp[[S, Post]] is first expanded to be the weakest precondition of S with
respect to Post [18].

For the purposes of this paper, it suffices to understand three kinds of state-
ments in Boogie:

– Assignment statement x := E evaluates expression E and then assigns its
value to variable x.

– Assertion statement assert P adds condition P as a verification debit.
– Assumption statement assume Q adds condition Q as a verification credit.

Expressions in Boogie are total ; that is, it is legal to apply operators and
functions to any arguments. If the source language (Dafny, in our case) wants
to prescribe a proof obligation for one of its expressions, then it must introduce
an assertion in Boogie. For example, the translation of the Dafny statement
x := y/z into Boogie is

assert z �= 0; x := Div(y, z)

This instructs the Boogie tool to check the condition z �= 0, reporting an error
if the condition cannot be proved, and then assign the variable x.

An assumption is used to state a condition that the verifier is allowed to use.
Sound verification requires that every assumption be justified in some way, but
such justification lies outside the use of Boogie; Boogie allows verification-tool
authors to introduce such assumptions. Sometimes, an assumption is justified by
some property of the programming language or by a limitation of the program
verifier. For example, a program verifier for a C-like language may choose to
verify only those runs of a program that do not exceed the available memory.
For an allocation statement x := malloc(1024), such a verifier would introduce
an assumption along the lines of

154 T. Bordis and K. R. M. Leino

x := . . .; assume x �= 0 ∧ size(x) = 1024

Procedure pre- and postconditions (introduced, respectively, with requires
and ensures clauses) provide a convenient way to introduce verification debits
and credits at procedure boundaries. In particular, a precondition turns into
an implicit assert statement at a call site and a matching implicit assume
statement at the beginning of the procedure body. Conversely, a postcondition
turns into an implicit assert statement at the end of the procedure body and a
matching implicit assume statement on return from each call.

Here is a small Boogie example that illustrates these features:

axiom A
procedure M(x: X) returns (y: Y)

requires Pre(x) ensures Post(x, y)
{

assert P(x);
assume Q(x);
y := E(x)

}

Procedure M declares one in-parameter (x) and one out-parameter (y). For this
example, Boogie generates the verification condition

A ∧ Pre(x) =⇒ P (x) ∧ (Q(x) =⇒ Post(x,E(x)))

and passes it to the decision procedures in Boogie’s underlying SMT solver.

2.2 Axioms Versus Assumptions

In the example above, the proof goal Post(x,E(x)) has three antecedents:
the axioms A, the precondition Pre(x), and the assumption Q(x). Further
antecedents in other examples include guard conditions from control flow like
if and the postconditions of any calls. Logically, there is no difference between
these kinds of antecedents. Instead, they are all assumptions, but stated in dif-
ferent contexts and different scopes.

Stylistically, assume statements are used to introduce assumptions about
local variables (like the result of a procedure call), whereas axioms are used to
describe properties of global functions or operators of the language (like Div
from a previous example above).

2.3 Expression Translation

As further background for our paper, let us describe the general translation of
expressions from the source language (Dafny) into the intermediate verification
language (Boogie). The expression translation is part of the translation of any
statement, so we will use a Dafny assignment statement x := E as a running
example; other statements are similar (see [28]). There are three parts to the
translation of expressions from Dafny to Boogie.

Free Facts: An Alternative to Inefficient Axioms in Dafny 155

Translation Mapping. The translation of x := E will map the Dafny variables
into corresponding variables in Boogie. For our purposes, we will assume the
Boogie variables have the same names. Thus, the left-hand side x in Dafny
simply maps into a Boogie variable x.

The right-hand side of the assignment is more interesting. Its translation
also needs to map Dafny operators and functions into Boogie counterparts. For
example, we can imagine that Dafny’s integer-division operator / is translated
into a Boogie function Div, as we saw in an example above. For this purpose,
we introduce a translation function Tr:

x := Tr[[E]]

where, for example, Tr[[E0/E1]] = Div(Tr[[E0]],Tr[[E1]]). (In many of our exam-
ples that follow, we will use the same operator symbol in Boogie as in Dafny.)

Checking Well-Formedness. As we mentioned above, expressions in Boogie
are total. In contrast, operators and functions in Dafny can be partial. The
translation from Dafny to Boogie therefore prescribes well-formedness checks,
as we will indicate with the translation function Wf. With these in mind, the
translation of an assignment statement x := E becomes

assert Wf[[E]]; x :=Tr[[E]]

For example, we have

Wf[[E0/E1]] = Wf[[E0]] ∧ Wf[[E1]] ∧ Tr[[E0]] �= 0

Introducing Assumptions. Translation functions like Tr and Wf have been
described before (e.g., [27,28]). What Dafny also uses, but which has not been
described, is a template for introducing assumptions. Previously, this part of
the translation has been limited in focus, mostly to try to speed up verifier
performance of function calls. We will not describe the details of these previous
assumptions, since they are not the subject of this paper. Relevant to this paper
is just that the translation process includes not only the translation mapping
Tr and the well-formedness checks Wf, but also an assumption generator Ag.
The assumption generator is used as follows, as we can now show the complete
translation of expressions from Dafny to Boogie:

assert Wf[[E]]; assume Ag[[E]]; x :=Tr[[E]]

As we mentioned, assumption generators have had limited use in Dafny.
Indeed, for most expressions E, we have Ag[[E]] = true. It is into these assump-
tion generators that we will incorporate our free facts, as we will describe next.

3 Free Facts

In this section, we present and discuss our concept for free facts. First, as motiva-
tion, we show a common pattern that currently needs manual proof effort. Then,
we define its automated mechanism and provide free facts for Dafny’s collection
types. Finally, we discuss free facts in terms of use cases and limitations.

156 T. Bordis and K. R. M. Leino

3.1 Motivating Example

Axioms for Operations of Built-in Types. The general strategy for axiom-
atizing the operators of built-in types in Dafny is to define them in terms of
primitive operators. For example, set operations are defined in terms of set mem-
bership as follows:

∀x, S, T · x ∈ S ∪ T ⇐⇒ x ∈ S ∨ x ∈ T

This strategy gives rise to a kind of rewriting that moves toward smaller terms,
and hence (by itself) terminates. However, this strategy alone does not give
equality between terms, a property that logic gives the name extensionality.
Extensionality becomes important when terms are used as arguments to other
functions. Dafny thus also uses an extensionality axiom. For example, the one
for sets looks like

∀S, T · S =set T =⇒ S = T

where =set is the set-equality operator in Dafny and = is the verifier’s equality.

How Axioms Get Used. Universal quantifiers in Dafny’s verifier are used
through instantiation. To control this process, each quantifier has a matching
pattern [17]. The verifier instantiates an axiom if, during proof construction,
some of the prover’s ground terms look like the matching pattern.

For example, the matching pattern for each of the quantifiers in the examples
above are the left-hand side of the main connective in the quantifier body. So,
if the prover’s ground terms happen to contain y ∈ A ∪ B for some expressions
y,A,B, then the first quantifier above is instantiated with x, S, T := y,A,B.
But note that the quantifier is not instantiated if the ground terms only contain
y ∈ A and y ∈ B. In the same way, the quantifier in the extensionality axiom is
instantiated only if there already is a ground term that mentions =set .

Derived Properties. Using the defining axioms and the axiom of extensional-
ity, it is possible to prove additional properties as theorems, such as

∀x, S · x �∈ S =⇒ (S ∪ {x})\{x} = S

This property is often used in proofs of Dafny programs. A sketch of a prototyp-
ical example thereof is a loop that wants to maintain P (S) as a loop invariant,
where P is some predicate on the set S, and the loop body contains an assign-
ment S := S ∪ {x}.

Since the theorem above is useful, it is tempting, as developers of the Dafny
verifier, to include the theorem among the verifier’s axioms. Unfortunately, it
far too often instead has a negative effect on prover performance, because the
quantifiers end up being instantiated too often. So, the theorem above is not
included in Dafny. Instead, programs that need the property tend to include a
user-defined assertion of the property, which the Dafny verifier proves and then
uses. For example, it is typical to see Dafny code snippets like

S’ := S ∪ {x};
assert S’ \ {x} =set S

Free Facts: An Alternative to Inefficient Axioms in Dafny 157

Similar code snippets are frequently used for other types and operators as well.
For instance, here is an example that uses sequences:

x := A[0];
A’ := A[1..];
assert [x] · A’ =seq A

3.2 Free Facts

Our aim is to obtain the desired automation in cases like our motivating example,
but without risk of causing the verifier to instantiate the derived-property theo-
rems too many times. We do this by instantiating such theorems before sending
verification conditions to the verifier. We call the result of such an instantiation
a free fact, and we include free facts among the generated assumptions (transla-
tion function Ag in Sect. 2.3). For example, as motivated by the example in the
previous subsection, the free facts we generate

Ag[[S ∪ T]] =
Ag[[S]] ∧ Ag[[T]] ∧
Tr[[S]] = (Tr[[S]] \ Tr[[T]]) ∪ (Tr[[S]] ∩ Tr[[T]])

Note that this generalized property works for any set T , not just a singleton set
{x} as we showed in our motivating example above.

To support free facts Dafny, we first decide on some candidate theorems (more
about that in Sect. 3.3). The mechanism we then use to control instantiations is
similar to what the verifier does with matching patterns, but with an important
difference: While the verifier’s set of ground terms grows as the verifier performs
inferences, the terms available to free-fact generation are those that occur syn-
tactically in the program. To understand this syntactic-terms limitation, suppose
we tried to encode the associativity of set union as a free fact:

Ag[[S ∪ (T ∪ U)]] =
Ag[[S]] ∧ Ag[[T]] ∧ Ag[[U]] ∧
Tr[[S]] ∪ (Tr[[T]] ∪ Tr[[U]]) = (Tr[[S]] ∪ Tr[[T]]) ∪ Tr[[U]]

This would generate the free fact only if the Dafny program contained an expres-
sion of the form S ∪ (T ∪U). However, it would not generate the free fact if the
syntax was slightly different. For example, the free fact would not be generated
for a code snippet like

a := T ∪ U;
b := S ∪ a

since no single expression contains two union operators. Because of this syntactic
limitation, free facts are most effective when the matching pattern has just one
operator.

158 T. Bordis and K. R. M. Leino

3.3 Free Facts for Collection Types

Collections are nontrivial data types, yet are widely used in software systems.
In Sect. 2, we explained how axioms are used to describe properties of built-in
types in Dafny. In Sect. 3.1, we gave an example of a property that performs
poorly as an axiom and therefore has to be provided as a user-defined assertion.
Hence, we looked for assertions on collection types in different systems that
are implemented in Dafny and defined our free fact properties based on our
findings. In Table 1, we show a complete list of all free facts that we defined for
this paper. Only the last two properties are defined as axioms in the current
version of Dafny. The other properties have to be defined by the developer in an
assertion if needed and are therefore new properties in the automatic encoding.

Table 1. Free Fact Properties for Collection Types in Dafny.

Collection Type Operation in Code Free Fact Property

Set S ∪ T , S\T S = (S\T) ∪ (S ∩ T)

T = (T\S) ∪ (S ∩ T)

Multiset (allows S ∪ T , S\T S = (S\T) ∪ (S ∩ T)

duplicates) T = (T\S) ∪ (S ∩ T)

Map M +N M.keys ∩ N.keys = ∅ =⇒ M = M +N − N.keys

M.keys ∩ N.keys = ∅ =⇒ N = M +N − M.keys

Sequence X · Y X = (X · Y)[0..|X|]
Y = (X · Y)[|X|..|(X · Y)|]

X[i..|X|], X[0..i] X = X[0..i] · X[i..|X|]
X[i..j] X[0..j] = X[0..i] · X[i..j]

X[i..|X|] = X[i..j] · X[j..|X|]
Operations: Map merge: +, Map difference: −, Seq. concatenation: ·, Seq. length: |X|, Subsequence: X[i..j]

See Dafny reference manual for further explanations of the operations [3].

Sets and Multisets. In contrast to ordinary sets, multisets allow duplicate entries.
Apart from that, we define the same free fact properties for sets and multisets.
Whenever we detect a (multi-)set union or (multi-)set difference in the Dafny
code, we generate the two free fact properties in the very right column that
describe a relationship between the (multi-)set operations \, ∪, and ∩.

Maps. We define similar free fact properties as the ones for sets for finite maps,
as well. The merge of two maps is not commutative, because values are overriden
if the key already exists in the left-hand side map; hence, the key sets of the two
maps need to be disjoint.

Sequences. For sequences, we define free fact properties for the concatenation
of two sequences and the subsequence operation X[i..j] (from index i inclusive
to index j exclusive). For the concatenation of two sequences X · Y , we get
the original set X by taking the subsequence of the concatenation from 0 to
the length of X (|X|). Respectively, set Y is equal to the subsequence of the
concatenation from |X| to |(X · Y)|. For the subsequence operation, we define a
free fact for the special case where one of the indices is 0 or the length of the

Free Facts: An Alternative to Inefficient Axioms in Dafny 159

sequence, i.e., dropping the start or the end of the sequence, and a general one
for arbitrary indices. The latter is generated only if the special case is not true.

3.4 Discussion

Applicability Limitations. Free facts rely on syntactically detectable operations
in the Dafny code. Collections are particularly well suited, because (1) they often
require additional properties in the form of assertions and (2) their operations
are easy to detect since they are not scattered over multiple statements.

During our experiments, we encountered proof brittleness when using the
non-linear arithmetic setting of the SMT solver. As an alternative, we tried to
define free facts for non-linear arithmetic properties. Unfortunately, the distribu-
tion properties of + and ∗ are not possible under our syntactic-terms limitation.

Free Facts as Replacement for Axioms. Our aim is not to replace axioms alto-
gether. Axioms are an effective way of globally providing certain properties that
do not require a proof. SMT solvers use the given information dynamically
and quickly and decide about their instantiation. However, the instantiation
of axioms must always be regulated by matching patterns. Otherwise, the solver
will quickly run into matching loops. For some properties, it is difficult to define
the matching pattern in a way that is not too restrictive, such that the axiom is
never really instantiated or that it is instantiated too often, resulting in perfor-
mance issues. For example, if we would define the first free fact property from
Table 1 as a quantified axiom with S ∪ T as trigger, this leads to an endless
instantiation of this property as the trigger matches part of the term. For these
properties, we propose free facts as an alternative because they are defined on
concrete instances of the code and the solver cannot instantiate them arbitrarily,
i.e., even if a free fact that we generate is not used, it does not keep generat-
ing additional facts, like universally quantified axioms can. The overall goal is
to replace only inefficient axioms and to add properties for further automation
where it fits the conditions of free facts.

Increasing the Level of Automation. The high degree of automation in verifica-
tion tools has led to complex queries for the SMT solver in the backend which
increases proof brittleness. Therefore, it may seem unintuitive to propose another
automatic mechanism to be added on top of Dafny to counter proof brittleness.
With free facts, we propose a change in the automatic encoding of the proof
obligations to avoid universally quantified axioms. Other parts of the automatic
encoding could possibly also be improved. In other places, however, it may be
better to reduce automation, giving control back to the developer. Overall, a
composition of multiple solutions, not only for automatic encoding from Dafny
to Boogie, but also for the way programs and proofs are defined and how the
solver is used in the backend, will bring progress regarding the overall problem.

4 Evaluation

Proof brittleness is a problem that can occur when the proof obligations and
information for the program verifier are too complex. In this section, we eval-

160 T. Bordis and K. R. M. Leino

uate free facts in terms of their usefulness with regard to proof brittleness and
compare them to axioms in Dafny.

4.1 Research Questions

In particular, we define the following research questions:

RQ1: Is it possible to define free facts in Dafny?
RQ2: To what extent can free facts reduce the proof brittleness in Dafny?
RQ3: Are free facts superior to axioms in terms of their verification time and

resource count?

With RQ1, we want to assess the feasibility of free facts. By answering RQ2, we
gain insights into how well suited free facts are to reduce the proof brittleness
problem. With RQ3, we may estimate how free facts compare to axioms by
comparing both approaches using the collection type properties (see Sect. 3.3).

4.2 Methodology

To answer our research questions, we created three different branches of Dafny
that we used to compare the verification results. All branches can be used like
the regular Dafny version.

Master: The master branch2 is the original version of Dafny, and we use this
branch as the baseline for our evaluation.

Free Facts: The free facts branch3 implements all properties of Sect. 3.3 as free
facts and none as axioms.

Axioms: The axioms branch4 implements most properties from Sect. 3.3 as
axioms and none as free facts. The differences between the axioms and the
free facts in Table 1 are: The free facts for (multi-)set union and (multi-)set
difference are implemented with only set difference as trigger. The free fact
for sequence concatenation has a more restrictive trigger. Without adaptions,
the SMT solver ran into matching loops.

To answer RQ1, we implement free facts for collection type properties as
described in Sect. 3 in the free facts branch. Afterwards, we run the Dafny test
suite to check whether the free fact branch of Dafny is working as intended. To
reason about RQ2 and RQ3, we perform a mutation-based analysis using an
internal tool on three subject systems that are implemented in Dafny and com-
pare the performance of our different Dafny branches. The idea of the mutation-
based analysis is to syntactically mutate the subject systems to mimic the devel-
oper that observes proof brittleness when they make slight changes to their pro-
gram. Furthermore, we collect metrics that indicate proof brittleness. For RQ2,

2 https://github.com/dafny-lang/dafny, commit 2e7de95.
3 https://github.com/dafny-lang/dafny/tree/tb-experiment-freefacts, 62b2a90.
4 https://github.com/dafny-lang/dafny/tree/tb-experiment-freefactaxioms, e9a1bd2.

https://github.com/dafny-lang/dafny
https://github.com/dafny-lang/dafny/tree/tb-experiment-freefacts
https://github.com/dafny-lang/dafny/tree/tb-experiment-freefactaxioms

Free Facts: An Alternative to Inefficient Axioms in Dafny 161

Table 2. Subject Systems and their Characteristics.

Subject Systems #
Procedures

LOC # Specifica-
tions

CTs

Cedara 1,454 19,695 5,974 589
Dafny Librariesb 6,398 15,729 4,668 638
Internal System 14,504 17,858 4,003 371
Procedures include methods, functions, and lemmas.
LOC — Non-whitespace lines of Code. # CTs — Explicit mentions of collection types.

a https://github.com/cedar-policy/cedar
b https://github.com/dafny-lang/libraries

we compare the free facts branch with the master branch, and for RQ3, we
compare the free facts branch with the axiom branch. We describe the tool, the
metrics, and the subject systems in the following.

Mutation-Based Analysis of Two Dafny Versions. For the evaluation, we
use an internal tool that syntactically mutates our subject systems and collects
different metrics for two different branches of Dafny. It mutates every procedure
of the subject systems five times, randomly changing the names of all identifiers
and the order of declarations, and runs each mutant with a random seed that
the SMT solver uses when making decisions that can be arbitrary. The tool
collects the following metrics for each procedure on the two different branches:
The number of failed runs, the verification time, and the resource count (a Z3-
specific metric for the proof complexity).

The number of failed runs can be used as an indicator for proof brittleness
if some runs fail and some do not. We sum up the number of failed runs of the
single procedures in one subject system to a total number of failed runs for each
branch. If the number for branch A is higher than the number for branch B,
this gives the indication that branch A is more brittle than branch B. To obtain
a holistic evaluation, we combine the number of failed runs with two further
metrics that indicate proof brittleness, namely, the average verification time and
the average resource count. It has been observed that both metrics correlate with
the proof brittleness problem [41].

Subject Systems. We evaluate free facts on three large-scale subject systems
that are implemented in Dafny. One of the subjects is an internal policy-checking
system. The other two systems, Cedar5 and the Dafny Libraries6, are openly
accessible on GitHub. We selected the internal subject system because it has a
high usage of sequence collections and it lets us discuss the results with domain
experts to verify our results and prevent potential errors. In Table 2, we give an
overview on the subject systems and provide metrics that show their size and
complexity. All subject systems contain assertions in the code that are similar
to our free fact properties (cf. Sect. 3.1).

5 https://github.com/cedar-policy/cedar.
6 https://github.com/dafny-lang/libraries.

https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries
https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries

162 T. Bordis and K. R. M. Leino

4.3 Results and Discussion

RQ1: Is it possible to define free facts in Dafny?
We implemented free facts as described in Sect. 3. In the Dafny integration test
suite, we found seven test cases with assertions that can be removed because of
free facts. In some cases, such removal led to a higher resource count, but at the
other end of the spectrum, one case had a resource count that was 12 times lower
than the failing verification without free facts. We can therefore answer RQ1
positively for collection type properties. In Sect. 3.4, we have already discussed
the applicability of our concept in terms of its limitations due to the syntactical
detection.
RQ2: To what extent can free facts reduce the proof brittleness in Dafny?
In Table 3, we show the results of the mutation-based analysis of the master
and the free facts branch for our three subject systems. We give the average
improvement for the runtime and resource count in percent, and the difference
between the total number of failed runs between the master and the free facts
branch. For runtime and resource count, a positive percentage (+x%) means that
the free facts branch performed on average x percent faster/with less resources
than the master branch. For the difference in failed runs, a negative number
(−y) means that the free facts branch failed y fewer times than the master.

The largest effect of free facts was seen in the Dafny Libraries, where we mea-
sure an average improvement in the runtime of 41%. In contrast, the resource
count worsened by 4% on average. The difference in the number of failed runs is
only minor with 25 additional failed runs. For the internal system, we observe an
improvement in runtime by 9% and resource count by 8%. However, the differ-
ence in the number of failed runs increased by 367 failed runs. Compared to the
total number of runs (72,520) this is still just a change of 0.5%. Besides the aver-
age of the whole system, we also looked at the maximum average improvement
of the procedures in Cedar and the Dafny libraries, which was +748% runtime
and +160% resource count for Cedar and +19597% runtime and +277% for
the Dafny libraries. The procedure in the Dafny libraries that had the extreme
improvement in runtime actually went from being brittle with only 2/5 suc-
ceeding runs on the master to being stable with 5/5 succeeding runs with free
facts.

Overall, we can answer RQ2 neither positively nor negatively. The average
resource count suggests a slight deterioration compared to the master branch
for Cedar and the Dafny Libraries. With free facts, we generate certain proper-
ties automatically that previously had to be defined manually. As long as those
assertions are not removed from the code, the assertions still provide a veri-
fication debit for the solver and therefore obfuscate the benefit of free facts.
We discuss this in detail in Sect. 4.4. In contrast, the runtime improved for all
subject systems. We conclude from this that, even though the proofs seem to
be slightly more complex (potentially because the subject systems still contain

Free Facts: An Alternative to Inefficient Axioms in Dafny 163

Table 3. Results: Master vs. Free Facts

Subject Systems Runtime Resource Count # Failed Runs

total
Avg. ImprovementAvg. Improvement

master free facts
Diff.

Cedara +1% -6% 38 66 +28
Dafny Librariesb +41% -4% 392 417 +25
Internal System +9% +8% 51 418 +367
The total number of all runs (5 ∗ #procedures): Cedar - 7,270. Libraries - 31,990. Internal - 72,520.

a https://github.com/cedar-policy/cedar
b https://github.com/dafny-lang/libraries

Table 4. Results: Axioms vs. Free Facts

Subject Systems Runtime Resource Count # Failed Runs

total
Avg. ImprovementAvg. Improvement

axioms free facts
Diff.

Cedara +7% -1% 40 69 +29
Dafny Librariesb +23% +9% 557 511 -46
Internal System +9% +6% 386 391 +5
The total number of all runs (5 ∗ #procedures): Cedar - 7,270. Libraries - 31,990. Internal - 72,520.

a https://github.com/cedar-policy/cedar
b https://github.com/dafny-lang/libraries

assertions that could be removed), but easier and therefore faster to close given
the additional information. Additionally, we observed strong improvements for
individual procedures, such as in the case of the maximum values, which shows
the great potential of free facts as a concept. We expect an alignment of the
resource count to the positive trend of the runtime once free facts are deployed,
and developers adapt their behavior to the free fact generation of Dafny.
RQ3: Are free facts superior to axioms in terms of their verification time and
resource count?
In Table 4, we summarize the results for the mutation-based analysis between
the free facts and the axiom branch. While the difference in the number of failed
runs between the two branches is rather small (+29 failed runs for Cedar, −46
failed runs for the Dafny libraries, and +5 failed runs for the internal system),
there is an improvement in favor of the free facts branch in both the average
runtime and resource count. The average improvement of free facts for the Dafny
libraries and the internal system is higher (+23% runtime and +9% resources
for the libraries and +9% runtime and +6% resources) than the one for Cedar
(+7% runtime and −1% resources), which we explain again by the fact that
Cedar uses fewer collections.

https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries
https://github.com/cedar-policy/cedar
https://github.com/dafny-lang/libraries

164 T. Bordis and K. R. M. Leino

Overall, we can answer RQ3 positively, since the free facts branch took less
time and resources on average than the axiom branch. Note that we were not
able to implement all free fact properties as axioms, as some led to matching
loops, which would quickly lead to a timeout for a majority of the procedures.
In fact, this supports our argument that free facts are an alternative automatic
mechanism that is superior in certain cases where axioms are inefficient.

4.4 Threats to Validity

Removal of Assertions in the subject systems. As explained in Sect. 3.1, we are
automating the generation of certain properties in Dafny that previously had to
be defined as assertions by the developer. Therefore, the full potential of free
facts can only be observed if these assertions are removed from the code as they
are translated into a proof debit for the SMT solver. Leaving the assertions
in the code does not affect the correctness, but it does affect the runtime and
resource count. In our evaluation, we did not remove these assertions from the
subject systems, as the manual effort would be too high since we used large-
scale systems. As a result, this benefit is not measurable in our experiments,
and the values for newly built systems using free facts might be better as we
expect developers to adapt their proofs accordingly. It is conceivable that such
a change in behavior would make free facts better overall.

Reproducibility. Parts of our experiments are not reproducible for externals
because we used (1) an internal tool to perform the variability analysis and
(2) an internal subject system. However, the implementation of all branches is
publicly available, as well as the other two subject systems. With that, a similar
report can be generated, also including mutations. Detailed instructions can be
found in the Dafny documentation in Section Measuring proof brittleness [3].

Since both the mutation-based analysis and the decision process of the SMT
solver involve randomness, and the subject systems are productively used sys-
tems that are regularly modified, the exact results will still vary from run to run.
However, the overall trend is reproducible.

Transferability. We have only performed our evaluation on Dafny with Z3 as
SMT solver. We cannot claim that our results are fully representative for other
automated verifiers or SMT solvers. Nevertheless, the concept is transferable to
other verifiers as well. We believe that our results provide valuable insight into
the proof brittleness problem and may influence future work.

5 Related Work

Resolving Proof Brittleness. Few approaches have addressed proof brittle-
ness, mainly because: (1) it is a rather new challenge stemming from the recent
verification of complex systems, and (2) the complexity of the SMT-solvers deci-
sion process using heuristics and randomness to a certain degree. We categorize
the papers into the Dafny pipeline, writing program, specification, and proof

Free Facts: An Alternative to Inefficient Axioms in Dafny 165

(proof engineering); automatic encoding of Dafny to SMT; the SMT solver itself.
Five of the papers have been presented at this year’s Dafny workshop [1].

Proof Engineering. McLaughlin et al. [32] introduce Dafny64, a mode of using
Dafny that significantly reduces verification resources by stripping back automa-
tion for proofs. Cutler et al. [15] improved the stability of type safety proofs
in Dafny by making functions opaque (i.e., making the body of the function
unavailable) and specifying them manually such that the solver does not have to
reason about multiple large definitions simultaneously. Ho and Pit-Claudel [23]
improved the debugging of brittle lemmas by using Dafny’s abstract modules
to achieve an induction principle similar to that in the theorem prover Coq [7].
These papers highlight the necessity to reduce automation, such that the devel-
oper gains more control over the verification task. Although we agree with this
suggestion, with free facts we aim to improve the automatic encoding in the next
step of the pipeline. We reduce the options for the solver while maintaining the
usability of Dafny as an automatic verifier. The proposed approaches and free
facts can be applied in parallel to maximize results.

Automatic Encoding. Srinivasan et al. [38] identify the boundaries where infor-
mation from other modules should be made opaque to leverage the automation
of Dafny in the best possible way. In particular, they concentrate on quantifier
instantiations. With free facts, we also propose a technique that improves the
automatic encoding; however, we focus on code-based detection of the need and
instantiate properties to avoid universally quantified axioms.

SMT Solver. Mugnier et al. [34] propose a portfolio of SMT solvers meaning that
different SMT solvers and different versions of SMT solvers are used to get more
performant proofs. This work is orthogonal to free facts and can be applied later
to further increase the performance.

Detection of Proof Brittleness. The detection of proof brittleness is indi-
rectly related to our work, because detecting proof brittleness does not directly
reduce brittleness. However, detection can be used to evaluate approaches to
resolve proof brittleness and may lead to a better understanding of the problem
and more targeted solutions in the future.

As a first measure, for early detection, Dafny and F* provide a command-
line flag to execute multiple randomized verification runs [2,3]. Mariposa [41]
is a tool that performs a mutation-based analysis to detect and quantify SMT-
based proof brittleness. In their paper, they performed an evaluation on six
different verification projects, provide a benchmark, and describe their findings.
The Axiom Profiler [10] is a tool that analyzes instantiation problems, e.g.,
matching loops caused by axioms, by logging information of SMT runs.

166 T. Bordis and K. R. M. Leino

Quantifier Instantiation. Since the Simplify prover introduced E-match-
ing [17], it has been adapted and improved in a number of SMT solvers [4,8,16],
as well as the pattern selection in many SMT-based automated verifiers (includ-
ing Dafny) [14,30,35]. However, there are also a few approaches that focus on
avoiding quantifier instantiation altogether. The tool Leon [11] (a predecessor
of Stainless [20]) is an SMT-based verifier for programs written in Scala. It
avoids quantifiers by unfolding recursive definitions as needed. Liquid Haskell
adds refinement types to Haskell and implements a recursive technique similar
to Leon called refinement reflection [40]. The idea of both approaches is com-
parable to free facts, but they are applied to functions and the detection of the
need to unfold is more dynamic than our syntactic detection.

6 Conclusion

Proof brittleness is a persistent issue in automated verification, particularly with
complex and large-scale software. Research is still in its early stages of under-
standing and improving the sources of proof brittleness. The complexity stems
from the high degree of automation. We believe that the entire process, from
proof engineering to the automation of the verifier and the SMT solver itself,
requires revision. We aim to improve the automatic encoding in Dafny by gener-
ating pre-instantiated free facts. This approach reduces the number of quantifiers
in the verification conditions compared to quantified axioms without increasing
manual effort for the developer. With collections, we found a good use case for
free facts, and we plan to experiment with further use cases in the future.

References

1. Dafny 2024 - POPL 2024. https://popl24.sigplan.org/home/dafny-2024#event-
overview. Accessed 15 Mar 2024

2. Understanding how F* uses Z3 - Proof-Oriented Programming in F* docu-
mentation. https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.
html. Accessed 01 July 2024

3. Dafny Documentation (2024). https://dafny.org/dafny/DafnyRef/DafnyRef.html.
Accessed 18 Mar 2024

4. Bansal, K., Reynolds, A., King, T., Barrett, C., Wies, T.: Deciding local theory
extensions via e-matching. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 87–105. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-21668-3_6

5. Barbosa, H., et al.: cvc5: a versatile and industrial-strength SMT solver. In: TACAS
2022. LNCS, vol. 13243, pp. 415–442. Springer, Cham (2022). https://doi.org/10.
1007/978-3-030-99524-9_24

6. Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: a
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111, pp.
364–387. Springer, Heidelberg (2006). https://doi.org/10.1007/11804192_17

https://popl24.sigplan.org/home/dafny-2024#event-overview
https://popl24.sigplan.org/home/dafny-2024#event-overview
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html
https://fstar-lang.org/tutorial/book/under_the_hood/uth_smt.html
https://dafny.org/dafny/DafnyRef/DafnyRef.html
https://doi.org/10.1007/978-3-319-21668-3_6
https://doi.org/10.1007/978-3-319-21668-3_6
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1007/11804192_17

Free Facts: An Alternative to Inefficient Axioms in Dafny 167

7. Barras, B., et al.: The Coq Proof Assistant Reference ManualâĂŕ: Version. vol. 6,
p. 1 (2006)

8. Barrett, C., et al.: Cvc4. In: Computer Aided Verification: 23rd International Con-
ference, CAV 2011, Snowbird, pp. 171–177. Springer, Heidelberg (2011)

9. Barrett, C., Tinelli, C.: Satisfiability modulo theories. In: Handbook of Model
Checking, pp. 305–343. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-10575-8_11

10. Becker, N., Müller, P., Summers, A.J.: The axiom profiler: inderstanding and
debugging SMT quantifier instantiations. In: Vojnar, T., Zhang, L. (eds.) TACAS
2019. LNCS, vol. 11427, pp. 99–116. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17462-0_6

11. Blanc, R., Kuncak, V., Kneuss, E., Suter, P.: An overview of the Leon verifica-
tion system: verification by translation to recursive functions. In: Proceedings of
the 4th Workshop on Scala (SCALA 2013), pp. 1–10. Association for Computing
Machinery (2013)

12. Bornholt, J., et al.: Using lightweight formal methods to validate a key-value stor-
age node in Amazon S3. In: Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP 2021), pp. 836–850. Association for Com-
puting Machinery (2021)

13. Chudnov, A., et al.: Continuous formal verification of Amazon s2n. In: Chockler,
H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10982, pp. 430–446. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_26

14. Cohen, E., et al.: VCC: a practical system for verifying concurrent C. In: Theorem
Proving in Higher Order Logics: 22nd International Conference, TPHOLs 2009,
Munich, 17–20 August 2009, pp. 23–42. Springer, Heidelberg (2009)

15. Cutler, J.W., Hicks, M., Torlak, E.: Improving the Stability of Type Safety
Proofs in Dafny (2024). https://popl24.sigplan.org/details/dafny-2024-papers/3/
Improving-the-Stability-of-Type-Safety-Proofs-in-Dafny. in [1]

16. De Moura, L., Bjørner, N.: Efficient E-matching for SMT solvers. In: Automated
Deduction–CADE-21: 21st International Conference on Automated Deduction Bre-
men, 17–20 July 2007, pp. 183–198. Springer, Heidelberg (2007)

17. Detlefs, D., Nelson, G., Saxe, J.B.: Simplify: a theorem prover for program check-
ing. J. ACM 52(3), 365–473 (2005)

18. Dijkstra, E.W.: A Discipline of Programming. Prentice Hall (1976)
19. Furia, C.A., Nordio, Martín and Polikarpova, N., Tschannen, J.: AutoProof: auto-

active functional verification of object-oriented programs. Int. J. Softw. Tools Tech-
nol. Transf

20. Hamza, J., Voirol, N., Kunčak, V.: System FR: formalized foundations for the
stainless verifier. Proc. ACM Program. Lang. 3, 1–30 (2019)

21. Hance, T., Lattuada, A., Hawblitzel, C., Howell, J., Johnson, R., Parno, B.: Storage
Systems are Distributed Systems (So Verify Them That Way!), pp. 99–115 (2020)

22. Hawblitzel, C., et al.: IronFleet: proving practical distributed systems correct. In:
Proceedings of the 25th Symposium on Operating Systems Principles (SOSP 2015),
pp. 1–17. Association for Computing Machinery (2015)

23. Ho, S., Pit-Claudel, C.: Incremental Proof Development in Dafny with Module-
Based Induction (2024). in [1]

24. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
VeriFast: a powerful, sound, predictable, fast verifier for C and Java. NASA Formal
Methods 6617, 41–55 (2011)

25. Kirchner, F., Kosmatov, N., Prevosto, V., Signoles, J., Yakobowski, B.: Frama-C:
a software analysis perspective. Formal Aspects Comput. 27(3), 573–609 (2015)

https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-319-10575-8_11
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-030-17462-0_6
https://doi.org/10.1007/978-3-319-96142-2_26
https://popl24.sigplan.org/details/dafny-2024-papers/3/Improving-the-Stability-of-Type-Safety-Proofs-in-Dafny
https://popl24.sigplan.org/details/dafny-2024-papers/3/Improving-the-Stability-of-Type-Safety-Proofs-in-Dafny

168 T. Bordis and K. R. M. Leino

26. Klein, G., et al.: seL4: formal verification of an operating-system kernel. Commun.
ACM 53(6), 107–115 (2010)

27. Leino, K.R.M.: Ecstatic: an object-oriented programming language with an
axiomatic semantics. In: The Fourth International Workshop on Foundations of
Object-Oriented Languages (1997)

28. Leino, K.R.M.: Specification and verification of object-oriented software. In: Broy,
M., Sitou, W., Hoare, T. (eds.) Engineering Methods and Tools for Software Safety
and Security, NATO Science for Peace and Security Series D: Information and
Communication Security, vol. 22, pp. 231–266. IOS Press (2009)

29. Leino, K.R.M.: Dafny: an automatic program verifier for functional correctness.
In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp.
348–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-
4_20

30. Leino, K.R.M., Pit-Claudel, C.: Trigger selection strategies to stabilize program
verifiers. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9779, pp.
361–381. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41528-4_20

31. Liu, J., et al.: P4v: practical verification for programmable data planes. In: Proceed-
ings of the 2018 Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM 2018), pp. 490–503. Association for Computing Machinery
(2018)

32. McLaughlin, S., Jaloyan, G.A., Xiang, T., Rabe, F.: Enhancing Proof Stabil-
ity (2024). https://popl24.sigplan.org/details/dafny-2024-papers/14/Enhancing-
Proof-Stability, in [1]

33. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3_24

34. Mugnier, E., McLaughlin, S., Tomb, A.: Portfolio Solving for Dafny (2024).
https://popl24.sigplan.org/details/dafny-2024-papers/8/Portfolio-Solving-for-
Dafny, in [1]

35. Müller, P., Schwerhoff, M., Summers, A.J.: Viper: a verification infrastructure for
permission-based reasoning. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016.
LNCS, vol. 9583, pp. 41–62. Springer, Heidelberg (2016). https://doi.org/10.1007/
978-3-662-49122-5_2

36. Nelson, L., Bornholt, J., Gu, R., Baumann, A., Torlak, E., Wang, X.: Scaling
symbolic evaluation for automated verification of systems sode with serval. In:
Proceedings of the 27th ACM Symposium on Operating Systems Principles (SOSP
2019), pp. 225–242. Association for Computing Machinery (2019)

37. Protzenko, J., et al.: EverCrypt: a fast, verified, cross-platform cryptographic
provider. In: 2020 IEEE Symposium on Security and Privacy (SP), pp. 983–1002
(2020)

38. Srinivasan, P., Padon, O., Howell, J., Lattuada, A.: Domesticating Automation
(2024). https://popl24.sigplan.org/details/dafny-2024-papers/2/Domesticating-
Automation. in [1]

39. Swamy, N., et al.: Dependent types and multi-monadic effects in F*. In: Proceed-
ings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL 2016), pp. 256–270. Association for Computing
Machinery (2016)

https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-319-41528-4_20
https://popl24.sigplan.org/details/dafny-2024-papers/14/Enhancing-Proof-Stability
https://popl24.sigplan.org/details/dafny-2024-papers/14/Enhancing-Proof-Stability
https://doi.org/10.1007/978-3-540-78800-3_24
https://popl24.sigplan.org/details/dafny-2024-papers/8/Portfolio-Solving-for-Dafny
https://popl24.sigplan.org/details/dafny-2024-papers/8/Portfolio-Solving-for-Dafny
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1007/978-3-662-49122-5_2
https://popl24.sigplan.org/details/dafny-2024-papers/2/Domesticating-Automation
https://popl24.sigplan.org/details/dafny-2024-papers/2/Domesticating-Automation

Free Facts: An Alternative to Inefficient Axioms in Dafny 169

40. Vazou, N., et al.: Refinement reflection: complete verification with SMT. Proc.
ACM Program. Lang. 2(POPL), 1–31 (2017)

41. Zhou, Y., Bosamiya, J., Takashima, Y., Li, J., Heule, M., Parno, B.: Mariposa:
measuring SMT instability in automated program verification. In: Proceedings of
the 23rd Conference on Formal Methods in Computer-Aided Design (FMCAD
2023), pp. 178–188 (2023)

Open Access This chapter is licensed under the terms of the Creative Commons
Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/),
which permits use, sharing, adaptation, distribution and reproduction in any medium
or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were
made.

The images or other third party material in this chapter are included in the
chapter’s Creative Commons license, unless indicated otherwise in a credit line to the
material. If material is not included in the chapter’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	Free Facts: An Alternative to Inefficient Axioms in Dafny
	1 Introduction
	2 Dafny and Its Verifier
	2.1 Proof Obligations
	2.2 Axioms Versus Assumptions
	2.3 Expression Translation

	3 Free Facts
	3.1 Motivating Example
	3.2 Free Facts
	3.3 Free Facts for Collection Types
	3.4 Discussion

	4 Evaluation
	4.1 Research Questions
	4.2 Methodology
	4.3 Results and Discussion
	4.4 Threats to Validity

	5 Related Work
	6 Conclusion
	References

