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Abstract—Automated vehicles require carefully designed cost
functions, which are challenging to specify due to the complexity
of the behavior they need to cover. Inverse reinforcement learning
is a principled methodology for deriving cost functions, but it
requires high-quality expert demonstrations, which are expensive
to obtain. Recently, scenario-based testing has emerged as a
promising approach for validation of driving behavior. In this
paper, we introduce a novel methodology that circumvents the
need for costly expert driving demonstrations by harnessing
scenario-based testing. Our Test-Driven Inverse Reinforcement
Learning approach leverages Bayesian inference, utilizing the
outcomes of scenario tests as observations to infer cost functions.
We rigorously evaluate our method on simulated and real-world
scenarios and demonstrate its ability to learn cost functions that
successfully pass the respective scenario tests. We also show
that the learned cost function generalizes well by also passing
scenario tests from an unseen validation set and illustrate that few
scenario tests are sufficient to learn meaningful cost functions.
This innovative framework not only streamlines the cost function
specification process but also offers a cost-effective and practical
solution for advancing automated driving systems.

I. INTRODUCTION

Automated vehicles will play an important role in future
society. They are expected to not only reduce the number
of road fatalities, but also increase transportation availability
and carbon footprint [1]. To successfully implement automated
vehicles driving on public roads, it is crucial to ensure that they
behave in a safe and predictable manner. Motion planning for
automated vehicles is typically formulated in terms of a cost
function that is optimized while at the same time respecting
constraints of the environment [2].

An increasingly popular approach for validating automated
driving solutions is provided by Scenario-Based Testing (SBT)
[3], [4]. In SBT, a set of scenarios with test conditions is
used to verify that an automated system behaves as expected.
These tests can be automatically evaluated in a continuous-
integration pipeline of the system’s development cycle. Then
a human expert tunes the cost function parameters until the
system passes the tests. The test principle of this approach is
illustrated in Fig. 1.

Alternatively, Inverse Reinforcement Learning (IRL) can be
used to infer a cost function from expert demonstrations [5],
[6]. Some works also take planning constraints into account
when inferring the cost function [7]–[9]. Other approaches
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Figure 1: Three exemplary scenario tests for verifying the be-
havior of an automated vehicle (blue). In the middle scenario,
the automated vehicle does not maintain an adequate safety
distance, hence the scenario test fails.

query a human expert for trajectory preferences at run time in-
stead of using prerecorded demonstrations [10]–[14]. Negative
feedback is employed into the cost function learning process
by modeling physical corrections by the human [15], [16] or
by using examples of failed demonstrations [17]–[19]. These
approaches all have the downside of requiring a human expert
to tune the cost function, provide demonstrations, correct the
robot, or answer preference queries, which is time-consuming
and expensive.

Therefore, we propose Test-Driven Inverse Reinforcement
Learning (TDIRL), which makes use of existing scenario tests
that are often readily available since they are used for verifying
and validating the driving behavior in scenario-based testing
environments. The idea is to use the scenario test results as
feedback for learning the cost function. Thus, there is no
additional human effort required to tune the cost function. The
contributions of our work are as follows:

• We propose a novel approach for automatically learning
a cost function from scenario-based testing outcomes.

• We formulate the approach as a Bayesian inference
problem with test outcomes as observations.

• We evaluate our approach in two different environments
and show that the learned cost function generalizes well
to tests from an unseen validation set.

In the Reinforcement Learning (RL) literature, the objective
is formulated as maximizing a reward function instead of
minimizing a cost function. For a unified presentation, we
will formulate our considerations in terms of cost functions



throughout this paper. We also want to highlight, that the term
test in this work does not refer to a hold-out test set as it is
typically used to evaluate machine learning models. Instead,
it denotes a scenario test that is used to verify the behavior of
an automated system. This work uses such tests for training
cost function parameters as well as for validating the resulting
motion planning algorithm. To make this distinction even more
clear, we mostly use the term scenario test.

II. RELATED WORK

Maximum entropy inverse reinforcement learning is a prin-
cipled approach to learning cost functions from demonstra-
tions. It selects the cost function that maximizes the policy’s
entropy while matching the demonstration’s feature expecta-
tions [6]. In contrast to our approach, which only requires
defining scenario-based tests, inverse reinforcement learning
approaches typically require collecting numerous high-quality
expert driving demonstrations. Furthermore, care has to be
taken to collect only high-quality demonstrations whereas our
method can use real traffic situations together with scenario-
based tests that define the desired behavior. Other works
incorporate failure demonstrations in addition to successful
demonstrations [17]–[19]. Their objective not only makes the
cost function reproduce the expert’s behavior but also makes
the behavior dissimilar to the failure demonstrations.

Active learning strategies have been proposed to reduce
the number of demonstrations by asking a human expert for
demonstrations or cost labels in the states where it provides the
most information [14], [20]. Similarly, a large body of work
investigates preference-based IRL, where the human expert is
asked to provide preferences between two trajectories [10]–
[12]. The cost inference problem is modeled in a Bayesian
framework where the likelihood models the uncertain human
preference selection. This has the downside that the human
expert needs to be available during the learning process. We
also use a Bayesian framework for cost inference, but use the
results of automated scenario-based testing as feedback in the
likelihood for learning the cost function. Palan et al. com-
bined learning from demonstrations and preferences by using
demonstrations to infer a prior over the cost function which
is then refined by querying the human expert for preferences
[13]. Our method can also be combined with a prior learned
from demonstrations, as described in Section IV-B3. Another
possible source of feedback investigated in the literature is
physical human-robot interaction [15], [16], [21]. This also
has the downside of requiring a human expert to correct the
robot’s behavior. Moreover, it is difficult to provide physical
corrections in simulation environments.

III. FUNDAMENTALS

A. Motion Planning with Optimal Control

Optimal control (OC) is a method frequently used for mo-
tion planning in robotic systems [22]. Denoting the system’s
state by x and the control input by u, the system dynamics
can be described as ẋ = f(x,u). The goal of OC is to find a
trajectory x∗(t) and u∗(t) starting from an initial state x0 that

optimizes an objective function, while satisfying the system
dynamics and constraints. The OC problem is often solved by
discretizing the time horizon into N time steps which results
in a finite dimensional optimization problem

min
x,u

N−1∑
k=0

J(xk+1,uk)

s.t. xk+1 = F (xk,uk),

g(xk+1,uk) ≤ 0, ∀k ∈ {0, ..., N − 1}.

(1)

Here the trajectory is given by the state and control input
sequences τ = (x0,u0, . . . ,xN−1,uN−1,xN ). The objective
is the step cost function J and the discrete-time system
dynamics are given by F . They are approximations of the
continuous time objective and system dynamics obtained by
numerical integration. The constraints g can be used to enforce
safety as well as state and input bounds [22].

Model-Predictive Control (MPC) refers to the technique of
repeatedly solving the OC problem, whenever a new state
measurement x is available, while only applying the first
control input u0 to the system [23]. Reinforcement learning
(RL) algorithms are tailored to the related problem of making
decisions in an environment where the system dynamics are
unknown and probabilistic [24]. They learn a probabilistic pol-
icy π(u|x) by interacting with the environment and observing
the resulting cost.

B. Bayesian Inverse Reinforcement Learning

Inverse reinforcement learning (IRL) is the problem of
inferring parameters θ of a cost function Jθ from expert
demonstrations D. However, there are infinitely many cost
functions that are consistent with the demonstrations. Maxi-
mum entropy IRL solves this ambiguity by choosing the policy
with the highest entropy out of all policies that can explain
the demonstrations [6].

In contrast, Bayesian IRL (BIRL) solves this ambiguity
by modeling the cost function as a random variable and
introducing a prior over the cost function [25]. The like-
lihood P (D|θ) is still modeled according to the principle
of maximum entropy, while the prior P (θ) can incorporate
additional information on the cost function. The posterior over
cost function parameters is then given by

P (θ|D) = P (D|θ)P (θ)
P (D)

(2)

∝ exp

(
−
∑
τ∈D
Jθ(τ)

)
P (θ). (3)

IV. TECHNICAL APPROACH

Motion planning algorithms for robotic systems typically
use a cost function that balances multiple objectives and con-
straints to ensure safety. Scenario-based testing is a promising
approach to validate that the resulting behavior is as desired
in certain situations.



To overcome the challenges of hand-tuning the parameters
and of obtaining high-quality human demonstrations for in-
verse reinforcement learning, we propose to use the scenario-
based testing outcomes as feedback for the learning process.
Our Bayesian approach to Test-Driven Inverse Reinforcement
Learning (TDIRL) allows to tune all parameters of the motion
planning algorithm.

A. Scenario-based Testing

In the following we describe the aspects of scenario-based
testing (SBT) that are necessary for this work. We assume the
scenario tests are defined in certain predefined scenarios with
multiple tests per scenario. For a detailed description of SBT
we refer the reader to prior work [3].

1) Scenario Database: A scenario S = (x0, tend,O) is
defined by the vehicle’s initial state x0, including the en-
vironment’s static objects, the end time tend, and the future
trajectories of all dynamic objects O = {o1, . . . , on}, that is,
oi = (x

(i)
0 , . . . ,x

(i)
tend

) is the future trajectory of object i.
This is based on the assumption that the trajectories of

dynamic objects are independent of the vehicles’ actions,
which is not true in general. However, the scenario tests are
typically formulated to validate that the agent behaves in a
certain way in a given situation. Nevertheless, our approach
can be equally applied to scenarios that do not define the future
trajectories of dynamic objects but instead simulate them in
the motion planning algorithm.

For a given set of parameters θ of the motion planning
algorithmMθ, the vehicle’s executed trajectory τS =Mθ(S)
is solely defined by the scenario S, independent of the test
that is evaluated on τS . It is obtained by rolling out the motion
planning algorithm for multiple time steps until reaching the
scenario end time tend.

2) Scenario Test Database: The scenario tests we consider
are binary tests on the agent’s executed trajectory. They are
formulated to check if a specific trajectory feature is below or
above a certain threshold. For example, a scenario test could
check if the vehicle’s maximum acceleration is below a certain
threshold amax or if the vehicle’s final position is close to the
goal position.

Such scenario tests can always be formulated in terms of a
trajectory test feature f in the form f(τ) ≥ 0. Building on the
previous example, a test on the maximum acceleration

max
t∈[0,T ]

‖a(t)‖
!
≤ amax

can be encoded in the test feature f(τ) = amax −
maxt∈[0,T ] ‖a(t)‖.

Hence, a scenario test T = (S, f) consists of a scenario
S and a test feature f that is evaluated on the trajectory
τS = Mθ(S) produced by the motion planning algorithm
The scenario test database consists of a set of such tests
T = {T1, . . . , Tm}. Typically, multiple tests are formulated
for the same scenario. For instance, the same trajectory can
be tested for safety, comfort, and final goal distance at the
same time.

Figure 2: Negative log likelihood of the logit model.

B. Bayesian Approach

We formulate the problem of learning the parameters θ
of the motion planning algorithm as a Bayesian inference
problem. Starting from Eq. (2), the posterior distribution given
the scenario test database T is P (θ|T ) ∝ P (T |θ)P (θ).

1) Scenario Test Likelihood: Specifying scenario tests is
not a straightforward task. It can easily happen that too many
tests are defined such that there is no single set of parameters
θ that satisfies all tests. To account for this imperfect specifica-
tion of tests by a human designer, we use the sigmoid function
σ to model the success likelihood of a test T = (S, f) with a
logistic model as

P (T |θ) = σ(f(Mθ(S))). (4)

This implies that the likelihood for the test success increases
logistically with the value of the test feature f .

Assuming independence of scenario test outcomes, the log
likelihood for the whole test database T is given as

logP (T |θ) =
∑

(S,f)∈T

log σ(f(Mθ(S))). (5)

This corresponds to the maximum entropy inverse reinforce-
ment learning likelihood in Eq. (3) with a cost of J (τS) =
− log σ(f(τS)) for a trajectory τS =Mθ(S). This is reason-
able since the negative log likelihood of the logistic distribu-
tion is monotonically decreasing but almost zero for x > 0, as
Fig. 2 illustrates. In other words, it is beneficial for the cost if
the test features become larger until they are positive. But there
is no benefit for further exceeding the test feature with values
f(τS) � 0. If the cost just corresponded to the test features
itself, this could lead to some test features not being fulfilled
but others exceeding the test threshold and thus compensating
the failing tests, as illustrated in the orange curve in Fig. 2. In
contrast, using the log likelihood of the logistic model does
not incentivize gaining an unnecessary large margin to the
scenario test boundary.

2) Adaptive Test Weighting: It is possible that the global
optimum of the posterior distribution does not satisfy all
scenario tests, even though there is a set of parameters θ
that satisfies all scenario tests. For instance, the scenario test
features f , which are the unnormalized logits of the logistic
model, could be on vastly different orders of magnitude, such
that the overall log likelihood logP (T |θ) of the scenario tests



T is larger if one test is satisfied by a greater margin while
other tests fail. To resolve this issue, we use weighted scenario
tests T = (S, f, w) with weights w > 0 that are initialized uni-
formly and tuned adaptively: In each iteration of the Markov-
Chain Monte Carlo method described in Section IV-B4, we
increase the weights of all scenario tests that fail by setting
w ← δ · w with δ > 1. Then all test weights are normalized
such that

∑
T w = 1. Those weights are used to optimize the

weighted log likelihood

logP (T |θ) =
∑

(S,f,w)∈T

w · log σ(f(Mθ(S))). (6)

Thus, the cost for failing a scenario test that is currently failing
is increased compared to already successful tests.

3) Learning from Tests and Demonstrations: It is also
possible to specify a posterior respecting a set of tests T and
human demonstrations D. We assume that the tests are defined
independently of the collection of demonstrations such that the
posterior is given by P (θ|T ,D) ∝ P (T |θ)P (D|θ)P (θ). The
likelihood of the demonstrations is given by the principle of a
maximum entropy trajectory distribution according to Eq. (3).
Care needs to be taken to ensure that the scenario tests capture
the same target behavior as the demonstrations. Otherwise, the
modes of the test likelihood and demonstration likelihood will
not align, resulting in a bad optimization problem, for instance,
if all demonstrations respect a specific maximum velocity, but
the scenario tests require a higher velocity to pass one test.

4) Maximizing the Posterior Likelihood: We use Markov-
Chain Monte Carlo (MCMC) methods in a form of policy
walk [25] to maximize the posterior likelihood: By sampling
the motion planner parameters θ from the posterior distribution
P (θ|T ), we are implicitly sampling in policy space. The sam-
pled motion planner is used to recompute the test likelihood.
In this work, we employ an adaptive Metropolis-Hastings
algorithm to obtain samples from the posterior [26] which,
combined with simulated annealing, converge in probability
to the mode of the posterior distribution [27]. Simulated an-
nealing uses a temperature ρ to narrow the distribution which
is decreased in each iteration. Pseudocode of the algorithm is
provided in Algorithm 1.

C. Motion Planning Algorithms for TDIRL

So far our treatment was agnostic to the type of motion
planning algorithm. The presented principles can be used with
any planning algorithm Mθ with tunable parameters θ. The
agents’s trajectory τS = Mθ(S) for a given scenario S and
parameters θ is the result of repeatedly computing the next
control input u and applying it to the system for one time step.
Depending on the planner, computing the next control input
could require sampling trajectories, solving an optimization
problem, or querying a reinforcement learning policy that
was re-trained with the parameters θ. In our experiments we
focus on motion planning for automated vehicles using optimal
control approaches as described in Section III-A. The unknown
parameters θ can include the weights of the cost function

Algorithm 1 Pseudocode of TDIRL

Require: Scenario tests T , initial parameters θ0
Require: δ > 1, ρ > 0, σ2 > 0, γ < 1
θ ← θ0 . Parameters
wi ← 1 for i = 1, . . . ,m . Test weights
z ← logP (T |θ) . Log likelihood Eq. (6)
while not all tests pass do

V ← (θσ)2 . Variance of proposal dist.
θ̃ ←WV ( · |θ) . Sample from proposal dist.
z̃ ← logP (T |θ̃) . Log likelihood Eq. (6)
pA ← min

(
1, exp

(
z̃−z
ρ

)
· WV (θ|θ̃)
WV (θ̃|θ)

)
. Adaptive Metropolis-Hastings with annealing

if accept with prob. pA then
θ ← θ̃, z ← z̃

end if
wi ← δ · wi for failing tests Ti . Section IV-B2
wi ← wi/

∑
j wj for i = 1, . . . ,m . Normalize

ρ← γ · ρ . Decrease annealing temperature
σ2 ← γ · σ2 . Decrease proposal variance

end while
return θ . Motion planning parameters

features, parameters for computing the cost function features,
and parameters in the constraints g.

V. EXPERIMENT SETUP

A. Automated Driving Environments

We evaluate our TDIRL algorithm in two different car
following environments. The first environment employs sim-
ulated scenarios whereas the second is based on a real-world
driving dataset. The motion planning OC problem formula-
tions for both environments are implemented as described in
Section III-A using the CasADi framework [28].

1) Description of Simulated Car Following Scenarios: In
the simulated scenarios, we consider an ego vehicle following
a leading vehicle on a one-lane road. The automated vehicle’s
state x = (x, v, a) consists of the longitudinal position x,
velocity v, and acceleration a. The system dynamics is given
by a triple integrator with the jerk j as the control input u.
We obtain concrete scenarios by randomly sampling the initial
states x0 of the ego vehicle and the leading vehicle, and the
desired velocity. A smooth and realistic motion for the leading
vehicle is generated by sampling its snap profile (derivative of
jerk).

The employed cost function is a weighted sum of features,
which are functions of the state and control input. The features
are listed in Table I and described in more detail in the
following and the weights are the parameters θ ∈ R4.

The safety distance feature quadratically penalizes if the
distance d to the leading vehicle is smaller than the safety
distance dsafe but does not penalize if it is larger than the
safety distance. This is achieved by using the softplus rectifier
function ϕ(x) = log(1 + exp(x)) as a smooth approximation



Feature Simulated car following INTERACTION dataset

Safety distance (ϕ(dsafe − d))2 (ϕ(d′safe − d))2

Desired velocity (exp(v − vdes)− 1)2 (v − vlead)
2

Acceleration a2 a2

Jerk j2 j2

Velocity - vmax − v

Table I: Cost function features for both environments.

of max(0, x). We use the responsibility-sensitive safety (RSS)
model [29] to compute the safety distance dsafe based on the
current scene.

Deviations from the desired velocity vdes are penalized by
the desired velocity feature. However, exceeding the desired
velocity is penalized to a greater extent than driving slower
than the desired velocity. Furthermore, acceleration and jerk
are penalized quadratically.

2) Description of INTERACTION Dataset Scenarios: The
INTERACTION dataset is a collection of real-world driving
data recorded with drones in different traffic situations [30].
For generating concrete scenarios, we restrict ourselves to car
following situations in the location CHN_Merging_ZS of
the dataset. In each scenario, one of the recorded vehicles
is considered as the main vehicle. Its leading vehicle is
determined from the recording and its motion is obtained from
the dataset.

We consider only the longitudinal motion of the vehicles
along their recorded path. Since the dataset does not contain
jerk measurements, we model the system as a double inte-
grator with the acceleration a as the control input u and the
longitudinal position x and velocity v as the state x = (x, v).

The cost function features are similar to the ones used in
the simulated car following scenario as listed in Table I. One
difference is the computation of the safety distance d′safe. Since
human drivers often violate the RSS safety distance [31], we
treat the safety distance as an additional parameter that is tuned
by our method to fulfill safety-related tests.

For real-world data, we do not know the desired velocity
of the ego vehicle. For this reason, we adopt a different
approach to encode the target velocity in the objective. There
is one term that penalizes deviations from the leading vehicle’s
velocity vlead since in dense traffic, the ego vehicle’s velocity
is often close to the leading vehicle’s velocity. To encourage
the vehicle to close the gap to the leading vehicle, there is
a linear velocity cost term that penalizes driving slower than
the maximum velocity vmax and rewards driving faster. Again,
acceleration and jerk are penalized quadratically.

The parameters θ ∈ R6 consist of weights for the five terms
in the cost function, in the same order as the features in Table I,
plus the safety distance parameter d′safe as the last component.
This illustrates that the proposed method can also be used
to tune parameters that are not weights of the cost function
features but other parameters of the OC problem.

Parameter values Test success rate

θ1 · 103 θ2 θ3 θ4 Training Validation

Initial 5.15 5.41 1.71 1.96 47.5% 55%
Learned 4.67 2.15 0.152 0.2 100% 100%

Table II: Parameter values and scenario test success rates
for the simulated car following scenario on the training and
validation datasets.

B. MCMC Implementation

Instead of using a prior distribution, we incorporate knowl-
edge on the parameters into the proposal distributionWV (·|θ)
with mean θ and variance V to get high quality samples.
The parameters are sampled independently of each other, so
we describe only the marginal proposal distributions. Since
we know that all parameters are positive, we use a Weibull
proposal distribution, which has a nonnegative support. We use
a scale parameter λ = 1 and shape parameter of k = 3.602,
which results in almost zero skewness. To sample more
relevant parameters, we shift this proposal distribution such
that its mean is the latest sample θ that was accepted by
the Metropolis-Hastings criterion. To converge to the mode
of the posterior distribution, the standard deviation of the
proposal distribution is exponentially decreased with each
iteration. Furthermore, we scale the standard deviation with
θ, to account for different parameters potentially requiring
different orders of magnitude.

VI. RESULTS AND EVALUATION

A. Evaluation of Simulated Car Following Scenarios

To evaluate our method in the simulated environment,
we manually tuned the cost function parameters to θ =
(0.01, 4, 0.403, 0.009), which reflected reasonable driving be-
havior. We use these solely to generate a set of 40 expert
trajectories, which will be used to determine an initial guess θ0
for the cost function parameters and to automatically generate
scenario tests for the quantitative evaluation in Section VI-A2.
The expert trajectories are split evenly into a training and a
validation dataset of scenarios.

We determine the initial guess θ0 by computing the feature
expectations µ of the expert trajectories from the training
dataset and setting θ0 as the component-wise inverse of µ,
making all cost function terms contribute to the total cost
within the same order of magnitude.

1) Qualitative Evaluation: To illustrate the immense flex-
ibility for creating scenario tests, we define two tests for
the simulated car following scenario, based on observing the
resulting behavior of the motion planning algorithm with the
initial parameters θ0.

The first test is in a scenario where the safety distance
according to RSS is initially violated, illustrated in Fig. 3a. We
formulate the scenario test that the safety distance violation
is resolved within the first half of the 8 s trajectory up to
a tolerance of 5m. This gives the vehicle sufficient time to



(a) Scenario with inital parameters.

(b) Scenario with learned parameters. The test feature encodes that
the distance must not be within the red region, which is the RSS
safety distance with a 5m tolerance.

Figure 3: Results for the first test scenario where the RSS
safety distance is initially heavily violated.

brake to achieve the desired safety distance. With the vehicle
distance d(x,xlead) and the RSS safety distance dRSS(x,x

lead)
to the leading vehicle, this test can be formulated with the test
feature

f(τ) = min
t∈[4 s,8 s]

d(xt,x
lead
t )− dRSS(xt,x

lead
t ) + 5m.

The second test is in a scenario where the leading vehicle
is far enough away, but the initial velocity of the ego vehicle
is below its target velocity. For this scenario we formulate
the test that at the end of the trajectory, the ego vehicle’s
velocity is within 1 m

s of its target velocity. Note that the first
test could be easily fulfilled by braking hard. However, the
second test requires the ego vehicle to accelerate. To fulfill
both tests, the cost function needs to balance the trade-off
between maintaining a safe distance and reaching the target
velocity, even though the tests are in two different scenarios.

After optimizing the parameters with only those two tests,
the resulting weights fulfill both tests. Fig. 3b displays the
resulting trajectory in the first test scenario using the learned
parameters. The red region illustrates the test feature: The
distance between the vehicles in the second half of the
trajectory must not be within the red region, which is the RSS
safety distance minus a 5m tolerance margin.

To show the generalization capabilities of the learned pa-
rameters, Figs. 4 and 5 illustrate the effect of using the
parameters trained on only these two scenario tests in a third
validation scenario. Compared to the behavior with the initial
parameters, Fig. 4b shows that the safety distance violation is
resolved much earlier by braking. At the same time, Fig. 5b
demonstrates that the vehicle also reaches a final velocity that
is closer to its desired velocity.

(a) Result with inital parameters.

(b) Result with learned parameters.

Figure 4: Safety distance on a validation scenario. With the
learned parameters, the RSS safety distance is fulfilled already
after 3 s instead of after 5 s as with the initial parameters
(highlighted in purple).

(a) Result with inital parameters.

(b) Result with learned parameters.

Figure 5: Velocity on a validation scenario. The final velocity
error is smaller with the learned parameters (highlighted in
purple).

2) Quantitative Evaluation: To quantitatively evaluate the
performance of our method, we generate scenario tests auto-
matically based on the simulated expert trajectories. For every
scenario in the expert trajectories we create one distance-based
test and one velocity-based test. For the distance-based test,
the final distance to the leading vehicle must be at least as
large as the expert trajectory’s final distance, up to a tolerance
of 1m. For the velocity-based test, the final velocity must at
least match the expert trajectory’s final velocity, up to a tol-



erance of 0.5 m
s . The allowances are added to account for the

randomness of the Markov-Chain Monte Carlo method which
renders it infeasible to exactly find the expert’s equilibrium
point between keeping a safe distance and reaching the target
velocity.

The parameters θ learned using these scenrio tests are
shown in Table II, alongside the scenario test success rate
on the training dataset as well as the validation dataset. The
test success rate is computed as the fraction of tests that
are fulfilled, independent of the test weights or modeled
likelihood. For comparison, we also show the scenario test
success rate on both datasets using the initial parameters θ0,
which are determined as described in Section VI-A.

B. Evaluation of INTERACTION Dataset Scenarios

It is challenging to evaluate the performance of our method
on real data: If we manually specify scenario tests, it would
be easy to achieve a high test success rate by specifying
the scenario tests for the validation set accordingly. At the
same time, failures on manually specified scenario tests from
the validation set do not necessarily imply that the method
is unsuitable. Instead, it could be the result of impossible
requirements in the validation set.

As a consequence, we chose to automatically generate tests
based on the human-driven trajectories in the dataset, similar
to Section VI-A2. However, since every human driver has a
different driving style, it is unlikely that there exists one set
of parameters θ such that all generated tests are fulfilled. For
this reason, we investigate how well parameters learned from
only a very small number of scenario tests generalize to tests
on 15 validation scenarios from the INTERACTION dataset.
We only use three scenarios from the dataset and generate
distance- and velocity-based tests in the same way as described
previously in Section VI-A2.

With the parameters θ learned from these in total only six
tests, the tests used for training are all satisfied. Additionally,
24 of the 30 automatically generated scenario tests from
the validation dataset are fulfilled, resulting in a validation
success rate of 80%. Due to the automatic test generation it
is unlikely that there exists a parameter set that satisfies all
tests. In summary, the automatically generated scenario tests
defined on only three training scenarios generalize well to the
automatically generated tests in the validation scenarios from
the real driving dataset.

VII. CONCLUSIONS AND FUTURE WORK

This work presents Test-Driven Inverse Reinforcement
Learning, a method for learning motion planning parameters
from scenario-based testing specifications. Our method uses
the testing outcomes as feedback in a Bayesian inference
problem and learns parameters such that the resulting behavior
passes the scenario tests. TDIRL is not limited to the cost
function parameters, but also applicable to other parameters of
the motion planning algorithm, such as constraint thresholds.

Our evaluation illustrates that TDIRL can be used to learn
cost functions from only few test specifications. It is able to

generalize well to scenario tests from an unseen validation
dataset. Furthermore, it can be used to impose additional safety
on real driving data instead of simply imitating the human
driver’s behavior, as we have shown by defining safety distance
tests on the INTERACTION dataset scenarios.

With the growing popularity of scenario-based testing for
validation of automated driving functionality, the necessary
infrastructure and pipeline are often already available. This
allows to integrate the procedure into a continuous integration
development pipeline to tune the motion planning parameters
without additional human input. Whenever a change in the mo-
tion planning algorithm results in a failure of a scenario test,
the method can automatically update the algorithm parameters
until all tests are passed again. Future work will explore the
method with a trajectory planning algorithm developed for a
real test vehicle.
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