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We present selected examples demonstrating an alternative approach to contour deformation for
numerically computing loop integrals in the Minkowski regime. This method focuses on identify-
ing singular hypersurfaces (varieties of the F polynomial) and mapping them to known points
which can then be resolved by employing blow-ups/sector decomposition techniques, thereby
avoiding the need for contour deformation. Using this technique, we achieve improved conver-
gence properties without the need for contour deformation, which is known to significantly in-
crease the complexity of the integrand by introducing, for example, derivatives of the F poly-
nomial and complicated Jacobians. We highlight that while we have only tested the approach on
selected one-, two- and three-loop massless and one-loop massive examples, it shows promise for
practical applications, offering potential benefits over the traditional approach. Evaluation times
are compared with existing contour deformation implementations to illustrate the performance of
this alternative method.
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1. Introduction & Motivation

Many loop integrals appearing in state-of-the-art amplitude calculations are analytically in-
tractable; as a result of this, numerical methods and other approximations have been developed to
tackle these integrals [1–11]. Even with these tools, we often have trouble numerically calculating
in the so-called “Minkowski” regime, which we define below, due to poles on the contour of in-
tegration. To remedy this, we deform the contour of integration away from the real axis to avoid
these poles in such a way that we respect the causal 8X (Feynman) prescription. Methods have been
explored to remove the need for contour deformation for momentum-space integrals (for example,
in the context of loop-tree duality [12–14]) so it is a natural question to ask whether it is possible to
do the same in Feynman parameter space.

As a reminder, we show how an integral in momentum space appears once it has been cast into
Feynman-parameterised form:
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where � is the spacetime dimension, ! is the number of loops and # is the number of propagators
(denoted by % 9 which are of the standard “?2 − <2 + 8X” momentum-space form) and we allow for
dots (a 9 ∈ N). After Feynman parameterisation, we have an integral of the Feynman parameters
{G 9} over the positive hyper-quadrantR#

≥0 with an integrand containing the homogeneous Symanzik
polynomials U (x) and F (x, s) of degree ! and ! + 1 respectively.

We note that there are several equivalent algorithms to construct the Symanzik polynomials,
including constructing directly from cutting propagators in the Feynman diagram associated to the
relevant integral (where this diagram exists). It is also instructive to emphasise that F is depen-
dent on the kinematics of the problem (denoted by s) whereas U depends solely on the Feynman
parameters and is strictly non-negative in the integration domain (and hence, does not need an 8X

prescription). We define the (pseudo-)Euclidean regime to be the region of kinematic space where
F (x, s) ≥ 0 everywhere in the domain of integration (vanishing only on the boundary) and the
Minkowski regime is henceforth defined to be the remaining region of kinematic space which is not
in the (pseudo-)Euclidean regime (e.g. M = {(B, C) ∈ R2 | B > |C | ∧ C < 0} for on-shell massless
2 → 2 scattering). In this region, F can take different signs within the domain of integration and
hence, in this regime, a prescription is required to deform the contour in a way that obeys causality.
The causal 8X prescription in momentum space induces F − 8X in Feynman parameter space and
this is needed when F = 0 within the domain of integration (that is to say, within R#

>0 but strictly
not on the boundary).
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Figure 1: A one-loop example hypersurface defined by F = 0 before (left) and after (right) transformation.

The standard way this is implemented in Feynman parameter space is as follows [15–18]:

F (z) = F (x) − 8
∑
9

g9
mF (x)
mG 9

, g9 = _ 9G 9

(
1 − G 9

) mF (x)
mG 9

(2)

such that F is given a small imaginary part with the deformation away from the real axis parame-
terised by {_ 9}. Many techniques, including neural networks [19], have been used to optimise this
choice of {_ 9} but overall this can still slow down numerical integration massively (due to increased
variance of the integrand leading to cancellations between postive and negative quantities of simi-
larly large magnitude). There are even cases where this procedure fails entirely and this is related
to the presence of a leading Landau singularity for arbitrary kinematics (see, for example, [20]).
This happens when, for all kinematic points in the Minkowski regime, M, there exists (at least) one
point where F (x) and all mF (x)

mG 9
are simultaneously zero so the construction in Eq. 2 breaks down.

We encounter an example of this in section 2.3.
For the reasons described above, it would be beneficial to avoid this procedure of contour de-

formation in Feynman parameter space where possible; that motivation is the focus of the work
presented in these proceedings.

1.1 The Idea

The central idea is to construct transformations of the Feynman parameters {G 9} which map
zeroes of the F polynomial to the boundary of integration as illustrated in an example in Fig. 1.
These transformations look like a) positive parameter rescalings (e.g. G 9 → UG 9 or G 9 → G8G 9)
and b) the introduction of hierarchies between Feynman parameters which generate split integrals to
cover the entire original parameter space (e.g. G 9 → G8+G 9). Transformations of type a) are justified
by the projective invariance of the integral and the Cheng-Wu theorem [21–23] and transformations
of type b) are justified by inserting the Heaviside identity, \ (G0 − G1) + \ (G1 − G0) = 1, under
the integral sign. These transformations are very reminiscent of sector decomposition [24] (and
indeed, this work is greatly inspired by that technique) but we stress that sector decomposition as
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Figure 2: A selection of massless integrals to which the method has been applied. Thin blue lines denote on-
shell external legs, thick green lines denote off-shell external legs and black lines denote massless internal
propagators. For the one-loop example, we also explicitly associate Feynman parameters (in red) to each
propagator to simplify the connection between the diagram and its cut-constructed U and F polynomials.

used for the numerical computation of Feynman integrals in the physics literature is a method for
dealing with singularities on the boundary of the domain of integration whereas this technique maps
singularities within the domain to the boundary where they can then be dealt with using the sector
decomposition algorithm (for which we use pySecDec [1]).

The result of these transformations is that we only ever integrate manifestly non-negative inte-
grands (for the transformations which make F non-positive, we extract an overall minus sign from
F and factor it outside the integral along with the 8X all to the appropriate power which generates
the physically-correct imaginary part). We stitch everything together as follows:

� =

#+∑
=+=1

�+=+ + (−1 − 8X)−(a−!�/2)
#−∑
=−=1

�−=− (3)

where �
+(−)
=+(−) corresponds to an integral where the transformed F polynomial is non-negative (non-

positive). As we will demonstrate in a number of specific examples, it can be much faster to nu-
merically integrate the manifestly non-negative integrands of the integrals {�+=+ , �

−
=− }. We begin by

considering a selection of integrals with massless internal lines.

2. Massless Integrals

Our improvements on timings for numerical integration are best illustrated in our application of
the method to massless integrals (by which we refer to integrals whose internal propagators have no
masses; however, we do allow for off-shell external legs). To make the technique concrete, we will
explicitly go through a simple one-loop massless box and then demonstrate the efficiency increases
on two-loop and three-loop cases. The Feynman diagrams of the specific example integrals we
consider are shown in Fig. 2.

2.1 One-Loop Off-Shell Box

We begin by considering the one-loop off-shell box. For this example,

U = G0 + G1 + G2 + G3 (4)
F = −BG0G2 − CG1G3 − ?2

1G0G1 (5)
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Figure 3: A flowchart depicting the series of transformations which resolves the singularities for the one-loop
off-shell box.

where B and C are the usual Mandelstam variables.
If we restrict to Mphys = {(B, C, ?2

1) ∈ R
3 | B > 0 ∧ C < 0 ∧ ?2

1 > 0}, there will be zeroes of F

within the integration volume for (G0, G1, G2, G3) ∈ R4
>0. We show in Fig. 3 the series of transforma-

tions which resolves the singularities due to F . To be consistent, we must also generate U +
1 , U −

1
and U −

2 by applying the corresponding transformations to U as well as generating the absolute
values of the corresponding Jacobian determinants: J +

1 , J −
1 and J −

2 .
Having calculated these objects, we have a set of manifestly non-negative integrands with the

same structure, ∼J ±
=±

(
U ±

=±

)2n (
F±

=±

)−2−n , which we can combine to express our initial integral
into the following sum of three easier integrals:

� = �+1 + (−1 − 8X)−2−n
(
�−1 + �−2

)
(6)

and we have verified this construction numerically integrates to the known analytic result using
pySecDec.

2.2 Two-Loop Non-Planar Box

We now consider a slightly more complicated example: a two-loop non-planar box. After
cut-construction, we find that F = −BG1G2G5 − CG0G1G3 − DG0G2G4 and furthermore, applying the
momentum conservation constraint B + C + D = 0 allows us to eliminate D resulting in

F = −BG1G2G5 − CG0G1G3 + (B + C)G0G2G4. (7)

It is clear to see that even with B and C of the same sign, F can be zero within R6
>0 and, in fact,

a (pseudo-)Euclidean region does not exist for this integral – the entire kinematic space is in the
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(a) A kinematic point in M1
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(b) A kinematic point in M2

Figure 4: Timing vs. precision comparisons avoiding contour deformation for the two-loop non-planar box.
Orders of magnitude improvements are observed for points in both M1 (a) and M2 (b).

Minkowski regime. To test our method, we consider two distinct subsets of the Minkwoski regime:

M1 := { (B, C) ∈ R2 | B > |C | ∧ C < 0 } (8)
M2 := { (B, C) ∈ R2 | 0 < B < |C | ∧ C < 0 }. (9)

We find that, to cover all the space in the regime defined by M1, we need six integrals combined in
the form:

� =
(
�+1 + �+2 + �+3

)
+ (−1 − 8X)−2−2n (

�−1 + �−2 + �−3
)

(10)

which agrees with the analytic result [25] when integrated numerically. For the regime M2, we
similarly find a total of six (different) integrals. We compare the timings for integrating up-to-and-
including finite order in n with the standard contour deformation setup in pySecDec versus our
method in Fig. 4 and we find significant improvements for a point in M1 (4a) and M2 (4b).

2.3 Three-Loop Non-Planar Box

The final example of massless integrals is the three-loop non-planar box with an F polynomial
given by

F = −B (G1G4 − G0G5) (G3G6 − G2G7) − C (G1G2 − G0G3) (G5G6 − G4G7) . (11)

As previously mentioned, this an example of a case where the integral has a leading Landau sin-
gularity for arbitrary kinematics [20] and so the standard “out-the-box” implementation of contour
deformation will inevitably fail. As explained in [20], this Landau singularity can be resolved by
first linearising the singular hypersurface and then by considering all permutations of hierarchies
for the Feynman parameters; finally, after taking into account symmetry, we are left with six inde-
pendent integrals. For the regime Mphys = {(B, C) ∈ R2 | B > |C | ∧ C < 0}, we find that two of these
six integrals would usually require contour deformation. Their F polynomials are

F0 = G1G3G5G7 [−BG0G2 + |C | (G0 + G4) (G2 + G4)] (12)
F1 = G1G3G5G7 [BG6 (G0 + G2 + G6) − |C | (G0 + G6) (G2 + G6)] . (13)

6
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10 910 710 510 310 1 Precision025050075010001250150017502000
Time [s]

3-Loop Non-Planar Box Leading Pole - Individual Integration Time vs Absolute Precision: s= 1, t= − 1/5Avoid CDCD

Figure 5: Timing comparison to obtain the leading pole (1/n4) coefficient of the three-loop non-planar-box.

Through a more involved combination of splits and rescalings, we can express each of these integrals
in terms of four others, resulting in a total of twelve integrals to compute (none of which require
contour deformation):

� =

8∑
=+=1

�+=+ + (−1 − 8X)−2−3n
4∑

=−=1
�−=− . (14)

Having verified the numerical result of this construction against the known analytic result [26, 27],
we compared timings between numerically computing the six split integrals (post-resolution of the
Landau singularity) using the usual contour deformation procedure and numerically computing the
twelve integrals required to avoid contour deformation and these are shown in Fig. 5. We were not
able to go beyond the leading pole (1/n4) for the standard contour deformation setup whereas we
could expand deeper in n with our method for avoiding the procedure.

For the point (B = 1, C = −1/5) ∈ Mphys, we state the precisions obtained after O(mins) with
pySecDec as well as the analytic result for comparison:

�CD = [8.34055 − 52.36088] n−4 + O(n−3) (15)
�Avoid CD = [8.340040392028 − 52.35987755983478] n−4 + O(n−3) (16)
�analytic = [8.34004039223768 − 52.359877559844938] n−4 + O(n−3) (17)

where the boldface digits denote the reported error on the final two stated digits preceding them.

3. Massive Integrals

Integrals with massive internal propagators (henceforth, “massive integrals”) appear in a va-
riety of phenomenologically-relevant amplitudes; for example, QCD corrections to processes in-
volving massive quarks or electroweak corrections which contain a number of different mass scales
resulting in integrals which often have no known analytic solution. In this scenario, numerical meth-
ods are essential – the question therefore arises whether the method presented in this work extends

7
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Figure 6: The massive integrals to which the method has been successfully applied (left & centre) and the
massive sunrise integral (right) which we are currently investigating. The colour scheme matches Fig. 2 and,
additionally, purple lines denote massive internal propagators with their masses given in red.

to this class of integrals. The essential difference is that the F polynomial is modified by an extra
term proportional to the U polynomial:

F (x, s) = F0 (x, s) + U (x)
#∑
9=1

<2
9G 9 (18)

where F0 (x, s) is the polynomial for the corresponding massless integral. This modification means
that each individual Feynman parameter G 9 may appear quadratically in F as opposed to the mass-
less case where, in each term, G 9 can appear linearly at most. The effect of this is that viable trans-
formations can be difficult to deduce even for the most trivial of massive integrals. This motivates
us to consider whether geometrical intuition can guide us in the right direction.

We have successfully employed the method on the massive bubble (which we describe in detail
in Section 3.1) and triangle (both shown in Fig. 6) and current work involves the investigation of the
sunrise integral (also in Fig. 6) which is known to be the simplest Feynman integral which cannot
be expressed in terms of multiple polylogarithms but rather elliptic integrals.

3.1 Massive Bubble

The F polynomial of the massive bubble is given by

F = −?2G1G2 + (G1 + G2)
(
<2

1G1 + <2
2G2

)
. (19)

We define V2 := ?2−(<1+<2 )2

?2−(<1−<2 )2 ∈ [0, 1) and scale out the dimension of F with the transformations
G8 → G8

<8
to instead analyse the dimensionless polynomial

F̃ = G2
1 + G2

2 − 2
1 + V2

1 − V2 G1G2. (20)

It is illuminating to plot the variety of F̃ and this is given in Fig. 7. We see that there are three
distinct regions separated by the codimension-1 zero hypersurface of F̃ , two of which are defined
by F̃ being positive, the remaining region defined by F̃ being negative.

We can construct transformations which directly send the variety to the integration boundary.
For example, for the upper-left region of the plot, we demand of the transformed variables {H8} that
the H2-axis coincides with the G2-axis and the H1-axis coincides with the solution line G2 =

1+V
1−V G1.

8
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Figure 7: Plot of the variety (in orange) of the F̃ polynomial for the massive bubble which separates three
regions in the positive quadrant of R2.

Along with the constraint that points within this region get mapped to the positive quadrant in the
new H8 variables, this uniquely defines the transformation:

H1
!
= G1, H2

!
= G2 −

1 + V

1 − V
G1 ⇒ G1 → H1, G2 → H2 +

1 + V

1 − V
H1. (21)

We have verified that the resulting construction � = �+1 + �+2 + (−1 − 8X)−n �−1 replicates the
analytic result by integrating it both numerically with pySecDec and analytically (as we can easily
calculate the constituent integrals in the sum symbolically, for example, using Mathematica).

4. Conclusions & Outlook

As we have shown, this method allows us to avoid contour deformation (and its associated
computational inefficiencies) in regions of kinematic space which would ordinarily require it. We
demonstrate that the time to evaluate multi-loop integrals numerically can be improved by a factor of
one thousand or more in selected cases and the ability to expand deeper in the dimensional regulator
n has also been observed for a particularly pathological three-loop example. We have also conveyed
that geometry can play a role in deriving the necessary transformations of the Feynman parameters
to enable the avoidance of contour deformation, for example, in massive integrals where they are
considerably more difficult to identify.

Current and future work is directed towards utilising this intuition attained by visualising the
problem geometrically to move away from arbitrary shift and rescaling transformations (derived
from a trial-and-error approach) and towards a general algorithm to define canonical transforma-
tions. There is potential insight to be gained from techniques in the fields of algebraic and tropical
geometry by directly considering the variety of the Symanzik polynomial F and using computa-
tional tools for the resolution of singularities [28].

9
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Understanding how to apply this method to two- and even three-loop massive integrals could
lead to very significant time improvements, perhaps even better than the orders of magnitude im-
provements we have already presented in these proceedings for massless integrals. Moreover, ap-
plying the method to further multi-loop massless integrals may allow for (currently-impossible)
numerical cross-checks of analytic or semi-analytic results.

The long-term objective of this work is to implement this technique in numerical loop integra-
tion packages like pySecDec to be used in the efficient calculation of QFT amplitudes where, along
with the integration-by-parts reduction to master integrals, multi-loop integral evaluation remains
a major bottleneck.
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