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1. Introduction

The mixing of �B and �B mesons is fully described by the off-diagonal elements of the self-
energy matrix Σ. Calculating these matrix elements leads to theoretical predictions for the mass
difference Δ"B and the width difference ΔΓB of the mass eigenstates. The width difference between
�B and �B mesons is given by

ΔΓ = −2|Γ12 | cos(q12) + O
(
|Γ12 |2
|"12 |2

)
= |Σ12 − Σ∗21 | cos(q12) + O

(
|Γ12 |2
|"12 |2

)
,

(1)

where the CP-violating phase q12 is the phase difference between the phases of "12 and Γ12 (see,
e.g. Refs. [1, 2] for more details).

In our calculation, we perform the matching of a |Δ�| = 2 matrix element calculated within
effective |Δ�| = 1 and |Δ�| = 2 theories, where the high-energy and low-energy effects factorise
into matching coefficients and operator matrix elements respectively. To obtain only the leading
terms in ΛQCD/<1, the Heavy Quark Expansion (HQE) is used for the transition operator on the
|Δ�| = 2 side, which allows us to expand the operators in ΛQCD/<1 [3–12].

Matching the results of the |Δ�| = 1 and |Δ�| = 2 calculations leads to thematching coefficients
�01 (I) and �̃01

(
(I), which are needed to express the off-diagonal decay width element,

Γ0112 =
�2
�
<2
1

24c"�B

[
�01 (I)〈�B |& |�̄B〉 + �̃01( (I)〈�B |&̃( |�̄B〉

]
+ O(ΛQCD/<1). (2)

For more details and a complete definition of the operators, see Ref. [13]. Compared to the
experimental accuracies, theoretical predictions are still lagging behind, necessitating higher-order
corrections to the previously known results, in particular the inclusion of penguin operators to
NNLO. For a summary of current theoretical and experimental results, see Refs. [14, 15].

In this report, we will address a few of the technical challenges of this calculation: the treatment
of products of up to 22 W matrices using either projectors or tensor reduction and the computation
of master integrals.

2. Projection of Dirac structures

In this section, a practical implementation of an efficient algorithm for the projection of the
Dirac spinor structures occurring in the calculation of mixing amplitudes is presented. For a more
in-depth discussion and theoretical background see Ref. [13].

This is done in two steps; first, the W matrices are ordered canonically and then the projectors
are applied. Diagrams appearing in the calculation of mixing amplitudes from effective field
theories contain spinor structures with a complicated tensor structure in Lorentz space since they
are composed of a product of Dirac W matrices, which we will call spin lines or Dirac chains. Note
that the chirality projector %'/! = (1±W5)/2 can always be commuted to the end of a spin line since
we are using the basis of Ref. [16]. Thus, in our calculation, W5 never appears in closed fermion
loops and we can use anti-commuting W5.
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Figure 1: A diagram with one of the most complicated spinor structures that appear in the matching
calculation. Note that the Lorentz indices corresponding to the effective operators &6 of the |Δ� | = 1 theory
are labelled as `8 and a8 while the gluons carry Lorentz indices U8 .

The maximum number of W matrices in our diagrams is eleven on each of the two spin lines,
which includes at least one slashed momentum per spin line. We give an efficient algorithm for
the treatment of such structures below, and for illustration purposes we will refer to the structures
appearing at each step of the calculation of the diagram shown in Fig. 1. We call W matrices which
do not have their Lorentz index contracted with a propagator momentum pure.

(i) Project onto left-handed and right-handed spinor structures. It is sufficient to multiply with
%'/! = (1± W5)/2 and then drop all remaining terms containing W5. For the sample diagram,
we have

W`1W`2W`3 /:1W
U1 /:2W

U2 /:3W
a1Wa2Wa3 ⊗ WU2 /:4W`1W`2W`3 /:5Wa1Wa2Wa3 /:6WU1 + 3 terms , (3)

where the :8 are line momenta of the Feynman diagram in Fig. 1.

(ii) Express all line momenta in terms of loop momenta and the external momentum, e.g. for the
sample diagram:

W`1W`2W`3 /?3W
U1 /?3W

U2 /?2W
a1Wa2Wa3 ⊗ WU2 /?3W`1W`2W`3 /?1Wa1Wa2Wa3 /?2WU1 + 95 terms . (4)

(iii) Reorder the momenta on both spin lines to remove all duplicates and choose a unique
ordering for each combination of momenta. The sample diagram then has the following
spinor structure:

/?3/?2/?1W
`2W`3WU2Wa1Wa2Wa3 ⊗ /?3WU2W`2W`3Wa1Wa2Wa3 + 181510 terms (5)

(iv) Contract duplicate Lorentz indices on the same spin line after commuting the respective W
matrices together.

(v) Bring all pure W matrices into a canonical order. We use a lookup table which resolves the
permutation of pure W matrices. For our example case, this leads to

/?3/?2/?1W
d1Wd2Wd3Wd4Wd5Wd6 ⊗ /?3Wd6Wd5Wd4Wd3Wd2Wd1 + 40134 terms. (6)
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(vi) Map the terms with ordered pure W matrices and split-off slashed momenta directly onto the
basis elements �8 given in Ref. [13]. This is done by using another lookup table, which
has been calculated using projectors on the ordered gamma structures. When calculating the
lookup table, we can also choose to use different projectors, i.e. different scalar products,
depending on the spinor structure which needs to be resolved. For details on the chosen scalar
products see Ref. [13]. In the end, our sample diagram results in

(?1 · ?3)2?2
2

33 − 632 + 113 − 6
× �45 + 104335 terms, (7)

where 3 = 4 − 2n is the spacetime dimension, and the basis element �45 is defined as

�45 = W`1 . . . W`11 ⊗ W`11 . . . W`1 . (8)

(vii) Mapbasis elements onto operatormatrix elements, e.g. 〈�B |& |�̄B〉, 〈�B |&̃( |�̄B〉, 〈�B |� (1)1 |�̄B〉,
etc. This can be done using a lookup table.

3. Tensor integrals

Tensor reduction provides an alternative method for evaluating amplitudes with a non-trivial
Lorentz structure. Unlike the projector technique, it does not rely on assumptions about the Dirac
and colour structures that might emerge in the resulting expressions. Additionally, this approach
does not suffer from performance issues resulting from traces over a large number of W matrices.

Nevertheless, tensor reduction formulae become increasingly complex as the tensor rank and
the number of loop momenta grow. Our calculations require handling three-loop tensors of up to
rank eleven with a single external momentum.

A straightforward way of deriving tensor reduction formulae consists of writing down the most
general ansatz containing all tensor structures allowed by the symmetries. For example, in the
case of a rank-three two-loop integral with one external momentum @, the tensor integral can be
decomposed as∫

?
`

1 ?
a
2 ?

d

2 5 (?1, ?2, @) d3?1 d3?2 =∫
(6`a@d21 + 6`d@a22 + 6ad@`23 + @`@a@d24) 5 (?1, ?2, @) d3?1 d3?2.

(9)

By contracting Eq. (9) with each of the tensor structures multiplying 28 , one obtains a linear system
of equations which can be solved for the coefficients 28 .

More complex tensor reductions require dedicated software to make them tractable and we
would like to highlight one particularly attractive solution. An efficient algorithm which makes
use of some of the underlying symmetries is presented in Ref. [17]. This algorithm has been
implemented in the routine Tdec available in FeynCalc 10 [18–21], which can also interface to the
fast linear solver Fermat [22] using the development version of the FeynHelpers1 add-on [23].

These tools provide a powerful check of the results obtained using projectors for a large subclass
of diagrams. The next step in the calculation is to reduce the scalar integrals to master integrals.
The computation of these is discussed in the next section.

1https://github.com/FeynCalc/feynhelpers
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4. Calculation of master integrals

To cover the entire physical range of I = <2
2/<2

1
, the master integrals need to be extended

beyond the naive Taylor expansion of the |Δ�| = 1 amplitudes up to O(I) that was used in the results
published in Refs. [14, 24]. Here, we describe a semi-numerical method we use to obtain results
to very high orders in I for all relevant integrals at two and three loops. Allowing for different
renormalisation schemes of the quark masses, we need to cover a range of G ≡ √I ∈ [0.20, 0.43].

The method used to obtain semi-numerical results is the so-called “expand and match” ap-
proach [25–28]. This method uses the differential matrix equation in G of the master integrals to
produce a series expansion in the kinematic variable with numerical coefficients. To cover the entire
range of relevant mass ratios, expansions are computed around different points G� which are then
matched to boundary conditions of these integrals at points G" sufficiently close to G� . If there is
no threshold at G� , the master integrals are regular at this point and it is even possible to choose
G" = G� . In any case, on can use either analytical or numerical boundary conditions, but we opt
for the numerical approach.

The most general ansatz that we need for the master integrals appearing in our diagrams can
be written as

"8 (G, n) =

nmax∑
9=−2

9+2∑
<

=max∑
=

28, 9 ,<,=n
9 (G − G� )=/2 log< (G − G� ) , (10)

where we have used that in the imaginary part of three-loop two-point functions one has at most
1/n2 poles. For details on the limits of the summation variables see Ref. [13]. Note that depending
on whether the expansion point is regular or singular, the ansatz can be simplified. For the boundary
conditions we generate numerical results using AMFlow [29] with a precision of 100 digits.

With these results, we obtain a precision of the integral over the entire physical range of 20
digits or more. To check the validity of our results, we compare the coefficients of the I0 and I1

terms of the matching coefficients �01 and �̃01
(

introduced in Eq. (2) to the analytic results from
Ref. [14]. The agreement is better than 10−40.

As an illustration, we give the non-fermionic (i.e. = 5 = 0) NNLO contribution of two &1
insertions to the matching coefficient �22 (G). The expansion for G → 0 up to G10 reads:

�22, (2) (G) =

(
61.49166 + (334.9196 − 1227.224 log G + 88.00000 log2 G) G2 − 11.69731 G3

+ (−4522.778 + 1030.276 log G + 376.7253 log2 G) G4 + 199.3985 G5

+ (−5312.014 + 6117.164 log G + 1408.251 log2 G) G6 + 500.4536 G7

+ (−1386.574 + 13388.09 log G − 773.9628 log2 G) G8 + 1591.938 G9

+ (−82.72167 + 27995.10 log G − 1593.620 log2 G) G10 + O(G11)
)
�2

1 , (11)

where the renormalisation scale is set to ` = <1, and the quark masses are renormalised in the
pole scheme. In defining the Δ� = 2 evanescent operators, we have followed Ref. [30] and have set
all other O(n) contributions of physical operators to evanescent operators that were not previously
defined to zero.
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5. Conclusion

Major technical challenges a higher-order calculation of �B − �B mixing have been addressed
and their solutions presented. A reduction of Dirac structures with up to 22 W matrices on either of
the two spin lines is now tractable, and the computation of semi-analytic three-loop master integrals
with a dependence on the ratio of the charm and bottom quark masses has been carried out for
most of the relevant diagrams. Moreover, the methods presented here can also be applied to other
processes involving � and � mesons, e.g. for their decay rates.
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