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ABSTRACT: In the pursuit of terminal tin chalcogenides, heteroleptic stannylenes bearing terphenyl- and hexamethyldisilazide
ligands were reacted with carbodiimides to yield the respective guanidinato complexes. Further supported by quantum chemical
calculations, this revealed that the iso-propyl-substituted derivative provides the maximum steric protection achievable. Oxidation
with elemental selenium produced monomeric terminal tin selenides with four-coordinate tin centers. In reactions with N2O as
oxygen transfer reagent, silyl migration toward putative terminal tin oxide intermediates gave rise to tin complexes with terminal �
OSiMe3 functionality. To prevent silyl migration, the silyl groups were substituted with cyclohexyl moieties. This analogue exhibited
distinctively different reactivities toward selenium and N2O, yielding a 1,2,3,4,5-tetraselenastannolane and chalcogenide-bridged
dimeric compounds, respectively.

■ INTRODUCTION
Compounds featuring the carbonyl functionality (R2C�O)
such as aldehydes, ketones, and amides are fundamental
components in organic chemistry. Despite being thermody-
namically robust, these functional groups are straightforward to
functionalize, given the polarity of the C�O motif. Due to
electronegativity differences, their heavier tetrel analogues
R2E(14)�O (E(14) = silicon, germanium, tin, and lead)
exhibit even greater charge separation, which increases down
Group 14.1 Furthermore, significantly weaker π overlap between
oxygen and the heavier Group 14 elements results in terminal
E(14)�O double bond fragments which are thermodynami-
cally unstable, and often adopt a polarized/ylidic form (E(14)+−
O−). The inherent charge disparity in heavier Group 14 carbonyl
compounds cannot be quenched effectively by π bond
formation, resulting in high reactivity. This is frequently
manifested in self-quenching through di-, oligo-, and polymer-
ization reactions; as well as inter and intramolecular C−H
activation processes.2 Consequently, heavier Group 14 carbonyl
compounds have been elusive species in the past, leaving ample
room for the further development of their chemistry.
Over a century ago, Kipping aimed to synthesize the lightest

heavier carbonyls, known as silanones (R2Si�O). However, the

material produced was later identified to be a polysiloxane, a
now omnipresent class of polymers and illustrative of one of the
typical self-quenching reactivities, vide supra.3 Despite being
detected in low-temperature matrices in the 1980s,4 it was not
until 2007 that the first stable silacarbonyl compounds were
reported, utilizing external Lewis acid and/or Lewis base
stabilization (Figure 1, I).5 This strategy paved the way for the
isolation of main group carbonyl species across the p-block
elements.
Interestingly, the first heavier Group 14 analogue of a ketone,

devoid of any acid−base stabilization, was reported for
germanium instead of silicon. Tamao, Matsuo, and co-workers
achieved this milestone in 2012 with the terminal monomeric
germanone,6a having paved the way for further examples
featuring the terminal Ge�O moiety (Figure 1, II).6 Within
the next seven years, stable compounds featuring the “free” Si�
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O functionality were reported by Filippou,7 Kato,8 and Inoue9

(Figure 1, III−V). Iwamoto and co-workers were finally able to
tame a cyclic dialkylsilanone, bearing a three-coordinate silicon
center with an unperturbed Si�O double bond, utilizing a
kinetic stabilization strategy just four years ago (Figure 1, VI).10

Such achievements have shifted the perception of these
compounds from “laboratory curiosities” to versatile tools for
exploring classical carbonyl chemistry with the heavier Group 14

elements and uncovering novel reactivity patterns and
applications in oxide ion transfer chemistry.11

One intriguing question that remains is whether “true”
stannanones/terminal tin oxides are synthetically accessible.11

The most closely related isolable complexes in literature involve
formal “SnO” and “PbO” units trapped by multiple Lewis acid
and Lewis base sites.12

Herein, we report on our current progress in isolating terminal
tin chalcogenides en route to the isolation of a terminal tin oxide.

■ RESULTS AND DISCUSSION
Heteroleptic stannylenes, comprising one terphenyl and one
hexamethyldisilazido ligand of the general type ArTerSn{N-
(SiMe3)2} [1a: Aryl(Ar) =Mes (2,4,6-Me3C6H2), 1b: Ar =Dipp
(2,6-iPr2C6H3)], have recently been found to facilitate the
isolation of rare instances of terminal stannaphosphenes and
stannaimines.13 However, when 1a,b are subjected to typical
oxygen transfer reagents, e.g., N2O or Me3NO, they yield
complex reaction mixtures or undergo decomposition. We
postulated that a modified ligand set, featuring a three-
coordinate tin atom supported by an intramolecular Lewis
base, might provide the necessary electronic and steric
characteristics to enable the formation of a heteroleptic
stannylene capable of generating terminal tin chalcogenides.
In this context, upon inspection of the Frontier Kohn−Sham
molecular orbitals of 1, it becomes evident that 1 can act as an

Figure 1. Selected landmark examples of heavier Group 14 carbonyl
analogues I−VI (Dipp = 2,6-iPr−C6H3; LA = Lewis acid).

Scheme 1. (A): Kohn−Sham Molecular Orbitals of 1a,b (BP86/Def2-TZVP); (B) Reactivity of 1a,b towards iPrN�C�NiPr to
Give the Heteroleptic Terphenyl-/Guanidinato-Stannylenes 2a,b; (C) Molecular Structure of
MesTerSn{N(iPr)C(N(SiMe3)2)N(iPr)} (2a) in the Crystala

aAnisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms have been omitted for clarity). Selected bond
lengths (Å) and angles (deg): Sn1−N1 2.2017(17), Sn1−N2 2.2678(17), Sn1−C1 2.258(2), Sn1···C31 2.638(2), N1−C31 1.331(3), N2−C31
1.329(3), N3−C31 1.421(3), N1−Sn1−C1 104.57(7), N2−Sn1−C1 114.73(7), N1−Sn1−N2 59.19(6), N1−C31−N2 112.20(18); (D)
computed mechanism for the formation of 2 from 1 and N,N-diisopropylcarbodiimide [BP86-D3BJ/Def2-TZVP/Benzene(PCM)].
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ambiphile, capable to react nucleophilically either at the tin or
nitrogen lone pair observed in the HOMO, and electrophilically
at the tin p-orbital observed in the LUMO, which is the major
contributor (77%) to the molecular orbital (Scheme 1, A). This
consideration, in conjunction with the well-known behavior of
carbodiimides, which tend to formally insert into tetrel−amido
bonds due to their propensity to act as nucleophiles at nitrogen
and electrophiles at carbon,14 further lays the foundation of our
rationale.
Accordingly, the reactivity profiles of 1a,b toward a range of

carbodiimides RN�C�NR (R = Dipp, Me3Si, tBu, iPr) were
investigated. The Dipp-, Me3Si-, and tBu-substituted derivatives
do not show any reactivity with 1a even after prolonged periods
of heating (c.f. Figures S1−S3),15 iPrN�C�NiPr however
readily reacts with both 1a and 1b � already starting at room
temperature � to solely give the targeted heteroleptic
terphenyl-/guanidinato-stannylenes ArTerSn{N(iPr)C(N-
(SiMe3)2)N(iPr)} (2a: Ar = Mes, 2b: Ar = Dipp) in isolated
yields of up to 89% (Scheme 1, B).
Given the selectivity for the formation of 2a,b on the nature of

the carbodiimide substitution pattern, the overall Gibbs free
energy of reactions between 1 and carbodiimides of varying R (R
= iPr, tBu, SiMe3) were explored computationally by density
functional theory at the BP86-D3BJ/def2-TZVP/Benzene-
(PCM) level of theory (Figure S60, Table S12). This found
unanimously that only reactions of R = iPr were exergonic
(ΔG298: a, −14.5 kcal mol−1; b, −14.2 kcal mol−1), presumably
due to the increased steric hindrance producing thermodynami-
cally unfavorable products with strained conformations. The
endergonic energies for reactions with carbodiimides featuring R
= tBu, SiMe3 also correlate well to the experimental findings,
which showed no conversion to the respective tin guanidi-
nates.15

2a and 2b were characterized by multinuclear nuclear
magnetic resonance (NMR) spectroscopy, bulk purity verified
by elemental microanalysis, and, in the case of 2a, single crystal
X-ray diffraction (Scheme 1, C).
The molecular structure of 2a shows the three-coordinate tin

atom whose coordination environment is distorted trigonal
pyramidal [largest bond angle, 114.73(7)° (C1−Sn1−N2)].
The Sn1−N1 and Sn1−N2 bond lengths of 2.2017(17) and
2.2678(17) Å, respectively, differ significantly and are both
above respective single bond covalent radii (2.11 Å).16 Sn1−N2
is elongated compared to other structurally characterized tin
guanidinato complexes (c.f. 2.138(3) and 2.185(3) Å in
[Sn(Cl){N(p-tolyl)C(N(SiMe3)2)N(p-tolyl)}]2

17). The cen-

tral quaternary carbon atom of the guanidinato ligand is sp2-
hybridized (Σ∠ = 359.8°). The characteristic shortening of the
carbon−nitrogen bonds of the coordinating κ2-N,C,Nmoiety of
guanidinato ligands compared to the exocyclic carbon−nitrogen
bond is clearly pronounced [N1−C31 1.331(3) Å, N2−C31
1.329(3) Å, N3−C31 1.421(3) Å].
The solution NMR data of 2a,b exhibit two signals for the

SiMe3 groups in the respective 1H [δ = 0.03 and 0.18 ppm (2a)]
and 29Si{1H} [δ = 3.9 and 7.8 ppm (2a)] NMR spectra,
indicating hindered rotation of the N(SiMe3)2 moiety.
Characteristic of guanidinato ligands is the 13C{1H} NMR
chemical shift of the central quaternary carbon atom which for
2a,b are observed at δ13C{1H} = 159.5 (2a) and 161.4 (2b)
ppm, respectively. This is in good accordance with previously
reported tin complexes bearing this ligand class.14,17 The
119Sn{1H} NMR chemical shifts of 2a,b are located at
δ119Sn{1H} = 90.5 (2a) and 95.2 (2b) ppm, being significantly
shifted to lower field when compared to literature guanidinato-
tin complexes featuring additional amido ligands (δ119Sn{1H} <
−110 ppm17), thus demonstrating the influence of the strongly
σ-donating terphenyl ligand on the tin atom.
To the best of our knowledge, no studies have been reported

to elucidate a mechanism for this transformation. Based on the
convenient orbital overlap between theHOMOand LUMOof 1
and the carbodiimide, a metathesis-type process was found to
proceed first via a Sn,N,C,N heterocyclic transition state (ΔG298

⧧ :
Ar = Mes, + 16.1 kcal mol−1; Ar = Dipp, +20.3 kcal mol−1) to
produce intermediate A, featuring a Sn,N,C,N chain (ΔG298: Ar
=Mes,−5.5 kcal mol−1; Ar = Dipp,−6.6 kcal mol−1) (Scheme 1,
D). Intermediate A then undergoes a ca. 90° torsion around the
Sn,N,C,N dihedral (ΔG298

⧧ : Ar = Mes, + 14.3 kcal mol−1; Ar =
Dipp, + 12.8 kcal mol−1) to form 2 (Overall ΔG298: Ar = Mes,
−14.5 kcal mol−1; Ar = Dipp, −14.2 kcal mol−1). Although
intermediate A is lower in energy than the starting materials, the
similarity in energies between TS1 and TS2 would preclude its
observation even at low temperatures.
In order to assess the suitability of the selected ligand

framework for stabilizing terminal chalcogenides in a broader
context, 2a,b were reacted with stoichiometric amounts of
elemental selenium (Scheme 2, A). Although no reactions could
be observed at room temperature, heating of the reaction
mixtures to 70 °C for several hours results in consumption of
both starting materials, color changes to a more intense yellow,
and main formation of single products according to 1H NMR
spectroscopy. It is worth noting that 2a does not react with

Scheme 2. (A) Syntheses of the Terminal Tin Selenides 3a,b; (B) Molecular Structure of
DippTerSn(Se){N(iPr)C(N(SiMe3)2)N(iPr)} (3b) in the Crystala

aAnisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms have been omitted for clarity). Selected bond
lengths (Å) and angles (deg): Sn1−Se1 2.3818(6), Sn1−N1 2.170(4), Sn1−N2 2.151(4), Sn1−C1 2.184(4), Sn1···C31 2.594(3), N1−C31
1.329(6), N2−C31 1.344(6), N3−C31 1.399(6), N1−Sn1−C1 123.30(16), N2−Sn1−C1 122.82(16), N1−Sn1−N2 61.49(15); (C) tin−
Selenium Wiberg bond index (shown in red) and selected natural atomic charges (shown in black) of 3a.
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elemental tellurium in benzene or tetrahydrofuran neither at
room temperature nor elevated temperatures of up to 100 °C.
Crystals of 3b suitable for single crystal X-ray diffraction

analysis were obtained from a saturated n-hexane solution at
−30 °C, confirming the formation of a terminal tin selenide with
a four-coordinate tin center, whose coordination environment is
best described as distorted tetrahedral (τ4 = 0.7918) (Scheme 2,
B). The terminal tin−selenium bond length of 2.3818(6) Å is in
good agreement with the double bond covalent radii of the
respective elements (ΣcovSn−Se 2.56 Å, ΣcovSn = Se 2.37 Å) and
is on the shorter end of the tin−selenium bonds reported to date
(c.f. Figure S57 and Tbt(Ditp)SnSe 2.373(3) Å;19d Tbt = 2,4,6-
tris[bis(trimethylsilyl)methyl]phenyl, Ditp = 2,2′-diisopropyl-
m-terphenyl-2′-yl). Generally, 3a,b account for the first
monomeric and neutral terminal tin selenides with four-
coordinate tin centers, with most literature-known derivatives
bearing five-coordinate tin centers.14c,19,20 The aforementioned
example with tin in a trigonal planar coordination environment
is not obtained directly from the reaction of the respective
stannylene precursor with selenium due to the initial formation
of a 1,2,3,4,5-tetraselenastannolane and has to be further reacted
with three equivalents of triphenylphosphine.19d Although the
structural parameters of 3b are indicative of pronounced double
bond character of the Sn−Se bond and are usually the preferred
way to describe these complexes in the literature,14c,19 the
bonding of 3a was investigated by computational methods. A
Wiberg bond index of 1.35 and natural charges of +1.61 (Sn)
and −0.78 (Se) were found, indicating a polarized interaction
with a formal order between a single and double bond (Scheme
2, C). Furthermore, natural bond orbital (NBO) analysis was
employed and found only two NBOs to describe the Sn−Se
interaction with a total of 2.05 electrons, both of which polarized
toward Se (60.8%), indicating a zwitterionic single bond. This is
consistent with the Sn−N interaction in our previously reported
stannaimine systems, taking into account the difference in
electronegativity between N and Se.13b There are also three
NBOs describing lone pairs at Se, accounting for six electrons,
one of which is delocalized (86.7% localization on Se). Natural
localized molecular orbital analysis shows that a significant
amount (12.3%) of the delocalization tail resides in a p-orbital
overlap with Sn, explaining the increased Sn−Se bond order
above what would be expected for a single bond.
The description of a Snδ+−Seδ− single bond with partial

charges is in agreement with a weak π-acceptor character of the
tin atom and is usually reflected by an upfield shift in the 77Se
NMR spectrum (shielded selenium).19k The observed 77Se and
119Sn NMR chemical shifts of 3a,b are observed at δ77Se =
−134.6 (3a) and −100.6 (3b) ppm and δ119Sn = −165.3 (3a)
and −173.1 (3b) ppm,21 respectively, thus being in the same
range as reported for cationic tristannaselone imido clusters,
with four-coordinate tin atoms (c.f. δ77Se = −172 ppm and
δ119Sn = −133 ppm).19e

Having shown that the chosen supporting ligand set at tin is
capable of stabilizing terminal tin selenides, terminal tin oxide
complexes were targeted next. By pressurizing a C6D6 solution of
2a,b with 1 bar of nitrous oxide at room temperature, and
following the reaction by 1H NMR spectroscopy, clean
formations of single species over the course of approximately
5 h are observed (Figures S26 and S30).15 Subsequent workup
led to the isolation of colorless solids and liquid injection field
desorption ionization mass spectrometry (LIFDI-MS) of the
MesTer-substituted derivative is in agreement with the
envisioned net oxygen transfer to precursors 2a,b.15

The 119Sn NMR chemical shifts of the obtained compounds
are upfield shifted [δ119Sn =−209.9 (4a) and−203.7 (4b) ppm]
when compared to the starting material [δ119Sn = 90.5 (2a) and
95.2 (2b) ppm] and are in the same range as observed for
terminal selenides 3a,b (vide supra). Although the solution
NMR and LIFDI-MS data generally support the formation of
terminal tin oxides, the 29Si{1H} NMR data indicate different
product formation. For the starting material 2a,b, as well as the
terminal tin selenides 3a,b, the 29Si{1H} NMR spectra each
exhibit two signals in close proximity, as expected when both
trimethylsilyl groups are located at nitrogen [δ29Si{1H} = 3.9
and 7.8 ppm (2a), 4.7 and 7.8 ppm (2b), 4.7 and 10.1 ppm (3a),
5.5 and 10.9 (3b) ppm]. In contrast, the 29Si{1H} NMR of the
newly obtained compounds 4a,b show one signal which is
significantly upfield shifted, indicative of different chemical
environments of the two silyl moieties [δ29Si{1H} = −23.5 and
10.9 ppm (4a), − 23.5 and 10.1 ppm (4b)].
This is confirmed by the results of single crystal X-ray

diffraction of compound 4b, clearly demonstrating the
formation of compounds with Sn−O−SiMe3 functionalities,
and due to silyl migration from the ligand nitrogen to oxygen,
the monoanionic guanidinato ligands in 2a,b are dianionic
ligands in 4a,b (Scheme 3 and Figure 2). Computational

investigation found that the observed products are significantly
thermodynamically favored over the targeted terminal oxides by
ΔG298: a, −26.2 kcal mol−1 and b, −26.3 kcal mol−1.
The tin−nitrogen bond lengths of 2.0466(15) Å (Sn1−N1)

and 2.0389(15) Å (Sn1−N2) are approximately 10% shorter
than in the starting material, and the exocyclic nitrogen−carbon
bond length of 1.263(2) Å (N3−C31) is typical of the formed
double bond. The bond length of the newly formed tin−oxygen
moiety [1.9427(13) Å] is 10% shorter than the sum of the
related single bond covalent radii (ΣcovSn−O 2.03 Å).
The formal 1,4-silyl migration observed in this study is

suggested to occur through a putative terminal tin oxide
intermediate, a hypothesis supported by comparable silyl
migrations observed in the context of terminal silanones and
in our recently reported stannaimine study.9a,13b,22

Given this reaction behavior, our focus shifted to a
heteroleptic terphenyl-/guanidinato-tin system devoid of silyl
groups. Initially, we synthesized the heteroleptic terphenyl-/
dicyclohexylamido- stannylene 6 through a salt metathesis
reaction between MesTerSnCl (5)23 and freshly prepared
LiNCy2 (Scheme 4, A).15 Characterization of 6 was carried

Scheme 3. Reaction of 2a,b withN2O toGive 4a,b andOverall
Reaction Free Energy from 2a,b
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out in solution using NMR spectroscopy and in the solid state by
single crystal X-ray diffraction.15

Additionally, 6 was found to react with N,N′-diisopropylcar-
bodiimide, yielding the corresponding guanidinato complex 7.
Notably, this compound can be conveniently synthesized in a
one-pot procedure starting from compound 5 (Scheme 4, A).
The analytical data for 7 show only marginal differences from
those of 2a,b, so that a detailed discussion is omitted at this stage
(cf. Scheme 4, B for the structural data).17

Interestingly, when 7 was reacted with equimolar amounts of
elemental selenium at elevated temperatures (reaction did not
initiate at room temperature), most of the compound remained
unreacted as confirmed by 1H NMR spectroscopy. Simulta-
neously, the elemental selenium was entirely consumed, as
demonstrated by the absence of any remaining gray precipitate
in the reaction mixture. Accordingly, 7 was reacted with an
excess of elemental selenium until 7 was completely consumed
(Figure S47). From the respective crude 1H NMR spectrum, it
was already evident that small amounts of iPrN�C�NiPr were
liberated. After multiple crystallization attempts, we eventually
succeeded in growing both yellow and orange crystals suitable
for single crystal X-ray diffraction. The orange crystalline
material revealed the formation of 1,2,3,4,5-tetraselenastanno-
lane 8 (Scheme 4, A,C).

Figure 2. Molecular structure of DippTerSn(OSiMe3){N(iPr)C(�
NSiMe3)N(iPr)} (4b) in the crystal. Anisotropic displacement
parameters are drawn at the 50% probability level (hydrogen atoms
have been omitted for the sake of clarity). Selected bond lengths (Å)
and angles (deg): Sn1−O1 1.9427(13), Sn1−N1 2.0466(15), Sn1−N2
2.0389(15), Sn1−C1 2.1373(17), Sn1···C31 2.5587(18), N1−C31
1.396(2), N2−C31 1.400(2), N3−C31 1.263(2), N3−Si1 1.6762(16),
N1−Sn1−C1 134.23(6), N2−Sn1−C1 118.46(6), N1−Sn1−N2
65.94(6), and N1−C31−N2 105.33(14).

Scheme 4. (A) Two-step and One-Pot Synthesis of the Heteroleptic Stannylene 7 and Its Reactivity with Elemental Selenium to
Give 8; (B−D) Molecular Structures of MesTerSn{N(iPr)N(Cy2)C(iPr)} (7), MesTerSn(Se4){N(iPr)C(NCy2)NiPr} (8), and
MesTerSn(NCy2)(μ-Se2)Sn{N(iPr)C(NCy2)N(iPr)}MesTer (9) in the Crystala

aAnisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms, mesityl functionalities, second molecule
(compound 7) and lattice solvent (compound 7 and 9) have been omitted for clarity) selected bond lengths (Å) and angles (deg): (B) Sn1−N1
2.2654(12), Sn1−N2 2.1871(13), Sn1···C25 2.6478(15), N1−C25 1.3377(19), N2−C25 1.3250(18), N3−C25 1.4179(18), N1−Sn1−C1
111.83(5), N2−Sn1−C1 99.20(5), N1−Sn1−N2 59.56(5), N1−C25−N2 112.39(12); (C) Sn1−Se1 2.5654(7), Sn1−Se4 2.6520(6), Sn1−N1
2.315(3), Sn1−N2 2.152(4), Sn1−C1 2.183(4), Se1−Se2 2.3276(7), Se2−Se3 2.3244(7), Se3−Se4 2.3400(8), N1−C25 1.324(5), N2−C25
1.354(5), N3−C25 1.391(5), Se1−Sn1−Se4 99.89(2), N1−Sn1−C1 98.69(14), N2−Sn1−C1 120.96(16), N1−Sn1−N2 59.64(13), N1−C25−
N2 112.4(4); (D) Sn1−Se1 2.5582(5), Sn1−Se2 2.6315(4), Sn1−N1 2.2877(16), Sn1−N2 2.1543(16), Sn1−C1 2.2132(19), Sn2−Se1
2.5542(4), Sn2−Se2 2.5224(5), Sn2−N4 2.0452(17), Sn2−C44 2.1975(19), C25−N1 1.314(2), C25−N2 1.347(2), C25−N3 1.418(2).
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The structural data within the SnSe4 linkage is in good
agreement with the also structurally characterized 1,2,3,4,5-
tetraselenastannolane Tbf(Mes)SnSe4 (Sn−Seav 2.58 Å, Se−
Seav 2.31 Å).19d,24 The coordination environment at tin is best
described as square pyramidal, according to the structural
parameter τ5 (0.04).25 The identity of the yellow crystalline
material explains why free iPrN�C�NiPr was detected in the
crudeNMR spectra of the reaction and is linked to the formation
of the selenium-bridged dimer (1,3,2,4-diselenadistannetane)
MesTerSn(NCy2)(μ-Se2)Sn{N(iPr)C(NCy2)N(iPr)}MesTer (9)
with the terphenyl substituents in a cis configuration (Scheme 4,
A,D). To the best of our knowledge, the release of carbodiimides
from guanidinato ligands upon addition of another substrate has
not been observed so far. Although 8 and 9 invariably
cocrystallized in our hands, small amounts of 8 could be
separated and further analyzed by elemental microanalysis, 1H
and 119Sn{1H} NMR spectroscopy (δ119Sn{1H} = −252.9
ppm) (Figures S46, S48 and S49).15

The reactivity of 2a,b and 7 toward elemental selenium differs
significantly despite comparatively small differences in backbone
substitution patterns.
In this context, we finally investigated the reactivity of 7

toward N2O.
The reaction is overall clean and results in the formation of a

single product according to 1H NMR spectroscopy (Figure
S52). Removal of all volatile components and recrystallization
from n-hexane yields a colorless microcrystalline solid which was
first analyzed by LIFDI mass spectrometry and is in agreement
with the formation of the oxygen bridged dimer MesTerSn{N-
(iPr)N(Cy2)C(iPr)}(μ-O2)Sn{N(iPr)-N(Cy2)C(iPr)}MesTer
(1,3,2,4-dioxadistannetane) (10) (Scheme 5, A).15 The cis
configuration of both, the terphenyl and guanidinato ligands,
could further be verified by single crystal X-ray diffraction with
crystals obtained from a saturated n-pentane solution of 10
stored at −30 °C (Scheme 5, B).
Computational investigation found that the dimerization of

the proposed terminal oxide intermediate to dimer 10 is
exergonic by ΔG298 = −26.2 kcal mol−1. The observed cis
configuration is, albeit only slightly, thermodynamically favored
over its trans configuration by ΔG298 = −1.4 kcal mol−1.

■ CONCLUSIONS
We present the reactions of heteroleptic terphenyl-/amido-
substituted stannylenes 1a,b with carbodiimides. Investigated
through combined experimental and computational studies,
1a,b react with the iso-propyl-substituted derivative, yielding the
corresponding guanidinato complexes 2a,b. Sterically more
demanding carbodiimides are unable to undergo a comparable
metathesis-type reaction. Consequently, 2a,b offers maximum
steric protection, which should ultimately facilitate the targeted
synthesis of terminal tin chalcogenides.
Compounds 2a,b react cleanly with elemental selenium to

give respective terminal tin selenides 3a,b. By contrast, in
reactions with N2O as an oxygen transfer reagent, instead of
yielding a terminal tin oxide, silyl migration of the guanidinato
ligand to the putative tin−oxygen moiety occurs, yielding the
corresponding tin complexes 4a,b, bearing the Sn−OSiMe3
functionality.
To prevent silyl migration, tin compound 7 with an aliphatic

cyclohexyl substitution pattern instead of SiMe3 groups was
successfully synthesized. Reacting 7 with elemental selenium
does not lead to the formation of a terminal tin selenide and
gives rise to both the 1,2,3,4,5-tetraselenostannolane 8 and
1,3,2,4-diselenadistannetane 9, the formation of which is
accompanied by the release of iPrN�C�NiPr.
The reaction of 7 with N2O also deviates significantly from

those of 2a,b, leading to the clean formation of the 1,3,2,4-
dioxadistannetane 10, showing that comparatively small changes
in substitution have a significant influence on the reaction
outcome and further emphasize the difficulties in stabilizing a
compound with a terminal tin−oxygen bond.
The obtained compounds have been comprehensively

characterized in solution and in the solid state, including single
crystal X-ray diffraction of one compound of each accessed class.
The bonding situation in the first examples of four-coordinate
terminal tin selenide 4a,b was further analyzed by quantum
chemical calculations.
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Scheme 5. (A) Reaction of 7 with N2O to Give 10; (B) Molecular Structure of MesTerSn{N(iPr)C(NCy2)NiPr}(μ-
O2)Sn{N(iPr)C(NCy2)NiPr}MesTer (10) in the Crystala

aAnisotropic displacement parameters are drawn at the 50% probability level (hydrogen atoms, mesityl functionalities, and lattice solvent have been
omitted for clarity). Selected bond lengths (Å) and angles (deg): Sn1−O1 2.039(3), Sn1−O2 1.984(3), Sn1−N1 2.269(3), Sn1−N2 2.140(3),
Sn1−C1 2.185(4), Sn2−O1 1.988(3), Sn2−O2 2.052(3), Sn2−N4 2.160(3), Sn2−N5 2.236(4), Sn2−C44 2.193(5), N1−C25 1.338(5), N2−C25
1.350(5), N3−C25 1.393(5), N4−C68 1.358(5), N5−C68 1.329(5), N6−C68 1.395(5), O1−Sn1−O2 82.10(11), O1−Sn2−O2 81.67(11), Sn1−
O1−Sn2 97.73(11), Sn1−O2−Sn2 97.39(11).
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