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A B S T R A C T

We propose novel photogrammetry-based robot calibration methods for industrial robots that are guided by
cameras or 3D sensors. Compared to state-of-the-art methods, our methods are capable of calibrating the
robot kinematics, the hand–eye transformations, and, for camera-guided robots, the interior orientation of the
camera simultaneously. Our approach uses a minimal parameterization of the robot kinematics and hand–eye
transformations. Furthermore, it uses a camera model that is capable of handling a large range of complex lens
distortions that can occur in cameras that are typically used in machine vision applications. To determine the
model parameters, geometrically meaningful photogrammetric error measures are used. They are independent
of the parameterization of the model and typically result in a higher accuracy. We apply a stochastic model
for all parameters (observations and unknowns), which allows us to assess the precision and significance of
the calibrated model parameters. To evaluate our methods, we propose novel procedures that are relevant in
real-world applications and do not require ground truth values. Experiments on synthetic and real data show
that our approach improves the absolute positioning accuracy of industrial robots significantly. By applying
our approach to two different uncalibrated UR3e robots, one guided by a camera and one by a 3D sensor, we
were able to reduce the RMS evaluation error by approximately 85% for each robot.
1. Introduction

It is well known that the repeatability (precision) with which a
robot can position its end effector at a pose (rigid 3D transformation)
programmed online, e.g., through a teach pendant, is much higher
than the accuracy with which it can reach a pose that is obtained, for
example, through machine vision and programmed offline. In the first
kind of application, all that is required is to repeatably move the end
effector to the same pose, although the actual pose in the workspace
may differ slightly from the nominal pose in the robot controller. In the
second kind of application, the pose is typically obtained with a sensor,
e.g., a camera or a 3D sensor. Here, it is important that the exact pose
measured by the machine vision system is reached. One prototypical
example of this kind of application is a vision-guided assembly task.
One of the major reasons for the suboptimal accuracy of a robot is
errors in the kinematic parameters in its control software. These may
occur, for example, because of manufacturing errors, assembly errors,
and mechanical wear (Lou et al., 2009).

In this paper, we assume the robot is guided by an imaging sensor,
i.e., a monocular camera or a 3D sensor, that is mounted on the robot’s
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end effector. To achieve the required accuracy, it is essential that the
entire robot system is calibrated. For the robot, this means that its
kinematic parameters must be identified, i.e., calibrated. Furthermore,
the pose of the imaging sensor with respect to the end effector or
mechanical interface (the hand–eye pose) must be calibrated. Finally,
for a camera-guided robot, the camera’s interior orientation must be
calibrated. For a robot that is guided by a 3D sensor, we assume that
the 3D sensor returns a metric 3D point cloud, i.e., we assume the 3D
sensor is calibrated. There are different technologies that are widely
used to construct 3D sensors (Steger et al., 2018, Chapter 2.5). In this
paper, we will assume that the 3D sensor is capable of returning a point
cloud of the scene without the robot having to move the sensor across
the scene. This includes stereo sensors, structured-light sensors, time-
of-flight cameras, and sheet-of-light sensors in which the laser plane is
actively moved by the static sensor, e.g., via a rotating mirror. Hence,
we exclude sheet-of-light sensors in which the laser plane is static and
must be moved by the robot.

Since we assume the robot is guided by the imaging sensor in the
application, it is natural to use the imaging sensor also to calibrate
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the entire robot system. In this paper, we will refer to the calibration
of the robot kinematics, the hand–eye pose, and, if used, the camera
as the robot calibration. Using the existing imaging sensor for robot
calibration has the advantage that the additional, often significant,
costs of a sensor or other hardware for the sole purpose of kinematic
calibration can be avoided. Instead, the imaging sensor that is already
used in the application is used to calibrate the robot. Furthermore,
using the existing imaging sensor has the advantage that the robot
calibration can be performed frequently and with little downtime in
the running process, if required.

The approach we propose is capable of calibrating the entire robot
system end to end, i.e., it can simultaneously calibrate the robot kine-
matics, the hand–eye transformations, and, if used, the interior ori-
entation of the camera. The calibration is performed by minimizing
geometrically meaningful errors that are independent of the parame-
terization of the model. Our approach uses a camera model that can
handle complex lens distortions. Our robot model includes a stochastic
model for its model parameters. This allows the approach to assess
the precision of the model parameters and to test whether a particu-
lar model parameter is significant, i.e., whether it has a statistically
significant influence on the results of the calibrated model. This can
be used to exclude insignificant parameters from the model. Finally,
we propose novel evaluation procedures that are relevant in real-world
applications and do not require ground truth values.

This paper is organized as follows. In Section 2, we discuss related
work. The robot model is discussed in Section 3 and the camera model
in Section 4. In Sections 5 and 6, the robot calibration algorithms and
the stochastic model are discussed. Section 7 describes the evaluation
of our approach. Section 8 concludes the paper.

2. Related work

A review of existing approaches has revealed that there are prob-
lems that occur frequently. To prevent tedious repetitions, we discuss
the problems and list the approaches together with the problems rather
than discussing the existing approaches individually.

Many kinematic calibration approaches are based on determining
the pose or position of the robot’s end effector using some kind of
sensor. The sensors can be, for example, laser trackers (Chen et al.,
2014; Li et al., 2016; Liu et al., 2018; Sun et al., 2020, 2021; Luo
et al., 2023), coordinate measuring machines (Chen et al., 2001; Yang
et al., 2014; Wu et al., 2015), monocular cameras (Motta et al., 2001;
Rousseau et al., 2001; Boby and Klimchik, 2021; Balanji et al., 2022),
stereo cameras (Liu et al., 2017; Zhang et al., 2017), portable pho-
togrammetry systems (Filion et al., 2018), or 3D sensors (Yu and Xi,
2018; Peters and Knoll, 2024). Many kinds of these sensors often serve a
single purpose in the application: the kinematic calibration of the robot.
Imaging sensors, on the other hand, can be used for multiple purposes,
e.g., machine vision tasks (Steger et al., 2018) or object detection and
localization (Ulrich et al., 2012; Drost et al., 2010; Drost, 2016). In
such applications, the imaging sensor is already part of the application.
Therefore, using it for robot calibration is the preferred solution since
it avoids the additional costs of a single-purpose sensor.

The pose or position of the end effector that is used for the kinematic
calibration is either returned directly by the sensor or is determined
via a suitable algorithm. For example, for monocular cameras, the
perspective-𝑛-point (P𝑛P) algorithm is frequently used to determine the
ose of a calibration object, i.e., the exterior orientation. The kinematic
alibration is performed in these approaches by minimizing some kind
f pose error. The parameters that describe a pose can always be
ivided into two groups of parameters: those that describe the position
f the object and those that describe its orientation. Inherently, the
arameters that describe the position are lengths. Hence, they are
pecified in units of meters, millimeters, inches, etc. On the other hand,
he parameters that describe the orientation are inherently scalars. The
ose-based approaches typically minimize the sum of the squared errors
 f
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of the pose parameters or the sum of a rotation and a translation
error. However, adding the squared or non-squared values of lengths
and scalars does not result in a physically meaningful quantity and
therefore does not produce a geometrically meaningful error. One
consequence of optimizing this kind of pose error is that the results
of the kinematic calibration will depend on the choice of units for
the position parameters. For example, changing the units from meters
to millimeters will re-weight the position errors by a factor of 1000
with respect to the orientation errors, i.e., it will increase the influ-
ence of position errors drastically. However, it is desirable that the
kinematic calibration results do not depend on the unit that is chosen
for the position parameters. Nevertheless, this requirement is ignored
by almost all pose-based kinematic calibration approaches we have
reviewed (Okamura and Park, 1996; Chen et al., 2001; Motta et al.,
2001; Rousseau et al., 2001; Meng and Zhuang, 2007; He et al., 2010;
Du and Zhang, 2013; Yang et al., 2014; Chen et al., 2014; Li et al., 2016;
Liu et al., 2017; Zhang et al., 2017; Chang et al., 2018; Hayat et al.,
2019; Madhusudanan et al., 2020; Sun et al., 2020, 2021; Boby and
Klimchik, 2021; Balanji et al., 2022; Luo et al., 2023). Only one paper
we have found explicitly describes and experimentally verifies that a
change of units leads to different calibration results (Wu et al., 2015).
In addition, Luo et al. (2022) acknowledge the problem theoretically
and address it by splitting the optimization in each iteration into a
part that optimizes the position error and another part that optimizes
the orientation error. However, this is undesirable because it adds un-
necessary complexity to the optimization. Another approach to handle
this problem is to use only the position information returned by the
pose sensor. However, if only one point is measured, not all kinematic
parameters can be determined (Liu et al., 2018, 2023). A minimum of
three linearly independent positions must be measured for each robot
pose to be able to determine all kinematic parameters purely based on
position measurements (Wu et al., 2015). This makes the calibration
more cumbersome and time-consuming.

As described in Section 3, a kinematic model for a robot with 𝑟 rev-
lute and 𝑝 prismatic joints with the minimum number of parameters
as 4𝑟 + 2𝑝 + 6 parameters. If the kinematic model uses more than the
inimum number of parameters, i.e., if it is overparameterized, the

acobian matrices that are used in the optimization of the kinematic
arameters become ill-conditioned due to measurement errors or even
ingular. Ill-conditioned Jacobians typically lead to inaccurate calibra-
ion results, which is clearly undesirable. Several of the approaches we
ave reviewed do not handle the overparameterization explicitly (Chen
t al., 2001; He et al., 2010; Liu et al., 2017; Boby and Klimchik, 2021;
oby, 2022; Balanji et al., 2022; Liu et al., 2023; Luo et al., 2023).
nstead, they use the pseudoinverse to work around this problem,
.g., Chen et al. (2001), or they use unnecessarily complex optimization
lgorithms, e.g., Yang et al. (2014), Boby and Klimchik (2021), Boby
2022), and Liu et al. (2023). Kinematic models based on the product-
f-exponentials (POE) formula, finite and instantaneous screw (FIS)
heory, and unit dual quaternions are inherently overparameterized.
he overparameterization must be removed explicitly to obtain mini-
al kinematic models. This can be done by adding suitable constraints

o the kinematic model (Sun et al., 2020, 2021) or by using a suitable
ariant of a local POE parameterization (Yang et al., 2014; Chen et al.,
014; Wu et al., 2015; Li et al., 2016; Liu et al., 2018; Chang et al.,
018; Luo et al., 2022). Irrespective of how the overparameterization
s removed, a significant complexity is introduced into the kinematic
odel and the optimization algorithm, which is undesirable. On the

ther hand, there are approaches that do not calibrate all possible
𝑟+2𝑝+6 parameters (Li et al., 2019; Ito et al., 2020; Peters and Knoll,
024). This is also undesirable.

A kinematic model must be continuous with respect to its param-
ters. Not all kinematic models possess this property. For example,
he Denavit–Hartenberg (DH) parameters (see Section 3) are not con-
inuous if consecutive joint axes are parallel or nearly parallel. The

ollowing approaches use discontinuous kinematic models, which is
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undesirable: Filion et al. (2018), Madhusudanan et al. (2020), Boby and
Klimchik (2021), and Boby (2022).

Kinematic calibration approaches that use cameras sometimes use
camera models that can only model a limited class of cameras. For
example, some camera models do not model lens distortions (Zhuang
and Roth, 1996, Chapter 7; Zhuang et al., 1995; Du and Zhang, 2013)
or use a very simple lens distortion model (Motta et al., 2001). Other
approaches assume that some camera parameters are fixed and known.
For example, sometimes the principal point is assumed to lie at a
known position (Meng and Zhuang, 2007). If a camera cannot be
modeled adequately by the camera model, a suboptimal accuracy of
the kinematic parameters may result.

Some approaches that use cameras require the interior orientation
of the camera to be calibrated separately (Motta et al., 2001; Rousseau
et al., 2001; Du and Zhang, 2013; Hayat et al., 2019; Boby, 2022). If
the camera calibration requires the camera to be detached from the
robot, long downtimes are caused. In addition, after the camera has
been reattached to the robot, a robot calibration is necessary. This extra
time and complexity is undesirable.

The following two approaches that use cameras for robot calibration
are the closest to our approach in the sense that they are based not on
3D pose or position errors but on errors that are defined in the image
coordinate system.

The approach by Zhuang and Roth (1996, Chapter 7) and Zhuang
et al. (1995) uses a monocular camera mounted on the end effec-
tor. In addition to the problems that were described above, it alge-
braically transforms the 2D position error that the approach could use
in principle into an error that is not a geometrically meaningful.

The approach by Boby (2022) also uses a monocular camera
mounted on the end effector. Like our approach, it optimizes a pho-
togrammetric error based on 2D image coordinates, which is a ge-
ometric error. In contrast to our approach, it does not optimize the
camera parameters, i.e., the camera is assumed to be pre-calibrated.
The approach uses the DH parameters, but the singularity of this
parameterization is not handled. Furthermore, the model is overpa-
rameterized: it has 36 instead of 30 parameters for a robot with six
revolute joints. The optimization uses a dampening factor in the Gauss–
Newton optimization to ensure ‘‘slow but stable convergence’’ (Boby,
2022, Section IV.A), which is undesirable. We assume that this was
necessary because of the overparameterization and the failure to handle
the singularity of the DH parameterization.

We were only able to find two approaches that use the 3D data
obtained from 3D sensors for kinematic calibration.

The approach by Yu and Xi (2018) uses a self-constructed sheet-
of-light sensor mounted on the robot’s end effector. The laser line is
displaced using a rotating mirror, enabling the sensor to reconstruct
a 3D point cloud without moving the robot. The calibration object
is made up of four non-collinear spheres. One disadvantage of this
approach is that the positions of the spheres must be measured very
accurately in advance using a laser tracker. The costs of a laser tracker
are significant, which makes this approach less desirable. For the
purpose of calibration, spheres are fitted to the 3D point cloud returned
by the sensor to compute the centers of the spheres. The kinematic
parameters are determined by optimizing the Euclidean position error
of the spheres. One potential drawback of this approach is that the
calibration is performed based only on a relatively small number of
measurements per scan (the centers of the spheres). Thus, it might be
prone to errors or outliers in the fitted sphere centers.

An approach that calibrates the hand–eye and kinematic parameters
simultaneously using 3D sensors, such as single beam LIDAR sensors,
sheet-of-light scanners, and depth cameras, is proposed by Peters and
Knoll (2024). It uses a simultaneous localization and mapping (SLAM)
approach based on the iterative closest point (ICP) algorithm with
arbitrary objects to perform the calibration. To achieve the required ro-
bustness and accuracy, more than 20 scans of the object are necessary.
647 
Fig. 1. Relevant 3D coordinate systems as well as transformations that change (blue)
and that do not change (orange) during robot movements. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)
Source: Adapted from Ulrich and Hillemann (2021, 2024).

The approach is unable to calibrate all kinematic and hand–eye param-
eters. For example, for a robot with seven revolute joints, it is only
capable of calibrating 28 of the 34 parameters that a minimal model
includes. Another drawback of this approach is the enormous amount of
time (several hours) that is required to perform the calibration, which
is undesirable since it leads to unnecessarily long downtimes.

Finally, we note that none of the approaches discussed above in-
clude a stochastic model of the robot parameters.

3. Robot model

3.1. Coordinate systems and transformations

We will denote the 4 × 4 homogeneous transformation matrix that
represents a rigid 3D transformation of points from coordinate system
s1 to s2 by s2𝙷s1. Thus, the transformation of a homogeneous point 𝒑s1
n coordinate system s1 to the point 𝒑s2 in coordinate system s2 is given

by

𝒑s2 = s2𝙷s1𝒑s1 =
(

𝚁 𝒕
𝟎⊤ 1

)

𝒑s1 , (1)

where 𝒕 = (𝑡x, 𝑡y , 𝑡z)⊤ is a translation vector and 𝚁 a rotation ma-
trix that is parameterized via the Euler angles 𝛼, 𝛽, and 𝛾 by 𝚁 =
𝑥(𝛼) 𝚁𝑦(𝛽) 𝚁𝑧(𝛾) (Kuipers, 1999, Chapters 4.3–4.4).

We will see in Section 6 that the robot calibration algorithm that
ses 3D sensors must transform planes between coordinate systems
nstead of points. We will describe planes by a homogeneous vector

= (𝜋𝑥, 𝜋𝑦, 𝜋𝑧, 𝜋𝑤)⊤, where the normal vector 𝒏 = (𝜋𝑥, 𝜋𝑦, 𝜋𝑧)⊤ of
he plane is normalized to have length 1, i.e., ‖𝒏‖2 = 1. The signed
istance 𝑑 of a point 𝒑 from the plane 𝝅 is given by 𝑑 = 𝝅⊤𝒑. Hence, 𝒑
ies on 𝝅 if 𝝅⊤𝒑 = 0.

The vector 𝝅 is transformed by the inverse transpose of a rigid
ransformation (1) (Hartley and Zisserman, 2003, Chapter 3.2.1). We
ill denote the inverse transpose of a homogeneous transformation
atrix by 𝙶. Hence, we have

s2 = s2𝙶s1𝝅s1 = s2𝙷
−⊤

s1 𝝅s1 =
(

𝚁 𝟎
−𝒕⊤𝚁 1

)

𝝅s1 . (2)

ote that this transformation preserves the normalization of the normal
ector of a plane.

Fig. 1 displays the coordinate systems that are relevant for robot
alibration: the world (w, WCS), imaging sensor (s, SCS), robot tool
t, TCS), and robot base (b, BCS) coordinate systems. Furthermore, the
elevant poses are shown: t𝙷b (robot pose) and s𝙷w (imaging sensor
ose), which both vary when the robot is moved, as well as t𝙷s (hand–
ye pose) and b𝙷w (world–base pose), which do not change during robot
ovements.
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The imaging sensor pose, the hand–eye pose, and the world–base
pose are represented by a translation vector 𝒕 and a rotation matrix 𝚁

as indicated in (1).

3.2. Kinematic model

The robot pose b𝙷t is given by the forward kinematics of the robot.
Many different parameterizations have been proposed to model the
forward kinematics. It is essential that the kinematic model is complete,
minimal, and continuous (Schröer et al., 1997). An incomplete model
would not be able to model all possible robot poses. Non-continuity
or non-minimality of the model will cause numerical problems in op-
timization algorithms that are used to determine the robot parameters
and will lead to inaccuracies. It has been shown that, no matter what
kinematic model is used, a robot with 𝑟 revolute and 𝑝 prismatic joints
as 4𝑟+2𝑝+6 independent parameters (Schröer et al., 1997; Chen et al.,
001; Li et al., 2014; Yang et al., 2014; Chen et al., 2014; Wu et al.,
019; Sun et al., 2020). This includes the parameters of the hand–eye
nd world–base poses.

One commonly used kinematic model is given by the Denavit–
artenberg (DH) parameters (Denavit and Hartenberg, 1955; Zhuang
nd Roth, 1996, Chapter 3.III.A). Various conventions are used for
hese parameters, which differ in the way the kinematic parameters
re assigned to robot joints. The conventions are called the original,
istal, and proximal variants by Lipkin (2005). We use the original DH
ariant in our approach. The DH convention requires the assignment
f a coordinate system to each joint in a specific manner, as described,
or example, by Zhuang and Roth (1996, Chapter 3.III.A). Once the
oordinate systems have been assigned, the transformation from joint
oordinate system 𝑖 to joint coordinate system 𝑖 − 1 is given by:
−1𝙷𝑖 = 𝚁𝑧(𝜃𝑖) 𝚃𝑧(𝑑𝑖) 𝚃𝑥(𝑎𝑖) 𝚁𝑥(𝛼𝑖) . (3)

ere, 𝜃𝑖, 𝑑𝑖, 𝑎𝑖, and 𝛼𝑖 are the joint parameters and 𝚁𝜉 (𝜙) denotes
rotation around the axis 𝜉 by the angle 𝜙, while 𝚃𝜉 (𝛿) denotes a

translation along the axis 𝜉 by the distance 𝛿. For revolute joints, the
joint is rotated around the 𝑧 axis by the angle 𝜃𝑖, while for prismatic
joints, it is moved along the 𝑧 axis by the distance 𝑑𝑖.

It is well known that the DH parameters are complete and minimal,
but not continuous if consecutive joint axes are parallel or nearly
parallel. To prevent this problem, Hayati and Mirmirani modified the
transformation for nominally parallel joint axes as follows (Hayati and
Mirmirani, 1985; Zhuang and Roth, 1996, Chapter 3.III.C):
𝑖−1𝙷𝑖 = 𝚁𝑧(𝜃𝑖) 𝚃𝑥(𝑎𝑖) 𝚁𝑥(𝛼𝑖) 𝚁𝑦(𝛽𝑖) . (4)

Hence, the parameter 𝛽𝑖 replaces the parameter 𝑑𝑖, which is assumed
to be 0.

The Hayati–Mirmirani parameterization is continuous for nearly
parallel joint axes, but discontinuous for nearly perpendicular joint
axes. Both conventions can be combined by using the following trans-
formation (Veitschegger and Wu, 1986):
𝑖−1𝙷𝑖 = 𝚁𝑧(𝜃𝑖) 𝚃𝑧(𝑑𝑖) 𝚃𝑥(𝑎𝑖) 𝚁𝑥(𝛼𝑖) 𝚁𝑦(𝛽𝑖) . (5)

This is an overparameterization, which we will remove by not optimiz-
ing 𝑑𝑖 for nominally parallel axes and not optimizing 𝛽𝑖 for nominally
perpendicular axes in the calibration algorithms that we present in
Section 5. The resulting model is complete, minimal, and continuous.
It is sometimes called the modified DH model. However, this term is
also frequently used to denote the aforementioned variants of the DH
model. To avoid ambiguities, we will denote this model as the DHHM
model. Several other approaches for kinematic calibration also use this
model, e.g., Motta et al. (2001), Rousseau et al. (2001), Du and Zhang
(2013), Liu et al. (2017), Yu and Xi (2018), Li et al. (2019), and Ito
et al. (2020).

Based on the DHHM transformation (5), the forward kinematics of
a robot with 𝑛a joints is given by:
b𝙷 = 0𝙷 ⋅ 1𝙷 ⋯ 𝑛a−1𝙷 . (6)
t 1 2 𝑛a
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As shown in Fig. 1, the robot calibration algorithms presented in
Section 5 use the inverse of this transformation:

t𝙷b = 𝑛a𝙷𝑛a−1 ⋯
2𝙷1 ⋅

1𝙷0 , (7)

in which

𝑖𝙷𝑖−1 = 𝚁𝑦(−𝛽𝑖) 𝚁𝑥(−𝛼𝑖) 𝚃𝑥(−𝑎𝑖) 𝚃𝑧(−𝑑𝑖) 𝚁𝑧(−𝜃𝑖) . (8)

There are other parameterizations that are complete and continu-
ous, such as the product-of-exponentials (POE) formula (Murray et al.,
1994, Chapter 3.2.2; Lynch and Park, 2017, Chapter 4.1), finite and
instantaneous screw (FIS) theory (Sun et al., 2020, 2021), and unit dual
quaternions (Luo et al., 2023) that were mentioned in Section 2. These
models are inherently overparameterized and require a significantly
higher complexity in the model or optimization algorithm to handle or
remove the overparameterization (Yang et al., 2014; Chen et al., 2014;
Wu et al., 2015; Li et al., 2016; Liu et al., 2018; Chang et al., 2018;
Luo et al., 2022; Sun et al., 2020, 2021). Furthermore, the experiments
by Chen et al. (2014) and Li et al. (2016) show that there is no
advantage in using a non-redundant POE model over a DHHM model
and between different minimally parameterized POE models in terms
of accuracy or convergence speed. Therefore, we see no advantage in
using one of these kinematic models for our robot calibration algorithm.

To calibrate the robot kinematics, we model the kinematic param-
eters of joint 𝑖 as offsets from their nominal values:

𝜃𝑖 = 𝜃𝑖 + 𝛥𝜃𝑖 (9)

𝑑𝑖 = 𝑑𝑖 + 𝛥𝑑𝑖 (10)

𝑎𝑖 = �̃�𝑖 + 𝛥𝑎𝑖 (11)

𝛼𝑖 = �̃�𝑖 + 𝛥𝛼𝑖 (12)

𝛽𝑖 = 𝛽𝑖 + 𝛥𝛽𝑖 . (13)

Here, ⋅̃ denotes the fixed nominal kinematic parameters, while 𝛥 indi-
cates the unknown offsets.

The robots we use in the evaluation in Section 7 use a kinematic
model in their controller that is based on the original DH parameters
with offsets, as in the above equations, i.e., it does not contain the
parameter 𝛽𝑖. Therefore, to reconfigure the robot controller to use our
calibration results, we must convert our calibrated DHHM parameters
to DH parameters. The easiest way to do this is to convert our DHHM
parameters to POE parameters using a straightforward extension of
the corresponding algorithm for DH parameters given by Murray et al.
(1994, Chapter 3.2.3); Lynch and Park (2017, Appendix C.5), and Wu
et al. (2017). The resulting POE parameters can be converted to DH
parameters by the algorithm given by Wu et al. (2017) and can then
be converted to nominal values plus offsets. The advantage of this
approach would be that the robot controller performs the necessary
calculations to determine the inverse kinematics that are required to
move the robot to a specific pose.

Alternatively, we can compute the inverse kinematics in our own
software. In our approach, we use the inverse kinematics algorithm
given by Villalobos et al. (2021a,b) with the nominal kinematic pa-
rameters to obtain initial joint angles. The joint angles are then refined
using a nonlinear optimization algorithm with the calibrated DHHM
parameters (i.e., nominal values plus calibrated offsets). The advantage
of this approach is that we have full control over the kinematic model
so that we are more flexible when adapting the kinematic model in the
future, e.g., by modeling additional error sources such as the pitch error
of revolute joints (Ma et al., 2018). Furthermore, there are robots that
do not allow to change the kinematics data in the robot controller and,
hence, implementing the inverse kinematics is the only way to use the
calibrated parameters.
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3.3. Model degeneracies

The model we have described so far is overparameterized. It has
4𝑟 + 2𝑝 + 12 parameters: 4𝑟 + 2𝑝 parameters for the kinematics, six
for the hand–eye pose, and six for the world–base pose. Therefore, six
parameters are redundant and must be excluded from the optimization.
Tests with the approach by Pashkevich (2001) showed that the param-
eters 𝛥𝜃1 and 𝛥𝑑1 form a semi-identifiable group with the parameters of
the world–base pose and that all parameters 𝛥𝜃𝑛a

, 𝛥𝑑𝑛a
, 𝛥𝛼𝑛a

, and 𝛥𝑎𝑛a
form a semi-identifiable group with the parameters of the hand–eye
pose. Hence, each of these parameter groups contain parameters that
are functionally dependent on each other, i.e., their respective values
cannot be identified individually. Therefore, like Yu and Xi (2018) and
Rousseau et al. (2001), we leave the values of these parameters fixed
by excluding them from the optimization. Any error that might be
present in these parameters will be compensated by the hand–eye and
world–base poses.

4. Camera model

In this section, we briefly describe the camera model we use, which
is the perspective camera model presented by Steger et al. (2018,
Chapter 3.9.1): A 3D point 𝒑w in the WCS is transformed to a point
𝒑s in the SCS by

𝒑s = s𝙷w𝒑w . (14)

As described in Section 3, s𝙷w is parameterized by the translation vector
𝒕 = (𝑡x, 𝑡y , 𝑡z)⊤ and the Euler angles 𝛼, 𝛽, and 𝛾. The parameters (𝑡x, 𝑡y,
𝑡z, 𝛼, 𝛽, 𝛾) define the exterior orientation of the camera.

Subsequently, the point 𝒑s = (𝑥s, 𝑦s, 𝑧s)⊤ is projected onto the image
plane by
(

𝑥u
𝑦u

)

= 𝑐
𝑧s

(

𝑥s
𝑦s

)

, (15)

where 𝑐 represents the principal distance of the lens. Next, the undis-
torted point (𝑥u, 𝑦u)⊤ is transformed into the distorted point (𝑥d, 𝑦d)⊤ by
applying either the division model (Lenz and Fritsch, 1990)
(

𝑥u
𝑦u

)

= 1
1 + 𝜅𝑟2d

(

𝑥d
𝑦d

)

, (16)

which models radial distortions via the parameter 𝜅, or by applying the
polynomial model (Brown, 1971)

(

𝑥u
𝑦u

)

=

⎛

⎜

⎜

⎜

⎜

⎜

⎝

𝑥d(1 +𝐾1𝑟2d +𝐾2𝑟4d +𝐾3𝑟6d)

+ (𝑃1(𝑟2d + 2𝑥2d) + 2𝑃2𝑥d𝑦d)

𝑦d(1 +𝐾1𝑟2d +𝐾2𝑟4d +𝐾3𝑟6d)

+ (2𝑃1𝑥d𝑦d + 𝑃2(𝑟2d + 2𝑦2d))

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, (17)

which represents radial distortions via parameters 𝐾1, 𝐾2, and 𝐾3 as
well as decentering distortions via 𝑃1 and 𝑃2. Here, 𝑟2d = 𝑥2d + 𝑦2d. While
the division model can be analytically inverted, the polynomial model
needs a numerical root finding algorithm for inversion (Steger et al.,
2018, Chapter 3.9.1.3).

In the last step, the distorted point (𝑥d, 𝑦d)⊤ is transformed to the
image coordinate system:

𝒑i =
(

𝑥i
𝑦i

)

=
(

𝑥d∕𝑠𝑥 + 𝑐𝑥
𝑦d∕𝑠𝑦 + 𝑐𝑦

)

. (18)

Here, (𝑐𝑥, 𝑐𝑦)⊤ is the principal point and 𝑠𝑥 and 𝑠𝑦 indicate the pixel
pitches on the sensor (𝑥 refers to the horizontal and 𝑦 to the vertical
image axis).

Depending on the chosen distortion model, the interior orientation
𝒊 of the camera is described by the six parameters 𝒊 = (𝑐, 𝜅, 𝑠𝑥, 𝑠𝑦, 𝑐𝑥,
𝑐𝑦)⊤ for the division model or by the ten parameters 𝒊 = (𝑐, 𝐾1, 𝐾2, 𝐾3,
𝑃 , 𝑃 , 𝑠 , 𝑠 , 𝑐 , 𝑐 )⊤ for the polynomial model.
1 2 𝑥 𝑦 𝑥 𝑦

649 
Fig. 2. (a) Planar calibration object with 873 control points used for the camera-based
robot calibration in Section 5 and for its evaluation in Section 7. (b) CAD model of
the 3D calibration object used for the 3D-sensor-based robot calibration in Section 6
and for its evaluation in Section 7.

5. Robot calibration using cameras

5.1. Overview

To calibrate the robot using a camera, a calibration object is placed
at a fixed position within the workspace of the robot. For our experi-
ments, we used the planar HALCON calibration object (MVTec Software
GmbH, 2024, Chapter 3.2) with known hexagonally arranged circular
control points (see Fig. 2(a)). Then, the robot tool is moved to different
poses and an image of the calibration object is acquired at each pose. In
each calibration image, the image coordinates of the calibration points
are extracted. They represent the observations during robot calibration.
The unknowns are the kinematic parameters of the robot joints, the
parameters of the hand–eye pose that describes the pose of the camera
with respect to the robot tool, and the parameters of the world–base
pose that describes the pose of the calibration object with respect to
the robot base. If the camera was not pre-calibrated, the parameters
of the interior orientation are additional unknowns. To obtain the best
accuracy, it is advantageous to cover the working range of each robot
joint as completely as possible. Because this is difficult to achieve with
the calibration object at a single pose, our proposed calibration model
supports the acquisition of calibration images of the calibration object
in multiple poses.

5.2. Calibration model

Let 𝑛c be the number of different calibration object poses and 𝑛r,𝑙 the
number of robot poses (and hence the number of acquired calibration
images) at calibration object pose 𝑙 (𝑙 = 1,… , 𝑛c). Furthermore, let the
3D world points (given in the WCS) of the calibration object be 𝒑𝑘
(𝑘 = 1,… , 𝑛w) and their 2D projections into the image at calibration
object pose 𝑙 and robot pose 𝑗 be 𝒑𝑙,𝑗,𝑘 (𝑗 = 1,… , 𝑛r,𝑙). Then, the
projection of a 3D point into the image is described by:

𝒑𝑙,𝑗,𝑘 = 𝝅(s𝙷t t𝙷b ,𝑙,𝑗
b𝙷w ,𝑙𝒑𝑘, 𝒊) , (19)

where s𝙷t represents the hand–eye pose, t𝙷b ,𝑙,𝑗 represents the robot pose
that is used to acquire calibration image 𝑗 of the calibration object at
calibration object pose 𝑙, and b𝙷w ,𝑙 represents the pose of the calibration
object at pose 𝑙 with respect to the robot base (cf. Section 3). The
function 𝝅(𝒑s, 𝒊) is the projection of the point 𝒑s, which is given in
the SCS, into the image by successive computation of (15), the inverse
of either (16) or (17), and (18) using the parameters of the interior
orientation 𝒊. The matrix t𝙷b ,𝑙,𝑗 is obtained by applying the forward
kinematics of (7) with the joint parameters given in (9)–(13).

We denote the vector that contains the six transformation parame-
ters of the unknown hand–eye pose s𝙷t by 𝒆s, the vector of the unknown
calibration object poses b𝙷w ,𝑙 by 𝒆b,𝑙, and the set of unknown kinematic
parameters, i.e., the offsets for the DHHM parameters, of joint 𝑖 by 𝒅𝑖.
For nominally perpendicular axes, 𝒅𝑖 = (𝛥𝜃𝑖 , 𝛥𝑑𝑖 , 𝛥𝑎𝑖 , 𝛥𝛼𝑖 )

⊤, while for
nominally parallel axes 𝒅 = (𝛥 , 𝛥 , 𝛥 , 𝛥 )⊤.
𝑖 𝜃𝑖 𝑎𝑖 𝛼𝑖 𝛽𝑖
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5.3. Parameter estimation in the Gauss–Markov model

Minimizing the reprojection error of 3D points in the image is
a well-established method in photogrammetry and computer vision
(Förstner and Wrobel, 2016, Chapter 15). Compared to the minimiza-
tion of algebraic errors, which do not represent a geometric quantity,
it results in a higher accuracy in most applications. Furthermore, mini-
mizing the reprojection error has the advantage of directly minimizing
the errors of the observations, i.e., the coordinates of the image points,
instead of errors of quantities that are derived from the observations,
like poses, for example. This facilitates the correct modeling of the
statistical properties.

To minimize the photogrammetric reprojection error, we apply
the parameter estimation in the Gauss–Markov model (Förstner and
Wrobel, 2016, Chapter 4.4; Niemeier, 2008, Chapter 4.3), which is
a standard tool in photogrammetry and distinguishes between the
functional model and the stochastic model. In the functional model,
the observations 𝒍 are described as an explicit function 𝒍 = 𝒇 (𝒙) of
he unknowns 𝒙. In our calibration model, 𝒇 corresponds to (19). In
he stochastic model, the observations and the unknowns are modeled
s random variables with uncertainties, where the uncertainties are
epresented by covariances.

The vector of observations 𝒍 contains the measured image points

= (𝒑⊤1,1,1,… ,𝒑⊤1,1,𝑛w ,… ,𝒑⊤1,𝑛r,1 ,𝑛w ,… ,𝒑⊤𝑛c ,𝑛r,𝑛c ,𝑛w
)⊤ . (20)

If a 3D point is not visible in a given image, the corresponding entry in
𝒍 is simply omitted. If 𝑛i is the total number of measured image points
over all calibration images, the number of observations 𝑛𝑙 equals 2𝑛i.
Each observed image point yields two equations in the form of (19),
thus yielding 2𝑛i equations in total.

The vector of unknowns 𝒙 is initially built as

𝒙 = (𝒆⊤s , 𝒆
⊤
b,1,… , 𝒆⊤b,𝑛c ,𝒅

⊤
1 ,… ,𝒅⊤

𝑛a
, 𝒊⊤)⊤ , (21)

containing the six parameters of the hand–eye pose, the 6𝑛c param-
eters of the 𝑛c calibration object poses, the 4𝑛a unknown kinematic
parameters for each of the 𝑛a joints, and the parameters of the interior
orientation. If the camera was pre-calibrated, the interior orientation
can be excluded from the robot calibration by omitting 𝒊 in 𝒙. Note
that because of the model degeneracies described in Section 3.3, not
all kinematic parameters can be estimated simultaneously together with
the parameters of the hand–eye pose and the calibration object poses
(which correspond to the world–base pose). Therefore, we exclude 𝛥𝜃1
and 𝛥𝑑1 of the parameters 𝒅1 of the first joint and all parameters
𝒅𝑛a of the last joint from the parameter estimation by deleting these
parameters from 𝒙. Let the final number of unknowns in 𝒙 be 𝑛x.

The statistical properties of the observation process are specified in
the stochastic model. In most applications, it is appropriate to assume
that the observed image points are uncorrelated and have identical
precision. In these cases, we set the 𝑛𝑙 × 𝑛𝑙 weight coefficient matrix
(i.e., the initial covariance matrix) of the observations to the identity
matrix: 𝚀𝒍𝒍 = 𝙸. From 𝚀𝒍𝒍, we can compute the weight matrix 𝙿𝒍𝒍 = 𝚀−1𝒍𝒍 .
If more detailed knowledge about the image points’ accuracy is known,
the elements in 𝙿𝒍𝒍 can be set to appropriate weights or the elements in
𝚀𝒍𝒍 to appropriate covariances.

For linearization, we compute the 𝑛𝑙 × 𝑛x Jacobian 𝙰 of 𝒇 at the
initial values of the unknowns 𝒙(0) (cf. Section 5.4):

𝙰 =
𝜕𝒇 (𝒙)
𝜕𝒙

|

|

|

|𝒙=𝒙(0)
. (22)

With the residuals 𝛥𝒍 = 𝒍 − 𝒇 (𝒙(0)) and the weight matrix 𝙿𝒍𝒍 = 𝚀−1𝒍𝒍 , the
corrections for the unknowns are calculated by solving

𝙰⊤𝙿𝒍𝒍𝙰𝛥�̂� = 𝙰⊤𝙿𝒍𝒍𝛥𝒍 (23)

for 𝛥�̂�, for example, by Cholesky decomposition. Here, the hat ⋅̂ denotes
a fitted or estimated value. Finally, the corrections are applied to the
unknowns by

�̂�(1) = 𝒙(0) + 𝛥�̂� . (24)
650 
Eqs. (22)–(24) are repeatedly applied until convergence. This corre-
sponds to the minimization of the reprojection error of the 3D points,
i.e., the differences between the 3D points projected into the image by
(19) and the corresponding 2D points that are observed in the image.
After convergence, the covariance matrix of the original observations
is obtained by

𝙲𝒍𝒍 = �̂�20𝚀𝒍𝒍 , (25)

with the variance factor

�̂�20 = �̂�⊤𝙿𝒍𝒍�̂�∕𝑟 , (26)

the residuals �̂� = 𝙰𝛥�̂�−𝛥𝒍, and the redundancy 𝑟 = 𝑛𝑙−𝑛x. The corrected
observations are obtained by �̂� = 𝒍 + �̂�. The covariance matrix of the
estimated unknowns is obtained by variance propagation:

𝙲�̂��̂� = �̂�20 (𝙰
⊤𝙿𝒍𝒍𝙰)−1 (27)

Details about the Gauss–Markov model are provided by Förstner and
Wrobel (2016, Chapter 4.4.1) and Niemeier (2008, Chapter 4.3).

One advantage of the parameter estimation in the Gauss–Markov
model is that information about the precision of the observations and
the unknowns are obtained. While 𝙲𝒍𝒍 contains the covariances of the
observations, 𝙲�̂��̂� contains the covariances of the unknowns. The latter
can be used not only for assessing the precision of the estimated
parameters but also for investigating correlations between them. It
also enables parameter testing, which can yield valuable information
about the significance of the model parameters (e.g., lens distortion
parameters) or about the robot, such as the relevant error sources of
each individual joint.

5.4. Initialization of the unknowns

Because of the nonlinearity of the optimization problem, we must
provide starting values for the unknowns. We propose the following
initialization for 𝒙(0):

• The nominal DH parameters 𝑑𝑖, �̃�𝑖, and �̃�𝑖 are obtained from the
specification or data sheet of the robot. All values of 𝛽𝑖 are set
to 0. The nominal joint angles 𝜃𝑖,𝑙,𝑗 for calibration object pose 𝑙
and robot pose 𝑗 are read out from the robot controller.

• For the unknown robot parameters, all offset values are set to 0.
• Initial values for the hand–eye pose 𝒆s and for 𝒆b,𝑙 are obtained

from a linear approach (e.g., Daniilidis (1999) for anthropo-
morphic robots or Ulrich and Steger (2016) for SCARA robots),
optionally followed by a non-linear approach for more accurate
initial values (e.g., Steger et al. (2018, Chapter 3.13.5) or Ul-
rich and Hillemann (2024)). If the chosen implementation of
the hand–eye calibration does not support multiple calibration
object poses, the hand–eye calibration must be performed for each
calibration object pose separately to obtain initial values for the
calibration object poses. In this case, the hand–eye pose can be
computed by averaging the individual results, for example.

• Initial values for the interior camera parameters are taken from
the camera (𝑠𝑥 and 𝑠𝑦) and the lens (𝑐) data sheets. The principal
point (𝑐𝑥, 𝑐𝑦)⊤ is set to the center of the image and the distortion
coefficients are set to 0.

5.5. Geometric degeneracy

During our experiments on real data (cf. Section 7.4), we first
ran into the problem that the system of normal Eqs. (23) became
almost singular. Based on typical camera constellations in close-range
photogrammetric bundle-adjustment (Luhmann et al., 2020, Chapter
4.4), we had chosen the robot poses such that the optical centers of
the cameras were located on the surface of a sphere. Furthermore,
their optical axes intersected at the sphere’s center, which coincided
with the center of the calibration object. It turned out that this set of
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robot poses is geometrically degenerate, i.e., it failed to uniquely define
the estimated parameters during the robot calibration. To avoid this
degeneracy, we chose the robot poses for the experiments in Section 7.4
randomly.

5.6. Correction of circular mark centers

In our experiments in Section 7.4, we use a planar calibration object
with known circular control points (see Fig. 2(a)). The image coordi-
nates of the control points are extracted by computing the centers of
the ellipses that were fitted to their subpixel-accurate image edges. It is
well known that this causes a slight positional bias in the points (Steger,
2017, Section 10). For the majority of applications, the distortion is
negligible. Nonetheless, we eliminate the bias by using the method
described by Steger (2017, Section 10).

6. Robot calibration using 3D sensors

6.1. Overview

To perform the robot calibration using a 3D sensor, a 3D calibration
object is placed at a fixed position within the workspace of the robot.
For our experiments, we used the HALCON sheet-of-light calibration
object (MVTec Software GmbH, 2024, Chapter 6.3) (see Fig. 2(b)). It
consists of a frustum on top of a wedge-shaped body. We only use the
upper part (tilted plane and frustum) for the calibration because the
sides are difficult to detect and measure robustly with a 3D sensor. The
geometry of the calibration object is described by a triangulated CAD
model to ensure that each polygon (i.e., triangle) can be represented
by one plane. Our method is flexible with regard to the shape of the
calibration object. The only requirement is that the pose of the calibra-
tion object can be determined without ambiguities from a 3D scan of
the object, i.e., the object should not possess rotational symmetries or
too little geometric structure to uniquely determine its pose.

To acquire the data for the calibration, the robot tool is moved
to different poses and a 3D scan of the calibration object is acquired
at each pose. The poses should be chosen such that the calibration
object covers a substantial part of the 3D scan. In each scan, the 3D
scene points that correspond to the surface of the calibration object
represent the observations during the robot calibration. The optimiza-
tion is based on transforming the planes of the CAD model using the
world–base pose, the robot pose, and the hand–eye pose to the SCS and
minimizing the distance of scene points acquired with the 3D sensor to
their corresponding transformed planes of the CAD model. The point-
to-plane correspondences are determined using the surface-based 3D
matching (Drost et al., 2010; Drost, 2016; Steger et al., 2018, Chapter
3.12.3). Note that the pose of the calibration object in the SCS, which
is also returned by the surface-based 3D matching, is not used in the
calibration. The unknowns in the robot calibration are the kinematic
parameters of the robot joints, the parameters of the hand–eye pose
that describe the pose of the 3D sensor with respect to the robot tool,
and the parameters of the world–base pose that describe the pose of the
calibration object with respect to the robot base. Like for camera-based
robot calibration (cf. Section 5.1), our proposed calibration model
supports the acquisition of 3D scans of the calibration object in multiple
poses to achieve the best accuracy.

6.2. Calibration model

Let 𝑛c be the number of different calibration object poses and 𝑛r,𝑙 the
number of robot poses (i.e., the number of acquired calibration scans)
at calibration object pose 𝑙 (𝑙 = 1,… , 𝑛c). Furthermore, let the 3D points
that have been acquired at calibration object pose 𝑙 and robot pose 𝑗
that have been matched to one of the planes of the calibration object be
denoted by 𝒑𝑙,𝑗,𝑘 (𝑘 = 1,… , 𝑛p,𝑙,𝑗). The corresponding calibration object
plane in the triangulated CAD model is denoted by 𝝅 . Note that
𝑐(𝑙,𝑗,𝑘)

651 
𝒑𝑙,𝑗,𝑘 is given in the SCS while 𝝅𝑐(𝑙,𝑗,𝑘) is given in the WCS. To compute
the distance 𝑑𝑙,𝑗,𝑘 of the 3D points to their corresponding planes of the
alibration object, the planes are transformed into the SCS. Hence,

𝑙,𝑗,𝑘 =
(s𝙶t

t𝙶b ,𝑙,𝑗
b𝙶w ,𝑙𝝅𝑐(𝑙,𝑗,𝑘)

) ⊤𝒑𝑙,𝑗,𝑘 , (28)

here s𝙶t represents the inverse transpose of the hand–eye pose s𝙷t ,
𝙶b ,𝑙,𝑗 represents the inverse transpose of the robot pose t𝙷b ,𝑙,𝑗 that is
sed to acquire calibration scan 𝑗 of the calibration object at calibration
bject pose 𝑙, and b𝙶w ,𝑙 represents the inverse transpose of the pose
f the calibration object b𝙷w ,𝑙 with respect to the robot base at pose 𝑙
cf. Section 3). The matrix t𝙷b ,𝑙,𝑗 is obtained by applying the forward
inematics of (7) with the joint parameters given in (9)–(13).

We denote the set of unknown kinematic parameters, i.e., the offsets
or the DHHM parameters, of joint 𝑖 by 𝒅𝑖, the vector that contains the
ix transformation parameters of the unknown hand–eye pose s𝙷t by 𝒆s,
nd the vector of the unknown calibration object poses b𝙷w ,𝑙 by 𝒆b,𝑙. For
obot axes that are nominally perpendicular, 𝒅𝑖 = (𝛥𝜃𝑖 , 𝛥𝑑𝑖 , 𝛥𝑎𝑖 , 𝛥𝛼𝑖 )

⊤,
hile for robot axes that are nominally parallel, 𝒅𝑖 = (𝛥𝜃𝑖 , 𝛥𝑎𝑖 , 𝛥𝛼𝑖 , 𝛥𝛽𝑖 )

⊤.

.3. Parameter estimation in the Gauss–Helmert model

Minimizing (28) corresponds to the minimization of a geometric
rror. Compared to the minimization of algebraic errors, which do not
epresent a geometric quantity, this typically results in a higher accu-
acy. Note that in contrast to camera-based robot calibration (cf. Sec-
ion 5.3), the observations are not an explicit function of the unknowns.
herefore, the Gauss–Markov model cannot be applied. Instead, for
he optimization we apply the parameter estimation in the Gauss–
elmert model (Förstner and Wrobel, 2016, Chapter 4.8.2; Niemeier,
008, Chapter 5.2), which is also a standard tool in photogrammetry
nd enables the correct modeling of the statistical properties of the
bservations and unknowns.

Like the Gauss–Markov model, the Gauss–Helmert model distin-
uishes between the functional model and the stochastic model. In the
unctional model, the relations between the observations and the un-
nowns are described. The stochastic model describes the observations
nd the unknowns as random variables with uncertainties, which are
escribed by covariances.

The functional model in the Gauss–Helmert model is written as
mplicit functions

(𝒙, 𝒍) = 0 , (29)

here 𝒇 corresponds to (28). The vector 𝒍 contains the measured 3D
oints:

= (𝒑⊤1,1,1,… ,𝒑⊤1,1,𝑛p,1,1 ,…)⊤ . (30)

f 𝑛p is the total number of matched 3D points over all calibration scans,
he number of observations 𝑛𝑙 equals 3𝑛p. Each matched 3D point yields
ne equation in the form of (28), thus resulting in 𝑛p equations in total.
nitially, the vector of unknowns 𝒙 is built as

= (𝒆⊤s , 𝒆
⊤
b,1,… , 𝒆⊤b,𝑛c ,𝒅

⊤
1 ,… ,𝒅⊤

𝑛a
)⊤ , (31)

ontaining the six parameters of the hand–eye pose, the 6𝑛c parameters
f the 𝑛c calibration object poses, and the 4𝑛a unknown kinematic
arameters for each of the 𝑛a joints. Because of the model degeneracies
hat we described in Section 3.3, not all kinematic parameters can be
stimated simultaneously with the parameters of the calibration object
oses (i.e., the world–base poses) and the hand–eye pose. Thus, as
n the camera-based robot calibration, we exclude 𝛥𝜃1 and 𝛥𝑑1 of the
arameters 𝒅1 of the first joint and all parameters 𝒅𝑛a of the last joint
rom the parameter estimation by deleting these parameters from 𝒙. Let
he final number of unknowns in 𝒙 be denoted by 𝑛𝑥.

The stochastic model specifies the statistical properties of the ob-
ervation process. In the majority of applications, it is appropriate
o assume that the measured 3D points are uncorrelated and possess
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uniform precision. In such cases, we set the 𝑛𝑙 × 𝑛𝑙 weight coefficient
matrix, i.e., the initial covariance matrix, of the observations to the
identity matrix: 𝚀𝒍𝒍 = 𝙸. From 𝚀𝒍𝒍, the weight matrix 𝙿𝒍𝒍 = 𝚀−1𝒍𝒍 can
be computed. If more detailed knowledge about the accuracy of the
3D points is known, the elements in 𝚀𝒍𝒍 can be set to appropriate
covariances or the elements in 𝙿𝒍𝒍 to appropriate weights.

In the Gauss–Helmert model, we must linearize the functional model
with respect to the observations and unknowns. For linearization with
respect to the unknowns, we compute the 𝑛p×𝑛𝑥 Jacobian 𝙰 of 𝒇 at the
initial values of the unknowns 𝒙(0) (cf. Section 6.4):

𝙰 =
𝜕𝒇 (𝒙, 𝒍)

𝜕𝒙
|

|

|

|𝒙=𝒙(0)
. (32)

or linearization with respect to the observations, we compute the
p × 𝑛𝑙 Jacobian

=
𝜕𝒇 (𝒙, 𝒍)

𝜕𝒍
|

|

|

|𝒙=𝒙(0)
. (33)

ith 𝒘 = 𝒇 (𝒙(0), 𝒍), we can calculate the corrections for the unknowns
y solving

⊤(𝙱𝚀𝒍𝒍𝙱⊤)−1𝙰𝛥�̂� = −𝙰⊤(𝙱𝚀𝒍𝒍𝙱⊤)−1𝒘 (34)

or 𝛥�̂�, for example, by Cholesky decomposition. The corrections are
pplied to the unknowns by

̂ (1) = 𝒙(0) + 𝛥�̂� . (35)

qs. (32)–(35) are repeatedly applied until convergence. This corre-
ponds to minimizing the distances of the 3D points to their correspond-
ng planes of the calibration object.

After convergence, the covariance matrix of the originally observed
D points is obtained by

𝒍𝒍 = �̂�20𝚀𝒍𝒍 , (36)

ith the variance factor

�̂�20 = �̂�⊤𝙿𝒍𝒍�̂�∕𝑟 , (37)

here 𝑟 = 𝑛p − 𝑛𝑥 denotes the redundancy of the estimation and �̂�
ontains the residuals, which are obtained by

̂ = 𝚀𝒍𝒍𝙱
⊤�̂� (38)

sing the Lagrange multipliers

̂ = −
(

𝙱𝚀𝒍𝒍𝙱
⊤)−1 (𝙰𝛥�̂� +𝒘) . (39)

hen, the corrected observations are computed by �̂� = 𝒍+�̂�. By applying
ariance propagation, we obtain the covariance matrix of the estimated
nknowns:

�̂��̂� = �̂�20
(

𝙰⊤
(

𝙱𝚀𝒍𝒍𝙱
⊤)−1 𝙰

)−1
. (40)

or further details about the Gauss–Helmert model, the reader is re-
erred to Förstner and Wrobel (2016, Chapter 4.8.2) and Niemeier,
008, Chapter 5.2.

Using the Gauss–Helmert model offers the same advantages as those
f the Gauss–Markov model that were described in the last paragraph
f Section 5.3.

.4. Initialization of the unknowns

The initial values for the unknowns are obtained in the same manner
s described in Section 5.4. The only difference is that there are no

nterior camera parameters that need to be initialized. a
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.5. Point cloud preprocessing

3D scans typically include some errors, no matter which technology
s used by the 3D sensor to perform the 3D reconstruction. These may
egatively affect the accuracy of the calibration. For example, specular
eflections or occlusions in the scene may cause outliers or inaccurate
D reconstructions. To reduce or eliminate the effects of these kinds of
rrors on the optimization, a preprocessing is performed based on the
ose calculated by surface-based 3D matching and the corresponding
oint cloud returned by the 3D sensor. It consists of following steps for
ach scan:

• All points of the point cloud that lie at a distance of more than
10 mm from the surface of the calibration object are removed.

• The median distance of the remaining scene points that were
matched to the planes of the calibration object is calculated and
all points that lie at a distance of more than twice the median
distance are eliminated.

• The point cloud is subsampled such that approximately 500 points
per 3D scan are used in the optimization.

. Evaluation

In this section, we will show the validity and advantages of our
obot calibration approach based on multiple experiments. We will first
ntroduce new evaluation metrics that are motivated by typical vision-
uided robot applications. The metrics simultaneously measure the
ccuracy of the robot calibration and of the hand–eye calibration even
n the absence of ground-truth values for the estimated parameters.
hen, we will show that the evaluation metrics provide meaningful
esults and evaluate different aspects of our robot calibration approach
ased on simulated data. Afterwards, experiments with robots that are
vailable at our laboratories will demonstrate the advantages of our
obot calibration on real data.

For the experiments with simulated data, the ground-truth values
f the estimated parameters are known. In this case, we are able
o directly compute the errors of the estimated parameters. For the
and–eye pose, the error is computed separately for its translation and
otation parts.

.1. Evaluation metrics for camera-guided robots

To assess the quality of the robot calibration of Section 5 with real
ata, we propose new evaluation metrics. The basic ideas behind the
etrics are that they should express the inaccuracy in the application of

he robot because this inaccuracy represents both the inaccuracy of the
inematic calibration and the inaccuracy of the hand–eye calibration,
oth of which are relevant in real applications. We base this on a typical
obot manipulation application, where, in the first step, the pose of an
bject is determined based on a camera image of the object and, in the
econd step, the object is manipulated by the robot. For this evaluation
urpose, the object is represented by a calibration object, the pose of
hich relative to the camera can be determined with high accuracy.
fter the pose of the calibration object has been determined, we move

he robot such that the camera sees the calibration object under a
redefined reference pose. This step represents the manipulation task.
o compute the necessary robot pose and to reach this pose with the
obot tool, both the hand–eye pose as well as the kinematic param-
ters are necessary. Consequently, errors in each of these parameters
nfluence the final camera pose. The camera pose is compared to
he predefined reference pose by computing the position differences
etween the observed and the projected calibration marks in the image.
he root mean square (RMS) reprojection error over all calibration
arks represents the first new evaluation metric. We will call this
etric the RMS evaluation error. Two additional evaluation metrics
re the translation and rotation part of the pose difference between the
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Fig. 3. Evaluation procedure. First, a reference pose s𝙷𝟸w is specified at which the RMS evaluation error is to be computed (a). Then, the robot is moved to an arbitrary pose t𝙷𝟷b
and an image or 3D scan is acquired (b). Based on the pose of the calibration object s𝙷𝟷w, the robot pose t𝙷𝟸b that moves the imaging sensor to the reference pose is computed.
The robot is moved to the computed pose and the RMS evaluation error is computed (c). Steps (b) and (c) are repeated for different robot poses t𝙷𝟷b.
u
t
(
i
p
(

(
c
m

camera pose and the predefined reference pose. The computation of the
metric that simultaneously measures the accuracy of the hand–eye pose
and of the kinematic parameters is illustrated in Fig. 3. It includes the
following steps:

1. Place a calibration object in the workspace of the robot.
2. Specify a reference pose s𝙷𝟸w at which the camera should ac-

quire an image of the calibration object to compute the RMS
evaluation error. This pose should be chosen such that the
calibration object covers the whole camera image. For planar
calibration objects, like the one we used in our evaluation (cf.
Fig. 2(a)), the pose could be chosen parallel to the calibration
object (𝛼 = 𝛽 = 𝛾 = 0) and offset by an appropriate distance 𝑑 in
the viewing direction (𝑡𝑥 = 𝑡𝑦 = 0, 𝑡𝑧 = 𝑑).

3. Project the points of the calibration object into the image plane
by using the reference pose s𝙷𝟸w and the calibrated interior
orientation 𝒊. Let 𝒑proj𝑘 denote the projection of point 𝑘. Note
that in this step no image is acquired at the reference pose. The
projection is purely synthetic.

4. Move the robot to an arbitrary pose t𝙷𝟷b for which the cal-
ibration object is visible in the camera image. In this step,
the calibrated DHHM parameters are used to solve the inverse
kinematics.

5. Acquire an image of the calibration object and compute the
pose of the calibration object with respect to the camera s𝙷𝟷w
by applying a P𝑛P algorithm or a pose estimation algorithm
like Steger et al. (2018, Chapter 3.9) based on the 2D–3D point
correspondences. In this step, the calibrated interior orientation
of the camera is used.

6. Compute the pose of the calibration object in the robot base
coordinate system b𝙷w = b𝙷𝟷t

t𝙷s
s𝙷𝟷w, where t𝙷s denotes the

calibrated hand–eye pose.
7. Compute the robot pose t𝙷𝟸b = t𝙷s

s𝙷𝟸w
w𝙷b that brings the cam-

era into the reference pose s𝙷𝟸w and move the robot accordingly.
In this step, again the calibrated DHHM parameters are used to
solve the inverse kinematics.

8. Acquire an image and extract the calibration points 𝒑extr𝑘 .
9. Compute the RMS evaluation error

𝐸RMS =

√

√

√

√

1
𝑛w

𝑛w
∑

𝑘=1
‖𝒑extr𝑘 − 𝒑proj𝑘 ‖

2
2 . (41)

10. Compute the actual pose s𝙷𝟸extrw based on the points 𝒑extr𝑘 by ap-
plying a P𝑛P algorithm or pose estimation algorithm like Steger
et al. (2018, Chapter 3.9) based on the 2D–3D point correspon-
dences. Again, the calibrated interior orientation is used for this.
Then, compute the absolute translation error 𝐸T and absolute
rotation 𝐸R error of the pose s𝙷𝟸w (s𝙷𝟸extrw )−1. Because the trans-
lation error depends on the direction of the transformation, we
also compute the absolute translation error of (s𝙷𝟸w)−1 s𝙷𝟸extrw

and average both values.
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Note that each of the three metrics 𝐸RMS, 𝐸T, and 𝐸R is able to eval-
ate the accuracy of the camera-guided robot, including the accuracy of
he calibrated interior orientation, which is applied in steps (3), (5), and
10), the accuracy of the calibrated hand–eye pose, which is applied
n steps (6) and (7), and the accuracy of the calibrated kinematic
arameters, which are applied in solving the inverse kinematics in steps
4) and (7).

The three evaluation metrics can be extended by repeating steps
4)–(10) for different poses t𝙷𝟷b to cover a broader range of robot
onfigurations. In this case, the mean RMS evaluation error �̄�RMS, the
ean absolute translation error �̄�T, and the mean absolute rotation

error �̄�R over all individual 𝐸RMS, 𝐸R, and 𝐸T values are used as the
evaluation metrics.

7.2. Evaluation metrics for 3D-sensor-guided robots

To assess the quality of the robot calibration of Section 6 with real
data, we use the same principles that were described in Section 7.1.
Owing to the different sensor characteristics, the evaluation procedure
must be modified as follows:

1. Place a calibration object in the workspace of the robot.
2. Specify a reference pose s𝙷𝟸w at which the 3D sensor should

acquire a scan of the calibration object to compute the RMS
evaluation error. This pose should be chosen such that the
calibration object covers a substantial part of the 3D scan. For
the calibration object we use in our evaluation (cf. Fig. 2(b)),
we chose the pose to lie at a suitable distance 𝑑 perpendicularly
above the center of the frustum.

3. Transform the planes of the calibration object into SCS by ap-
plying the transformation s𝙷𝟸w using the corresponding inverse
transpose s𝙶𝟸w. Let 𝝅ref

𝑖 denote the transformed plane 𝑖. Note that
in this step no 3D scan is acquired at the reference pose. The
transformation is purely synthetic.

4. Move the robot to an arbitrary pose t𝙷𝟷b for which the calibra-
tion object is visible for the 3D sensor. In this step, the calibrated
DHHM parameters are used to solve the inverse kinematics.

5. Acquire a 3D scan of the calibration object and compute the pose
of the calibration object with respect to the 3D sensor s𝙷𝟷w using
the surface-based 3D matching.

6. Compute the pose of the calibration object in the robot base
coordinate system b𝙷w = b𝙷𝟷t

t𝙷s
s𝙷𝟷w, where t𝙷s denotes the

calibrated hand–eye pose.
7. Compute the robot pose t𝙷𝟸b = t𝙷s

s𝙷𝟸w
w𝙷b that brings the

3D sensor into the reference pose s𝙷𝟸w and move the robot
accordingly. In this step, again the calibrated DHHM parameters
are used to solve the inverse kinematics.

8. Acquire a 3D scan and compute the actual pose s𝙷𝟸extrw of the cal-
ibration object with respect to the 3D sensor using the surface-
based 3D matching. The matching also determines the point-to-

plane correspondences between the subset of the scene points
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Table 1
Maximum error amplitudes of the DHHM parameters.
𝛥𝜃 𝛥𝑑 𝛥𝑎 𝛥𝛼 𝛥𝛽

0.05◦ 0.2 mm 0.2 mm 0.05◦ 0.05◦

Table 2
Four experiments on simulated data.

Set fixed parameters to ... Vary sensor noise Vary DHHM errors

. . . ground-truth Experiment 1 Experiment 2

. . . nominal Experiment 3 Experiment 4

that correspond to the planes of the calibration object. Let the
points that have been matched to one of the planes of the
calibration object be denoted by 𝒑extr𝑘 and let the calibration
object plane corresponding to 𝒑extr𝑘 be denoted by 𝝅ref

𝑐(𝑘). Let
the number of points in the scene that were matched to a
corresponding plane of the calibration object be denoted by 𝑛m.
Note that 𝝅ref

𝑐(𝑘) refers to the plane positions computed in step (3)
for the reference pose s𝙷𝟸w and not to the plane positions in the
actual pose s𝙷𝟸extrw . Hence, the point-to-plane correspondences
determined by the surface-based 3D matching are used to match
the points in the scan at the actual pose to where they are
expected to lie in the reference pose. Consequently, the metric
compares the point positions to the planes of the CAD model in
the predefined reference pose (as opposed to the planes of the
CAD model in the actual calibration object pose).

9. Compute the RMS evaluation error

𝐸RMS =

√

√

√

√

1
𝑛m

𝑛m
∑

𝑘=1

(

(𝝅ref
𝑐(𝑘))

⊤𝒑extr𝑘

)2
. (42)

10. Compute the absolute rotation error 𝐸R and the absolute transla-
tion error 𝐸T of the pose s𝙷𝟸w (s𝙷𝟸extrw )−1. Furthermore, compute
the absolute translation error of (s𝙷𝟸w)−1 s𝙷𝟸extrw and average the
two translation errors.

Like in Section 7.1, the three evaluation metrics can be extended
by repeating steps (4)–(10) for different poses t𝙷𝟷b to cover a broader
range of robot configurations, resulting in �̄�RMS, �̄�T, and �̄�R.

7.3. Experiments on simulated data

To evaluate the calibration of 3D-sensor-guided robots, we simu-
lated an industrial robot arm with six revolute joints by using the
nominal DH parameters of a UR3e robot (Universal Robots, 2024) and
a 3D sensor mounted at the tool with a hand–eye pose of (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) =
(50,80,100)mm, 𝛼 = 5◦, 𝛽 = 355◦, and 𝛾 = 0◦. As described in
Section 3.2, we converted the DH parameters to DHHM parameters.
For the calibration, we simulated a HALCON sheet-of-light calibration
object (cf. Fig. 2(b)) of size 150 mm × 100 mm × 40 mm at a world–
base pose of (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) = (162,−340,35)mm, 𝛼 = 347◦, 𝛽 = 357◦, and
𝛾 = 15◦. Note that the origin of the WCS is located in the center of the
square plane on top of the frustum of the calibration object.

We added uniform random errors to the DHHM parameters of all
robot joints and links with the maximum amplitudes shown in Table 1.
We then created 15 random robot poses for which the calibration object
is tilted by at most 60◦ with respect to the 3D sensor coordinate system
and for which the calibration object is assured to be detectable in
the simulated 3D sensor scan. We subsampled the point cloud so that
approximately 300 points are used as calibration object points. Finally,
we added isotropic Gaussian noise to the calibration object points.

In the robot calibration, we estimated all parameters 𝒙 = (𝒆⊤s , 𝒆
⊤
b,1,

𝒅⊤
1 ,… ,𝒅⊤

5 )
⊤ while excluding 𝛥𝜃1 and 𝛥𝑑1 of the first joint 𝒅1 and all

parameters of the last joint 𝒅6 (see Section 6.3). We initialized the robot

parameters that were included in the calibration by setting them to
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their nominal values. To obtain initial values for the hand–eye pose
𝒆s and the world–base pose 𝒆b,1, we executed the linear hand–eye
calibration approach of Daniilidis (1999).

We performed four different experiments (see Table 2): In the first
experiment, we varied the standard deviation of the calibration object
points in the range [0,2]mm to simulate different amounts of sensor
noise. In the second experiment, we fixed the standard deviation of the
calibration object points at 0.5 mm. Here, we varied the amplitudes
of the random errors of the DHHM parameters by multiplying the
maximum error amplitudes in Table 1 by factors in the range [0,4].
For both experiments, we evaluated two different sub-cases: In the first
sub-case, the robot parameters that were excluded from the calibration
were set to their ground-truth values, while in the second sub-case, they
were set to their nominal values.

We repeated all experiments 20 times for each error or noise level,
respectively, and computed the mean absolute errors of the DHHM
parameters and of the translation and rotation part of the hand–eye
poses. Additionally, we specified a reference pose s𝙷𝟸w with 𝑑 = 0.4 m
and performed the evaluation procedure described in Section 7.2 for
ten random poses t𝙷𝟷b and computed the mean RMS evaluation error
�̄�RMS, the mean absolute translation error �̄�T, and the mean absolute
rotation error �̄�R.

Fig. 4 displays the results of experiment 1, i.e., the errors as a
function of the sensor noise when setting the fixed DHHM parameters
to their ground-truth values. Fig. 4(a) plots the mean absolute errors
in the DHHM parameters for the six robot joints obtained from the
results of the robot calibration. The results for the noise-free case show
that the robot calibration reliably converges to the correct result. For
non-zero noise, the parameter errors increase linearly with the noise
level. Because the fixed DHHM parameters are set to their ground-
truth values, their errors are always zero. Fig. 4(b) and (c) display the
mean absolute errors in the calibrated hand–eye pose for its translation
and rotation parts. Note that while our approach calibrates the world–
base pose, we do not evaluate it because it represents the pose of
the calibration object, which is irrelevant because it is not present
in an application that makes use of the calibration data. Again, the
errors increase linearly with the noise level. Fig. 4(d) shows the mean
RMS evaluation error �̄�RMS, while Fig. 4(e) and (f) show the mean
absolute errors in the translation part �̄�T and the rotation part �̄�R of
the reference pose. As discussed in Section 7.2, these three metrics
do not require the ground-truth values of the robot parameters. It
can be seen that all three metrics return the results that are desirable
for an evaluation metric. They return a zero error if all parameters
are correct and the errors increase proportionally to the errors in the
robot parameters. Hence, they are geometrically meaningful errors that
describe the misalignment of the robot in a gripping task that is caused
by the errors in the robot parameters.

To evaluate the standard deviations that are returned by the robot
calibration, we display them for experiment 1. The mean standard
deviations of the estimated robot parameters and of the estimated
hand–eye pose are displayed in Fig. 5. We computed the standard
deviation of the rotation and translation part of the hand–eye poses
as the vector length of the three individual standard deviations. A
comparison to the errors shown in Fig. 4 shows that the standard
deviations represent the errors very well. Therefore, they are a reliable
measure for quantifying the uncertainty of the results.

Fig. 6 displays the results of experiment 2, i.e., errors depending
on the errors in the DHHM parameters when setting the fixed DHHM
parameters to their ground-truth values. Fig. 6(a)–(c) show that the
errors in the estimated DHHM parameters and the hand–eye pose do
not depend on the errors in their initial values, which confirms the good
convergence properties of the robot calibration. Fig. 6(d)–(f) show that
the errors of the complete robot calibration remain at a very low and
constant value. Hence, the results indicate that the robot calibration

is able to eliminate all significant errors in the DHHM and hand–eye



M. Ulrich et al.

(
p

p
t

n
n
D
f
s
r
e
r
a
(
f
v
h
t
a
i
t
c

o
p
m

ISPRS Journal of Photogrammetry and Remote Sensing 218 (2024) 645–662 
Fig. 4. Robot calibration using a 3D sensor: Results of experiment 1. The fixed DHHM
parameters were set to their ground-truth values and the errors are computed depending
on the 3D scene point noise. (a) Mean absolute errors in the DHHM parameters for the
six robot joints after robot calibration. (b)–(c) Mean absolute errors in the translation
and rotation part of the hand–eye pose. (d) Mean RMS evaluation errors �̄�RMS. (e),
f) Mean absolute errors in the translation part �̄�T and rotation part �̄�R of the reference
ose.

arameters and only a small error that reflects the constant noise in
he scene points remains.

The results of experiment 3, i.e., errors depending on the sensor
oise when setting the fixed DHHM parameters to their erroneous
ominal values, are displayed in Fig. 7. In Fig. 7(a), the errors in the
HHM parameters are similar to those of experiment 1. Of course, the

ixed DHHM parameters now still exhibit the errors of their initially
et values. Despite the errors in the fixed DHHM parameters, the other
obot parameters are estimated correctly in the noise-free case. As
xpected, the remaining errors in the fixed DHHM parameters are now
epresented by corresponding errors in the hand–eye poses (Fig. 7(b)
nd (c)). Notably, the errors of the evaluation metrics in Fig. 7(d)–
f) are still zero in the noise-free case. This shows that, even if the
ixed DHHM parameters and the hand–eye pose deviate from their true
alues, the simultaneous calibration of the robot parameters and the
and–eye poses yields a consistent and accurate robot model. Again,
he three evaluation metrics show the desirable behavior. The errors
re zero for a geometrically consistent set of robot parameters and they
ncrease proportionally to the errors in the robot parameters. Hence,
hey correctly describe the misalignment error in the gripping task
aused by errors in the robot parameters.

Fig. 8 displays the results of experiment 4, i.e., errors depending
n the errors in the DHHM parameters when setting the fixed DHHM
arameters to their erroneous nominal values. In contrast to experi-
ent 3, as is to be expected, the errors of the fixed parameters increase
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Fig. 5. Standard deviations obtained from our 3D-sensor-based robot calibration based
on experiment 1. The fixed DHHM parameters were set to their ground-truth values
and the standard deviations are computed depending on the 3D scene point noise.
(a) Mean standard deviations of the DHHM parameters for the six robot joints. (b)–
(c) Mean standard deviations of the translation and rotation part of the hand–eye pose.
To improve comparability, the axis scaling was chosen identical to that of Fig. 4.

in Fig. 8(a). Nevertheless, like in experiment 2, the errors of the
estimated DHHM parameters are constant. In contrast to experiment 3,
the errors of the evaluation metrics in Fig. 8(d)–(f) remain constant,
again reflecting only the constant noise in the 3D scene points, which
once more indicates a consistent overall system.

To evaluate the calibration of camera-guided robots, we simulated
an industrial robot arm with six revolute joints by adopting the nom-
inal DH parameters of a UR5e robot (Universal Robots, 2024) and
a camera (𝑐 = 8.43 mm, 𝜅 = 2000.0 m−2, 𝑠𝑥 = 5.21 μm, 𝑠𝑦 =
5.2 μm, (𝑐𝑥, 𝑐𝑦) = (645,502)px) with radial distortions and 1280×1024
image size mounted at the tool with a hand–eye pose of (𝑡𝑥, 𝑡𝑦, 𝑡𝑡) =
(50,30,100)mm, 𝛼 = 20◦, 𝛽 = 30◦, and 𝛾 = 40◦. Note that we
chose a different robot than in the evaluation of the 3D-sensor-based
calibration to increase the variability of the evaluation data and hence
to strengthen the validity of our calibration model. As described in
Section 3.2, we converted the DH parameters to DHHM parameters. For
the calibration, we simulated a planar HALCON calibration object (cf.
Fig. 2(a)) of size 640 mm×500 mm at a world–base pose of (𝑡𝑥, 𝑡𝑦, 𝑡𝑧) =
(200,200,400)mm, 𝛼 = 10◦, 𝛽 = 20◦, and 𝛾 = 30◦.

As in the evaluation of 3D-sensor-guided robot, we added random
errors to the DHHM parameters of all robot joints and links with the
maximum amplitudes shown in Table 1. Then, we created 15 random
robot poses for which at least 60% of the calibration points are visible
in the camera image and for which the calibration object is tilted by at
most 50◦ with respect to the image plane. Finally, we added Gaussian
noise to the projected calibration points.

During the robot calibration, we estimated all parameters 𝒙 =
(𝒆⊤c , 𝒆

⊤
b,1,𝒅

⊤
1 ,… ,𝒅⊤

5 , 𝒊
⊤)⊤ while excluding 𝛥𝜃1 and 𝛥𝑑1 of the first joint 𝒅1

and all parameters of the last joint 𝒅6 (see Section 5.3). We initialized
the robot parameters that were included in the calibration by setting
them to their nominal values. The interior orientation was initialized
with 𝑐 = 8.0 mm, 𝜅 = 0.0 m−2, 𝑠𝑥 = 5.2 μm, 𝑠𝑦 = 5.2 μm, (𝑐𝑥, 𝑐𝑦) =
(640,512)px. To obtain initial values for the hand–eye pose 𝒆 and
s
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Fig. 6. Robot calibration using a 3D sensor: Results of experiment 2. The fixed DHHM
parameters were set to their ground-truth values and the errors are computed depending
on the errors in the DHHM parameters (see the caption of Fig. 4 for details).

the world–base pose 𝒆b,1, we executed the linear hand–eye calibration
approach of Daniilidis (1999).

Initially, we again analyzed four different experiments (see Table 2):
In experiments 1 and 3, we varied the standard deviation of the image
points in the range [0,4]px. In experiments 2 and 4, we set the standard
deviation of the image points to 1 px and instead varied the amplitudes
of the random errors of the DHHM parameters by multiplying the
maximum error amplitudes in Table 1 with factors in the range [0,4].

For each error or noise level, respectively, we repeated all experi-
ents 20 times and computed the mean absolute errors of the DHHM
arameters and of the translation and rotation part of the hand–eye
oses. Furthermore, to compute the mean RMS evaluation error �̄�RMS,

the mean absolute translation error �̄�T, and the mean absolute rotation
error �̄�R, we specified a reference pose s𝙷𝟸w with 𝑡𝑧 = 𝑑 = 0.5 m and
performed the evaluation procedure described in Section 7.1 for 10
random poses t𝙷𝟷b.

Because the results of the four experiments were qualitatively equiv-
alent to the results obtained in the evaluation of the 3D-sensor-guided
robot, we restrict ourselves to presenting the results of experiment 1,
i.e., the errors depending on the image noise when setting the fixed
DHHM parameters to their ground-truth values. In Fig. 9(a), the mean
absolute errors in the DHHM parameters for the six robot joints after
robot calibration are plotted. As in the evaluation of the 3D-sensor-
guided robot (cf. Fig. 4), the robot calibration reliably converges to the
correct result in the noise-free case. Furthermore, the errors linearly
increase with the noise level. Fig. 9(b) and (c) show the mean abso-
lute errors of the resulting hand–eye pose in translation and rotation.
Again, in the noise-free case, the hand–eye pose is estimated correctly.
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Fig. 7. Robot calibration using a 3D sensor: Results of experiment 3. The fixed DHHM
parameters were set to their erroneous nominal values and the errors are computed
depending on the image noise (see the caption of Fig. 4 for details).

Furthermore, the errors increase linearly with the noise level. Fig. 9(d)
shows the mean RMS evaluation error �̄�RMS, Fig. 9(e) and (f) the mean
absolute errors in the translation part �̄�T and the rotation part �̄�R of
the reference pose. The corresponding mean standard deviations of the
estimated robot parameters and of the estimated hand–eye pose are
plotted in Fig. 10. As in the evaluation of the 3D-sensor-guided robot,
the standard deviations represent the errors very well.

To investigate the influence of the number of robot poses on the cali-
bration result, we performed an additional experiment (experiment 5):
we set the fixed DHHM parameters to their ground truth values, the
standard deviation of the image points to 1 px, and added uniform ran-
dom errors to the DHHM parameters of all robot joints and links with
the maximum amplitudes shown in Table 1. We varied the number of
robot poses in the range [6,30], repeated each experiment 20 times, and
computed the same evaluation measures as in experiments 1 to 4. The
results are shown in Fig. 11. As is to be expected, the errors decrease
with increasing number of robot poses. The experiment suggests that
at least 20 robot poses should be used for robot calibration in practice
since a considerable reduction in error values can be observed up to
this number.

In conclusion, the experiments on simulated data show that our
robot calibration is able to robustly converge to the true values in
the noise-free case. When noise is present, the remaining errors in the
estimated DHHM parameters are small and mainly reflect the noise in
the 3D scene points or in the image points, respectively. Furthermore,
the experiments show that the errors decrease with the number of robot
poses. Moreover, the standard deviations that are returned by our robot
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Fig. 8. Robot calibration using a 3D sensor: Results of experiment 4. The fixed DHHM
parameters were set to their erroneous nominal values and the errors are computed
depending on the errors in the DHHM parameters (see the caption of Fig. 4 for details).

calibration are meaningful. The results also show that the mean RMS
evaluation error and the mean absolute errors in the reference pose
are meaningful metrics for analyzing the accuracy of robot calibration
approaches in the absence of ground-truth values. The metrics indicate
that the simultaneous calibration of the robot and the hand–eye pose
yields a consistent and accurate system.

7.4. Experiments on real data

To evaluate our method on real data, we calibrated a six-axis UR3e
robot arm from Universal Robots that is available at MVTec using
a 3D sensor and a UR3e robot that is available at KIT’s Institute of
Photogrammetry and Remote Sensing using an industrial camera.

The experiments for 3D-sensor-guided robots on real data use the
following three steps:

1. Acquire the data for the hand–eye calibration and robot calibra-
tion.

2. Perform the hand–eye calibration and robot calibration.
3. Evaluate the results.

Two different experiments were conducted to compare our ap-
proach with an uncalibrated robot, i.e., a robot with its nominal DH pa-
rameters (Universal Robots, 2024). The uncalibrated robot is evaluated
in experiment 1 while experiment 2 evaluates our robot calibration,
including the hand–eye calibration.

For both experiments, we mounted a Zivid Two M70 sensor on the
robot’s end effector. The Zivid Two sensor uses a structured-light ap-

proach for the 3D reconstruction (Zivid AS, 2023). We used a HALCON
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Fig. 9. Robot calibration using a camera: Results of experiment 1. The fixed DHHM
parameters were set to their ground-truth values and the errors are computed depending
on the image noise (see the caption of Fig. 4 for details).

sheet-of-light calibration object (cf. Fig. 2(b)) of size 150 mm×100 mm×
40 mm for the calibration and the evaluation. The setup is shown in
Fig. 12.

Fig. 13(a) shows the sensor and calibration object poses used for
the hand–eye calibration and our robot calibration. The calibration
object displayed in black in the figure was placed on the base mounting
surface in front of the robot arm and the calibration object displayed
in blue was placed in a pose tilted by 90◦ above the base mounting
surface. For each of the two calibration object poses, 15 robot poses
were taught. The robot poses were chosen such that the calibration
object covered a substantial part of the 3D scan and such that a large
variety of joint angles were assumed by the robot. For experiment 1
(uncalibrated robot), a hand–eye calibration was performed with the
nominal kinematic parameters for the pose of the calibration object
displayed in black and the 3D sensor poses displayed in gray using
the non-linear approach of Steger et al. (2018, Chapter 3.13.5). For
experiment 2, the 3D scans were acquired with the calibration object
in the poses displayed in black and blue. The hand–eye calibration was
performed for both calibration object poses and the hand–eye poses
were averaged to obtain starting values for the hand–eye parameters.
Our robot calibration was then performed with all scans of both calibra-
tion object poses. Fig. 14 shows an example of an acquired point cloud
and the pose of the calibration object obtained by using surface-based
matching.

Table 3 shows the initial as well as the optimized DHHM and 3D
sensor pose parameters. The estimated parameters were then used to
control the robot in experiment 2 using the corresponding inverse
kinematics.
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Fig. 10. Standard deviations obtained from our camera-based robot calibration based
on experiment 1. The fixed DHHM parameters were set to their ground-truth values
and the standard deviations are computed depending on the image noise. (a) Mean
standard deviations of the DHHM parameters for the six robot joints. (b)–(c) Mean
standard deviations of the translation and rotation part of the hand–eye pose. To
improve comparability, the axis scaling was chosen identical to that of Fig. 9.

Table 3
Initial values, estimated values, and standard deviations of the estimated values of our
3D-sensor-guided robot calibration (experiment 2).

Parameter Initial Estimated Standard
value value deviation

DHHM parameters

𝛥𝑎1 (mm) 0.0 0.033 24.70 × 10−3

𝛥𝛼1 (◦) 0.0 0.072 2.70 × 10−3

𝛥𝜃2 (◦) 0.0 0.053 4.81 × 10−3

𝛥𝑎2 (mm) 0.0 −0.137 23.32 × 10−3

𝛥𝛼2 (◦) 0.0 0.162 2.65 × 10−3

𝛥𝛽2 (◦) 0.0 0.008 2.61 × 10−3

𝛥𝜃3 (◦) 0.0 −0.063 3.46 × 10−3

𝛥𝑎3 (mm) 0.0 0.247 15.84 × 10−3

𝛥𝛼3 (◦) 0.0 −0.492 1.64 × 10−3

𝛥𝛽3 (◦) 0.0 −0.122 2.04 × 10−3

𝛥𝜃4 (◦) 0.0 −0.093 6.22 × 10−3

𝛥𝑑4 (mm) 0.0 −1.025 24.79 × 10−3

𝛥𝑎4 (mm) 0.0 −0.143 28.18 × 10−3

𝛥𝛼4 (◦) 0.0 −0.064 3.75 × 10−3

𝛥𝜃5 (◦) 0.0 −0.061 4.63 × 10−3

𝛥𝑑5 (mm) 0.0 0.777 32.57 × 10−3

𝛥𝑎5 (mm) 0.0 −0.618 33.19 × 10−3

𝛥𝛼5 (◦) 0.0 0.095 4.67 × 10−3

s𝙷t

𝑡𝑥 (mm) 54.478 55.015 23.89 × 10−3

𝑡𝑦 (mm) 82.472 84.976 29.09 × 10−3

𝑡𝑧 (mm) −7.604 −7.036 40.63 × 10−3

𝛼 (◦) 0.178 0.483 3.56 × 10−3

𝛽 (◦) 355.197 355.004 3.13 × 10−3

𝛾 (◦) 358.720 358.551 4.53 × 10−3

The standard deviations of all optimized parameters are also dis-
played in Table 3. They are relatively small when compared to the
data in Fig. 4. The optimization returned a value of �̂�0 = 0.1297mm.
According to (36), this is an estimate for the precision of the points
reconstructed by the 3D sensor. The standard deviations in our real
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Fig. 11. Robot calibration using a camera: Results of experiment 5. The fixed DHHM
parameters were set to their ground-truth values and the errors are computed depending
on the number of robot poses (see the caption of Fig. 4 for details).

Fig. 12. Setup used for evaluating our robot calibration on real data using a 3D sensor.
A Zivid Two M70 sensor that is mounted on the end effector of a UR3e robot arm
acquires 3D points of a HALCON sheet-of-light calibration object.

experiments correspond very well with those in Fig. 5 for the esti-
mated point precision, i.e., noise level. Furthermore, the value of �̂�0
corresponds very well with the local planarity precision and the global
planarity trueness that are given in the technical specification of the
Zivid Two M70 sensor for the working distance that we used in our
experiments (Zivid AS, 2023). This, again, validates the usefulness of
the estimated standard deviations of the robot parameters as well as
the estimate of the precision of the 3D points.
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Fig. 13. (a) Visualization of the calibration object poses b𝙷w ,𝑙 and the 3D sensor
poses that result from the robot poses t𝙷b ,𝑙,𝑗 that were used for the robot calibration
experiments. (b) Visualization of the calibration object poses and the 3D sensor poses
that result from the robot poses t𝙷𝟷b that were used for the evaluation experiments. In
both cases, 3D sensor poses corresponding to a particular calibration object pose are
displayed in matching colors. In (b), the evaluation reference poses s𝙷𝟸w are displayed
as opaque objects. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

Fig. 14. (a) Acquired unprocessed point cloud (white, slightly downsampled for better
visibility) and pose of the calibration object (green) for one example robot pose.
(b) Preprocessed point cloud and calibration object pose (cf. Section 6.5). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

Fig. 13(b) shows the three evaluation poses that were used for
experiments 1 and 2. A gripping motion is simulated, where for each
pose, five poses of the sensor (transparent colors) and the reference
pose s𝙷𝟸w (opaque colors) are used to evaluate the accuracy of the
respective robot kinematics. Note that the evaluation poses are different
from the calibration poses in Fig. 13(a). Table 4 shows the average error
of all the evaluation poses, split into the RMS evaluation error �̄�RMS
as well as the translation error �̄�T and the rotation error �̄�R (cf. Sec-
tion 7.2). The uncalibrated robot (experiment 1) leads to significantly
larger errors than our proposed calibration (experiment 2).

We now turn to the experiments for camera-guided robots on real
data. They use the following four steps:
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Table 4
Evaluation results of the two 3D-sensor-guided robot calibration experiments.

Evaluation metric Experiment 1 Experiment 2
Uncalibrated robot Proposed calibration

�̄�RMS (mm) 1.90 0.28
�̄�T (mm) 1.82 0.45
�̄�R (◦) 0.21 0.06

Fig. 15. Setup used for evaluating our robot calibration on real data using a camera.
A monochrome IDS U3-3280SE-M-GL that is mounted on the end effector of a UR3e
robot arm acquires images of a HALCON calibration object.

1. Perform an initial camera calibration.
2. Acquire data for the hand–eye calibration and robot calibration.
3. Perform hand–eye calibration and robot calibration.
4. Evaluate the results.

We performed the same two experiments as for the 3D-sensor-
guided robot. Experiment 1 evaluates the uncalibrated robot while
experiment 2 evaluates our robot calibration, including the hand–eye
calibration and simultaneous camera calibration. An initial camera
calibration is performed to ensure consistent initial camera parameters
throughout the experiments.

For both experiments, we mounted a monochrome IDS U3-3280SE-
M-GL camera with image size 2448 × 2440 and a 12 mm TAMRON
M23FM12 lens on the robot’s end effector. We used a planar HALCON
calibration object (MVTec Software GmbH, 2024, Chapter 3.2) of size
160 mm × 120 mm for the calibration. The setup is shown in Fig. 15.

For the initial camera calibration, we placed the calibration object
approximately horizontally in the center of the workspace (b𝙷w ,1) and
acquired 𝑛r,1 = 30 images at different robot poses. The robot poses were
randomly distributed while ensuring that the camera poses cover a
large pose range. In Fig. 16, the calibration object pose and the camera
poses are visualized in blue. We chose the polynomial model described
in Section 4 to model lens distortions. The initial values of the camera
parameters are shown in Table 5. Because for perspective cameras, 𝑐,
𝑠𝑥, and 𝑠𝑦 cannot be determined uniquely (Steger et al., 2018, Chapter
3.9.4), we excluded 𝑠𝑦 from the calibration. The RMS reprojection error
after camera calibration was 0.27 px.

The robot poses and the poses of the calibration object with respect
to the camera obtained from step (1) were also utilized for the hand–
eye calibration of the uncalibrated robot. The camera parameters were
set to the results of the camera calibration from step (1). For hand–
eye calibration, we used the non-linear approach of Steger et al. (2018,
Chapter 3.13.5).

For our robot calibration, we also used the robot poses from the
camera calibration step. However, to better cover the working range of
the robot joints, we used two additional calibration object poses b𝙷
w ,2
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Fig. 16. Visualization of the calibration object poses b𝙷w ,𝑙 and the camera poses that
result from the robot poses t𝙷b ,𝑙,𝑗 . The blue (b𝙷w ,1), green (b𝙷w ,2), and red (b𝙷w ,3)
calibration object poses are used for the robot calibration. The yellow calibration object
pose (b𝙷w ,4) is used for the evaluation. The camera poses corresponding to a particular
calibration object pose are displayed in matching colors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

Fig. 17. Two examples of acquired calibration images with extracted contours (green)
and computed centers (blue) of the calibration marks. (a) Horizontal calibration object
pose. (b) Tilted calibration object pose. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

and b𝙷w ,3, which were tilted by approximately 65◦ to the horizontal.
For each additional calibration object pose, we acquired 𝑛r,2 = 𝑛r,3 = 30
images at different robot poses, resulting in a total of 90 calibration
images at 𝑛c = 3 calibration object poses, which are visualized in Fig. 16
in red, green, and blue together with the corresponding camera poses.
For each acquired calibration image, additionally the joint angles 𝜃𝑙,𝑗,𝑖
and the robot poses t𝙷b ,𝑙,𝑗 were stored. Fig. 17 shows two examples of
the acquired calibration images and the extracted calibration marks.

We initialized the DH parameters with the nominal DH parameters.
The initial camera parameters were set to the results of the initial
camera calibration from step (1). To obtain initial values for the hand–
eye pose and the calibration object poses, we performed a separate
hand–eye calibration for each calibration object pose. The average of
the resulting three hand–eye poses served as initial values for the robot
calibration. During the robot calibration, we estimated all parameters
𝒙 = (𝒆⊤c , 𝒆

⊤
b,1, 𝒆

⊤
b,2, 𝒆

⊤
b,3,𝒅1,… ,𝒅5, 𝒊)⊤ while excluding 𝛥𝜃1 and 𝛥𝑑1 of 𝒅1 of

the first joint in addition to all DHHM parameters of the last joint 𝒅6
(see Section 5.3). Again, 𝑠𝑦 was excluded as well. The initial values are
shown in Table 5. The result of the robot calibration are the DHHM
parameters, the hand–eye pose, the calibration object poses, and the
660 
Table 5
Initial values, estimated values, standard deviations of the estimated values, and test
statistics of our camera-guided robot calibration (experiment 2).

Parameter Initial Estimated Standard Test
value value deviation statistic 𝑇

DHHM parameters

𝛥𝑎1 (mm) 0.0 0.114 1.43 × 10−3 6.39 × 103

𝛥𝛼1 (◦) 0.0 0.046 0.20 × 10−3 55.09 × 103

𝛥𝜃2 (◦) 0.0 0.012 0.37 × 10−3 1.03 × 103

𝛥𝑎2 (mm) 0.0 −0.215 1.91 × 10−3 12.75 × 103

𝛥𝛼2 (◦) 0.0 0.002 0.12 × 10−3 0.26 × 103

𝛥𝛽2 (◦) 0.0 0.008 0.15 × 10−3 3.22 × 103

𝛥𝜃3 (◦) 0.0 −0.020 0.24 × 10−3 6.61 × 103

𝛥𝑎3 (mm) 0.0 −0.162 1.96 × 10−3 6.81 × 103

𝛥𝛼3 (◦) 0.0 0.124 0.10 × 10−3 1.54 × 106

𝛥𝛽3 (◦) 0.0 0.220 0.15 × 10−3 2.07 × 106

𝛥𝜃4 (◦) 0.0 −0.016 0.23 × 10−3 4.64 × 103

𝛥𝑑4 (mm) 0.0 0.203 1.59 × 10−3 16.39 × 103

𝛥𝑎4 (mm) 0.0 −0.087 0.73 × 10−3 21.92 × 103

𝛥𝛼4 (◦) 0.0 −0.108 0.08 × 10−3 2.34 × 106

𝛥𝜃5 (◦) 0.0 −0.010 0.33 × 10−3 0.99 × 103

𝛥𝑑5 (mm) 0.0 −0.261 1.99 × 10−3 17.20 × 103

𝛥𝑎5 (mm) 0.0 0.048 2.27 × 10−3 0.45 × 103

𝛥𝛼5 (◦) 0.0 −0.102 0.28 × 10−3 0.14 × 106

s𝙷t

𝑡𝑥 (mm) −0.351 −0.090 9.52 × 10−3

𝑡𝑦 (mm) 76.064 75.990 8.03 × 10−3

𝑡𝑧 (mm) −129.101 −128.916 6.61 × 10−3

𝛼 (◦) 0.211 0.189 3.58 × 10−3

𝛽 (◦) 0.401 0.432 4.25 × 10−3

𝛾 (◦) 224.999 225.102 0.41 × 10−3

Camera parameters

𝑐 (mm) 12.0 12.123 0.32 × 10−3

𝐾1 (m−2) 0.0 661.240 6.07 11.85 × 103

𝐾2 (m−4) 0.0 −5.063 × 106 0.52 × 106 95.68
𝐾3 (m−6) 0.0 112.398 × 109 13.04 × 109 74.30
𝑃1 (m−1) 0.0 13.198 × 10−3 1.81 × 10−3 53.21
𝑃2 (m−1) 0.0 −21.494 × 10−3 1.58 × 10−3 0.19 × 103

𝑠𝑥 (μm/px) 3.45 3.450 0.25 × 10−3

𝑐𝑥 (px) 1224.0 1214.214 0.26
𝑐𝑦 (px) 1024.0 1020.814 0.22

Table 6
Evaluation results of the two camera-guided robot calibration experiments.

Evaluation metric Experiment 1 Experiment 2
Uncalibrated robot Proposed calibration

�̄�RMS (px) 23.37 3.54
�̄�T (mm) 1.14 0.25
�̄�R (◦) 0.22 0.14

camera parameters. All results except for the calibration object poses
are shown in Table 5 together with their estimated standard deviations.

To compute the mean RMS evaluation error �̄�RMS, the mean abso-
lute translation error �̄�T, and the mean absolute rotation error �̄�R, we
specified a reference pose s𝙷𝟸w with 𝑡𝑧 = 𝑑 = 0.2 m and performed the
evaluation procedure described in Section 7.1 for 20 random poses t𝙷𝟷b.
The distance of the reference pose was chosen such that the calibration
object fills the entire image. The calibration object pose and the 20
evaluation poses are visualized in yellow in Fig. 16. The results of the
two experiments are shown in Table 6. Compared to the uncalibrated
robot (experiment 1), our proposed calibration (experiment 2) reduces
the errors significantly.

To show that the DHHM parameters and the distortion parame-
ters are geometrically significant, and hence cannot be omitted from
the model, we performed a significance test. For each parameter, we
formulated the null-hypothesis that the respective parameter is equal
to 0. Then, we computed the test criterion 𝑇 proposed by Grün (1978).
The null-hypothesis is true with a predefined significance level 𝛼 if
𝑇 is below a threshold value. The threshold value corresponds to
the percentile value 𝐹 (1 − 𝛼, 1, 𝑟) of the Fisher distribution with the
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redundancy 𝑟 = 108941 in this example. A significance level of 𝛼 = 0.01
yields 𝐹 = 6.6, a significance level of 𝛼 = 0.001 yields 𝐹 = 10.8,
for instance. The last column of Table 5 shows the values of the test
criterion. They all exceed the threshold values by far. Even the smallest
test value of 53.213 (𝑃1) corresponds to a significance level 𝛼 = 3.0 ×
10−13. Consequently, all tested parameters are highly significant.

8. Conclusions and future work

We have proposed two novel photogrammetry-based robot calibra-
tion methods for robots that are equipped with a camera or a 3D
sensor. They are capable of calibrating the entire system, i.e., the robot
kinematics, the hand–eye transformations, and, if used, the interior
orientation of the camera, in an end-to-end manner by modeling the
entire chain of transformations from world to robot to imaging sensor.
The camera model used by our approach is capable of modeling a large
range of lens distortions that occur for lenses that are typically used in
machine vision applications.

In contrast to most existing approaches, the optimization in each
of the proposed methods uses a geometrically meaningful photogram-
metric error measure. This makes the approaches invariant to the
parameterization of the model and, in particular, to the choice of
units of the model parameters. A further unique feature of our ap-
proaches is the use of the Gauss–Markov and Gauss–Helmert models
for the optimization, two well-established methods in photogrammetry.
They include the use of a stochastic model for all parameters. This
allows our approaches to return estimates of the standard deviations of
the optimized robot model parameters, for example. Our experiments
on synthetic data have shown that these estimates are meaningful,
i.e., they closely correspond to the actual mean errors obtained in the
experiments.

Furthermore, we have proposed novel evaluation procedures that
are relevant in real-world applications and do not require ground
truth values. We have validated the evaluation procedures based on
experiments on synthetic data. Experiments on real data have shown
that the results with our approaches increase the accuracy of the robots
we used significantly.

Although we have not tested this, we believe our method will also
work for serial robots with more than six axes. However, the cases of
serial robots with fewer than six axes (e.g., SCARA robots) and parallel
robots seem to be more interesting from a research point of view. They
should be examined in more detail in future work. Furthermore, the
extension of our approach to sheet-of-light senors in which the laser
plane is static and must be moved by the robot should be investigated
in the future. This would require the synchronization of the image
acquisition with the robot movement. Also, the influence of the dis-
tribution of the robot poses on the accuracy of the calibration result
would be interesting to investigate. In this context, the computation of
optimum robot poses for our calibration approach based on the nominal
kinematic parameters would be a promising future research direction.
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