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Abstract

Artificial Intelligence (AI) has been disrupting the manufacturing sector, com-
pletely reshaping how industries operate. These changes have resulted in cost
reductions of approximately up to 20% and revenue increases of up to 10% in
different industries. Al can empower computer vision systems to efficiently
process and interpret vast volumes of data from production lines. This capabil-
ity allows these systems to spot patterns, analyze and predict process behavior,
and detect anomalies in real-time during production processes, among other
functions. A pivotal component of these modern perception systems is an
object detection model capable of accurately localizing and classifying known
objects in diverse environmental settings. Nevertheless, scaling detection
models to new products necessitates learning previously unseen classes during
the training phase, calling for extensive data collection and labeling efforts.
To address this challenge, Few-Shot Object Detection (FSOD) aims to learn
new classes from limited data, offering a potential solution.

However, current FSOD algorithms suffer from two major drawbacks. First,
they are vulnerable to catastrophic forgetting while learning new classes, as
they tend to forget previously learned knowledge on base classes. This phe-
nomenon can be highly detrimental in various situations, leading to system
failures or even hazardous consequences. Second, they incur high computa-
tional overhead and slow performance, hindering their deployment in real-time
systems. The complexity of inference paradigms and large model capacities
contributes to these limitations.

This dissertation presents three novel Generalized FSOD (G-FSOD) approaches.
These strategies are devised to tackle the challenge of forgetting previously
acquired knowledge while learning new classes with limited data. The first two
approaches are designed to alleviate forgetting on base classes when they are



Abstract

still available during training on novel data. For the first framework, a novel
update rule is proposed to guide the model gradients, ensuring they remain
aligned with the base gradients to facilitate effective knowledge transfer.
The second framework introduces a progressive object proposal refinement
network that leverages aleatoric and epistemic uncertainties to learn more
robust representations for old and new classes. To address the base data-free
scenario, the third framework introduces a knowledge distillation approach.
The key novelty of this framework lies in the design of a lightweight standalone
feature generator. This generator is employed to replicate base data within the
high-level feature space. This approach stands in contrast to the commonly
used but more expensive and less efficient model inversion technique, involving
iterative optimization procedures to reconstruct the input data. All these three
frameworks adopt the Decoupled Faster R-CNN (DeFRCN) model as a base
framework. The choice of DeFRCN is driven by its superior performance in
FSOD while having a simpler architecture compared to its transformer-based
counterparts.

In pursuit of facilitating the deployment of FSOD models on embedded com-
puting platforms, concerted efforts have been directed toward mitigating the
existing bottlenecks. In alignment with this objective, a more resource-efficient
FSOD framework has been introduced. Concretely, this framework comprises
four novel components: a multi-scale feature fusion, a multi-way support
training strategy, multi-scale data augmentation, and an adaptive class pro-
totyping technique.

To validate the proposed approaches, extensive qualitative and quantitative
experiments have been conducted on multiple detection datasets achieving
the state-of-the-art on the challenging G-FSOD benchmarks, and shedding
light on their practical applicability in real-world scenarios.

In summary, this dissertation offers several valuable industry benefits: Firstly,
it enables the acquisition of new product knowledge with limited data rapidly.
Secondly, it reduces labeling efforts and costs by efficiently leveraging a small
subset of labeled samples to annotate the rest. Lastly, it enhances overall
production quality by complementing human-based activities like manual
product assembly, accounting for fatigue and distractions.

ii



Kurzfassung

Kiinstliche Intelligenz (KI) hat die Produktionstechnik in der Industrie be-
reits revolutioniert und wird diese zukiinftig weitgehend verandern. Diese
Transformation hat bzw. wird abhangig von der jeweiligen Branche zu Kos-
tensenkungen von bis zu ca. 20% und Umsatzsteigerungen von bis zu ca. 10%
fithren. Mithilfe von KI ist es IT-Systemen nun moglich, grofie Datenmengen
aus Produktionslinien effizient zu verarbeiten, Schlussfolgerungen daraus zu
ziehen und Optimierungen durchzufithren. Diese Fahigkeiten ermdglichen
es diesen Systemen, Muster in den Daten zu erkennen, Prozessverhalten zu
analysieren und vorherzusagen sowie Anomalien in Echtzeit wihrend des
Produktionsprozesses zu erkennen.

Eine wichtige Rolle nimmt hierbei die Perzeption von Objekten ein, um bei-
spielweise zuvor bereits bekannte Objekte in unterschiedlichen Umgebungen
prazise zu lokalisieren und zu erkennen. Fiir die Skalierung solcher Perzep-
tionsmodelle auf neue Produkte und unbekannte Objekte und dem damit
verbundenem Training von neuen und zuvor nicht bekannten Klassen werden
normalerweise sehr viele annotierte Daten benétigt. Um diese Menge von beno-
tigten Trainingsdaten zu reduzieren, konnen Modelle auf Basis des Few-Shot-
Object-Detection (FSOD)-Ansatzes eingesetzt werden, die diese neuen Objekte
bzw. Klassen anhand einer begrenzten Anzahl von Daten erlernen kénnen.

Allerdings haben aktuelle FSOD-Algorithmen zwei Hauptnachteile. Sie sind
erstens anfillig fiir das sogenannte ,katastrophale Vergessen“ beim Erlernen
neuer Klassen, da sie dazu tendieren, zuvor bereits erlerntes Wissen tiber
die Basis-Klassen zu vergessen. Dieses Phanomen kann in unterschiedlichen
Situationen zu verschiedenen Fehlern fiihren. Zweitens sind sie im Vergleich zu
anderen Ansatzen aufgrund ihrer Komplexitdt und der hohen Modellkapazitat
viel rechenaufwéndiger und weisen eine verminderte Genauigkeit auf.

iii



Kurzfassung

In dieser Dissertation werden drei neue ,Generalized-Few-Shot-Object-
Detection“ (G-FSOD)-Ansitze vorgestellt, die das katastrophale Vergessen in
neuronalen Netzen untersuchen. In den ersten beiden Verfahren wird dieses
Vergessen iiber das Wissen von Basis-Klassen verringert, in dem Informationen
bzw. Daten iiber diese Klassen wihrend des Trainings noch vorhanden sind.
Hierfiir wird in der ersten Methode eine neue Gradienten-Update-Regel fiir
den Trainingsprozess vorgeschlagen, die zum einen die Gradienten in die
richtige Richtung lenkt und zum anderen sicherstellt, dass diese Gradienten zu
den Gradienten aus der Basis-Klasse dhnlich ausgerichtet sind. Dies erméglicht
gleichzeitig einen effektiven Informationsaustausch im Training. Das zweite
Verfahren fiihrt ein progressives Netzwerk zur Verfeinerung von Objektvor-
schldgen ein, das aleatorische und epistemische Unsicherheiten nutzt, um eine
robustere Reprasentation fiir alte und neue Klassen zu erlernen. Im dritten
Ansatz wird eine ,Knowledge-Distillation® eingefithrt, damit auch ohne
Informationen tiber die Basis-Daten neue Klassen gelernt werden kénnen. Dies
wird durch einen eigenstdndigen und leichtgewichtigen Feature-Generator
sichergestellt, der zugleich die Hauptidee dieses Verfahren widerspiegelt und
die Basis-Daten im hochdimensionalem Feature-Raum repliziert.

Alle drei entwickelten Verfahren basieren auf dem Decoupled Faster R-CNN
(DeFRCN)-Modell. Das DeFRCN wurde verwendet aufgrund seiner hervorra-
genden Leistungsfihigkeit und seiner einfacheren Architektur im Vergleich zu
den Transformer-basierten Modellen. Auflerdem stehen diese drei Ansétze im
Gegensatz zur haufig verwendeten, jedoch teureren und weniger effizienten
~Modellinversionstechnik®, die iterative Optimierungsverfahren zur Rekon-
struktion der Eingangsdaten nutzt.

Damit solche FSOD-Modelle auch auf eingebetteten Rechenplattformen einge-
setzt werden konnen, wurden in dieser Arbeit zusitzlich Methoden untersucht,
um vorhandene Bottlenecks in diesen FSOD-Architekturen zu reduzieren. Dazu
wurde ein ressourceneffizienteres FSOD-Modell entwickelt, das aus folgen-
den vier Hauptkomponenten besteht: Eine Multiskalen-Feature-Fusion, eine
Multi-Way-Support-Trainingstrategie, eine Multiskalen-Datenaugmentation
und eine adaptive Klassen-Prototyping-Technik.
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Kurzfassung

Am Schluss dieser Arbeit werden die vorgestellten Verfahren validiert und
umfangreiche qualitative und quantitative Experimente an mehreren unter-
schiedlichen Datensétzen durchgefiihrt. In diesen Experimenten erzielen diese
drei Verfahren state-of-the-art Ergebnisse in den FSOD-Benchmarks und kén-
nen somit auch in vielen praktischen Anwendungen in realen Szenarien und
im industriellen Umfeld eingesetzt werden.
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1 Intoduction

1.1 Motivation

Artificial Intelligence (AI) has advanced remarkably over the past decade,
revolutionizing various industries and pushing the boundaries of modern ma-
chines’ capabilities and learning potential. As a result, Machine Learning (ML)
has become a widely embraced subfield of Al, enabling machines to learn
from data instead of relying on explicit programming instructions. However,
ML often involves manual feature engineering and shallow learning algo-
rithms to detect patterns in input data, rendering this method inadequate in
capturing intricate representations. To address this limitation, an Al subfield
known as Deep Learning (DL) has arisen, which leverages Neural Networks
(NNs) to automatically learn complex representations from input data without
handcrafted features. However, it does come with the caveat of demanding
greater computational resources and larger amounts of data than traditional
ML approaches.

In recent years, DL has inspired more significant leaps in Computer Vision
(CV) and Natural Language Processing (NLP), enabling what was previously
thought impossible. For example, with the recent advances in Large Language
Models (LLMs) and the release of GPT-3 [Bro20], Al has been a central topic
of conversation on the potential prospects and capabilities in the near future.
Another area that stands out for its significant impact is the development of
autonomous robotics (e.g., a pick-and-place robot) and industrial applications
(e.g., production parts detection). Integrating ML and DL techniques into
robotics has facilitated automation, improved operational efficiency, increased
productivity, enhanced manufacturing quality, and reduced costs. However, it
is important to note that human involvement remains indispensable across



1 Intoduction

various sectors, yet more prone to errors than machines. For instance, a worker
can miss a part during a product assembly due to distractions (e.g., sudden
loud noises and loss of concentration). This gives rise to a wide range of
human-machine complementaries where machines can help alleviate as many
human errors as possible. In the current era of the Industry 4.0 revolution,
automation, connectivity, real-time data, and Al come together, forming a new
ecosystem for smart and efficient automation.

Despite the many successes of DL in such systems, it faces several hurdles. The
key challenges and limitations of the training and deployment of DL models
can be summarized as follows:

« Data-hungry: Training DL models require abundant labeled training
data to generalize to unseen examples effectively. However, data
acquisition and labeling can be demanding in terms of time, cost, and
labor. It becomes more challenging when dealing with niche domains
(e.g., industrial products) or infrequent occurrences.

« Computationally and memory intensive: DL models typically
require significant computational resources, such as high-performance
Graphics Processintg Units (GPUs) and substantial memory, to compute
and save the model weights for training and inference. This can present
difficulties when deploying trained models on embedded hardware.

« Catastrophic forgetting: When a model is presented with new data
to learn, the DL models can forget the previously trained classes,
causing an overall deterioration in performance. This can be
problematic for safety-critical systems. Moreover, new data may
necessitate retraining the model, which may consume time and
resources.

« Societal and ethical concerns: Integrating data-driven solutions
raises ethical and societal concerns regarding bias and privacy.
Data-driven models can potentially inherit biases in the training
dataset, resulting in unfair or discriminatory results. Moreover, datasets
containing various faces of people and their data give rise to notable
privacy concerns.



1.1 Motivation

This dissertation adopts Object Detection (OD) as its primary task while ad-
dressing the abovementioned challenges. OD is central to modern perception
systems utilized in commercial and industrial autonomous robots (e.g., self-
driving cars and pick-and-place robots). The main objective is to classify and
localize objects of interest in the input data (e.g., images, videos, or point
clouds). This research focuses mainly on the 2D OD task on Red-Green-Blue
(RGB) images due to their widespread usage across diverse applications. More
specifically, this work adopts a recent thriving field that learns detectors with
limited data, namely Few-Shot Object Detection (FSOD).

FSOD strives to rapidly adapt detectors trained on base classes with abundant
data to learn novel classes with scarce data. However, most FSOD approaches
focus on improving the novel detection performance and tend to overlook the
issue of catastrophic forgetting, which refers to the tendency of a DL model
to forget how to detect objects from the base categories. This aspect holds
significant importance in various practical applications, such as pick-and-place
tasks, where a robot must be capable to operate new objects without losing
its ability to handle previously known ones. To overcome this limitation,
Generalized Few-Shot Object Detection (G-FSOD) emerges as a specialized
branch within FSOD. G-FSOD focuses on training models to jointly detect
both base and novel classes, enhancing their robustness and practicality for
addressing real-world scenarios.

To this end, the following research questions are raised:

« How can existing detectors effectively adapt to learn new classes when
presented with limited labeled data?

« To what extent can prior knowledge be harnessed to enhance the
adaptation process of few-shot detectors?

« What strategies or techniques can be devised to enable detectors to
learn and accommodate novel classes without causing significant
forgetting or performance deterioration on previously learned base
classes?
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1.2 Contributions

The main focus of this dissertation is to tackle the three challenges mentioned
above in the context of OD. Specifically, the main aim is to design and evaluate
object detection frameworks that leverage prior knowledge from abundant
data to rapidly learn new classes when presented with limited data. The main
contributions of this dissertation can be summarized as follows:

« A Constraint-based Finetuning Approach (CFA) [Gui22b] for G-FSOD
to alleviate base forgetting. CFA provides a new gradient update rule
that adaptively reweights the base and novel gradients and guides them
toward less forgetting and more effective knowledge transfer. CFA can
be integrated with different frameworks plug-and-play without model
capacity or inference time overhead.

+ The Uncertainty-based Progressive Proposal Refinement (UPPR)
approach leverages predictive uncertainties (i.e., aleatoric and epistemic
uncertainties) to alleviate forgetting in G-FSOD while improving the
detection of the novel classes. Specifically, UPPR progressively refines
the object proposals via the estimated uncertainties in a stage-wise
manner. Moreover, attention blocks are utilized in each stage to focus
on discriminative features selectively. A new architecture is introduced
to provide sufficient learning capacity, namely Decoupled Cascaded
R-CNN (DeCRCN).

« Neural Instance Feature Forging (NIFF) [Gui23b] presents the first
data-free G-FSOD framework that alleviates forgetting without using
base data. This is particularly beneficial when sharing and storing data
is problematic due to privacy or memory constraints. NIFF proposes a
standalone feature generator with a negligible memory footprint and
learns to generate base instance-level features by aligning class-specific
statistics. During novel finetuning, these forged features are replayed,
along with thoughtful design considerations in the training pipeline.

« Few-Shot RetinaNet (FSRN) [Gui23a] framework as a more
embedded-friendly meta-learning-based one-stage detector for FSOD,
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reducing the computational and memory requirements of the system.
FSRN introduces four novel components, including a multi-way support
training strategy, multi-scale feature fusion, multi-scale data
augmentation, and a weighted class feature prototyping approach.
Compared to the current state-of-the-art one-stage meta detectors,
FSRN provides an embedded-friendly solution with significantly
reduced parameters, Floating Point Operations Per Second (FLOPS), and
inference time.

« The Zero-Shot Domain Adaptive FSOD (ZDA-FSOD) [Gui22a] presents
a framework to tackle the proposed problem, identifying new objects in
a target domain using only limited data from a source domain.
ZDA-FSOD proposes a new contrastive loss function and feature-level
augmentations to encourage the learning of domain-agnostic
class-specific feature embeddings that are less sensitive to the potential
domain shifts. This approach is presented in the appendix of this
dissertation.

Extensive experiments on two well-established publicly available datasets and
ablation studies are conducted for each approach to illustrate the improved
detection performance and the different design choices. Different from most
FSOD and G-FSOD works, the results over multiple runs with different seeds
are provided to validate the robustness of the proposed model. The proposed
methods achieve state-of-the-art results for G-FSOD and one-stage meta-
learning based FSOD.

1.3 Dissertation Structure

The subsequent sections of the thesis are organized as follows. In Chapter 2,
the fundamental theoretical principles underpinning this research are pre-
sented. This includes an exploration of the foundational concepts and models
in deep learning. Additionally, a thorough review of deep learning-based
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object detection frameworks is conducted. This review encompasses the prob-
lem formulation, detection architectures, and evaluation metrics employed
throughout this thesis.

Chapter 3 of the thesis delves into FSOD fundamentals. It begins by presenting
the problem formulation of FSOD and proceeds to conduct a comprehensive
analysis of two primary FSOD families of approaches: transfer learning and
meta-learning. For each field, this encompasses a formal introduction and an
exploration of the relevant works.

Chapter 4 establishes the concept of the proposed FSOD and G-FSOD pipelines.
The implications of utilizing the different proposed frameworks in real-world
scenarios are identified and discussed.

Chapter 5 addresses the challenge of catastrophic forgetting in the G-FSOD
task while simultaneously improving the performance of detecting novel
classes. The chapter begins with a literature review of relevant works from
continual learning. Subsequently, three frameworks are introduced. The
first framework is called Constraint-based Finetuning Approach (CFA). CFA
establishes a gradient update rule that adaptively adjusts the contribution of
base and novel gradients, achieving a better optimum for effective knowledge
transfer and minimizing forgetting. The second framework, Uncertainty-based
Progressive Proposal Refinement (UPPR), is then presented. UPPR utilizes
predictive uncertainties, including aleatoric and epistemic uncertainties. A
new architecture is introduced to provide enough learning capacity, namely
Decoupled Cascade R-CNN (DeCRCN).

While the frameworks above assume the availability of base data, the third
framework in Chapter 6, Neural Instance Feature Forging (NIFF), is the first
data-free G-FSOD pipeline. NIFF incorporates a feature generator with a
negligible memory footprint. It learns to generate base instance-level features
by aligning class-specific statistics. During the novel finetuning stage, these
forged features are replayed to maintain knowledge of the base classes.

Chapter 7 introduces a novel one-stage meta-learning-based framework called
Few-Shot RetinaNet (FSRN) for the FSOD task. This chapter also covers the
datasets and evaluation metrics that will be employed throughout the thesis.
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Next, the primary performance bottlenecks in a two-stage meta detector are
identified and discussed. To assess the generalization capability of the pro-
posed framework, several experimental evaluations and ablation studies are
conducted on the well-established FSOD benchmarks.

Chapter 8 concludes the dissertation by presenting the final remarks and
summarizing potential avenues for future research.

Finally, a challenging new task, namely Zero-Shot Domain Adaptive FSOD
(ZDA-FSOD), is introduced in Appendix B. Given a handful source domain data,
ZDA-FSOD aims to detect novel objects in an unseen target domain. A ZDA-
FSOD framework is accordingly proposed. ZDA-FSOD employs a novel con-
trastive loss function and feature-level augmentations to facilitate the learning
of class-specific feature embeddings that are not influenced by domain-specific
characteristics. By doing so, ZDA-FSOD mitigates the sensitivity to potential
domain shifts to learn transferable domain-agnostic representations.
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This chapter provides an overview of the rudimentary theoretical foundations
utilized throughout this dissertation. Firstly, we present the background and
theory of the two pillars of DL, artificial neural networks and fully connected
neural networks. Secondly, we explain the Convolutional Neural Network
(CNN), which is quintessential to designing neural architectures for various
Computer Vision (CV) tasks. Next, we delve into the pillar computer vision task
of this dissertation, the object detection task. The main architectural designs,
training paradigms, limitations, and evaluation metrics will be discussed.

2.1 Deep Learning Foundations

2.1.1 Fully Connected Neural Networks

In the 1940s, researchers began exploring the possibility of developing AI
that mimics the cognitive abilities of the human brain to approach non-linear
tasks that a crude linear mathematical model cannot describe in a closed-form
solution. This research was motivated by the remarkable capacity of the human
brain to rapidly process information, identify patterns, and solve complex tasks
(e.g., classify and localize a known object in an image).

The communication unit in the brain and nervous system is the neuron. It
receives, processes, and transfers information to and from various body regions
via electrical impulses and chemical signals. When a signal, in the form of an
electrical impulse, reaches the neuron’s cell body, the neuron begins to fire
to send the signal to the neighboring neurons. Next, the cell body activates
voltage-gated ion channels, which are proteins that control the movement of
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Figure 2.1: An illustration of the MLP architecture along with a zoom in on an artificial neuron.

ions (atoms or molecules with a positive or negative charge) across the cell
membrane. As the voltage-gated ion channels open, positive ions flow into the
cell, and negative ions flow out. The action potential, which is an electrical
charge across the cell membrane, is produced by this ion movement. The
release of neurotransmitters is then triggered by the action potential, which
moves down the axon, an extension of the cell body. These neurotransmitters
connect to receptors on the receiving end after passing through a tiny gap
known as the synapse. This binding activates the receiving cell and initiates
a new action potential in that cell, allowing the signal to be transmitted to
the next cell in the chain [Day05].

In 1958, Frank Rosenblatt presented the perceptron as a rough representation
of humans’ biological neurons [Ros58]. This concept fueled interest in the
Al field in creating an Artificial Neural Network (ANN) that resembles the
interconnected neurons of the human brain. An ANN is a parallel compu-
tational model of interconnected perceptrons, where each link simulates the
brain’s synapses, transmitting signals between the artificial neurons. Each in-
put is associated with a weight, which represents the importance of that input
in determining the output. Formally, a perceptron is a non-linear mapping
function that receives an input * € R and outputs a single scalar output
y € R. The relative importance of the inputs to the output is represented
by a weight vector w € RM. M denotes the length of the input vector. The
perceptron computes the weighted sum of the inputs and passes them through
a non-linear transformation function, or an activation function ¢ : R — R,
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which determines whether the output is a 0 or a 1 based on a threshold, or
bias b € R, value. Formally, the output is denoted by

y = p(w’x +b). (2.1)

However, a human brain consists of considerable interconnected perceptrons
to tackle more complex tasks and problems. As a result, the Fully Connected
Neural Network (FCNN) was developed to capture more complex non-linear
relations between inputs and outputs. A FCNN comprises an input layer, an
output layer, and intermediate hidden layers in a stacked manner, with all nodes
in one layer connected to all nodes in the next. Consequently, the information
flows through the network in a highly interconnected manner, allowing the
network to interpret and learn from complex patterns and correlations in the
incoming data. This architecture is most commonly referred to as a Multi
Layer Perceptron (MLP), as presented in Figure 2.1.

Specifically, a FCNN is regarded as a parametric universal function approxima-
tor [Les93]. For a continuous function f(x) on a compact area of R, there
exists a function, f*(x;0) € RM | with learnable parameters © controlling
the function mapping, and non-polynomial activation functions (e.g., tanh
function) that approximates f(x) such that:

| f(z) — f*(2;0) [<e, (2.2)

where ¢ is an arbitrary small number of acceptable error. The output of the
network can then be given as: ,

M
@i = QD(ZW1‘7J’.’BJ' +bz>7 (2.3)
j=1

where W € RV*M and b € R are the weight matrix and bias vector of
the network, respectively. IV denotes the length of the layer neurons. The
network parameters are represented jointly by © = [W,b] € RN *(M+1),

11
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Learning the parameter vectors © is the first step toward teaching a neural
network to solve complex problems. For this, we first need a sufficiently labeled
training dataset D = {(x;,y,)}._,, where T is the total number of training
examples. The i example comprises an input sample x; (e.g., an image) and
the associated ground-truth target label y (e.g., class labels). Next, the training
process is performed, where the network is presented with numerous examples
of the task at hand and iteratively modifies the parameters to minimize some
pre-defined cost function, or a loss function £(+). The aim is to find the optimal
parameters ©* via empirical risk minimization as follows:

T
1
O* = argmin — L(x;,y,;0). 2.4
8! T;:l( Y 6) (2.4)

Specifically, this is achieved via the backpropagation algorithm, which involves
both a forward pass and a backward pass. The neural network is fed a training
instance («,y) in the forward pass, and the intermediary outputs are stored
using each layer’s existing set of parameters. Next, the derivative of the utilized
loss function with respect to the network’s output ¢ is computed. On the other
hand, during the backward pass, the derivative of the loss is computed with
respect to the weights in all layers by leveraging the chain rule of differential
calculus. Finally, these gradients traverse the network backward to update
the weights at each layer. Note that this is done till the convergence criterion
is satisfied or for a defined number of training epochs, with a single epoch
meaning iterating once through the entire dataset.

The loss function is determined based on the learning task. For a classification
task, the categorical cross-entropy (CE) loss is most commonly used:

N C
ﬁCE = - Z Z yn,c 10g(@n,c)5 (2'5)

n=1c=1

where N is the total number of predictions. C' denotes the number of mutually
exclusive classes. §,, . denotes the probability score of the n'™ sample predicted
by the network for the c'-class. As for a regression task, Mean Squared Error

12
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(MSE) loss function is typically utilized:

N C
L"MSE = - Z Z yc n yc n 27 (26)
n=1c=1

where N is the total number of predictions. However, FCNNs do not make any
prior assumptions about the structure of the features and how they relate to
one another, which might impede learning from high-dimensional structured
data. Since RGB images are utilized throughout this dissertation, they will be
the main focus. Expressly, three main traits of images indicate the necessity
for a more specialized architecture. First, images are high-dimensional data.
Considering a shallow FCNN classifier network with an input of 256 x 256 x 3,
a single hidden layer of the same input size 196,608 already requires more than
38 billion parameters, rendering the scalability of such architectures intractable
in terms of memory and computational power. Additionally, even with smaller
input dimensions, unstable gradients are a risk as the network becomes deeper
to extract more relevant features, tackling more challenging tasks. Either
they significantly increase, which causes the gradients to explode, or they
significantly decrease, which results in vanishing gradients and makes learning
unfeasible since the parameters barely change with each update. Second,
due to the structured nature of an image, statistical relations exist between
neighboring image pixels. As mentioned above, FCNNs do not preserve any
spatial structure ignoring any spatial relations between the image pixels. Third,
understanding a given image should be consistent regardless of any geometric
transformation (e.g., translation, rotation). However, for a FCNN, rearranging
the input pixels will not yield any difference overlooking pixel patterns for
a known object.

2.1.2 Convolutional Neural Networks

The late 1990s witnessed a technological leap in deep learning with the
LeNet [LeC98] model recognizing handwritten digits (0 — 9) in images. CNNs
have thrived since then, enabling significant advancements in various com-
puter vision applications, including image classification, object detection, and

13
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Figure 2.2: Example of a convolutional operation on an open source RGB input image.

semantic segmentation. Specifically, a CNN typically comprises a convolu-
tional layer, a normalization layer, a pooling layer, and an activation function.

CNNs provide three essential advantages over the traditional FCNNs [Pri23].
First, they handle high dimensional data effectively because they use sparse
connections rather than fully dense connections, which results in fewer param-
eters and computations. This is realized by using a kernel size smaller than the
input. For instance, an image of size 256 x 256 x 3, a 2D convolutional layer
with 128 kernels of size 5 x 5 would require ((5 x 5 x 3) + 1) x 128 = 9,728
parameters only. Second, it shares parameters across the given input, pro-
moting translation equivariance, which means that shifting or moving an
object in the input will cause its representation to move in the output by the
same amount. This means that for each pixel location, merely a single set of
parameters is learned. While the computational runtime stays unaffected, the
model’s storage requirements are further reduced to the kernel size. Third,
CNNs employ a vital subsampling in which the most prominent pixels are
transferred to the next layer while the others are dropped. Hence, it outputs a
fixed-size output matrix promoting rotation and translation invariance.

Convolutional Layer
The convolutional layer is the fundamental building block of a CNN that

convolves the kernel with the given input image or feature map. Given a 2D
input image X € R"W># and a 2D filter, or kernel K € R¥**, the output

14
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feature map F for a given pixel (i, j) can be denoted as follows

k k
Fij=Xj+Kij=Y Y KpnXimjn+b, (2.7)

m=1n=1

where W and H € Z" are the width and height of the input image, respec-
tively. k € Z* denotes the kernel size. However, building deep CNNs requires
an essential adjustment to the convolutional operation, namely padding. Con-
volving a 224 x 224 image with a 3 x 3 kernel outputs a 222 x 222 feature map
resulting in a loss of information, especially around the edges. This is because
of the limited number of possible positions that the kernel can cover. To this
end, padding appends additional p pixel borders around the image or feature
map, usually with zero value. For instance, performing the padding of value
p = 1 on the abovementioned example yields a 226 x 226 image resulting
in a 224 x 224 feature map after the convolution operation, preserving the
original input size. Furthermore, another fundamental concept in convolu-
tional layers is the stride. It controls the amount by which the kernel shifts
when convolving around the input volume. An illustration of a convolutional
operation with the resulting intermediate features is depicted in Figure 2.2.
Inherently, a convolution operation employs a stride s = 1, promoting more
overlapping receptive fields. Note that the receptive field refers to all elements
in previous layers that influence the computation of the output feature map.
CNNs need broad enough receptive fields to cover objects of various shapes
and sizes. Revisiting the previous example, performing a convolution with
(s =2,p =1, k = 3) instead yields an output feature map of size 112 x 112,
half the original image size. Formally, for a square input W = H, the output
spatial dimension is governed by the following formula

15
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Figure 2.3: An overview of different normalization layers highlighting the main differences.

Normalization Layer

During training, the input distribution to each layer varies as the network
parameters get updated, which is formally known as the internal covariance
shift [lof15]. With such volatility in the input distribution, the optimizer would
then be more likely to hit a plateau, and the training would take longer to
converge. To account for the internal covariance shift, Batch Normalization
(BN) [Iof15] was introduced as a normalization method that fixes the first and
second statistical moments of the hidden representations output before they
are fed to the next input layer. Fixing the distribution of layer inputs allow for
better gradient flow as they become less dependent on the initialization scheme
or the scale of the layer parameters. A BN layer is typically placed between
the convolutional and the non-linear activation function. During training, the
BN computes the mean g and the variance o2 of the input features across the
current batch. Each input channel is then normalized. Finally, to acclimate the
output distribution for each hidden layer, BN learns two parameters, « and
3, responsible for scaling and shifting the normalized output, respectively.
Intuitively, normalizing the input distribution via BN results in a less noisy
learning signal and smoother activations, hence more stable training and
faster convergence. Moreover, normalizing the activations across the model
averts minor parameter changes from significantly altering the activation
gradients. As a result, it is possible to utilize higher learning rates without
risking training stagnation in saturated non-linearity regimes and gradients
vanishing or exploding [Iof15]. Formally, the BN output can be denoted as

Ti — My

Voi+te

BN(z;) =~ +8. (2.9)
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¢ is a significantly small value to avoid dividing by zero. During inference, BN is
directly applied using the average mean and variance acquired during training.

However, a significant drawback of BN is that it becomes rapidly erroneous as
the batch size decreases due to inaccurate batch statistics estimation. To over-
come the inter-batch dependencies of the BN, Layer Normalization (LN) [Ba16]
normalizes each mini-batch sample independently to zero mean and unit vari-
ance. Instance Normalization (IN) [Uly16], on the other hand, computes the
mean and variance for each input sample across the spatial dimensions for
each channel separately. As a result, instance-specific contrast information
can be removed from the image, simplifying the task of stylized image genera-
tion, as was originally proposed [Uly16]. Unlike BN, both LN and IN perform
the exact computations at test-time since they are independent of the batch
size. Nevertheless, the channels of feature representations are not entirely
independent. For example, early convolutional layers in the network learn
low-level features like lines, corners, and edges. In contrast, the last layers
learn more high-level features, such as complex shapes. Building upon these
observations, Group Normalization (GN) [Wu18] divides the input channels
into a pre-defined number of groups, divisible by the number of channels,
more likely to share the same filter response. Next, GN computes the mean
and variance along the spatial dimensions for each group separately. The ad-
vantages of GN are twofold: First, unlike LN, it can learn various distributions
for each group of channels. Second, it scales better with smaller batch sizes
than BN but may not perform as well with larger batch sizes. The differences
between each normalization technique are highlighted in Figure 2.3.

Activation Functions

Without enforcing non-linear constraints, a neural network will only learn
a linear transformation using each layer’s weights and biases, resulting in a
linear regression model. While this simplifies the neural network, it hinders
extracting complex patterns from the data. To this end, activation functions
are injected throughout the model to realize non-linear relations between the
input and the output. In the following, the most commonly utilized activation
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Figure 2.4: An illustration of the presented activation functions.

functions are presented, and a comprehensive representation of each function
and its derivative are depicted in Figure 2.4.

Rectified Linear Unit. One of the most commonly used activation functions
is the Rectified Linear Unit (ReLU) function, a piece-wise linear function that
provides a simple non-linear transformation. For non-positive input values,
the output and the function derivative are both consistently zero. Otherwise,
it outputs the input value with a constant derivative of one. For an input z,
a ReLU function is defined as

ReLU(z) = max(0,x). (2.10)
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However, the constant zero gradients for negative input values will prevent the
update of relevant parameters during the gradient descent. Consequently, var-
ious neurons lose their sensitivity to input changes and vanish, a phenomenon
known as the dying ReLU problem. In contrast, the output activations are
unconstrained for positive values, resulting in exploding activations. Two
variants of the ReLU function were proposed to address the abovementioned
limitations. First, the Leaky ReLU introduces a constant slight negative slope
for the non-positive region, allowing a small non-zero gradient, which over-
comes the dying ReLU problem. This is realized by scaling negative activations
via a constant scalar value o < 0 as follows

LeakyReLU(z) = max(0,z) + o min(0,z). (2.11)

Second, to allow for variable negative slope values, the Parametric Recti-
fied Linear Unit (PReLU) extends the LeakyReLU by leveraging a learnable
« instead.

Sigmoid. The sigmoid function, or a squashing function, transforms a real-
valued input to a range of (0,1).

1

~ Treolo" (2.12)

sigmoid(x)
It is typically utilized for binary classification problems to map the output logits
into probabilities. Due to the bell-shaped derivative function, the gradients
moving toward the tail for large values in either direction hit a plateau, causing
the gradients to vanish, posing a challenge to the optimizer.

Hyperbolic Tangent (tanh). A shifted version of the sigmoid function, namely
the tanh function transforms the input into a range of (—1,1).

1 —exp(—2

tanh(z) = M (2.13)

1+ exp(—2z)
Compared to the sigmoid function, tanh yields higher gradients, providing a
larger learning signal thus more significant parameters update. Moreover, the
tanh function is symmetric around zero and hence faster convergence.
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Pooling Layer

The final stage of a CNN is usually a pooling layer that spatially downsamples
the output activation maps, reducing the parameters and computation needed
to process the input. Analogous to the convolutional layer, the pooling op-
eration involves a sliding window with a predefined window size and stride
across the whole input region, computing a single output for each patch. How-
ever, the pooling layer has no learnable parameters calculating the average
or maximum value of patch elements in the pooling window, referred to as
average pooling or maximum pooling, respectively.

The benefits of a pooling layer are twofold. First, it enables learning translations
invariant representations because most pooled activation map values remain
unchanged even if the input marginally shifts. This means the network learns to
identify the feature representation of the same object regardless of its location
in the input region. Second, the resulting condensed activation map gives the
subsequent layer fewer inputs by assembling a summary of statistics of each
neighborhood area across the input region, which improves computational
efficiency and expedites training. As a result, it becomes possible to build
deeper CNNs by stacking additional layers. Expanding the receptive field
allows combining earlier low-level features into increasingly higher-level
features to learn robust hierarchical visual concepts.

2.1.3 Deep Feature Extractors
VGG Networks

In 2015, the VGG [Sim14] network was introduced as one of the first deep
architectures for image classification and object detection tasks. The network
utilizes small 3 x 3 convolution filters to build models with varying depths.
The core idea is that by using smaller filters, the network could capture larger
receptive fields while reducing the number of parameters and converging
faster. The VGG architecture includes convolutional layers ranging from
eight to sixteen, three fully connected layers, and a softmax layer. The most
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Figure 2.5: An illustration of a ResNet50 architecture with a FPN. The multiscale feature maps
are visualized to show the extracted semantic information at each level.

commonly used VGG architectures are the VGG-16 and VGG-19, with 16 and
19 layers, respectively. A VGG model is normally trained in multiple iterations,
where a small architecture is first trained with random initialization. Then,
the weights of this network are used to train deeper networks to motivate
more stable gradients.

Residual Neural Networks

However, adding more layers causes the backpropagated gradients to weaken
and vanish, rendering the gradient descent excessively slow. Specifically, dur-
ing backpropagation, the computed partial derivatives can get excessively small
and decrease exponentially to zero, preventing weight parameters updates
and thus hindering the overall training process.

To mitigate the vanishing gradient problem, He et al. proposed the Residual
Neural Network (ResNet) [He16] featuring residual blocks stacked end-to-end.
The key idea is to learn residual mapping by providing a shortcut for the
gradients to skip over layers with non-useful information. A residual block
comprises two 3 X 3 convolutional layers with the same number of output
channels followed by a BN layer, and a ReLU activation function. Moreover, a
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skip connection adds the block input right before the final activation function,
which results in learning a residual mapping. Figure 2.5 (right) depicts a
residual block architecture. If the number of output channels differs, then a
1 x 1 convolutional layer is added in the shortcut connection to transform the
input into the target output shape. It is important to highlight that ResNets are
simpler to optimize because the deeper residual blocks learn to enhance the
output of the preceding blocks rather than learning an underlying mapping
from scratch.

Feature Pyramid Network

One of the main challenges that emerges is the ability to detect objects over
a broad range of scales, particularly small objects. As a remedy, a Feature
Pyramid Network (FPN) [Lin17] generates multi-scale feature maps from
different feature extractor stages. The deeper the layer within the feature
extractor, the more semantically rich the extracted feature maps, yet with a
lower spatial resolution. Accordingly, FPN equips the feature extractor with a
top-down pathway that learns to upscale the low-resolution feature maps by a
factor of 2 and merges each with the corresponding bottom-up feature maps
via element-wise addition. For instance, in a ResNet equipped with an FPN
(ResNet-FPN), the bottom-up pathway is formed via the output of the last four
residual blocks (R2, R3, R4, R5) featuring different strides (4,8,16,32) relative to
the input image. Next, starting with the coarsest feature map, each feature map
is upsampled by a factor of 2 and fed to a 1 x 1 convolutional layer, to reduce the
channel dimension, to perform element-wise addition with the corresponding
bottom-up map. Finally, each fused feature map undergoes a 33 convolutional
layer to alleviate the upsampling aliasing effect and output the final multi-scale
feature pyramid (P2, P3, P4, P5) with fixed feature dimension. An illustration
of the pyramid feature maps is presented in Figure 2.5.
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Figure 2.6: A depiction of the MHSA for a given input image. In vision transformers, the image
is broken into patches of equal size. The MHSA outputs the attention maps.

Vision Transformer

In 2020, Dosovitskiy et al. introduced the Vision Transformer (ViT) [Dos21]
architecture for computer vision tasks, drawing inspiration from the remark-
able progress made by transformer models in natural language processing. The
core idea behind the vision transformers is the self-attention [Vas17] mecha-
nism on the input image, which is regarded as a sequence of smaller patches.
Self-attention allows the model to dynamically adjust its focus to different
parts of the input, capturing long-range dependencies and fine-grained details.

Multi-Head Self-Attention. ViTs employ a Multi-Head Self-Attention
(MHSA) approach [Dos21], where the self-attention mechanism is applied
numerous times simultaneously with distinct learned linear projections
in separate heads. The outputs of all the heads are then combined and
linearly transformed to form the final output of the multi-head attention
layer. This enables the model to govern the fusion of information across
segments of an input sequence, thereby learning more powerful global and
local representations. Formally, each head (h = 1,.., H) applies a learnable
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linear projection on the input X and computes three matrices:

Q,=XW¢, (2.14)
Ky, =XW}, (2.15)
Vi=XW/), (2.16)

where Q, K, and V' denote query, key, and value, respectively .W denotes a
learnable weight matrix. Next, for each head, the scaled dot-product attention
Ay, is computed as

QK
vd

d is the dimension of the features. The scaling by v/d aims to reduce the

variance of the dot product. Finally, the attentions from all the heads are
concatenated into a final matrix A and undergoes a linear transformation via

Ay = softmax( ) V. (2.17)

a learnable weight matrix W to output the final attention map AWO of
the same shape as the input.

However, adopting a general-purpose ViT architecture for object detection
presents several challenges. First, unlike NLP tasks, where fixed scale word
tokens are the basic processing elements, computer vision tasks use image
pixels to describe visual elements that vary significantly in scale. Secondly,
images contain many more pixels than words in a text passage, resulting
in higher dimensional input sizes for the model to process. Consequently,
the self-attention process can become computationally complex, increasing
quadratically with the image size. As this dissertation primarily focuses on
object detection with limited data, only the ViT-based backbones for object
detection are examined.

Swin Transformer Backbone
To address the limitations above, Liu et al. proposed the Swin Trans-

former [Liu21], a recent adaptation of ViT. The Swin Transformer adopts a
hierarchical approach for processing images, where the image is downsampled
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and split into smaller patches. This improves efficiency and scalability by
reducing computational complexity compared to conventional methods that
simultaneously process the entire image.

The Swin Transformer architecture comprises two fundamental components:
the Path Merging and the Swin Transformer Block. First, the former is a down-
sampling method that does not use any convolutional layer and operates at
a patch level. Patch merging groups n x n patches and concatenates them
depth-wise, resulting in a downsampled feature map by a factor of n. This
results in a transformation of the input from a shape of H x W x C to
(H/n)x (W/n)x(n?-C), where H, W, and C represent the height, width, and
channel depth, respectively. Second, the Swin Transformer block comprises
two sub-units, each containing a normalization layer, an attention module,
another normalization layer, and an MLP layer.

Window MHSA (W-MHSA). The first sub-unit uses a W-MHSA module.
The conventional MHSA utilizes global self-attention, whereby the correlation
between each patch is computed against every other patch. This approach
leads to a quadratic complexity concerning the number of patches, render-
ing it unsuitable for high-resolution images. The Swin Transformer uses a
window-based multi-head self-attention method to overcome this challenge.
In W-MHSA, the attention is computed only within each window (a set of
patches). Since the window size remains constant throughout the network,
the complexity is linear in relation to the number of patches.

Shifted Window MHSA (SW-MHSA). One disadvantage of W-MHSA is that
it limits the modeling capacity of the network by constraining self-attention to
each window. As a remedy, in the second sub-unit, a Shifted Window MHSA
(SW-MHSA) module is utilized in conjunction with the W-MSA module. The
SW-MHSA shifts the windows towards the bottom right corner by a factor of
M /2 to introduce cross-window connections, where M is the window size.
Nevertheless, this shift generates orphaned patches that do not belong to
any window and windows with incomplete patches. Therefore, a cyclic shift
technique moves the orphaned patches into the windows with incomplete
patches. Finally, a mask restricts self-attention to adjacent patches in the
original feature map.
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Vision Transformer Detector Backbone

The Vision Transformer Detector (ViTD) [Li22] is a modified version of ViT that
is specifically designed for object detection. The ViTD includes a backbone
network that is based on a standard ViT architecture and is followed by a
detection head that employs a set of learned linear projections to forecast the
class and bounding box coordinates of objects present in the image. Specifically,
ViTD generates a straightforward feature pyramid by utilizing only the final
feature map of a standard ViT backbone. This approach eliminates the need for
a hierarchical backbone and deviates from the FPN design. ViTD uses simple
non-overlapping window attention to capture features from high-resolution
images effectively. It also includes a few cross-window blocks, which can be
either global attention or convolutions, to facilitate information propagation.

Formally, the ViTD backbone can be described as follows. First, the input
image X € R¥*WXC js gplit into a sequence of flattened 2D patches x,, €
RN*(PPC) where N = HW/P? is the total number of patches or the
effective input sequence length, and P denotes the patch size. Second, the
patches are mapped to patch embeddings E € R” *OxD
layer. Positional embeddings are then added to the patch embeddings to
capture the relative location of each patch in the image and fed into a regular

via a linear projection

ViT encoder, which comprises a sequence of L transformer layers. Each layer
contains a MHSA module and a position-wise feed-forward network. Finally,
the resulting feature map of the final transformer layer undergoes a group
of convolutions or deconvolutions in parallel to generate multi-scale feature
maps for the detection framework.

2.2 Deep Learning based Object Detection

When dealing with an image classification task, the general assumption is that
only one significant object exists in the image, and the primary objective is to
identify its class label. However, this assumption may not hold since the image
often has multiple objects of interest. Object Detection (OD), on the other hand,
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aims to identify the category of each object and determine the corresponding
precise location in terms of bounding box coordinates within the image.

Deep learning based OD approaches have demonstrated superior performance
in light of recent advances in CNNs and ViTs, becoming a central building
block in various modern perception systems. The deep learning based OD
approaches can be classified into two main categories: two-stage (sparse) and
one-stage (dense) detectors. The main difference between these methods is
whether they generate object proposals. In two-stage detectors, the feature
map generated by the feature extractor is used as input to a Region Proposal
Network (RPN) [Ren15], which proposes a set of object candidate regions that
may contain objects of interest. Next, a detection head is applied to classify
and refine the location of each instance. Although two-stage detectors offer
better accuracy by focusing on regions of interest, they are computationally
expensive, memory intensive, and slow in training and inference.

On the other hand, one-stage detectors omit the proposal generation stage and
directly predict the location and category of objects in a given image. Instead,
an image is typically split into a grid of cells and predicts the category and
location of each object in each cell. As a result, dense detectors are typically
faster but less accurate than their sparse counterparts, particularly for small
objects. Nevertheless, recent advances in one-stage and two-stage approaches
have narrowed the performance gap, making the decision more nuanced and
dependent on the application and available hardware resources [Zai22].

2.2.1 Problem Formulation

Mathematically, the object detection problem can be formulated as follows.
Given a dataset D with abundant samples of C classes:

D={(X,Y)|Y ={(cb)}.c; €C,b R}, (219)

where X € X is an input image, and Y € ) is the associated annotation. X
and )Y denote the image space and label space, respectively. For each object
instance ¢ in the image, ¢; and b; represent the corresponding object category
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and the bounding box coordinates, respectively. Each bounding box instance
b; = (b¥,b?,b¥, bl) is represented by the top-left coordinates (b7, b!) along
with the width b and height b?. Each entry belongs to R*. The objective
is to learn a detector hg : X — Y, parameterized by O, that minimizes the
classification and localization errors between the network predictions and the

ground-truth classes and bounding boxes.

2.2.2 Two-Stage Detection Networks
R-CNN

In 2014, Region Convolutional Neural Network (R-CNN) [Gir14] pioneered the
first region-based family detector showing the ability of CNNs to boost detec-
tion performance significantly. R-CNN uses a class-agnostic region proposal
module to break down the detection problem into instance-level classification
and localization sub-problems. First, an input image is normalized using the
mean and standard deviation of the pixel values. Second, the image is fed
to a region proposal module, generating & = 2000 object candidates via the
Selective Search (SS) algorithm. The generated proposals, commonly called
Regions of Interest (Rols), have a higher chance of containing an object of
interest. Specifically, SS divides the image into regions based on color, texture,
and intensity similarities. These regions are then merged using a hierarchical
approach that combines smaller regions into larger ones using a graph-based
clustering method to generate object proposals efficiently. Afterward, each
of these possibilities is warped and propagated to a CNN network, extracting
a 4096-dimension feature vector. Then, each class-specific Support Vector
Machine (SVM) [Cor95] is given the extracted feature vectors to get confi-
dence scores. Finally, Non-Maximum Suppression (NMS) eliminates redundant
detections based on confidence and Intersection over Union (IoU) scores of
neighboring bounding boxes. The less confident boxes with a lower IoU than
a pre-defined threshold are discarded.

The training process for R-CNN involves two stages: pre-training the CNN on
a large classification dataset and finetuning for detection. This is achieved by
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replacing the classification layer with a randomly initialized classifier and train-
ing a linear SVM and bounding box regressor for each class using Stochastic
Gradient Descent (SGD) [Bot10].

Fast R-CNN

Due to the SS algorithm and multiple class-specific classifiers, R-CNN is com-
putationally expensive and requires longer training times, up to a few days,
even for small datasets. Later in 2015, Fast R-CNN [Gir15] was proposed
as an end-to-end detection framework. Compared to R-CNN, Fast R-CNN
has only a single network that leverages a multi-task loss. Specifically, Fast
R-CNN utilizes a CNN-based backbone, such as the VGG [Sim14] network,
to generate a single feature map for the image. Different than R-CNN, the
set of object proposals feature maps are fed to a Rol pooling layer to extract
fixed-length feature vectors. To obtain the final predictions, each Rol feature
vector undergoes a sequence of MLPs that branches to classification scores
and bounding box positions.

Rol Pooling Layer. The object proposals are fed to a Rol pooling layer,
which extracts fixed-size instance-level features via max pooling operation.
Specifically, each Rols of size R *W is divided into grid cells R/ PuxW/Pw
where Py and Py are the pooling height and width, respectively. Then, the
maximum value for each grid cell is extracted. Then, the Rol pooled features
undergo two MLPs, split into a softmax layer with C' 4 1 classes (the additional
class to account for the background) and a bounding box regressor layer with
another MLP.

RCNN Loss. A multi-task (classification and localization) loss was introduced
to enable end-to-end network training, eliminating the need for separate SVMs
classifiers. The overall detection loss can be formulated as follows:

R
1 N ~Ci
Lrenn = R Z ﬁlczl%NN(pivci) + /\loc]lcelﬁ?ochN(bi ,bi), (2.19)

i=1
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where R is the total number of Rols. LXW is the cross-entropy classification
loss and L% is the smooth L1 localization loss. p; and ¢; denote the pre-
dicted probability distribution and the ground-truth class of the i'" instance,

respectively. Formally,

LY (p,c) = —log(p,). (2.20)

For the localization task, the L2 loss function from R-CNN is replaced by a
smooth L1 loss for two main reasons: First, it is less sensitive to outliers render-
ing it more robust to noisy detections. Second, it is continuously differentiable,
allowing more efficient computation of gradients. For the " instance, Bci is the
predicted bound box for class ¢; and b; is the target bounding box. 1.,>; is an
Iverson bracket indicator function that outputs 1 if a foreground class (¢; > 1)
is encountered or 0 if background (c; = 0). ;. serves as a balancing factor,
influencing the weight of the localization loss within the overall training loss.
The localization loss is computed as:

loc

LRN(G b)) = Z smoothLl(Bz —b’), (2.21)
JE(z,y,w,h)

where

0.522, if |z| < 1.

2.22
|x| — 0.5, otherwise. (222)

smoothyq(x) = {

Analogous to R-CNN, the bounding box regression is performed on box offsets
4 rather than absolute coordinates for the detector to be invariant to various
scales and locations. For the i" instance, given a ground-truth box b; =
(b¥,bY,b¥ b?) and a predicted bounding box b; = (b#,bY,b¥,bl*), the box
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Figure 2.7: A detailed overview of the Faster R-CNN architecture. The image is sampled from the
MS-COCO dataset [Lin14]. The image initially goes through the backbone, resulting
in feature maps. These feature maps are then input into the RPN, which generates
anchors and subsequently identifies object proposals (red boxes). The object propos-
als are then fed to the Rol pooling layer along with the input feature maps to produce
Rol pooled features. Lastly, the R-CNN module performs further feature extraction
at the instance level, yielding classification scores s and bounding boxes b.

offset §; = (6%,6¢,6%,0") is parametrized as follows:

(2R A A )

d; = (by —b7)/by’, (2.23)
67 = (b} = by) /bl (2:24)
6¥ = log(b¥ /bY), (2.25)
5 = log(bl /bl). (2.26)

During training, Fast R-CNN samples 64 proposals for each input image,
out of which 25% are foreground instances. Instances are considered to be
foreground if their IoU > 0.5 and background if 0.1 < IoU < 0.5.

Faster R-CNN

Despite the improvements made by Fast R-CNN, the SS algorithm remains
a bottleneck. It is important to note that the SS algorithm runs on a Cen-
tral Processing Unit (CPU) and not a GPU, increasing both the training and
testing time.

Region Proposal Network (RPN). Faster R-CNN [Ren15] replaces the SS
algorithm with a 3-layer CNN, namely the RPN. The RPN comprises a shared
3 x 3 convolutional layer followed by two 1 x 1 convolutions for the objectness
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scores, denoting the likelihood of an object being present, and the bounding
box offsets refinement. To begin with, for each pixel in the input feature
map, the RPN generates a fixed number of anchor boxes with varying sizes
and aspect ratios. Next, the feature map undergoes a 3 x 3 convolution to
produce a feature map for every pixel position. Following this, the two parallel
1 x 1 convolutional layers output the objectness score and the associated
bounding box regression offsets. The RPN then filters the positive anchors
with foreground objects by selecting the anchor box with an IoU > 0.7 and
as negative in case of an IoU < 0.3 using NMS. The remaining anchors and
boundary anchors are discarded during training. Finally, to avoid learning bias
toward negative samples, a balanced batch of 128 positive and 128 negative
anchors are randomly sampled, with supplemental negative samples if lacking
positives. The RPN loss function is denoted by

1 Neis
Lron = > LN (D)
cls i=1
Nreg
AR 1 Z li - LEPN (b, by),

loc loc
Nreg i=1

(2.27)

where L8N is a binary cross-entropy classification loss. p; denotes the the

predicted probability of the it" anchor. /; is the associated ground-truth binary
label denoting whether or not an object is present. N, is the total number
of positive and negative anchors in the mini-batch for the RPN classification
loss. E?ﬂ,\] is a smooth L1 loss. Bi and b; are the predicted and ground-truth
bounding boxes, respectively. As previously mentioned, the regression is

/\RPN

done on the parameterized offset coordinates. A},

is typically set to 10. N,.q is the number of anchor locations (the area of
the input feature map).

is a scaling factor that

Alternate Training Paradigm. Faster R-CNN adopts a 4-step alternate train-
ing paradigm. First, the RPN is independently trained end-to-end by finetuning
an ImageNet-pre-trained CNN backbone for the region proposal task. Second,
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a Faster R-CNN detection network is separately trained using the propos-
als generated by the trained RPN from the previous step. Third, the RPN is
finetuned using the detector network, where the shared convolutional lay-
ers are fixed, and only the non-shared RPN layers are finetuned. The shared
convolutional layers encourage the RPN to learn to generate higher-quality
proposals. Finally, the non-shared layers in the detection network are fine-
tuned while keeping the shared convolutional layers fixed. This enables the
detector network to better classify and refine the Rols generated by the RPN.

With both networks sharing the same convolutional layers, a unified network
is formed, and the overall detection training loss combines the RCNN (Eq.2.19)
and RPN (Eq.2.27) loss functions:

Lget = LrennN + LRPN. (2.28)

An illustration of the Faster R-CNN model is presented in Figure 2.7.

Cascade R-CNN

Tuning the IoU threshold is a critical aspect of training a detection model. If
the threshold is set too low, more samples would be considered as foreground
resulting in more noisy detections. Conversely, if set too high, positive samples
may vanish exponentially due to overfitting during training. This issue can
worsen due to a misalignment between the IoU values during training between
the Rols and actual ground-truth boxes, and the IoU values during testing
between the Rols and the target boxes.

To overcome the limitations above, Cascade R-CNN [Cai18] was introduced,
where several cascaded detectors are trained, each with increasing threshold
values, making it more robust to false positives. In addition, the detectors are
trained sequentially in stages, taking advantage of the output of one detector
as a better prior distribution to training the next one.

The cascaded regression can be viewed as a resampling procedure that accli-
mates the distribution of the input hypotheses, where each specialized stage re-
gressor is optimized for the resampled distribution. Moreover, this resampling
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is done during training and inference, ensuring consistency between the two
and leading to more accurate localization. Additionally, the regression offsets
are normalized using their mean and variance to facilitate multi-task learning.

Cascade R-CNN Loss. Each stage s, the R-CNN comprises a classifier i},

and a bounding box regressor h?__, which are optimized for an IoU threshold

reg’
of t°. The loss function for a single stage is given by

Lionn = LXND"0) + A Les1 L8N (B, by), (2.29)

where p° = h¥, (z ) is the predicted probability for the current stage input x*.
b = hs (571, b 1) is the predicted bounding box based on the preceding

reg
bounding box from the previous stage. The classification and regression loss

functions are computed as previously defined in 2.20 and 2.21, respectively.

The classification and regression losses are summed together at each stage and
ioe- In the first R-CNN stage, Aj
set to a large value to encourage accurate detection at lower IoU thresholds,

weighted by a loss balance parameter \; a1
and it is gradually lowered in succeeding stages to promote the network to
focus on increasingly challenging objects. For S R-CNN stages, the overall
training loss Ly is:

S
Lot = Lron + Y Lionn: (2.30)

s=1
2.2.3 One-Stage Detection Networks

While two-stage frameworks yield high detection accuracy, particularly in
cases where the objects are small or heavily occluded, they come at the expense
of higher computational complexity and longer inference time. On the other
hand, a one-stage framework works in a single-step process. It directly predicts
the class labels and bounding boxes for each object without any intermediate
region proposal step. Unlike the two-stage framework, it is faster and com-
putationally efficient but may not achieve high detection accuracy, especially
when objects are small or densely packed.
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To predict the location and size of objects, one-stage frameworks frequently
utilize anchor boxes, whereas two-stage frameworks use the RPN to suggest a
set of candidate boxes for further refinement. Furthermore, one-stage frame-
works often employ feature pyramids to handle objects of varying scales,
while two-stage frameworks employ multi-scale feature maps and a spatial
pyramid pooling layer. However, the most suitable framework depends on the
application and available resources. For example, if high accuracy is essential
and computational resources are not a concern, then a two-stage framework
may be the optimal choice. However, a one-stage framework may be more
suitable, if efficiency and speed are more critical.

YOLO Family

In 2016, Redmon et al. proposed You Only Look Once (YOLO) [Red16], the
first real-time one-stage object detector among the YOLO family. YOLO views
the object detection problem as an end-to-end regression problem, where the
network directly predicts the class probabilities and the associated bounding
boxes from the input image.

YOLO is a CNN-based architecture that divides the input image into G x G
grid cells and predicts a fixed number of bounding boxes, associated class
probabilities, and confidence scores in each grid cell. The confidence score
is the probability that the predicted bounding box contains an object which
overlaps with the ground-truth one. Specifically, the input image is resized to
a fixed size. Next, the resized input image is then processed through a series
of convolutional layers, beginning with a 1 x 1 convolution and a subsequent
3 x 3 convolutional layers. A ReLU activation function is then utilized after
each convolution, except for the final layer.

The output is a tensor with dimensions (G, G, B x 5+ C'), where G is the size
of the grid. C'is the total number of detection classes. B denotes the number
of predicted bounding boxes for each grid cell, and 5 refers to the 4 bounding
box coordinates (z,y, w, h) and confidence score ¢s. (x,y) corresponds to the
center of the box, and (w, h) represents the width and height of the predicted
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box, respectively. These values are then normalized by the grid size and are
relative to the grid cell in which the box is located.

YOLO Loss Function. The YOLO framework predicts multiple bounding
boxes for each grid cell. However, when computing the loss function, only one
bounding box is selected for the object, if it exists within that cell. The selection
criterion is based on the highest IoU with the ground-truth object, making
each prediction more accurate for different sizes and aspect ratios of objects.
The loss function consists of three parts: classification loss, localization loss,
and confidence loss. First, for each grid cell g, the classification loss computes
the squared error between the predicted probability and target class:

cls - Z ]]-Ob]g Z ) - yg(c))2a (2-31)

ceC

where 1oyj¢ is an indicator function that evaluates to 1 if an object is present in
grid cell g. For class ¢, p, (c) and y,(c) represent the predicted class probability
and one-hot target label, respectively. Second, the localization loss measures
the squared error between the predicted and target bounding boxes taking
into consideration the bounding boxes responsible for the detection:

Lioc = Aoc Z}g ( obj9> o xg)Q +(gg — yg)Q
+ (Vg — \/ivg)? \/7 Vhy) ) (2.32)

objo-> evaluates to 1 if the b™ bounding box in the grid cell g is respon-

sible for detecting the present object. Ajo. is the scaling factor to control the

where 1

contribution of the localization loss. The width and height are square rooted
to emphasize the error relative to the bounding box size. Third, the confidence
loss measures the squared error difference between the predicted and target
confidence scores for foreground and background boxes:
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B
Leont = ZZ( objo+ csg—csg) + Anoobj Lnoobjs: o (Csg— ng)2>, (2.33)
9=0 b=0

where ¢s and cs denote the predicted and target confidence scores, respectively.
The target confidence score is computed using the IoU between the predicted
and ground-truth box. 1,,,,s.6 evaluates to 1 if the b™ bounding box in the
grid cell g is background. Apoo is the scaling factor to weight down the loss for
background detection. The final training loss is a summation of the three losses.

The benefits of YOLO is twofold. Firstly, it tackles object detection as a single
regression problem, making it faster than R-CNN detectors and able to work in
real-time. Secondly, YOLO omits the RPN, reducing the chance of false positives
as it processes the entire image, maintaining a strong sense of context. On
the other hand, YOLO may perform poorly when dealing with small objects
and crowded scenes due to the restricted spatial grid resolution and the fixed
number of boxes per grid cell.

YOLO Variants. Since the first introduction of ground-truth, numerous
variants have followed, proposing various architectural and data augmen-
tation modifications. To improve upon the original ground-truth architecture,
YOLOv2 [Red17] makes several modifications. Instead of VGG-16, it utilizes
a Darknet-19 [Red17] network with fewer convolutional layers and higher-
resolution inputs. YOLOv?2 also incorporates anchor boxes and predicts offsets
to each anchor box to enhance localization. To regularize and accelerate the
training process, BN is employed. Moreover, YOLOv2 picks the anchor box
dimensions with a K-means clustering algorithm applied to the training data-
set bounding boxes. This provides better box priors with higher IoU scores
across different classes. These changes have led to improved detection per-
formance while reducing the inference time for YOLOv2. In order to improve
the detection accuracy of small objects, YOLOv3 [Red18] employs a FPN. In
addition, YOLOvV3 utilizes a deeper backbone network, Darknet-53 [Red18],
providing higher accuracy in object detection. However, this comes at the cost
of a slower inference speed than YOLOv2.
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RetinaNet

Without a RPN, the dense predictions of a one-stage detector can yield many
empty anchor boxes hindering the learning signal. RetinaNet [Lin18] addresses
the issue of imbalanced foreground and background class distribution in an
anchor-based framework. The model introduces a novel loss function, referred
to as focal loss, which prioritizes the contribution of hard examples during
training while down-weighting the contribution of easier ones. Hard examples
refer to samples the detector fails to classify and localize accurately. Focusing
on more challenging examples helps mitigate the issue of easy negative exam-
ples dominating the loss function. Formally, the focal loss can be written as:

o) = {(1 —p)"log(p), ify=1. (230

—p7log(1 — p), otherwise.

where p is the predicted class probability. v is a modulating parameter, which
can be tuned to focus on the hard negative examples and reduce the loss
contribution of easy ones. In Online Hard Example Mining (OHEM), the loss
of each example is calculated, and then NMS is used to remove redundant
detections. A mini-batch is then formed by selecting samples with the highest
loss scores. OHEM focuses on misclassified examples, similar to focal loss,
but it differs from focal loss in that it completely discards samples that are
easy to classify.

To detect objects with various scales and sizes, RetinaNet uses ResNet-FPN
to extract features from different levels of the input image. The model also
employs a dense anchor coverage approach, utilizing nine anchors per pyramid
level. RetinaNet uses separate classification and localization subnets to learn
more class-specific and class-agnostic features, unlike other models that share
a CNN for classification and regression tasks. These subnets have the same
architecture: four consecutive 3 x 3 convolutional layers and ReLU activations.
However, the output of the classification subnet is C' x A, where C is the total
number of classes, and A is the number of anchors. Meanwhile, the localization
subnet outputs 4 A predicted offsets for each anchor.
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CenterNet

Most previously reviewed object detection methods are anchor-based, relying
on predefined anchor boxes with fixed sizes and aspect ratios. However, this
dependency on predefined anchor sizes may impede the detection of objects
with a broad range of sizes and shapes, especially for small objects and objects
with uncommon aspect ratios. To this end, anchorless object detectors predict
the bounding boxes of objects without any predefined assumptions regarding
their size or shape. Instead, an anchorless detector directly regresses the
bounding boxes from the feature maps of the input image. This enables them
to improve the accuracy and efficiency of object detection for objects with
different sizes and aspect ratios, especially for smaller objects.

CenterNet [Dual9] was a pioneer anchorless detector representing the object
as a point, namely the keypoint, corresponding to the bounding box center.
CenterNet comprises three heads: keypoint heatmap, localization offset, and
object size. The keypoint heatmap head outputs C' channels, one for each
class, where a heatmap value evaluates to one at the center of the object
and exponentially decreases as it moves further away from that center. The
heatmap loss Ly, is defined as the MSE between the predicted heatmap f’;y
for class ¢ and the ground-truth heatmap Y :

Do) es (V) ifYe, = 1.
zy c=1 (1 -Y° )5 (YC ) log (1 — ny> , otherwise.
(2.35)

Ny is the total number of keypoints. x and y denote the keypoints coordinates.
« and 3 are hyperparameters that balance the positive and negative samples.
For a positive sample Y, = 1 or a negative sample, a focal loss is utilized

with the only difference of a modulating factor (1 — Y;y)ﬂ to reduce the
contribution of negative examples. The generated heatmaps are in a lower
spatial resolution, where the width and height of the input image are divided
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by the model output stride R and floored. When scaling up the heatmap to
the original image size to get the final predictions, the precision errors can be
up to a few pixels. To account for the pixels-mapping errors, the localization
offset head predicts the pixels offset for each spatial dimension. For the N,
positive samples, the localization offset loss is defined as the Mean Absolute
Error (MAE) between the predicted offset (O, O¥) and ground-truth offset
values (O*,OY):

N,
1 . .
ﬁoH:N—E |OF — OF| + |0Y — 0Y]. (2.36)
POs =1

Third, the object size head predicts the width and height of the bounding box.
Similar to the localization offset loss function, for all positive samples, the
shape size loss functions compute the MAE between the predicted (w, i) and
ground-truth (w, h) object shapes:

1o
Npos i—1 w; + hl

Lhape = (|mi — w;| + |hs — hi|) , (2.37)

where 1/(w; + h;) is a normalization factor that helps to prevent objects with
larger shapes from dominating the loss compared to smaller ones. The overall
training loss is then the summation of the three losses above.

2.2.4 Evaluation Metrics

The performance of a 2D OD model is typically measured by various evalua-
tion metrics that measure its performance based on the prediction statistics
comprising the following:

« True Positives (TPs): the count of correctly identified positive objects.
« False Positives (FPs): the count of incorrectly identified ones.

« True Negatives (TNs): the count of accurately identified negative
objects.
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« False Negatives (FNs): the count of mistakenly identified ones.

This section discusses the most commonly used evaluation metrics for 2D
object detection and their significance.

Intersection over Union

Given a predicted and a ground-truth box, the Intersection over Union (IoU)
computes the quality of the predicted bounding box by computing the inter-
section area and dividing it by the total area of both boxes. Not only is it a vital
evaluation metric, but it is also often utilized during training, for example, to
filter the object candidates generated by a RPN based on a predefined threshold.

AIN Hlin(z4p7 AGT)

IoU =—=

e 2.38
AUN maX(Ap, AGT) ( )

where Apy is the intersection area between the predicted and ground-truth
boxes. Ayn denotes the union area between the predicted and ground-truth
boxes. Ap and Agr denote the area of the predicted and ground-truth bounding
boxes, respectively.

Average Precision and Recall

The Average Precision (AP) [Sal83] is the most commonly used evaluation
metric for object detection. AP is the area under a precision-recall graph for
different IoU thresholds. The Precision evaluates the effectiveness of the model
in identifying the TPs within its positive predictions:
Precisi Ihs (2.39)

recision = —————. .

COON = TPs+ FPs
The recall represents how much the model could recall from the provided
ground-truth labels:

TPs

Recall = — > 2.40
A TPs+ FNs (240)
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Following Microsoft Common Objects in Context (MS-COCO) [Lin14], the AP
is computed using 101-point interpolation across a range of IoU thresholds
for each class, commonly [0.5,0.95] with a step of 0.05. For the ¢ class,
the AP is defined as:

1
AP.w = /Precision(r) dr, (2.41)
0

where Precision(r) represents the precision at a given recall level r. Then,
the mean Average Precision (mAP) is computed by averaging across all C'
classes as follows:

C
1
mAP = Z AP . (2.42)

The Average Recall (AR) is defined as the area under the recall-IoU graph.
Specifically, for each class, the AR is computed by doubling the area under
the graph with ToU threshold range of [0.5,1.0]. For the ¢ class, the AR
is denoted by:

1
AR =2 / Recall(iou) diou, (2.43)
0.5

where Recall(iou) is the recall value for the IoU threshold iou. Analogous to
mAP, the mean Average Recall (mAR) finally averages the AR for all classes.

The AP metric captures the trade-off between precision and recall as the IoU
threshold varies. A high AP indicates that the model is accurate while being
able to find most of the objects. On the other hand, a high AR suggests that the
model can consistently detect a high proportion of objects, even with higher
precision. This reflects the robustness of the model in detecting objects with
different difficulty levels.
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2.3 Discussion

This chapter established the foundational theoretical principles of DL that un-
derpin the subsequent discussions in this dissertation. It provided a thorough
overview of fundamental concepts such as neural networks, activation func-
tions, and normalization techniques. Additionally, various fundamental deep
feature extractors were introduced, such as ResNet, FPN, and VGG. Moreover,
the chapter formally introduced the OD task within the context of CV and
outlined the primary objectives and associated challenges. Furthermore, the
chapter conducted an extensive survey of the most widely used OD archi-
tectures such as Faster R-CNN, and YOLO. Finally, the chapter introduced a
variety of evaluation metrics employed to assess the performance of object
detection models. The rationale behind metrics such as mAP and mAR was
clarified. These metrics established the criteria against which the original
methodologies proposed in the dissertation will be rigorously evaluated.
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3 Few-Shot Object Detection
Fundamentals

Naturally, humans possess an innate ability to learn new skills and concepts
by building upon their previous experiences, even with only a few examples,
rather than starting from scratch. An illustrative example is when a child,
who has seen just a handful of various animals, can effortlessly recognize
new animals with similar characteristics when presented with a few pictures,
despite never having encountered them.

Few-Shot Learning (FSL) is a growing machine learning subfield striving to
replicate this cognitive ability of humans. FSL leverages prior knowledge and
experience to adapt to new situations with minimal additional training rapidly.
More specifically, FSL involves training a model on a set of related tasks with
abundant data and then adjusting the model parameters to generalize to new
unseen tasks, even with just a few examples available.

Transitioning from the concept of humans’ innate ability to learn new skills
to the challenges in OD holds significant importance. Specifically, the con-
siderable volume of labeled data required for training object detectors can be
expensive, labor-intensive, and time-consuming. Additionally, recent models
require extensive training periods and substantial computational resources,
which poses a challenge for efficient OD on mobile and edge devices. Ad-
dressing this need for adaptability, Few-Shot Object Detection (FSOD) emerges
as a specialized subdiscipline. FSOD aligns with the FSL concept, focusing
on swiftly teaching detectors to identify novel classes using minimal data,
thereby bridging the gap between human-like learning and machine-based
detection capabilities.
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In FSOD, the training dataset is scarce, resulting in an unreliable empirical risk
minimizer (Section 2.1.1) where a significant gap exists between the expected
and empirical risk. To address this issue, FSOD utilizes prior knowledge to find
a more reliable risk minimizer based on the three main perspectives [Wan20b].
First, prior knowledge can be used to augment the scarce training dataset,
increasing the number of training samples and creating a more accurate em-
pirical minimizer. Second, the hypothesis space can be constrained using
prior knowledge, eliminating the improbable space to contain the optimal
hypothesis rather than navigating through a vast hypothesis space. Third,
prior knowledge can influence the search strategy by providing a better initial-
ization rather than starting from random initialization or guiding the search
steps to find the parameterization of the best hypothesis.

This chapter thoroughly examines the foundational principles of FSOD, en-
compassing its two primary categories: transfer learning and meta-learning
based approaches. The chapter begins by formally introducing the FSOD
problem, providing a structured foundation for subsequent discussions. Fol-
lowing this, an in-depth review of transfer learning based approaches and
meta-learning methods is conducted. Various strategies and methodologies are
investigated, highlighting their strengths and limitations and contributing to a
nuanced understanding of their effectiveness. Next, the well-established FSOD
and G-FSOD benchmarks, the MS-COCO [Lin14] and PASCAL Visual Object
Classes (PASCAL-VOC) [Evel0] datasets, are comprehensively introduced.
Finally, the FSOD evaluation metrics for few-shot detectors are presented

3.1 Problem Formulation

FSOD divides the training dataset Diy,i, into a base dataset Dpyse with abundant
instances of base classes Cpae and a novel dataset D,,ve with limited number of
instances of novel classes Cyovel. It is important to note that no overlap between
the base and novel classes (i.e., Chase N Cnovel = @). Each input image X € X
comprises multiple object instances associated with an annotation Y € Y
for each object. X and ) denote the image and label space, respectively. For
each object instance i, the annotation set contains the class label ¢;, and the
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corresponding bounding box coordinates b; = (b¥,b?, b¥, b/*) with image

coordinates (b?,b?) along with the box width b’ and height b?. Formally,

Dbase = {(Xb,Yb) | Yb = {(Ciabi)}zci € Cbaseabi S R4}7

) (3.1)
Dnovel = {(X'qun) | Yn = {(Ci7bi)}7ci S Cnovebbi eR }7

where the subscripts b and n denote the base and novel data, respectively.

As discussed earlier, object detectors require large amounts of data to perform
well. Therefore, if trained only on the scarce novel dataset, they may easily
overfit, leading to poor performance and generalization. On the other hand, if
the training is conducted using the whole training dataset, the detector will
be biased toward the base classes since the base categories outnumber the
novel categories significantly. To tackle the abovementioned issues, FSOD
adopts a two-stage training strategy: base and novel. In the base training
stage, a detector with a pre-trained backbone is trained on the Dy, yielding
a base model. In the novel training stage, the model is finetuned on Dy
while keeping some network parameters frozen to preserve prior knowledge,
resulting in the final model.

3.2 Transfer Learning based FSOD

3.2.1 Preliminaries

FSOD can be categorized into two main learning approaches: meta-learning
and transfer learning. Transfer learning is a learning strategy that uses the
knowledge gained from a previously trained model as a starting point for a
new learning task rather than training a new model from scratch. Transfer
learning is based on the idea that the model has learned features that can be
transferred to new tasks. Formally, during the base training phase, a base
model parameterized by @, aims to optimize for the log-likelihood:

O] = arg m@axlogp(Yb|Xb; Os). (3-2)
b
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Next, the optimal base parameters ©; can be leveraged as initialization pa-
rameters for novel training, encapsulating prior knowledge. Formally, the
optimization objective during novel training can be denoted as follows:

O; = arg Iréaxlogp(Yn\Xn; 0,) st.O00=0@;. (3.3)

Moreover, transfer learning challenges the common assumption made by deep
learning models that the distribution and feature space of the training and
testing data are the same, which is not always valid in real-world settings.
For example, if a model is trained on synthesized images and encounters real
camera images during testing, it may perform poorly due to the distribution
shift or domain gap. As such, transfer learning based FSOD methods primarily
focus on the inductive setting, where a model trained on a source task is aimed
to enhance the learning of a different target task. In FSOD, the base task has a
significant amount of data to narrow down the range of possible hypotheses,
while the novel task utilizes limited examples to explore within the restricted
hypothesis space and induce a robust predictive model.

Transfer learning offers multiple benefits, such as reducing the time and re-
sources required to train a model from scratch by utilizing the knowledge
gained from pre-training on large datasets. It can also be useful in situations
with limited data availability or a domain shift between training and testing
data. Additionally, finetuning pre-trained models for new tasks often leads
to better performance than training a model from scratch. However, transfer
learning has several limitations. Firstly, it assumes that the pre-trained model
has learned relevant features that can be transferred to the target task, which
may not always be true. Secondly, the pre-trained model may have biases
or limitations that could negatively impact performance on the target task.
Finally, the transfer of features may not be optimal for the new task, which
can lead to suboptimal performance.
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3.2.2 Related Works

LSTD: Low-Shot Transfer for Object Detection (LSTD) [Che18a] is the first
FSOD framework. The architecture is designed to perform classification similar
to two-stage detectors and localization similar to one-stage detectors, all while
integrating additional regularization modules. First, LSTD performs classifica-
tion like Faster R-CNN [Ren15] with the only difference of replacing the fully
connected layers with convolutional layers. By doing so, the classifier can
focus on the candidate objects in a coarse-to-fine manner, which should share
more common foreground features than those in the background. Second,
since LSTD divides the image into smaller grid cells, a set of candidate boxes is
generated for each spatial location in the backbone convolutional feature map.
The bounding boxes are then regressed using a smooth L1 loss to penalize
the offset error between predicted and ground-truth bounding boxes. Third,
to enhance knowledge transfer and localization, LSTD employs two tech-
niques: background suppression and transfer-knowledge regularization. The
latter adds the L2-norm of the activations obtained by projecting groundtruth
bounding boxes into the convolutional feature map to the global loss, allowing
the model to focus on suppressing background regions in target objects. On
the other hand, background suppression uses base domain knowledge as a
regularizer to finetune the novel target domain. Additionally, LSTD introduces
an extra classification head to the target domain model, which classifies the
classes of the source domain. This encourages more effective incorporation
of base domain knowledge when learning novel classes.

TFA: In 2020, Wang et al., proposed a pioneering FSOD work, namely
Two-Stage Finetuning Approach (TFA) [Wan20a], based on the Faster R-
CNN [Ren15] detector. Based on the assumption that the base and novel
tasks are highly related, the learned base representations from the backbone
and RPN are considered transferable to novel classes without finetuning.
In contrast, the localization features learned by the box predictor are class-
specific and thus require finetuning on novel classes. To this end, TFA
proposes a two-stage finetuning scheme. In the first phase, the base training
is conducted on the base training dataset using the Faster R-CNN losses.
Then, to avoid overfitting on limited data, TFA freezes the whole network
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except for the final box predictor layers in the second stage while leveraging
a cosine-based similarity classifier with a reduced learning rate. Scaling the
similarity scores between the feature and class weight vectors using the
cosine similarity decreases the intra-class variance, improving the detection
performance during novel training.

MPSR: The problem of scale variation in a few-shot setting is not addressed
by TFA, as just adding an FPN to the backbone is not enough to compensate
for the sparsity of samples available for the novel categories at different scales.
To address this, Multi-Scale Positive Sample Refinement (MPSR) [Wu20a]
proposes using object pyramids, where each object is extracted and resized
to multiple scales. However, this approach is not directly applicable to the
detection pipeline since standard object pyramids contain only a single instance
in each image. The MPSR method addresses the scale variation problem by
creating object pyramids, which involve cropping objects using their ground
truth bounding box and resizing them to various scales. A positive sample
refinement branch is then added, which selects feature maps from the FPN
to feed into both the RPN and detection heads for refinement. Moreover, the
MPSR branch computes objectness and classification scores to augment the
RPN and Rol loss functions, respectively.

FSCE: Few-Shot Contrastive Encoding (FSCE) [Sun21] revisits the TFA method
and allows the RPN and Rol head to be unfrozen without negatively affecting
performance. This is done to learn more semantically meaningful information
for the novel classes. Unlike TFA, FSCE utilizes a Faster R-CNN [Ren15] with a
FPN to allow multi-scale feature learning. The authors provide critical insight
that the RPN assigns low objectness scores to positive novel anchors at the
start of the novel training phase, causing them to be eliminated during NMS.
Consequently, a shortage of foreground proposals leads to a dominance of
background features during the learning process.

Unlike TFA, FSCE introduces a stronger baseline unfreezing the RPN and
Rol head with two modifications. First, the number of post-NMS proposals
doubles for more positive novel anchors. Second, the number of sampled
proposals for the Rol head is decreased by half to discard background features
maintaining a balance between the foreground and background proposals. To
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Figure 3.1: A detailed overview of the Decoupled Faster R-CNN (DeFRCN) framework. In the
forward pass, the shared backbone features undergo affine transformations to dif-
ferent spaces. During the backward propagation, gradient scaling adjusts the degree
of decoupling between the RPN and R-CNN. DeFRCN introduces the Prototypical
Calibration Block (PCB), a metric-based scores refinement module to enhance the
separation of classification and localization tasks during inference. PCB computes co-
sine similarity between predicted instance-level features and stored class prototypes
to refine classification scores. The resulting similarity scores are used to perform a
weighted average with the predicted classification score.

improve the learning of semantically rich information for novel classes in the
FSCE framework, a contrastive branch is added in parallel to the classification
and regression branches of the tunable Rol head. Specifically, the Rol fea-
tures are projected to a lower dimensional feature space using a single MLP,
and similarity scores are computed between the encoded object proposals.
Subsequently, a contrastive objective is employed to increase the agreement
between object proposals belonging to the same class while promoting the
distinctiveness of proposals from different classes. This, in turn, allows the ob-
ject proposal embeddings to form tighter clusters and have greater separation
between different clusters in a projected hyper-sphere, leading to increased
model generalizability in few-shot scenarios.

DeFRCN: Two-stage object detectors face a conflicting optimization prob-
lem between the class-agnostic RPN and the class-specific R-CNN through
a shared backbone. While R-CNN requires translation-invariant features for
the classification, translation-covariant features are required for the box re-
gression, resulting in many low-quality IoU scores and reduced classification
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accuracy. These adversities are further exacerbated in few-shot learning sce-
narios due to the limited available samples. Moreover, the shared backbone in
two-stage detectors seeks to extract robust and diverse features suitable for
various downstream tasks since the RPN and R-CNN exchange knowledge
through the shared backbone parameters [Ren15]. However, in FSOD, the
RPN may confuse foreground and background during novel training. This is
because proposals identified as background during the base training phase
may become foreground during the novel finetuning phase. Although sharing
convolutional layers improves the base performance, it overfits the base data,
impairing its ability to transfer rapidly and effectively to the novel classes.

Decoupled Faster R-CNN (DeFRCN) [Qia21] exploits the insights mentioned
above to improve the FSOD performance of a simple Faster R-CNN model.
Concretely, DeFRCN decouples the learning tasks of the backbone, RPN, and
R-CNN by modifying the backpropagated gradients. Central to the DeFRCN
method is the introduction of the Gradient Decoupling Layer (GDL) mod-
ule that modifies the gradients differently during the forward and backward
passes. GDL uses an affine transformation layer with learnable channel-wise
weights and bias during the forward pass to improve feature representations.
During the backward pass, GDL multiplies the gradient from the subsequent
layer by a positive constant lower than 1.0 to control the contribution of the
backpropagated gradients to the backbone. DeFRCN inserts one GDL between
the backbone and RPN and another between the backbone and R-CNN. Con-
cretely, during the forward propagation, the feature from the shared backbone
is transformed into different feature spaces through the affine transformation.
Moreover, the decoupling degree is adjusted by rescaling the gradients during
the backward propagation. It is important to note that the RPN gradients are
killed during both the base and novel training phases since the RPN aims to
learn class-agnostic features. Since the localization task gradients tend to force
the backbone to learn translation-covariant features, it may negatively affect
the translation-invariant classifier performance. The issue can be more severe
in data-scarce scenarios due to the complexity of the model.

To improve the decoupling of classification and localization tasks during in-
ference, DeFRCN introduces a metric-based scores refinement module called
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the Prototypical Calibration Block (PCB). This module comprises an ImageNet
pre-trained classifier to extract a feature map for the input image. Additionally,
the PCB includes a prototype bank consisting of class prototypes computed
by averaging instance-level features. To refine the classification scores, the
PCB calculates cosine similarity between the predicted instance-level features
and the stored class prototypes. This similarity score is then used to perform a
weighted average with the predicted classification score using a pre-defined
hyperparameter. Because there are no shared parameters between the few-shot
detector and the PCB module, the PCB preserves the quality of the translation-
invariant features aimed at classification and better separates the classification
and regression tasks within the R-CNN.

3.3 Meta-Learning-based

3.3.1 Preliminaries

Rather than improving the model predictions, meta-learning offers a peculiar
learning paradigm to enhance the learning algorithm. Meta-learning gathers
learning experiences throughout numerous episodes. Each episode E com-
prises an N-way-K-shot task T" € T, where 7 is the task space. A task
T = {{S",...,8°},Q} is made up of C classes, featuring labeled support
sets with K instances each. @ is a query image with objects belonging to
the N classes. 8¢ = {S7,...,8%} is a support set for the c class. The
k™ support image S is a close-up of an object of class ¢ cropped via the
annotated bounding box.

To simulate the test-time scenario during training, meta-learning employs
a two-stage training approach consisting of meta-training and meta-testing.
During meta-training, episodes are generated with non-overlapping base tasks
and objective functions. During meta-testing, episodes with novel tasks are
utilized to update the inner base algorithm to enhance the outer objective.
Formally, the meta-training phase is denoted as:

w* = argmaxlogp (Y| X, w). (3.4)
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The meta-parameters w* can be initial parameters, an optimization approach,
or a learning model, depending on the utilized meta-learning technique. Meta-
testing then leverages the acquired meta-knowledge w* to learn a novel task:

©;, = argmaxlogp (¥ n| X p; O, 7). (3.5)

Meta-learning provides several advantages. Firstly, it enhances the generaliza-
tion performance of the model, as it enables learning how to learn from a set of
related tasks. Secondly, it can significantly reduce the amount of data required
to train models for new tasks by enabling knowledge transfer between tasks.
Thirdly, meta-learning proves beneficial in situations involving shifts in data
distribution, such as domain shifts between training and testing data. This
is due to the episodic training approach, which addresses distinct sub-tasks
within each episode. This strategy drives the model to gather knowledge on
how to solve various tasks rather than excessive overfitting to class-specific
or domain-specific attributes. However, meta-learning also has limitations.
First, it typically requires significant computational and memory resources.
Secondly, identifying a suitable set of related tasks for the model to learn from
can be difficult, and if the tasks are not sufficiently related, performance may
degrade significantly. Thirdly, the hyperparameters and architecture design
choices can highly influence the meta-learned knowledge, impeding effective
generalization to new tasks.

3.3.2 Related Works

MetaYOLO: In 2018, Kang et al. introduced the first one-stage meta detector
based on the YOLOv2 [Red17] architecture, MetaYOLO [Kan18]. The approach
builds upon the assumption that the model has already been trained on ad-
equate base data during the meta-training phase. In the meta-testing phase,
with only a few support examples, the idea is to learn weight coefficients that
will be used to perform a weighted average of the novel features. Given a
query image, the backbone is a meta-feature learner extracting class-agnostic
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features. In parallel, a shallow CNN reweighting module accepts a single sup-
port image. It generates a class embedding and then performs channel-wise
multiplication with the extracted meta-features to highlight the more relevant
features. The features are then reweighted class-wise viaa 1 x 1 depthwise
convolutional layer and fed to the prediction layer to regress the classification
scores, bounding box offsets, and objectness scores. More specifically, the
model jointly trains the detection network and the reweighting module during
the meta-training phase to ensure their coordination. In the meta-testing
phase, the model is trained on base and novel classes while maintaining a
balanced training by sampling base samples to match the number of available
novel samples. The reweighting coefficients depend on the randomly sampled
pairs during the training phase. To compute the final reweighting vector for
a target class, the predicted K-shot samples are naively averaged. During
inference, the reweighting module can be removed since it the model can
perform detection without a support set.

MetaDet: As mentioned, CNNs start by learning low-level features (e.g., edges
and corners) and more high-level features (e.g., faces) as the network gets
deeper. Consequently, in meta-learning, the low-level base features are class-
agnostic and thus more transferable to novel classes. In contrast, the high-level
features are class-specific, meaning they are not directly transferable to novel
classes and may need to be finetuned. Motivated by the insights above, Wang
et al. proposed MetaDet [Wan19c], which leverages a few support examples
to predict the class-specific parameters through a meta-learner model trained
on sufficient database data.

Specifically, MetaDet adopts a Faster R-CNN detector where the RPN is consid-
ered the class-agnostic component with easily transferable features between
base and novel classes. In contrast, the final fully-connected prediction lay-
ers learn class-specific features that require adaptation. MetaDet employs a
weight prediction meta-model that inputs a few support images and learns
a transformation needed for class-specific bounding box detection parame-
ters. Concretely, the goal of MetaDet is to penalize the difference between the
base-trained and predicted weights in addition to the detection loss. Moreover,
MetaDet splits the meta-training into two phases for the class-agnostic and
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class-specific components, respectively. In the first phase, a base detector is
trained on abundant base data and outputs the class-specific base parameters.
In the subsequent phase, the base detector is finetuned in an episodic manner
with base data samples by freezing the class-agnostic components and only
training the class-specific ones. This phase is vital for learning the weight
prediction meta-model. The meta-testing phase is normally conducted after
initializing the class-agnostic components with the base parameters while
randomly initializing the class-specific ones. The meta-model predicts the
desired class-specific parameters for the novel classes during meta-testing.
At inference time, the meta-model is totally omitted, and the model operates
as a normal Faster R-CNN detector.

Meta R-CNN: Meta R-CNN [Yan19] modifies MetaDet by focusing the meta-
learner on the R-CNN features rather than the whole image features. The
Meta R-CNN model proposes a Predictor-head Remodelling Network (PRN)
module that aims to meta-learn class-attentive vectors that can be used to
exploit the Rol features. The PRN receives images with bounding boxes and
learns class-attentive vectors to achieve this. These vectors use channel-wise
soft attention on Rol features to adapt the R-CNN predictor heads, enabling
them to detect objects belonging to the classes at hand. Specifically, Meta
R-CNN inputs the few-shot support images to the PRN to compute the class
attention vectors by averaging the computed class attention vectors. These
vectors are then multiplied channel-wise with the Rol head features to attend
specific classes. These attended feature maps are then passed to the final
R-CNN predictor layers for object detection or segmentation. To supplement
the Faster R-CNN loss, Meta R-CNN incorporates a meta-loss that employs a
cross-entropy loss function to classify the predicted class-attentive vectors. By
doing so, the model guarantees that the class attention vectors are diverse.

Attention-RPN: The metric-based FSOD is another line of work in meta-
learning [Wan20b] that trains models to learn a feature space for comparing
novel query images with a support set. This allows for object class identifica-
tion. These methods use a similarity kernel to score the similarity between
feature vectors. Higher scores indicate greater similarity, aiding in assigning
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labels without retraining. Similarity scores from comparing query and support
set instances enable label assignment for query instances.

In 2020, Fan et al. proposed Attention-RPN [Fan20], a pioneering metric-based
meta-learning FSOD approach. The Attention-RPN method, like previous
two-stage methods, is built on the Faster R-CNN detector. Commonly, the RPN
is trained as a class-agnostic component with the primary goal of generating
candidate regions to facilitate the task of the subsequent R-CNN detector. In
FSOD, the RPN should be able to eliminate further proposals not belonging
to the given support set in each iteration. However, in most existing FSOD
approaches, the RPN is not explicitly trained to consider the novel classes in
the support set. As a result, the RPN may assign a high confidence score to
a proposal that belongs to a class different from the ones in the support set,
increasing false positives and thus impeding the overall detection performance.

To this end, Attention-RPN proposes an attention mechanism incorporating
support information into the RPN. Specifically, the class-specific support in-
stances features are average pooled and depth-wise cross-correlated with the
query feature maps. The attended feature maps are then fed to the RPN to
guide the proposals toward the relevant support classes. The Multi-Relation
Head is the other main module in Attention-RPN, which, like the attention
mechanism in the RPN, tries to fuse the support information with the instance
query features. The goal is to improve the discriminative ability of the R-CNN
and reduce confusion between classes. To achieve this, three attention heads
are added to the detector: global-relation head, local-correlation head, and
patch relation head. This helps the model learn robust feature embeddings
at global, pixel, and patch levels.

Unlike previous FSOD works, Attention-RPN adopts a unique two-way con-
trastive training strategy. This strategy involves forming training triplets
that consist of a query instance, a positive support instance, and a negative
support instance. To avoid the background proposals from dominating the
training, a predefined sampling scheme is used to balance the ratio of matching
pairs between query proposals and support images. The network strives to
minimize the distance between a positive support instance and a foreground
proposal while pulling away from a background proposal. Moreover, it learns
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to pull away from a negative support instance while ignoring a background
proposal from a different class.

FsDetView: Similar to Attention-RPN, Few-Shot Detection and Viewpoint
Estimation (FSDetView) [Xia20] strives to incorporate support information but
only before the final R-CNN predictor layers. FSDetView presents a unique
feature aggregation module that combines query Rol instance features and
support features using three techniques: concatenation of the query features
by channel, channel-wise multiplication of the support and query features,
and subtraction of the support features from the query features. The proposed
aggregation method effectively minimizes the variance caused by the random
selection of support data in FSOD.

ONCE: Open-ended CentreNet (ONCE) [Per20] is among the first works to
tackle the FSOD in an incremental setting via meta-learning. In conventional
batch training, the network parameters are updated after processing a batch of
inputs. Instead, in incremental training, the parameters are updated as new data
samples are presented to the model. ONCE uses a one-stage CenterNet [Dua19]
detection model, providing a better balance between speed and accuracy than
RetinaNet [Lin18] and YOLO-based [Red16, Red17] architectures. Moreover,
CenterNet adopts a class-wise heatmap-based centroid prediction, making
adding new classes straightforward and more suited for incremental learning.
ONCE uses a two-stage meta-training approach. A feature extractor is trained
on the abundant base data in the first stage. Then, in the second stage, a fixed
feature extractor is used to train an object locator conditioned on a class-specific
code, along with the meta detector, given a support set. During meta-testing,
the ONCE model uses a few-shot support set of novel classes to generate object-
specific weights. The object locator then uses these weights to detect objects in
test images. This process occurs in a feed-forward manner without the need for
further model training or adaptation. For a fair comparison with batch-based
FSOD frameworks, ONCE can also operate in a non-incremental fashion.

CME: Class Margin Equilibrium (CME) [Li21] is a metric-based meta-learning
FSOD approach. In the task of FSL, a performance trade-off exists between
maximizing the distance between the representations of base classes and
reducing the intra-class distance for novel representations. CME modifies upon
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i

Figure 3.2: Examples from the MS-COCO dataset. Note that the segmentation mask is used for

better visualization and is not utilized in this work.
the MetaYOLO framework to a support-query branch architecture similar to
Attention-RPN. In base training, the architecture removes localization features
to avoid interfering with class margins. It uses a fully connected layer to
separate these features and maximize the class margin. During fine-tuning,
the margin should be decreased to reconstruct novel classes using trained
base features. To accomplish this, the discriminability of the prototypes is
reduced via online data augmentation, which involves removing pixels that
correspond to high gradient values. The model balances the class margin by
maximizing margins during backpropagation and minimizing them during
the forward pass.

3.4 Datasets

In FSOD and G-FSOD benchmarks, the two most commonly utilized datasets
are: MS-COCO [Lin14] and PASCAL-VOC [Eve10].

3.4.1 MS-COCO Dataset

The MS-COCO [Lin14] dataset is a widely utilized and influential benchmark
dataset in the field of computer vision. It offers a vast and diverse collection
of images, encompassing 80 different categories, which serves as a valuable
resource for advancing research in object recognition, detection, segmentation,
and captioning. The dataset consists of an extensive set of 330k images,
obtained from diverse sources like the internet and professional photographers,
ensuring a wide range of visual contexts and scenarios. Various examples are
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Figure 3.3: Examples from the PASCAL-VOC dataset.

presented in Figure 3.2. Most of the images in the dataset are annotated with:
(1) class labels, indicating the corresponding object category, (2) bounding box
coordinates that specify the spatial extent of the objects within the image, and
(3) for a subset of images, the dataset also provides pixel-level segmentation
masks, enabling more detailed research tasks like instance segmentation.

Due to the inconsistency of the utilized MS-COCO versions in the FSOD liter-
ature [Wan20a, Qia21, Fan20, Xia20], each proposed method has accordingly
adopted the relevant version. Specifically, the three proposed transfer learn-
ing approaches utilize the 2014 version, while the introduced meta-learning
approach in the last chapter employs the 2017 version. In FSOD, the dataset is
divided into two parts: 60 base classes that do not overlap with the PASCAL-
VOC categories, and 20 novel classes. The testing phase utilizes 5k images
from the validation set, while the remaining images are used for training the
base and novel classes. The MS-COCO benchmark employs three different
settings based on the number of shots: 5, 10, and 30 shots. For instance, in
a 10-shot setting, the model is finetuned using 10 labeled instances for each
novel class. Therefore, considering the 20 novel classes, there would be a total
of 200 novel training instances available for finetuning.

3.4.2 PASCAL-VOC Dataset

The PASCAL-VOC [Evel0] dataset is another well-known dataset that is ex-
tensively employed as a benchmark in various computer vision for tasks. Like
the MS-COCO dataset, most images in the PASCAL-VOC dataset are annotated
with class labels, bounding box coordinates, and, in some cases, pixel-level
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segmentation masks. PASCAL-VOC encompasses 20 object categories, includ-
ing commonly encountered classes such as person, car, and dog. Figure 3.3
displays different data samples.

For FSOD tasks, the PASCAL-VOC dataset is divided into three distinct sets,
each comprising 20 categories. These categories are then randomly split into
15 base and 5 novel classes. The novel classes are organized differently in
each split:

« Novel Split 1: bird, bus, cow, motorbike, and sofa.
+ Novel Split 2: aeroplane, bottle, cow, horse, and sofa.
+ Novel Split 3: boat, cat, motorbike, sheep, and sofa.

Following the well-defined FSOD datasplits [Wan20a, Qia21], training, the base
and novel data are sampled from both the 2007 and 2012 train/val sets during
training. The testing is then performed on the 2007 test set. Different from
MS-COCO, the PASCAL-VOC benchmark is provided for various numbers of
shots per class, specifically 1, 2, 3, 5, 10, and 30 shots.

3.5 Evaluation Metrics

To analyze the performance of both base and novel classes, two evaluation
metrics are employed: base Average Precision (bAP) and novel Average Preci-
sion (nAP). The bAP measures the AP (Section 2.2.4) only for the base classes,
while the nAP reports the AP for the novel classes. The overall performance on
both classes is denoted by AP. Furthermore, the AP metrics can be measured
for different IoU thresholds. For example, bAP50 and bAP75 represent the
bAP performance when considering predicted bounding boxes with an IoU
score of at least 50% or 75% with the ground truth bounding boxes, respec-
tively. These metrics provide a better insight into the localization accuracy
of the detector model.

Similarly, the few-shot evaluation metrics also include the base Average Recall
(bAR) and novel Average Recall (nAR). These metrics quantify the proportion
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of true positive detections among all the ground truth positive instances,
considering the limited number of labeled instances per class during training.
The bAR and nAR metrics provide insights into the ability of the model to
recall relevant objects from base and novel classes within the few-shot setting,
respectively.

3.6 Discussion

This chapter has explored FSOD, focusing on several key elements contributing
to understanding this dynamic field. Firstly, the chapter began with an in-
depth problem formulation of FSOD, outlining the challenges and nuances
of training object detectors with limited examples. This formalization paved
the way for a comprehensive investigation into two main paradigms: transfer
learning-based and meta-learning based approaches.

A systematic literature review was conducted for transfer learning, dissecting
various approaches and strategies to tackle the FSOD problem. One approach
that has been extensively reviewed is the DeFRCN framework, as it serves as a
cornerstone for multiple methodologies proposed in this dissertation. Parallel
to the transfer learning paradigm, the chapter delved into meta-learning, which
holds immense potential for rapid detector adaptation in FSOD scenarios. The
formulation of the FSOD problem within a meta-learning framework was
presented, paving the way for exploring various approaches and strategies that
harness meta-learning principles. Subsequently, a comprehensive overview
of the utilized FSOD datasets was provided, offering detailed insights into
MS-COCO and PASCAL-VOC datasets. Finally, the FSOD evaluation metrics
were introduced.
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Figure 4.1: An illustration of the overall concept. When incorporating the few-shot detection
paradigm into the ML production pipeline, overcoming the challenges posed by ex-
tensive data acquisition, labeling, and prolonged retraining periods becomes feasible.
As aresult, this not only facilitates faster deployment but also allows for the handling
of new objects with limited data that are encountered after the initial deployment.

The main goal of this dissertation is to design various deep learning-based
object detection frameworks that can effectively handle situations with limited
data available for new classes. This circumvents the need for extensive labeling
and retraining process from scratch. More specifically, the work involves
tackling various challenges within this context: developing an embedded-
friendly model, alleviating forgetting base data, considering scenarios where
base data is unavailable due to privacy or memory constraints, and detecting
objects in unseen domains using limited source data.
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A typical ML production pipeline is presented in the upper part of Figure 4.1
comprising five main steps: data collection, labeling, model selection and
training, model testing, and deployment on edge devices. However, challenges
arise in data acquisition and labeling, particularly when detecting new classes
that were not seen during the training phase, resulting in significant labor,
time, and cost implications. FSOD promises a potential solution by leveraging
prior knowledge from abundant base data to rapidly learn new classes. Then,
when encountering new objects, only a handful of data needs to be acquired
and labeled. Next, the model is rapidly finetuned, with only a subset of the
parameters being updated while the rest remain fixed. Utilizing the few-shot
detection paradigm significantly saves time, cost, and labor while enabling
faster deployment. The discussed few-shot detection loop, highlighted in red,
is depicted in Figure 4.1.

FSOD can be categorized into transfer learning and meta-learning approaches.
In transfer learning, pre-trained models on abundant base classes are finetuned
using limited labeled data for novel classes. On the other hand, meta-learning
involves training the model on diverse few-shot tasks to acquire generalized
knowledge, enabling rapid adaptation to new classes during inference. While
traditional meta-learning-based approaches exhibit superior detection per-
formance, they are more complex and resource-intensive. However, recent
transfer learning approaches are closing the performance gap with simpler
and lighter designs, thus bringing the two paradigms closer together.

Dealing with a limited number of samples for these new classes raises important
learning questions: how to efficiently learn these new classes with only a handful
of labeled examples without overfitting? How to prevent forgetting the previously
learned classes? And finally, how to design such an efficient system while abiding
by low computational resources? Addressing these questions can enhance the
detection pipeline, making it more efficient, rapid, and adaptable.

To this end, the central concept behind this work is providing solutions to the
existing challenges in FSOD pipelines. This dissertation explores multiple de-
tection pipelines instead of just one, catering to various requirements, available
resources, and application scenarios. The conceptual depiction in Figure 4.2
illustrates the contributions made in both learning paradigms. Specifically,
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Figure 4.2: A conceptual representation of the primary contributions made in each chapter of
this dissertation, all of which serve the overarching concept.
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within transfer learning-based approaches, DeFRCN [Qia21] detector, known
for its superior performance and reliability within this learning paradigm, has
been utilized as a base framework, and several methods have been introduced
to tackle the challenge of forgetting when learning new classes with limited
data. Figure 4.2 (top) first illustrates the Constraint-based Finetuning Approach
(CFA) [Gui22b], which introduces a new gradient update rule. This rule dy-
namically adjusts the weights of the base and novel gradients, ensuring less
forgetting and a more effective knowledge transfer between base and novel
classes. Next, the Uncertainty-based Progressive Proposal Refinement (UPPR)
framework utilizes predictive uncertainties, such as aleatoric and epistemic un-
certainties, to mitigate forgetting in G-FSOD and improve the overall detection
performance. In cases where base data is unavailable during novel training,
the Neural Instance Feature Forging (NIFF) [Gui23b] method adopts a separate
feature generator with minimal memory usage. It learns to generate base
instance-level features by aligning class-specific statistics and subsequently
replays these forged features to maintain the base knowledge.

65



4 Concept

While transfer learning approaches demonstrate competitive detection per-
formance, they necessitate finetuning novel data. In contrast, meta-learning
few-shot detectors can directly infer new classes by utilizing a support set of
new objects without the need for retraining. Figure 4.2 (bottom) provides an
overview of the two meta-learning frameworks introduced in this thesis. The
first framework, Few-Shot RetinaNet (FSRN) [Gui23a], is a meta-learning-based
one-stage detector more compatible with embedded systems than the two-stage
detectors. FSRN aims to reduce the computational and memory requirements
of the system by various architectural considerations. It significantly im-
proved performance compared to the current state-of-the-art one-stage meta
detectors. This improvement can be attributed to several factors, including
the introduction of a multi-way support training strategy that enhances the
number of foreground samples for dense meta-detectors during training, early
multi-level feature fusion that encompasses the entire anchor area, and the use
of two augmentation techniques on the query and support images to enhance
transferability. FSRN provides an embedded-friendly solution by significantly
reducing the number of model parameters, FLOPS, and inference time.

The second meta-learning-based approach aims to detect new objects in a
target domain when only limited data from a source domain is available. This
approach is called Zero-Shot Domain Adaptive FSOD (ZDA-FSOD) [Gui22a]. It
utilizes various domain randomization techniques, such as pixel-level domain
randomization, on both the query and support data for the novel objects.
Notably, it does not require the generation of additional data from a simulator
and can be applied to different domain gaps. To encourage the learning of
domain-agnostic, class-specific feature embeddings, a new contrastive loss
is introduced in ZDA-FSOD. This loss maximizes the mutual information
between foreground proposals from the query image and the associated class
embedding. It achieves this by bringing the embeddings closer to each other in
the feature space while simultaneously being further apart from a negative class
embedding. Note that ZDA-FSOD is presented in the appendix of this thesis.
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While FSOD focuses solely on the novel performance, Generalized Few-Shot
Object Detection (G-FSOD) addresses the more challenging task of jointly
learning to detect both base and novel classes, optimizing for both. However,
when learning new classes, models often encounter a phenomenon called
catastrophic forgetting. This phenomenon refers to the tendency of the model
to forget the previously learned classes, resulting in degraded detection per-
formance for those classes. Retaining knowledge of previous tasks is vital for
the reliable operation of modern perception systems. For instance, a pick-
and-place robot needs to remember how to grasp both base and novel objects
to avoid hazardous failures.

This chapter proposes new methods to alleviate forgetting in G-FSOD models
using limited base and novel data. It starts with a comprehensive literature re-
view of existing G-FSOD approaches, their strategies to address forgetting, and
relevant Continual Learning (CL) techniques that share a similar interest. Next,
a constrained optimization method for G-FSOD method called Constraint-
based Finetuning Approach (CFA) [Gui22b] is proposed. CFA introduces a
new update rule that guides the model gradients toward a better optimum of
less forgetting and improved detection performance.

Moreover, learning novel classes with limited data amplifies predictive uncer-
tainties, contributing to a decline in detection performance and catastrophic
forgetting. To this end, this chapter further introduces an uncertainty-based
method called Uncertainty-based Progressive Proposal Refinement (UPPR).
It leverages uncertainty estimation techniques to refine the object proposals
generated by the detection model. To evaluate the effectiveness of the proposed
methods, thorough comparison and ablation experiments are conducted.
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5.1 Literature Review

5.1.1 Generalized Few-Shot Object Detection

G-FSOD, a sub-discipline of FSOD that seeks the detection of base and novel
classes, has been gaining prominence in recent years [Wan20a, Per20, Fan21].
The first two approaches [Wan20a, Per20] have been reviewed in Section 3.3.2
and Section 3.2.2, respectively. While TFA [Wan20a] is considered to mit-
igate forgetting by performing finetuning on both base and novel classes,
ONCE [Per20] addresses the issue in an incremental setting by employing a
meta-learning approach with a CenterNet [Dua19] detector. The core concept
of ONCE involves meta-learning a class code generator that progressively
learns to synthesize a class code for the novel classes. However, none of
the methods mentioned above explicitly tackle the catastrophic forgetting
of base classes.

In contrast, Retentive R-CNN [Fan21] presents an alternative approach that
employs transfer learning to explicitly address the issue of forgetting the base
classes. It retains the learned knowledge by leveraging both the pre-trained
base model and the novel model for detecting both classes in a student-teacher
distillation fashion. Nonetheless, it is important to note that this approach
comes with associated computational and memory expenses. Additionally, it
increases both the novel training and inference time.

5.1.2 Replay-based Continual Learning Methods

A related field focusing similarly on reducing catastrophic forgetting is Contin-
ual Learning (CL). Recently, CL approaches have gained recognition in various
computer vision tasks, such as image classification and object detection. The
main goal of CL methods is to accumulate knowledge from previous prob-
lems and quickly learn new tasks without forgetting. There are three main
approaches in CL [Lan21a]: replay-based, regularization-based, and parameter
isolation methods. Replay-based methods [Reb17, Kam17, Rol19, Ise18, Cha19b,
Lan21b, Atk18, Lav18, Ram20, Lop17, Cha19a, Rie19, Alj19] involve storing or
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generating samples from previous tasks to replay while learning a new task.
Regularization-based methods [Kir16, Alj18, Leel7, Zen17, Liu18b, Cha18, Lil6,
Jun16, Tri17, Zha20a] introduce a regularization term to the objective function
to incorporate knowledge from previous tasks without storing data. Parameter
isolation methods [Mal18a, Rus16, Mal18b, Ser18, Alj17, Xu18, Ros20] assign
separate model parameters to each task to avoid forgetting. However, CL
methods have not yet been explored in the context of G-FSOD.

This chapter leverages replay-based methods to mitigate forgetting in G-
FSOD. The replay-based continual learning approaches can be divided into
three primary categories:

« Rehearsal methods [Reb17, Rol19, Ise18, Chal9b, Lan21b] store real
samples from previous tasks and replay them while learning new tasks.
When training on a new task, these stored samples are combined with
the current task data to enhance the diversity of the training set and
inject knowledge from past tasks. While rehearsal methods are simple
and efficient, they require storing previous task samples, which can be
memory-intensive.

« Pseudo-rehearsal methods [Kam17, Atk18, Lav18, Ram20] overcome
the memory constraint of storing real samples by generating synthetic
samples based on the previous knowledge of the model. Instead of
saving real samples, these methods utilize generative models like GANs
or VAEs to produce synthetic samples that exhibit similar characteristics
to the original data distribution. These synthetic samples are then
replayed while learning new tasks to reinforce past experiences. While
pseudo-rehearsal methods are more memory-efficient than rehearsal
methods, their effectiveness relies on the ability of the generative
models to accurately capture the underlying data distribution.

« Constrained optimization methods [Lop17, Chal9a, Rie19, Alj19]
offers an alternative solution to the rehearsal methods above, which
may be prone to overfitting the stored sample subset and are
constrained by joint training. In contrast, constrained optimization

69



5 Replay-based G-FSOD

provides more flexibility for backward/forward transfer in continual
learning scenarios.

Due to the limited data in G-FSOD, constrained optimization methods are
chosen to be further explored to alleviate forgetting in G-FSOD scenarios and
avoid overfitting the limited replayed data.

Although in G-FSOD, the model has the advantage of being finetuned with base
classes to avoid any performance drop, aligning with the fact that the few-shot
samples cannot sufficiently represent the base data distribution, leading to
overfitting on the limited examples. This has been demonstrated in previous
works [Wan20a, Fan21, Qia21], where better performance is achieved on the
base task but with a degradation in the novel task. In this chapter, the aim is
to bridge the performance gap between G-FSOD and FSOD. Specifically, the
goal is to develop a constraint optimization method to alleviate catastrophic
forgetting without hindering the performance of novel classes.

5.1.3 Uncertainty Estimation for Object Detection

Predictive uncertainties, as described in the literature [Ken17, Gaw23], are com-
monly divided into aleatoric and epistemic uncertainties. Aleatoric uncertainty
pertains to the inherent variability in the data, such as sensor noise, and is typ-
ically managed by incorporating it as learnable parameters associated with the
model’s predicted outputs. In the context of OD, these parameters can specifi-
cally account for aleatoric uncertainty related to class probabilities or bounding
box coordinates, as demonstrated in previous research [Kral9, Har20].

Epistemic uncertainty, conversely, encompasses uncertainty arising from lim-
ited knowledge or a scarcity of training data. In OD, addressing epistemic
uncertainty often involves integrating dropout techniques during the model
training phase [Nit14], such as the approach employed in Bayesian YOLO
and BayesOD [Kral9, Har20]. During training, a subset of neurons is ran-
domly deactivated, effectively creating an ensemble of models. By analyzing
the variation among predictions generated by these diverse models, one can
approximate the level of epistemic uncertainty within the model. Monte
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Carlo Dropout (MC-Dropout) [Gal16] extends this method during inference by
performing multiple forward passes with dropout enabled and subsequently
averaging the resulting predictions. It is important to note that epistemic
uncertainty tends to be more pronounced, particularly when dealing with the
challenge of learning novel classes with only limited labeled instances.

Nevertheless, it is worth highlighting that while predictive uncertainties have
found application in conventional OD settings [Kra19, Har20, Fen18, Wir19],
they have yet to be systematically addressed in the context of Few-Shot Ob-
ject Detection (FSOD) or Generalized Few-Shot Object Detection (G-FSOD)
scenarios.

5.2 Constraint-based Finetuning Approach

5.2.1 Revisiting GEM-based Algorithms

Drawing inspiration from gradient-based replay-based CL approaches [Lop17,
Cha19a], the proposed approach, known as CFA, modifies the search strategy
to discover optimal parameters that enhance generalization across the base and
novel tasks. This method offers two advantages: it does not require specific
data augmentations or model modifications and can be easily integrated into
various detectors regardless of their architecture. Specifically, CFA regularizes
the gradient update using a subset of the base dataset stored in the episodic
memory, similar to the approach taken in A-GEM [Cha19a].

Episodic memory-based approaches [Lop17, Chal9a, Rie19, Alj19] mitigate
catastrophic forgetting by maintaining an episodic memory, denoted as M.
These approaches prevent an increase in losses for previous tasks and facilitate
a decrease in losses, resulting in positive backward transfer. Meaning that
the performance on previous tasks can be improved while learning new ones.
Instead of optimizing for all samples in the episodic memory as originally
proposed [Lop17], A-GEM [Cha19a] ensures that the average episodic memory
loss does not increase over a mini-batch of samples from the episodic memory.

71



5 Replay-based G-FSOD

To begin with, an episodic memory-based constraint optimization algorithm
is formulated within the context of G-FSOD. The episodic memory, denoted as
My, is utilized to store a randomly sampled subset of K few-shot examples
from each base class, which are drawn from the dataset D;. The number of few-
shot examples K is selected to match the number of novel few-shot examples
in D,,. Unlike the conventional CL paradigms, the training is conducted in
batches, allowing the data to be seen multiple times rather than being handled
one by one on-the-fly. Additionally, the episodic memory remains static during
the novel training phase, indicating that no further samples are added.

The finetuning process is executed as follows: Firstly, a mini-batch is randomly
selected from the base episodic memory M to compute the base gradient
gy Then, another mini-batch is sampled from the novel dataset D,,, and the
novel gradient g,, is computed. Following the definition provided in previous
works [Lop17, Chal9a], a positive knowledge transfer is achieved when the
angle between g, and g,, is acute. If this constraint is satisfied, g,, is directly
backpropagated. However, if the constraint is not met, g,, is projected onto a
region in the hypothesis space closer to the base task gradients, determined
by g,. and then backpropagated through the model.

Formally, the constraint optimization problem for G-FSOD is denoted by:

minimizeg L(hg(x),y)
subject to  L(hg, My) < L(hY, My), (5.1)

where (z,y) € D,. x is the input image with the associated label y. A} is
the pretrained model on the base dataset Dj.

The loss function using the base episodic memory My, is given by:

1
Llhg, My) = —— > Llhg(x:), ), (5.2)
Mo (xi,y; ) EMy,

where L is the standard training loss function from Faster R-CNN [Ren15]:
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Figure 5.1: A depiction of the finetuning stage using CFA on Faster R-CNN [Ren15]. The base
and novel gradients are computed from each mini-batch. CFA then determines the
final gradient update rule, which is applied to backpropagate on the unfrozen com-

ponents of the model. This ensures that the gradients of the novel task do not stray
or deviate significantly from the gradients of the base task.

L= Lren + LY + Lyeg. (5.3)

Lrpn is the RPN loss function. £% and Lyeg are the classification and bounding
box regression losses, respectively.

Similar to A-GEM [Cha19a], the optimization problem described in Equation
5.1 can be simplified into a Quadratic Programming (QP) problem:
e 1 -2
minimizes, g, — 3,3
subject to f],l—gb >0. (5.4)

g,, is the projected novel gradient. The closed-form gradient update rule can
be denoted as:

§.—g _QTTLQb.
n n nggb

gy (5.5)

This indicates that the projection of the novel gradient orthogonal to the base
gradient only occurs when the A-GEM constraint is violated.
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(a) Vanilla A-GEM (b) Intermediate gradient (c) CFA gradient

Figure 5.2: The gradient update process for vanilla A-GEM [Cha19a] and the proposed CFA is
visualized. Figure 5.2a illustrates the gradient update for the novel task using A-GEM,
where the novel task gradient is projected orthogonally to the base task gradient. In
Figure 5.2b, the solution for the proposed constraint is depicted, where the base task
gradient is projected at a right angle to the novel task gradient. Finally, Figure 5.2¢
showcases the final gradient update for the CFA algorithm.

5.2.2 Methodology

In the context of G-FSOD, A-GEM as a finetuning approach offers improved
regularization to the learning process, effectively preventing early overfitting.
However, relying solely on the mentioned constraint may hinder knowledge
transfer between tasks for two main reasons. First, the base gradient is only
backpropagated when a violation occurs, resulting in limited influence during
finetuning when learning the novel classes. Second, orthogonally projecting
the novel gradient is overly restrictive for promoting diverse feature learning
in the novel task.

Motivated by the observations above, it is proposed to minimize the angle
between g, and g,, instead of always orthogonally projecting g,, in case of
a violation. The CFA algorithm is derived from a joint optimization problem
that considers both tasks, including an additional constraint to account for
the performance on base categories. In CFA, the backpropagated gradients
are influenced by both the novel and base gradients rather than relying solely
on the novel gradient. The scheme is illustrated in Figure 5.1. If a violation
occurs, g,, is projected orthogonally onto g,, with respect to g,, while g, is,
in turn, projected orthogonally onto gb with respect to g,,.
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Algorithm 5.2.0 CFA

1: procedure TRAIN(fg, Dy, Dy,)

2:
3
4
5
6:
7
8
9

10:
11:
12:
13:
14:
15:
16:

My ~ Dy
for nepoch =1, ..., Nepocn do:
for (zn,yn) in D, do

(@b, yp) ~ My

9o < VoL (fo(xb),yp)
dn — V9£(f0(xn)7 yn)
if gl g > 0 then

§<_gn,+9b
2
else .
~ 1 9n g 1
11 s) i
end if
0+ 0—ng

end for
end for
return fy

17: end procedure

.
9y gn) - gn

9} gn

Mathematically, our proposed constrained optimization problem is as follows:

R 1 ~ e L g. |12
minimizeg, 5 §||gn - 3,5 + 5”!]1) — 2

subject to Ql—gb >0,
919, 2 0.

(5.6)

The projected gradient updates for the base and novel tasks are denoted as g,
and g,,, respectively. By solving the aforementioned constrained optimization

problem using the Lagrange multipliers approach, the gradient update rules

can be derived as:

-

~ 9.9

gn:gn_< TTL b
gy 9p
T

~ gbgn

gy =49 *(

PP gl

) (57)

(5.8)

n*
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Rather than conducting two separate gradient updates, a single update rule
can be achieved by taking the average of g, and g,,:

.1 9,19, 1 9,9,
g:7<17 ).g +7(1— >~gn. (5.9)
2\" glg,/ 7" 2\ glg,

Specifically, the equation above can be regarded as an adaptive re-weighting
of the base and novel gradients during the finetuning stage, balancing their
contribution to the final projected gradients. The full derivation of the CFA
update rule is presented in Appendix A.1. The advantage of the CFA algorithm,
as depicted in Algorithm 5.2.0, can be attributed to two key factors. Firstly, the
base gradients consistently contribute to the finetuning process in contrast to
previous works [Lop17, Chal9a]. Secondly, the algorithm seeks to determine
the optimal direction of backpropagation by weighting each gradient while en-
suring that the angle between the last gradient update, g, and the base gradient,
g;, remains less than 90°. Figure 5.2 shows a visual representation illustrating
the distinctions between the gradient update rules of A-GEM and CFA.

5.2.3 Experimental Evaluations
Implementation Details

Faster R-CNN [Ren15] is adopted as the primary detection framework, utilizing
a ResNet-101 backbone [He16] and a FPN [Lin17]. For the base training, the
learning rate is set to 0.02, while for the novel training, it is set to 0.001. The
model optimization uses SGD with a momentum of 0.9 and a weight decay of
0.0001. The batch size is set to 16, utilizing four Nvidia GeForce 1080Ti GPUs.

Similar to TFA [Wan20a], the evaluation of our method includes a fully-
connected base classifier (CFA w/fc) and a cosine similarity-based box classifier
(CFA w/cos). Additionally, CFA is applied to the DeFRCN [Qia21] approach
(CFA-DeFRCN), following the original hyperparameters described in the pa-
per [Qia21]. In contrast to CFA w/fc and CFA w/cos, CFA-DeFRCN does not
incorporate a FPN, similar to the baseline DeFRCN [Qia21].
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Figure 5.3: Top: Illustration of the single model inference. Bottom: A detailed overview of the
ensemble model evaluation protocol proposed by Retentive R-CNN [Fan21].

Evaluation Protocols

Retentive R-CNN [Fan21] introduced a model-growth-based evaluation pro-
tocol that involves utilizing the base-trained RPN (RPN}) and base-trained
detection head (DET};) alongside the finetuned novel RPN (RPN,,) and novel
detector (DET,,) during inference. The protocol includes generating proposals
from RPN, and RPN,, based on the maximum objectness score. These propos-
als are then fed to DET}, and DET,,, where detections from DET,, are favored
for base categories Cp, using non-maximum suppression. For a fair comparison,
our methods (CFA w/fc, CFA w/cos, and CFA-DeFRCN) are evaluated using
this protocol as well.

Figure 5.3 illustrates the evaluation protocols employed in the study. The
RPN,, and DET,,, which are finetuned with a few shots from the novel data
while keeping the backbone frozen, are used for single model inference. The
evaluation process is as follows:

1. The input image is fed to the backbone.
2. The RPN, generates the proposals.

3. Proposals with IoU scores below a predefined threshold are discarded
using NMS.
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4.

5.

The novel detection head DET,, produces the novel classification logits
(cls,,) and bounding boxes offsets (loc,,).

The final predictions are obtained by applying NMS to filter the outputs.

In contrast, the ensemble inference model incorporates the RPN, and DET,,
from the base-trained model. The inference process is as follows:

1.
2.

The input image is fed to the backbone.

The image features are fed to both RPN, and RPN,, to compute the base
and novel objectness logits, O and O,,, respectively.

. The maximum between O, and O,, is used in NMS along with the

bounding boxes from RPNj.

. The filtered proposals are then fed to both DET}, and DET,, to obtain

classification logits and bounding boxes.

. The predictions from the detectors are separately subjected to NMS,

with a bonus of 0.1 added to cls,.

. Finally, the outputs from both detectors are concatenated and passed

through another NMS to obtain the final predictions.

It is important to note that the ensemble models were not used during finetun-
ing, unlike in Retentive-RCNN [Fan21]. Instead, a single model was finetuned,

and both the base and finetuned models were utilized during inference.

Quantitative comparisons are performed against transfer-learning [Wan20a,
Wu20a, Fan21, Qia21] and meta-learning based [Yan19, Kan18, Per20, Fan20,
Xia20] methods under the G-FSOD setting. Additionally, comparisons are made
to Retentive-RCNN [Fan21] using their evaluation protocol. The results for the
various proposed model settings (CFA w/fc, CFA w/cos, and CFA-DeFRCN)
are reported.
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Table 5.1: The G-FSOD results in the K = 5,10,30-shot settings on MS-COCO are presented.
The metrics reported include AP, bAP, and nAP for all, base, and novel classes, re-
spectively. The best and second-best results are highlighted. w/E indicates whether
the ensemble-learning-based evaluation protocol of Retentive R-CNN [Fan21] is em-
ployed. An asterisk (*) denotes results reported in Retentive R-CNN [Fan21] and De-
FRCN [Qia21], while a dash (-) indicates unreported results in the original work.

5 shot 10 shot 30 shot

Methods / Shots w/E
AP DbAP nAP | AP bAP nAP | AP DbAP nAP

FRCN-ft-full [Wan20a] X | 180 220 60 | 181 21.0 92 | 186 206 125
TFA w/ fc [Wan20a] X | 275 339 84 | 279 339 100 | 297 351 134
TFA w/ cos [Wan20a] X | 281 347 83 | 287 350 100 | 303 358 137
MPSR [Wu20a] X - - - 153 171 97 | 171 181 141
DeFRCN [Qia21] X | 287 331 153 | 306 346 18.6 | 31.6 347 225
ONCE [Per20] X | 137 179 10 | 137 179 12 - - -
Meta R-CNN* [Yan19] X 36 35 38 | 54 52 61 | 78 71 99
FSRW [Kan18] X - - - - - 5.6 - - 9.1
FsDetView* [Xia20] X 59 57 66 | 67 64 76 | 100 93 120
CFA w/ fc X | 301 371 90 308 37.6 105 | 319 37.7 147
CFA w/ cos X | 297 363 98 303 366 113 | 3.7 37.0 156
CFA-DeFRCN X | 301 350 156 314 355 191 | 320 350 23.0
Retentive R-CNN [Fan21] | « | 315 39.2 83 | 321 392 105 | 329 393 13.8
CFA w/ fc v/ | 318 395 88 322 395 104 | 332 395 143
CFA w/ cos v/ 320 395 96 324 394 113 | 334 395 151
CFA-DeFRCN v/ [ 330 389 156 340 390 189 | 349 390 226

Comparison Results
Results on MS-COCO

The CFA is evaluated on MS-COCO in Table 5.1 using the K = 5,10,30-shot
settings. The standard mean AP metric is employed to measure performance
on both the base and novel categories in the G-FSOD setting, denoted by
bAP and nAP, respectively. The results demonstrate that, regardless of the
architecture, CFA significantly alleviates forgetting on the base categories
compared to TFA [Wan20a], while simultaneously improving performance on
the novel classes. Table 5.1 reveals that CFA-DeFRCN consistently achieves the
best overall and novel performance across the three few-shot configurations
compared to both FSOD and G-FSOD methods.
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Additionally, the results of the method using the Retentive-RCNN ensemble-
based evaluation protocol are reported. When compared to Retentive-
RCNN [Fan21], the CFA-finetuned models exhibit superior performance on
both the base and novel classes. CFA w/cos demonstrates slightly better perfor-
mance than CFA w/fc, aligning with previous observations in TFA [Wan20a]
and Retentive-RCNN [Fan21] where cosine similarity classifiers demonstrate
improved generalization due to their robustness against variations in feature
norms between base and novel classes.

Although the ensemble-based evaluation protocol mitigates forgetting the base
classes, it is associated with increased inference time and model capacity. The
ablation experiments in the following section support this observation. As
shown in Table 5.1, individual CFA-finetuned methods achieve comparable
performance to Retentive-RCNN [Fan21] on base classes and superior results
on novel classes. In the ensemble setting, CFA-DeFRCN incorporates base
and novel RPN, detectors, and backbones. This is facilitated by the gradient
decoupling layer, which enables finetuning of the backbone with gradients
backpropagated from the Rol-head.

Results on PASCAL-VOC

The overall and novel performance of the G-FSOD models on the PASCAL-
VOC dataset are shown in 5.2 and 5.3, respectively. The effectiveness of CFA
is highlighted across different splits, where single CFA-finetuned models can
generalize better than the ensemble of base and novel models used in Retentive
R-CNN [Fan21].

The performance of the G-FSOD models on the PASCAL-VOC dataset is pre-
sented in Table 5.2 for the overall performance and in Table 5.3 for the novel
performance. Consistent with the results obtained on the MS-COCO dataset,
the findings indicate that the proposed CFA enhances both the overall and
novel performances across different dataset splits. This highlights the effec-
tiveness of the CFA-finetuned models in terms of generalization compared to
the ensemble approach employed in Retentive R-CNN [Fan21].
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Table 5.2: The G-FSOD results for the K = 1,2,3,5,10-shot settings on the three different sets
of PASCAL-VOC (AP50) are presented. w/E indicates whether the ensemble-learning
based evaluation protocol of Retentive-RCNN [Fan21] was applied. The best and
second-best results are highlighted. An asterisk (*) denotes results reported in [Fan21,

Qia21].

Methods / Shots WiE All Set 1 All Set 2 All Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
FRCN-ft-full[Wan20a] X 554 57.1 56.8 60.1 60.9|50.1 53.7 53.6 55.9 55.5[58.5 59.1 58.7 61.8 60.8
TFA w/ fc[Wan20a] X 1693 66.9 703 73.4 73.2|64.7 66.3 67.7 68.3 68.7|67.8 68.9 70.8 72.3 72.2
TFA w/ cos[Wan20a] X 169.7 68.2 70.5 73.4 72.8|65.5 650 67.7 68.0 68.6|67.9 68.6 71.0 72.5 72.4
MPSR[Wu20a] X 156.8 60.4 62.8 66.1 69.0|53.1 57.6 62.8 64.2 66.3|55.2 59.8 62.7 66.9 67.7
DeFRCN[Qia21] X 73.1 73.2 73.7 75.1 74.4|68.6 69.8 71.0 72.5 71.5|72.5 73.5 72.7 74.1 73.9
Meta R-CNN*[Yan19] X [17.5 305 36.2 49.3 55.6|19.4 33.2 34.8 44.4 539|203 31.0 41.2 48.0 55.1
FSRW([Kan18] X 535 50.2 55.3 56.0 59.5|55.1 54.2 55.2 57.5 58.9(54.2 53.5 54.7 58.6 57.6
FsDetView*[Xia20] X 364 403 40.1 50.0 55.3|36.3 43.7 41.6 45.8 54.1[37.0 39.5 40.7 50.7 54.8
CFA w/ fc X 695 682 69.8 735 74.3 66.0 66.9 69.2 70.1 71.1|67.7 69.0 70.9 72.6 73.5
CFA w/ cos X 69.1 69.8 719 73.6 73.9 64.8 66.5 68.3 69.5 70.5|67.7 69.7 71.9 73.0 73.5
CFA-DeFRCN X 73.8 74.6 74.5 76.0 74.4 69.3 71.4 72.0 73.3 72.0(72.9 73.9 73.0 74.1 74.6
Retentive R-CNN[Fan21]| v/ ‘713 72.3 72.1 74.0 74.6 |66.8 68.4 70.2 70.7 71.5|69.0 709 723 739 741
CFA w/ fc v 703 69.5 71.0 744 749 67.0 68.0 70.2 70.8 71.5|69.1 70.1 71.6 73.3 74.7
CFA w/ cos v 714 718 73.3 74.9 75.0 66.8 68.4 70.4 71.1 71.9|69.7 71.2 72.6 74.0 74.7
CFA-DeFRCN v 75.0 76.0 76.8 77.3 77.3 70.4 72.7 73.7 74.7 74.2|74.7 75.5 75.0 76.2 76.6

Ablation Experiments
Impact of Unfreezing Different Components

The influence of various model components in the G-FSOD setting is examined.
The results are presented in Table 5.4. Firstly, it is observed that unfreezing
either the RPN or the Rol-head alone yields suboptimal results. Although
there is a slight increase in bAP compared to the frozen model, there is a
slight decrease in nAP due to overfitting of the unfrozen component to the
few novel shots. Secondly, the best results in both TFA [Wan20a] and CFA are
obtained when unfreezing both the RPN and Rol-head. However, unfreezing
the backbone leads to degraded results. Lastly, CFA demonstrates a superior
ability to guide the gradients in the expanded search space when the RPN
and Rol-heads are unfrozen.

81



5 Replay-based G-FSOD

Table 5.3: The G-FSOD results for the K = 1,2,3,5,10-shot settings on the three different novel
sets of PASCAL-VOC (nAP50) are provided. w/Eindicates whether the ensemble-
learning based evaluation protocol of Retentive-RCNN [Fan21] was applied. The
best and second-best results are highlighted. An asterisk (*) denotes results reported
in [Fan21, Qia21]. Notably, our approach achieves state-of-the-art performance in
terms of nAP50 across the three different dataset splits and various few-shot settings.

Methods / Shots Wik Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
FRCN-ft-full[Wan20a] X 152 203 29.0 255 28.7|13.4 20.6 28.6 32.4 38.8|19.6 20.8 28.7 42.2 42.1
TFA w/ fc[Wan20a] X |36.8 29.1 43.6 55.7 57.0|18.2 29.0 33.4 355 39.0|27.7 33.6 42.5 48.7 50.2
TFA w/ cos[Wan20a] X |39.8 36.1 44.7 55.7 56.0|23.5 26.9 34.1 35.1 39.1[30.8 34.8 42.8 49.5 49.8
MPSR[Wu20a] X 428 43.6 484 553 61.2|29.8 28.1 41.6 43.2 47.0(35.9 40.0 43.7 48.9 51.3
DeFRCN[Qia21] X |57.0 58.6 64.3 67.8 67.0|35.8 42.7 51.0 54.4 52.9(52.5 56.6 55.8 60.7 62.5
Meta R-CNN*[Yan19] X |16.8 20.1 203 38.2 43.7| 7.7 12.0 149 219 31.1| 9.2 139 262 29.2 36.2
FSRW[Kan18] X |14.8 155 26.7 33.9 47.2|15.7 153 22.7 30.1 39.2|19.2 21.7 25.7 40.6 41.3
MetaDet[Wan19c] X 189 20.6 30.2 36.8 49.6|21.8 23.1 27.8 31.7 43.0[20.6 23.9 29.4 43.9 44.1
FsDetView™*[Xia20] X |254 204 374 36.1 423|229 21.7 22.6 25.6 29.2(32.4 19.0 29.8 33.2 39.8
CFA w/ fc X 40.0 355 409 54.1 56.9 222 27.1 35.2 385 40.9 29.7 35.1 39.5 47.2 51.3
CFA w/ cos X |41.2 43.6 49.5 56.5 57.3 213 27.4 353 39.1 42.1 31.7 39.1 44.6 49.9 52.6
CFA-DeFRCN X |58.2 63.3 65.8 68.9 67.1 37.1 45.5 51.3 55.2 53.8 54.7 57.8 56.9 60.0 63.3
Retentive R—CNN[FanZl]‘ v |42.4 45.8 459 53.7 56.1|21.7 27.8 35.2 37.0 40.3|30.2 37.6 43.0 49.7 50.1
CFA w/ fc v [39.0 349 414 54.8 57.0 21.8 26.1 35.3 37.1 40.1 29.9 34.3 40.1 47.0 52.6
CFA w/ cos v |42.4 439 50.3 56.6 57.3 21.0 27.5 35.3 38.6 41.4 32.3 38.0 44.5 49.8 52.7
CFA-DeFRCN v |59.0 63.5 66.4 68.4 68.3 37.0 45.8 50.0 54.2 52.5 54.8 58.5 56.5 61.3 63.5

Influence of the Number of Base Shots

The impact of using unbalanced datasets by finetuning with different numbers
of base shots K = 1,2,3,5,10 and 10 novel shots is demonstrated in Table 5.5.
While both TFA [Wan20a] and CFA achieve similar performance on the novel
task, TFA shows higher sensitivity to a lower number of base shots. Specifically,
when only one base shot is used, TFA experiences a significant drop in bAP
(~ 22.4%). In contrast, CFA exhibits greater robustness to fewer base shots,
with a reduction of approximately (~ 7.2%) in bAP, thus demonstrating
reduced forgetting with fewer base shots. Remarkably, when using only 3
shots, CFA performs similarly to the 10-shot scenario, with only a 0.6 points
decrease in bAP. These findings indicate that CFA is more memory efficient as
it can effectively leverage fewer base shots to achieve reduced forgetting.
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Table 5.4: The impact of unfreezing different components during finetuning with CFA, compared
to TFA [Wan20a], is examined. The results are presented for the 10-shot setting on
the MS-COCO dataset.

Method Backone RPN RolHead | AP bAP nAP

27.9 339 10.0

v 29.9 372 7.9

TFA w/ fc [Wan20a] v 289 354 96
v v 289 351 10.2

v v v 24.1 29.0 9.1

29.6 360 104
v 303 374 9.3

CFA w/ fc v 30.8 37.8 9.6
v v 30.8 376 10.5

v v v 23.9 28.6 10.1

28.7 35.0 10.0

v 28.9 35.8 8.3

TFA w/ cos [Wan20a] v 29.0 353 103
v v 29.2 35.2 11.2

v v v 24.1 28.5 10.9

294 359 9.8

v 28.7 353 8.9

CFA w/ cos v 30.2 36.8 10.6
v v 30.3 366 11.3

v v v 23.6 27.9 10.9

Finetuning with A-GEM

To assess the performance of CFA compared to A-GEM [Cha19a], which serves
as its foundation, a comparison is conducted by employing both finetuning
methods across the three models utilized in this study. Table 5.6 demonstrates
that regardless of the model, CFA exhibits reduced forgetting and enhances
performance on the novel task compared to A-GEM. Furthermore, CFA con-
sistently achieves superior overall performance and improves the nAP as well.
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Table 5.5: The effect of the number of base shots on the occurrence of catastrophic forgetting in
base classes is investigated, comparing CFA to TFA [Wan20a]. The experiments are
performed on the MS-COCO dataset, with 10-shots provided for the novel categories.

Method Base-Shots AP bAP nAP

1-Shots 22.2 26.3 9.8
2-Shots 24.8 29.8 9.9
TFA w/ fc [Wan20a] 3-Shots 26.1 315 10.1
5-Shots 27.0 32.6 10.2
10-Shots 279 339 10.0
1-Shots 288 349 10.5
2-Shots 30.0 36.5 10.5
CFA w/ fc 3-Shots 303 37.0 103
5-Shots 30.5 37.2 10.4
10-Shots 30.8 37.6 10.5
1-Shots 24.2 28.9 10.0
2-Shots 265 320 10.2
TFA w/ cos [Wan20a] 3-Shots 27.2 329 103
5-Shots 27.8 33.6 10.3
10-Shots 28.7 350 10.0
1-Shots 28.6 343 11.5
2-Shots 29.8 35.9 11.3
3-Shots 30.0 36.2 11.3
5-Shots 30.2 36.4 11.3
10-Shots 30.3 36.6 11.3

CFA w/ cos

This suggests that the proposed constraint in CFA fosters more effective for-
ward knowledge transfer, as both base and novel gradients actively contribute
to the gradient update rule in each step, thereby minimizing the expected
risk on both tasks.
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Table 5.6: A comparison between finetuning different models using CFA and A-GEM [Cha19a].
The results are presented for the 10-shot setting on the MS-COCO dataset.

Model AP  bAP nAP

A-GEM w/ fc 301 368 10.1

CFA w/ fc 30.8 37.6 105
A-GEM w/ cos 282 345 93
CFA w/ cos 30.3  36.6 11.3

A-GEM-DeFRCN | 303 356 144
CFA-DeFRCN 314 355 19.1

120 — CFA 120 — CFA
100 — A-GEM 100 — A-GEM
80 80
2 2
20 60 2060
< Aty < - e vty
40 40 o oy 1 Yoo
20 20
() e A A 0
0 2 4 6 8 0 2 4 6 8
Tterations [x 103] Iterations [x 10°]
(a) Angle between g and g,, (b) Angle between g and g,

Figure 5.4: The angle between the projected gradient g and both the g,, (a) and g, (b) is visual-
ized for A-GEM [Chal9a] and CFA in the 10-shot setting on the MS-COCO dataset.

Projected Gradients Visualization

Figure 5.4 illustrates the differences between A-GEM [Cha19a] and CFA re-
garding gradient directions. In Figure 5.4a, it is observed that as the network
converges, the projected gradient in A-GEM is aligned closely with the direc-
tion of the novel gradient (~ 4°), indicating a bias towards the novel tasks
over the base tasks. On the other hand, CFA exhibits a larger angle (~ 43°) in
the gradient update, indicating a more balanced consideration of both base and
novel tasks. Figure 5.4b further highlights that CFA provides a projected gradi-
ent that is much closer to the base task loss gradients (~ 45°) compared to the
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Table 5.7: The evaluation protocols have varying implications on inference time and model ca-
pacity. Ensemble methods introduce a substantial overhead compared to using a single
model. The notation w/E indicates whether the ensemble method is employed.

Method w/E | Inference Time [ms] | Model Capacity [M]

TFA w/ fc [Wan20a] X 85 60.6
TFA w/ cos [Wan20a] X 87 60.6
CFA w/ fc X 85 60.6

CFA w/ cos X 86 60.6
CFA-DeFRCN X 147 52.7
CFA w/ fc v 211 75.4

CFA w/ cos v 211 75.4
CFA-DeFRCN v 376 105.3

consistent orthogonal projection employed by A-GEM. This closer alignment
between CFA and the base task gradients enables better knowledge transfer
while learning novel tasks and helps to mitigate forgetting.

Model Complexity Analysis

In Table 5.7, the influence of the two evaluation protocols on inference time and
the number of parameters during inference is examined. While the ensemble
model evaluation approach achieves less forgetting, it also results in an average
increase of 52% in inference time. Conversely, the number of parameters
increases by 50% in CFA w/fc (and w/cos) and by 102% in CFA-DeFRCN,
primarily due to the backbone being unfrozen during the finetuning process
in DeFRCN [Qia21].

Multiple Runs

The CFA-finetuned models (CFA w/fc, CFA w/cos, and CFA-DeFRCN) are eval-
uated using 10 different seeds on the MS-COCO and PASCAL-VOC datasets,
and compared against the baselines, TFA [Wan20a] and DeFRCN [Qia21]. The
results are presented in Table 5.8 for the MS-COCO dataset and Table 5.9 for the
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Table 5.8: G-FSOD

results for K = 5,10,30-shot settings on MS-COCO across 10 different

seeds.
Methods / Shots 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

TFA w/ fc[Wan20a] |25.6+£0.5 31.8+0.5 6.9£0.7 [26.240.5 32.0+£0.5 9.140.5 |28.44+0.3 33.840.3 12.0+0.4
TFA w/ cos[Wan20a] | 25.940.6 32.3+£0.6 7.0£0.7 |26.6+0.5 32.4+0.6 9.1+0.5 |28.7+0.4 34.24+0.4 12.1+0.4
CFA w/ fc 29.1+0.3 36.2£0.3 7.740.6 {29.9+0.3 36.74+0.2 9.6+0.6 |30.8+0.2 36.61+0.2 13.610.3
CFA w/ cos 29.3£0.2 36.0£0.2 9.240.5 {30.24+0.2 36.64+0.1 11.24+0.5{31.1+0.1 36.64+0.1 14.84+0.2
DeFRCN[Qia21] 27.8+£0.3 32.6£0.3 13.6+0.7|29.74+0.2 34.04+0.2 16.840.6|31.44+0.1 34.840.1 21.24+0.4
CFA-DeFRCN 28.440.2 32.8+£0.2 15.2+0.5|30.2+0.2 34.040.2 18.8+£0.4|31.7£0.1 34.6+0.1 23.040.3

Table 5.9: G-FSOD results for K = 5,10,30-shot settings on PASCAL-VOC (AP50) across 30
different seeds.

Shots
Set Methods
1 2 3 5 10

CFA w/ fc 66.3+0.8 68.0+0.5 70.1£0.4 71.740.5 73.24+0.5

CFA w/ cos 66.5+0.9 69.240.6 71.1+£0.6 72.5+04 73.41+0.4

All Set 1 DeFRCN[Qia21] | 67.84+1.4 71.3+0.8 72.6+0.5 73.64+0.5 74.1+0.5
CFA-DeFRCN 69.0+14 72.64+0.7 73.1+£04 74.01+0.5 74.31+04

CFA w/ fc 64.9+09 66.44+0.7 68.3+0.5 69.6+0.3 70.8+0.5

CFA w/ cos 64.1£0.9 66.5+0.5 68.1£0.5 69.3+0.2 70.4+0.4

All Set 2 DeFRCN[Qia21] | 65.241.0 68.0+0.8 69.240.6 70.6+0.6 71.3+0.5
CFA-DeFRCN 66.4+1.0 69.0+0.8 70.440.7 71.310.7 72.1+04

CFA w/ fc 65.2+0.8 66.840.8 69.1+£0.7 70.94+0.6 72.3+0.4

CFA w/ cos 64.9+1.2 67.54+1.0 69.7£0.8 71.64+0.5 72.7+0.3

All Set 3 DeFRCN[Qia21] | 66.942.0 70.6+£0.8 71.240.6 72.940.5 73.5+0.3
CFA-DeFRCN 68.3+1.6 71.440.8 72.3+0.5 73.54+0.5 74.0+0.3

PASCAL-VOC dataset. The same random seeds as TFA [Kan18] and DeFRCN
are utilized. CFA consistently improves the overall AP while demonstrating
a smaller confidence interval.

Qualitative Results

Qualitative results of CFA w/cos finetuned with the 30-shot setting are depicted
in Figure 5.5. The first three columns showcase different successful scenarios,
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3

Figure 5.5: A qualitative analysis of the proposed CFA method is conducted on the MS-COCO
dataset. The results presented correspond to CFA w/cos finetuned using the 30-
shot setting. The first three columns depict instances of success, while the last two
columns showcase scenarios of failure.

while the last two columns highlight instances of failure. It is evident that
the model exhibits less confidence in predicting novel categories compared
to base classes. This reduced confidence can be attributed to the learning
of indiscriminative features, leading to occurrences of false positives and
false negatives.
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5.3 Uncertainty-based Progressive Proposal
Refinement

The previous section emphasized the significance of leveraging the information
retained by the base model to mitigate forgetting and improve performance on
novel tasks. However, the existing G-FSOD approaches [Wan20a, Qia21, Fan21]
overlook a valuable source of information, namely uncertainty estimation.
By incorporating predictive uncertainties, which offer valuable distributional
insights into the base classes, it is possible to mitigate catastrophic forgetting
and improve overall performance more effectively [Li16, Ser18, Kur21].

It is also important to note that current G-FSOD frameworks [Wan20a, Qia21,
Fan21] are mostly based on a two-stage Faster R-CNN model [Ren15]. One of
the main bottlenecks encountered during standard object detection is the poor
quality of object proposals [Vu19]. The quality of the object proposals further
deteriorates in G-FSOD due to the introduction of new classes. There are three
main reasons for this: (1) the training data for these new classes is limited and
does not represent the true class distribution, (2) the novel classes might be
considered as background by the network due to a low IoU with the ground
truth boxes, and (3) the scale distribution of the novel objects differs from that
in the base training data. Moreover, the limited novel samples result in higher
epistemic uncertainty, because the true data distribution is not fully captured,
causing the model to overfit or underfit the data. None of the previous G-FSOD
works have explicitly tackled the aforementioned limitations.

In this section, a novel G-FSOD model is proposed, aiming to tackle the limita-
tions mentioned above. Specifically, the goal is to refine the initially low-quality
and highly uncertain proposals in a stagewise manner. The model achieves this
by utilizing multiple R-CNNs, where each stage is responsible for estimating
predictive aleatoric and epistemic uncertainties to generate more confident
proposals. Additionally, attention blocks are incorporated during novel train-
ing to effectively learn the discriminative spatial features of each class, even
when only limited labels are available. The main goal is to design a two-stage
G-FSOD framework that enhances the object proposals to improve the overall
detection performance without forgetting the base classes.
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Figure 5.6: An illustration of the proposed Decoupled Cascade R-CNN (DeCRCN) architecture.
The feature pyramid is generated using ResNet-FPN [Hel6, Lin17], and proposal
quality is enhanced through a keypoint-based RPN inspired by CenterNet [Dua19].
Subsequently, Cascade R-CNN is employed to progressively refine proposals. Fur-
thermore, attention modules are integrated within R-CNN stages to prioritize fea-
tures that correlate with accurate detections.

Uncertainty-Aware Cascade R-CNN
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5.3.1 Architecture Overview

Upon examination of a fundamental two-stage G-FSOD framework [Qia21],
encompassing a RPN and a subsequent R-CNN, the direct integration of un-
certainty estimation has been observed to yield a deleterious impact on per-
formance. This phenomenon can be ascribed to the potential introduction of
heightened complexity or noise into the model as a consequence of employing
uncertainty estimation methods [Ken17, Gaw23]. In cases where the model
lacks the capacity to effectively manage this augmented complexity or noise, a
decline in performance becomes evident. Additionally, the limited availability
of data exacerbates this effect, given that uncertainty estimation often relies
on the model’s comprehension of the true data distribution. In pursuit of
mitigating these challenges, several architectural modifications to the DeFRCN
model [Qia21] have been proposed. An overview of the proposed model,
referred to as Decoupled Cascade R-CNN (DeCRCN), is presented in Figure 5.6.

Multi-Scale CenterNet-RPN

In traditional architectures like Faster R-CNN [Ren15], the conventional RPN
component has a tendency to generate suboptimal proposals for the subsequent
R-CNN detector. This phenomenon primarily arises from utilizing fixed-sized
anchors, which frequently yield a plethora of background and low-quality
foreground proposals. Furthermore, the misalignment between these anchors
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Figure 5.7: An illustration of the single stage R-CNN at test-time of the cascaded R-CNNs. The
dotted neurons represent the dropouts. The epistemic uncertainties are computed by
R forward runs and the predictions are averaged.

and convolutional features adds complexity to the bounding box classification
task. Conversely, approaches based on keypoints offer a promising remedy by
representing object keypoints, which furnish more precise spatial information.

To overcome these limitations, a keypoint-based strategy known as CenterNet-
RPN is introduced, which replaces the anchor-based RPN with Center-
Net [Dua19]. Additionally, to explicitly address variations in object scale, the
feature extractor is augmented through the integration of an FPN [Lin17].
This integration facilitates the refinement of object proposals across different
scales, thereby enhancing the overall performance of the model.

Cascade R-CNN

In the context of Cascade R-CNN, the conventional single R-CNN is substi-
tuted with a Cascade R-CNN [Cai18], employing increasing IoU thresholds
to enhance RPN proposals. Each stage iteratively enhances the quality of
object proposals from the preceding stage, thereby augmenting the count
of true positives forwarded to the subsequent stage. Within each R-CNN
stage, classification and localization features are separated by introducing dual

classification and bounding box regressor heads.
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5 Replay-based G-FSOD

Multi-Stage Instance-level Attention

While refining proposals via Cascaded R-CNN stages, it is essential to ac-
knowledge that not all instance-level features possess uniform importance.
To prioritize features crucial for accurate classification, attention modules
are interspersed with the R-CNN stages. Specifically, a Convolutional Block
Attention Module (CBAM) [Wo018] is employed for this purpose, selectively
concentrating on the most salient features relevant to the G-FSOD task. The
CBAM encompasses channel and spatial attention components, which capture
both channel-wise and spatial-wise relationships among instance-level fea-
tures. This facilitates the model improved understanding of semantically-rich
information for both novel and base classes. Notably, the CBAM is favored due
to its lightweight design [Woo018], a crucial factor as it is integrated after each
R-CNN stage in the network. To ensure an equitable representation of base
and novel features, multi-stage attention blocks are exclusively introduced
during the novel training phase to prevent the CBAM from exhibiting bias
toward the base classes.

5.3.2 Methodology

The proposed DeCRCN leverages uncertainty estimation to harness distribu-
tional information from predictive uncertainties, thereby aiding in mitigating
forgetting [Kur21]. Furthermore, predictive uncertainties play a pivotal role
in enhancing performance on novel classes, given their limited number of
examples. In the subsequent sections, an UPPR approach is introduced atop
DeCRCN to address the amelioration of forgetting and the augmentation of
novel detection performance. More specifically, aleatoric and epistemic uncer-
tainties are utilized to progressively refine object proposals generated by the
CenterNet-RPN across the Cascade R-CNN in a stage-wise fashion.

Stage-wise Epistemic Uncertainty-based Refinement

As previously mentioned, the presence of inherent data and model uncer-
tainties mandates their consideration to address the issues of forgetting and
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to enhance the detection of novel classes [Li16, Ser18, Kur21]. However, the
direct integration of uncertainty into the DeFRCN model [Qia21] results in
a deterioration of both base and novel detection performance, underscoring
the necessity for the architectural design choices introduced in this study.
Consequently, the proposed model undertakes the estimation of aleatoric and
epistemic uncertainties at each stage within the Cascade R-CNN framework.

During the training phase, epistemic uncertainty is modeled through the in-
troduction of dropout [Nit14] layers within each R-CNN stage. These dropout
layers induce an ensemble effect by deactivating different neurons during
training, effectively simulating a diverse set of subnetworks. This approach in-
troduces prediction variability, capturing uncertainty regarding which specific
neurons are pertinent for a given input [Gaw23]. Furthermore, the ensemble
of subnetworks emulates a distribution of models, approximating the concept
of Bayesian model averaging [Ken17, Gaw23]. This representation accounts
for the model’s uncertainty concerning its optimal configuration, resulting in
a more robust characterization of epistemic uncertainty.

The process commences by utilizing the pyramid feature maps FP* generated
by the backbone network and the object proposals produced by the preceding
stage, with CenterNet-RPN serving as the initial stage. Subsequently, proposal
features are extracted through Rol-pooling, subjected to the CBAM atten-
tion block for focused attention, and then processed by the classification and
bounding box regressor heads to derive class scores and bounding box offsets.
This sequence constitutes a single forward pass within an R-CNN stage.

During the testing phase, the dropout layers are activated, and multiple forward
passes (indicated by R) are executed per stage. Predictions generated from
these passes are subsequently aggregated and, in conjunction with FPY*, passed
on to the next stage. The operational procedure of an individual R-CNN stage
during testing is illustrated in Figure 5.7.

For M stages, the classification features for the m*" stage are formulated
as follows:

F = h%(a,, (F2 ), (5.10)

m
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5 Replay-based G-FSOD

where for stage m, a,,(-) is the CBAM attention module. h is the classifi-
cation head in the Rol-head. Fi‘;ojl is the pooled instance-level features from
the previous stage. Similarly, the bounding-box features are computed as:
1

Fo = o (am (F721)), (5.11)
where for stage m, h?°* is the bounding-box head in the Rol-head. The F and
F2°* undergo the Rol-predictor to compute the classification and regression
offsets along with their corresponding uncertainties. The Rol-predictor consists
of a classifier head g¢(-) and a box head gb%%(-).

m m

During the inference phase, a series of R forward passes is executed with
dropouts, and the classification logits s,, are accumulated, along with the
predicted class aleatoric covariance denoted as Eﬁlf. Likewise, the box offsets
b,,, are accumulated, along with the predicted box aleatoric covariance referred
to as X2, The final classification logits and the corresponding aleatoric
variances are determined by computing the average across the R forward
passes, resulting in:

R

= 1

S S =1 2 m (B, (5.12)
r=1

where 5% and X% are the average classification logits and class aleatoric
covariance across the R iterations, respectively. Ffvlfyr represent different Rol-
head classification features each forward run r due to the stochastic dropouts in
the classification head. The box offsets and predicted variances are computed

as follows:
— — 1
bbox Ebox _ § :gbox(Fbox )’ (5.13)

where b?%* and %% are the average box offsets and box aleatoric covariance
across the R iterations, respectively. F,l,’g’f,. are the Rol-head box features for
the forward run 7.
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Stage-wise Aleatoric Uncertainty-based Refinement

Aleatoric uncertainties are taken into account for both the classification and
bounding box regression tasks. Initially, the classification logits are conceptu-
alized as a multivariate Gaussian distribution. This distribution is defined by
cls

the mean s
matrix X, which is computed based on the predicted class variances o

of the predicted classification logits and the diagonal covariance

2
cls*
cls
n

distribution. These samples are consolidated into a matrix denoted as S

Subsequently, N classification logits s¢* are sampled from this Gaussian

and can be represented as follows:

cls cls
Scls — {S:LIS}TIYZI c RN ><|C|7 S:Lls ~ N(SCIS, Eds). (5'14)
The classification loss is defined as the softmax cross-entropy computed be-
tween the stochastic classification logits S and the corresponding ground-
truth labels.

Additionally, the bounding box regression is analogously conceptualized as
a Gaussian distribution. In this representation, the mean corresponds to the
predicted box offsets b**, while the diagonal covariance matrix is determined
2, 04,0%). Consequently,
the loss for bounding box regression is calculated using the negative log-
likelihood method as presented in BayesianYOLO [Kra19].

by the predicted box variances, specifically, (02, o

Overall DeCRCN-UPPR Pipeline

The overall DeCRCN-UPPR pipeline can be summarized as follows:

1. Initial proposals generated by CenterNet-RPN, in conjunction with the
pyramid feature maps from the backbone, are forwarded to the first
R-CNN stage.

2. The Rol-head processes the pooled features, extracting classification
and bounding box features. These features are subsequently subjected
to the Rol-predictor, yielding classification logits and variances as well
as bounding box offsets and variances.
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3. To incorporate epistemic uncertainties, stochasticity is introduced
through dropout layers during the training phase. During inference, a
series of R forward passes are executed, and the network predictions
are collected and averaged to produce the final predictions.

4. The predicted box offsets are then applied to the initial proposals,
resulting in refined boxes that serve as input for the subsequent R-CNN
stage.

This iterative refinement process generates more reliable bounding boxes
by capitalizing on the averaged epistemic predictions, which exhibit greater
robustness compared to single-run predictions.

5.3.3 Experimental Evaluations

The DeCRCN-UPPR method, as introduced in this study, undergoes evalua-
tion on established benchmarks forG-FSOD, specifically theMS-COCO [Lin14]
and PASCAL-VOC [Evel0] datasets. To ensure a equitable comparison with
prior research endeavors, the identical data partitions utilized in earlier stud-
ies [Wan20a, Qia21, Fan21, Gui22b] are adopted.

Implementation Details

The DeCRCN employs a ResNet-101 [Hel6] backbone that has undergone
pre-training on the ImageNet dataset. It employs three cascaded R-CNN
stages characterized by progressively increasing IoU thresholds: 0.5, 0.6, and
0.7, respectively. The network undergoes end-to-end optimization using the
Stochastic Gradient Descent (SGD) algorithm, utilizing a mini-batch size of
16. The SGD algorithm is configured with a momentum value of 0.9 and a
weight decay factor of 5¢75.

During base training, the total number of iterations is 110,000, with a learning
rate of 0.02. Learning rate decay steps are executed at 85,000 and 100,000
iterations. Gradients stemming from the CenterNet-RPN are attenuated, and
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Table 5.10: G-FSOD results on MS-COCO for 5,10,30-shot settings. w/E denotes the ensemble-
based evaluation protocol. The best and second-best results are reported.

5 shot 10 shot 30 shot

h h E
Methods / Shots WE | AP DbAP nAP | AP DAP nAP | AP AP nAP

FRCN-ft-full[Wan20a] 18.0 220 6.0 181 21.0 9.2 186 206 125
TFA w/ fc[Wan20a] 27.5 339 8.4 279 339 100 | 29.7 351 134
TFA w/ cos[Wan20a] 28.1 347 8.3 28.7 350 100 | 303 358 137
MPSR[Wu20a] 153 171 9.7 17.1 18.1 14.1

287 331 153 | 30.6 346 186 | 31.6 347 22.5
13.7 179 1.0 13.7 179 1.2 - - -
3.6 3.5 3.8 5.4 5.2 6.1 7.8 7.1 9.9
- - - - - 5.6 - - 9.1
5.9 5.7 6.6 6.7 6.4 7.6 10.0 9.3 12.0
30.1 37.1 9.0 308 37.6 105 | 319 37.7 147
29.7 363 9.8 303  36.6 113 | 31.7 37.0 156
30.1 350 15.6 | 314 355 19.1 | 32.0 350 23.0
33.7 389 179 | 35.0 40.2 19.2 | 36.0 40.1 24.0
315 39.2 8.3 321 392 105 | 329 393 138
31.8 395 8.8 322 395 104 | 332 395 143
320 395 9.6 324 394 113 | 334 395 151
33.0 389 15.6 | 340 390 18.9 | 349 390 22.6
359 419 178 | 36.2 419 19.1 | 37.8 42.0 238

DeFRCN [Qia21]
ONCE [Per20]
Meta R-CNN [Yan19]
FSRW([Kan18]
FsDetView [Xia20]
CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
DeCRCN-UPPR
Retentive R-CNN[Fan21]
CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
DeCRCN-UPPR

NN SN N 8> % % % % % % % % % % % %

the R-CNN GDL scale, following the DeFRCN approach [Qia21], is established
at A = 0.75.

For novel finetuning, the total number of iterations is reduced to 4,000, ac-
companied by a learning rate of 0.01 and a decay step at 2,000 iterations. The
RPN GDL scale is set to A = 0.04, and a factor of 0.1 downscales the gradients
emerging from the R-CNN layers. In the context of epistemic uncertainty
estimation, a total of 40 forward passes are conducted with dropout layers
configured with a dropout probability of 0.5. As for aleatoric uncertainty
estimation, the number of classification samples is fixed at 10.
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Comparison Results

The proposed DeCRCN-UPPR is compared against state-of-the-art G-
FSOD [Wan20a, Qia21, Fan21, Gui22b] and FSOD models on MS-COCO
and PASCAL-VOC benchmarks.

Results on MS-COCO

Table 5.10 provides an overview of the performance outcomes on the MS-COCO
dataset. Notably, DeCRCN-UPPR demonstrates a substantial improvement
over prior state-of-the-art results in terms of both AP and bAP across all
configurations, while achieving slightly superior nAP. Additionally, the model
evaluation under the ensemble evaluation protocol [Fan21] further highlights
its superiority over alternative approaches.

PASCAL-VOC Results

Table 5.11 presents the overall performance on PASCAL-VOC (AP50). While
Table 5.12 reports the novel performance (nAP50). The adoption of the UPPR
methodology yields state-of-the-art outcomes across all shot settings, both
with and without the ensemble evaluation protocol.

Ablation Experiments
Impact of Individual Modules

In Table 5.13, an ablation study is conducted to assess the contributions of
individual components. Configuration A represents the baseline DeFRCN
model. In configuration B, incorporating aleatoric and epistemic uncertainty
estimation is introduced solely during novel training, resulting in a reduc-
tion in bAP but a marginal enhancement in nAP. Configuration C involves
the replacement of the Rol-head with a Cascade R-CNN and the RPN with
CenterNet, leading to improvements in the base metrics. This modified model
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Table 5.11: The overall G-FSOD results (AP50) on PASCAL-VOC for K = 1,2,3,5,10-shot set-
tings for all three splits. The best and second-best results are color coded.

All Set 1 All Set 2 All Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Methods / Shots w/E

FRCN-ft-full[Wan20a] 55.4 57.1 56.8 60.1 60.9|50.1 53.7 53.6 55.9 55.5|58.5 59.1 58.7 61.8 60.8
TFA w/ fc[Wan20a] 69.3 66.9 703 73.4 732|647 66.3 67.7 68.3 68.7|67.8 68.9 70.8 72.3 72.2
TFA w/ cos[Wan20a] 69.7 68.2 70.5 73.4 72.8|655 65.0 67.7 68.0 68.6|67.9 68.6 71.0 72.5 72.4
MPSR[Wu20a] 56.8 60.4 62.8 66.1 69.0|53.1 57.6 62.8 64.2 66.3|552 59.8 62.7 66.9 67.7
DeFRCN[Qia21] 73.1 732 737 751 74.4|68.6 69.8 71.0 725 715|725 73.5 72.7 74.1 73.9

Meta R-CNN[Yan19]
FSRW([Kan18]
FsDetView[Xia20]
CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
DeCRCN-UPPR
Retentive R-CNN[retentive]
CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
DeCRCN-UPPR

17.5 30.5 36.2 49.3 55.6(19.4 33.2 34.8 44.4 53.9|20.3 31.0 41.2 48.0 55.1
53.5 50.2 553 56.0 59.5|55.1 54.2 55.2 57.5 58.9|54.2 53.5 54.7 58.6 57.6
36.4 403 40.1 50.0 55.3|36.3 43.7 41.6 458 54.1|37.0 39.5 40.7 50.7 54.8
69.5 68.2 69.8 73.5 74.3|66.0 66.9 69.2 70.1 71.1|67.7 69.0 70.9 72.6 73.5
69.1 69.8 719 73.6 73.9|64.8 66.5 68.3 69.5 70.5|67.7 69.7 71.9 73.0 73.5
73.8 74.6 74.5 76.0 74.4/69.3 71.4 72.0 73.3 72.0|72.9 73.9 73.0 74.1 74.6
74.3 75.1 75.4 76.3 75.1|71.4 72.6 73.2 74.9 73.2 73.2 74.3 74.2 75.3 75.8
71.3 723 721 74.0 74.6|66.8 68.4 70.2 70.7 71.5]69.0 70.9 72.3 73.9 74.1
703 69.5 71.0 74.4 74.9|67.0 68.0 70.2 70.8 71.5|69.1 70.1 71.6 73.3 74.7
71.4 71.8 733 749 75.0|66.8 68.4 70.4 71.1 71.9|69.7 71.2 72.6 74.0 74.7
75.0 76.0 76.8 77.3 77.3|70.4 72.7 73.7 74.7 74.2|74.7 75.5 75.0 76.2 76.6
76.1 77.0 77.9 78.2 78.4|71.3 73.5 74.4 75.1 75.2 75.1 76.9 76.2 77.3 77.5

NN SN N N % % X X X X X X X X % X

is referred to as DeCRCN. Configuration D introduces uncertainty estimation
in a stage-wise manner, maintaining the bAP from the previous configuration
while increasing the nAP. This underscores the significance of progressively
applying uncertainty estimation throughout the stages of the Cascade R-CNN.
While the naive application of uncertainty estimation can induce some de-
gree of forgetting, its incremental integration within the Cascade R-CNN
contributes to proposal refinement.

Configuration E demonstrates enhancements in all metrics by incorporating
uncertainty estimation during base training as well. Finally, configurations
F, H, and G explore the influence of attention blocks during novel training.
Regardless of uncertainty estimation, including attention blocks during the
novel training stage improves both bAP and nAP. However, when attention
blocks are integrated into the base training phase, performance declines in the
base classes. This underscores the critical nature of the design choice to train
attention blocks using a balanced set encompassing both base and novel classes.
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Table 5.12: PASCAL-VOC G-FSOD (nAP50) results for K = 1,2,3,5,10-shot settings for all
three splits are reported. Similar to [Fan21, Gui22b], w/E denotes the ensemble-based
inference paradigm [Fan21]. The best and second-best results are color coded.

Novel Set 1 Novel Set 2 Novel Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
X |15.2 20.3 29.0 25.5 28.7|13.4 20.6 28.6 32.4 38.8|19.6 20.8 28.7 42.2 42.1
X [36.8 29.1 43.6 55.7 57.0|18.2 29.0 33.4 355 39.0(27.7 33.6 42.5 48.7 50.2
X 139.8 36.1 44.7 55.7 56.023.5 26.9 34.1 35.1 39.1|30.8 34.8 42.8 49.5 49.8
X |42.8 43.6 484 553 61.2]29.8 28.1 41.6 43.2 47.0|359 40.0 43.7 489 51.3
X |57.0 58.6 64.3 67.8 67.0|35.8 42.7 51.0 544 529|525 56.6 55.8 60.7 62.5
X |16.8 20.1 203 38.2 43.7| 7.7 12.0 149 21.9 31.1| 9.2 139 26.2 29.2 36.2
X |14.8 155 26.7 33.9 47.2|15.7 153 227 30.1 39.2|19.2 21.7 257 40.6 41.3
MetaDet[Wan19c] X | 189 20.6 30.2 36.8 49.6|21.8 23.1 27.8 31.7 43.0(20.6 23.9 29.4 439 44.1
FsDetView*[Xia20] X 254 204 374 36.1 423|229 21.7 22.6 25.6 29.2|324 19.0 29.8 33.2 39.8
CFA w/ fc [Gui22b] X 140.0 35.5 40.9 54.1 56.9|22.2 27.1 352 385 40.9|29.7 351 39.5 47.2 51.3

X

X

x

v

v

v

v

v

Methods / Shots w/E

FRCN-ft-full[Wan20a]
TFA w/ fc[Wan20a]
TFA w/ cos[Wan20a]
MPSR[Wu20a]
DeFRCN[Qia21]
Meta R-CNN[Yan19]
FSRW([Kan18]

CFA w/ cos [Gui22b] 41.2 43.6 495 56.5 57.3|21.3 274 353 39.1 42.1|31.7 39.1 44.6 49.9 52.6
CFA-DeFRCN [Gui22b] 58.2 63.3 65.8 68.9 67.1|37.1 45.5 51.3 55.2 53.8|54.7 57.8 56.9 60.0 63.3
DeCRCN-UPPR 60.2 64.7 66.4 70.1 68.4 38.7 46.4 52.8 56.2 54.6 55.5 58.7 57.9 61.2 64.7
Retentive R-CNN[retentive] 42.4 458 459 53.7 56.1(21.7 27.8 35.2 37.0 40.3|30.2 37.6 43.0 49.7 50.1
CFA w/ fc [Gui22b] 39.0 349 41.4 54.8 57.0|21.8 26.1 353 37.1 40.1|29.9 34.3 40.1 47.0 52.6
CFA w/ cos [Gui22b] 424 439 503 56.6 57.3|21.0 27.5 353 38.6 41.4|323 38.0 44.5 49.8 52.7
CFA-DeFRCN [Gui22b] 59.0 63.5 66.4 68.4 68.3|37.0 45.8 50.0 54.2 52.5|54.8 58.5 56.5 61.3 63.5
DeCRCN-UPPR 61.0 64.5 67.8 69.7 69.0 38.5 46.9 51.4 55.9 53.6 55.3 59.4 57.5 62.8 64.1

Table 5.13: An ablation study performed on MS-COCO for the 10-shot setting to highlight the
impact of different design choices. BT and NT denote base training and novel train-
ing, respectively. UE denotes uncertainty estimation (aleatoric and epistemic). ATT
is the stage-wise instance-level attention.

Model Configuration Base Training Base Novel Overall
AP AR | bAP | bAR | nAP | nAR | AP AR
A DeFRCN 38.5 33.2 36.5 324 16.8 20.2 31.6 29.4
B DeFRCN (NT: UE) 38.5 33.2 34.9 313 17.5 20.8 30.5 28.6
C DeCRCN 41.4 35.7 38.2 34.1 17.5 21.6 33.0 31.0
D DeCRCN (NT: UE) 41.4 35.7 38 34.2 18.2 22.5 33.1 313
E DeCRCN (BT + NT: UE) 420 | 36.1 | 402 | 366 | 19.0 | 23.6 | 347 | 32.6
F DeCRCN (BT: UE, NT: ATT) 42.0 36.1 40.2 36.6 19.3 24.2 34.8 32.8
G DeCRCN (BT + NT: UE + ATT) 41.7 36.2 37.3 34.6 18.7 23.6 32.6 31.8
H DeCRCN (BT: UE, NT: UE + ATT) (UPPR) 420  36.1 | 405 | 36.7 | 19.2 | 240 350 328

100



5.3 Uncertainty-based Progressive Proposal Refinement

Table 5.14: Multiple runs G-FSOD results for K' = 5,10,30-shot settings on MS-COCO for mul-

tiple runs using 10 different seeds.

Methods / Shots 5 shot 10 shot 30 shot
AP bAP nAP AP bAP nAP AP bAP nAP

TFA w/ fc[Wan20a] |25.640.5 31.840.5 6.9+0.7 |26.240.5 32.04+0.5 9.1+0.5 {28.4+0.3 33.8£0.3 12.0+0.4
TFA w/ cos[Wan20a] |25.940.6 32.34+0.6 7.0£0.7 {26.6+0.5 32.44+0.6 9.1+0.5 {28.7£0.4 34.2+£0.4 12.1+£0.4
CFA w/ fc [Gui22b] |29.1£0.3 36.2+0.3 7.740.6 |29.9+0.3 36.7+0.2 9.6+0.6 |30.840.2 36.61+0.2 13.61+0.3
CFA w/ cos [Gui22b] [29.340.2 36.0+£0.2 9.240.5 |30.240.2 36.6+0.1 11.2+0.5|31.1+0.1 36.640.1 14.8+0.2
DeFRCN[Qia21] 27.84+0.3 32.6+0.3 13.640.7|29.7£0.2 34.0+0.2 16.8+0.6|31.4+0.1 34.84+0.1 21.2+0.4
CFA-DeFRCN [Gui22b] | 28.4+0.2 32.840.2 15.240.5|30.24+0.2 34.04+0.2 18.840.4|31.740.1 34.64+0.1 23.040.3
DeCRCN-UPPR 31.840.1 36.5+0.1 17.4+0.2|33.740.1 38.5+0.1 18.9+0.1 35.6£0.0 39.6+0.1 24.040.1

Table 5.15: The G-FSOD multiple runs results for K = 1,2,3,5,10-shot settings on the three all

sets of PASCAL-VOC (AP50).

Set Methods Shots
1 2 3 5 10
CFA w/ fc [Gui2zb] | 66.3+0.8  68.0+£0.5 70.1+0.4 717405 732405
CFA w/ cos [Gui22b] | 66.5£0.9 69.240.6 71.14£0.6 72.5+0.4 73.4+0.4
All Set 1 DeFRCN [Qia21] 67.8+1.4 713408 72.6+05 73.6+0.5 741405
CFA-DeFRCN [Gui22b] | 69.0£1.4 72.6+0.7 73.1£0.4 74.0£0.5 74.3+0.4
DeCRCN-UPPR 701409  73.5£05 749405 753404  75.7+0.4
CFA w/ fc [Gui2zb] | 64.940.9 66.4+£0.7 683+0.5 69.6+03 70.8£0.5
CFA w/ cos [Gui22b] | 64.14£0.9  66.5+0.5 68.14£05 69.3+0.2  70.440.4
All Set 2 DeFRCN [Qia21] 65.2+1.0 68.0£0.8 69.2£0.6 70.6£0.6 71.320.5
CFA-DeFRCN [Gui22b] | 66.4£1.0 69.040.8 704407 71.3+0.7 72.140.4
DeCRCN-UPPR 675209 70.5+0.7 717406 72.6+0.6 73.3+0.4
CFA w/ fc [Gui22b] | 65.240.8 66.8+£0.8 69.14£0.7 70.940.6 723+0.4
CFA w/ cos [Gui22b] | 64.9+1.2 67.541.0 69.74£0.8 71.6+0.5 72.740.3
All Set 3 DeFRCN [Qia21] 66.9+2.0 70.6+08 712406 729405 73.540.3
CFA-DeFRCN [Gui22b] | 683£1.6 714408 723+05 73.540.5 74.0+0.3
DeCRCN-UPPR 69.5£0.8  73.740.6 74705 755404  76.340.2
Multiple Runs

To assess the robustness of DeCRCN-UPPR relative to other G-FSOD baselines,
multi-seed experiments are conducted on both MS-COCO (using 10 different
random seeds) and PASCAL-VOC (using 30 different random seeds). The
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5 Replay-based G-FSOD

Table 5.16: G-FSOD results for K = 1,2,3,5,10-shot settings on the three novel sets of PASCAL-
VOC (nAP50).

Shots
1 2 3 5 10
CFA w/ fc [Gui22b] 28.24+3.1 35.0+1.9 419414 47.8+1.6 53.3%1.6
CFA w/ cos [Gui22b] 30.9+3.9 40.9+25 47.8+24 53.1+14 56.1+14

Set Methods

Novel Set 1 DeFRCN [Qia21] 43.844.3 57.5+25 61.4%1.7 653£09 67.0+1.4
CFA-DeFRCN [Gui22b] | 45.4+4.9 60.3+2.2 62.1£14 664409 67.6+1.2
DeCRCN-UPPR 45.84+3.2  595+2.0 61.9+1.7 645£13 66.5+1.3

CFA w/ fc [Gui22b] 20.0+3.5 264429 328+2.2 373+17 41.8%19
CFA w/ cos [Gui22b] 21.0£35 29.0+23 34.6%23 38.9+1.2 43.0£1.9

Novel Set 2 DeFRCN[Qia21] 31.5£3.6 40.9+2.2 45.6+2.0 50.1+1.4 52.9£1.1
CFA-DeFRCN [Gui22b] | 32.943.7 423+2.2 47.1£19 51.2414 553%13
DeCRCN-UPPR 29.8+£34 39.4%+19 447420 49.1+1.8 51.5%14

CFA w/ fc [Gui22b] 203£34 264431 343£25 41.2424 46.5%1.6
CFA w/ cos [Gui22b] 215+4.7 30.4%4.1 384£28 455+21 49.9£1.0

Novel Set 3 DeFRCN [Qia21] 38.2+£6.8 509428 54.1£22 59.2+1.2 61.9£13
CFA-DeFRCN [Gui22b] | 414458 52.9+3.0 56.1£1.7 60.3+1.1 62.940.9
DeCRCN-UPPR 41.0£29 51.9£2.0 56.0£1.7 584414 61.8%1.2

results, presented in Tables 5.14 (for MS-COCO) and Tables 5.15 and 5.16 (for
PASCAL-VOC), encompass the mean and standard deviation values.

In Table 5.14, the outcomes on MS-COCO demonstrate that DeCRCN-UPPR
consistently outperforms the other baseline models across various shot settings.
Likewise, in the case of PASCAL-VOC, results for both overall performance
(Table 5.15) and novel performance (Table 5.16) illustrate that DeCRCN-UPPR
exhibits a higher overall AP50 and maintains competitive novel nAP50 scores
for diverse shot settings. These findings align with the observations made
in the MS-COCO experiments.

5.4 Discussion

In this chapter, the focus has been on addressing the challenge of forgetting
in G-FSOD when base data is available during novel training. Two methods,
namely CFA and DeCRCN-UPPR, have been introduced to alleviate forgetting
and enhance the performance of novel object detection.
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5.4 Discussion

CFA adapts gradient episodic memory techniques by utilizing a static mem-
ory buffer to replay a few-shot of base objects. The newly derived gradient
update rule is adaptively reweights the base and novel gradients to reduce
forgetting. Compared to related GEM-based approaches [Lop17, Chal9a],
CFA promotes better knowledge transfer between base and novel classes and
can seamlessly integrate with FSOD frameworks without increasing model
capacity or inference time.

DeCRCN-UPPR focuses on the design of a detector that refines proposals in
a stagewise manner. This is achieved by leveraging predictive uncertainties
and careful architectural modifications. Estimating uncertainties provides an
extra source of distributional information to reduce forgetting and improve
the novel detection performance. During novel training, attention blocks are
appended to each R-CNN stage, enabling selective focus on discriminative
features for improved classification. Integrating multiple R-CNN stages and
attention blocks significantly enhances the detection performance of both
base and novel classes.

The introduction of CFA and DeCRCN-UPPR presents valuable contributions
to addressing forgetting in G-FSOD. These methods provide innovative strate-
gies for transferring knowledge and improving the performance of novel
object detection. The effectiveness of these methods has been demonstrated
through experimental evaluations, showcasing their potential to improve the
performance of few-shot detectors.
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6 Regularized-based G-FSOD

In the preceding chapter, both the proposed and discussed G-FSOD approaches
operate under the assumption that the base images are available during the
novel training phase. However, this assumption may not hold in scenarios with
constraints on data sharing and storage, primarily due to increasing privacy
concerns surrounding Al models.

This chapter proposes the first Data-Free Knowledge Distillation (DFKD)
approach for G-FSOD. Specifically, the statistics of the Rol features from the
base model are utilized to generate instance-level features without direct
access to the base images. The contribution of this work can be summarized
in three aspects. First, the introduction of a standalone lightweight generator.
Second, the incorporation of class-wise heads for generating and replaying
diverse instance-level base features to the Rol head during the novel data
finetuning process. Third, the distinction from conventional DFKD approaches
in image classification, which typically involves inverting the entire network
to generate base images. Additionally, careful design choices are made in
the novel finetuning pipeline to enforce the regularization of the model. The
experimental results demonstrate the effectiveness of the proposed approach
in significantly reducing the memory requirements for base images while
achieving state-of-the-art performance in G-FSOD on challenging benchmarks
such as MS-COCO and PASCAL-VOC.
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6.1 Literature Review

6.1.1 Regularization-based Continual Learning Methods

In contrast to the previously discussed replay-based methods in Section 5.1.2,
regularization-based methods [Kir16, Alj18, Leel7, Zen17, Liul8b, Chals,
Li16, Jun16, Tril7, Zha20a] take a different approach to address the issue
of catastrophic forgetting. Instead of relying on storing or replaying data,
regularization-based methods incorporate regularization techniques to retain
the knowledge of previous tasks. By adding penalty terms to the loss function,
the network parameters are encouraged to remain close to their previous
task solutions, ensuring that previous knowledge is preserved while learning
new tasks. This approach proves advantageous in situations where there are
limitations on privacy or memory resources, as it eliminates the necessity of
storing any data related to previous tasks.

Regularization-based methods can be classified into two categories: prior-
focused and data-focused approaches. These methods share the common
objective of retaining knowledge acquired from previous tasks but differ in
prioritizing and utilizing the previous task information. Prior-focused meth-
ods [Kirl6, Alj18, Leel7, Zen17, Liul8b, Cha18] emphasize the preservation
of network parameter values obtained from prior tasks. This is accomplished
by incorporating penalty terms into the loss function, which enforces the
parameters to remain close to their solutions for previous tasks. In contrast,
data-focused methods [Li16, Jun16, Tril7, Zha20a] prioritize conserving the
learned data distribution or patterns from past tasks. This is often achieved
through generative models, which learn to capture and reproduce the under-
lying distribution of the data. In this chapter, the focus is directed towards
the exploitation of prior-focused methods for G-FSOD. Specifically, the two
widely used approaches, namely Elastic Weight Consolidation (EWC) [Kir16]
and Memory Aware Synapses (MAS) [Alj18], due to their ease of implementa-
tion and established efficacy in retaining prior knowledge during sequential
learning tasks.
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Elastic Weight Consolidation

The fundamental concept underlying EWC [Kir16] involves constraining the
network parameters according to their significance for previous tasks. This is
accomplished by introducing a penalty term into the training loss function,
which measures the discrepancy between the current and previous task pa-
rameters. The penalty term employed in EWC relies on utilizing the Fisher
Information Matrix (FIM), which measures the network loss sensitivity to
parameter variations. The FIM is computed as the expected value of the outer
product of the gradients of the loss with respect to the parameters. By cap-
turing the curvature of the loss landscape around the optimal parameters, the
FIM facilitates understanding the importance attributed to each parameter.

Formally, the penalty term can be written as:
1 *\ 2
5w zijFIMi(@i -0, (6.1)

where Agwc is a scaling factor to weight the penalty term. FIM; is the FIM for
the i parameter. ©; is the current value of the network i parameter. @}
is the optimal value of the i parameter from the previous task.

Memory Aware Synapses

In contrast to EWC, MAS [Alj18] makes use of a memory module to store target
values of network parameters acquired from previous tasks. Subsequently,
MAS incorporates a penalty term that encourages the current parameters to
align with the stored target values.

However, MAS is explicitly tailored for MLPs. As a consequence, when em-
ployed with alternative network architectures such as CNNs with shared
parameters, MAS might necessitate adjustments. In contrast, EWC exhibits
compatibility with a diverse range of neural network architectures and loss
functions, rendering it adaptable for various tasks without being constrained
to a specific network architecture
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6 Regularized-based G-FSOD

6.1.2 Data-Free Knowledge Distillation

DFKD [Mor15, Yin20, Smi21, Cha21] encompasses a range of approaches with
a shared objective of transferring knowledge without relying on storing raw
data. DFKD methods focus on distilling and transferring knowledge from a
teacher network to a student network by generating synthetic images instead
of using original data from the previous tasks. A two-step noise optimization
paradigm is prevalent among the commonly reviewed approaches in this
area. In this paradigm, a noise vector is initially sampled from a Gaussian
distribution and then iteratively optimized using SGD to produce a synthesized
image. This optimization process aims to minimize the Kullback-Leibler
(KL) divergence between the statistical properties of the synthesized images
and the gathered statistics, assuming a Gaussian distribution. Standard data-
driven Knowledge Distillation (KD) techniques are applied in the second stage,
utilizing the synthetic images generated in the first stage. The goal is to transfer
knowledge from the teacher network to the student network in a teacher-
student fashion [Sha18, Xu20, Xu21], mitigating the issue of forgetting.

DeepDream

DeepDream [Mor15] was a pioneering work in the field of Model Inversion
(MI) that focused on generating synthetic images by reversing a pre-trained
classifier. It was the first of its kind to demonstrate that neural networks trained
for classification tasks contain valuable information that can be utilized for
image generation. DeepDream achieves this by synthesizing images that elicit
strong responses for specific classes at various layers of the model. Specif-
ically, DeepDream revolves around the fundamental concept of visualizing
the patterns and features learned by neural networks during their training on
extensive datasets. Departing from the conventional usage of neural networks
for image classification, DeepDream takes a reverse approach, employing the
network to generate images that optimize the activation of specific patterns
and features to the maximum extent possible.
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DeeplInversion

Deeplnversion [Yin20] seeks to generate images that, when fed into a trained
neural network, produce desired activation responses. This is accomplished
by refining the input image through an optimization process that minimizes
the discrepancy between its representation in the network and a target rep-
resentation. The optimization process entails iteratively adjusting the pixel
values of the input image to align it with the target representation. Specifically,
the backpropagated gradients are utilized to modify the image to encourage
the desired activation patterns in the network. DeepInversion employs a loss
function comprising two main elements [Yin20]: a misclassification loss and
a regularization loss. The misclassification loss encourages the network to
classify the generated image as a specific target class. Meanwhile, the regu-
larization loss promotes smoothness and naturalness in the resulting image,
preventing excessive noise or unrealistic features. By iteratively optimizing the
input image based on these loss components, DeepInversion aims to discover
an image that can activate the desired neurons or layers within the network
while maintaining high fidelity.

Always Be Dreaming

Always Be Dreaming (ABD) [Smi21] was the first DFKD in a class-incremental
setting. ABD comprises three main components. First, a modified cross-
entropy loss that prevents the model from biasing the feature embeddings
towards the new classes. Specifically, the cross-entropy loss is computed locally
across the new class linear heads without considering the past class linear
heads. This ensures that the model does not learn to separate classes based
on their domain. Second, ABD minimizes the feature drift over previous task
data. Due to the utilization of distillation images originating from a domain
distinct from that of the present task images, an issue of feature domain
bias arises. To address this, an importance-weighted feature distillation is
proposed to reinforce important components of past task data while allowing
less important features to adapt to the new task.
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DIODE

While the previous approaches tackle the DFKD for the image classification
task, DIODE [Cha21] proposed a non-class incremental approach for OD.
DIODE consists of two primary components. Firstly, it incorporates a wide
range of differentiable augmentations to improve the quality of images and
enhance the efficacy of KD. This ensures that the semantic information in in-
verted images remains consistent despite the augmentations applied, resulting
in images that align with natural images [Cha21]. Secondly, DIODE introduces
a novel automated scheme for sampling bounding boxes and categories dur-
ing image synthesis. This enables the generation of a substantial quantity of
images that contain objects with diverse spatial distributions and categories.
These generated images facilitate the process of DFKD from a teacher object
detector to a student detector [Cha21]. The student detector is trained from
scratch, starting with no prior information.

Despite DIODE [Cha21] successfully applying MI in the context of OD, it
cannot be directly extended to G-FSOD due to a specific limitation. Like other
existing works in DFKD, DIODE relies on the statistics of BN layers, which
are pre-trained on detection datasets. However, in G-FSOD, the backbone
network is pre-trained on ImageNet [Rus15] and kept frozen except for the
last residual block during training. It is important to note that unfreezing
the earlier backbone layers would change the mature pre-trained parameters
and potentially decrease overall performance. Consequently, the running
means and variances in the BN layers would no longer accurately represent
the underlying base data distribution.

Two main challenges are highlighted at this point. Firstly, performing DFKD
in G-FSOD with most of the backbone and all BN layers are frozen. Secondly,
in contrast to image classification, the presence of multiple instances per im-
age and the RPN make it difficult to invert the model prior to the Rol-head.
Otherwise, generating bounding boxes for the synthesized images would be
necessary, resulting in higher complexity and significantly increased com-
putational and memory overhead.
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Figure 6.1: Left: The vanilla DFKD approach using model inversion [Yin20, Smi21]. Right: An
outline of the proposed DFKD method for G-FSOD, highlighting only a few layers.
The key distinctions between the approaches are as follows: (1) Synthesizing features
instead of images, (2) A standalone generator is employed rather than inverting the
entire model, and (3) The class-wise statistics are recorded, specifically before and
after the BN layers in the Rol-head.

6.2 The NIFF Framework

The objective is to develop a G-FSOD pipeline capable of learning novel classes
with limited data while considering the privacy and memory limitations. In
this section, the proposed approach Neural Instance Feature Forging (NIFF)
is presented, comprising two stages: (1) Training a lightweight standalone
feature generator, and (2) Conducting novel training using distillation between
the base and novel Rol-heads with the trained generator. The abstract concept
of the proposed method in comparison to the conventional DFKD approaches
is depicted in Figure 6.1.

6.2.1 Feature Generator Training

In the initial stage of NIFF, a standalone feature generator is trained by aligning
the class-wise statistics at the Rol-head. Subsequently, in the second stage,
features are synthesized from the trained generator during novel training to
mitigate forgetting. This section provides an in-depth description of the first
stage, focusing on the design and training of the generator.
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Figure 6.2: Illustration of the first NIFF stage involving the feature generator training. Left: An
emphasis on the specific locations where feature statistics are collected through the
utilization of data watchers. Right: A depiction of the generator training pipeline
and the relevant architectural details.

Gathering Base Statistics

Considering the frozen state of the BN layers in G-FSOD models, an alternative
method is required to obtain meaningful statistics, such as running means and
variances, for the base Rol features. Instead of class-agnostic statistics, class-
wise statistics are gathered to provide finer control over the number and class
of generated features. This design choice compensates the sparser and harder
classes in the base dataset through class conditional generation. To achieve
this, the introduction of a data watcher block is proposed. Specifically, the
data watcher block performs average pooling on the spatial dimensions of the
input feature maps and records class-wise mean p, and variance o2 vectors,
along with the sample size n.. The statistics are updated using combined mean
and corrected variance operations as follows:

. Neg—1bep—1 T Nethe

Her =

- (6.2)
’ Net—1 T Neyt
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(6.3)

At each iteration step ¢, the running estimate is denoted by (A) In order
to enforce a greater diversity in the forged features, the decision is made to
position data watchers at various layers within the Rol-head, specifically before
the frozen BN layers and after the activations, as illustrated in Figure 6.2 (left).
The number of data watchers determines the level of restriction on the forged
features. To achieve this, additional data watchers are placed both before and
after the softmax layer. These collected statistics should accurately represent
a strong prior distribution of the base Rol features.

It is important to emphasize that once the statistics are collected for the base
classes, the data is no longer accessible or stored. As a result, the model con-
taining the underlying base statistics can be treated as a black box, preserving
data privacy and enabling the sharing of the model with different parties with-
out the need to share or store the data. Moreover, relying solely on the running
averages of the Rol statistics leads to information loss, particularly since only
Rol pooled features of fixed shape are utilized, making the reconstruction of
the training data challenging. NIFF requires even fewer statistics than pre-
vious methods like DIODE [Cha21] which employs backbone statistics and,
therefore, cannot reconstruct an entire image.

Generator Architecture

The gathered means and variances of the Rol features are leveraged to train
the feature generator using SGD. In the right side of Figure 6.2, the proposed
lightweight architecture of the generator is presented. It starts with a linear
layer that maps the input noise vector z € R to R3%2, which is then reshaped
to R®*7*7_ Subsequently, the reshaped input is passed through five sequential
convolutional blocks, each containing 2D convolutional layers with 8 channels
and a kernel size of 3 x 3. To output class-wise features f, € R1024X7x7

number of |Cp| 1 X 1 convolutional blocks are appended. Synthetic features for

a
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Figure 6.3: An overview of the second NIFF stage, featuring the knowledge distillation between
the base and novel Rol-heads. Knowledge distillation is performed via the forged
base features during novel training.

class ¢ are generated by sampling noise z ~ N (0,I) and using f, = G(c,z),
where G represents our generator model.

Generator Training

The training of the feature generator focuses on forging instance-level base
features by aligning the acquired statistics within the Rol-head at the cor-
responding layers. This alignment ensures the generation of diverse base
features. To achieve class-specific feature generation, the class-wise statistics
obtained from passing the features f, through the Rol-head are aligned with
the class-wise statistics collected by the data watchers. This approach deviates
from aligning the class-agnostic statistics of the entire dataset. Additionally, to
encourage each separate head to produce distinct f, features, a cross-entropy

loss is introduced between the target class-label y; . and the probability p; .
at the final softmax layer.
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In summary, the training of the generator is guided by two primary objec-
tives: (1) Alignment of the Rol-head statistics with the gathered base statis-
tics through the use of KL divergence under a Gaussian assumption, and (2)
Maximization of the class probability by incorporating a cross-entropy loss.
Mathematically, the generator training loss function Lgen is denoted by:

[Co| d . ) _ )
L =\g] ——— 1 ci L 1— i e i
o KL|Cb|*dZZ B 2 &2,
c=1 i=1 5 o
1 [Co | * Neat 1 |Ch|
|Cb| * Nfeat =1 |Cb| ; 2,C ( ’L,C)

The weighting factor \gy, is applied to the loss, which is averaged over all data
Watchers but excluded above for better readability. The ground-truth vector
vy, is represented as a one-hot encoding. The dimension of the pooled features
is denoted by d. The feature statistics p,, and o2 are gathered, while the fake
feature statistics fi, and &2 are generated. The total number of generated
features per class is denoted as Nfey, and during training Ng, = 600. To
prevent memory overflow, the features for each class are sequentially fed, and
the gradients are accumulated for backpropagation at the end.

6.2.2 Improved Novel Training Pipeline

In the final stage of NIFF, novel finetuning is performed while conducting KD
at the Rol-head using a teacher-student approach. As illustrated in Figure 6.3,
the forged base instance-level features as well as the novel features, are fed
to the base and novel Rol-heads, respectively. To align with the finetuning
K -shot setting, a total of Ng,; = K features per class are set, ensuring that
all base classes are encountered in each iteration. This provides a notable
advantage compared to data-dependent approaches such as [Qia21, Fan21,
Gui22b], which employ base images containing only a few classes in each
iteration. Another advantage of our approach is its generative nature, allowing
the sampling of features to produce diverse results. In contrast, [Qia21, Fan21,
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Gui22b] utilize a fixed number of shots per base class during training, limiting
the distribution seen by the model.

The distillation process is carried out in the following manner: Firstly, a
weighted feature distillation using L2-norm is employed to penalize the differ-
ence between class-wise pooled Rol features of the teacher (F7 e R(ICI-K)xd
and student F¥ € RUCIK)xd where d represents the pooled feature dimen-
sion. To account for the generation of class-specific features, the difference
between the features is weighted using the weight vector W¢,, € R? from the
complete classification weight matrix Wy, € RI€1* for the corresponding
class c. Similarly, the feature differences in regression are also weighted using
the weight matrix Wy, € R**4 obtained from the regression weight tensor
Wieg € R*ICD)xd Secondly, the alignment of class-wise regression logits is
achieved by penalizing the drift between the predicted offsets of the teacher
reg! € R* and student reg? € R*. Formally, the KD loss can be denoted by:

1 [Co|- K
FT FS Cj
Lxp )\F‘C K Z II( ) WEIS

|Co|- K 4
A r e 2 D MEFD = FY) Wil (6.5)

=1 j=1
ICo|- K
1

- T _ s
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where Ar is a hyperparameter to weight the feature distillation. Thirdly,
analogous to [Smi21], a cross-entropy loss during finetuning is employed to
maximize the confidence of the synthesized features:

ol K el
Lecon i.clog(p; ) 6.6
= le = Z |C|Zy g(p; (6.6)

Formally, the overall novel training loss £y can be written as:

['N = EC]S + £Reg + £KD + Lconf- (67)
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Lcis and EReg are the cross-entropy and smooth L1 losses, respectively [Ren15].

Additional Regularization

It has been observed that by replaying the generated base features, the proposed
model achieves performance that is nearly comparable to the state-of-the-art
in terms of overall AP. Throughout the novel training phase, several design
choices in the training pipeline have been identified that can enhance the
overall detection performance. A chosen approach is to implement the earlier
proposed CFA [Gui22b] while utilizing the backpropagated base gradients
enabled by the availability of the forged base features. Furthermore, an investi-
gation is conducted into various techniques for pixel-level and parameter-level
regularization. Regarding the former, random color jittering, such as bright-
ness, contrast, and saturation, random flipping, and random cropping are
applied as augmentations, each with a probability of augmentation p,,; = 0.5.

Regarding parameter-level regularization, it has been shown that the utilization
of the EWC [Kir16], initially designed for image classification, proves effective
in alleviating forgetting. The importance of the parameters is weighted using
the diagonal of the FIM, which is computed by squaring the backpropagated
gradients obtained during the final epoch of base training. During novel
training, EWC penalizes changes in significant parameters based on the FIM,
facilitating more efficient knowledge transfer.

However, the FIM consumes a substantial amount of memory due to storing
a weight for each model parameter. To mitigate this drawback, an approach
is employed to average the weights of each layer in the FIM, resulting in a
reduction of memory usage from approximately 200MB to 6.8KB. As aresult, a
single scalar value represents the importance of each layer. This approximation
of EWC is referred to as mean Elastic Weight Consolidation (mEWC).
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6.3 Experimental Evaluations

The evaluation of the proposed approach is conducted on widely recog-
nized benchmarks for G-FSOD, namely the MS-COCO [Lin14] and PASCAL-
VOC [Eve10] datasets. To ensure a fair comparison, the identical data splits
utilized in previous studies [Wan20a, Qia21, Fan21, Gui22b] are employed.

6.3.1 Implementation Details
Generator Training

The generator is trained for 2k iterations using the Rol-head parameters from
base training and the collected statistics from the data watchers. SGD is
employed to optimize the generator, with a batch size of 600 features. The
momentum is set to 0.9, and a weight decay of 5e — 5 is applied. The learning
rate is fixed at 0.001. The scaling factor for the KL divergence loss is specified
as /\KL = 5.

Novel Training

During the process of novel training, the model undergoes optimization using
SGD with a batch size of 16. The learning rate is set to 0.005 for MS-COCO and
0.01 for PASCAL-VOC. A warmup period of 200 iterations is implemented.
Step decays are performed at specific iterations: 2500, 4000, and 6400 for MS-
COCO in the 5-shot, 10-shot, and 30-shot settings, respectively. For PASCAL-
VOC, the decay is conducted at 1000 and 1500 iterations for the 5-shot and 10-
shot settings, respectively, in the first three shot settings. To enable distillation,
the Rol-head is unfrozen, and the learning rate is scaled down by a factor
of 0.015. The scaling factors for the mEWC penalty term are set as follows:
Ar = 0.1 for MS-COCO and A\¢ = 0.01 for PASCAL-VOC. All training activities
are conducted using four Nvidia GeForce 1080Ti GPUs.
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Table 6.1: The G-FSOD results on MS-COCO for K = 5,10,30-shot settings. w/E indicates the
ensemble-based evaluation protocol [Fan21]. w/B denotes whether the base data is
available during novel finetuning. The best and second-best results are reported.

5 shot 10 shot 30 shot

Methods / Shots w/E | w/B
AP bAP nAP AP bAP nAP AP bAP nAP

Retentive R-CNN[Fan21]
CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
NIFF-DeFRCN

315 39.2 8.3 321 392 105 | 329 393 138
31.8  39.5 8.8 322 395 104 | 332 395 143
320 395 9.6 324 394 113 | 334 395 151
33.0 389 156 | 340 39.0 189 | 349 390 226
33.1 389 159 | 340 39.0 18.8 | 345 390 20.9

FRCN-ft-full[Wan20a] X v 18.0 22.0 6.0 18.1 21.0 9.2 18.6 20.6 12.5
TFA w/ fc[Wan20a] X v 275 339 8.4 279 339 10.0 29.7 351 13.4
TFA w/ cos[Wan20a] X v 28.1 34.7 8.3 28.7 35.0 10.0 30.3 35.8 13.7
MPSR[Wu20a] X v - - - 153 17.1 9.7 17.1 18.1 14.1
DeFRCN [Qia21] X v 28.7 331 15.3 306 346 18.6 | 316 347 225
ONCE [Per20] X | v | 137 179 10 | 137 179 12 | - - -

Meta R-CNN [Yan19] X | v | 36 35 38|54 52 61|78 71 99
FSRW[Kan18] X v - - - - - 5.6 - - 9.1
FsDetView [Xia20] X v 5.9 5.7 6.6 6.7 6.4 7.6 10.0 9.3 12.0
CFA w/ fc [Gui22b] X v 30.1 37.1 9.0 30.8 37.6 10.5 31.9 37.7 14.7
CFA w/ cos [Gui22b] X v 29.7 363 9.8 303 36.6 113 31.7 370 15.6
CFA-DeFRCN [Gui22b] X v 30.1 35.0 15.6 | 314 355 19.1 | 32.0 35.0 23.0
DeFRCN X X 23.7 26.3 15.6 18.2 18.5 17.4 16.3 16.3 21.4
NIFF-DeFRCN X X 313 363 15.7 | 32.2 36.6 19.1 | 33.1 37.2 210

v v

v v

v v

v v

v X

6.3.2 Comparison Results
Results on MS-COCO

The results on the MS-COCO dataset are presented in Table 6.1. The inclusion
of base data is indicated by (w/B). To assess the impact of removing base data
on G-FSOD, the baseline method DeFRCN [Qia21] is reevaluated without any
base data. It is observed that both the base and novel performance exhibit
a decline across all shot settings, indicating the importance of base data for
knowledge transfer to new tasks. By leveraging NIFF, consistent improvements
are achieved in the base performance across all settings, resulting in higher
overall AP performance.
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Table 6.2: The G-FSOD results for various baselines, with DeFRCN [Qia21] being the base model,
on MS-COCO for K = 5,10,30-shot settings. w/E indicates the ensemble-based
evaluation protocol [Fan21]. w/B denotes whether the base data is available during
novel finetuning. v indicates finetuning with offline stored base Rol features. KD is
the proposed knowledge distillation approach. The best and second-best results are
reported.

5-Shot 10-Shot 30-Shot
AP  bAP nAP | AP DbAP nAP | AP DbAP nAP
28.7 33.1 15.3 30.6 34.6 18.6 31.6 347 225

Methods / Shots w/B

DeFRCN [Qia21]

v
DeFRCN X 237 263 15.6 | 182 185 174 | 163 163 214
DeFRCN w/ DA X 226 250 153 | 264 292 179 | 242 250 218
DeFRCN w/ MAS X 310 36.8 135 | 315 36.8 153 | 326 366 204
DeFRCN w/ EWC X 311 37.1 134 | 31.8 369 16.6 | 33.0 37.3 20.1
DeFRCN r 242 276 13.6 | 258 289 166 | 26,6 290 197
DeFRCN + CFA vr 260 299 137 | 27.7 314 166 | 28.6 315 199
DeFRCN w/ KD r 253 288 143 | 270 302 174 | 279 303 205
DeFRCN w/ KD + CFA | V¢ 284 333 141 | 305 349 171 | 313 350 203
NIFF-DeFRCN X 31.3 363 15.7 | 32.2 366 19.1 | 33.1 37.2 210

The model is also evaluated using the ensemble evaluation protocol in Retentive
R-CNN [Fan21], where despite the absence of base data (with a 0.4 AP differ-
ence in the 30-shot setting), superior performance is achieved compared to
other approaches. It is important to note that this evaluation protocol requires
the retention of base model parameters [Fan21, Gui22b], leading to increased
memory usage and inference time. Furthermore, the proposed approach, NIFF-
DeFRCN, (w/o E and w/o B), outperforms Retentive R-CNN [Fan21] (w/E and
w/B) in terms of overall AP performance.

Data-Free and G-FSOD Baselines

A comparison is made between our method and various baselines in Table 6.2,
including base-data-free and G-FSOD baselines built upon DeFRCN [Qia21].
The data-free baselines are derived from regularization-based CL approaches,
such as pixel-level data augmentations, EWC[Kir16], Memory Aware Synapses
(MAS) [Alj18] using computed FIM. As CFA [Gui22b] cannot be conducted in
a data-free setting, DeFRCN [Qia21] is trained and base Rol features are saved
for later application of CFA during novel training. Two additional baselines are
introduced: the proposed KD method applied to DeFRCN using saved base Rol
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Table 6.3: The G-FSOD results (AP50) on PASCAL-VOC for K = 1,2,3,5,10-shot settings
for the three different splits. w/E indicates the ensemble-based evaluation proto-
col [Fan21]. w/B denotes whether the base data is available during novel fine-tuning.
The best and second-best results are reported.

All Set 1 All Set 2 All Set 3

1 2 3 5 10 1 2 3 5 10 1 2 3 5 10
55.4 57.1 56.8 60.1 60.9|50.1 53.7 53.6 559 55.5|58.5 59.1 58.7 61.8 60.8
69.3 66.9 70.3 734 73.2|64.7 66.3 67.7 683 68.7|67.8 68.9 70.8 72.3 72.2
69.7 68.2 70.5 73.4 728|655 650 67.7 68.0 68.6|67.9 68.6 71.0 72.5 72.4
56.8 60.4 62.8 66.1 69.0|53.1 57.6 62.8 64.2 66.3 552 59.8 62.7 66.9 67.7
73.1 73.2 73.7 75.1 74.4|68.6 69.8 71.0 72.5 71.5|72.5 73.5 72.7 741 739
17.5 30.5 36.2 49.3 55.6|19.4 33.2 34.8 444 53.9|20.3 31.0 41.2 48.0 55.1
53.5 50.2 55.3 56.0 59.5|55.1 54.2 55.2 57.5 58.9|54.2 53.5 54.7 58.6 57.6
36.4 40.3 40.1 50.0 55.3|36.3 43.7 41.6 45.8 54.1|37.0 39.5 40.7 50.7 54.8
69.5 68.2 69.8 73.5 74.3|66.0 66.9 69.2 70.1 71.1|67.7 69.0 70.9 72.6 73.5
69.1 69.8 71.9 73.6 73.9|64.8 66.5 68.3 69.5 70.5|67.7 69.7 71.9 73.0 73.5
73.8 74.6 74.5 76.0 74.4|69.3 71.4 72.0 73.3 72.0|72.9 73.9 73.0 74.1 74.6
61.1 48.5 35.9 32.8 20.7|64.7 59.7 58.2 56.9 48.4|56.3 51.2 46.9 38.8 23.9
75.6 76.5 76.7 77.4 76.9 70.0 71.4 73.9 74.4 74.0|74.4 75.8 76.2 76.6 76.7
713 723 72.1 740 74.6|66.8 68.4 70.2 70.7 71.5/69.0 70.9 72.3 73.9 74.1
70.3 69.5 71.0 744 74.9|67.0 68.0 70.2 70.8 71.5(69.1 70.1 71.6 73.3 74.7
71.4 71.8 73.3 74.9 75.0|66.8 68.4 70.4 71.1 71.9|69.7 71.2 72.6 74.0 74.7
75.0 76.0 76.8 77.3 77.3|70.4 72.7 73.7 74.7 74.2|74.7 75.5 75.0 76.2 76.6
75.9 76.9 77.3 77.9 77.5 70.6 71.6 74.5 75.1 74.5|74.7 76.0 76.1 76.8 76.7

Methods / Shots w/E|w/B

FRCN-ft-full[Wan20a] | X
TFA w/ fc[Wan20a] X
TFA w/ cos[Wan20a] X
MPSR[Wu20a] X
DeFRCN[Qia21] X
Meta R-CNN[Yan19] X
FSRW[Kan18] X
FsDetView([Xia20] X
CFA w/ fc [Gui22b] X
CFA w/ cos [Gui22b] X
CFA-DeFRCN [Gui22b] | X
DeFRCN X
NIFF-DeFRCN X
Retentive R-CNN[Fan21] | v
CFA w/ fc [Guiz2b] | v
CFA w/ cos [Gui22b] v
CFA-DeFRCN [Gui22b] | v/
NIFF-DeFRCN v

LI NN N N N N N N N Y N NN

features with and without CFA. Our method consistently outperforms both
data-free and data-reliant baselines. The diversity of the forged features is
argued to be the factor enabling our method to surpass data-reliant baselines. It
is also noteworthy that the stored features require 114.8 MB of memory, which
is significantly more than the memory requirements of our generator (3.7 MB)
and statistics (12.4 MB). Similarly, EWC and MAS exhibit high memory usage
due to the FIM, requiring approximately 200 MB.

Results on PASCAL-VOC

The overall performance on PASCAL-VOC (AP50) and the novel performance
(nAP50), are presented in Table 6.3 and Table 6.4, respectively. The adoption of
NIFF demonstrates state-of-the-art results, both with and without the ensemble
evaluation protocol. Although the primary objective is not focused on the
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Table 6.4: The G-FSOD novel results (nAP50) on PASCAL-VOC for K = 1,2,3,5,10-shot set-
tings for the three different splits. w/E indicates the ensemble-based evaluation proto-
col [Fan21]. w/B denotes whether the base data is available during novel fine-tuning.
The best and second-best results are reported. ’-’ represents missing results in previ-
ous works. " denotes results reported in [Gui22b].

Novel Set 1 Novel Set 2 Novel Set 3
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

Methods / Shots w/E |w/B

FRCN-ft-full[Wan20a] 15.2 203 29.0 25.5 28.7|13.4 20.6 28.6 32.4 38.8|19.6 20.8 28.7 42.2 42.1
TFA w/ fc[Wan20a] 36.8 29.1 43.6 55.7 57.0|18.2 29.0 33.4 355 39.0|27.7 33.6 42.5 48.7 50.2
TFA w/ cos[Wan20a] 39.8 36.1 44.7 55.7 56.0|23.5 26.9 34.1 35.1 39.1|30.8 34.8 42.8 49.5 49.8
MPSR[Wu20a] 42.8 43.6 48.4 553 61.2|29.8 28.1 41.6 43.2 47.0|359 40.0 43.7 48.9 51.3
DeFRCN[Qia21] 57.0 58.6 64.3 67.8 67.0|35.8 42.7 51.0 54.4 52.9|52.5 56.6 55.8 60.7 62.5
Meta R-CNN*[Yan19] 16.8 20.1 203 38.2 43.7| 7.7 12.0 149 219 31.1| 9.2 139 26.2 29.2 36.2
FSRW[Kan18] 14.8 155 26.7 33.9 47.2|15.7 15.3 22.7 30.1 39.2|19.2 21.7 25.7 40.6 41.3
MetaDet[Wan19c] 18.9 20.6 30.2 36.8 49.6|21.8 23.1 27.8 31.7 43.0|20.6 23.9 29.4 439 44.1
FsDetView*[Xia20] 25.4 204 37.4 36.1 423|229 21.7 22.6 25.6 29.2|32.4 19.0 29.8 33.2 39.8

CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
DeFRCN
NIFF-DeFRCN
Retentive R-CNN[Fan21]
CFA w/ fc [Gui22b]
CFA w/ cos [Gui22b]
CFA-DeFRCN [Gui22b]
NIFF-DeFRCN

40.0 355 40.9 54.1 56.9|22.2 27.1 352 385 40.9|29.7 35.1 39.5 47.2 513
41.2 43.6 49.5 56.5 57.3|21.3 27.4 353 39.1 42.1|31.7 39.1 44.6 49.9 52.6
58.2 63.3 65.8 68.9 67.1|37.1 45.5 51.3 55.2 53.8|54.7 57.8 56.9 60.0 63.3
53.3 47.4 58.7 58.8 59.6|33.0 37.0 49.5 53.8 48.5|47.1 45.8 52.7 52.8 52.6
62.8 67.2 68.0 70.3 68.8|38.4 42.9 54.0 56.4 54.0 56.4 62.1 61.2 64.1 63.9
42.4 458 459 53.7 56.1|21.7 27.8 352 37.0 40.3|30.2 37.6 43.0 49.7 50.1
39.0 34.9 414 548 57.0|21.8 26.1 353 37.1 40.1|29.9 34.3 40.1 47.0 52.6
42.4 439 503 56.6 57.3|21.0 27.5 353 38.6 41.4|32.3 38.0 44.5 49.8 52.7
59.0 63.5 66.4 68.4 68.3(37.0 45.8 50.0 54.2 52.5|54.8 58.5 56.5 61.3 63.5
63.5 67.2 68.3 71.1 69.3|37.8 41.9 53.4 56.0 53.5 55.3 60.5 61.1 63.7 63.9

NI N NN X XX X XX X %X XX X X %X X%
XN N NN X XN N NSNS SENISSNAN NS

performance of novel classes, NIFF-DeFRCN achieves competitive results on
both datasets in the majority of cases.

6.3.3 Ablation Experiments
Generator Design Choices

Different generator design choices are investigated in Table 6.5 without regular-
ization. This includes the standalone generator, class-wise statistics, separate
heads, and the number of channels per layer. Initially, the Rol-head is inverted
to generate instance-level features by minimizing the KL loss with respect
to the gathered base data statistics. This can be seen as an extension of the
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Table 6.5: Investigation of various design choices in the generator on the MS-COCO dataset in
the 10-shot setting, without the inclusion of any additional regularization techniques.
Memory here refers to the additional storage needed beyond the detection model.

. 10-Shot Inference
Model Configuration
AP  bAP nAP | AR | Memory [MB]
Inverted Rol head 28.9 32.6 17.7 27.1 0
Gen. w/ shared head
. 29.3 33.1 17.8 27.3 1.6

w/o classwise stats
Gen. w/ shared head

. 28.5 32.1 17.7 26.4 1.6
w/ classwise stats
Gen. w/ separate heads

. 29.0 328 17.5 27.4 3.7

w/o classwise stats
Gen. w/ separate heads

. 30.7 350 17.8 28.6 3.7
w/ classwise stats (Ours)
Ours w/o cross-entropy term | 30.0 341 17.6 | 28.6 3.7
Ours w/ (dim = 64) 30.7 350 178 | 28.8 28.7
Ours w/ (dim = 32) 30.5 348 17.9 | 286 14.0
Ours w/ (dim = 16) 30.7 349 17.9 | 287 7.1
Ours w/ (dim = 8) 30.7 35.0 17.8 28.6 3.7

standard MI approach ABD [Smi21] to G-FSOD, but with synthesizing fea-
tures instead of images. Subsequently, a standalone generator is trained with
a shared head for all classes while minimizing the full base-data statistics.
Despite the minimal memory overhead, it outperforms the inverted model,
supporting the claim that a separate generator is easier to optimize. How-
ever, when trained with class-wise statistics, a slight performance drop exists.
Replacing the shared head with separate class-aware heads and minimizing
the full base statistics achieves a similar performance as the generator with
a shared head (row 2). The best overall performance is attained when com-
bining the separate heads with the class-wise statistics, allowing the model
to better account for inter-class variance. Simply extending the model with
either class-wise statistics or class-wise heads reduces overall performance.
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Table 6.6: The impact of the number of generated features per class and using fixed samples on
forgetting and detection performance is examined in the absence of any additional
regularization techniques.

10-Shot Inference
Feature(s) per class

AP bAP  nAP AR DbAR nAR
1 299 340 17.6 28.4 31.0 20.7
5 306 349 17.7 28.8 315 208
10 30.7 350 17.8 | 28.8 315 20.8
30 308 35.1 17.8 | 28.8 315 20.8
10 (fixed) 259 289 16.9 255 271 20.6
10 (10 sampled cls) 305 348 17.7 | 28.7 314 20.6

Additionally, experiments are conducted with the complete generator version
but with removing the cross-entropy loss from Equation 6.4, resulting in a
slight decrease in overall AP. In the lower part of the table, the trade-off
between the overall AP and memory is studied by altering the number of
channels per generator layer. Interestingly, it is found that the models with
64 channels and 8 channels perform similarly, leading to the choice of the
minimalist design with 8 channels.

Impact of Generated Features Sampling

Table 6.6 investigates the impact of sampling techniques on feature genera-
tion during novel finetuning, without any regularization. Initially, only one
feature per class is generated, and then the number of features is increased to
assess its effect on overall AP. It is observed that the best overall results are
achieved when generating Ng.,s = 10 features per class, matching the 10-shot
finetuning setting. Further increases in the number of features yield similar
results, leading to the consistent choice of setting Nf,; = K throughout the
experiments on MS-COCO and PASCAL-VOC. In row (5), 10 features per class
are generated by sampling only once at the beginning of training and keeping
them fixed throughout novel training. It is noted that the performance drops
significantly due to the limited diversity of the generated base features, high-
lighting the importance of sampling features in each iteration. In the final row,
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Table 6.7: The placement of data watchers to capture useful statistics for improved feature gener-
ation is investigated in relation to the frozen BN layers and the subsequent activations.
The results are reported for the 10-shot setting on MS-COCO.

10-Shot Inference
Data Watcher Config.
AP bAP nAP | AR bAR nAR
(1) After Act. 32.0 36.7 18.0 29.9 32.7 21.5
(2) Before FBN 32.2 369 18.1 30.1 33.0 21.1
(3) Both 32.2 36.6 19.1 29.6 32.1 22.3

a random subset of the base classes C5 < |Cp| with a size of 10 base classes, is
sampled while still generating N, = 10 features for each class. Compared to
generating features for all the base classes (row 3), a slight decrease in perfor-
mance is observed, underscoring the significance of a class-balanced sampling
scheme. Therefore, the decision is made to generate N, = K features per
class for all the base classes in each iteration to achieve the best overall AP.

Data Watchers Placement

To investigate the required statistics for capturing the base data distribution,
an analysis is performed in Table 6.7. Different placements of data watchers
are examined, and generators are trained accordingly. The placement options
include: (1) after the activations following the frozen BN (FBN), (2) before
the FBN layers, and (3) both locations. The results indicate that locations (2)
and (3) demonstrate superior performance compared to location (1). Although
locations (2) and (3) achieve the same AP, location (3) is chosen as it exhibits
a slightly higher nAP.

Component Analysis

The results presented in Table 6.8 showcase the incremental introduction of
our contributions to the DeFRCN model [Qia21]. In configuration 0, which
represents the baseline, DeFRCN is trained without utilizing any base data.
This leads to a substantial performance drop of 40.5% on the base classes
compared to the overall performance. However, as we gradually introduce
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Table 6.8: Analysis of the incremental contribution of different components on MS-COCO using
the 10-shot setting.

) 10-Shot Inference
Model Configuration

AP bAP nAP AR bAR nAR
0 DeFRCN 30.6 34.6 18.6 29.1 32.0 20.5
A DeFRCN (Base-Free) 18.2 18.5 17.4 17.5 16.2 213
B  + Generator 30.7  35.0 17.8 28.6 313 20.9
C +CFA 320 364 185 29.6 324 213
D +DA 322 368 184 | 299 326 217
E + mEWC (NIFF) 322 36.6 19.1 | 29.6 321 223

our contributions, significant improvements are observed. In configuration B,
where a standalone lightweight generator is incorporated, the performance is
nearly recovered, achieving a performance level close to that of configuration 0
without relying on base data. By applying CFA in configuration C and further
including pixel-level data augmentation in configuration D and parameter-
level regularization (mMEWC) in configuration E, our approach achieves state-
of-the-art results in the overall performance. These findings highlight the
effectiveness of our incremental contributions in enhancing the performance
of the DeFRCN model.

Generator Architecture

To investigate the impact of various architectural design choices on the overall
detection performance, experiments were conducted and presented in Table 6.9.
The focus was on three factors: the number of layers (L), the kernel size, and
the input noise dimension (z) of the generator. The effect of the number of
layers on performance was examined. It is shown that increasing the number
of layers beyond L = 5 resulted in improved overall performance, particularly
in the base performance. However, performance started to decline when the
number of layers exceeded L = 7.
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Table 6.9: The influence of different architectural design choices on the generator performance
is examined on MS-COCO with a 10-shot setting. The DeFRCN [Qia21] model is fine-
tuned without base data using the generator without any regularization techniques.

10-Shot Inference
AP DbAP nAP | AR
Number of Layers (L=3) 27.6 313 164 | 27.6
Number of Layers (L=5) 30.7 35.0 17.7 | 28.8
Number of Layers (L=7) 31.2 357 17.7 | 293
Number of Layers (L=10) 311 356 175 | 29.2

Model Configuration

Kernel Size (kernel=1) 30.2 347 17.7 | 283
Kernel Size (kernel=3) 30.7 35.0 17.7 | 28.8
Kernel Size (kernel=5) 305 348 17.6 | 28.7
Kernel Size (kernel=7) 306 34.8 17.8 | 28.6

Noise Dimension (z=50) 305 349 17.6 | 285
Noise Dimension (z=100) 30.7 350 17.7 | 28.8
Noise Dimension (z=1000) | 30.7 350 17.7 | 28.8

The impact of kernel size on performance was explored. Surprisingly, it was
discovered that increasing the kernel size did not lead to any significant per-
formance gain. Furthermore, the effect of the input noise dimension was
investigated. It was observed that increasing the noise dimension beyond
z = 100 did not result in any noticeable change in performance. This suggests
that the generator is capable of generating diverse and high-quality features
without requiring high-dimensional noise vectors.

Overall, these experiments provide insights into the importance of architectural
design choices in the generator and offer guidance for achieving high detection
performance by optimizing the number of layers, kernel size, and input noise
dimension.

Generator Training Analysis
A T-distributed Stochastic Neighbor Embedding (TSNE) visualization is pre-

sented in Figure 6.4a, depicting the distribution of real and generated instance-
level features for 10 randomly selected MS-COCO base classes. The generated

127



6 Regularized-based G-FSOD

o~ o~
0 ol
2 2
< I
o (54
= P~
Feature 1
(a) Class-wise statistics (b) Class-agnostic statistics

Figure 6.4: A TSNE visualization of the real (@) and generated fake features (A) via class-wise (a)
and class-agnostic (b) statistics for 10 random classes.
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Figure 6.5: An illustration of the fake class probabilities and feature variance is provided by
showcasing the lowest class probability and the mean probabilities across all base
classes in MS-COCO.

features are produced by generating 30 features per class. The visualization
demonstrates that the forged features are consistently located in close prox-
imity to the real base features, with some instances of overlap. This confirms
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Table 6.10: A comparison is made between the full FIM variant of EWC and the utilized mean
FIM variant (mEWC) in the context of NIFF-DeFRCN on MS-COCO (10-shot).
Additionally, an investigation is conducted to examine the effect of scaling the
EWC/mEWC regularization term.

10-Shot Inference

Configuration AP bAP nAP | AR
EWC (Agwc = 1.0) 33.0 381 17.6 | 303
EWC (Agwe = 0.1) 329 382 17.1 | 306
EWC (\ewe = 0.01) 322 377 159 | 298

EWC (Aewe = 0.001) | 31.8 367 173 | 297
mEWC (Qgwe = 1.0) 330 385 165 | 30.5
mEWC (Agwe = 0.1) 330 384 166 | 305
mEWC (Agwe = 0.01) | 322 36.6 19.1 | 29.8
mEWC (Agwe = 0.001) | 303 339 193 | 28.8

the ability of the feature generator to capture and represent the distribution
of the base features.

Additionally, Table 6.4b showcases the features generated using class-agnostic
statistics. In contrast to the features generated with class-wise statistics, the
fake samples are observed to be further away from the real features.

Figure 6.5 presents an analysis of the quality and diversity of the generated
features in terms of feature variance. The plot includes the mean class prob-
ability (black curve) and the lowest class probability (green curve) across all
classes for the generated features. It is evident that the generator is capable
of learning diverse features with a high variance, while still maintaining high
class probabilities. The mean class probability is ~ 95%, while the lowest
class probability is ~ 75%.

mEWC VS. EWC
Table 6.10 compares the performance of vanilla EWC [Kir16] with the full FIM

and the proposed mEWC using a mean FIM per parameter. It also explores
the impact of different scaling factors (Agwc) when applying the EWC/mEWC
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Table 6.11: The impact of different finetuning loss components on MS-COCO (10-shot) is ex-
amined when finetuning DeFRCN [Qia21] without base data using the generator
without any regularization techniques.

. 10-Shot Inference

Model Configuration

AP DbAP nAP | AR
DeFRCN w/G. 30.7 350 17.7 | 288
W/0 Lconf 289 326 17.7 | 2064
Lcont using KL 30.7 350 17.7 | 28.2
w/o Weighted feature terms | 29.8 33.9 17.6 | 28.0
w/o L1 Reg. term 305 348 17.8 | 286

penalty term during novel training. The results reveal that EWC is more
effective in maintaining the base performance across different scaling factors,
albeit at the expense of the novel performance. On the other hand, reducing the
scaling factor for mEWC leads to a decrease in base performance compared to
EWC. However, mEWC achieves the same overall AP as EWC at A\gwc = 0.01,
with alower bAP and a higher nAP. This setting is used consistently throughout
the experiments. It is worth noting that the trade-off between bAP and nAP
can be adjusted based on the specific application requirements. Additionally,
it is observed that in mEWC, the AP improves with lower Agwc, but at the
expense of lower bAP.

Novel Training Loss Components

The impact of various finetuning loss components is investigated in Table 6.11.
In the first row, finetuning of DeFRCN with the proposed generator and the
novel training loss Ly without any regularization is performed. Removing the
cross-entropy confidence loss Lcons (row 2) results in a decrease of 2.4 points
in the base performance, leading to a drop in overall AP and AR. This indicates
that the confidence loss contributes to generating base features with higher
probabilities at the final softmax layer. When the cross-entropy loss is replaced
with KL divergence (row 3) between teacher and student logits, similar results
are obtained with a slight decrease in AR. Removal of the weighted feature
distillation terms (row 4) leads to a drop in both base and overall performance.
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Table 6.12: The G-FSOD results for K = 5,10,30-shot settings on MS-COCO are reported for
multiple runs using 10 different seeds.

5 shot 10 shot 30 shot

AP bAP nAP AP bAP nAP AP bAP nAP
TFA w/ fc[Wan20a] |25.640.5 31.840.5 6.9+0.7 |26.240.5 32.04+0.5 9.1+0.5 {28.4+0.3 33.8£0.3 12.0+0.4
TFA w/ cos[Wan20a] |25.940.6 32.34+0.6 7.0£0.7 {26.6+0.5 32.44+0.6 9.1+0.5 {28.7£0.4 34.2+£0.4 12.1+£0.4
CFA w/ fc [Gui22b] |29.1£0.3 36.2+0.3 7.740.6 |29.9+0.3 36.7+0.2 9.6+0.6 |30.840.2 36.61+0.2 13.61+0.3
CFA w/ cos [Gui22b] [29.340.2 36.0+£0.2 9.240.5 |30.240.2 36.6+0.1 11.2+0.5|31.1+0.1 36.640.1 14.8+0.2
DeFRCN[Qia21] 27.84+0.3 32.6+0.3 13.640.7|29.7£0.2 34.0+0.2 16.8+0.6|31.4+0.1 34.84+0.1 21.2+0.4
CFA-DeFRCN [Gui22b] | 28.4+0.2 32.840.2 15.240.5|30.24+0.2 34.04+0.2 18.840.4|31.740.1 34.64+0.1 23.040.3
NIFF-DeFRCN 31.14+0.1 36.6+0.0 14.6+0.2|32.140.1 36.84+0.1 18.0+0.2 33.3£0.0 37.740.1 20.0%0.1

Methods / Shots

Table 6.13: The G-FSOD results (AP50) for K = 1,2,3,5,10-shot settings on PASCAL-VOC are
reported for multiple runs using 30 different seeds.

Shots
1 2 3 5 10
CFA w/ fc [Gui22b] 66.31+0.8 68.0+0.5 70.1£0.4 71.7£0.5 73.240.5
CFA w/ cos [Gui22b] 66.5+0.9 69.2+0.6 71.1£0.6 72.5£0.4 73.44+04

Set Methods

All Set 1 DeFRCN [Qia21] 678414 713408 726405 73.6+05 741405
CFA-DeFRCN [Gui22b] | 69.0+1.4 726407 73.1404 740405 743404
NIFF-DeFRCN 712408 742404 754404 763403 76.7+0.3

CFA w/ fc [Gui22b] 64.940.9 66.4+0.7 683£0.5 69.6+0.3 70.840.5
CFA w/ cos [Gui22b] 64.1£0.9  66.5+0.5 68.1£0.5 69.3+0.2 70.41+0.4

All Set 2 DeFRCN [Qia21] 65.24+1.0 68.0+0.8 69.2£0.6 70.6+0.6 71.31+0.5
CFA-DeFRCN [Gui22b] | 66.4+1.0 69.0+0.8 70.4+0.7 713407 72.1+£04
NIFF-DeFRCN 68.0+0.8 70.5+0.5 71.7£0.5 72.84+0.4 73.7+0.3

CFA w/ fc [Gui22b] 65.2+£0.8 66.8+0.8 69.1+0.7 70.9£0.6 72.3+0.4
CFA w/ cos [Gui22b] 64.9+1.2  67.5+1.0 69.7£0.8 71.6+0.5 72.7+0.3

All Set 3 DeFRCN [Qia21] 66.9+2.0 70.6+0.8 71.2£0.6 72.940.5 73.5+0.3
CFA-DeFRCN [Gui22b] | 68.3+1.6 71.44+0.8 72.3%+0.5 73.5+0.5 74.0+0.3
NIFF-DeFRCN 70.7£0.7  73.7£0.5 74.7+£0.4 755£0.3 76.310.2

Additionally, the removal of the proposed L1 regression distillation term (row
5) causes a slight decrease in base and overall performance. Based on these
ablations, it is determined that novel training should be performed using the
overall loss that includes the confidence and feature distillation loss terms.
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Table 6.14: The G-FSOD novel results (nAP50) for K = 1,2,3,5,10-shot settings on PASCAL-
VOC are reported for multiple runs using 30 different seeds.

Shots
1 2 3 5 10
CFA w/ fc [Gui22b] 28.24+3.1 35.0+1.9 419414 47.8+1.6 53.3%1.6
CFA w/ cos [Gui22b] 30.9+3.9 40.9+25 47.8+24 53.1+14 56.1+14

Set Methods

Novel Set 1 DeFRCN [Qia21] 43.844.3 57.5+25 61.4%1.7 653£09 67.0+1.4
CFA-DeFRCN [Gui22b] | 45.4+4.9 60.3+2.2 62.1£14 664409 67.6+1.2
NIFF-DeFRCN 46.0+3.0 57.2£1.7 62.0+£1.4 655£1.1 67.2%+1.1

CFA w/ fc [Gui22b] 20.0+3.5 264429 328+2.2 373+17 41.8%19
CFA w/ cos [Gui22b] 21.0£35 29.0+23 34.6%23 38.9+1.2 43.0£1.9

Novel Set 2 DeFRCN[Qia21] 31.5£3.6 40.9+2.2 45.6+2.0 50.1+1.4 52.9£1.1
CFA-DeFRCN [Gui22b] | 32.943.7 423+2.2 47.1£19 51.2414 553%13
NIFF-DeFRCN 30.1£3.0 39.6+1.8 45.0£1.9 49.4%+1.6 52.8%13

CFA w/ fc [Gui22b] 203£34 264431 343£25 41.2424 46.5%1.6
CFA w/ cos [Gui22b] 215+4.7 30.4%4.1 384£28 455+21 49.9£1.0

Novel Set 3 DeFRCN [Qia21] 382468 50.9+28 541422 592412 61.9+13
CFA-DeFRCN [Gui22b] | 414458 529430 561417 603411  62.940.9
NIFF-DeFRCN 411426 525+18 564+15 597+12 621£1.0

Multiple Runs

The performance robustness of NIFF-DeFRCN is investigated by running
multiple experiments using different seeds. The results for the MS-COCO
dataset are presented in Table 6.12. Despite the absence of base data, NIFF-
DeFRCN consistently achieves higher AP and bAP scores across all shot settings
compared to the baselines [Wan20a, Qia21, Gui22b].

Similarly, for the PASCAL-VOC dataset, the AP50 results in Table 6.13 and
nAP50 results in Table 6.14 demonstrate the consistent higher performance of
NIFF-DeFRCN compared to the baselines, while also delivering competitive
results on nAP50 for various shot settings.

Model Complexity Analysis

The memory requirements for the 10-shot MS-COCO configuration are as
follows: The model requires 195.1 MB, the base images require 148.8 MB, and
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the novel images require 48.6 MB. On the other hand, the generator occupies
3.7 MB, while the base statistics occupy 12.42 MB. Therefore, the proposed
model achieves a reduction of 33.8% in memory requirements compared to
the initial setup.

In terms of computation, DeFRCN [Qia21] and the generator require 133.46 G
and 943.94 K FLOPS, respectively, indicating that the computational overhead
is minimal.

The novel training time for DeFRCN 104.5 minutes, while the generator train-
ing and data generation require an additional 112 minutes and 27 minutes,
respectively.

6.4 Qualitative Results

Figure 6.6 showcases different qualitative results for the MS-COCO dataset
in the 10-shot setting. The first column displays images containing only base
classes, indicated by green boxes, while the second column shows images
with only novel classes, represented by blue boxes. The third column presents
images that contain both base and novel classes. These three scenarios are
presented to assess the performance of the NIFF approach across different
cases. Additionally, the last two columns highlight various failure cases. As
previously mentioned, four Nvidia GeForce 1080Ti GPUs were utilized.
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6 Regularized-based G-FSOD

Figure 6.6: The qualitative results of the proposed NIFF method (NIFF-DeFRCN) on the MS-
COCO (10-shot) dataset are presented. The first three columns show successful sce-
narios, where green bounding boxes represent base classes and blue bounding boxes
represent novel classes. The last two columns display failure scenarios.

6.5 Discussion

This chapter has presented a new approach to address the limitations of existing
G-FSOD methods, which rely on storing and replaying base data. Unlike
previous replay-based methods [Wan20a, Qia21, Fan21, Gui22b], the proposed
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framework, NIFF, is a base-data-free G-FSOD method. NIFF offers several
advantages by eliminating the need for storing and replaying base images.

Firstly, NIFF respects privacy constraints by not requiring the storage of sensi-
tive base images. This is particularly beneficial in scenarios where privacy and
data protection are paramount, such as in sensitive domains or applications
involving personal data.

Secondly, NIFF significantly reduces the memory footprint associated with
G-FSOD. Instead of storing and using base images, a standalone generator that
forges base instance-level features is introduced. The generator has a negligible
memory footprint of approximately 4MB, which is two orders of magnitude
lower than the memory required for storing and finetuning base images.

The main contribution lies in the proposed two-stage DFKD paradigm that
leverages a tailored standalone feature generator. Specifically, during generator
training, the generator aligns class-wise statistics in the Rol-head to forge base
instance-level features. By leveraging the proposed base feature generator
and knowledge distillation approaches, NIFF surpasses replay-based methods
without needing base data.

In summary, NIFF represents a promising step towards more efficient and
privacy-conscious G-FSOD methods. By eliminating the reliance on base
images, NIFF offers a scalable and memory-efficient solution for continual
object detection, making it suitable for real-world applications with privacy
considerations and limited computational resources.
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7 Towards Efficient Dense Meta
Detectors

This chapter seeks to design more embedded-friendly meta-detectors without
significantly sacrificing the detection performance. Following that, a thor-
ough investigation is conducted on the commonly used sparse meta-detector,
Attention-RPN [Fan20], and two evaluation metrics are proposed to assess the
knowledge transfer capability of meta-based detectors for new tasks. The chap-
ter then introduces our dense meta-detector, FSRN [Gui23a], which addresses
the observed limitations and provides a more efficient and embedded-friendly
meta-detector solution. Lastly, extensive experiments and ablation studies are
performed to evaluate the performance of the proposed framework.

7.1 Analyzing Sparse Meta-Detectors

To determine the causes behind the performance gap between one-stage (dense)
and two-stage (sparse) meta-detectors, we begin this section by examining a
meta sparse detector called Attention-RPN [Fan20]. The adoption of this model
is attributed to the fact that the fusion of support and query takes place early
on before the RPN, allowing us to assess the RPN component independently
as a dense meta-detector.

While the discriminability of the detector is evaluated by computing the av-
erage precision on the base classes (referred to as bAP), this alone does not
sufficiently pinpoint the bottlenecks that impede successful knowledge transfer
from base to novel classes. To effectively assess the transferability of knowl-
edge from base to novel classes, two straightforward metrics are introduced.
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7 Towards Efficient Dense Meta Detectors

Table 7.1: The performance of the RPN in the Attention-RPN [Fan20] as a stand-alone dense
meta-detector is analyzed using the proposed evaluation protocol. The 10-shot detec-
tion performance on the MS-COCO dataset [Lin14] is evaluated.

Method Base Performance Novel Performance Transferability
bAP bAP50 bAP75 bAR | nAP nAP50 nAP75 nAR | PT PT50 PT75 RT
MetaYOLO [Kan18] 13.8 - - 155 | 5.6 - - 144 (040 - - 093
Attention-RPN (RPN-only) [Fan20]| 5.54 13.35 3.65 21.23| 0.98 3.40 0.31 11.84|0.18 0.25 0.08 0.55
Attention-RPN [Fan20] 24.26 38.04 26.44 40.56(11.95 22.37 11.79 30.84|0.49 0.59 0.45 0.76

First, the Precision Transferability (PT) metric, to assess the transferability
of precision as follows:

nAP

PT = —.
bAP

(7.1)
Similarly, to examine the transferability of recall, the Recall Transferability
(RT) is proposed:

nAR

T = ——. .
bAR (7.2)

A meta-detector would exhibit PT and RT values of 1 in an optimal scenario,
indicating perfect transferability. Meaning that the detection model has suc-
cessfully acquired valuable base knowledge, which is powerful enough to
learn novel classes from limited data rapidly. Conversely, lower ratios suggest
overfitting to the base classes.

Initiating the analysis, one can perceive the RPN within the two-stage (sparse)
meta-detector, Attention-RPN [Fan20], as a standalone one-stage (dense) meta-
detector. This characterization arises from the early support and query feature
fusion before the RPN module. Therefore, the transferability metrics above
are reported on both the Attention-RPN and the RPN module alone as an
independent dense meta-detector. The findings are presented in Table 7.1,
including MetaYOLO [Kan18] as an additional dense meta-detector. The results
indicate that the Attention-RPN component of the sparse Attention-RPN meta-
detector performs poorly, similar to the dense Meta-YOLO [Kan18]. This
highlights a notable disparity between the RPN and the final detection head
of Attention-RPN. The outcomes demonstrate that the RPN of the two-stage
Attention-RPN and the one-stage MetaYOLO exhibit inadequate performance.
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This discrepancy is particularly evident in the base classes, suggesting low
discriminability. Notably, the transferability scores of MetaYOLO and the
two-stage Attention-RPN are similar (0.40 vs. 0.49), as shown in Table 7.1.
However, the transferability of the RPN in Attention-RPN has decreased by
half, which we attribute primarily to the low discriminability of the dense RPN.

On the other hand, the low discriminability of dense detectors can be attributed
to multiple factors. Firstly, the absence of an instance-level proposal network
such as RPN in one-stage FSODs restricts the receptive field and limits the
post-fusion learning capacity. Secondly, the learning signal in dense detectors
is weaker than in sparse detectors, as most anchors are classified as background
due to the query-set construction strategy, which considers only a single class
per image in each task.

7.2 The Few-Shot RetinaNet Framework

In this section, our approach Few-Shot RetinaNet (FSRN) [Gui23a] is introduced
to tackle the limitations above. FSRN comprises five main components:

« Multi-Scale Fusion (MSF) module which enables a wide receptive field
covering the entire anchor area.

« Multi-Way Support Training (MWST) strategy aimed at increasing the
number of foreground samples to enhance the learning signal.

« Multi-Scale Data Augmentation (MSDA) strategy applied to both query
and support images during meta-testing, enhancing the diversity of the
data distribution.

« Gaussian Prototyping (GP) used during meta-testing to compute
representative class prototypes by utilizing the mean and standard
deviation of the support features. This approach enables a more
accurate determination of class prototypes.

« Adaptive Pooling (AdaPool) to adaptively calibrate the support features
maps to compute a more representative support class prototype.
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Figure 7.1: An overview of the proposed FSRN architecture. The MWST generates multi-way
tasks with multiple positive and negative classes per training episode, increasing
foreground anchor sampling and improving discriminability. The MSF module, on
top of the FPN, enables a wide receptive field that covers the entire anchor area after
fusion. During meta-testing, the introduced MSDA scheme enriches the scale-space,
enhancing discriminability for novel classes. Improved class prototypes are achieved
through the proposed GP technique.

7.2.1 Architecture Overview

The proposed FSRN model, illustrated in Figure 7.1, extends the well-known
one-stage RetinaNet [Lin18] architecture to operate as a dense meta-detector.
FSRN consists of two branches: one branch handles the query images, while
the other handles the support images. Both branches share a backbone com-
prising a ResNet-50 with an FPN. In the support branch, the backbone is
followed by a Rol-pooling operation to extract relevant feature maps from
the support images. Global Average Pooling (GAP) is then applied, averaging
across the shots dimension to obtain class prototypes. Subsequently, the MSF
module combines the query features and class prototypes before passing them
through the classification subnet, while the localization subnet only utilizes
the query features.

In the context of FSOD, we observe that relying solely on the focal loss (L)
as the training objective similar to RetinaNet [Lin18] is insufficient for the
backbone to acquire robust disentangled representations for the novel cate-
gories. To improve discriminability and ensure stable training, we leverage a
max-margin loss inspired by [Li21]. The objective of this loss is to minimize the
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Figure 7.2: The impact of the post-fusion network Receptive Field (RF) is depicted. To demon-
strate, an example query image from the MS-COCO dataset with an annotated
bounding box of size 400 x 400 is used. The upper part shows that a YOLOv2-based
dense meta-detector [Kan18] is affected by a narrow receptive field that is unable to
cover the entire anchor area (i.e., RF = 3 X 3 < 13 X 13). On the other hand, the
whole anchor area is processed by the proposed FSRN, which utilizes the introduced
MSF and a deeper post-fusion network (ie, RF =11 x 11 > 7 x 7).

intra-class variance while maximizing the inter-class variance. Mathematically,

C K
Yo 7 2k vek — pll3

EMM = c . )
2e ming e ||pe — w3

(7.3)

where v.; represents the k™ prototype vector for class ¢, and K corresponds
to the total number of prototype vectors. p; denotes the mean prototype for
class ¢, while C represents the total number of classes. The overall training
objective function can be expressed as follows:

L=Lpr~+ Lioe+Arraa, (7.4)

where is the original focal loss [Lin18].L;,. is the smooth L1-loss for the
bounding box regression task [Ren15]. To balance the impact of the max-
margin loss with respect to the classification and regression losses, a scaling
factor A is incorporated.
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7.2.2 Multi-Scale Feature Fusion

Previous experiments in Table 7.1 have indicated that the limited discriminabil-
ity can be attributed, in part, to the absence of a deep post-fusion network
prior to the final detection layers. During meta-learning, the fusion process
filters the global-level class-agnostic features from the backbone and gener-
ates class-specific features. When the support and query features are directly
aggregated before reaching the detector, this class-specific information from
the support branch is injected. However, the downstream layers struggle to
effectively utilize this information due to their small receptive field and limited
learning capacity. In the case of the two-stage Attention-RPN [Fan20], the
loss of spatial information is mitigated by the presence of a Rol head, which
provides a sufficiently large receptive field to learn instance-level features
after fusion. This implies that the post-fusion receptive field should cover at
least the area occupied by the largest anchor size. In dense detectors, a simple
solution is to increase the receptive field by adding multiple layers [Luo16]
between the fusion location and the detection head. However, incorporating
a significant number of layers becomes inefficient for one-stage detectors to
adequately cover the largest anchor size.

To address this concern, we propose the MSF module on top of the FPN. The
FPN inherently restricts the size of the largest anchor to 10 x 10 pixels, ensur-
ing that it can be adequately covered by the downstream subnet, as depicted
in Figure 7.2. The fusion process occurs immediately after the FPN, where
support-level features are pooled from the corresponding FPN level p;, de-
pending on the size of the ground truth bounding box. Following spatial global
averaging of the extracted features from each support shot, the class prototype
is computed by averaging across the K support shots. Mathematically, the
class prototype . is calculated as:

K
1
pe =32 > GAP(vE}), (7.5)
k=1

where v”} is the the support feature of class ¢ from shot k and the correspond-
ing level p;. Finally, each class prototype attends the multi-level query features
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8 through a Hadamard product operation to yield output features f2' for
each corresponding pyramid level p; as follows:

fo =p.of4- (7.6)

The support and query features are fused only before the classification subnets,
while the extracted query features are directly fed to localization subnets
without fusion. This separation is due to the differing nature of classification
and localization tasks. In more detail, the reason for this separation and
distinction lies in the inherent nature of the classification and localization
tasks [Wu20b]. Classification necessitates the use of features that are tailored
to individual classes or categories. In contrast, the localization task is inherently
class-agnostic, which means it is concerned with pinpointing the position or
extent of objects without being tied to the specific types of objects.

The choice of the fusion location allows for a deeper post-fusion network,
which helps the backbone focus on global-level feature learning while the
subnets post-fusion learn the instance-level features. To foster the learning
signal of the detection subnets, we increase the number of positive anchors
per query image by increasing the number of anchors per feature pixel from
9 in the original RetinaNet [Lin18] to 15.

7.2.3 Multi-Way Support Training Strategy

In meta-based detection, the query-support set construction strategy is to
usually sample all annotations in a query image belonging to single class
¢ along with K support shots of the same class [Kan18, Fan20, Xia20], as
shown in Figure 7.3. This, in turn, limits each task per episode to a single-class
detection. While the said strategy is suitable for image classification, object
detection is a more challenging setting, where multiple class instances are
present per query image. The binary query-support selection strategy leads to
fewer foreground samples and, consequently, fewer positive anchors and fewer
positive gradients available during the training. This aggravates an already
existing problem in dense detectors, namely the overwhelming number of
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Figure 7.3: Left: An illustration of the query-support set in a contrastive-based setup [Fan20].
In this approach, for each query image, only one annotation is sampled. Then, K
support shots are selected for the same class, and K shots are randomly sampled
from negative classes. Right: The MWST algorithm is depicted, where a query image
with multiple annotations is processed at once with multi-way support examples.

generated static anchors which contain background samples. Although the
focal loss addresses the foreground-background imbalance problem, it does
not entirely alleviate the issue for meta-detectors.

As a remedy, MWST is introduced. Specifically, it involves loading the query
image with all its annotations for each task. Then, random class dropout is
performed, which means that when a class is dropped, all corresponding anno-
tations in the query image are removed. Following that, we sample K support
shots for each class. To limit the total number of support images required and
the associated computational cost, the number of classes is restricted to N
per query image. If the number of classes after dropout is smaller than N, we
sample negative classes in the support set S. The proposed query-set con-
struction algorithm, outlined in Algorithm 1, enables multi-class contrastive
training, resulting in an increase in the number of foreground objects to m /2
compared to 7/ in binary meta-detection. Here, /m represents the average
number of annotations per query image, and ¢ denotes the average number
of classes per query image. The difference between the naive contrastive
query-set construction and our proposed MWST is illustrated in Figure 7.3.
Additionally, the class dropout acts as a data augmentation technique, sim-
ulating the random task sampling of a generic meta-learning paradigm and
increasing the cardinality of the query set from m X |Dy| to 2™ X |Dy|. The
task where all classes are dropped is disregarded.
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Algorithm 7.2.1 MWST algorithm.

Input: Query image QQ; and associated labels y,, Support set S, Set of classes
C; with instances in Q;, C number of classes per task

Output: Multi-way support set S, for a query image Q;

1.  initialize S; as empty list

2. randomly drop classes from y;

3. forevery class cin y,

4 sample different K -shots from S¢ > 5S¢ is the support set of class c.

5. add to S;

6. while|S; |<C

7 randomly select class z from Cy, \ C;

8 sample different K-shots from S*

9 add to S;

10. return Q,,vy,;,S;

7.2.4 Multi-Scale Data Augmentation

In [Wu20a], it was observed that the limited amount of novel data during the
meta-test phase could lead to a sparse scale space, which may deviate from
the learned base distribution. To tackle the issue of scale variation, Wu et
al. proposed the Multi-Scale Positive Samples Refinement (MPSR) approach,
which leverages the FPN. They introduced an auxiliary branch that generates
object pyramids of different scales and refines the predictions accordingly.
However, this approach comes with computational, time, and memory costs.
Inspired by MPSR, we propose a MSDA module to approximate the multi-
positive sample refinement approach during the meta-testing phase. In our
approach, we approximate the refinement scheme by applying size jittering to
both the query and support images using a logarithmic-based scaling, ensuring
equal coverage of all FPN levels. Additionally, we assign higher weights to
foreground samples using the parameter « in the focal loss. Empirically, we
increase « to QT'H where av < 1. For instance, if & = 0.5 during meta-training,
we set @ = 0.75 during the meta-testing phase. This allows for achieving
comparable performance without incurring any computational overhead.
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7.2.5 Gaussian Prototyping

In addition, we propose a data augmentation scheme GP specifically for the
support features during meta-testing. We observed that a simple average of
the features from the K support shots does not accurately represent the true
distribution of the class prototypes, leading to less diverse prototypes than
those obtained during meta-training. Furthermore, there may be significant
variance between the K support shots, which may not represent the true class
distribution and true class prototypes. To tackle this challenge, we make an
assumption that the support feature representation follows a class-conditional
Gaussian distribution. To simulate this distribution, we compute the mean
feature vector f across the K support shots and calculate their corresponding
standard deviation, denoted as o ¢. Subsequently, we sample a latent vector z
from the Gaussian distribution N'( f, o'?g), which becomes the class prototype
.. This augmentation strategy aims to prevent overfitting on the novel
support data by introducing diversity in the class prototypes and accounting
for the inherent variance in the support shots.

7.2.6 Support Class Prototyping

The support feature prototyping technique plays a crucial role in ensuring
the robustness of a meta-detector. Its objective is to generate a prototype
feature vector that encompasses the discriminative information of a given
class [Koh23]. Most meta-detectors rely on simple averaging using GAP across
different instances, as shown in Equation 7.5. This means that all support
instances are given equal importance, disregarding the possibility of outliers,
such as occluded object instances that could significantly deviate the class
prototype from its true distribution.

This emphasizes the significance of the class prototyping technique, as it
needs to accurately capture representative features and distinctive class char-
acteristics, enhancing discriminability. To this end, different techniques for
prototyping have been explored. These techniques involve assigning weights
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to each support feature instance v of class ¢ from the k'™ shot in order to
compute the class prototype p..

Cross-Correlation

Cross-correlation enables measuring the similarity between support and query
features, revealing shared patterns and correlations. Additionally, cross-
correlation can serve as an indicator of the semantic information contained
within the support instances. By calculating these correlations, each support
instance can be assigned a weight that reflects its importance. The intuition is
that a higher correlation indicates greater importance and semantic richness of
the support instance. Subsequently, the class prototype is computed through
a weighted average, considering the significance of each support instance.
Formally, the cross-correlation map is computed as follows:

FX @) = fole+i—1Ly+j—1c) xva(ije), (7.7
1,7,C

where f, denotes the query feature map. (i,j) are indices of the spatial
location for the pixel of interest in the feature map. c is the index across the
channel dimension. Next, a similarity measure s, is obtained by applying GAP:

Sek = GAP(£5m). (7.8)

The similarity measure for each support instance is concatenated in a list
Sc = [Sc1, "+ »Sck |- To compute the support weight wy, of the k™ support
instance for class c, softmax is applied:

wop = —2PEek) (7.9)
Zk:l eXp(Sck)
Finally, the class prototype is computed as follows:
u :iwck *Uck (7 10)
c —_— . .
Wek

k=1
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Squeeze-and-Excitation

To focus on discriminative features and suppress less relevant ones, Squeeze-
and-Excitation (SE) [Hu18] blocks seek to model channel-wise dependencies
and adaptively weight the feature maps with minimal computational overhead,
making them highly efficient in practice.

The SE block consists of two primary operations: squeeze and excitation. In the
squeeze operation, global information is captured by applying average pooling
to the input feature maps, reducing the spatial dimensions while preserving
the channel-wise information. Next, the excitation operation takes place to
model the relationships among the channels. This is realized through two
fully connected layers with non-linear activations, resulting in channel-wise
weights that signify the importance of each channel. By multiplying these
learned channel-wise weights with the original feature maps, the excitation
operation selectively strengthens or reduces specific channels. This adaptive
recalibration of feature maps enables the network to prioritize discriminative
and informative features while attenuating less relevant or noisy ones.

We utilize the SE blocks to assign weights to the support features, determining
their importance for each class. In the squeeze operation, a comprehensive
representation of the query feature map is obtained via GAP, capturing its
global description. The excitation operation then employs the SE block to
recalibrate the support features based on the global information from the
query. By reweighting the support features, the SE block ensures that more
significant support shots are given higher importance. Finally, to compute the
class prototype, the reweighted support feature maps are averaged across the
shot dimension, providing a representative prototype for the class of interest.

Cosine Similarity

Cosine similarity is a widely used metric for evaluating the similarity or dissim-
ilarity between two vectors in a multi-dimensional space. It finds applications
in diverse fields like computer vision and natural language processing. The
fundamental idea behind cosine similarity lies in the geometric understanding
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of vectors. In vector space, the angle between two vectors can offer valuable
information about their similarity. A small angle suggests higher similar-
ity, while a large angle indicates dissimilarity. The cosine similarity precisely
captures this concept by measuring the cosine of the angle between the vectors.

The cosine similarity provides two significant benefits. Firstly, it is scale-
invariant, where the magnitude of the vectors does not impact the similarity
calculation as it solely focuses on the direction of the vectors. Secondly, cosine
similarity computation involves simple mathematical operations such as dot
product and vector norms, making it computationally efficient and highly
scalable. Formally, the cosine similarity between two vectors v; and vs is
computed as follows:

A . (7. 1 1)
fou |- vz |l

Based on the motivation above, we utilize cosine similarity to measure the
similarity between the query and support features. A higher similarity value
indicates a more substantial weight assigned to the corresponding support
instance. Similar to cross-correlation prototyping, we further apply a softmax
function to the similarity values of the support instances belonging to each
class. This softmax operation normalizes the weights, ensuring they sum up
to 1. Finally, the class prototype is computed by taking the weighted average
of the support instances based on their normalized weights.

Adaptive Pooling

AdaPool [Liul8a] aims to address the presence of noisy samples within a set
of K support shots by assigning lower weights to those particular samples.
Unlike the previously discussed prototyping methods that determine weights
based on the similarity score between query and support shots, the adaptive
pooling module calculates weights by comparing the similarity score between
the mean prototype and the support shots. Initially, it computes the mean
prototype by naively averaging all the available K -shots. Subsequently, the
computed class prototype is projected into a different dimensional space using
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a MLP. The similarity scores of the support shots are then computed in relation
to this averaged or mean prototype after the projection. The weights are
obtained by subjecting these similarity scores to a softmax layer, ensuring
they are appropriately normalized. Mathematically, the similarity scores for
a class ¢ is computed as:

K
1
¢ =V ©MLP| — AP(v, . 12
Sc = Ve © (Kkg_lG (v k)) (7.12)

Similar to the cross-correlation prototyping, the weight of the ™ support
instance for class c is denoted by:

exp(Sck)

Wep = —Zkl,(zl exp(on) . (7.13)
Finally, the class prototype is calculated in the following manner:
B = EK: Wek * Uck (7.14)
Wek

k=1

Note that AdaPool can be viewed as an extension of average pooling, but with
the added capability of being learnable. This allows aggregating information
from multiple shots while effectively suppressing the noise present in the
data [Liul8a].

7.3 Experimental Evaluations

For evaluating the proposed FSRN framework, we adopt the widely-used FSOD
benchmarks, as established by previous works [Kan18, Wan20a, Wu20a]. These
benchmarks involve conducting experiments on the MS-COCO and PASCAL-
VOC datasets. We utilize the same classes and data splits used in the works
mentioned above to ensure fair comparisons.
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7.3.1 Implementation Details

We utilize a ResNet-50 [He16] as the backbone architecture and incorporate
a FPN [Lin17] for our model. During the meta-training phase, we follow the
standard training of RetinaNet [Lin18]. The model is trained using SGD for
90k iterations, with a batch size of 16 and a learning rate of 0.01. The learning
rate is decayed twice, first at 50k iterations and then at 80k iterations, by a
factor of 10. We apply a weight decay of 0.0001 and a momentum of 0.9.

For meta-training, we adopt a 5-way-5-shot setting, where each task consists
of 5 classes and 5 support shots per class. This is implemented using the
MWST algorithm, with N set to 5. Thus, there are a total of 25 support shots
per task. The only data augmentation technique applied during meta-training
is horizontal image flipping for the query image.

During meta-testing, we perform 6k iterations with a learning rate of 0.005,
which is decayed by a factor of 10 at iteration 4k. To leverage the MWST
algorithm, we set N to 15. All experiments are conducted using four Nvidia
Tesla V100 GPUs.

7.3.2 Main Results
Results on MS-COCO

The results of the proposed approach on MS-COCO are presented in Table
7.2. The table is divided into two sections, starting with the one-stage FSOD
methods such as [Kan18, Wan19c, Per20], followed by the two-stage based
approaches including [Che18a, Wan19c, Yan19, Wan20a, Wu20a, Xia20, Fan20,
Sun21, Li21, Qia21]. When compared to meta-detectors, not only is FSRN
found to outperform dense meta-detectors by a significant margin, but it also
achieves better performance than many sparse meta-detectors such as [Yan19,
Xia20, Fan20] and is comparable to [Li21].
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Table 7.2: The few-shot detection results on the MS-COCO dataset are reported for the 20 novel
PASCAL-VOC classes with K = 5, 10, 30 shots. The original paper did not provide
results for the cases denoted by ’-’ in the report. The upper section of the table repre-
sents the dense meta-detectors only.

5-Shot 10-Shot 30-Shot
Method AP APS0 AP75 AR | AP AP50 AP7S AR | AP APS0 AP75 AR
MetaYOLO [KanlS] - - - - 5.6 12.3 4.6 144 11.3 21.7 8.1 19.2
MetaDet-YOLO [WaleC] - - - - 7.1 14.6 6.1 15.5 9.1 19.0 7.6 17.8
ONCE [Per20] - - - - 5.1 - - 95 - - - -
FSRN 9.6 18.1 9.2 28.3 17.4 29.6 17.9 37.0 19.9 34.2 44.4 40.7
MetaDet [Wan19c] - - - T [ 71 146 61 155 | 113 217 81 192
Meta-RCNN [Yan19] - - - |87 191 66 179 | 124 253 108 217
TFA w/fe [Wan20a] 84 - - - 10 173 85 - | 134 222 118 -
TFA w/cos [Wan20a] 83 133 65 - | 100 171 88 - | 137 220 120 -
MPSR [Wu20a] - - - | es 179 97 212 | 141 254 142 243
FsDetView [Xia20] - - - - 125 273 98 255 | 147 306 122 284
FSOD-RPN [Fan20] - - - - 120 224 118 308 | - - - -
FSCE [Sun21] - - - - | 11a - 9.8 - | s3 - 142 -
CME [Li21] - - - - | 151 246 164 - | 169 280 178 -
DeFRCN [Qia21] 161 - - - 185 - - - | 226 - - -

Table 7.3: The novel detection performance (nAP50) for the five novel categories is reported
in the evaluation of few-shot object detection on PASCAL-VOC. The results are pre-
sented for all three splits, considering K = 1,2,3,5,10 shots.

Novel Set 1 Novel Set 2 Novel Set 3
Method
1 2 3 5 10 1 2 3 5 10 1 2 3 5 10

MetaYOLO [Kan18] 14.8 15.5 26.7 33.9 47.2 15.7 15.2 22.7 30.1 40.5 21.3 25.6 28.4 428 45.9
MetaYOLO-CME [Li21] 17.8 261 315 448 475 | 127 174 271 337 400 | 157 274 307 449 488
MetaDet-YOLO [Wan19¢c] | 17.1 191 289 350 488 | 182 206 259 30.6 415 | 201 223 279 419 429
FSRN 229 37.1 455 551 583 217 279 305 384 50.7 | 299 402 444 50.7 549
Meta R-CNN [Yan19] 16.8 201 203 382 437 7.7 120 149 219 311 9.2 139 262 292 362
MetaDet [Wan19c] 18.9 206 302 368 49.6 | 21.8 231 278 317 43.0 | 20.6 239 294 439 441
FRCN-ft-full [Wan20a] 152 203 290 255 287 | 134 206 286 324 388 19.6 208 28.7 422 421
TFA w/ fc [Wan20a] 368 291 436 557 57.0 | 182 29.0 334 355 39.0 | 277 33.6 425 487 502
TFA w/ cos [Wan20a] 398 361 447 557 560 | 235 269 341 351 391 308 348 428 495 498
MPSR [Wu20a] 42.8 43.6 48.4 55.3 61.2 29.8 28.1 41.6 432 47.0 35.9 40.0 43.7 48.9 513
FsDetView [Xia20] 254 204 37.4 36.1 42.3 22.9 21.7 22.6 25.6 29.2 324 19.0 29.8 33.2 39.8
FSCE [Sun21] 329 440 468 529 597 | 237 30.6 384 43.0 485 | 226 334 395 473 540
CME [Li21] 415 475 504 582 609 | 272 302 414 425 468 | 343 396 451 483 515
DeFRCN[Qia21] 570 58.6 643 67.8 67.0 | 358 427 510 544 529 | 525 56.6 558 60.7 625

Results on PASCAL-VOC

The performance of FSOD models on the PASCAL-VOC dataset is presented
in Table 7.3. In the first section of the table, the results of one-stage FSOD
approaches such as [Kan18, Wan19c, Per20] are reported, including the per-
formance of the proposed FSRN. The remaining section of the table shows
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the results for two-stage FSOD methods [Che18a, Wan19c¢, Yan19, Wan20a,
Wu20a, Xia20, Qia21] and their performance on the PASCAL-VOC dataset. The
proposed FSRN achieves considerable improvements as a dense meta-detector

across different shot settings. Furthermore, compared to sparse meta-detectors
[Yan19, Wan19c, Xia20], FSRN demonstrates competitive performance.

Model Complexity

To evaluate the model complexity, we compare the proposed FSRN model to
its two-stage contrastive meta-detector counterpart, Attention-RPN [Fan20],

in terms of:

Number of parameters: The number of model parameters is an
important metric as it reflects the capacity and complexity of the model
as well as its memory footprint. The parameters are the biases and
weights. However, the size of the model and the amount of
computation needed are likewise directly correlated to the number of
parameters. Models with high parameters count need more computing
power for training and inference, which could result in longer training
durations and larger memory footprints.

FLOPS: An essential indicator for gauging computational efficacy is
FLOPS. It calculates the floating-point operations per second such as
matrix multiplications, convolutions, activation functions, and pooling.
Additionally, FLOPS aids in identifying the processing requirements
and hence choosing the best hardware for training or inference. The
FLOPS capabilities of various hardware accelerators, such as GPUs and
Tensor Processing Units (TPUs), vary. Knowing the FLOPS of a model
can assess if a particular hardware device can handle the computational
workload efficiently. FLOPS can also guide model optimization
initiatives. Models with fewer FLOPS can be more embedded-friendly,
allowing for quicker training and inference times and using less energy.

Inference time: The inference time per image is computed on a single
GPU for the 10-shot MS-COCO setting.
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Table 7.4: A complexity analysis of the proposed FSRN and Attention-RPN [Fan20] on the 10-
shot MS-COCO setting using a Nvidia GeForce 1080 GPU.

Model #Parameters [M] | FLOPS [G] | Inference time [s]
Attention-RPN 55.2 178.8 0.92
FSRN 36.4 100.4 0.49

Table 7.5: Ablation study conducted on a 10-shot MS-COCO dataset explores the incremental
contributions of each proposed module.

. Base Performance Novel performance Transferability
Model Configuration

bAP  bAP50 bAP75 DbAR ‘ nAP  nAP50 nAP75 nAR | PT PT50 PT75 RT
A Vanilla FSRN 17.7 278 19.1 24.1 5.7 10.8 5.2 20.2 | 032 039 0.27  0.84
B+ MWST 30.6 45.8 334 52.6 | 124 21.2 12,5 30.7 | 040  0.46 037  0.58
C  + Early MSF 32.5 48.6 35.0 54.0 | 15.1 253 15.2 321 | 046  0.52 043 0.59
D +MSDA 32.5 48.6 35.0 54.0 | 154 25.7 15.9 331 | 047 053 0.45  0.61
E  + Gaussian Prototyping | 32.5 48.6 35.0 54.0 | 158 26.4 15.9 36.0 0.49 0.54 0.45 0.67
F  + Adaptive Pooling 313 47.0 334 536 174 29.6 17.9 37.0 0.56 0.63 0.54  0.69

Table 7.4 demonstrates the efficiency and performance of the proposed model.
Compared to Attention-RPN, FSRN achieved notable reductions in the number
of parameters, with a decrease of 34%. Additionally, the FLOPS count was
reduced by 43.8%), indicating improved computational efficiency. Furthermore,
FSRN exhibited faster inference times, with a reduction of 430ms per image.

7.3.3 Ablation Experiments
Impact of Individual Modules

We conduct extensive experiments to study the effect of individual modules
and their interactions. All experiments are evaluated on the MS-COCO data-
set. In Table 7.5, the performance on the base classes is reported after the
meta-training phase to showcase how the overall discriminability of the model
is affected by the different components. We also report the performance of
the novel classes and their transferability. In configuration A, we start with
a direct extension of the meta-learning paradigm on RetinaNet. This version
(vanilla FSRN) utilizes a fusion mechanism directly before the detection head
similar to Meta-Yolo [Kan18] and the RPN of Attention-RPN. We find that
this configuration has almost the same nAP as Meta-Yolo (5.6 in Table 7.1)
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Table 7.6: Ablation study on the various class prototyping approaches using 10-shot MS-COCO

setting.
. . Base Performance Novel performance Transferability
Prototyping Configuration
bAP bAP50 DbAP75 bAR | nAP nAP50 nAP75 nAR | PT PT50 PT75 RT
A Naive Average 32.5 48.6 35.0 54.0 | 15.8 26.4 159 36.0 | 049  0.54 045 0.67
B Cross-Correlation 325 45.0 35.2 54.2 16.5 27.9 16.4 37.0 | 0.51 0.62 0.47  0.68
C  Squeeze-and-Excitation 32.7 50.8 36.5 55.4 16.5 278 16.7 39.6 | 0.50 0.55 046 071
D  Cosine Similarity 32.3 48.9 35.1 54.8 | 17.0 29.0 17.0 38.2 | 053  0.59 048  0.70
E  Adaptive Pooling i3 47.0 334 536 | 17.4 29.6 17.9 37.0 | 0.56 0.63 0.54  0.69

but a higher bAP, which is attributed to the effect of the focal loss in Reti-
naNet [Lin18]. Adding the proposed MWST algorithm significantly boosts all
metrics by almost doubling the bAP and nAP, and improving transferability.
The proposed early fusion further boosts all metrics, especially the nAP. MSDA
and Gaussian prototyping are only conducted in meta-testing and thus have
no effect on the bAP. Their effect is reflected in the nAP and transferability.

Impact of Class Prototyping

Table 7.6 presents a comparative analysis of different prototyping techniques.
The baseline configuration, denoted as configuration A, utilizes naive aver-
aging. Configuration B introduces a weighted average approach based on
cross-correlation between the query and support features. This approach
demonstrates an increase in novel performance by 0.7 points, along with im-
proved transferability indicated by higher PT and RT metrics. In configuration
C, the SE approach is employed, resulting in improved base performance while
maintaining similar novel and PT performance, with a slight enhancement in
RT. However, the SE method cannot effectively recalibrate the feature maps
with limited novel data. Configuration D utilizes cosine similarity-based pro-
totyping, leading to a further increase in nAP by 0.5 points and improved
PT. Unlike SE, this method does not involve learnable parameters, indicating
greater robustness to limited novel data. Finally, by incorporating adaptive
pooling in configuration E, there is an additional enhancement in nAP and PT.
Despite being a learnable approach, adaptive pooling demonstrates improved
resilience to limited data and a significant overall improvement compared to SE.
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Table 7.7: Ablation study on data augmentations. We report the mean Averaged Precision
and mean Averaged Recall on the 20 novel classes of MS-COCO in 10-shot setting.

Novel Performance
MSF | MWST | Lya | MSDA | GP | AdaptPool

nAP nAP50 nAP75 nAR
X X X X X X 5.7 10.8 5.2 20.2
X X X v X X 8.0 14.5 7.7 34.1
X X X v v X 9.7 17.2 9.7 34.0
v v X X X X 151 25.3 15.2 32.1
v v X v v X 15.4 25.7 15.9 33.1
v v v X X X 15.4 26.4 15.8 34.1
v v v v v X 15.8 26.4 15.9 36.0
v v v v v v 17.4 29.6 17.9 37.0

Effect of Data Augmentations

Table 7.7 presents a study examining the impact of different data augmenta-
tions, specifically MSDA and GP. The table showcases the results of various
configurations, incrementally adding components such as MWST, MSF, the
Max-Margin Loss (L£asps), and AdaPool.

The study demonstrates that MSDA and GP affect the performance of the
vanilla FSRN model. Applying MSDA alone leads to a 2.3 point increase in
nAP, and an additional boost of 1.3 points when GP is applied. Furthermore,
introducing MWST, MSF, and/or £ )s without data augmentations results
in a noticeable improvement in nAP, indicating that these modules enhance
the discriminability of the detector. When data augmentations are applied
with these modules, a further increase in nAP is observed, although the im-
provement is marginal (~ 0.4 points). Additionally, AdaPool offer significant
performance gains when added in conjunction with the increments above. The
best overall performance is achieved when all the modules above are combined
during the meta-testing phase, as shown in the last row of Table 7.7.
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Table 7.8: Receptive field effect. We report the mean Averaged Precision and mean Averaged
Recall on the 20 novel classes of MS-COCO in 10-shot setting.

Receptive Field Novel Performance
/ Biggest Anchor | nAP nAP50 nAP75 nAR
3/10 13.7 23.8 14.1 31.6
7/10 15.2 26.5 16.0 30.4
11/10 17.4 29.6 17.9 37.0
13/10 15.1 25.7 15.6 34.9

Effect of the Post-Fusion Receptive Field

To assess the impact of the receptive field on detection performance, the
position of the support-query feature fusion within the network is altered
without changing the learning capacity. Specifically, the features are fused
at different layers within the classification subnet. When the features are
fused just before the classification head, the post-fusion RF is reduced to
3 x 3. Conversely, fusing the features before the entire subnet (consisting of
5 convolutional layers) results in a RF of 11 x 11.

Table 7.8 shows the best results when the post-fusion receptive field covers
the largest anchor size (10 x 10). As the receptive field decreases, the nAP
experiences a decline. Furthermore, experiments are conducted with the
addition of a 6" layer after the fusion to examine if increased model capacity
improves precision. However, this modification leads to a degradation in
performance, highlighting the significance of the post-fusion receptive field
as a more critical design parameter.

Multiple Runs

To ensure a fair comparison with other benchmarks, all experiments were
conducted using seed 0. In order to assess the robustness of the proposed model,
amultiple runs experiment was performed on a 10-shot MS-COCO benchmark,
following the methodology of TFA [Wan20a] and FSDetView [Xia20]. Our
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Table 7.9: Effect of FL hyperparameters. We can see that our model is sensitive to the hyper-
parameters of the focal loss. This sensitivity is a problem faced by all meta-learners.

FL Parameters Base Performance Novel Performance

5 « bAP bAP50 bAP75 bAR | nAP nAP50 nAP75 nAR
2 025 model diverges

2 0.5

4 0.25 24.3 38.0 26.4 40.6 12.6 23.0 12.3 30.8
4 0.5 325 48.6 35.0 54.0 15.8 26.4 15.9 36.0

model achieved a nAP of 15.61 £ 0.5, surpassing the performance of both TFA
and FSDetView models, despite being a one-stage meta-detector.

Effect of Focal Loss Parameters

The impact of focal loss hyperparameters during the meta-training phase
without the AdaPool is examined in Table 7.9. Four different settings of the
o and v hyperparameters are considered. Using the default parameters of
RetinaNet [Lin18] results in training divergence. To address this issue, higher
values of o and ~y are required because the FSOD task has fewer positive
anchors than the general object detection task, owing to the smaller number
of bounding boxes in the query image. While the MWST helps mitigate
this problem to some extent, further improvement is achieved by finetuning
the focal loss.

Effect of the Number of Anchors

In Table 7.10, the performance of the meta-detector is shown for different
numbers of anchors when trained without the AdaPool. The results highlight
the importance of anchor density for meta-detectors. The significance of
the number and size of anchors has always been recognized in dense object
detectors [Lin18], but their effect becomes more pronounced in FSOD. It is
observed in our design that increasing the number of anchors leads to improved
performance in both the base and novel classes. The hypothesis is that more
anchors provide a stronger learning signal to the post-fusion network, enabling
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Table 7.10: A study on the Impact of the number of anchors. Initially, increasing the number of
anchors results in performance enhancement. However, it can cause training insta-
bility unless the learning capacity is scaled accordingly.

. . Base Performance Novel Performance

Sizes | Ratios | Ap }AP50 bAP75 bAR | nAP nAP50 nAP75 nAR
i T 177 278 191 400 | 76 133 76 240

275 405 298 466 | 13.0 220 130  29.6

325 486 350 540 | 158 264 159  36.0

N oW
N O LW W

model diverges

Table 7.11: Ablation study on the various backbones for FSRN using 10-shot MS-COCO setting.

. Base Performance Novel performance Transferability
Backbone Configuration
bAP bAP50 DbAP75 bAR | nAP nAP50 nAP75 nAR | PT PT50 PT75 RT
A ResNet50-FPN 313 47.0 334 53.6 | 174 29.6 17.9 37.0 | 0.56  0.63 0.54  0.69
B ResNet101-FPN 319 47.8 34.1 54.5 | 17.6 30.4 18.1 374 | 055  0.64 0.53  0.69
C  Swin-Tiny 224 36.0 235 472 | 17.6 33.4 16.5 381 | 079 0.93 0.70  0.81
D  Swin-Small 26.8 42.0 28.7 50.4 | 20.6 38.2 19.8 411 | 077 091 0.69  0.82

Table 7.12: The complexity analysis of different backbones on the various backbones on a 224 x
224 x 3 image on a Nvidia Tesla V100 GPU.

Backbone #Params [M] | FLOPs [G] | Latency [ms]
RN50-FPN 23.5 4.1 6.0
RN101-FPN 44 7.8 7.8
Swin-T 28 8.9 8.1
Swin-S 50 16.2 10.0

better refinement of instance-level features. It is noted that training becomes
unstable when the number of anchors exceeds 15, possibly due to a reduced
model capacity for the task.

Backbones Performance and Complexity

In the study shown in Table 7.11, the impact of different backbone choices on
the performance and transferability of a novel approach has been studied. A
comparison between the CNN-based backbones, such as ResNet50-FPN and
ResNet101-FPN, with transformer-based backbones, including Swin-Tiny and
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Swin-Small, has been conducted. Two main observations were made. Firstly,
using a deeper ResNet backbone, as in configuration B, did not improve per-
formance. This implies either the model capacity is already sufficient for the
problem or the architecture cannot capture generalizable knowledge effec-
tively. To get better intuition, the CNN-based backbones are replaced with
transformer-based ones. While the Swin-Small transformer backbone signifi-
cantly boosted the novel and transferability performance, its base performance
was noticeably lower. This suggests that transformer-based backbones in this
scenario may require more data to improve the base performance and enhance
both the novel and transferability performance. This indicates that deeper
transformer-based backbones can capture better prior knowledge.

However, although transformer-based backbones can offer substantial gains,
there are trade-offs involved. In Table 7.12, a complexity analysis of the utilized
backbones is provided. An input image of size 224 x 224 x 3 was used, and the
backbones were benchmarked on an Nvidia Tesla V100 GPU. The table reports
the number of backbone parameters, FLOPS, and latency for a single image.
While the number of parameters in the Swin backbones may not be signifi-
cantly higher, the number of FLOPS is nearly doubled compared to their ResNet
counterparts. Furthermore, the latency significantly increases, with a single
image requiring approximately 10.0 ms for a forward pass. Despite Swin-
Small delivering significantly better results than ResNets, FSRN utilizes the
ResNet50-FPN backbone to maintain a more embedded-friendly meta-detector.

Qualitative Results

Figure 7.4 showcases various scenarios depicting successful and failed detec-
tions. In the first row, FSRN demonstrates impressive performance in detecting
small-scaled objects like baseball and most persons in the first image. However,
it fails to detect the Frisbee in the second image. Moving to the second row,
FSRN exhibits some false positives in the first image but successfully identifies
all the traffic lights in the second one. The subsequent rows display a mix
of correct and false detections.
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FSRN Groundtruth FSRN Groundtruth

Figure 7.4: Qualitative results for the proposed FSRN model in 10-shot setting on MS-COCO
dataset.
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7.4 Discussion

The proposed FSRN framework demonstrates strong generalization perfor-
mance on the demanding MS-COCO and PASCAL-VOC datasets. However, one
drawback of our framework is that the MWST introduces additional computa-
tional overhead due to the processing of multiple support images. Furthermore,
the training process is sensitive to hyperparameters. Future research could
focus on improving the training stability of meta-detectors and reducing the
memory requirements of data augmentation techniques.

Furthermore, the use of transformer-based backbones can greatly enhance the
performance of the novel classes. However, it comes with increased computa-
tional requirements, memory footprint, and latency. Nevertheless, considering
the rise of modern, efficient transformer architectures, there is a potential to
develop a meta-detector that achieves both high base and novel performance
and remains suitable for embedded systems deployment.

These contributions would not only benefit FSRN but also have potential
applications in other one-stage and two-stage detection models.
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8 Conclusions and Outlook

8.1 Conclusions

This dissertation presented significant contributions to the field of FSOD,
with a focus on addressing challenges related to limited data, robustness, and
efficiency. Multiple novel FSOD frameworks were developed, each specifically
tailored to tackle distinct challenges and constraints.

The first contribution was the CFA, designed to alleviate forgetting without
increasing model capacity or inference time, ensuring efficient integration with
existing few-shot detection frameworks. It derived a new gradient update rule
that adaptively reweights the base and novel gradients, effectively reducing
forgetting and promoting better knowledge transfer between base and novel
classes. CFA serves as a plug-and-play module that can be integrated with
various G-FSOD models. At the time of its publication, CFA demonstrated
superior performance on both the base and novel detection tasks of MS-COCO
and PASCAL-VOC datasets, achieving a new standard.

For the second contribution, a new G-FSOD framework, namely DeCRCN-
UPPR, was designed. It leverages predictive uncertainties to refine object
proposals in a stagewise manner. Estimating uncertainties provided valuable
distributional information to reduce forgetting and enhance the novel detection
performance. Moreover, attention blocks were appended to each R-CNN
stage during novel training to selectively focus on discriminative features.
Integrating multiple R-CNN stages and attention blocks significantly enhanced
the detection performance for both base and novel classes.

To maintain privacy and memory constraints, the NIFF framework was intro-
duced as the first DFKD paradigm for G-FSOD to alleviate forgetting without
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replaying base data during novel training. NIFF leveraged a tailored standalone
feature generator, aligning class-wise statistics in the Rol-head to forge base
instance-level features during generator training. Through knowledge distil-
lation approaches and the use of the proposed base feature generator, NIFF
surpassed replay-based methods such as CFA without relying on base data.

Finally, to tackle the high computational and time overhead in FSOD ap-
proaches, the FSRN framework was introduced. FSRN was a one-stage meta-
learning FSOD approach that extended the RetinaNet detection model. This
framework incorporated various components, including the MSF module, en-
abling a wide receptive field for comprehensive coverage of the anchor area,
and the MWST strategy, aimed at increasing the number of foreground samples
to enhance the learning signal. Additionally, the MSDA strategy was applied
to both query and support images during meta-testing, improving the diversity
of the data distribution. The utilization of GP during meta-testing facilitates
more accurate determination of class prototypes, while the adaptive calibra-
tion of support feature maps using AdaPool computed more representative
support class prototypes, contributing to improved detection performance.
FSRN achieved state-of-the-art results on one-stage FSOD on the MS-COCO
and PASCAL-VOC datasets.

The outcomes of this research contributes significantly to the advancement of
FSOD and G-FSOD, paving the way for more efficient, adaptable, and robust
object detection systems in industrial automation, robotics, and beyond. The
findings presented in this thesis represents a step toward enhancing productiv-
ity, quality assurance, and overall performance in a wide range of real-world
industrial settings.

8.2 Outlook

Although the FSOD and G-FSOD methods have demonstrated promising re-
sults, further enhancements and extensions are essential to meet the demands
of real-world industrial applications. Addressing challenges posed by complex
and dynamic environments, occlusions, and cluttered scenes is crucial. Possible
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research directions might explore novel techniques to improve the detection
accuracy, robustness, and generalization capabilities of the models. In the
following, various potential research directions are highlighted.

A significant limitation in deploying FSOD and G-FSOD models in practical
scenarios is the computational cost. To enable real-time applications, it is
imperative to design more efficient FSOD and G-FSOD frameworks that can run
on resource-constrained embedded hardware. This necessitates the exploration
of more efficient architectures using Neural Architecture Search (NAS) to find
solutions that respect hardware limitations.

Uncertainty estimation has shown great potential in improving the reliability
of detection systems. Future research should delve deeper into investigating
and exploring more recent predictive uncertainty estimation techniques. By
incorporating uncertainty measures, the FSOD and G-FSOD models can make
more informed decisions and increase their robustness when encountering
novel or ambiguous scenarios.

Leveraging recent advances in efficient transformer architectures, researchers
can explore new ways to learn robust representations of novel classes without
suffering from catastrophic forgetting or overfitting to limited examples. By
harnessing the power of transformers, the FSOD and G-FSOD models can be
more adaptable to new, previously unseen object categories.

The rise of generative Al approaches and foundational models presents an
opportunity to address data scarcity issues in FSOD and G-FSOD. By generating
more diverse and realistic samples from available novel data, researchers can
significantly improve the robustness and generalization capabilities of the
models. Data augmentation through generative techniques can also help
alleviate overfitting and improve the models’ ability to handle novel scenarios.
An alternative avenue worth exploring could involve incorporating LLMs into
the FSOD domain. For instance, this approach could entail the utilization of
textual prompts as a means to find specific objects or choose the support set
within the FSOD framework.

In conclusion, the outlook for FSOD and G-FSOD research is promising, with
several potential research directions that can lead to significant improvements

165



8 Conclusions and Outlook

in real-world applications. Addressing issues related to efficiency, uncertainty
estimation, representation learning, and data augmentation will contribute to
the advancement of these methods and their practical utility in industrial
contexts.
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A Derivations

A.1 Analytical Proof of CFA

In this section, we mathematically derive the update rules for the proposed
CFA method. We formulate our objective function as follows:

o1 T S TR
minimize; g, 5119, — 3.3 + 5119, — 3l
subject to gl—gbZO,
9y 9, >0, (A1)

where g,, and g, represent the proposed gradient update for the novel and
base task, respectively. g,, and g, denote the projected gradient update for the
novel and base task, respectively. If both constraints are satisfied, the update
rule will be the average of g,, and g,. Otherwise, we solve the constrained
optimization problem using the method of Lagrange multipliers.

First, we reformulate the problem in the standard form as follows:

P 1+ T 1 T T
minimize,,, », iz" Zp —Gp2nt izb Zh — gy Zb
subjectto  —z,}g, <0,
T
—Zp9n < Oa (AZ)

where g, and g,, are denoted as z;, and z,,, respectively. We ignore the constant
terms g, g,, and g; g,. In addition, the sign of the inequality constraints is
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changed. Then, the Lagrangian can be formulated as:

1
L(zn, zp, 01, 2) =§ZIzn —gnZn — 1z, gy
1
+ §szzb — gy 2y — @22} G, (A3)

where v and a are the dual variables. To find the solution of the primal
variables 2z} and 2z}, we need to find the lower bound solution of the primal
problem by computing the solution of the dual problem:

Op(ar,a2) = zml;lb L(zn, zp, 01, Q2). (A4)

We find 2z}, and 2 as a function of dual variables a; and «;, respectively,
by minimizing the Lagrangian £(z.,, 25, a1, a2). This is achieved by setting
its derivatives w.r.t z,, and z; to zero,

Va2, L(zn, 2y, a1,00) = 0,

zy =g, + gy, (A.5)

vzbﬁ(znvzb; ai, a2) = 07

zZ, = gy + a2g,,. (A.6)

Next, we can find the solution of the primal variables by solving the dual
problem. We substitute eq. (A.5) and eq. (A.6) in eq. (A.4). Now, the dual
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A.1 Analytical Proof of CFA

problem can be rewritten as:

1
2
— g, g9, — 2019, g, — alg, g,

0p(a1, a2) = =(g, g, + 2019, 9, + 39, )

1
+ §(g;gb + 2029, g, + 039, 9,,)
— g/ g, — 2029/ g, — a2g) g,

1 1
=—-g, 9, — g, g, — =0ig, g,

2 2
1 1
—~ 59?917 — 29y g, — 50%919”-

Next, we find the solution aj and a5 of dual problem as follows:

Va,0p(a1,2) =0,

. GGy
al - T )
gy, 9y

Va,0p(ai,a2) =0,

(A.8)

Given the solutions of the dual problem, we can find closed-form solutions
of g,, and g, by substituting the dual solutions o eq. (A.7) and o5 eq. (A.8)

in eq. (A.5) and eq. (A.6), respectively:

T
. gn 9y ~
Zn =9n — g:rgbgb =9Gn
T
* gb gn ~
Zp =Gp — 9n = 9p-
P glg, T

(A.9)

(A.10)
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After finding the closed-form solution, a single update rule can be realized as:

gn +gb

. (A.11)

g:
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B Domain Generalization for FSOD

In the previous chapters, the FSOD and G-FSOD approaches discussed operate
under the assumption that the data originates from the same source domain,
meaning the data belongs to the same distribution. However, in real-life sce-
narios, it is common for models to be deployed in varied operating conditions
where the test-time domain differs from the trained domain reflected in a
distribution shift. For example, suppose a detection model is trained on images
captured by a specific sensor on a production line and subsequently deployed
on another production line with dissimilar sensors, lighting conditions, back-
grounds, or poses. In that case, the detection model will likely fail due to
the resulting domain shift. Nevertheless, collecting and annotating datasets
for each new task and domain is costly and time-consuming, and acquiring
sufficient training data may not always be feasible.

Domain Generalization (DG) [Zho22], a sub-discipline of transfer learning,
enables models to acquire generalized representations capable of handling
variations across multiple domains. In contrast to DA [Wan18], which focuses
on adapting models from a specific source domain to a target domain, DG
aims to develop models that perform well across numerous unseen domains
without domain-specific training.

The significance of DG arises from several factors [Zho22]:

« Rather than relying on labeled data from each potential target domain,
DG empowers models to leverage knowledge gained from diverse
source domains. Consequently, this reduces the cost and time involved
in data acquisition and enables the utilization of various models in
domains where obtaining labeled data proves challenging, such as
industrial robots.
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B Domain Generalization for FSOD

« Improves the resilience and dependability of the models. Exposing
models to various distributional shifts during training can capture and
generalize underlying patterns and concepts that remain consistent
across different environments. As a result, these models become better
equipped to handle variations in data distribution, noise, and other
factors encountered during deployment.

« Facilitates knowledge transfer across diverse domains. Models trained
using DG can serve as a foundation for various downstream tasks,
significantly saving time and resources. For instance, a model trained
on various indoor scenes could be employed in tasks such as object
detection, even in previously unseen environments.

This chapter presents and tackles the challenging task of ZDA-FSOD. Specif-
ically, the assumption is that neither images nor labels of the novel classes
in the target domain are available during training. A two-fold approach is
proposed for solving the domain gap. Firstly, a meta-training paradigm is
leveraged, where the domain shift is learned on the base classes, and the do-
main knowledge is subsequently transferred to the novel classes. Secondly,
various data augmentation techniques are proposed to account for all possible
domain-specific information within the few shots of novel classes. To en-
sure that the network is constrained to encode domain-agnostic class-specific
representations only, a contrastive loss is proposed. This contrastive loss
aims to maximize the mutual information between foreground proposals and
class embeddings, while reducing the network bias towards the background
information from the target domain. Experimental evaluations conducted
on datasets with considerable domain shifts demonstrate that the proposed
approach successfully alleviates the domain gap considerably without utilizing
labels or images of novel categories from the target domain.
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B.1 Literature Review

The DA methods with limited or no target domain data can be categorized as
follows: Unsupervised Domain Adaptation (UDA), DR, and Zero-Shot Domain
Adaptation (ZDA).

B.1.1 Unsupervised Domain Adaptation

UDA [Zha21] thrives when labeled data exists solely in the source domain,
while the target domain lacks corresponding labeled samples. The main objec-
tive of UDA is to obtain domain-agnostic knowledge by leveraging the labeled
data in the source domain. This knowledge aims to capture the common un-
derlying representations across diverse domains and generalize to the target
domain without ground-truth labels.

UDA methods employ either feature-level adaptation in latent space or
pixel-level adaptation through image-to-image translation techniques.
Domain Adaptive Faster R-CNN (DA-FRCNN) [Che18b] combines Faster
R-CNN [Ren15] with adversarial training. DA-FRCNN aims to align both the
image and instance distributions across domains while utilizing consistency
regularization to learn a domain-invariant RPN [Che18b]. Subsequently,
several adversarial-based methods have been proposed by other researchers
[Zhu19, Wan19b, Sai19, He19, Zha19, Zhu20, Che20a], building upon this work.

B.1.2 Domain Randomization

Alternatively, DR [Zha20b] aims to acquire domain-invariant features by
generating images with randomized attributes such as illumination, pose,
and background, simulating real-world distributions. In recent years, DR
methods have been introduced in robotics applications, including 6D object
detection [Sun18], 6D object tracking [Wen20], object localization [Tob17],
person detection [Lin20], and segmentation [Dan19]. However, these DR
methods typically rely on using a blender or a game engine to generate semi-
realistic images, which can be ineffective in terms of time and cost.

215



B Domain Generalization for FSOD

B.1.3 Zero-Shot Domain Adaptation

ZDA [Kod15, Pen18, Wan19a] tackles the more challenging scenario where
no labeled data from the target domain is accessible during training. The
objective of ZDA is to enable the adaptation of a model, originally trained on
a source domain, to effectively perform on a target domain without relying
on any labeled samples from the target domain. To address this challenge,
ZDA approaches utilize auxiliary sources of information, such as domain-
specific attributes or additional data, to bridge the gap between the source
and target domains.

B.2 Datasets

Since ZDA-FSOD is a new task, it necessitates using datasets encompassing
different domains to assess the performance of the proposed approach. In light
of this, datasets were carefully chosen to ensure the availability of distinct
domains, enabling a comprehensive evaluation of the effectiveness of the
proposed method in addressing the challenges posed by ZDA-FSOD.

B.2.1 T-Less

T-Less [Hod17] dataset was designed for the OD and pose estimation tasks
in industrial settings. Specifically, the T-Less [Hod17] dataset consists of 30
industrial objects without any notable texture, distinct color, or reflectance
features. Two different versions of T-Less are available: synthetic rendered
images, comprising a total of 50 scenes with approximately 1000 images
each, and real images captured from 20 different scenes. The synthetic and real
datasets are used as source and target domain data, respectively. It is important
to note that the RGB data alone is employed in all experiments.

To adapt the T-Less dataset for FSOD, train and test splits are proposed for both
the base and novel classes. The dataset is divided into 19 base classes and 11
novel classes. Additionally, the 20 scenes containing real images are split into
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8 training scenes (2, 3, 5,6, 7,9, 11, 12), which mainly feature the base classes,
while the remaining 12 scenes contain both training and testing scenes for the
novel classes. The inference is performed on unseen classes, specifically the
11 novel objects. Inference results are reported using K = 5,10-shot settings.

B.2.2 Ex-Dark

The ExDark [Loh19] dataset is an adaptation of the widely-utilized PASCAL-
VOC dataset [Eve10], tailored to tackle the difficulty of object detection in
extremely poor illumination conditions. This modification involves reducing
the brightness levels of the images to emulate circumstances with minimal
illumination, where objects may be barely detectable.

ExDark [Loh19] consists of 12 classes, with 10 classes overlapping with the
PASCAL-VOC dataset. To adapt for FSOD, the dataset is partitioned into 7 base
classes and 5 novel classes. The novel classes align with the classes present
in the PASCAL-VOC dataset, while the remaining classes are categorized as
base classes. For testing, only the novel classes within the ExDark test set are
used. The reported results are based on the K = 5,10-shot settings.

B.3 Zero-Shot Domain Adaptive FSOD

B.3.1 Problem Formulation

In ZDA, annotated abundant base target domain data is assumed available.
Formally, X5 = {X%, XL} and Y5 = {Y3,YL}, where X are the
base training examples with the corresponding annotations Y 5. X* and X7
denote the source and target domain data samples, respectively. Similarly, the
Y® and Y7 are source and target domain annotations, respectively.

In ZDA-FSOD, only a few shots of source domain data are available, represented
by the sets X y = {X %} and Y y = {Y'3}. A harsher constraint is imposed
in this work, assuming that the target data is either unavailable in the base task
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Figure B.1: Left: The framework utilized for the proposed ZDA-FSOD task during the novel task
training (meta-testing) phase is represented. The network receives the novel source
data X JS\, after applying query and support level augmentations. Right: Examples
of the support and query images during the meta-testing phase (upper) and the in-
ference stage (lower). The support images used during inference are the same ones
utilized during the meta-testing and belong to the source domain.

or accessible only with a few shots. The former setting is more challenging
as it lacks any knowledge about the target domain.

B.3.2 Baseline Description

To set up a baseline for the ZDA-FSOD task, the meta-learning based Attention-
RPN model [Fan20], which is based on Faster-RCNN [Ren15]. In the Attention-
RPN model, a two-stage meta-detector is employed to detect objects in a query
image that belong to the same class as the support images. As previously
discussed in Section 3.2.2, the RPN is modified to filter out irrelevant object
proposals by combining the query and support features. Additionally, the
detection head is altered to integrate the query and support feature embeddings
through concatenation, followed by an attention mechanism operating at a
global, pixel, and patch level. The choice of Attention-RPN [Fan20] as the
baseline is motivated by its contrastive training paradigm that encourages
better domain-invariant features. Figure B.1 depicts the baseline architecture
and our contributions in the meta-testing phase.
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Original Color Jittering Gaussian Noise Gaussian Blur VOC Background

Figure B.2: A depiction of different DAs implemented on a query image originating from a T-
Less source domain image to perform DR.

B.3.3 Data Augmentation Schemes

Given the supervised learning of novel classes, the model is highly susceptible
to overfitting the domain information due to data scarcity. To address this issue,
various data augmentation techniques are proposed during the meta-testing
phase. In contrast to previous domain randomization approaches [Tob17,
Sun18, Dan19, Lin20], using a graphics engine to generate multiple poses and
lighting conditions is avoided. Instead, pixel-level and feature-level augmen-
tations are leveraged, enabling the proposed method to handle any domain
gap without being limited to simulation-to-real applications. The following
augmentations are proposed:

» Color Jittering: To address diverse point-wise lighting variations, color
jittering is randomly applied by modifying the brightness, contrast, hue,
and saturation of both the query and support images. This measure aids
in reducing the network susceptibility to overfitting the source domain
colors while promoting acquiring more domain-invariant features.

Gaussian Blur: To mitigate the impact of noisy low-light captured
images or out-of-focus frames, the resulting images can confuse the
detector. To address this issue, it is proposed to randomly apply
Gaussian blur with random kernel sizes and standard deviations to both
the support and query images. This measure aims to account for such
distortions and enhance the robustness of the detector.

Gaussian Noise: The limited novel examples may lead to a highly noisy
learning signal, harming the quality of learned representations. To
address this issue, Gaussian noise with different small standard
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deviation values is randomly added to both the support and query
images. This augmentation draws inspiration from the work on
adversarial attacks on neural networks [Goo15], where it was observed
that even small imperceptible perturbations could deceive the network
decision-making and shift a sample away from the classifier decision
boundary. The objective is to encourage the network to be less sensitive
to the absolute pixel values of the few available support and query
images, thereby reducing the number of false positives and negatives.
Consequently, the enhanced network robustness against pixel
perturbations leads to higher domain transferability.

« Background Augmentation: Overfitting of the backgrounds in training
images, which are not transferable across domains, can occur when
training on abundant source domain data. However, foreground object
classes should have consistent feature representations across domains.
To avoid domain confusion arising from different backgrounds during
test-time, the proposal is to extract the objects from the given source
query images using their masks or bounding boxes and embed them
onto real background images from the PASCAL-VOC datasets, similar
to the approach in [Sun18]. Unlike applying this augmentation to a
single object, it is applied to the query image containing multiple
foreground objects. Specifically, an image is randomly sampled from the
PASCAL-VOC dataset and resized to match the resolution of the source
query image. The extracted objects are then placed at the same location
in the PASCAL-VOC image to keep the bounding box labels unchanged.

The abovementioned data augmentations are visually depicted in Figure B.2.

B.3.4 Mixed Domain Training Strategy

To mitigate the risk of overfitting on domain-specific features, the model should
encounter multiple domains during meta-training. Due to the absence of target
domain data in the base task, data augmentations outlined in Section B.3.3
are applied to the source data. Consequently, the training set is represented
as {(X%)!, Y%}, where t € T denotes a transform. By incorporating these
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augmentations, the model is compelled to observe more than one domain at
this stage, as the feature extractor remains frozen in the subsequent stage
and subsequently transfers the acquired knowledge from the base task to
the novel tasks.

In scenarios where few-shots of target domain data are available in the base
task, the meta-learning paradigm is leveraged by redefining the episodic base
tasks during the meta-training phase. Instead of exclusively learning the
base tasks using source domain data, the base source data is augmented
with a few-shots from the target domain, resulting in a combined dataset
(X3, Y3),(XE, YL} to extract cross-domain knowledge. This meta-
training paradigm is denoted by MDTS.

To enable the MDTS at both the query and support levels, each episode in the
meta-training involves query images drawn from either the source or target
domain, while the support images may be sampled from a single domain or
a mixture of both. The proposed MDTS facilitates the observation of visual
cues in the query image that are less domain-dependent. Subsequently, the
acquired domain knowledge is transferred to the novel task by freezing the
feature extractor and finetuning the Rol and detection heads.

B.3.5 Contrastive Foreground-Class Embedding Loss

Learning discriminative features across different domains poses a significant
challenge for novel classes with limited data. One common drawback observed
in such scenarios is increased confusion, leading to higher false positives and
negatives, especially for classes with similar appearances or between fore-
ground and background in the new domain. A crucial requirement for a robust
feature representation is its ability to encode class-specific domain-agnostic
information, indicating sensitivity only to the shape of the foreground object.

To enforce semantic consistency between foreground and background em-
beddings, a CFCE loss is proposed. This loss functions by comparing the
foreground proposals from the query image with both the positive and neg-
ative support class embeddings. Contrastive losses have been successfully
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maximize
minimize

Figure B.3: A depiction of the proposed CFCE contrastive loss is presented. The primary ob-
jective is to maximize the similarity between the features of the foreground query

proposals, denoted as 27, and the positive support class prototype c¢*. Simultane-

ously, the goal is to minimize the similarity between 27, and the negative support
prototype ¢~ . Furthermore, the utilization of augmented features, represented as
(), complements the CFCE loss, promoting the learning of robust cross-domain
features.

employed to map two different views of the same scene to a similar point in
the representation space [Sch15, Koc15, Che20b, Kho20]. More specifically,
the proposed CFCE loss seeks to maximize the mutual information between
instance-level features in the query and class embeddings from the support
images, regardless of their augmentations. The objective is to bias the decision
boundary of the detector towards the topology and semantics of the objects
rather than being influenced by domain information.

Formally, foreground features of the ¢ query proposals are denoted as
{zg};z \» where Py is the number of foreground proposals. Let {z] }X
represent positive support features that are present in the query image while
{z3, } K | are the negative support features that are randomly sampled class
which are absent in the query image. s; denotes the i*" support image and
K is the total number of support shots per class. ¢ and ¢~ are the positive
and negative class embeddings and are computed by averaging {z;}fil
and {z_ }X |, respectively.
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The objective of the CFCE loss is to ensure that the foreground query proposals
are near ¢ while simultaneously pushing them further away from ¢~ For this
purpose, a triplet margin contrastive loss is employed, which aims to reduce the
distance between zg and c¢T while increasing the distance between zg and ¢~
beyond a hyperparameter margin m. This triplet margin loss allows for a more
flexible feature space that accommodates the inter-class distances [Mus20].
The cosine similarity distance is preferred over the Euclidean distance as it
considers the angle between two similar data objects whose features have
a large magnitude in the feature space. The CFCE loss is mathematically
expressed as follows:

Py
1 ; -
Lerep = Py Zmax (d(z),c*) —d(z},e7) +m,0), (B.1)
J
’UT'UQ
d(vy,v5) = — A2 ®.2)
oy [l va |l

The proposed CFCE loss is presented in Figure B.3.

B.3.6 Feature-Level Class Embedding Augmentations

The direct averaging of K -support shot features for computing class embed-
dings may not accurately represent the true class embedding distribution,
especially when support shots are scarce or have a high standard deviation. To
address these concerns, a data augmentation scheme is proposed at the support
feature level. Specifically, assuming that the support feature representation
follows a Gaussian distribution, the mean feature ]_” is computed over the
K-shots, along with their standard deviation, o y. During each iteration in the
meta-testing phase, a latent vector is sampled from the Gaussian distribution
N(f, 0'%) and serves as the class embedding. This feature-level augmentation
strategy is employed during inference to enhance the class embeddings.
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The contrastive losses and data augmentations complement each other by
introducing perturbations in the feature space, allowing the network to ex-
plore more examples. The data augmentation may shift an object beyond the
decision boundary, mimicking the effect of a new domain during inference.
However, in experiments, it is observed that strong augmentations can some-
times destabilize training on the novel task. Conversely, the contrastive losses
help attract these distant features together by enforcing semantic consistency,
resulting in smoother training and higher average precision.

B.4 Experimental Evaluations

The evaluation of the proposed ZDA-FSOD necessitates a dataset encompass-
ing multiple domains. Given the specific nature of this problem, the most
appropriate publicly available datasets for evaluation are T-LESS [Hod17],
PASCAL-VOC [Evel0], and ExDark [Loh19]. The investigation focuses on two
domain gaps: (T-Less Synthetic — Real) and (PASCAL-VOC — ExDark).

B.4.1 Implementation Details

For a fair quantitative comparison, all models are meta-trained on the base
task for 5 epochs using an SGD optimizer with the default parameters as
specified in Attention-RPN [Fan20], and a batch size of 8. The base learning
rate is set to 0.004 for the first 3 epochs and 0.0004 for the subsequent 2
epochs. During meta-testing, 6k iterations are performed with a learning
rate of 0.001. The shorter side of the query image is resized to 600 pixels,
and the longer side is resized to 1000. Additionally, each support image is
cropped around the target object with a 16-pixel image context, zero-padded,
and then resized to 320 x 320.
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Table B.1: Results on T-Less Synthetic — Real domain gap. MDTS denotes the mixed domain
training strategy (source + few-shot target data) introduced in Section B.3.4. MDTS-
Aug denotes source data augmented with DR.

Methods | Meta-Training | Meta-Testing 5-Shot 10-Shot
Data Domain | Data Domain AP AP50 AP75 AR AP AP50 AP75 AR
(a) Source 1.7 3.0 1.8 4.1 6.1 10.1 6.5 13.3
N (b) Target 6.8 12.6 6.9 19.9 10.2 16.0 11.6 21.9

Baselines Source

(c) MDTS 12.9 221 13.0 35.2 235 34.0 25.7 49.0
Source 6.5 11.0 6.7 32.8 17.3 27.2 18.9 44.2
Ours MDTS-Aug Source 10.1 17.7 10.3 21.5 26.3 39.8 29.7 49.2
MDTS 17.4  26.5 18.9 399 | 31.2 4538 340 610
Oracle Target Target 37.5 50.8 42.5 539 | 51.7 684 587 627

B.4.2 Baseline Models

The performance of the proposed model is evaluated against four baselines:
(a) Attention-RPN [Fan20] meta-trained solely on source data, (b) Attention-
RPN [Fan20] meta-trained solely on target data, and (c) Attention-RPN [Fan20]
meta-trained on both source data and few-shot target data. All models undergo
fine-tuning on novel classes from the source domain and are tested on novel
classes from the target domain. It is important to note that baseline (b) assumes
abundant target data in the base task, which provides it with an advantage
over the proposed model.

Comparison with other FSOD models is not conducted in this task, as they
possess different model capacities and report diverse performances on the
same datasets. Such a comparison in a DA setting would lead to an unfair
evaluation. Although a few works [Rah20, Kan18] have presented cross-dataset
results, specifically from MS-COCO to PASCAL-VOC, these methods reported
the results as an experiment to assess generalization on more novel classes,
rather than as a direct solution to ZDA. Moreover, there is no apparent domain
gap between MS-COCO and PASCAL-VOC.
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Table B.2: Results on PASCAL-VOC — ExDark domain gap. MDTS-Aug denotes source data
augmented with DR. Note that no PASCAL-VOC background augmentation is used
since PASCAL-VOC is the source domain dataset.

Methods | Meta-Training | Meta-Testing 5-Shot 10-Shot
Data Domain | Data Domain | AP  AP50 AP75 AR AP AP50 AP75 AR
(a) Source 10.1 26.4 5.4 16.9 12.1 32.4 6.0 20.0
Baselines (b) Target Source 5.3 16.1 1.8 11.1 6.9 21.9 2.9 14.1
(c) MDTS 11.8 29.9 6.7 21.3 13.5 343 7.7 21.8
Source 11.0 28.6 6.5 20.7 13.6 34.7 9.4 23.6
Ours MDTS-Aug Source 13.0 32.6 7.4 235 | 14.2 36.7 9.6 25.0
MDTS 11.9 30.6 7.1 21.5 13.9 35.5 9.0 23.4
Oracle Target Target 10.0 24.7 7.2 21.2 14.2 35.4 9.4 25.5

B.4.3 Comparison Results

Three variants of the proposed model are tested. The first variant is meta-
trained solely on source data, the second one is trained on source data aug-
mented with proposed DR techniques, and the final variant uses MDTS with
source and few-shot target data. The three variants are meta-tested with the
proposed DR techniques, CFCE loss, and feature-level augmentations. As
an oracle (upper bound), an Attention-RPN [Fan20] model meta-trained and
meta-tested on actual target data is considered.

Results on T-Less Synthetic — Real

Table B.1 presents the results on the T-Less domain gap for K = 5and K = 10-
shot settings. It is observed that the source-only (baseline (a)) experiences a
significant performance drop in AP and AR, declining from 51.7 to 6.1, and
62.7 to 13.3, respectively, when no DR is applied. On the other hand, MDTS
(variant (c)) outperforms meta-training on either domain alone (baseline (b)
and (c)). Contrary to expectations, MDTS even surpasses target-only meta-
training. This can be attributed to the fact that the model reaches a better
optimum when exposed to two different data distributions of the same classes
during meta-training.
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Additionally, the proposed DR approach can considerably improve the AP and
AR in different meta-training settings. When performed on a source-only meta-
trained model, DR boosts the AP by 11.2 points under the 10-shot setting (row
5). The model can reach an AP of 26.3, almost 51% of the oracle performance,
without seeing any target domain sample in the meta-training and meta-testing
phases (row 5 in Table B.1). This variant already surpasses the MDTS training
in baseline (c) while seeing less data. For the best performance on K = 5, 10-
shot settings, 17.4 and 31.2, were reached using mixed domain samples in
meta-training and DR in meta-testing (row 6 in Table B.1). Nevertheless, the
relative performance increases under the 10-shot settings (60% of the oracle)
compared to 5-shot settings (46.4% of the oracle). This is attributed to the
sparsity of the latter setting.

Results on PASCAL-VOC — ExDark

Table B.2 presents the results on the PASCAL VOC — ExDark datasets to
examine the generalization of our model on a different domain gap (day —
night). In contrast to T-Less, it is observed that meta-training on the target do-
main (b) does not result in any improvement over source-only training (a). The
drop in baseline (b) can be attributed to two factors. Firstly, ExDark contains
fewer base classes in meta-training compared to PASCAL-VOC. Secondly, the
domain gap is considerably more challenging to learn in a few-shot setting
than the real-to-synthetic domain gap in T-Less. This is due to some objects
being hardly visible in ExDark, leading to confusion with the background by
the network. Nonetheless, our models consistently outperform all baselines
on this new domain gap, achieving the best performance without utilizing any
target domain data during meta-training (row 6). It is worth noting that several
models in the table outperform the oracle, which is attributed to the target data
(ExDark) containing fewer base classes than the source data (PASCAL-VOC).
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Table B.3: The ipact of meta-testing on T-Less data with meta-trained weights on mixed domain
samples in the base task with the MDTS.

Data Configuration 10-Shot Inference

Support Query AP  AP50 AP75 AR
A Source Only Source Only 235 340 25.7  49.0
B  + Color Jittering + Color Jittering 263 383 279 59.0
C  + Gaussian Blur + Gaussian Blur 26.8 399 300  58.1
D  + Gaussian Noise  + Gaussian Noise 293 4338 31.9 592
E + VOC Background | 30.2 443 326  57.6
F  + Feature Noise 30.4 448 334  63.1
G + CFCE Loss 31.2 458 34.0 61.0

B.4.4 Ablation Experiments
Meta-Testing via DR

Table B.3 presents various experiments conducted to examine the impact of
different proposed augmentations during meta-testing. The network used in
all experiments is meta-trained on the source and few-shot target domain data.
The experiments start from source-only meta-testing (configuration A), and the
augmentations are incrementally applied with the results reported. First, color
jittering in configuration B leads to a significant AR improvement of 10 points,
indicating a notable decrease in false negatives and an AP improvement of 2.2
points. Introducing Gaussian blur (C) further improves the AP by 0.6 points
but slightly deteriorates the AR by 0.9 points. Adding Gaussian noise (D)
enhances the AP by 2.5 points and improves the AR by a surplus of 1.1 points,
demonstrating the importance of pixel-level perturbations in enhancing model
robustness to simple distortions. Next, in configuration E, adding PASCAL-
VOC background augmentation on the query images results in an improved
AP. Feature-level augmentations in configuration F slightly increase the AP,
with their main impact reflected in the high AR. Finally, the best result in
our experiments is achieved by adding the CFCE loss, boosting the AP by
0.8 points and slightly reducing the AR to 61, which is close to the oracle
AR of 62.7. We have also observed that the introduced contrastive loss and
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Table B.4: An investigation into cross-domain training settings in both the meta-training and
meta-testing phases on the T-Less dataset is conducted. The Attention-RPN [Fan20]
serves as the baseline for all experiments. v* few indicates the presence of few-shot
samples from the base task in the target domain. The rows highlighted in gray indicate
the use of our proposed DR approach.

Meta-Training Inference
Support Query Meta-Testing 5-shots 10-shots
Source Target |Source Target AP AP50 AP75 AR | AP AP50 AP75 AR
v v 1.7 3.0 1.8 41| 61 101 6.5 133
v v 6.8 126 69 199]10.2 16.0 11.6 219
Few Few Source Only
v v v v 129 221 13.0 352|235 34.0 257 49.0
v o ey e 17.4 26.5 18.9 39.9|31.2 458 34.0 61.0
v v 38.3 54.7 43.0 56.5|48.7 652 55.0 64.6
v v 37.5 508 425 539|517 684 58.7 62.7
Few Few Target Only
v v v v 399 540 446 589|483 624 537 66.1
v ol e 39.9 55.2 44.6 62.9/49.2 65.0 54.6 69.7

feature-level augmentation stabilize the meta-testing process while reducing
the number of false negatives and positives.

Cross-Domain Training

Table B.4 explores different cross-domain settings to analyze existing do-
main gaps in meta-training and meta-testing. The proposed DR approach
is selectively applied in the highlighted rows of Table B.4. The following
deductions are made.

Firstly, the domain gap can be significantly reduced by the existence of target-
domain samples for novel classes, even in cases where no target-domain
samples were seen during meta-training. Secondly, the MDTS in meta-training
remains beneficial regardless of the samples seen during meta-testing. Rows
3,4,7,8 in Table B.4 demonstrate that the model achieves higher AR than the
oracle under the 5,10-shot settings, higher AP under the 5-shot setting, and
an AP close to the oracle under the 10-shot setting. Thirdly, applying the DR
approach during target-only meta-testing improves performance compared to
the oracle in 5-shot settings (AR and AP) and 10-shot settings (AR).
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Source MDST-Aug MDTS Groundtruth
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Figure B.4: Qualitative results comprising the three model variants meta-trained on source,
MDTS-Aug, and MDTS using the 10-shot setting on the T-Less dataset.

However, it is essential to note that the assumption of having target domain
samples during meta-testing may not be valid in many real-world applications,
where differences in background, camera sensor, or simulation-to-real domain
gaps are common. Additionally, frequent finetuning of the pre-trained model
on new domains, such as when installing a new camera or encountering
environmental changes, may not be practical.

230



B.5 Qualitative Results

B.5 Qualitative Results

Qualitative results of the three proposed model variants are depicted in Fig-
ure B.4. The results showcase various success and failure scenarios.

B.6 Discussion

This thesis chapter introduces and addresses the new and challenging problem
of Zero-Shot Domain Adaptation for Few-Shot Object Detection (ZDA-FSOD).
This task involves scenarios where only a limited number of source domain
data shots are available, while target data is either completely absent in the
base task or accessible only with a few shots.

To tackle this novel problem, the adoption of a meta-learning paradigm led to
the proposal of several techniques. One of the key contributions was using Do-
main Randomization through pixel-level and feature-level augmentations. This
approach allowed the proposed method to effectively handle various domain
gaps without relying on external tools such as blenders or game engines.

The MDTS was introduced, significantly improving the performance of the
meta-trained models. By exposing the network to both source and target
domain data during meta-training, better generalization to unseen domains
in the meta-testing phase was observed.

A novel contrastive loss called CFCE loss was introduced to ensure seman-
tic consistency between foreground and background embeddings. This loss
encourages foreground query proposals to be close to positive class features
while being pushed away from negative ones, ensuring a more robust feature
representation.

Another important contribution was the feature-level class embedding aug-
mentation. During each iteration in the meta-testing phase, a latent vector
was sampled from a Gaussian distribution drawn from the available support
features, serving as the class embedding. This feature-level augmentation
strategy improved the robustness of the class embeddings during inference.
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Extensive experiments on two challenging domain gaps demonstrated the
effectiveness of the overall approach. The meta-detector exhibited impressive
performance, successfully generalizing to unseen domains even when no target
domain data for the novel classes were available during both meta-training
and meta-testing.

The proposed method is believed to benefit numerous practical, real-world
robotic autonomous systems, and further research is encouraged on tackling
domain shifts when learning novel objects in unseen domains.
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