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Abstract
The production of high-quality fiber reinforced polymer parts is an important aspect in sev-
eral industrial areas. However, due to unavoidable uncertainties in material and manufac-
turing processes, the part quality scatters. One important aspect here is the fiber orienta-
tion, being crucial for the thermo-mechanical properties of the part and being influenced 
by the uncertain material state and process conditions. Process simulations are an impor-
tant tool for predicting the fiber orientation, but state-of-the-art simulations are normally 
deterministic and represent only one specific case. Performing enough deterministic simu-
lations to model manufacturing uncertainties requires high numerical effort. Therefore, this 
work presents methods to quickly and efficiently approximate the fiber orientation under 
varying material and process parameters, requiring only a few simulations as input. Differ-
ent schemes for approximation are evaluated and compared with each other and with 3D 
process simulations.

Keywords Discontinuous fiber reinforced polymers · Injection molding simulation · 
Process uncertainties · Fiber orientation approximation

1 Introduction

Discontinuous fiber reinforced polymers (FRPs) are becoming more important for struc-
tural and semi-structural parts. The materials are compounded to a fiber-matrix-suspension, 
where the fibers are more or less able to move and orientate within the matrix. Therefore, 
discontinuous FRPs are well suited for mold filling processes and complex geometrical 
features. During the manufacturing of FRP parts, the fibers re-orientate and the final ori-
entation has crucial impact on the final part’s thermo-mechanical properties. Especially in 
processes with long flow paths like injection or compression molding, the process condi-
tions influence the flow field and therefore the fiber orientation. Thus, the manufacturing 
itself has an impact on the final part’s properties.
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To predict the final fiber orientation, process simulation is an important tool. Such pro-
cess simulations are normally non-isothermal and transient computational fluid dynamics 
(CFD) simulations, which are numerically solved on finite elements [1] or finite volumes 
[2–7]. Due to the numerical effort, the fiber matrix suspension is described with a homog-
enized material modeling approach and the orientation state is given by orientation tensors 
[8]. The orientation evolution is dominated by the flow field, where the material’s viscosity 
is the most important property for flow modeling. According to the state of the art, polymer 
viscosities are modeled temperature and shear rate dependent, where for thermoplastics 
the so-called Cross-WLF approach is most common [9]. In case of thermoset materials, 
additionally the curing reaction is relevant and the most common viscosity approach is the 
Castro-Macosko model [10]. Most state-of-the-art simulation tools model the viscosity iso-
tropic, even though the fibers influence the flow field in an anisotropic way. More advanced 
approaches consider fiber aspects in the viscosity modeling to gain a coupled flow and fiber 
orientation modeling [4, 7, 11].

Nevertheless, all these approaches describe mold filling and fiber orientation determin-
istically for a specific combination of given material properties and boundary conditions. 
In reality, process and material underly natural and environmentally triggered uncertainties, 
leading to scatter in part production and eventually to uncertainties of the final fiber orien-
tation and part properties. Process conditions, for example material temperature, influence 
the part properties, as presented by Jansen et al. [12] and Kurt et al. [13], who investigated 
the influence on shrinkage in thermoplastic injection molding. Mesogitis et al. [14] name 
material conditions like storage, pre-curing, contaminations, humidity, etc. as important 
aspects for process and part property uncertainties for mold filling with thermoset matrix 
materials. These uncertainties lead to raising safety factors, which cause inefficient mate-
rial use, with negative impact on the lightweight potential and ecological footprint of the 
produced parts. To quantify the consequences of material and process uncertainties on part 
properties, knowledge about the uncertainty of fiber orientation is one indispensable infor-
mation. The uncertainty of the orientation can be predicted by simulations. However, since 
today’s modeling approaches for mold filling simulations with FRPs are deterministic, a 
prediction of uncertainty would only be possible by performing several process simula-
tions with varying input parameters for material attributes (e.g. initial curing state and fiber 
length) and process conditions (e.g. temperature of tool and material). Performing such a 
high number of process simulations with varying combinations of uncertain input param-
eters means high computational effort, which is not capable at the moment within a mean-
ingful period of time. One solution to overcome this problem is an efficient approximation 
of the resulting fiber orientations for a given combination of input parameters, based on 
just a single detailed and time-consuming process simulation. This work presents such an 
approximation scheme for injection molded FRPs with arbitrary combinations of uncertain 
input parameters regarding material temperature, tool temperature, initial curing state and 
fiber length.

Starting point is a parameter variation of material and tool temperature, fiber length and 
initial curing state for thermoset injection molding to quantify the influence of these param-
eters on the final fiber orientation. The data is then used to develop interpolation-based 
schemes, which approximate the fiber orientation due to multiple parameter variations in a 
wide range. For that purpose, the orientations tensors need to be interpolated. In contrast to 
scalar fields, e.g., temperature, pressure, etc., the interpolation of tensor-valued fields is sig-
nificantly less studied and understood in engineering contexts. Naive adaption of scalar tech-
niques to tensorial data is widely applied but found to induce artificial bias towards isotropic 
states [15, 16]. As alternative approach, several contributions propose decomposition-based 
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techniques, which interpolate direction-dependent and direction-independent characteristics 
separately [17, 18]. Very recently, those techniques have been generalized to accept fiber ori-
entation tensors as input confirming the superiority of decomposition-based techniques for 
relevant experimental and numerical use-cases [19, 20]. It should be noted however, that all 
of these approaches are applied for spatial interpolation, i.e. the interpolation functions take 
three-dimensional coordinates as input. In the present study, however, interpolation is intended 
to operate on a multi-dimensional parameter space, where possible (auto-)correlation of argu-
ments must be considered.

Therefore, four different approaches are compared and the scheme creating the best results 
is used to efficiently create orientation data with random input parameters. The approxima-
tions are in good agreement with full 3D-simulation.

2  Process Simulation for Uncertainty Quantification

2.1  Simulation Approach

The process simulations within this work are performed with the open-source FVM-solver 
package OpenFOAM®. A detailed description of the Methodology, Material models and 
implementation is given in [3, 4, 21]. The most relevant aspects of the process simulations 
for this work, being fiber orientation modeling and viscosity modeling, are described in more 
detail in Sect. 2.1.1 and 2.1.2. Since thermoset injection molding is in focus of this study, cur-
ing kinetics are involved and modeled with the Kamal-Malkin approach [22]. The fiber orien-
tation evolution is determined by a second-order orientation tensor, according to the work of 
Advani and Tucker [8]. The RSC model, presented by Wang et al. [23], is used for fiber orien-
tation evolution. The IBOF5 approach [24] is used for closure approximation. This combina-
tion of modeling approaches was validated by the authors in [4, 6] and proved to be suitable 
to simulate the injection molding process with discontinuous short fiber reinforced thermoset 
materials.

2.1.1  Fiber Orientation Model

Today’s fiber orientation models are nearly all based on the work of Jeffery [25], describ-
ing the motion of a single ellipsoidal particle surrounded by an infinite Newtonian fluid. Due 
to its formulation, Jeffery’s approach does not allow steady-state orientation states, but this 
phenomenon is typical for non-dilute fiber-reinforced polymers with a sufficiently large flow 
path. Therefore, Folgar and Tucker [26] presented one of the first approaches to model fiber 
orientation in FRPs by expanding Jeffery’s approach with an additional term, containing the 
so-called interaction coefficient CI , which allows for diffusion towards steady-state orientation 
states. Since it is numerically not capable to model the motion of every single fiber, the evolu-
tion of fiber orientation is often represented by orientation tensors according to Advani and 
Tucker [8].

Fiber orientation modeling in this work is performed with the reduced strain closure (RSC) 
model by Wang et al. [23], representing the orientation evolution by

(1)

dA

dt
+ U

𝜕A

𝜕x
= (WA − AW) +

r
2
f
− 1

r
2
f
+ 1

{DA + AD − 2[� + (1 − 𝜅)(� −��)]D} + 2𝜅CI�̇�(I − 3A),
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where A and � are the second- and fourth-order orientation tensor according to Advani and 
Tucker [8], U is the velocity, x is the coordinate vector and t represents the time. W and D 
are the vorticity and strain rate tensor, �̇� the scalar shear rate and rf the fibers’ aspect ratio. I 
represents the second-order identity tensor, and � and � are calculated with the eigenvalues 
and eigenvectors of A [23]. The strain reduction factor � ∈ [0,1] represents the main differ-
ence between the RSC and Folgar-Tucker approach, since the two approaches are identical 
for � = 1 . In general, the orientation evolution, meaning the rotation of fibers and therefore 
alignment in flow direction, is slower for smaller values of �.

For any considered fiber length within this work, it is Φfrf > 1 , with Φf being the fiber 
volume fraction. So according to Advani [27], the interaction coefficient CI is calculated as 
presented by Bay [28] that

Hence, a variation of fiber length directly influences the fiber orientation modeling by 
changing the fiber aspect ratio and therefore the term (r2

f
− 1)∕(r2

f
+ 1) in the orientation 

model and the calculation of CI.

2.1.2  Viscosity Model

The simulation approach for the viscosity of the FRP presented in [4] represents the material 
viscosity with a fourth-order viscosity tensor

with

considering matrix viscosity �M , fiber length (via aspect ratio rf ) as well as the fiber orien-
tation state by A and � . Φmax is the maximum possible fiber volume fraction, assumed to 
be �∕

√
12 (hexagonal packing) [29]. Therefore, fiber re-orientation and fiber length vari-

ations are captured in the flow modeling, which is important for modeling process uncer-
tainties. The definitions of �11, �12 and �23 are according to Pipes et al. [29]. To calculate the 
matrix viscosity �M , the approach by Castro and Macosko [10] is used with
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where nCM, �∗,BCM, TB, c1 and c2 are material specific constants, T  the temperature, c the 
degree of cure and cg the gelation point. Hence, the process and material uncertainties of 
varying material and tool temperatures as well as varying initial curing states are captured 
in the flow modeling.

2.1.3  Simulation Model and Material

According to experimental tests performed in [30] the simulated material is a 22.3 vol.-% 
glass fiber filled phenolic. Based on measurements, the fibers are assumed to have an aver-
age length of 0.38 mm and a constant diameter of 0.017 mm. Due to the short fiber length, 
it is assumed that the fiber length stays constant and therefore no fiber breakage is con-
sidered in the simulations within this work. In consultation with the material supplier, the 
initial curing state is assumed to be 10%. The material is injected with a temperature of 
120 °C and the mold is heated to 175 °C. The mold is filled with a constant volume flow of 
75  cm3/s. This configuration will be called ‘reference case’ in the following.

The simulated cavity is a rectangular plate with 480 mm × 190 mm × 2 mm as shown 
in Fig. 1. The material enters the plate via a 185 mm long cone sprue at the plate’s center, 
having a start diameter of 9 mm and an end diameter of 15.5 mm. For the simulation, the 
cavity is meshed with hexahedral elements. In the plate, the cell size is 2.3  mm in x1 -, 
1.75 mm in x2 - and 0.25 mm in x3-direction. The nozzle and sprue are discretized with 32 
cells along the circumference, 24 along the diameter and 140 in x3-direction. For the screw 
chamber, 64 cells along the circumference and 72 cells in radial direction are used, with a 
x3-dimension of the cells of 1.57 mm.

The fiber orientation will be evaluated at eleven points with different x1 - and x2-coordi-
nates ( P1 to P11 ) illustrated in Fig. 2. Due to the symmetry of the plate, these eleven points 
represent the complete plate. Since the simulation is performed using eight finite volume 
cells over plate thickness, also eight orientation tensors over plate thickness exist at P1 to 
P11 (represented by the cell centers). Consequently, 88 points within the simulation model 
are considered and the multi-dimensional parameter-space interpolation is performed at 
these 88 points. As mentioned, no spatial interpolation of tensors is needed within this 
work. Therefore, the shown approaches are only applicable if all input data and the output 
data refer to identical meshes.

Fig. 1  Geometry for injection 
molding simulation. Inlet area  
in blue and outlet in orange
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2.2  Parameter Variations and Process Simulation Results

2.2.1  Parameter Variations

The varied parameters are tool temperature TTool , initial material temperature TMat , fiber 
length LF and initial degree of cure c0 . The reference values and variation steps are given in 
Table 1. The parameters TTool and TMat are varied only to a maximum of ±10%, since these 
are process parameters, with a lower uncertainty compared to material parameters. The 
temperature variation is based on °C scale, so TMat +10% corresponds to 132 °C.

In a first step, 45 full 3D process simulations are performed with the methods described 
in Sect. 2.1. One simulation is the reference case with the nominal values of the real pro-
cess, given in Table 1. The other 44 simulations are single realizations of one parameter 
variation according to Table 1. The intervals of input parameter variation are chosen on 
experience, not on actual measured values, since the focus of this work is the general fea-
sibility of a multi-dimensional parameter-space interpolation of orientation tensors, not the 
actual quantification of individual parameter uncertainties.

2.2.2  Fiber Orientation Results for Parameter Variation

In this section, the influence of the four varied parameters TTool , TMat , LF and c0 on the 
simulated fiber orientation is evaluated. The parameter variation is given in Table 1. The 
results are shown in Fig. 3 for P1 , Fig. 4 for P2 and Fig. 5 for P3 (cf. Fig. 2). The reference 
simulation is given in green, variations with negative percent deviations in blue and posi-
tive percent deviations in red.

In general, lowering TTool leads to higher viscosities and therefore raises the simu-
lated value of A11 . In contrast, rising TMat or c0 also rises the predicted value of A11 by 
rising the viscosity due to a higher degree of cure. It would have been expected that a 

Fig. 2  Top view on the simu-
lated plate. Positions P1 to P11  
for evaluation and comparison  
of fiber orientations resulting 
from 3D process simulations 
and from parameter-space 
interpolation

Table 1  Varied parameters with corresponding reference values and variation steps

Parameter

Reference

value

Variation in %

±2.5 ±5 ±7.5 ±10 ±15 ±25 ±50

Tool 175 °C

Mat 120 °C

F
0.38 mm

0
10 %
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rise of TMat shows a similar influence as a rise of TTool , but according to our previous 
work [31] the influence of TTool and TMat on the in-mold pressure is also opposite. Ris-
ing the temperature lowers the viscosity and benefits the curing reaction (which raises 
the viscosity), both in a non-linear way. Rising TMat benefits the curing and therefore 
rises the viscosity, but the direct influence on the material’s viscosity is marginal, since 
the material is still relatively cold (< 150 °C), this is especially important in the pre-
chamber and the sprue, where the surface-to-volume ratio of the mold is low compared 
to the plate. In the thin plate, TTool becomes dominant due to the high surface-to-volume 
ratio and heats the material quickly, lowering the viscosity, much faster than the curing 
reaction proceeds, which would rise the viscosity. These complex correlations of tem-
perature, curing and resulting viscosity are a typical phenomenon of reactive injection 
molding [21, 32]. In general, the orientation is more sensitive to TTool than to TMat in this 
case, due the thin-wall character and due to the fact that the absolute variation of TTool is 
higher, since the reference value is higher.

The deviations for c0 = 0.15 (+ 50%) are irregular high compared to the other parameter 
variations at every point. However, this configuration also results in a high process pres-
sure, and it is questionable if a process would run stable with such a high pre-curing state.

Contrary to the temperatures and curing state, the simulations with fiber length vari-
ation show no clear and monotonous influence on the orientation (besides P1 ) for longer 
or shorter fibers. One reason might be, that the fiber length influences the calculated 
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Fig. 3  Fiber orientation results at position P1 for parameter variation of TTool (a), TMat (b), LF (c) and c0 (d). 
Reference simulation in green, low values in blue, high values in red
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orientation in two ways. Firstly, a rise of fiber length leads to a rise of viscosity. But a 
change of fiber length only affects �11 (Eq. (4)), in a non-linear way, while for example c0 
is considered in the matrix viscosity �M (Eq. (5)), which is considered in every parameter 
in Eq. (4). Therefore, the influence of fiber length variations on the viscosity is more ani-
sotropic, compared to temperature or curing. The other aspect is that the fiber length is 
directly considered in the orientation evolution equation (Eq.  (1)) and the calculation of 
CI (Eq. (2)). Contrary to temperatures and curing, a variation of fiber length also creates 
deviations of the orientation state near the wall at every position.

Focusing on P1 , the simulations show a low influence on orientation in the core and near 
the walls and higher deviations in the layers between core and walls for temperatures and 
curing. At position P2 the deviations in the simulation are higher in the core region and 
quite small near walls. This also applies for P3 where nearly no deviations are detectable 
near the walls in simulation. With greater distance from the sprue and therefore longer flow 
path, the fibers align more and more in their steady-state orientation and influence of tem-
perature and curing becomes less important. This does not apply for LF , which influences 
the steady-state orientation by the calculation of interaction coefficient CI . Therefore, varia-
tions of LF cause higher deviations at P2 and P3 also near the walls.
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Fig. 4  Fiber orientation results at position P2 for parameter variation of TTool (a), TMat (b), LF (c) and c0 (d). 
Reference simulation in green, low values in blue, high values in red
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3  Approximation Schemes

3.1  Approximation Methods

In this section, four different approaches to approximate the resulting fiber orientation for 
an arbitrary parameter deviation, based on the results shown in Sect. 2.2.2 are presented. 
In a first step it is checked if orientation states for variation of single parameters can be 
approximated by a parameter-space interpolation, so only TTool , TMat , LF or c0 are varied. In 
a second step, it is checked if a superposition of deviations is possible, so multiple param-
eters are varied. In general, two approximation schemes are compared. The first one is 
based on the tensor components of A , the second one on its eigenvectors � and eigenvalues 
� . In case of multiple parameters being varied, the schemes are again separated in two 
approaches, differing in the point of superposition of the results, which can be done before 
or after the reconstruction of the orientation state. The approaches are explained in detail in 
the following sections.
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Fig. 5  Fiber orientation results at position P3 for parameter variation of TTool (a), TMat (b), LF (c) and c0 (d). 
Reference simulation in green, low values in blue, high values in red
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3.1.1  Parameter‑Space Interpolation of Components of A, � and � for Single 
Parameter Variations

The reconstruction of orientation states that are not captured in the parameter variation 
of Sect. 2.2.2 is performed by interpolating these results. For this purpose, two different 
schemes are introduced, where interpolated quantities are marked with a ∙̃  (for example 
Ã) . The first scheme is the direct interpolation of the components of A and therefore named 
Euclidean (euc) in the following. The second scheme is the interpolation of the eigenvec-
tors and eigenvalues of A and therefore called spectral (spec) in the following.

The Euclidean interpolation is defined by

where A
n
 represents the orientation states given in Sect.  2.2.2, hence 

n ∈ {−50%,−25%,−15%,−10%,−7.5%,−5%,−2.5%, 2.5%, 5%, 7.5%, 10%, 15%, 25%, 50%} 
for LF or c0 and n ∈ {−10%,−7.5%,−5%,−2.5%, 2.5%, 5%, 7.5%, 10%} for TTool or TMat . m 
is the point of interpolation, being m ∈ [−50%, 50%] for LF or c0 and m ∈ [−10%, 10%] for 
TTool or TMat . The interpolation does not guarantee that the new tensor fulfills the require-
ments of a second order orientation tensor, like being a symmetric semi-positive definite 
tensor (SPD) and trace(A) = 1 , therefore it is also indexed with ‘notSPD’ and ‘notnorm’. 
Hence, it is checked if the reconstructed tensor is SPD and otherwise it is transformed to its 
nearest semi-positive definite equivalent (using the Frobenius norm as distance metric), so

This procedure is presented by Higham [33], the implementation is provided by 
D’Errico [34]. Afterwards the tensor is normalized and the final reconstructed tensor is 
given by

Alternatively, an orientation tensor can be reconstructed by reconstructing the eigenvec-
tors and eigenvalues,

with k ∈ {1, 2, 3} , since three eigenvectors and three eigenvalues exist. These quantities 
must also be normalized,

The orientation tensor Ãspec can be reconstructed with �̃
k
 and �̃

k
 , where also Eq. (7) and 

Eq. (8) are applied to guarantee that Ãspec is SPD and trace(Ãspec) = 1.
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3.1.2  Superposition of Approximations for Multi‑dimensional Parameter‑space 
Interpolation

The aim of this work is to approximate fiber orientation states due to variations in a multi-
dimensional parameter space fast and efficiently. Therefore, this Section presents two 
approaches to superpose reconstructed orientation stages of single parameter variations, 
explained in Sect. 3.1.1.

The first approach is to simply average (index av) the reconstructed orientation tensors, 
so

and

The index ‘all’ indicates that all four parameters are varied for the reconstruction of this 
orientation tensor. Again, Eq. (7) and Eq. (8) are subsequently applied to guarantee that the 
reconstructed tensors represent admissible orientation states and gain the final Ã

all

euc_av
 and 

Ã
all

spec_av
.

The second approach is to first calculate the individual changes to the reference case due 
to single parameter deviation, sum up these changes and add them to the orientation state 
of the reference case to get the new orientation state. Hence, the individual deviations ΔÃ

i 
are defined as

where the index ‘ref’ represents the reference case and i ∈ {TTool , TMat , LF , c0} . The abso-
lute deviation due to all parameters is given by

And the reconstructed orientation state based on adding ΔÃ
abs (index ‘added’) is given 

by

Again Eq. (7) and Eq. (8) are applied to guarantee that the reconstructed tensor repre-
sents an admissible orientation state and gain the final Ã

all

euc_added
.

Similarly, this procedure is performed for �
k
 and �

k
 , so

and

(11)Ã
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Ã
TTool

spec
+ Ã
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TMat

+ ΔÃ
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as well as

Subsequently, Eq. (10) is applied on �̃added_notnorm

k
 and �̃added_notnorm

k
 and Ã

all

spec_added
 can be 

build with �̃added

k
 and �̃added

k
 and Eq. (7) and Eq. (8) are applied.

3.2  Quantities to evaluate the approximation quality

The four different approximation approaches presented in Sect.  3.1 can be verified by 
comparing them to a full 3D process simulation, performed with the parameters for TTool , 
TMat , LF and c0 also used in the interpolation. To ensure that the approximation is valid on 
the whole domain, multiple points along the plate surface and over the plate thickness are 
compared.

Since the orientation tensor contains 6 different values, which are compared at eleven 
positions containing 8 cells, a full comparison would include 528 samples, which is hard 
to illustrate. Furthermore, a direct comparison of tensor components is not representative 
[19]. Therefore, scalar and dimensionless quantities are defined to compare the orientation 
tensors with respect to shape and direction.

To compare the shape, the fractional anisotropy ( FA ) is considered. This quantity is 
defined as

with �̂ =
(
�1 + �2 + �3

)
∕3 = 1∕3 . It is FA ∈ [0,1] , where 0 means isotropic orientation, 

and 1 represents unidirectional oriented fibers [16]. Therefore, FA represents the degree of 
anisotropy without correspondence to the direction of the tensor or a coordinate system.

To compare FAapx , calculated with the reconstruction schemes explained in Sect. 3.1, 
with FAsim of a full 3D-simulation with identical parameters, the measure FAcomp is defined 
by

Hence, FAcomp ∈ [0,1] , with FAcomp = 1 , if FAapx = FAsim , and FAcomp becomes smaller 
for higher deviations between FAapx and FAsim.

Besides the shape, also the direction of the fiber orientation tensors is compared. There-
fore, the eigenvector, corresponding to the highest eigenvalue �3 is regarded, representing 
the principal direction of the tensor. If the reconstructed eigenvector �apx

3
 and the simulated 

eigenvector �sim
3

 are identical, it is |||�
apx

3
∙ �sim

3

||| = 1 . Similar to FAcomp , the values become 
smaller, if the angle between �apx

3
 and �sim

3
 becomes higher. So, the value for direction com-

parison EVcomp ∈ [0,1] is defined as
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4  Approximation Results and Discussion

In this section, the results of the reconstruction of orientation tensors for different parame-
ter variations and different reconstruction schemes are presented and discussed. At first, the 
considered parameter variations are explained (Sect. 4.1). In Sect. 4.2, single parameters 
are varied and the reference case is reconstructed to verify the general procedure. Addition-
ally, different interpolation intervals are compared to quantify the needed number of input 
simulations for the reconstruction. Sections 4.3 and 4.4 compare the results for multiple 
parameter changes. In Sect. 4.6, probabilistic data with random input is created fast and 
efficiently.

4.1  Parameter Variations and Labeling Conventions

In the following sections, the simulated and reconstructed cases are named according to a 
specific scheme to contain all relevant information. This scheme is Parameter – deviation 
in percent. The Parameters are TTool (Tt), TMat (Tm), LF (FL) and initial degree of cure (c). 
Hence, if for example, all parameters are varied by + 5%, the case is named Tt5Tm5FL5c5. 
If the reference case is reconstructed and only one parameter is interpolated, for example 
the Euclidean interpolation of TTool , the case is named TTool euc.

At first, the reconstruction of orientation is done by parameter-space interpolation to the 
reference case for every parameter individually, either by Euclidean or by spectral interpo-
lation. These results are also used to determine threshold interval sizes, needed to create 
acceptable results. Afterwards 3 different parameter variations, all reconstructed Euclidean 
or by eigenvectors and eigenvalues as well es by adding or by average are regarded. The 
values of the parameter deviations (with respect to the reference case) are given in Table 2.

The following cases represent a low deviation for all parameters (Tt5Tm5FL5c5) and a 
high deviation for all parameters (Tt10Tm-10FL50c-50) to generally determine if a super-
position of multiple parameter variations creates meaningful results. Finally, a completely 
randomly configuration (Tt8.15Tm1.23FL-31.61c13.93) is regarded, so interpolation is 
needed to reconstruct the orientation.

4.2  Results for Reference Case and Interval Evaluation

This section presents the results of FAcomp (Fig.  6) and EVcomp (Fig.  7) if only one 
parameter is varied. FAcomp and EVcomp are determined in every element at every Posi-
tions P1 to P11 and the shown results are the average of these individual values. Euclid-
ian and spectral interpolation for reconstruction of the orientation tensors are compared. 
Furthermore, different interval sizes for interpolation are compared, where the deviation 

Table 2  Names and parameter 
deviations of the reconstructed 
cases for comparison to 
simulation

Deviation in %

Name TTool TMat LF c0

‘Parameter’ euc/spec 0.00 0.00 0.00 0.00
Tt5Tm5FL5c5 5.00 5.00 5.00 5.00
Tt10Tm-10FL50c-50 10.00 -10.00 50.00 -50.00
Tt8.15Tm1.23FL-31.61c13.93 8.15 1.23 -31.61 13.93
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windows of the simulations used for reconstruction are indicated as different groups in 
Fig. 6 and Fig. 7. For example, in the group ±2.5%, the simulation results of the -2.5% 
and +2.5% simulations are used for the parameter-space interpolation and reconstruc-
tion of the reference case, while in the group ±10%, the simulation results of the -10% 
and +10% simulations are used. The groups ±15%, ±25% and ±50% only contain results 
for LF and c0 , since the temperatures have been varied only up to ±10% (cf. Table 1). 
The results in Fig. 6 and Fig. 7 present the average for all eleven evaluation points.

The results generally show that a reconstruction of orientation tensors due to 
parameter changes is possible, with FAcomp>0.93 and EVcomp>0.97 for every case. 
Therefore, adequate results can be achieved via parameter-space interpolation, even 

Fig. 6  Averaged values of FAcomp 
for different single parameter 
variations with Euclidian and 
spectral reconstruction. Different 
interval sizes for reconstruc-
tion of the reference case (0%). 
Average for all evaluation points 
(cf. Fig. 2)
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Fig. 7  Averaged values of EVcomp 
for different single parameter 
variations with Euclidian and 
spectral reconstruction. Different 
interval sizes for reconstruc-
tion of the reference case (0%). 
Average for all evaluation points 
(cf. Fig. 2)
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if the simulations used for interpolation show high deviations from the reconstructed 
configuration.

For larger interpolation intervals, the spectral method creates better results for FAcomp 
for all varied parameters, except for c0 ±25% and ±50%. This result is expected, since the 
spectral method should capture the shape of the tensor better, especially in case of higher 
deviations and FAcomp indicates the quality of the shape of the reconstructed tensor. For 
only ±2.5% variations, the FAcomp results of the spectral method are slightly worse. Since 
the deviations here are very small, the Euclidian method creates good results, while the 
spectral method shows small numerical error due to more normalization steps.

Regarding EVcomp (Fig.  7) the spectral method creates worse results in most cases, 
where again the additional normalization steps may be a reason. However, the quality of 
the principal direction of the interpolated tensor is good with EVcomp=0.97 being the low-
est value in case of spectral reconstruction for a fiber length interval of ±50%.

4.3  Results at the Evaluation Points for Multiple Parameter Variations

Figure 8 and Fig. 9 show the results of FAcomp and EVcomp for the evaluation positions P1 
to P11 , where FAcomp and EVcomp are determined in every element and the shown results 
are the average for all 8 elements over plate thickness. All simulation data presented in 
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Fig. 8  Averaged values of FAcomp at the evaluation points P1 to P11 (cf. Fig. 2). a-c represent the different 
parameter configurations according to Table 2
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Sect.  2.2 is used for the multi-dimensional parameter-space interpolation. The recon-
structed results are compared to full 3D-simulations, performed with the corresponding 
parameter configuration. In both cases ( FAcomp and EVcomp ), the results of the averaging 
method are quite identical, independent of the reconstruction being direct (euc) or with 
eigenvectors and eigenvalues (spec).

On the opposite, the two adding methods create different results, where the spec-
tral method often creates the worst results. Apart from the configuration Tt10Tm-
10FL50c-50 (largest parameter variations, cf. Fig.  8b), the averaging methods create 
results with FAcomp and EVcomp>0.9 at every evaluation point, while the adding method 
still creates results with FAcomp and EVcomp>0.85. The good results for Tt5Tm5FL5c5 
(Fig.  8a and Fig.  9a) show that a superposition of small individual changes creates 
meaningful results when orientation tensors are reconstructed. This applies to all pre-
sented schemes, although the averaging method creates better results than the adding 
method. Furthermore, the good results for Tt8.15Tm1.23FL-31.61c13.9 (Fig.  8c and 
Fig. 9c) show that a reconstruction by superposition is possible even if the individual 
orientation tensors (or orientation changes) are built by a parameter-space interpolation. 
Thus, a multi-dimensional parameter-space interpolation creates meaningful results. 
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Here, the adding method creates better results, but with outliers, while the averaging 
approach shows a more constant quality between the different evaluation points.

For Tt10Tm-10FL50c-50, the results are slightly worse at P9 to P11 , but still > 0.86, 
when the averaging method is used. The worst results are often at P6,P9 and P11 , being 
the evaluation points near the end of the flow path and therefore critical in fiber orienta-
tion and positions with higher uncertainty also in the real process. Comparing the adding 
approach over all parameter configurations, the spectral method often creates better results 
than the Euclidian approach in case of FAcomp and vice versa for EVcomp , especially for 
higher parameter variations. This fits to the results of Sect. 4.2 and supports the statement, 
that the spectral method is more suitable to capture the shape of the reconstructed tensor.

4.4  Results at Exemplary Evaluation Point P
2
 for Multiple Parameter Variations Over 

Plate Thickness

To illustrate if the interpolation approach is able to predict fiber orientation over plate 
thickness, being important to model the bending behavior of the plate accurately, the 
results of FAcomp and EVcomp are shown in Fig. 10 over plate thickness at evaluation point 
P2 for the two cases Tt10Tm-10FL50c-50 (red) and Tt8.15Tm1.23FL-31.61c13.9 (blue). 
This illustration is chosen exemplarily to show the results over plate thickness, since the 
illustration of all cases and evaluation points is not illustratable within a compact amount 
of space. The two cases Tt10Tm-10FL50c-50 and Tt8.15Tm1.23FL-31.61c13.9 are cho-
sen, since they represent the case with the highest deviations and the case with interpola-
tion and superposition of orientation states. The point P2 is chosen, since it is in the middle 
of the plate and therefore a representative region.

The approximation of Tt10Tm-10FL50c-50 shows the worst results due to the high 
parameter variation and the adding approaches create higher deviations at most points. 
It is FAcomp > 0.75 and EVcomp > 0.9 for Tt10Tm-10FL50c-50 (besides one outlier at 
1.375 mm) as well as FAcomp > 0.83 and EVcomp > 0.97 for Tt8.15Tm1.23FL-31.61c13.9 
in every case. Considering both deviation cases, the averaging approaches create better 
results, while the adding approaches create higher deviations, especially in the core region 
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Fig. 10  Values of FAcomp (a) and EVcomp (b) for configuration Tt10Tm-10FL50c-50 (red) and 
Tt8.15Tm1.23FL-31.61c13.9 (blue) at the evaluation point P2 over plate thickness
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( 0.5 mm < x3 < 1.5 mm ). The results of FAcomp and especially EVcomp are better at the sur-
face regions of the plate ( x3 < 0.5 mm and x3 > 1.5 mm ), which is important in context of 
modeling bending deformations. In summary, all approaches but especially the averaging 
approaches are capable of predicting the uncertainty fiber orientation due to variation of 
TTool , TMat , LF and c0 accurately, also over plate thickness.

4.5  Results at the Evaluation Points for Multiple Parameter Variations with Larger 
Interpolation Intervals

In the following, the results for Tt5Tm5FL5c5 (Fig.  11) and Tt8.15Tm1.23FL-
31.61c13.9 (Fig. 12) are reconstructed from large-interval simulations only, i.e. from 
TTool and TMat with ± 10% and LF and c0 with ± 50%. These large-interval results (light-
green in Fig. 11 and light-blue in Fig. 12) are compared to the results from Sect. 4.3, 
where all data has been used for interpolation (all-data results, dark-green and dark-
blue). For the reconstruction of Tt5Tm5FL5c5 with all data (Fig. 11, dark-green), only 
superposition, but no interpolation is necessary. Therefore, the difference between the 
all-data case and the large-interval case highlights the influence of the interpolation of 
the large-interval case (light-green), when superimposing multiple parameter changes. 
Of course, the results of the large interval are worse, but in an acceptable range, with 
FAcomp>0.85 and EVcomp>0.9 for the adding approach and even FAcomp>0.95 and 
EVcomp>0.975 for the averaging approach. Again, the spectral method (combined with 
averaging) creates the best results for FAcomp . For EVcomp the results of the spectral and 
Euclidian approach (with averaging) are quite similar.

For the reconstruction of Tt8.15Tm1.23FL-31.61c13.9 (Fig.  12), both the all-data 
results and the large-interval results are calculated with a multi-dimensional parame-
ter-space interpolation. While for the all-data set the adding approaches create better 
results, the averaging method creates better results for the large interval. It is FAcomp

>0.8 and EVcomp>0.85 at every point for the adding approaches and even FAcomp

>0.9 and EVcomp>0.925 for the averaging approaches. This again highlights that a 
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Fig. 11  Averaged values of FAcomp (a) and EVcomp (b) for configuration Tt5Tm5FL5c5 at the evaluation 
points P1 to P11 with different interval sizes for interpolation
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reconstruction of orientation by interpolation of multiple parameter variations creates 
meaningful results, even if large intervals are chosen for the interpolation, so only a 
few full 3D-simulations are needed as input.

In summary, all four presented schemes are able to approximate the shape and 
direction of orientation tensors for multiple parameter variations. So, in general it is 
possible to interpolate second-order orientation tensors in a multi-dimensional param-
eter space, even if the deviations are high and the intervals are large. In most cases the 
averaging method (Eq.  (11) and Eq.  (12)) creates the best results, especially in case 
of large intervals. Here the results of Euclidean interpolation of tensor values and the 
results of spectral interpolation of eigenvectors and eigenvalues are often quite similar 
for EVcomp , while the spectral interpolation creates better results for FAcomp in most 
cases, especially when using large intervals. Therefore, ongoing approximations will 
be performed with the spectral averaging approach.

To quantify the impact of a value like EVcomp = 0.939 , being the maximum devi-
ation for the spectral averaging approach in the Tt8.15Tm1.23FL-31.61c13.93 case, 
on the structural properties, the work of Maertens [30] is considered. In [30] circular 
specimens are extracted from identical material and identical plates as in this study, 
except that the plates for the specimens have a thickness of 4 mm. Tensile tests under 
different angles are performed with these specimens to characterize the anisotropy of 
the material. EVcomp = 0.939 refers to an angle of about 20°. The maximum change 
of Young’s modulus in [30] for an interval of 20° ranges from 1.68 GPa to 1.6 GPa, 
being a change of 0.08 GPa, or 4.76%. Of course, this only is valid for the considered 
material system and numerical and experimental results. A holistic influence of the 
approximation error on the prediction of mechanical properties can hardly be quanti-
fied, since it depends on material properties, approaches for homogenization and clo-
sure approximation for � , which are necessary for modeling the anisotropic behavior 
of discontinuous FRPs.

Unlike spatial interpolation, no weighting factors are used in the multi-dimensional 
parameter-space interpolations presented here, since there is no physical meaning to 
weight the four parameters TTool , TMat , LF and c0 to each other.
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Fig. 12  Averaged values of FAcomp (a) and EVcomp (b) for configuration Tt8.15Tm1.23FL-31.61c13.93 at 
the evaluation points P1 to P11 with different interval sizes for interpolation
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4.6  Orientation Approximation with Probabilistic Parameter Variation

In this Section, the spectral interpolation method with averaging superposition of dif-
ferent parameter variations (spec av method) will be used to create 100 orientation state 
approximations, with random variation of the parameters TTool , TMat , LF and c0 . For the 
four parameters, a uniform distribution for the range given in Table 1 is assumed. The 
results are evaluated at the positions P1 , P2 and P3 (cf. Fig. 2). The results are given in 
Fig. 13.

The 3D-simulation with reference values (green) and the average of the approxima-
tions (blue) fit well, verifying the approximation, since the average should be the refer-
ence case, where the deviations of the parameters are all zero. Uniform distributions of 
the input parameters do not lead to a uniform distribution of orientation, visible in the 
range of results of the approximation (blue shading) being unsymmetric, as detectable 
in the core region at P2 and P3 . Often, the lowest value of A11 is closer to the average 
than the highest value, which fits to the results of the 3D-simulations, shown in Fig. 3 to 
Fig. 5. The approximations represent correct tendencies, predicting a higher uncertainty 
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Fig. 13  Components of the second order fiber orientation tensor over plate thickness at position P1 (a), P2 
(b) and P3 (c) with corresponding 3D simulation result (green, squares) and approximation with standard 
deviation. Average of the 100 approximation (blue, triangles) and range of the approximations (blue shad-
ing)
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in the core region of P2 and P3 and a smaller uncertainty in the core region of P1 for A11 , 
which fits to the results shown in Sect.  2.2.2. Accordingly, the uncertainty is smaller 
near the walls of P2 and P3.

The creation of 100 approximations was performed for all eleven points P1 to P11 and 
took about 10 s on a normal working laptop. Thus, computing 100 orientation states for the 
complete plate (in every element) would take less than 8 h, while one full 3D process simu-
lation takes about 4 h on a 16-core workstation. This highlights how fast and efficient the 
approximation is working. It can be applied on the whole simulation domain (not only the 
eight elements over plate thickness at P1 to P11 ) and can predict various orientation varia-
tions for the complete part.

In summary, the interpolation-based approximation approach is able to predict the 
uncertainty of orientation states due to individual variation of multiple parameters within 
a wide range. Although there is a high level of simplification and the efficiency of the 
approach, the results are in good agreement with 3D-simulations. It should be mentioned 
that the size of parameter variation, being crucial for uncertainty quantification, is not 
based on experimental data yet and should be further investigated in future works. How-
ever, the aim of this work is to efficiently model the uncertainty by fast approaches, able to 
fit to 3D-simulation results with equal parameters.

5  Conclusion

Different approaches are presented to approximate the final fiber orientation state in injec-
tion molded parts for uncertain manufacturing conditions. To analyze uncertainty, varia-
tions of material and tool temperature, fiber length and initial curing state are considered. 
The approximation approaches are based on a multi-dimensional parameter-space interpo-
lation of beforehand performed 3D-simulations, where the single parameters are varied in 
specific steps. The approaches differ in the interpolation method (based either on orienta-
tion tensor components or on components of the eigenvectors and eigenvalues) and in the 
superposition of multiple parameter variations (either summing up the parameter-specific 
offsets or averaging the parameter-specific resulting orientation tensors). The approxima-
tions fit well to full 3D-simulations for certain parameter variations in a wide range of 
parameter values, even if the interpolation intervals are large, which means, that only a few 
input simulations are needed to create good results. Hence, the interpolation of fiber orien-
tation tensors in a multi-dimensional parameter space is possible and creates meaningful 
results. In general, averaging the tensors creates better results than adding the offsets. Due 
to the simple interpolation approach, the approximation can create huge amounts of data 
efficiently and without the use of weighting factors.

The approximation approach represents a first step to efficiently model the process- and 
material-induced uncertainty of fiber orientations, being crucial for the thermo-mechanical 
behavior of the final part. The approach is able to predict the fiber orientation state due to 
variable input parameters efficiently and with the need of only a few simulations as input. 
Continuing this idea, the probability distribution of fiber orientations due to uncertain pro-
cess and material parameters can be determined, if the distribution functions of the input 
parameters is known. Further investigation is needed to quantify these input uncertainties 
in the real process.

Although the results of approximation and simulation fit well, the scheme is only a first 
step. The geometry considered in this study is a simple plate and more complex geometries 
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should be considered to verify that the approach is able to predict orientation uncertainties 
in real parts. This includes in particular geometries with many changes of flow direction 
and thicker wall sections, where the flow is not as shear dominated as it is in the plate in 
this work. Extending the approach to long fiber materials raises the aspect of fiber break-
age modeling, since the fiber length has crucial impact on the orientation interpolation in 
parameter space. Furthermore, the variation of parameters is comparatively simple, since 
no variation in time and coordinates is considered so far. The efficiency of the approxima-
tion may be further improved by combining the multi-dimensional parameter-space inter-
polation with a spatial interpolation, so the approximation for a complete part does not 
need to be performed in every element.
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