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1. Introduction

The production of Higgs boson pairs is the prime process to constrain the trilinear Higgs
coupling _��� and it will allow to shrink the current limits [1, 2] obtained by the ATLAS and
CMS collaboration to 0.1 < _���/_("��� < 2.3 at the high-luminosity LHC [3].

Reaching these limits also requires accurate theoretical predictions and therefore higher-order
corrections to the process 66 → ��, which has first been calculated at Leading Order (LO) in
Refs. [4, 5], need to be included. The Next-to-Leading Order (NLO) QCD corrections including
the full top-quark mass dependence have been obtained in Refs. [6–10] and matched to parton
showers [11–14]. QCD corrections beyond NLO have been calculated in the heavy-top-limit [15–
17], or in a combination of large-<C and high-energy expansions [18], and combined with the
top-mass effects at NLO in Refs. [19–22]. Reducing the large top-mass renormalisation scheme
uncertainty [14, 23] of about 20% at NLO, requires the calculation of the top-mass effects at NNLO.
First contributions to these three-loop contributions have been calculated recently [24–26].

In addition to higher-order QCD predictions, NLO electroweak (EW) predictions are required
for accurate predictions. Various groups have calculated parts of the NLO EW corrections [27–34].
The full NLO EW corrections have been presented in Ref. [35], and in Ref. [36] using a large
top-quark mass expansion up to 1/<8

C .
In this contribution, the calculation of the EWcontributions resulting fromHiggs Self-Coupling

and Yukawa corrections, presented in Ref. [32], is summarized.

2. Model and Renormalisation

To calculate the Higgs Self-Coupling and Yukawa corrections to the process 66 → �� at
NLO, we use the gaugeless limit (6, 6′) → (0, 0) of the Standard Model and we only consider
contributions of the Higgs field, top-quark and gluons. We therefore start from the bare Lagrangian

L0 = −
1
4
G0,`aG`a0 + (�`Φ0)†(�`Φ0) + `2Φ†0Φ0 +

_0
4
(Φ†0Φ0)2

+ 8&̄!,0 /�&!,0 + 8C̄',0 /�C',0 − (HC ,0&̄!,0Φ20 C',0 + h.c.),
(1)

with

&!,0 =

(
C!,0

0

)
, (2)

After symmetry breaking and using unitary gauge, this leads to

= − 1
4
G0,`aG`a0 +

1
2
(m`�0)†(m`�0) −

<2
�,0

2
�2

0 −
<2
�,0

2E0
�3

0 −
<2
�,0

8E2
0
�4

0

+ 8C̄0 /�C0 − <C ,0C̄0C0 −
<C ,0

E0
�0C̄0C0 + constant

(3)

with

<2
�,0 = 2`2

0 , <C ,0 =
HC ,0E0√

2
and E2

0 = −
2<2

�,0

_0
. (4)
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The bare fields and masses of the top quark and Higgs boson can be related to renormalized
quantities via

�0 =
√
/�� =

√
1 + X��, C0 =

√
/C C =

√
1 + XC C, (5)

<2
�,0 = <

2
� (1 + X<2

� ), <C ,0 = <C (1 + X<C ) (6)

and we fix the renormalization constants using the on-shell scheme. The inverse of E0 can be
interpreted as the coupling constant of our model. It can be renormalized via

E0 + ΔE = E(1 + XE ) + ΔE, (7)

where we also absorb a shift ΔE due to tadpole contributions using the Fleischer-Jegerlehner tadpole
scheme [37]. To facilitate comparison of our results with other calculations, we fix XE according
to the �` scheme [38]. Alternatively, it could be fixed by requiring finiteness of the renormalized
vertices, leading to

XE |UV = −
3<4

�
+ 2<2

�
<2
C #2 − 8<4

C #2

32c2<2
�
E2n

(8)

in all cases. This, however, would not uniquely fix the finite terms of XE .

3. Calculation

Figure 1: Representative two-loop diagrams contributing to the Higgs Self-Coupling and Yukawa Correc-
tions considered here.

To calculate the amplitude, we first generate the Feynman diagrams using qgraf [39]. Some
example diagrams are shown in Fig. 1. We generate a form factor decomposition of the amplitude
using alibrary [40] and checked the resulting expressions with an independent calculation using
Reduze 2 [41] and find full agreement.

We then reduce the loop integrals to a basis of master integrals using Ratracer [42] and
Firefly [43, 44] with integration-by-parts identities [45] generated by Kira [46, 47]. Testing
different choices for the master integral basis, we find a basis a finite integrals [48], where the
dependence on the space-time dimension � factorizes from the kinematic dependence in the
denominators of the reduction [49, 50], and furthermore, the top-level (7-propagator) integrals, as
well as most of the 6-propagator integrals, don’t contribute to the poles of the amplitude.

The master integrals are then evaluated numerically using pySecDec [51–54] to obtain the
amplitude. For the bulk of phase-space points, we find that evaluating the loop integrals takes
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approximately five minutes on four Nvidia A100 GPUs to reach our target relative precision of 10−3

on the amplitude. It is worth mentioning that with an earlier, non-optimal choice of master integral
basis, the integration time was typically O(100h) and hence finding a good basis is crucial to obtain
a fast evaluation of the amplitude.

No real radiation contributions have to be taken into account, since in our approximation, these
correction would involve the radiation of an additional Higgs boson, which can be experimentally
distinguished from the �� final state.

4. Results
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Figure 2: Invariant mass and transverse momentum distributions for Higgs boson pair production at LO
and NLOEW including only the Yukawa and self-coupling type corrections. The QCD renormalisation and
factorisation scales are set to `A = ` 5 = <�� /2.

To obtain the total and differential cross section, we reweight ∼7000 unweighted LO eventss
with the NLOEW contribution obtained from the virtual two-loop amplitude. For the LHC at a
center-of-mass energy of

√
B = 13.6 TeV we find that the NLOEW corrections increase the cross

total section by 1%. Differential results for the<�� and ?) ,� distribution are shown in Fig. 2. For
the <�� distribution, we find corrections of up to 15% close to the production threshold, whereas
for <�� > 400 GeV the corrections decrease to the ±1% level. In the ?) ,� spectrum, we find a
strong phase-space dependence with corrections of up to 5%.

5. Conclusion

We have presented a calculation of the subset of EW corrections to Higgs boson pair production
stemming from additional Yukawa or Higgs self-interactions. The integrals appearing in the two-
loop amplitude have been calculated numerically with pySecDec, after selecting a basis of finite
master integrals, which avoids poles in the coefficients of the top-level integrals. We find that the
NLOEW corrections increase the total cross section by 1%, and on the differential level, we find up
to 15% corrections close to the production threshold.
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