KIT | KIT-Bibliothek | Impressum | Datenschutz

Comparative Study of Federated Learning Frameworks NVFlare and Flower for Detecting Thermal Bridges in Urban Environments

Duda, Leonhard Johannes 1; Alibabaei, Khadijeh Fahimeh ORCID iD icon 1; Vollmer, Elena ORCID iD icon 2; Klug, Leon; Benz, Mishal 1; Kozlov, Valentin ORCID iD icon 1; Rebekka Volk ORCID iD icon 2; Götz, Markus ORCID iD icon 1; Schultmann, Frank ORCID iD icon 2; Streit, Achim ORCID iD icon 1
1 Scientific Computing Center (SCC), Karlsruher Institut für Technologie (KIT)
2 Institut für Industriebetriebslehre und Industrielle Produktion (IIP), Karlsruher Institut für Technologie (KIT)

Abstract:

Most machine learning models require a large amount of data for efficient model training. This data is usually expected to be placed in one centralized spot. When enough data is available but not located in one spot, such as data collected by edge devices, sharing data with a central server is necessary. Sharing a large amount of data introduces several issues: data might not be feasible to share because of privacy concerns or data restrictions. In other cases, sharing data is not even possible due to the lack of resources and communication overhead.
Federated Learning (FL) comes into play to solve these problems. It is a machine learning paradigm, which allows distributing a machine learning workflow onto multiple clients. Clients participating within the workflow are able to collaboratively train a machine learning model by training it locally on their own data and just share the updated state of the model after training. The data located on the client itself is not shared with other clients, which leads to a privacy strengthened and more resource saving training process. Based on the architecture, FL can be categorized into centralized and decentralized FL approaches. ... mehr


Volltext §
DOI: 10.5445/IR/1000174831
Veröffentlicht am 08.10.2024
Cover der Publikation
Zugehörige Institution(en) am KIT Institut für Industriebetriebslehre und Industrielle Produktion (IIP)
Scientific Computing Center (SCC)
Publikationstyp Vortrag
Publikationsdatum 03.09.2024
Sprache Englisch
Identifikator KITopen-ID: 1000174831
HGF-Programm 46.21.02 (POF IV, LK 01) Cross-Domain ATMLs and Research Groups
Veranstaltung EGI Conference (2024), Lecce, Italien, 30.09.2024 – 04.10.2024
Projektinformation AI4EOSC (EU, EU 9. RP, 101058593)
Schlagwörter Federated Learning
KIT – Die Forschungsuniversität in der Helmholtz-Gemeinschaft
KITopen Landing Page