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Abstract
Koopman operator theory offers a basis for the systematic transformation
and linearization of complex dynamical systems. We propose a method to
approximate eigenfunctions of the Koopman operator for sufficiently smooth,
deterministic and autonomous dynamical systems with hyperbolic fixed points
in an equation-based context. Approximations of the eigenfunctions are obtained
in form of a rational ansatz whose coefficients are determined by minimizing a
residual through a bi-quadratic optimization problem. In addition, we consider
an extension of the Hartman-Grobman theorem, which was first proposed by
Lan and Mezić in 2013, as a linear constraint. The implementation for a damped
pendulum shows that the approach works in general, however, the optimization
problem is non-convex and thus sensible w. r. t. initial conditions, and increases
proportional to the number of ansatz functions to the power of four.

1 INTRODUCTION

The Koopman operator as a tool to analyze and linearize dynamical systems has seen a lot of attention and research
interest in the last two decades [1]. While many in the Koopman operator community have used it as a basis for data
drivenmodeling approaches built onmethods such asDynamicMode Decomposition (DMD) [2], Extended DynamicMode
Decomposition (EDMD) [3] and further variants and improvements thereof [4], the Koopman operator also offers addi-
tional insights into the dynamics of systems for which there already is a mathematical model in the form of a nonlinear
ordinary differential equation.
Given state variables 𝐱 ∈  ⊂ ℝ𝑛, the vector field 𝐟 ∶  → 𝑇, 𝐟 ∈ 𝐶2() defines an autonomous dynamical

system by the ordinary differential equation

d𝐱

d𝑡
=∶ �̇� = 𝐟 (𝐱) . (1)

For any initial condition 𝐱(0) = 𝐱0, the Picard-Lindelöf theorem [5] gives existence and uniqueness of a solution on some
time interval 𝑡 ∈ (−𝑎, 𝑎), 𝑎 > 0, which we call the flow 𝐱(𝑡) = 𝐒(𝐱0, 𝑡) =∶ 𝐒𝑡(𝐱0). The one parametric set of flowmaps 𝐒𝑡 ∶
 → , 𝐒𝑡 ∶ 𝐱(0) ↦ 𝐱(𝑡) defines a continuous parametric curve in phase space for any initial condition 𝐱(0) = 𝐱0.
An observable 𝑔 ∈  is any function 𝑔 ∶  → ℂ that maps the state 𝐱 to a scalar. Well-known examples for observables

in the context of dynamic systems are: any state 𝑥𝑖 , an energy, a momentum, a Lyapunov function, a modal coordinate,
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etc. We presume that  is a linear function space and define the Koopman operator group—often simply referred to as the
Koopman operator—as the composition with the flow map

𝑡𝑔 ∶= 𝑔◦𝐒𝑡 . (2)

While the flow map 𝐒𝑡 ∶ 𝐱(0) ↦ 𝐱(𝑡) maps states onto states, elements 𝑡 ∶  →  , 𝑔 ↦ 𝑔𝑡 of the Koopman operator
group map functions onto functions. Since it is just the composition with the flow map, this operation may also be
expressed as 𝑔𝑡(𝐱0) = 𝑔(𝐒𝑡(𝐱0)), ∀𝐱0 ∈ . Since 𝑡 is a one parametric group of operators with the easily verifiable
property

𝑡2𝑡1𝑔 = 𝑡1+𝑡2𝑔 = 𝑡2+𝑡1𝑔 = 𝑡1𝑡2𝑔 , (3)

the infinitesimal generator—sometimes called Lie operator or Kolmogorov backward operator—

 = lim
𝑡→0+

𝑡 − 
𝑡

⇝ 𝑡 = exp (𝑡), (4)

where  is the identity operator, can be used to generate any group element through the exponential mapping. Since  is
presumed to be a linear function space, the Koopman operator

𝑡(𝑔1 + 𝛼𝑔2) = 𝑡𝑔1 + 𝛼𝑡𝑔2 (𝑔1, 𝑔2 ∈  , 𝛼 ∈ ℂ) (5)

is linear and thus amenable to spectral analysis. However, since dim() = ∞, the price that we pay for the desirable
property of linearity is the infinite dimensionality of the function space  . Even if𝑡 only has a point spectrum—that is,
no continuous and no residual spectrum—there is an infinite number of eigenfunctions 𝜙𝑖 and corresponding eigenvalues
𝜆𝑖 that satisfy

𝑡𝜙𝑖 = e𝜆𝑖𝑡𝜙𝑖 ⇔ 𝜙𝑖 = 𝜆𝑖𝜙𝑖 . (6)

Definition (2) implies

𝑡(𝜙𝑖𝜙𝑗) = (𝜙𝑖◦𝐒
𝑡)(𝜙𝑗◦𝐒

𝑡) = (𝑡𝜙𝑖)(𝑡𝜙𝑗) = e𝜆𝑖𝑡𝜙𝑖e
𝜆𝑗𝑡𝜙𝑗 = e(𝜆𝑖+𝜆𝑗)𝑡𝜙𝑖𝜙𝑗 (7)

that is, the product 𝜙𝑘 = 𝜙𝑖𝜙𝑗 of any two eigenfunctions 𝜙𝑖 and 𝜙𝑗 is again an eigenfunction with eigenvalue 𝜆𝑘 = 𝜆𝑖 + 𝜆𝑗 .
Since Equation (4) implies 𝜙𝑖 = d𝜙𝑖∕d𝑡 = �̇�𝑖 , Equation (6) gives

�̇�𝑖 = 𝜆𝑖𝜙𝑖 . (8)

Therefore, the constant function 𝜙0(𝐱) = 1 = const. is always an eigenfunction with eigenvalue 𝜆0 = 0. Presuming that
the reciprocal 𝜙𝑗 = 1∕𝜙𝑖 ∈  is contained in  , Equation (7) implies that 𝜙𝑗 is also an eigenfunction of𝑡 and , and the
corresponding eigenvalue is 𝜆𝑗 = −𝜆𝑖 .
In the case where the dynamic system given by Equation (1) has fixed points, the infinite spectrum of the Koopman

operator group has a lattice structure that is generated by relation (7) from 𝑛p ≥ 𝑛 so-called principal eigenfunctions [6].
These principal eigenfunctions may be derived by an extension of the Hartman-Grobman theorem as first proposed by
Lan andMezić in 2013 [7]. We summarize and paraphrase this in the following way: given an isolated fixed point 𝐱∗ of the
dynamic system with 𝐟 (𝐱∗) = 𝟎, the linearization around 𝐱∗ with 𝐲 = 𝐱 − 𝐱∗, 𝐲 ∈ ℝ𝑛 is

�̇� = 𝐀𝐲 with 𝐀 = ∇𝐱𝐟 |𝐱=𝐱∗ . (9)

Here, we presume 𝐀 ∈ ℝ𝑛×𝑛 to be semi-simple (the general case is treated in [6]) and to have left-eigenvectors 𝓵𝑖 and
corresponding eigenvalues 𝜆𝑖 that we collect in the matrices

𝐋 = [𝓵1 … 𝓵𝑛] , 𝚲 = diag{𝜆1, … , 𝜆𝑛} . (10)
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The 𝑛 principal eigenfunctions of the linearized system (9) are then

𝜑𝑖 = 𝓵H
𝑖
𝐲 with �̇�𝑖 = 𝜆𝑖𝜑𝑖 (11)

via Equation (8), where 𝓵H
𝑖
is the complex conjugate transpose of 𝓵𝑖 . Presuming a hyperbolic fixed point where all eigen-

values have a non-zero real part ℜ𝜆𝑖 ≠ 0, ∀𝑖 ∈ {1, … , 𝑛}, the Hartman-Grobman theorem establishes the existence of a
𝐶1-diffeomorphism 𝐲 = 𝐡(𝐱) from an open neighborhood of the fixed point 𝐱∗ ∈  onto an open set that contains
the origin, such that

𝐡◦𝐒𝑡(𝐱) = e𝐀𝑡𝐡(𝐱) , (12)

that is, 𝐡 ∶  ⊃  →  ⊂ ℝ𝑛 maps trajectories of (1) near the fixed point onto trajectories of (9) near the origin and
preserves the parametrization by time [7]. Setting 𝐤 = 𝐋H𝐡 yields

𝐤◦𝐒𝑡(𝐱) = e𝚲𝑡𝐤(𝐱) = diag{e𝜆1𝑡, … , e𝜆𝑛𝑡}𝐤(𝐱) , (13)

meaning 𝐤 contains 𝑛 eigenfunctions of the Koopman operator of the original nonlinear system (1). As described in ref.
[6], these eigenfunctions 𝜙𝑖(𝐱) = 𝑘𝑖(𝐱) that so-far exist only in the open neighborhood of the fixed point 𝐱∗ ∈  can
be extended to the whole basin of attraction  of 𝐱∗. Furthermore, since ∇𝐱𝐡|𝐱=𝐱∗ = 𝐈,

∇𝐱𝐤|𝐱=𝐱∗ 𝐲 = 𝐋H 𝐲 = 𝝋(𝐲) , (14)

that is, the linearization of the eigenfunctions around the fixed point 𝐱∗ is equal to the eigenfunctions of the linearized
system (9) with the same eigenvalues 𝜆1, … , 𝜆𝑛. These principal eigenfunctions 𝜙𝑖(𝐱) = 𝑘𝑖(𝐱) and their corresponding
eigenvalues 𝜆𝑖 with 𝑖 ∈ {1, … , 𝑛} generate the lattice type point spectrum via Equation (7) [6].
In the remainder of this manuscript, we present an approach for the approximation of principal Koopman eigenfunc-

tions in the basin of attraction of a hyperbolic fixed point of a dynamic system. We use a rational ansatz where both the
numerator and denominator are linear combinations of ansatz functions to simultaneously approximate not only the
principal eigenfunctions, but also their reciprocals by minimizing a suitable residual. We use a damped pendulum—a
two-dimensional system with a stable focus and an unstable saddle point—for a first implementation of this approach to
assess its feasibility and to identify requirements for future research.

2 APPROACH

To approximate principal eigenfunctions 𝜙𝑖(𝐱) of the Koopman operator 𝑡 and its infinitesimal generator  via
Equation (6), we make the rational ansatz

�̃�𝑖(𝐱) =
𝑝(𝐱)

𝑞(𝐱)
=

𝝃T
𝑝 𝚿(𝐱)

𝝃T
𝑞 𝚿(𝐱)

. (15)

Here,𝚿(𝐱) = [𝜓1(𝐱) … 𝜓𝑚(𝐱)]
T is a set of𝑚 real-valued ansatz functions𝜓𝑖 ∶ ℝ𝑛 → ℝwhich are the same for the numer-

ator and the denominator, and 𝝃𝑝 = [𝜉𝑝1 … 𝜉𝑝𝑚]
T and 𝝃𝑞 = [𝜉𝑞1 … 𝜉𝑞𝑚]

T are 𝑚 complex-valued coefficients 𝝃𝑝 ∈ ℂ𝑚 and
𝝃𝑞 ∈ ℂ𝑚 for the numerator 𝑝 ∶ ℝ𝑛 → ℂ and the denominator 𝑞 ∶ ℝ𝑛 → ℂ, respectively. Since �̃�𝑖 is an approximation for
the eigenfunction 𝜙𝑖 , it does not satisfy Equation (8) exactly, but leads to the error

𝑒(𝐱) = 𝜆𝑖 �̃�𝑖(𝐱) − ∇𝐱�̃�𝑖(𝐱) 𝐟 (𝐱) , (16)

where

̇̃𝜙𝑖(𝐱) = ∇𝐱�̃�𝑖(𝐱) �̇� = ∇𝐱�̃�𝑖(𝐱) 𝐟 (𝐱) (17)
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follows from the chain rule. We use the linearization of the nonlinear system (1) at an hyperbolic fixed point 𝐱∗ to deter-
mine the eigenvalues 𝜆𝑖 . By the introduced extension of the Hartman-Grobman theorem, the ansatz for the corresponding
principal eigenfunction must also satisfy the linearization condition

∇𝐱�̃�𝑖(𝐱)||𝐱=𝐱∗(𝐱 − 𝐱∗) = 𝓵H
𝑖
(𝐱 − 𝐱∗) . (18)

The gradient of the ansatz is

∇𝐱�̃�𝑖(𝐱) =
1

𝑞2(𝐱)
(𝑞(𝐱)∇𝐱𝑝(𝐱) − 𝑝(𝐱)∇𝐱𝑞(𝐱)) , (19)

which motivates the residual

𝜌(𝐱) = 𝑞2(𝐱) 𝑒(𝐱)

= 𝜆𝑖 𝑝(𝐱) 𝑞(𝐱) − (𝑞(𝐱)∇𝐱𝑝(𝐱) − 𝑝(𝐱)∇𝐱𝑞(𝐱)) 𝐟 (𝐱)

= 𝝃T
𝑞 (𝜆𝑖 𝚿(𝐱)𝚿T(𝐱) − 𝚿(𝐱) (∇𝐱𝚿(𝐱) 𝐟 (𝐱))T + (∇𝐱𝚿(𝐱) 𝐟 (𝐱))𝚿T(𝐱))𝝃𝑝 ,

(20)

which is bilinear in the coefficients 𝝃𝑝 and 𝝃𝑞. For the latter implementation, we note that since the ansatz functions
𝚿 ∶ ℝ𝑛 → ℝ𝑚 are real-valued, the real and imaginary parts of 𝜌(𝐱) = 𝜌Re(𝐱) + i𝜌Im(𝐱) can be determined by splitting
the eigenvalue 𝜆𝑖 = 𝜆Re + i𝜆Im and the coefficients 𝝃𝑝 = 𝝃𝑝Re + i𝝃𝑝Im and 𝝃𝑞 = 𝝃𝑞Re + i𝝃𝑞Im into their respective real and
imaginary parts. We use the Kronecker product [8] to define

𝜼(𝝃𝑝, 𝝃𝑞) =

[
𝝃𝑝Re

𝝃𝑝Im

]
⊗

[
𝝃𝑞Re

𝝃𝑞Im

]
, 𝜼 ∈ ℝ(2𝑚)2 (21)

and to express the residual as

𝜌(𝐱) = 𝜌Re(𝐱) + i𝜌Im(𝐱) = 𝜻 T
Re(𝐱) 𝜼(𝝃𝑝, 𝝃𝑞) + i𝜻 T

Im(𝐱) 𝜼(𝝃𝑝, 𝝃𝑞) , (22)

where the column matrices 𝜻Re(𝐱) and 𝜻Im(𝐱) follow from the real and imaginary part of the matrix in the bracket in
Equation (20) by rearranging its entries according to the calculation rules of the Kronecker product [8]. The unknown
coefficients for the ansatz (15) are determined by minimizing the integral of the squared magnitude of the residual 𝜌(𝐱)
over some finite domain Ω ⊂ 

∫
Ω

|𝜌(𝐱)|2d𝐱 = ∫
Ω

(𝜌Re(𝐱))
2d𝐱 + ∫

Ω

(𝜌Im(𝐱))
2d𝐱 = (𝜼(𝝃𝑝, 𝝃𝑞))

T 𝐁𝜼(𝝃𝑝, 𝝃𝑞)

with 𝐁 = ∫
Ω

(𝜻Re(𝐱) 𝜻
T
Re(𝐱) + 𝜻Im(𝐱) 𝜻

T
Im(𝐱))d𝐱, 𝐁 ∈ ℝ(2𝑚)2×(2𝑚)2

(23)

while enforcing the linearization condition (18). To do this, we alsomultiply the linearization condition by 𝑞2(𝐱∗) to derive
the constraints

𝑞2(𝐱∗)∇𝐱�̃�𝑖||𝐱=𝐱∗ = 𝑞2(𝐱∗) 𝓵H
𝑖

⇔ 𝑞(𝐱∗)∇𝐱𝑝(𝐱)|𝐱=𝐱∗ − 𝑝(𝐱∗)∇𝐱𝑞(𝐱)|𝐱=𝐱∗ − 𝑞2(𝐱∗) 𝓵H
𝑖
= 𝟎

⇔ 𝝃T
𝑞

(
𝚿(𝐱∗) 𝝃T

𝑝 ∇𝐱𝚿(𝐱)|𝐱=𝐱∗ − ∇𝐱𝚿(𝐱)|𝐱=𝐱∗ 𝝃T
𝑝 𝚿(𝐱∗) − 𝚿(𝐱∗)𝚿T(𝐱∗) 𝝃𝑞 𝓵

H
𝑖

)
= 𝟎

⇒
(
𝚿(𝐱∗) 𝝃T

𝑝 − 𝚿T(𝐱∗) 𝝃𝑝
)
∇𝐱𝚿(𝐱)|𝐱=𝐱∗ − 𝝃T

𝑞 𝚿(𝐱∗)𝚿(𝐱∗) 𝓵H
𝑖
= 𝟎 ,

(24)

which are linear in the coefficients 𝝃𝑝 and 𝝃𝑞.
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In summary, our approach results in the constrained optimization problem

min
𝝃𝑝,𝝃𝑞

1

2
𝜼T(𝝃𝑝, 𝝃𝑞) 𝐁 𝜼(𝝃𝑝, 𝝃𝑞)

subject to (𝚿(𝐱∗) 𝝃T
𝑝 − 𝚿T(𝐱∗) 𝝃𝑝)∇𝐱𝚿(𝐱)|𝐱=𝐱∗ − 𝝃T

𝑞 𝚿(𝐱∗)𝚿(𝐱∗) 𝓵H
𝑖
= 𝟎 ,

𝝃T
𝑞 𝚿(𝐱∗) = 1 ,

(25)

where the last constraint—setting the denominator to one at the fixed point𝐱∗—is introduced to enforce finite coefficients.
Otherwise, any numerical optimization scheme reduces themagnitude of all coefficients to arbitrarily small values in such
a way that Equation (24) is satisfied, and the objective is below the specified numerical tolerance.
Equation (25) is a nonlinear optimization problemwith linear constraints whichwe solve iteratively via IPOPT [9]. Note

that for this purpose, the real-valued matrices 𝐁,𝚿(𝐱∗) and ∇𝐱𝚿(𝐱)|𝐱=𝐱∗ can be precomputed, that is, the costly integrals
in Equation (23) need only be calculated once.
Furthermore, note that applying the procedure above to the reciprocal ansatz function �̃�𝑗 = 1∕�̃�𝑖 , that is, for switched

numerator and denominator, and eigenvalue 𝜆𝑗 = −𝜆𝑖 gives the residual −𝜌(𝐱). That means that the solution to the opti-
mization problem (25) is not just the best approximation for the eigenfunction𝜙𝑖 ≈ �̃�𝑖 , but simultaneously for its reciprocal
1∕𝜙𝑖 .
For a proof-of-concept, we apply this approach to a damped pendulum with states 𝐱 ∈ 𝕊 × ℝ and dynamics[

�̇�1

�̇�2

]
=

[
𝑥2

−2𝐷𝑥2 − sin 𝑥1

]
, (26)

where we set 𝐷 = 0.1 for all the numerical results below. This system has a stable fixed point 𝐱∗1 = 𝟎 at the origin, and an
unstable saddle point at 𝐱∗2 = [𝜋 0]T. The linearization around the stable fixed point at the origin with 𝐲 = 𝐱 − 𝐱∗1 gives
the linearized system [

�̇�1

�̇�2

]
=

[
0 1

−1 −2𝐷

][
𝑦1

𝑦2

]
(27)

with eigenvalues, left-eigenvectors and principal eigenfunctions

𝜆1,2 = −𝐷 ± i
√
1 − 𝐷2 , (28a)

𝓵H
1,2 = [1 − 𝜆1,2] , (28b)

𝜑1,2 = 𝑦1 − 𝜆1,2𝑦2 . (28c)

Since the phase space = 𝕊 × ℝ of the pendulum is a cylinder, we choose harmonic ansatz functions in 𝑥1 and poly-
nomials in 𝑥2, and the rectangular integration domainΩ = (−𝜋, 𝜋] × [−2, 2]. We compare results for an increasing order
(one 𝐼, two 𝐼𝐼 or three 𝐼𝐼𝐼) of the ansatz functions with

𝚿𝐼(𝐱) = [1 cos 𝑥1 sin 𝑥1]
T ⊗ [1 𝑥2]

T = [1 cos 𝑥1 sin 𝑥1 𝑥2 𝑥2 cos 𝑥1 𝑥2 sin 𝑥1]
T , (29a)

𝚿𝐼𝐼(𝐱) = [1 cos 𝑥1 sin 𝑥1 cos(2𝑥1) sin(2𝑥1)]
T ⊗ [1 𝑥2 𝑥22]

T , (29b)

𝚿𝐼𝐼𝐼(𝐱) = [1 cos 𝑥1 sin 𝑥1 cos(2𝑥1) sin(2𝑥1) cos(3𝑥1) sin(3𝑥1)]
T ⊗ [1 𝑥2 𝑥22 𝑥32]

T . (29c)

For this proof-of-concept implementation, the integrals in Equation (23) are solved symbolically inMathematica [10]. Note
that

dim(𝐁) = 16𝑚4 , (30)
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F IGURE 1 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼 = 6 ansatz functions𝚿𝐼(𝐱) via Equation (29a) as solution of
the optimization problem (25) with initial conditions via Equation (31). Exact values along one trajectory overlayed.

F IGURE 2 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼𝐼 = 15 ansatz functions𝚿𝐼𝐼(𝐱) via Equation (29b) as solution
of the optimization problem (25) with initial conditions via Equation (31). Exact values along one trajectory overlayed.

that is, a slight increase of𝑚 leads to a substantial increase in computation time andmemory requirements, which is why
only ansatz functions up to order three are considered. We note that for all three implemented ansatz orders, about two
thirds (65.1% – 67.7%) of the entries in 𝐁 are zero.

3 RESULTS

An approximate solution for the optimization problem (25) is determined withMathematica’s implementation of IPOPT
(function FindMinimum with option 𝑀𝑒𝑡ℎ𝑜𝑑 →“IPOPT”). Since we use a gradient-based solver for a (non-convex) bi-
quadratic optimization problem with linear constraints, the result depends on the initial conditions of the optimization
variables 𝝃𝑝 and 𝝃𝑞. Since no further information is available, all three orders are initialized with

𝝃𝑝,init0 = 𝟎 and 𝝃𝑞,init0 = 𝟎 . (31)

The results for these approximations are displayed in Figures 1, 2 and 3. Both magnitude and phase of all three approxi-
mations match the expected behavior in the vicinity of the origin. This behavior is enforced by our method by means of
the linearization constraint in Equation (24). However, all three approximations deteriorate with increasing distance from
the origin. While we expect both the magnitude and phase of 𝜙1(𝐱) to increase or decrease monotonically along solution
trajectories, there are local maxima of the magnitude in the vicinity of 𝑥1 ≈ ±2 in clear violation of this. Furthermore,
since trajectories with initial conditions close to the unstable fixed point 𝐱∗2 require a long time to come close to the sta-
ble fixed point 𝐱∗1 , we expect a singularity of the magnitude at lim𝐱→𝐱∗2

|𝜙1(𝐱)| → ∞. Instead, the magnitude of all three
approximations decreases to zero.
To enforce the expected qualitative properties of the eigenfunctions approximations at the unstable fixed point, we

augment the optimization problem (25) by adding another constraint, namely that the denominator

𝑞(𝐱∗2) = 𝝃T
𝑞 𝚿(𝐱∗2) = 0 . (32)
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F IGURE 3 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼𝐼𝐼 = 28 ansatz functions𝚿𝐼𝐼𝐼(𝐱) via Equation (29c) as solution
of the optimization problem (25) with initial conditions via Equation (31). Exact values along one trajectory overlayed.

F IGURE 4 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼 = 6 ansatz functions𝚿𝐼(𝐱) via Equation (29a) as solution of
the optimization problem (33) with initial conditions via Equation (31). Exact values along one trajectory overlayed.

F IGURE 5 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼𝐼 = 15 ansatz functions𝚿𝐼𝐼(𝐱) via Equation (29b) as solution
of the optimization problem (33) with initial conditions via Equation (31). Exact values along one trajectory overlayed.

The augmented optimization problem is then

min
𝝃𝑝,𝝃𝑞

1

2
𝜼T(𝝃𝑝, 𝝃𝑞) 𝐁 𝜼(𝝃𝑝, 𝝃𝑞)

subject to (𝚿(𝐱∗1) 𝝃
T
𝑝 − 𝚿T(𝐱∗1) 𝝃𝑝)∇𝐱𝚿(𝐱)|𝐱=𝐱∗1 − 𝝃T

𝑞 𝚿(𝐱∗1)𝚿(𝐱∗1) 𝓵
H
𝑖
= 𝟎 ,

𝝃T
𝑞 𝚿(𝐱∗1) = 1 ,

𝝃T
𝑞 𝚿(𝐱∗2) = 0 ,

(33)

and the results for the initialization via Equation (31) are depicted in Figures 4, 5 and 6. While the order one approxi-
mation in Figure 4 matches the qualitative behavior of both magnitude and phase, the higher order approximations still
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F IGURE 6 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼𝐼𝐼 = 28 ansatz functions𝚿𝐼𝐼𝐼(𝐱) via Equation (29c) as solution
of the optimization problem (33) with initial conditions via Equation (31). Exact values along one trajectory overlayed.

F IGURE 7 Koopman eigenfunction approximation �̃�1(𝐱) ≈ 𝜙1(𝐱) with𝑚𝐼𝐼𝐼 = 28 ansatz functions𝚿𝐼𝐼𝐼(𝐱) via Equation (29c) as solution
of the optimization problem (33) with initial conditions from the result in Figure 1. Exact values along one trajectory overlayed.

show unexpected behavior in the vicinity of 𝑥1 ≈ ±2. The reason for these poor solutions can be found in the initial condi-
tions for the optimization, since the bi-quadratic optimization problem (33) with linear constraints is not convex and has
several local minima. Trying all previous solutions as initial conditions for the order two and three ansatz functions, we
find no improvement for the order two approximation in Figure 5. However, initializing the order three approximation
with the solution from Figure 1 yields the result in Figure 7, which is better than all previous results, both qualitatively
and quantitatively.

4 CONCLUSION

A method to approximate Koopman eigenfunctions of sufficiently smooth, deterministic autonomous dynamics systems
by the rational ansatz in Equation (15) is proposed. A proof-of-concept implementation with a damped pendulum shows
that the coefficients in the rational ansatz can be determined by solving a bi-quadratic optimization problem with linear
constraints. However, the size of this optimization problem increases proportional to the number of ansatz function by
the power of four (cf. Equation (30)). In the investigated proof-of-concept implementation, about two thirds of the matrix
entries for the bi-quadratic objective function are zero.We consider it very likely that with a higher dimension of the phase
space, and corresponding combinations of ansatz functions generated by Kronecker products (cf. Equation (29)), the
number of zero entries will further increase, and thus a high sparsity will be achieved with which the presented method
could scale to higher-dimensional dynamic systems.
The results for the damped pendulum show a good approximation of the Koopman eigenfunction in the vicinity of

the stable fixed point 𝐱∗1 = 𝟎. This is attributed to the linearization condition in Equation (18) which is enforced by the
constraint via Equation (24) in the resulting constrained optimization problem. However, the approximation deteriorates
further away from the origin and exhibits local maxima at all considered ansatz orders. Furthermore, the magnitude of
the Koopman eigenfunction approximations goes to zero at the unstable fixed point, which is the opposite of what should
happen. The proposed method offers the possibility to improve the approximation by adding further information in the
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RÖMER and BREITENHUBER 9 of 9

form of additional constraints in the optimization problem. In the present case, the expected singularity at the unstable
fixed point is enforced by setting the value of the denominator there to zero.
Since the bi-quadratic optimization problem with linear constraints is non-convex, a further challenge is the proper

initialization of any numerical optimization procedure in order to obtain qualitatively and quantitatively good approxi-
mations with the proposed approach. The only difference between the results in Figures 6 and 7 is the initialization of
the respective optimization problem (33), which leads to much better results in the latter case. In future work, this could
be addressed by using multi-modal optimization methods [11–14] to obtain suitable initializations for a gradient based
method with fast local convergence.
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