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Abstract

Atrial fibrillation is the most prevalent cardiac arrhythmia in the adult population associated
with an elevated risk of cardiovascular events and sudden cardiac death. In 2020, more than
50 million people worldwide were estimated to have atrial fibrillation, and its prevalence is
expected to double by 2060. Despite significant progress in diagnosing and treating atrial
fibrillation, current therapies often fail to prevent adverse outcomes due to their one-size-fits-
all approach, ignoring patient variability. Patient-specific atrial computer models, also known
as atrial digital twins, have emerged to improve our understanding of the pathophysiology of
atrial fibrillation and to address the growing public health burden posed by atrial fibrillation
today. The vision of atrial digital twins is to serve as a tool supporting the evaluation of
different treatment strategies and selecting the most appropriate one to address the specific
needs of each patient.

Personalization refers to the process of incorporating patient data, such as anatomical,
functional, and substrate-related, into model parameters that reflect specific physical proper-
ties of the cardiac cells, tissue, or heart of the individual. Currently, there is no consensus on
the methodology for constructing a digital twin to inform atrial fibrillation treatment. Some
studies have developed methodologies using only non-invasive pre-procedural data, while
others have employed invasive procedural data or a combination of both. The overall effect
of the selected input data on the behavior of the patient-specific model is currently unknown.

In this thesis, arrhythmia vulnerability and tachycardia cycle length were quantified
to assess the impact of different input data on the behavior of the patient-specific model.
Arrhythmia vulnerability was defined as the ratio of the number of inducing points divided
by the number of stimulation points on the atrial surface. Tachycardia cycle length was
measured at the stimulation location and defined as the average time between peaks of
the dV/dt of induced reentries. In particular, the effect of three types of clinical data was
evaluated: 1) anatomical personalization by comparing monoatrial versus biatrial models, 2)
functional personalization by comparing models with personalized refractory period versus
non-personalized models, and 3) functional and substrate personalization by comparing
pre-procedural versus procedural data. Finally, a larger cohort of 22 patient-specific biatrial
computer models was developed to train a machine learning classifier model for predicting
arrhythmia vulnerability and evaluating the importance of personalized features on the
prediction.
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The results of the first project showed that incorporating the right atrium increased the
mean vulnerability of the left atrium and revealed new induction points per patient model,
which did not induce reentry in the monoatrial model. The right atrium had a substrate
state-dependent effect on arrhythmia dynamics.

In the second project, the non-personalized scenario with homogeneous effective refrac-
tory period distribution was the least vulnerable to arrhythmia, while the regional personalized
scenario was the most vulnerable. Heterogeneities in the form of regions promote unidirec-
tional blocks, thereby increasing vulnerability, while the homogeneous scenario makes it
less likely to induce reentry even with a shorter effective refractory period. Incorporating
the effective refractory period as a continuous distribution slightly decreased vulnerability
compared to the state-of-the-art heterogeneous non-personalized scenario. Increased dis-
persion of the effective refractory period in personalized scenarios has a greater effect on
reentry dynamics than on the absolute value of vulnerability. Tachycardia cycle length of the
personalized vs the non-personalized scenarios was significantly slower.

In the third project, total activation times and patterns were markedly different between
invasive and non-invasive modalities. Arrhythmia vulnerability was more influenced by the
extent of fibrosis than by the activation patterns. Finally, the machine learning classifier
achieved a moderate accuracy for the prediction of arrhythmia vulnerability. Fibrosis density
measured at 10 mm from the stimulation points and global conduction velocity were the
features showing the highest impact on point inducibility prediction.

The results presented in this thesis provide evidence that the selection of input data affects
the behavior of the patient-specific computer model. The right atrium plays an important
role in the maintenance and induction of arrhythmia, thus the use of biatrial models seems
advisable. Personalization of the effective refractory period has a greater effect on reentry
dynamics than on the absolute value of vulnerability. Substrate-related personalization was
the feature with the highest influence on vulnerability, therefore, further detection methods
are needed to ensure its correct representation. The machine learning classifier may offer a
fast alternative reducing the need of expensive computations of virtual pacing protocols, thus
aiding the transition to clinical applications. The use of patient-specific models with highly
detailed anatomy, function, and substrate may improve the development of tools for therapy
planning for atrial fibrillation.



Zusammenfassung

Vorhofflimmern ist die verbreitetste Herzrhythmusstörung unter Erwachsenen und geht mit
einem erhöhten Risiko kardiovaskulärer Krankheiten und plötzlichem Herztod einher. Im
Jahr 2020 hatten schätzungsweise mehr als 50 Millionen Personen weltweit Vorhofflimmern
und es wird erwartet, dass sich seine Prävalenz bis 2060 verdoppeln wird. Trotz beachtlicher
Fortschritte bezüglich Diagnose und Behandlung von Vorhofflimmern bleiben therapeutische
Ansätze unzureichend, was mit dem One-Size-Fits-All-Ansatz erklärt werden kann, welcher
die Variabilität von Patient*innen nicht berücksichtigt. In dem Zusammenhang sind pa-
tient*innenspezifische Computermodelle des Vorhofs, auch Digitale Zwillinge genannt,
nützlich, um das Verständnis der Pathophysiologie des Vorhofflimmerns zu verbessern und
um sich der dadurch immer größer werdenden Belastung der Gesundheitssysteme zu wid-
men. Das Ziel atrialer Digitaler Zwillinge ist es, unterschiedliche Behandlungsstrategien zu
evaluieren und die für die Patient*innen passendste zu bestimmen.

Personalisierung bedeutet, Patient*innendaten, beispielsweise anatomische, funktionelle
und substratspezifische, in Modellparameter zu integrieren, um die physikalischen Eigen-
schaften der Herzzellen, des Herzgewebes oder des gesamten Herzens der Patient*innen
widerzuspiegeln. Aktuell herrscht bezüglich der Methodik, Digitale Zwillinge zu konstruieren,
um die Behandlung von Vorhofflimmern zu unterstützen, kein Konsens. Es existieren Studien,
in denen ausschließlich nichtinvasive, vorprozedurale Daten genutzt werden, wohingegen
andere invasive, prozedurale Daten oder eine Kombination beider nutzen. Der Gesamteffekt
der Wahl der Input-Daten auf das Verhalten patient*innenspezifischer Modelle ist aktuell
noch nicht bekannt.

In dieser Arbeit wurden die Anfälligkeit für Herzrhythmusstöungen und die Zyklus-
länge von Tachykardien quantifiziert, um ebendieses zu untersuchen. Die Anfälligkeit
wurde als Verhältnis zwischen der Anzahl induzierender und stimulierender Punkte auf
der Vorhofoberläche definiert. Die Zykluslänge einer Tachykardie wurde an der Stimula-
tionsstelle gemessen und als durchschnittliche Zeitraum zwischen den dV/dt-Peaks des
induzierten Reentries definiert. Im Speziellen wurde der Effekt drei unterschiedlicher klinis-
cher Datentypen untersucht: (i) anatomische Personalisierung durch einen Vergleich monoa-
trialer und biatrialer Modelle, (ii) funktionelle Personalisierung durch einen Vergleich von
Modellen mit personalisierter Refraktärzeit und unpersonalisierten Modellen sowie (iii) funk-
tionelle und substratbezogene Personalisierung durch einen Vergleich vorprozedualer und
prozedualer Daten. Schließlich wurde eine größere Kohorte von 22 patient*innenspezifischen
biatrialen Computermodellen entwickelt, um ein maschinelles Lernklassifizierungsmodell
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zur Vorhersage der Anfälligkeit für Arrhythmien zu trainieren und die Bedeutung personal-
isierter Merkmale für die Vorhersage zu bewerten.

Die Ergebnisse dieser Arbeit zeigen, dass die Wahl der Input-Daten das Verhalten der pa-
tient*innenspezifischen Computermodelle beeinflusst. Der rechte Vorhof spielt eine wichtige
Rolle bei der Induzierung und Aufrechterhaltung von Arrhythmien, weshalb der Gebrauch
biatrialer Modelle empfehlenswert erscheint. Die Personalisierung der effektiven Refrak-
tärzeit hat einen größeren Einfluss auf die Reentry-Dynamik als auf den Gesamtwert der
Anfälligkeit. Die substratspezifische Personalisierung hatte den größten Einfluss auf die
Anfälligkeit, weshalb weitere Methoden gebraucht werden, um seine korrekte Repräsen-
tierung zu gewährleisten. Der maschinelle Lernklassifikator kann eine schnelle Alternative
darstellen, die den Bedarf an teuren Berechnungen von virtuellen Schrittmacherprotokollen
reduziert und so den Übergang zu klinischen Anwendungen erleichtert. Der Gebrauch
patient*innenspezifischer Modelle mit hochaufgelöster Anatomie, Funktion und Substrat
kann die Entwicklung von Therapieplanungsmethoden für Vorhofflimmern verbessern.



Resumen

La fibrilación auricular es la arritmia cardíaca mas prevalente en la población adulta, asociada
a un elevado riesgo de eventos cardiovasculares y muerte súbita cardiaca. Se estima que en
2020 más de 50 millones de personas en todo el mundo padecían fibrilación auricular, y se
prevé que la prevalencia de esta enfermedad se duplique para el año 2060. A pesar de los
notables avances en el diagnóstico y el tratamiento de la fibrilación auricular, los enfoques
terapéuticos actuales siguen siendo insuficientes para prevenir los resultados adversos debido
a que cuentan con un enfoque estandarizado que ignora la variabilidad de los pacientes. Los
modelos computacionales personalizados del corazón, también conocidos como gemelos
digitales cardiacos, han surgido para mejorar nuestra comprensión de la fisiopatología de
la fibrilación auricular y abordar la creciente carga para la salud pública que supone esta
enfermedad. La visión de los gemelos digitales es servir como herramienta para ayudar a
evaluar diferentes estrategias de tratamiento de la enfermedad y seleccionar la más adecuada
que aborde las necesidades específicas de cada paciente.

La personalización es el proceso de incorporación de los datos clínicos del paciente, ya
sean anatómicos, funcionales, o relacionados con el sustrato cardíaco, mediante parámetros
en el modelo que reflejen propiedades físicas de las células cardiacas, el tejido o el corazón
del paciente. Actualmente no existe un consenso en cuanto a la metodología a seguir para
construir un gemelo digital que informe sobre el tratamiento de la fibrilación auricular.
Estudios previos han realizado gemelos digitales utilizando exclusivamente datos clínicos
no invasivos obtenidos previos al procedimiento, mientras que otros han empleado datos
clínicos invasivos obtenidos al momento del procedimiento o una combinación de ambos
tipos de datos clínicos. Actualmente se desconoce el efecto global que los datos de entrada
seleccionados tienen sobre el comportamiento del modelo personalizado del paciente.

En esta tesis, se calculó la vulnerabilidad arrítmica y la duración del ciclo de taquicardia
con el fin de evaluar el impacto de los distintos datos de entrada en el comportamiento del
modelo específico del paciente. La vulnerabilidad arrítmica se definió como la relación entre
el número de puntos inductores dividido entre el número total de puntos de estimulación en
la superficie auricular. La duración del ciclo de taquicardia se cuantificó midiendo el tiempo
entre picos de dV/dt de la reentrada inducida. En particular, se evaluó el efecto de tres
tipos de datos clínicos: 1) la personalización anatómica comparando modelos monoatriales
frente a biatriales, 2) personalización funcional comparando modelos con periodo refractario
personalizado frente a modelos no personalizados, y 3) personalización funcional y del
sustrato comparando datos previos al procedimiento frente a datos obtenidos durante el
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procedimiento. Por último, se creó una cohorte de 22 modelos biatriales específicos de
pacientes para entrenar un modelo de aprendizaje automático para predicir la vulnerabilidad
arrítmica y para evaluar la importancia de los parámetros personalizados en la predicción de
la inducibilidad.

Los resultados mostraron que la incorporación de la aurícula derecha aumentó la vul-
nerabilidad media de la aurícula izquierda. Al incorporar la aurícula derecha se detectaron
nuevos puntos de inducción por modelo de paciente que no inducían reentrada en el modelo
monoauricular. La aurícula derecha tuvo un efecto sobre la dinámica de la arritmia que
depende del nivel de remodelado. El escenario no personalizado con distribución homogénea
del periodo refractario efectivo fue el menos vulnerable a arritmia, mientras que el escenario
regional personalizado fue el más vulnerable. Las heterogeneidades en forma de regiones
favorecen los bloqueos unidireccionales, aumentando así la vulnerabilidad, mientras que
el escenario homogéneo hace menos probable la inducción de reentrada incluso con un
periodo refractario efectivo más corto. La incorporación del periodo refractario efectivo
como distribución continua disminuyó ligeramente la vulnerabilidad en comparación con el
escenario heterogéneo no personalizado de última generación. El aumento de la dispersión
del periodo refractario efectivo en los escenarios personalizados tiene un mayor efecto sobre
la dinámica de la reentrada que sobre el valor absoluto de la vulnerabilidad. La duración
del ciclo de taquicardia de los escenarios personalizados frente a los no personalizados fue
significativamente más lenta. Los tiempos y patrones de activación total fueron notablemente
diferentes entre las modalidades invasiva y no invasiva. La vulnerabilidad arrítmica estuvo
más influida por la extensión de la fibrosis que por los patrones de activación. Por último, el
clasificador de aprendizaje automático alcanzó una precisión moderada para la predicción
de la vulnerabilidad arrítmica. La densidad de fibrosis medida a 10 mm de distancia de los
puntos de estimulación y la velocidad de conducción global fueron las características que
tuvieron el mayor impacto en la predicción de la inducibilidad.

Los resultados presentados en esta tesis aportan pruebas de que la selección de los datos
de entrada afecta al comportamiento del modelo computacional específico del paciente. La
aurícula derecha tiene un papel importante en el mantenimiento e inducción de arritmias, lo
que sugiere el uso de modelos biatriales. La personalización del periodo refractario efectivo
tiene un mayor efecto sobre la dinámica de las arritmias que sobre el valor absoluto de la
vulnerabilidad. La personalización relacionada con el sustrato fue la característica con mayor
influencia en la vulnerabilidad. Debido a las diferencias que existen en los métodos actuales
para la detection de fibrosis, es aconsejable el estudio de métodos de detección más robustos
para garantizar su correcta representación en los modelos computacionales. El clasificador
de aprendizaje automático puede ser una alternativa rápida para reducir la necesidad de
cálculos costosos de los protocolos de estimulación virtuales, ayudando así a la transición de
los modelos computacionales a las aplicaciones clínicas. El uso de modelos específicos de
paciente con anatomía, función y sustrato altamente detallados puede mejorar el desarrollo
de herramientas para la planificación de la terapia de la fibrilación auricular.
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“We are not going in circles, we are going upwards. The path is a spiral;
we have already climbed many steps.”

– Hermann Hesse, Siddhartha
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Chapter 1
Introduction

1.1 Motivation

Atrial fibrillation (AF) is a highly prevalent cardiac arrhythmia characterized by irregular and
rapid electrical activity within the atria [1]. In 1876, the German clinician Carl W. Nothnagel
was among the first to describe pulse irregularity, referred to as delirium cordis [2]. In
1909, the British cardiologist Thomas Lewis described the relationship between this pulse
irregularity and AF, referring to this rhythm disorder as “an extremely common condition” [3].
Since then, many clinicians and researchers have sought to define the complex interplay of
pathological mechanisms involved in AF. The intricate nature of AF mechanisms spanning
multiple time and space scales, from molecular interactions to whole-heart dynamics, requires
the development of advanced tools to improve our understanding of AF [4]. Nearly 150 years
later, advanced tools such as patient-specific computer models, known as cardiac digital
twins, have emerged to address the growing public health burden posed by AF today by
enhancing our comprehension of AF pathophysiology, improving early diagnosis, predicting
disease trajectory, and tailoring treatment selection [5, 6].

In the year 2020, it was estimated that over 50 million people worldwide suffered from
AF [7], and its prevalence is projected to double by the year 2060 [8]. AF is associated with
a two-fold higher risk of mortality, with women exhibiting a higher risk of death compared
to men [9, 10]. AF has been correlated to an elevated risk of stroke, dementia, chronic
renal disease, peripheral artery disease, heart failure, myocardial infarction, and sudden
cardiac death [1, 7]. AF often remains asymptomatic in its initial stages, and its diagnosis
typically occurs in a late state when symptoms emerge and lead to hemodynamic instability
and subsequent health complications [11]. Given all these adverse outcomes associated with
AF, early detection and implementation of effective management strategies is crucial for
addressing this growing global health concern.

Despite notable advancements in the diagnosis and treatment of AF, current therapeutic
approaches are insufficient in preventing these negative outcomes [12]. The failure of
current therapeutic approaches for the management of AF may be attributed to the one-
size-fits-all approach, which disregards patient variability [13]. In this context, precision

1



2 Chapter 1. Introduction

medicine aims to deliver personalized treatments tailored to the patient’s unique needs [14].
With the advent of precision medicine, patient-specific computer models of the atria, are
enhancing our understanding of intricate interactions during AF and have already been used
to identify ablation targets [15, 16], tailor ablation strategies [17], and predict recurrence
in AF patients [18, 19]. Indeed, these advancements in patient-specific computer models
of the atria offer promising prospects for improving patient outcomes through personalized
medicine [20].

Currently, there is no consensus regarding the methodology for constructing digital
twins to inform AF treatment. Particularly, the effect of the selected input data on the
model behavior is unknown. Some studies have developed methodologies utilizing only
pre-procedural data, e.g. including anatomy and substrate derived from late gadolinium
enhancement magnetic resonance imaging (LGE-MRI) [15, 19, 21]. In this context, substrate
refers to an area of atrial tissue with pathological characteristics leading to the initiation
and/or maintenance of AF. The primary advantage of building a patient-specific model using
pre-procedural data is the ability to generate the model prior the arrival of the patient in
the electrophysiology lab, enabling computationally expensive simulations to be conducted
beforehand. However, a key limitation is the lack of personalization of the electrophysiology
of the patient-specific model, relying instead on population-based data to parameterize the
model. Furthermore, discrepancy exists between the spatial distribution of fibrosis informed
by LGE-MRI and low voltage areas (LVA), potentially influencing the behaviour of the
patient-specific model. Determining which data is crucial for constructing a patient-specific
atrial computer model and its impact on the model behaviour remains uncertain. The next
chapter introduces the concepts of cardiac digital twins and personalization.

1.2 Cardiac Digital Twins

A cardiac digital twin, or patient-specific cardiac model, is a virtual representation of the
physical heart of a patient which integrates clinical data and uses mathematical equations
to describe the relationship between function and anatomy in the heart [14, 22]. The vision
of the cardiac digital twin encompasses the synergy of four components: personalization,
mechanistic modeling, statistical modeling, and clinical applications (Figure 1.1) [13, 23].
Creating a digital twin is known as twinning. During the twinning process, personalized
clinical data derived from the patient, and non-personalized data derived from clinical
trials, rule-based observations or experimental data, are incorporated into the model. The
integration of non-personalized data, also referred to as population-based data, enables the
estimation of model parameters that are unavailable due to limited access to patient-specific
clinical data [24].

Personalized and non-personalized data play essential roles in the twinning process. For
instance, Figure 1.3 depicts an example of the creation of a patient-specific model using
both personalized and non-personalized data. The personalized atrial anatomy derived from
MRI is used together with non-personalized rule-based anatomical definitions to account for
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regional heterogeneity in the atria. Substrate spatial distribution is obtained from LGE-MRI
and the local activation times (LAT) are derived from electro-anatomical map (EAM).

<<<<<<

§ Risk stratification
§ Tailored treatment
§ Recurrence prediction 
§ Device implant

§ Machine learning
§ Statistical shape models
§ Gaussian process 

emulators

Digital 
Twin

§ Anatomy
§ Activation
§ Refractoriness
§ Substrate and scar

§ Biophysics principles
§ Calibration
§ Validation

Figure 1.1: The vision of the cardiac digital twin for cardiac electrophysiology applications. The mainfour components of cardiac digital twins include personalization, clinical application, statistical andmechanistic modeling. Inspired by [13, 23].

Personalization refers to the process of translating patient data into model parameters
that reflect specific physical properties of the cardiac cells, tissue, or organ of the individual,
for example, cellular action potential duration, myocyte arrangement, tissue conductivity,
tissue stiffness, myocardium wall thickness, and gross cardiac anatomy [25]. Personalization
can be further classified into two main streams: anatomical and functional (Figure 1.2).
Anatomical personalization refers to generating a geometrical representation of the patient’s
heart anatomy derived from imaging data modalities such as MRI or computed tomog-
raphy (CT) scanners. Functional personalization involves integrating physiological and
pathophysiological data into the model about the cardiac electrical activation, dispersion
of refractoriness, mechanical contraction, substrate distribution, etc. Examples of data
used for the personalization of cardiac function include conduction velocity (CV) maps,
LAT, effective refractory period (ERP) measurements, pressure-volume loops, among oth-
ers [17, 26, 27]. Personalization of the arrhythmogenic substrate is an important part of the
functional personalization process and involves incorporating information about the spatial
distribution and characteristics of fibrosis and scar tissue. Techniques such as LGE-MRI and
the detection of LVA (voltage<0.5 mV) are commonly used to derive information about the
state of the substrate [17, 28].
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The generation and implementation of cardiac digital twins in clinical practice pose sig-
nificant challenges [12]. Figure 1.4 summarizes current challenges encountered towards the
implementation of digital-twin-based therapies in cardiac electrophysiology. Data availability
is one of the principal challenges that modellers face during the twinning process. Patient-
specific data can be derived from clinical measurements or be directly measured, for instance,
during tissue biopsies [25]. Data ranging from cellular to organ scale is required to param-
eterize patient-specific computer models for cardiac electrophysiology applications [13].
Model calibration involves the adjustment of model parameters in order to optimize the
agreement between observed data and simulation output [29]. Some studies have suggested
employing Gaussian process emulators to address the computationally demanding calibration
step, elucidating the influence of specific parameters on the model output [30, 31]. This
approach enables focusing on key model parameters, thereby reducing computational costs
by calibrating only the necessary parameters.

Clinically available electrocardiogram (ECG) recordings have already been used to
personalize global CV of patient-specific cardiac digital twins [33, 34]. However, ECG data
provide limited information regarding activation and repolarization patterns within the heart.
For instance, to personalize local CV changes of a patient-specific model, cardiac tissue con-
ductivity values are required in three directions orthogonal to the cardiac fibers (longitudinal,
transversal, and normal) [35]. However, measuring tissue conductivity is already technically
challenging in vivo as it requires measurements with small electrode spacing (500 µm) and
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Figure 1.3: Creation of a patient-specific atrial model (digital twin) for the evaluation of the selected
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the solution of an inverse method, which is generally ill-posed [36]. An alternative method
for inferring patient-specific CV involves obtaining clinically recorded LAT maps, whereby
the intra and extracellular tissue conductivities can be iteratively parameterized to match
activation sequences, resulting in the desired CV [17, 37].

The scarcity of electrophysiological data available before the procedure limits functional
personalization of cardiac digital twins. As a consequence, some studies opt for generaliza-
tion assumptions instead, particularly in terms of CV, and generate patient-specific models
based on population-based electrophysiological data [14, 15, 21, 38]. The personalization of
other electrophysiological parameters such as the ERP has scarcely been studied [27]. An
alternative for the personalization of cardiac electrophysiology is the use of non-invasive
electrocardiographic imaging ECGI data [39, 40], although main concerns arise regarding
ECGI limited spatial accuracy [41]. Currently, there is no consensus within the modeling
community regarding whether electrophysiological personalization should be performed and
to what extent it influences the behaviour of the patient-specific model.

Another challenge concerns the acquisition of patient-specific clinical data, such as the
spatial distribution and characteristics of fibrosis and atrial wall thickness, from current
imaging modalities. Atrial fibrosis characterized by LGE-MRI has the limitation that atrial
wall thickness is often thinner (1-4 mm) [42] than the spatial resolution of clinically available
MRI systems (voxel size: 1.25 mm× 1.25 mm× 2.5 mm) [43]. Therefore, assessing patterns
of fibrosis distribution based on LGE-MRI data remains questionable. In addition, the
identification of low voltage areas (LVA) using endocardial catheters during sinus rhythm
has also been used to inform fibrosis distribution of patient-specific models [17]. The
main limitation of this technique is the standardization of a cutoff value of 0.5 mV which
might differ for each individual patient or even among different atrial regions [28]. Another
limitation is that endocardial electrograms used for the assessment of LVA do not provide
information about fibrosis on the epicardium. Furthermore, the acquisition patient-specific
atrial myocyte fiber orientation is currently unavailable due to thin atrial wall thickness
and limited spatial resolution of MRI [44, 45]. In fact, the majority of current patient-



6 Chapter 1. Introduction

Technical

Data 
availability

Integration 
in workflow

Clinical 
Validation

• Limited in vivo spatial resolution
• Inability to map fiber orientations

• Imperfect model personalization
• Intra-inter patient variability *
• No dynamic monitoring

• Time consuming segmentations
• Expensive simulation times *

• Black box behavior of ML models *
• Regulatory approval
• Lack of reproducibility *

Standardization and 
reproducibility

Detailed mechanistic 
models

Increased availability of 
large data sets and 

explainable ML models

Advanced experimental 
methods and imaging

Current challenges Future directions

Digital Twin Based 
Treatment 

Figure 1.4: Current challenges and future directions in the implementation of digital-twin based treat-
ments. This thesis seeks to contribute to tackling the challenges denoted with *. Inspired by [12, 13].

specific models do not personalize fiber orientations; instead, fiber orientations are modelled
using rule-based definitions or extracted from statistical atlases and mapped using atrial and
ventricular coordinate systems [46–49].

Two main gaps exist for the integration of cardiac digital-twin based technologies into
routine clinical practice. Firstly, the transition between basic science to clinical validation,
and secondly, the transition between clinical validation to clinical implementation [13].
Future technological advances will likely facilitate the acquisition of clinical data required
for personalizing patient-specific computer models, thereby aiding in bridging the first
gap. For example, the development of advanced experimental methodologies to mimic the
response of physiological systems in vitro, as human induced pluripotent stem cells [50]
or the advent of high resolution MRI, will further aid in the generation of more accurate
and comprehensive cardiac digital twins [12]. Randomized controlled trials (RCT) are also
essential to prove the validity of such digital twin based tools and to aid in their clinical
implementation [13]. Finally, efforts should be directed towards integrating digital twin
technologies into clinical workflows. This integration should prioritize the development of
faster, more accurate and reproducible patient-specific models to enhance their efficacy and
reliability in clinical practice [12]. In the following section, an overview of patient-specific
computer models in the field of AF is presented.
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1.3 State of the Art

This section presents an overview of patient-specific atrial computer models developed in
recent years for informing AF treatment. The section is divided into three decades from
2000s, 2010s and 2020s, highlighting key advancements in modeling approaches. The main
contributions are summarized in Figure 1.5.
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Figure 1.5: Timeline showing scientific breakthroughs leading to the development and implementa-
tion of patient-specific computer models of the atria in the treatment of atrial fibrillation. A) Fromhuman atrial myocyte models [51], to the use of biophysical models with personalized substrate to-gether with machine learning to predict atrial fibrillation recurrence [19] and up to the first randomizedcontrolled trials with computationally guided ablation [20, 52]. B) Number of publications on digitaltwins as in [13]. AF: atrial fibrillation, ML: machine learning, RCT: randomized controlled trial. Figureswere taken with permission from the publishers.
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1.3.1 Earlier Atrial Computer Models: 2000s

The formulation of the first mathematical models of the human atrial myocyte by Courte-
manche et al. [51] and Nygren et al. [53] in 1998, paved the way for developing the first
computational models of the atria [54]. Atrial myocyte models have enabled the study
of AF mechanisms [54–56], ionic channel mutations [57], the effects of drugs on cellular
dynamics [58], the simulation of cellular processes such as inflammation and ischemia [59],
and to conduct pre-clinical pharmacological studies [24].

SVC

RA

PM
LAA LPV

LA

BB
SVC

CT

IVCRPV

Figure 1.6: First 3D biophysical model of the human atria with main anatomical structures [60]. Leftatrium: LA, LA: right atrium, CT:crista terminalis, PM: pectinate muscles, BB: Bachmann’s bundle, SVC:superior vena cava, IVC: inferior vena cava, LPV: left pulmonary veins, RPV: right pulmonary veins.Reproduced from [60] with permission from the publisher.

The first 3D biophysical model of the human atria (Figure 1.6) was developed in 2000
by Harrild et al. [60]. The 3D model incorporated the main anatomical structures such as the
left atrium (LA), the right atrium (RA), the crista terminalis (CT), pectinate muscles (PM),
the fossa ovalis, and the Bachmann’s bundle (BB). The electrical propagation in the atria
was simulated using the monodomain model and the finite volume method. Conductivities
were assigned to simulate realistic local conduction velocities in the bulk tissue. In 2001,
Vigmond et al. described atrial anatomical features that promote reentry in a reconstructed
representation of a canine biatrial model [61]. In 2005, Deng et al. studied surgical and
ablation lesions using a simplified single-layer biophysical model of the human atria derived
from MRI slices [62]. Lesions were modeled by setting the conductivity tensor to zero. In
their investigation, they were able to document the mechanisms of ablation lines stopping
fibrillation and incomplete lesion formation promoting atrial flutter. In 2006, Seemann et al.
developed an anatomically detailed human biatrial model based on the visible female dataset
incorporating heterogeneous regional electrophysiology and the sinoatrial node (SAN) [63].
Computer models at that time were also used to elucidate mechanisms of AF, such as the the
role of triggers in the pulmonary veins in the generation of dynamic spatial dispersion of
repolarization in the atria [64].
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Figure 1.7: Study of ablation lesions in a biatrial model [62]. Ablation lesions are depicted in black.Gap stands for incomplete ablation lesions. LA: left atrium, RA: right atrium, SVC: superior vena cava.Reproduced from [62] with permission from the publisher.
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1.3.2 Modern Atrial Computer Models: 2010s

The increased availability of cardiac imaging modalities such as MRI and CT in the last
decade has facilitated the reconstruction of anatomically detailed patient-specific atrial
models on a regular basis. Over the last decade, more advanced models have been used
to investigate mechanisms underlying AF, including endo-epi dissociation [65], the role
of the autonomic nervous system in trigger activity [66], and the impact of fibrosis spatial
distribution on arrhythmia drivers [21, 39, 67]. Equally significant at the end of that decade
was the publication of the first studies guiding ablation based on patient-specific computer
simulations, demonstrating their potential as clinical decision-support tools [15, 68].

Applied factors on maximum conductance

Region gCaL gto gKr gKs gK1 gKur

RA / PM 1.00 1.00 1.00 1.00 1.00 1.00CT 1.67 1.00 1.00 1.00 1.00 1.00BB 1.67 1.00 1.00 1.00 1.00 1.00TVR 0.67 1.53 1.53 1.00 1.00 1.00MVR 0.67 1.53 2.44 1.00 1.00 1.00RAA 1.06 0.68 1.00 1.00 1.00 1.00LAA 1.06 0.68 1.60 1.00 1.00 1.00LA 1.00 1.00 1.60 1.00 1.00 1.00PV 0.75 0.75 2.40 1.87 0.67 1.00
* 0.45 0.35 1.00 2.00 2.00 0.50

Figure 1.9: Patient-specific modeling of atrial anatomy and electrophysiology with fiber orientation
and anatomical annotations as described in [69]. Top: Volumetric biatrial model with regional distribu-tion of physiological action potentials shown in blue and with AF-induced remodeling in red. Bottom:Factors applied relative to the original Courtemanche et al. [51] to model heterogeneities in atrial elec-trophysiology of the human atria. Highlighted factors differ from normal myocardium. RA: right atrium,BB: Bachmann’s bundle, CT: crista terminalis, TVR: tricuspid valve ring, MVR: mitral valve ring, RAA:right atrial appendage, LAA: left atrial appendage, PV: pulmonary vein.* Denotes applied factors inAF-induced remodeling as described in [70]. Reproduced from [69] under CC BY-NC-ND 3.0 license.
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A paradigm shift in atrial modeling was the emergence of the first bilayer models. These
bilayer models enabled faster calculations of atrial electrophysiology by incorporating atrial
wall thickness and transmural diffusion through linear elements between layers, eliminating
the need of tetrahedrons as in commonly used volumetric meshes [65, 71]. Model personal-
ization also advanced in this decade through the utilization of both invasive and non-invasive
clinical data to fine-tune electrophysiology parameters [27, 33, 37, 72]. Moreover, multiple
studies presented methodologies for defining atrial electrophysiological heterogeneities (Fig-
ure 1.9) [73], for inferring fiber orientations based on anatomical rules [35, 74], and based
on the solution of Laplace problems [33, 75].

Another milestone of the decade was the creation of the Comprehensive in Vitro Proar-
rhythmia Assay (CIPA) initiative, a collaboration involving industry, the academic com-
munity, and regulatory bodies in the United States, Europe, Canada, and Japan for the
assessment of the proarrhythmic effect of new drugs entering the market [76], which is
relevant for the design of new pharmacological treatments for AF [12]. The concept of in
silico clinical trials emerged in this decade, paving the way to the design of trials utiliz-
ing “individualized computer simulations for the development or regulatory evaluation of
a medicinal product, medical device, or medical interventions” [77]. Finally, during this
decade machine learning (ML) models together with atrial modeling and simulation were
used to assess fibrotic substrate characteristics on reentrant driver perpetuation [21] and to
predict localization of atrial ectopic foci [78].

1.3.3 Current Atrial Computer Models: 2020s

The beginning of this decade was marked by the COVID-19 pandemic. Throughout the three
years of the pandemic, ML models demonstrated their usefulness as clinical decision-support
tools for predicting the progression of the coronavirus disease, thereby assisting in patient
prioritization and optimizing the utilization of in-hospital resources [79]. Applications of
ML models together with atrial computational modeling include the prediction of arrhythmia
recurrence after pulmonary vein isolation (PVI) [19], the evaluation of AF ablation tech-
niques [80], the identification of substrate characteristics of post-ablation lesions promoting
reentry anchoring [81], and the discrimination of driver locations based on ECG data [82].
The use of explainable methods holds potential to address the black box behaviour of ML
models [80, 81]. Regarding model personalization, physics-informed neural networks have
also been used for inferring fiber orientations and atrial activation from LAT maps [83, 84].

Recently, two major trends have been distinguished in the field of cardiac modeling:
the first involves the creation of patient-specific models (digital twins) by incorporating
information from an individual patient, while the other trend involves generating synthetic
models (digital chimeras) derived from observations of the studied population [23]. The
development of publicly available methodologies and data has promoted the creation of
populations of both digital twins and chimeras. These methodologies include statistical
shape models [85, 86], human atrial and ventricular fiber atlas [87, 88], pipelines for model
generation [17, 34, 46, 89], and model personalization [84, 90–92]. In terms of data avail-
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ability, significant efforts have been directed towards sharing resources including simulated
data [93–95], and simulation-ready meshes [30, 96, 97].

In 2021, the first prospective RCT was published involving 170 patients comparing
additional computationally guided ablation with PVI alone [20]. The results of this study
suggest that the computationally guided ablation group had reduced recurrence to AF. Two
additional RCTs using atrial modeling and simulation are currently recruiting patients and are
estimated to be completed by 2025. The ReCETT-AF study, aims to define patient-specific
AF mechanisms in a cohort of 115 patients [98]. The second one is a follow-up study based
on the work presented by [15] called OPTIMA, which aims to compare PVI with PVI plus
computationally guided ablation [52] in a cohort of 200 AF patients. For the interested
reader, the following Table 1.1 compiles recent reviews related to the field of patient-specific
computational modeling of atrial electrophysiology.
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Table 1.1: State of the art reviews in the field of computational modeling of atrial electrophysiology.

Author Year Title Reference

Johnson et al. 2017 Enabling Precision Cardiology Through Multiscale Biol-ogy and Systems Medicine [99]
Gray et al. 2018 Patient-Specific Cardiovascular Computational Model-ing: Diversity of Personalization and Challenges [25]
Vagos et al. 2018 Computational Modeling of Electrophysiology andPharmacotherapy of Atrial Fibrillation: Recent Ad-vances and Future Challenges

[58]

Grandi et al. 2019 Computational modeling: what does it tell us aboutatrial fibrillation therapy? [100]
Niederer et al. 2019 Computational Models in Cardiology [24]
Corral-Acero et al. 2020 The ’Digital Twin’ to enable the vision of precision car-diology. [23]
Gilbert et al. 2020 Artificial Intelligence in Cardiac ImagingWith StatisticalAtlases of Cardiac Anatomy [101]
Nguyen et al. 2020 An Introductory Overview of Image-Based Com-putational Modeling in Personalized CardiovascularMedicine

[102]

Heijman et al. 2021 Computational Models of Atrial Fibrillation: Achieve-ments, Challenges, and Perspectives for Improving Clin-ical Care.
[12]

Kwon et al. 2021 Computational Modeling of Atrial Fibrillation [103]
Pagani et al. 2021 Data Integration for the Numerical Simulation of Car-diac Electrophysiology [104]
Trayanova et al. 2021 Machine Learning in Arrhythmia and Electrophysiology [105]
Wu et al. 2021 Current progress of computational modeling for guid-ing clinical atrial fibrillation ablation [106]
Loewe et al. 2022 Cardiac Digital Twin Modeling [107]
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1.4 Definition of Arrhythmia Vulnerability

The term vulnerability is frequently used in the context of cardiac arrhythmias, but its precise
definition is not consistent among studies [32, 91, 113–116]. The Cambridge dictionary
defines vulnerability as “the quality of being easily hurt, influenced, or attacked” [117]. In
the field of cardiac electrophysiology, arrhythmia vulnerability refers to the susceptibility to
develop an abnormal rhythm, and if AF is induced, then it can be termed as AF vulnerability.
AF is marked by rapid and unsynchronized activation, usually diagnosed through a surface
electrocardiogram (ECG) characterized by the absence of distinct repeating P waves, irregular
atrial activations, an arrhythmia cycle length <200 ms and irregular RR intervals [118]. In
general, studies quantifying arrhythmia vulnerability involve a pacing protocol delivered at
specific locations in the atria aiming to induce an arrhythmia.

Multiple concepts have been associated with AF vulnerability, including: atrial vul-
nerability [115], AF inducibility [21, 119, 120], arrhythmogenic propensity [15] and AF
risk [121]. Table 1.2 provides an overview of various definitions found in the literature
regarding AF vulnerability and related concepts. In this thesis, arrhythmia vulnerability is
defined as the ratio between the number of inducing points divided by the total number of
stimulation points (Equation 1.1). Figure 1.10 illustrates an example of the definition of
arrhythmia vulnerability.

Vulnerability= Number of inducing points
Number of stimulating points (1.1)

Inducing points

Non inducing points Vulnerability=  15  =  0.54 
28
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Figure 1.10: Example of the definition of arrhythmia vulnerability in a biatrial model. Arrhythmiavulnerability is defined as the ratio between the number of inducing points (red) divided by the totalnumber of stimulation points on the atrial surface based on the pacing protocol as described in [32].
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Table 1.2: Review of the definition of atrial fibrillation vulnerability and associated concepts across in
vivo, in silico, animal and human models.

Concept Metric Methodology Model

AF vulnerability Percentage of sites atwhich AF was inducedlasting >1 s
Single premature stimuli pacingprotocol at 8 sites in both atria canine in

vivo [113]

Presence of AF or RAFdefined as two or moresuccessive activations ina 2 h ECG trace lasting>60 s

Single premature stimulation dur-ing SR and at 600, 500, and400ms in the lateral or anteriorfree wall of the right atrium

ovine in
vivo [115]

Binary induction of AFlastingmore than 5 cycles Single premature stimulation orincremental pacing from 600-300ms at the RAA or distal CS
human in
vivo [122]

Presence of APD alter-nans defined as ±5%variation of mean APD
Rapid pacing protocol with 74beats at PCL ranging from 500-300ms, with 50 ms intervals

human in
vivo [114]

Number of subjects withat least one AF episodelasting >10min
Rapid pacing with 1200bpm last-ing 10 s at 1 site in the LA and 1in the RA, tested 10 times site

porcine in
vivo [116]

Binary induction of AFlasting >30 s Three pacing protocols deliveredat the LA posterior wall human in
vivo [91]

Percentage of pointsinducing reentry lasting>1 s
Single premature stimuli pacingprotocol at different sites sepa-rated by 1 cm in both atria

human in
silico [32]

AF inducibility Percentage of sites induc-ing AF lasting >1 s Single premature stimuli at theepicardial right and left midatrialwalls at total 24 sites
leporine in
vivo [119]

Number of models inwhich AF was inducedand lasting >2.5 s
Rapid pacing protocol with 14stimuli with PCL ranging from300-150ms in 25 ms at 30 sitesin both atria

human in
silico [21]

Proportion of cases in-ducing reentry lasting>2 s
Single premature stimuli pacingprotocol from each of the fourpulmonary veins with 5 stimuli at160 ms with 8 coupling intervalsranging from 200-500ms

human in
silico [120]

Arrhythmogenic
propensity

Number of reentrantdrivers per patient lasting>5 s
Rapid pacing protocol with 12stimuli with PCL ranging from300-150ms at 40 sites in bothatria

human in
silico [15]

AF risk Clinical variables fromelectronic health records Development of a multivariateAF riskmodel to predict the prob-ability of developing AF within 5years

human in
vivo [121]

AF: atrial fibrillation, APD90: action potential duration at 90% of depolarization, bpm: beats per minute, LA: left
atrium, PCL: pacing cycle length, RA: right atrium, RAF: rapid atrial firing, SR: sinus rhythm
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Arrhythmia vulnerability was assessed by the pacing at the end of the effective refractory
period (PEERP) protocol [32]. Stimulation points were obtained by merging mesh points
with an absolute tolerance of 2 cm, therefore, the number of stimulation points is dependent
on the atrial size [123]. The PEERP pacing protocol delivers at each stimulation point a first
stimulus, namely S1, with a fixed pacing cycle length (PCL), followed by an extra stimulus
S2 at the end of the ERP. The coupling interval is modified until the S2 stimulus induces an
atrial activation. Arrhythmia induction detection is a two step process. First, atrial activation
is defined if the transmembrane voltage is >-50 mV in at least one node located inside a ring
with a radius of 4-6 mm surrounding the stimulation point. Second, a point is considered
to be inducing arrhythmia if an atrial activation is detected 50 ms after the initial detection
and if the arrhythmia is maintained for at least 1 s. The protocol in each stimulation point is
stopped either when the maximum number of stimuli was applied, usually set to 4, or when
an arrhythmia was detected.
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1.5 Aim of the Thesis

The aim of this thesis is to evaluate the effect of incorporating different types of clinical data
for the personalization of patient-specific atrial models on arrhythmia vulnerability. The
investigation presented in this thesis was guided by the main research question shown in Fig-
ure 1.11. In particular, the effect of three types of clinical data was evaluated: personalization
of the atrial anatomy, personalization of the effective refractory period, and personalization
of local activation times and substrate.

Biatrial Monoatrial

Personalized Non-personalized

Pre-proceduralProcedural

Personalization of atrial anatomy, 
by comparing

biatrial vs monoatrial models

Personalization of the refractory period,
by comparing 

personalized vs non-personalized models

Personalization of activation and substrate, 
by comparing 

procedural vs pre-procedural data

What is the impact of the type of input data used to personalize
patient-specific atrial computer models on arrhythmia vulnerability?

Research 
question

Research 
projects

1

2

3

Figure 1.11: Overview of the thesis structure. Main research question and thesis projects.

To answer the main research question, the following key research questions are addressed:

1. Which role does the RA play in the development of AF in silico?
2. What is the impact of the RA in the development of arrhythmia under different

substrate remodeling states?
3. To what extent does incorporating personalized ERP measurements influence

arrhythmia vulnerability of the patient-specific model?
4. How does arrhythmia vulnerability change when both the ERP and substrate

are personalized?
5. What is the effect of the interplay between the personalization of activation

and substrate on arrhythmia vulnerability?
6. Can ML models be used to predict arrhythmia vulnerability in silico?
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Additionally, within the scope of this thesis, the following tools were developed:

• A method to generate synthetic distributions of fibrosis
• A pipeline to personalize ERP based on clinical measurements
• A standard nomenclature definition to consistently divide the atria into 15

segments
• A virtual reality tool to visualize electrophysiology simulations
• A publicly available cohort of 7 simulation ready meshes with personalized

ERP
• A publicly available cohort of 8 simulation ready meshes with and without

the incorporation of the RA
• A cohort of 22 biatrial simulation ready meshes with fibrosis informed by

LGE-MRI

1.6 Structure of the Thesis

This thesis is organized into ten chapters as described below:

Chapter 1 outlines the motivation of the thesis, introduces the concepts of cardiac digital
twins and personalization, reviews the state of the art in atrial computer models, provides an
overview of the definition of arrhythmia vulnerability, and defines the aims of the thesis.

Part I introduces the medical and mathematical fundamentals relevant to this work.

• Chapter 2 offers a detailed overview of the embryology and anatomy of the left and
right atrium, followed by a description of atrial electrophysiology. The chapter con-
cludes by presenting key concepts related to atrial fibrillation diagnosis and treatment.

• Chapter 3 covers the mathematical concepts related to cardiac computational model-
ing, spanning from cellular and tissue electrophysiology to forward cardiac electrocar-
diography. The chapter also presents a description of the methods used to tune CV
based on clinical data. Finally, the chapter introduces key concepts related to machine
learning and model explainability.

Part II presents the effects of different input data used for the personalization of atrial digital
models and the effect on arrhythmia vulnerability.

• Chapter 4 evaluates the effect of incorporating the right atrium by comparing left
atrial models in monoatrial and biatrial configurations.
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• Chapter 5 describes the effect of including personalized ERP measurements into
patient-specific atrial models and compares different personalization approaches.

• Chapter 6 presents the comparison between simulation of P-waves using invasive and
non-invasive local activation times.

• Chapter 7 presents a random forest ML classifier used for the prediction of arrhythmia
vulnerability, with evaluation of feature importance.

Part III presents the clinical tools developed within the scope of the collaborative work
performed for the PersonalizeAF project.

• Chapter 8 presents the 15-segment nomenclature definition to consistently divide
atrial geometries.

• Chapter 9 provides a description of the virtual reality tool utilized to visualize simu-
lations and identify ablation targets.

Part IV offers the final remarks of this work.

• Chapter 10 summarizes the principal findings, conclusions, and main implications of
the thesis, providing insights into future research directions.





PART I

FUNDAMENTALS





Chapter 2
Medical Fundamentals

This chapter provides an overview of the essential principles of cardiac anatomy, physiol-
ogy and pathophysiology, to put in context the work presented in the following chapters.
The chapter covers key aspects of cardiac anatomy, the electrical conduction system, and
concludes with an overview of cardiac electrophysiology with emphasis placed on the atria.

2.1 Introduction

The heart is a muscular organ in the middle mediastinum responsible for pumping blood
throughout the body and comprises four chambers: the upper chambers are the right atrium
(RA) and left atrium (LA), while the lower chambers are the right ventricle (RV) and
the left ventricle (LV). The interatrial septum separates the right and left atria, while the
interventricular septum separates the right and left ventricles (Figure 2.1).

Figure 2.1: Cardiac anatomy and the main vessels. Blood flow direction is indicated with white arrows.Generated with Biorender under academic license.
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Deoxygenated blood from the systemic circulation reaches the RA through the superior
vena cava (SVC), the inferior vena cava (IVC), and deoxygenated blood from the heart itself
through the coronary sinus (CS). Subsequently, the RA sends the blood to the RV passing
through the tricuspid valve (TV). The right ventricle (RV) ejects blood to the lungs via the
pulmonary artery through the pulmonary valve. The blood is oxygenated in the lungs and
returns to the LA through the pulmonary vein (PVs). The blood passes through the mitral
valve (MV) reaching the LV which will finally eject the blood into the aorta after passing
through the aortic valve.

2.2 Atrial Embryology

Understanding the process of heart formation is essential for comprehending the rationale
behind the description of the atrial anatomy and the concept of atrial regionalization. The
heart begins its formation during the third week of gestation and is derived from the mesoder-
mal tissue layer [124]. By day 18, cellular aggregation results in the formation of bilaterally
paired heart tubes. These tubes fuse at the midline of the ventral embryonic surface, forming
a primitive cardiac tube by day 23 (Figure 2.2).
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Figure 2.2: Cardiogenesis timeline showing primitive structures of the embryonic heart. Adaptedfrom [125] with CC BY 3.0 license.

The formation of the primitive heart involves the development of five dilations: the
truncus arteriosus, the bulbus cordis, the primitive ventricle, the primitive atrium, and the
sinus venosus [126], as shown in Figure 2.2. These dilations correspond to structures in
the mature heart. The truncus arteriosus serves as the foundation for forming the ascending
aorta and pulmonary trunk. The sinus venosus and the primitive atrium become the right and
left atria, while the primitive ventricle becomes the LV, and the bulbus cordis becomes the
trabeculated part of the RV [124]. During the fourth week of gestation, the sinus venosus
collects deoxygenated blood from the right and left sinus horns and directs blood flow into
the primitive atrium [127]. As the blood flow moves mainly towards the right side of the
heart, the left sinus horn shrinks and later becomes the CS.
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The right sinus horn enters into the RA wall through the sinoatrial orifice. Around this
orifice, the right and left venous valves develop alongside a ridge known as the septum
spurium, as shown in Figure 2.3. The left venous valve merges with the septum spurium,
forming the atrial septum. Additionally, the lower section of the right venous valve gives
rise to the valves of the IVC and the CS [127]. The crista terminalis (CT) delineates the
boundary between the trabeculated region of the RA and the smooth-walled region, referred
to as the sinus venarum, originated from the right sinus venosus horn. On the left side, a
single pulmonary vein forms as a projection from the posterior wall of the LA. Afterwards,
the pulmonary vein and its branches are merged into the LA, forming the smooth area of
the LA. In the embryo, the foramen ovale allows blood flow between the right and left atria
by the opening of the fossa ovalis valve. Due to changes in the right-left atrial pressure,
this communication closes two years after birth [128]. However, a patent foramen ovale is
observed in up to 35 % of the adult population [129].

Right venous valve

Sinoatrial orifice

Left venous valve

Septum spurium

Septum 
primum Pulmonary 

veins

Crista 
terminalis

Sinus 
venarum

Superior vena cava

Septum 
secundum Septum primum

Valve of coronary sinus

Valve of 
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Figure 2.3: Formation of the main atrial structures. Left: coronal view of the atria at the fifth week ofgestation. The septum spurium merges with the left venous valve to form the interatrial septum. Right:formation of the smooth wall of the right atrium (sinus venarum) and the crista terminalis. Adaptedfrom [127] with permission from the publisher.

2.3 Atrial Anatomy

To describe the atrial anatomy accurately, it is essential to understand the heart’s position
within the thoracic cavity in the standard anatomical position. The anatomical position of
the body and the cardiac axis are shown in Figure 2.4. The heart is typically located in
the mediastinum, with about one-third located to the right of the longitudinal body axis.
The cardiac axis is oriented from the right shoulder towards the left hypochondrium (upper
left abdominal region) and extends from the cardiac base to the apex, perpendicular to
the atrioventricular valve plane [130]. A frontal chest radiography (Figure 2.5) shows the
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location of the atria within the thoracic cavity. The heart is positioned in the body with
its axis at an oblique angle. The RV is found most anteriorly, while the LV is positioned
posteriorly. The atrial chambers are positioned to the right of their corresponding ventricles,
with the RA located in front of the LA [130, 131].
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Figure 2.4: Anatomical position of the humanbody andheart. Top: The anterior plane (blue) divides thebody into anterior and posterior. The horizontal plane (green) divides the body into cranial and caudalportions, while the sagittal plane (red) divides the body into right and left sides. Bottom: Orientationof the cardiac axis. The heart model was obtained from [132] under CC BY 4.0 license.
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Figure 2.5: Location of the atria within the thoracic cavity. Frontal chest radiography showing struc-tures segmented from computed tomography imaging. The ventricles appear attenuated in green.Adapted from [131] with permission from the publisher.

2.3.1 Right Atrium

The RA has an ellipsoid shape and is located dorsally and cranially to the RV and anteriorly
to the LA [129]. Normal values for the RA measured at the end of the systolic phase range
from 3.4-5.3 cm in the long axis and 2.6-4.4 cm in the short axis [128]. The RA comprises
four components: the venous component, the vestibule, the appendage, and the right aspect
of the interatrial septum [133]. The venous component is derived from the embryological
sinus venarum and corresponds to the region that receives deoxygenated blood from the
SVC, IVC, and the CS. The vestibule is composed of smooth atrial muscle and corresponds
to the region surrounding the TV (Figure 2.6). The RAA normally has a triangular shape and
originates from the embryological primitive atrium. The apex of the RAA lies anterior to the
aortic arch and exhibits a wider neck than the LAA.

The interatrial septum is a complex structure composed of various anatomical features
derived from multiple embryological origins. The true atrial septum is located on the floor
of the fossa ovalis and the infero-anterior rim, as depicted in Figure 2.7. The fossa ovalis
is a round concavity composed of thin fibrous tissue located in the infero-posterior part of
the interatrial septum. The fossa ovalis has a size of 14.1±3.6 mm in the anteroposterior
diameter and 12.1±3.6 mm in the craniocaudal diameter [128]. The floor of the fossa ovalis
derives from the septum primum [128], while the septal border is mainly derived from the
septum secundum [133]. During electrophysiological studies, the true atrial septum is crucial
for safe transseptal puncture access to the LA.
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Figure 2.6: Endocardial view of the lateral wall of the right atrium. Left: Main anatomical featuresof the right atrium. Right: Transillumination showing pectinate muscle arrangement. CT: crista termi-nalis, RAA: right atrial appendage, SLTV: septal leaflet of the tricuspid valve. Modified from [133] withpermission of the publisher.

The crista terminalis (CT) is a muscular band between the RAA and the venous compo-
nent running vertically along the SVC and IVC. The CT has an average length of 51±9 mm
and 5.5 mm thickness [128]. The CT holds electrophysiological significance in typical atrial
flutter, as it can promote conduction block in the transversal direction while enhancing
fast propagation in the longitudinal direction [129]. The CT ramifies to form the pectinate
muscles (PM). Various anatomical variations are observed for the PM which can extend
perpendicularly or obliquely from the CT. The sagittal bundle, or tenia sagittalis, represents
the largest PM, dividing the RAA into anteromedial and posterolateral regions.

The cavotricuspid isthmus (CTI), also known as the RA isthmus, is a quadrilateral-shaped
region within the RA vestibule delimited anteriorly by the septal leaflet of the tricuspid valve
and posteriorly by the Eustachian valve. The Eustachian valve is an embryological remnant
from the right venous valve and sinus septum around the IVC orifice. The CTI is divided
in three regions: paraseptal, central and inferolateral isthmus (Figure 2.8). The Eustachian
ridge is an extension of the Eustachian valve with a length of 25.5±4.1 mm and thickness
of 3.6±1.9 mm [128]. The paraseptal isthmus corresponds to the line defined between the
end of the Eustachian ridge, the CS orifice, and the tricuspid anulus. The central isthmus is
the line in the mid of the Eustachian ridge and the septal leaflet of the TV. The inferolateral
isthmus is the line at the right end of the Eustachian ridge and the right end of the septal
leaflet of the TV [128]. The paraseptal, central, and inferolateral isthmus have mean lengths
of 18.5±4.0 mm, 24.0±4.2 mm, and 29.3±4.9 mm, respectively [128]. The CTI region
holds clinical significance for isthmus-dependent flutter, as reentrant circuits can travel
counter-clockwise around the TV ring. Thus, the CTI can be a target for ablation [128].
Nevertheless, as the right phrenic nerve passes near the inferolateral isthmus, ablating that
region might potentially result in its damage. In addition, paraseptal isthmus ablation may
lead to complete AV block [129].
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Figure 2.7: Diagram of the interatrial septum viewed from the right atrium. SVC: superior vena cava,IVC: inferior vena cava. Adapted from [128] under CC BY 4.0 license.

Figure 2.8: The cavotricuspid isthmus and the Koch’s triangle. CI: central isthmus, CSO: coronary sinusostium, IVC: inferior vena cava, ILI: inferolateral isthmus, KT: Koch’s triangle, PI: paraseptal isthmus.Obtained from [128] under CC BY 4.0.
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The Koch’s triangle, located in the RA vestibule, is an anatomical reference to locate the
AV node [128]. The base corresponds to the paraseptal line of the CTI, while the apex marks
the location where the bundle of His penetrates the septum. The anterior border extends from
the apex to the base, touching the TV ring, whereas the posterior border is situated between
the apex and the left end of the Eustachian ridge (Figure 2.8). The average measurements
for the dimensions of Koch’s triangle are 18.5±4.0 mm for the base, 18.0±3.8 mm for the
anterior edge, and 20.3±4.3 mm for the posterior edge. Additionally, the average height of
the triangle from the apex to the base is 16.0±3.7 mm [128].

The CS drains blood into the RA and its ostium is located at the base of the Koch’s
triangle. The CS ostium has a diameter of 9-15 mm and is usually covered by the Thebesian
valve in up to 85 % of the individuals [128]. The Thebesian valve is derived from the inferior
portion of the right sinus valve. The CS is used as a common entrance to the LA and LV
epicardium during cardiac catheterizations [128]. The inferior vena cava (IVC) has an orifice
of 24±6 mm [129], while the superior vena cava (SVC) has a diameter of 20.1±3.2 mm [128].
The SVC is typically free from anatomical obstacles, making it the preferred access point to
the heart during cardiac electrophysiology studies [128]. A summary of the main anatomical
structures of the RA is presented in Table 2.1.



2.3. Atrial Anatomy 31

Table 2.1: Main anatomical structures of the right atrium, size, origin and their clinical relevance [128,
129].

Size Origin Clinical relevance

CS 9.0-15.0mm (D) Left sinus horn Common access for left ven-tricle catheterization
CT 51.0±9.0mm (L)5.5mm (T) Boundary betweenthe primitive atriumand sinus venarum

Transverse conduction blockin typical atrial flutter

CTI 18.5±4.0mm (PS)24.0±4.2mm (C)29.3±4.9mm (IL) Embryonic folding ofthe heart Reentrant circuits can travelcounter-clockwise aroundthe TV ring
Eustachian valve 5.0mm (D) Right venous valveand sinus septum Covering of the IVC towardsCS can avoid cannulation
Eustachian ridge 25.5±4.1mm (L)3.6±1.9mm (T) Folding of the right si-nus venosus Can promote conductionblock line during typicalflutter
Fossa ovalis 14.1±3.6mm12.1±3.6mm Foramen ovale Patent foramen ovalepresent up to 35% ofthe population
IVC 20.1±3.2mm (D) posterior cardinalveins, subcardinalveins, and supracardi-nal veins

Covering of the IVC towardsCS can avoid cannulation

Koch’s triangle 18.5±4.0mm (B)18.0±3.8mm (A)20.3±4.3 mm (P)
Various AV node found at the apex

RAA ND Primitive atrium Prominent trabeculationspromote reentry and throm-bus formation
SVC 20.1±3.2mm (D) Common cardinalveins Preferred access to the heart
A: anterior border, B: base, C: central isthmus, CS: coronary sinus, CT: crista terminalis, CTI: cavotricuspid isthmus,
D: diameter, IL: inferolateral isthmus, IVC: inferior vena cava, L: length, ND: not determined, P: posterior border, PS:
paraseptal isthmus, RA: right atrium, T: thickness, TV: tricuspid valve
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2.3.2 Left Atrium

The left atrium (LA) is situated centrally within the chest, intersecting the mid-longitudinal
body axis, and positioned posteriorly and to the right of the LV (Figure 2.5). The LA has a
mean anteroposterior diameter of 38.4±4.9 mm and increases up to 74.0 mm in patients with
AF [134]. The LA has four components: the venous component, the vestibule, the appendage,
and the left aspect of the interatrial septum [134]. The venous component corresponds to
the area where the pulmonary vein (PVs) drain oxygenated blood from the lungs. Typically,
four PVs, each with distinct ostia on both sides, are present in 70 % of adults. Nonetheless,
anatomical variations are also observed, as depicted in Figure 2.9.

A B C

D E F

Figure 2.9: Anatomical variants of the pulmonary veins. A: typical, B: short common left trunk, C: longcommon trunk, D: right middle pulmonary vein, E: two right middle pulmonary veins, F: right middleand right upper pulmonary veins. Adapted from [135] with permission of the publisher.

The PV orifices have an ovoidal shape and a diameter between 13.0-15.0 mm, with
the superior veins having larger diameters [134]. The myocardial sleeves of the PVs have
been acknowledged to initiate focal triggering activity [136]. Their distinctive anatomical
characteristics lead to heterogeneous and anisotropic conduction around the PV antra, fa-
cilitating fibrillatory activity. The venoatrial junction is a complex structure marking the
transition from the PVs to the LA, typically exhibiting a gradual transition from smooth
muscle cells from the veins and myocardial cells from the LA chamber. Myocardial sleeves
extend approximately 2.0-3.0 cm from the PVs to the LA [118]. Wall thickness of the LA in
the PV antra varies from 2.0 to 8.0 mm, for the posterior wall and the ridge separating the
left superior PV from the LAA, respectively [118]. The posterior wall of the LA shares the
same embryological origin as the PVs, leading to suggestions that the posterior wall exhibits
similar vulnerability to AF [118].
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The left atrial appendage (LAA) is a lateral protrusion in the LA derived from the left
side of the primitive LA (Figure 2.10). The LAA typically exhibits a narrow neck and
a tubular shape in the lobar region with a length ranging from 16.0-51.0 mm [134]. The
LAA endocardium is highly trabecular due to the presence of thin pectinate muscles with
an average thickness of 1.0 mm (Figure 2.11). The orifice of the LAA is oval-shaped, with
diameters of 17.4±4.0 mm (long axis) and 10.9±4.2 mm (short axis) [134]. The shape of
the LAA varies greatly between individuals. In 2010, Wang et al. proposed four classes to
distinguish between different LAA morphologies, as shown in Figure 2.10 [137]. The left
LAA holds clinical significance, as it has been shown to contribute to thrombus formation
and subsequent stroke [138, 139]. There are discrepancies regarding the most prevalent LAA
morphology in the adult population. Autopsy studies have revealed that the cauliflower shape
was the most common (41 %), followed by chicken wing (37 %), cactus (12 %), and windsock
(10 %) [134]. However, an in-vivo study involving 932 patients showed that chicken wing
was present in 48% of the individuals, followed by cactus in 30 %, windsock in 19 %, and
cauliflower 3 % of the cases [140]. Particularly, the chicken wing, large double lobes, and
cone-shaped morphologies present significant challenges during the implantation of LAA
occlusion devices [139].
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Figure 2.10: Anatomy of the left atrial appendage (LAA). Left: a cross-sectional view of the LAA and itsrelation to other anatomical structures. Right: classification of various LAA morphologies based on thecategories proposed by Wang et al. [137]. Cx: circumflex artery, LSPV: left superior pulmonary vein.Adapted from [139] with permission from the publisher.

The left lateral ridge (LLR), also referred to as the Coumadin ridge, separates the orifices
between the LAA and the left PV. The LLR formed by the invagination of the atrial wall,
occurring during the formation of the left-sided cardinal veins [141]. The LLR is present
in 59.5 % of adults, has a mean length of 22.4±5.1 mm and a diameter of 5 mm[142, 143].
The LLR extends up to lateral aspect of the Bachmann’s bundle (BB), enclosing the vein
or ligament of Marshall within its fold. The average distance between the left superior PV
and the LAA is 3.8±1.1 mm, whereas the average distance between the left inferior PV and
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the LAA is 5.8±2.0 mm [143]. The LLR bears clinical significance due to its heterogeneous
composition, which promotes anatomical reentries and ectopic activity [133, 143]. The mitral
isthmus is located between the left inferior PV and the mitral valve ring in the posteroinferior
region of the lateral wall (Figure 2.11). The mitral isthmus has a length of 28.8±7.0 mm and
can reach up to 51 mm in some individuals [133, 134]. The thickness of the mitral isthmus
varies across its different sections, ranging from 1.9±1.0 mm to 3.0±1.5 mm, which can
present challenges during ablation procedures for perimitral flutter [133, 134]. The primary
anatomical structures of the LA are summarized in Table 2.2.

Mitral 
Isthmus

LAA

Mitral Isthmus

LAA Isthmus

Figure 2.11: Location of the left lateral ridge and mitral isthmus from an endocardial view from cadav-
eric specimens. Left: posteroinferor region of the lateral wall of the left atrium showing the locationof the mitral isthmus line (red), the left atrial appendage isthmus line (green) and the distance betweenthe left inferior pulmonary vein ostium and the left atrial appendage (3). Right: location of the lateralridge and its relationship to other anatomical structures. LAA: left atrial appendage, LLR: left lateralridge, LIPV: left inferior pulmonary vein, MV: mitral valve. Adapted from [133, 144] with permissionfrom the publisher.

2.3.3 Atrial Muscle Architecture

The left atrium (LA) wall is comprised of multiple layers of myocardial bundles, resulting
in greater thickness compared to the right atrium (RA) [133]. Anatomical dissections have
revealed predominantly circular bundles around the openings of the PVs, the atrioventricular
valves, and the LAA [118]. The Bachmann’s bundle (BB), also known as antero-superior
interatrial bundle, is the major interatrial muscle connection, consisting of parallel atrial
myocardial strands. The BB originates anteriorly to the right side of the SVC orifice,
passes across the interatrial groove, and runs along the anterior wall of the LA reaching
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the LAA, where it splits into two branches. The upper branch extends along the left lateral
ridge and the lower branch extends into the LA vestibule merging into the muscles of the
lateral and inferoposterior LA wall [118]. In addition, two bundles originate from the
septum: the septoatrial bundle and the septopulmonary bundle, as shown in Figure 2.12. The
septoatrial bundle mostly covers the LA body, the LAA, and the vestibule. In contrast, the
septopulmonary bundle largely encircles the pulmonary veins in the posterior wall.

2

1. Superior vena cava, 2. Right atrial appendage, 3. Ascending aorta, 4. Pulmonary artery, 5. Left atrial
appendage, 6. Pectinate muscles, 7. Antero-superior interatrial bundle, 8. Posterior-superior interatrial bundle, 9.
Septopulmonary bundle, 10. Precaval bundle, 11. Septoatrial bundle, 13. Circumferential band, 14. Coronary sinus
and musculature, 15. Marshall vein and bundle, 16. Intercaval bundle, 17. Postero-inferior interatrial bundle, 18.
Terminal bundle

3

5

Figure 2.12: Atrial muscle architecture. Left: main atrial muscular bundles from an anterior view. Right:main atrial muscular bundles from a posterior view. 1. Superior vena cava, 2. Right atrial appendage, 3.Ascending aorta, 4. Pulmonary artery, 5. Left atrial appendage, 6. Pectinatemuscles, 7. Antero-superiorinteratrial bundle, 8. Posterior-superior interatrial bundle, 9. Septopulmonary bundle, 10. Precavalbundle, 11. Septoatrial bundle, 13. Circumferential band, 14. Coronary sinus and musculature, 15.Marshall vein and bundle, 16. Intercaval bundle, 17. Postero-inferior interatrial bundle, 18. Terminalbundle. Obtained from [118] under CC NC-ND license.
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Table 2.2: Main anatomical structures of the left atrium, size, origin and their clinical relevance [134].

Size Origin Clinical relevance

PV
13.0-15.0mm (D)2.0-3.0 cm (L)2.0-8.0 mm (T) Single embryonic pul-monary vein outgrow-ing from the posteriorwall of LA

Triggering ectopic activity inAF

LAA
16.0-51.0mm (D)10.9±4.2mm (D)2.0-8.0 mm (T) Primitive atrium Prominent trabeculationspromote reentry and throm-bus formation

Mitral isthmus 28.8±7.0mm(L)1.9-3.0mm (T) Boundary betweenthe primitive atriumand mitral valve
Macro-reentrant activity inperimitral atrial flutter

Lateral ridge 22.4±5.1mm (L)5.0mm(D) Embryonic folding ofthe heart during theformation of the left-sided cardinal veins

Triggering ectopic activity inAF

AF: atrial fibrillation, D: diameter, L: length, LA: left atrium, LAA: left atrial appendage, T: thickness
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2.3.4 Cardiac Conduction System

The cardiac conduction system (CCS) is responsible for initiating and transmitting electrical
pulses in the heart, allowing for a rhythmic and coordinated muscular contraction. This
coordinated contraction is necessary to effectively pump blood throughout the body. The
sinoatrial node (SAN) is the natural pacemaker of the heart. The SAN consists of highly
specialized electrical cells located sub-endocardially at the junction of the SVC and the RAA,
and extending down to the inferolateral aspect of the CT, as shown in Figure 2.13 [145]. The
SAN has multiple exit pathways that spread towards the interatrial septum and the sulcus
terminalis [128].

Sinoatrial node

Atrioventricular node

Left Purkinje network

Right Purkinje network

His Bundle

Figure 2.13: Components of the cardiac conduction system determined by micro-computed tomog-
raphy. SAN: sinoatrial node, CT: crista terminalis. Modified from [145] under CC-BY license.

SAN cells undergo spontaneous depolarization and generate electrical impulses that
travel across the atrial myocardium. The depolarization wave reaches the LA primarly
through the Bachmann bundle (BB), extending across the interatrial sulcus close to the SVC
and the LAA [146]. The depolarization wave travels through the atrial myocardium and
reaches the atrioventricular node (AVN), which is located in the proximity of the triangle
of Koch. In a healthy heart, the AVN is the only electrical conduction pathway between
the atria and ventricles. The conduction is intentionally slowed down when arriving at the
AVN to allow the atria to empty and the ventricles to fill with blood. In the ventricles, the
CCS consists of the bundle of His, the right and left bundle network, and the Purkinje fibers.
Purkinje fibers establish connections with the ventricular working myocardium, facilitating
coordinated ventricular contraction.
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2.4 Atrial Electrophysiology

Cardiac myocytes have ion channels embedded in their cellular membrane that regulate the
flow of ions between the intracellular and extracellular space (Figure 2.14a). The action
potential (AP) describes the changes in transmembrane voltage over time of a cardiac
myocyte. Figure 2.14b shows a schematic representation of the atrial AP and the major
ionic currents. In the resting state, atrial cells typically have a transmembrane voltage
around -80 mV [147]. During the phase 0, rapid depolarization occurs once the cell reaches
the threshold of -50 mV due to the inward sodium current (INa) activation, resulting in an
upstroke potential up to +30 mV. The time of the maximum change during phase 0, also
referred to as dV/dtmax, is typically used as an estimate of the cellular activation time [148].
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Figure 2.14: Atrial cardiomyocyte and its action potential. A) Diagram of an atrial myocyte depictingthe membrane, sarcoplastic reticulum (SR) and myofilaments. B) Action potential (AP) with phasesindicated by numbers. Inward currents are shown in pink while outward currents in blue. C) Differencesbetween ventricular and atrial myocytes. D)Major ionic currents related to the AP. Calcium: Ca+2, CSQ:calsequestrin, ERP: effective refractory period, Na+: sodium, SERCA2a: SR calcium (Ca+2)-ATPase2a,PLB: SERCA2a-inhibitor phospholamban, RyR2: Ryanodine receptor, JPH2: Junctophilin-2, FKPB12.6:FK506-binding protein 12.6. NCX: sodium (Na+) Ca+2, SLN: sarcolipin, MyBP-C: Myosin bindig proteinC. Adapted from [147, 149, 150] with permission from the publishers.
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The regulation of the intracellular calcium concentration is principally carried out by ion
channels, ATPases (pumps), exchangers, and calcium-binding proteins. Voltage-gated L-type
calcium channels are activated after phase 0, allowing small calcium intake. Intracellular
calcium ions bind and activate the ryanodine receptor 2 (RYR2), causing the release of more
calcium from the sarcoplasmic reticulum (SR). Released calcium ions bind to troponin C,
which allows cross-bridge cycling between actin and myosin filaments, leading to muscular
contraction. The relaxation phase begins when calcium release is stopped and calcium ions
are pumped back into the SR via the sarcoplasmic/endoplasmic reticulum calcium ATPase
2A (SERCA2A) or via the sodium calcium exchanger 1 (NCX1) [151].

Repolarization comprises phases 1-3 of the AP and involves the return of the cell to
its resting state, mainly driven by outward potassium currents. In phase 1, known as rapid
repolarization, the INa is inactivated and the short-lasting transient outward potassium current
(Ito) limits the AP amplitude. A plateau is present during phase 2 mainly caused by inward
calcium currents. Three major potassium currents also contribute to the plateau phase: the
rapidly activating IKr current, the slowly activating IKs, and the ultra-rapidly delayed rectifier
IKur current, the latter being mainly expressed in the atria. Phase 3 exhibits a sharp decline
due to the complete activation of IKs and the inactivation of L-type Ca+2 current (ICaL).
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Figure 2.15: Changes in human atrial action potential duration (APD). A) Relationship between theAPD and the effective refractory period (ERP) in normal cardiomyocytes (black) and with atrial fibrilla-tion (AF)-induced remodeling (red). B) Regional heterogeneity of the action potentials in the atria as in[33].

Refractoriness is an electrophysiological property that characterizes the response of
cardiac tissue to premature stimulation. At the cellular level, the effective refractory period
(ERP) spans from the initial depolarization until excitability is fully restored during phase 3.
The action potential duration at 90 % of repolarization (APD90) serves as an approximation
for quantifying the ERP. Human atrial APD90 at 1 Hz varies from 150 to 500 ms [152]. The
absolute refractory period refers to the time during which no activation can be initiated
regardless of the stimulus intensity. This period of absolute refractoriness is followed by the
relative refractory period. However, due to the recovery of sodium channels at the end of
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phase 3, APs with slow upstrokes can be elicited. The duration of the AP is determined by
three factors: 1) the availability of sodium channels, 2) the equilibrium between depolarizing
and repolarizing currents at the cellular level, and 3) the degree of electrical coupling between
neighboring myocytes at the tissue level [153].The ERP can be measured experimentally and
is defined as the longest coupling interval that fails to generate a capture in the tissue [147].

Atrial cardiomyocytes exhibit unique AP characteristics compared to ventricular car-
diomyocytes. The background inward-rectifier potassium current (IK1) is smaller in the
atria, leading to a less negative resting potential and a more gradual repolarization phase
than in the ventricles (Figure 2.14c). Atrial cardiomyocytes possess two potassium currents:
IKur and the acetylcholine-regulated potassium current (IKACh). Cell to cell proteins called
connexins facilitate coupling between cardiomyocytes. While conexin-43 is mainly present
in the ventricles, atrial cardiomyocytes express also connexin-40, alterations of which have
been associated with AF. Additionally, significant differences exist in the calcium handling
proteins present in the atria and ventricles. The sarcoplasmic reticulum calcium-ATPase2a
protein (SERCA2a) levels are two-fold higher in the atria than in the ventricles, while
SERCA2a-inhibitor phospholamban (PLB) is less abundant. As a consequence, the atria
show decreased contraction and relaxation durations, as well as shorter duration of calcium
transients. These distinctive characteristics may potentially influence responses to atrial
arrhythmias [150].
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2.5 Atrial Fibrillation

Atrial fibrillation (AF) is the most common supraventricular tachyarrhythmia and is associ-
ated with increased morbidity and mortality rates [1, 7]. Over 50 million people worldwide
suffer from AF and its prevalence is projected to double by the year 2060 [8]. AF often
remains asymptomatic in its initial stages, and its diagnosis typically occurs when symptoms
emerge and lead to haemodynamic instability and subsequent health complications [11].
According to the latest guidelines of AF [1], the diagnosis of AF requires documentation of
AF episodes lasting at least 30 s on a surface electrocardiogram (ECG). The following criteria
is used to diagnose AF: absence of distinct repeating P-waves, irregular atrial activations,
arrhythmia cycle length <200 ms and irregular RR intervals (Figure 2.16).

Atrial Fibrillation Sinus Rhythm

Figure 2.16: Criteria for the diagnosis of atrial fibrillation on the body surface electrocardiogram
(ECG) [118]. Representative ECG trace with atrial fibrillation (left) and sinus rhythm (right). The goalof atrial fibrillation catheter ablation (right) is to restore sinus rhythm. Created with Biorender underacademic license.

2.5.1 Classification

The classification of AF can be based on the duration of AF episodes [1, 118] or on the
progression of the disease [7]. Clinical patterns of AF based on episode duration include:
paroxysmal AF, lasting longer than 30 s and terminating spontaneously or with intervention
within 7 days; persistent AF, lasting longer than 7 days but less than 1 year; long-standing
persistent AF, lasting for at least 1 year where rhythm control management is pursued; and
permanent AF, characterized by a joint decision between the clinician and the patient not to
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restore sinus rhythm through treatment. In addition, due to the progressive nature of AF, new
guidelines from the American Heart Association (AHA) propose a classification based on
different stages of the disease rather than episode duration [7]. Table 2.3 shows a comparison
of the classification between both guidelines.

Table 2.3: Atrial fibrillation classification and stages proposed by current clinical guidelines. A) Clas-sification based on episode duration as described in the 2024 EHRA expert consensus statement oncatheter and surgical ablation of atrial fibrillation [118]. B) Stages based on disease progression andtreatment as described in the 2023 AHA guidelines for the diagnosis and management of atrial fib-rillation [7]. AF: atrial fibrillation, AHA: American Heart Association, EHRA: European Heart RhythmAssociation.
A) Classification based on episode duration [118]
Classification Episode duration Termination Considerations

Early paroxysmal > 30 s < 1 day Termination is spontaneous or due tomedical intervention
Paroxysmal > 30 s < 7 days Termination is spontaneous or due tomedical intervention
Early persistent > 7 days < 3 months Termination is spontaneous or due tomedical intervention
Persistent > 7 days < 12 months Termination is spontaneous or due tomedical intervention
Long-standingpersistent > 12 months - Rhythm control is pursued
Permanent - - Therapeutic attitude between clinicianand patient to not pursue sinus rhythm

B) Stages based on disease progression [7]
Stage number Stage name Considerations

1 At risk for AF Presence of risk factors associated withAF
2 Pre-AF Evidence of structural and electrical find-ings predisposing to AF
3A Paroxysmal AF Intermittent AF < 7 days
3B Persistent AF Continuous and sustained AF episode >

7 days
3C Long-standing persistent AF Continuous and sustained AF episode >

12 months
3D Successful AF ablation Freedom from AF after intervention
4 Permanent AF No attempt to restore sinus rhythm
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2.5.2 Pathophysiology

The pathophysiology of AF is driven by a complex interplay of mechanisms that promote
its initiation, maintenance and progression [100]. These mechanisms are originated from
alterations in atrial electrophysiological, structural, mechanical, neurohumoral and metabolic
properties [154]. A common conceptual framework explaining the existence of AF is shown
in Figure 2.17. Remodeling is the hallmark of AF pathogenesis and refers to persistent
changes in the structure and function of the atria [155]. In particular, electrical remodeling
refers to changes in the ion channel properties of atrial cardiomyocytes, while structural
remodeling refers to the presence of fibrosis and atrial dilation [156]. This conceptual
framework also postulates that both a trigger and a vulnerable substrate are necessary for
reentry formation.

Ca+2 handling 
changes

Ion-channel and 
structural changes

EADs
DADs

Substrate Trigger

Atrial 
Fibrillation

Remodelling

Reentry

Ectopic 
activity

Figure 2.17: Conceptual framework representing the role of remodeling in atrial fibrillation. Modifiedfrom [157] with permission from the publisher. Created using Biorender under academic license. Ca+2:calcium ions, EAD: early afterdepolarizations, DAD: delayed afterdepolarization.

Reentry is defined as a “repetitive excitation of tissue by recirculating wavefronts” [47].
Ectopic activity is an abnormality in impulse formation in the atria related to the spontaneous
release of calcium ions from the sarcoplasmic reticulum via leaky ryanodine receptors [118].
The presence of early afterdepolarizations (EAD) due to loss-of-function mutations in
outward potassium channels and gain-of-function mutations in inward calcium channels,
has been associated to ectopic activity [118]. Furthermore, both ectopic activity and reentry
can maintain AF [155]. Abnormal calcium release also increases the presence of delayed
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afterdepolarization (DAD), predisposing the pulmonary vein to ectopic activity. Figure 2.18
illustrates the concepts of EAD and DAD in the cardiac tissue causing ectopic activity.

300 ms 300 ms

0 mV

DAD

EAD

A) B)

Figure 2.18: Basic mechanisms related to ectopic activity in the atria. A) delayed after depolarizations(DAD) are caused by spontaneous diastolic Ca2+ release which promotes the exchange of Na+ into thecell provoking ectopic beats (red). B) early after depolarizations (EAD) occur when the action potentialis prolonged due to K+ inhibition, allowing Ca2+ currents to repolarize the cell. Adapted from [157]with permission from the publisher.

The sleeves of the pulmonary veins (PV) are the most frequent form of AF triggers [136].
Non-PV triggers have also been identified in the crista terminalis (CT), the interatrial septum,
the left atrial (LA) posterior wall, the left atrial appendage (LAA), the ligament of Marshall,
the superior vena cava (SVC), and the coronary sinus (CS); yet their precise role in initiating
AF remains uncertain [118]. The vulnerable substrate refers to the presence of electrical
heterogeneity and conduction abnormalities caused by electrical and structural remodeling
(e.g., presence of fibrosis, adipose tissue infiltration, changes in the extracellular matrix,
inflammation, atrial dilatation, etc.) [1, 118].

2.5.3 Mechanisms

The mechanisms of AF can be classified into classical and novel mechanistic concepts [158].
While most of the classical mechanisms were proposed more than 100 years ago, the most re-
cent ones have been described in the past 20 years [158]. Classical mechanisms of AF consist
of a single ectopic foci, single circuit reentry and multiple wavelet reentry. Novel mecha-
nisms include stable rotors, unstable fibrosis linked rotors and endo-epi dissociation [158].
Figure 2.19 illustrates classical and novel mechanisms of AF.

In 1913, Mines proposed a circuit model (Figure 2.20A) to explain the concept of
anatomical reentry, where a wavefront propagates around a fixed anatomical obstacle [159].
He suggested that a wave would continue to propagate around the circuit if there was
an excitable gap between the wavelength, which is the product of conduction velocity and
refractory period, and the length of the circuit. This model helped to elucidate the relationship
between the refractory phase and the speed of propagation in cardiac tissue. In 1921, the
British cardiologist Sir Thomas Lewis was among the first to propose that single reentry
circuits, also referred to as circus movement, might be the main mechanism of AF [160].
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Figure 2.19: Classical and novel mechanisms of atrial fibrillation. A: classical mechanisms include asingle ectopic foci, single circuit reentry and multiple wavelet reentry. B: novel mechansisms includestable rotors, unstable fibrosis linked rotors and endo-epi dissociation. Inspired by [158]. Created usingBiorender under academic license.

This concept was later challenged and refuted using dog hearts in tachycardia inducing
experiments following aconitine injection in the left or right atrium appendages [161]. They
argued that fibrillation occurred from triggered activity coming from a singular location, in
this case the injection, and that cooling of the region immediately stopped fibrillation.

In 1959, Moe and Abildskov proposed the hypothesis that AF is maintained by multiple
wavelets or multiple reentrant circuits [162]. To test this hypotheses, Moe et al. developed
the first computer model simulating disorganized turbulent activity similar to AF, proposing
that at least 26 wavelets are required to maintain fibrillation [163]. The experimental
work in a canine model from Allesie et al. favoured the multiple wavelet hypothesis and
suggested that fibrillation was maintained as long as there were a critical minimal number
of 4-6 fibrillation waves [164]. In 1973, Allesie et al. demonstrated in a rabbit model of
the LA that no anatomical obstacle is needed for the ocurrence of reentry, proposing the
concept of functional reentry [165]. In 1977, they introduced the leading circle reentry
theory, suggesting that unidirectional block, due to centripetal activation rendering the center
refractory, causes the wavefront to propagate along a circular trajectory (Figure 2.20B) [166].
Their findings also demonstrated that even within a limited region of atrial muscle without
any anatomical obstacle, the wavefront can be self-sustained in a circular fashion.

Most of the concepts described so far come from the notion that electrophysiology of the
thin-walled atria could be studied assuming a 2D surface. Using simultaneous recordings in
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Figure 2.20: Reentrant circuit mechanisms. A) Anatomical reentry based on the ring model of [159]where the propagating wave (black) is separated by an excitable gap (white) around an anatomical ob-stacle. The wavelength, shown in black, is the product of the conduction velocity (CV) and the effectiverefractory period (ERP). B) Leading circle reentry around a functional obstacle. Centripetal forces pointtowards a refractory center. C) Spiral wave in 2D showing the tipwith awhite asterisk (*). D) Scroll wavein 3D. E) Electrotonic changes in a spiral wave. Changes in action potential duration are shown withnumbers 1-3, and decreased conduction velocity is indicated by the length of the arrows. Wavelengthdecreases near the rotor tip. A phase singularity occurs when the tip of the wavefront meets the tail.F) Simulated reentry. The top image in 2D shows the transmembrane voltage, while the bottom imageshows the excitable gap calculated by the product of the fast (h) and slow (j) sodium current inactiva-tion variables. The tissue is unexcitable (white) when h× j = 0, meaning no INa is available. Reproducedfrom [167] with permission from the publisher.

the epicardial and endocardial surfaces of the canine RA under sinus rhythm and tachycardia,
Schuessler et al. showed that there are locations where the epicardium and endocardium
have different patterns of activation, and that these differences are increased in regions
where thickness was >0.5 mm [168]. This separation between endocardial and epicardial
propagation is referred to as endo-epi dissociation [169].

There is an ongoing discussion over the mechanisms that initiate and maintain AF [170].
The main debate is whether the AF disorganization is produced by external factors (sources)
or if the disorganization itself supports AF [171]. While some researchers support the idea
that AF is sustained by random multiple wavelets [172], others claim that AF is maintained
by spatially localized drivers known as rotors [167]. A rotor, or spiral wave, is a type
of functional reentry where the curvature of the wavefront causes the wavelength to be
shorter at the center (Figure 2.20 C-F) [169]. A phase singularity refers to the organizing
center (tip) of the propagating wave [173]. The concept of the presence of rotors comes
from evidence derived from animal experiments and clinical studies showing hierarchical
organization during AF [174]. The main difference between the leading circle reentry theory
and the rotors theory is that in the leading circle reentry theory, the center of the circuit is
continuously activated, leading to local refractoriness. In contrast, in the rotors theory, rotor
waves can meander around the atria as there is no truly refractory tissue. [156].
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Understanding the mechanisms underlying AF can enhance treatment efficacy [158].
The work of Moe et al. and Allesie et al. put strong emphasis on the atrial size and lead to
the development of the Cox-Maze surgical procedure which aims to divide the atria to reduce
the probability of reentrant circuits [175]. However, with the advent of minimally invasive
strategies, the Cox-Maze procedure is seldom performed, primarily for patients undergoing
cardiac surgery [176]. In addition, the notion that AF may stem from individual or localized
rotors suggests that these locations might be targeted during catheter ablation [177]. In
the subsequent section, therapeutic approaches for AF, particularly catheter ablation, are
described.

2.5.4 Treatment

Before AF manifests, optimal management includes treating risk factors and implementing
lifestyle changes that reduce the likelihood of AF development [7]. Common symptoms
associated with AF include palpitations, shortness of breath, dizziness, weariness, and
syncope [118]. Once AF is diagnosed, treatment should focus on avoiding stroke, maintaining
sinus rhythm and minimizing AF burden [7, 118]. Two main therapeutic strategies have
emerged for AF: rate control focuses on managing ventricular rate, and rhythm control aims
to restore and maintain sinus rhythm.
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Figure 2.21: Evolution of atrial fibrillation treatment management. A) Past strategy focused on escala-tion based on symptoms from initial rate control to rhythm control. B) Current strategy as a combinationof rhythm and rate control for symptomatic patients. C) Future strategy with focus on rhythm control.AF: atrial fibrillation, AAD: antiarrhythmic drugs. From [178] under CC license.
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Rhythm control strategies include antiarrhythmic drugs, such as amiodarone, sotalol,
flecainide and propafenone; cardioversion, and catheter ablation. Rate control strategies
include beta blockers, calcium antagonists, and AV nodal ablation [178]. Rate control
is a necessary component of AF therapy and is often sufficient to alleviate AF-related
symptoms [1]. However, there is a growing evidence supporting early rhythm control
strategies [178], with a paradigm shift towards rhythm control over rate control as shown in
the following Figure 2.21. In addition, rhythm control may lead to reduced symptoms and
increased quality of life [1, 7].
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Figure 2.22: Current recommendations on catheter ablation for patients with paroysmal and persistentAF based on the occurrence of symptoms. AADs: antiarrhythmic drugs. Adapted from [118] withpermission from the publisher.

Catheter ablation is a well-established minimally invasive rhythm control strategy [179].
Moreover, catheter ablation has shown to be more effective in maintaining sinus rhythm and
improving symptoms than anti-arrhythmic drugs [1, 7, 180]. More recently, it was suggested
that catheter ablation is beneficial as a first-line treatment for symptomatic patients [118].
Figure 2.22 illustrates recent recommendations on catheter ablation in patients with paroxys-
mal or persistent AF, based on the occurrence of symptoms. Ultimately, the decision between
rate control and rhythm control is complex and often depends on the patient’s preferences,
clinical presentation, and associated comorbidities [7, 181].

The isolation of the pulmonary veins (PVI) is the cornerstone of catheter ablation and
is required in every AF ablation procedure [118]. The main goal of PVI is to electrically
disconnect the PVs from the LA (Figure 2.23A). Although PVI is a useful rhythm control
strategy that has been shown to reduce AF burden, PVI still has significant recurrence rates at
12 months (25–50 %), with different rates for paroxysmal and persistent forms of AF [182].
Adjunctive ablation strategies beyond PVI include: linear lesions, ablation of focal triggers,
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ablation of rotors, vein of Marshall ethanol infusion, ablation of low voltage (<0.5 mV)
areas in sinus rhythm, isolation of the left posterior wall, and the ablation of regions of
enhancement with late gadolinium enhancement MRI. The following Table 2.4 provides
a summary of the recommendations for AF ablation strategies. Additionally, the ablation
of multiple targets beyond PVI, including biatrial ablation, remains controversial and has
not yet demonstrated additional benefits over PVI alone [1, 7]. The current PVI approach,
often considered as a one-size-fits-all strategy, may overlook the unique characteristics of
individual patients, potentially contributing to high recurrence rates.

A)

C)

B)

D)

Figure 2.23: Current ablation strategies for atrial fibrillation management. Posterior view of the atria,the substrate is indicated in darker color in the posterior wall of the left atrium. A) PVI. B) PVI + ablationof the cavo tricuspid isthmus and lines connecting the left PV to the mitral valve. C) posterior wallisolation + superior vena cava isolation. D) ablation of complex fractionated electrograms or substrateablation with low voltage amplitude (<0.5mV). PVI: pulmonary vein isolation. Adapted from [183] withpermission from the publisher.



50 Chapter 2. Medical Fundamentals

Table 2.4: Recommendations for atrial fibrillation catheter ablation [118]. A) Pulmonary vein isola-tion recommendations. B) Recommendations for adjunctive ablation targets beyond pulmonary veinisolation. AF: atrial fibrillation, PVI: pulmonary vein isolation.
A) Pulmonary vein isolation

Recommendation Category of advice

Electrical isolation of the PVs is required during all AF ablation proce-dures Advice to do

Achievement of electrical isolation requires, at a minimum, assess-ment and demonstration of entrance block into the PVs Advice to do

A waiting period (e.g. 20 min) following initial PVI may be reasonableto monitor for PV reconnection Uncertainty

Administration of adenosine 20 min following initial PVI, with reab-lation if PV reconnection occurs, may be reasonable to improve PVIdurability
Uncertainty

Pace capture–guided approach following PVI using RF energy may bereasonable to improve PVI durability Uncertainty

B) Adjuctive ablation targets beyond pulmonary vein isolation

Recommendation Category of advice

If linear ablation lesions are deployed, mapping and pacing maneuversare required to document conduction block Advice to do

If a reproducible focal trigger that initiates AF is identified outside thePV ostia at the time of an AF ablation procedure, ablation of the focaltrigger is beneficial
Advice to do

Vein of Marshal ethanol infusion is reasonable to facilitate achievingblock in the lateral mitral isthmus in patients withmitral annular flutter May be appropriate

Ablation of areas of abnormalmyocardial tissue identifiedwith voltagemapping during sinus rhythm may be reasonable during persistent AFablation
Uncertainty

Vein of Marshal ethanol infusion may be reasonable during persistentAF ablation Uncertainty

Mapping and ablation of non-PV triggers may be reasonable duringpersistent AF ablation Uncertainty

Isolation of the left atrial posterior wall may be reasonable during re-peat ablation of persistent AF Uncertainty

Ablation of MRI-detected atrial delayed enhancement areas is notbeneficial during persistent AF ablation Advice not to do
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2.6 Atrial Fibrosis

Atrial fibrosis is one of the major factors leading to the development of AF [184]. In this
section, a review of the reported values of biatrial fibrosis informed by different imaging
techniques is presented.

2.6.1 Left Atrial Fibrosis

Fibrotic burden, defined as the percentage of the fibrotic tissue of the total atrial wall, has
been extensively described mainly using LGE-MRI in the LA (Table 2.5). Different authors
reported the mean burden of fibrosis in the LA in patients with AF to range between 8.4 and
24.4% defined as IIR > 1.2 by LGE-MRI [43, 185–187]. The DECAAF II study showed that
most patients with paroxysmal AF were classified in UTAH stages 2 and 3, i.e., mean LA
fibrosis burden between 10 and 30% [188]. According to Benito et al., the posterior wall and
the floor are the regions more affected by fibrosis in the LA. This is in line with the findings
reported by Higuchi et al., where the highest probability of enhancement was observed in
the posterior wall close to the left inferior pulmonary vein antrum [189]. However, Nairn et
al. showed that the location of the LA fibrotic substrate differs depending on the selected
modality, suggesting that the anterior wall might also be prone to fibrosis, especially if the
fibrotic substrate is assessed using LVA with a voltage threshold< 0.5 mV [187].

Table 2.5: Biatrial fibrotic burden in patients with atrial fibrillation defined by late gadolinium
enhancement-magnetic resonance imaging.

LA fibrosis (%) n RA fibrosis (%) n AF History Reference
8.5 ± 8.7 113 - - PAF and PeAF [186]
21.2 ± 11.6 87 - - PAF [189]
24.6 ± 11.9 73 - - PeAF [189]
17.0 ± NR 36 - - PeAF [187]
24.4 ± 16.1 110 28.60 ± 19.48 110 PAF and PeAF [190]
8.6 ± 6.1 35 10.1 ± 8.6 33 PAF [191]
16.7 ± 11.1 344 5.3 ± 6.4 134 PAF and PeAF [192]
22.8 ± 6.1 20 19.7 ± 5.7* 20 PeAF [21]
8.1 ± 17 55 4.0 ± 6.4% 55 ParoxAF [193]
10.5 ± 12 45 4.4 ± 7.4 45 PeAF [193]

LA: left atrium, n: number of patients, PAF: paroxysmal atrial fibrillation, PeAF: per-
sistent atrial fibrillation, RA: right atrium
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2.6.2 Right Atrial Fibrosis

The mean burden for the RA using LGE-MRI described in the literature varied between 4.0
to 28.6% [21, 190, 192, 193]. Akoum et al. showed in a group of 134 patients that the RA
fibrotic burden was 5.3% ± 6.4%, with the septal region showing the highest enhancement
together with the free wall towards the vena cava in more advanced stages [192]. Similar
results were found in a more recent study with 55 paroxysmal AF patients by Gunturiz-
Beltran et al. , where the RA fibrotic burden was 4.0 ± 6.4%, showing the largest fibrotic
presence in the IVC junction [193]. In another study, the mean fibrotic burden of the RA
was 28.60% ± 19.48% in a cohort of 110 patients with AF [190].

2.6.3 Biatrial Fibrosis Ratio

In terms of the ratio between left and right fibrosis, there is still controversy about the
comparison of the right vs. left fibrotic burden. In a cohort of 20 patients, Zahid et al.
reported a mean biatrial fibrotic burden of 19.7%, which was comparable to the measured
mean LA burden of 22.8% [21]. Hopman et al. observed a strong correlation (r = 0.88,
P < 0.001) between the right and left amount of fibrosis assessed using LGE-MRI [190],
which is in line with a post-mortem analysis where the extent of fibrosis between RA and
LA locations did not differ [194]. Interestingly, these results are contrary to the histological
observations from the CATCHME study [195], where RA samples showed more extracellular
matrix (ECM) and endomysial fibrosis when compared to LA samples. In the case of the
CATCHME study, the samples were taken from the RAA and LAA samples, which are
in most cases excluded during LGE-MRI fibrosis assessment. Additionally, the difference
between RA and LA could be explained due to differences in the stage or progression of the
disease (paroxysmal vs. persistent AF) or the presence of other diseases affecting primarily
the RA, such as pulmonary hypertension or congenital diseases such as atrial septal defects
[191]. Finally, it could also be due to the intrinsic limitations of the current LGE-MRI
technique, such as lack of threshold validation and low image resolution affecting atrial wall
delineation, incorporating uncertainty to biatrial segmentations.



Chapter 3
Mathematical Fundamentals

In this chapter, the mathematical foundations of multiscale cardiac computational modeling
are introduced, ranging from the simulation of single cell cardiac electrophysiology to the
forward calculation of P-waves on the body surface. The chapter concludes with an overview
of machine learning and explainability methods.

3.1 Cellular Cardiac Electrophysiology

In 1952, Hodgkin and Huxley formulated the first mathematical model to describe the elec-
trical changes in the cellular membrane of the squid axon [196]. The cellular membrane
was modeled as an equivalent electrical circuit (Figure 3.1) comprising a set of of resistors,
representing ion channels with their respective ionic currents Ix, and one capacitor represent-
ing the membrane capacitance Cm. The movement of ions across the membrane generates a
potential difference Vm.

𝑔! 𝑔"#! 𝑔$! 𝐶% 𝑉%

Extracellular

Intracellular

𝐸! 𝐸"#! 𝐸$!

𝐼! 𝐼"#! 𝐼$!

Figure 3.1: Hodking and Huxley equivalent electrical circuit for the definition of cellular gating ki-
netics [196]. x denotes an arbitrary ion, Ix denotes ionic currents, Ex are the Nerst potentials, gx isthe conductance of the channel, Cm is the capacitance of the membrane per unit area and Vm is thepotential difference across the membrane. Created with Biorender under academic license.
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The current Ix of a channel is defined as:

Ix = gx (Vm−Ex) (3.1)
where, x denotes an arbitrary ion, Ex corresponds to the Nerst potential and gx is the
conductance of the channel of that particular ion. The Nerst potential is given by:

Ex =
RT
zxF

ln
(
[x]e
[x]i

)
(3.2)

where Ex is the Nernst potential (in volts), R is the gas constant (8.314 J/(mol K)), T is the
absolute temperature (in Kelvin), zx is the charge number of the ion x, F is the Faraday
constant (96485 C/mol), [x]e is the extracellular concentration of the ion, and [x]i is the
intracellular concentration of the ion. In the Hodgkin and Huxley model, there are three ionic
currents, INa for the sodium ions, IK for the potassium ions and IL for the leakage current
from unspecified ions. As the conductances are arranged in parallel, it is possible to represent
Iion as the sum of the ionic currents:

Iion = INa + IK + IL (3.3)
If Iion is placed in parallel to the capacitor, then the current flow through the membrane Im

can be defined as a partial differential equation as a function of time and voltage:

Im =Cm
∂Vm

∂ t
+ Iion (3.4)

If the changes of the transmembrane potential are represented as a function of time, the
action potential of a single cell can be calculated by solving:

dVm

dt
=− Iion + Istim

Cm
(3.5)

where Istim represents an external stimulation current required for the cell to reach its threshold
potential. The Hodgkin and Huxley model does not have an analytical solution, therefore
numerical methods are required to find an approximate solution.

3.1.1 The Courtemanche Cellular Model

The Courtemanche et al. mathematical model represents the action potential of human
atrial cardiomyocytes [51]. The model is based on the the guinea pig ventricular model of
Luo and Rudy [197] with most of the currents adapted from human experimental data [54].
The Courtemanche et al. model incorporates multiple ion currents and pumps, and the
sarcoplasmic reticulum (SR) is divided into two compartments to account for intracellular
calcium uptake, in the network sarcoplasmic reticulum (NSR) and release in the junctional
sarcoplasmic reticulum (JSR). Figure 3.2 illustrates the Courtemanche et al. atrial cellular
model with ionic currents, pumps and exchangers. The action potential of the Courtemanche
et al. model exhibits a pronounced spike and dome [54]. Multiple ion currents in the
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ICa,L Ib,Ca INaCa IpCa INa Ib,Na

INaK Ito IKur IKr IKs IK1

Ileak
IupIrel

Itr

JSR
NSR

Ca2+

Na+ Na+ Na+

K+

K+ K+ K+ K+ K+

Ca2+Ca2+

Na+ Na+

K+

Na+ Na+ Na+Ca2+

Ca2+

Ca2+

Ca2+

Figure 3.2: Schematic representation of the Courtemanche et al. model with currents (arrows), pumps,
and exchangers. Arrows show the direction of the current flow. JSR: junctional sarcoplasmic reticulum,NSR: network sarcoplasmic reticulum. Inspired by [51]. Createdwith Biorender under academic license.

Courtemanche et al. model are responsible for its characteristic action potential morphology.
However, as shown in Figure 3.3, the action potential duration of the Courtemanche et al.
model is mainly defined by reduction in the maximum conductances of the L-type Ca2+

current ICaL, and the inward rectifier K+ current IK1.
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3.2 Modeling of Tissue Electrophysiology

Models of cardiac tissue electrophysiology are based on the reaction-diffusion processes,
where the reaction process is associated with the cellular action potential, and the diffusion
process reflects the flow of current between cells [198]. At the macroscopic scale, cardiac
tissue is often described as a functional syncytium. A functional syncytium refers to a
group of cells that are interconnected and function as a single unit, allowing coordinated
electrical activity. Cardiac myocytes are electrically coupled via gap junctions, enabling the
propagation of depolarisation and repolarisation waves [198]. In contrast to discrete elec-
trophysiology models, which explicitly represent individual cardiac cells [199], continuous
models conceptualize cardiac tissue as a functional syncytium.
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Figure 3.3: Changes of different ionic conductances of the Courtemanche et al. model and their im-
pact on action potential duration. The numbers next to the conductance represent the minimum andmaximum multiplying factors and the number of samples. The arrows indicate either increase (up) ordecrease (down) of the scaling factors.
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3.2.1 Bidomain Model

The bidomain model represents cardiac tissue as a syncytium composed of intracellular and
extracellular domains, separated by the cell membrane. The mathematical derivation of the
bidomain model is based on the principles of current flow, electrical potential distribution,
and the conservation of charge and current [198]. In the bidomain model, each domain is
described based on a generalized version of Ohm’s law, which relates the current density J to
the electric field E, through the conductivity tensor G, where cardiac sources are represented
by impressed currents Jimp [200]. The total current density J is given by:

J = GE+Jimp. (3.6)
The electrical field E can be expressed as a potential gradient:

E =−∇φ , (3.7)
where φ denotes the potential. Substituting E in equation 3.6 we obtain:

J =−G∇φ +Jimp. (3.8)
Therefore, for each domain we have:

Ji =−Gi ∇φi +Jimp
i , (3.9)

Je =−Ge ∇φe +Jimp
e , (3.10)

where Ji and Je are the intracellular and extracellular current densities (Am−2), Gi and
Ge the intracellular and extracellular conductivity tensors (Sm−1), Jimp

i and + Jimp
e are the

intracellular and extracellular impressed current densities, and φe and φi are the electrical
potential (Vm−1) in the intracellular and extracellular spaces, respectively [200]. The
conductivity tensors are determined by the anisotropy of the cardiac tissue and the tissue
conductivity [198]. Expressing the divergence of the current densities Ji and Je in terms of
transmembrane current per unit volume Im (Am−3) we obtain:

∇ ·Ji =−Im, (3.11)

∇ ·Je = Im. (3.12)
By considering current and charge conservation laws, and assuming that only sources
associated with the membrane exist in the intra- and extracellular domains, we can express
divergence equations as:

∇ · (Ji +Je) = 0, (3.13)
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−∇Ji = ∇Je = Im, (3.14)
In addition, the transmembrane current Im can be expressed in terms of the ionic current Iion,
resulting from the flow through all ion channels:

Im = βm

(
Cm

∂Vm

∂ t
+ Iion

)
. (3.15)

Here, βm is the membrane surface-to-volume ratio of a cardiac cell (m−1), Cm is the mem-
brane capacitance (Fm−2) and Vm is the transmembrane voltage (V), given by:

Vm = φi−φe. (3.16)
Combining equation 3.16 with equations 3.14 and 3.15 and casting the equations with Vm

and φe as the independent variables we obtain:

∇ ·Gi (∇Vm +∇φe) = βm Im, (3.17)

∇ · ((Gi +Ge)∇φe) =−∇ ·Gi ∇Vm. (3.18)
The Bidomain model can be expressed as two partial differential equations. Equation
3.17 is a parabolic equation that describes the reaction-diffusion equation in terms of the
transmembrane voltage, while equation 3.18 is an elliptic equation. If we assume that there
is no current flowing from the extracellular space to the adjacent spaces, a Neuman boundary
condition can be imposed on the boundary Γ:

Γ : n · (Gi ∇φi) = n · (Gi∇(Vm +φe)) = 0, (3.19)

Γ : n · (Ge ∇φe) = 0, (3.20)
where n is the outward normal to the boundary Γ. Table 3.1 provides common ranges used
for the parametrization of the bidomain tissue model.

3.2.2 Monodomain Model

The bidomain model can be simplified by assuming that the intracellular conductivity tensor
Gi is proportional to the extracellular conductivity tensor Ge, meaning that the anisotropy
ratios in both spaces are the same:

Ge = λGi, (3.21)
where λ is the scalar ratio between intra- and extracellular conductivities σi and σe. The
monodomain conductivity tensor G is half of the harmonic mean between intracellular and
extracellular conductivities [37].

G = Gi Ge(Gi +Ge)
−1. (3.22)
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Parameter Range Units Reference

Gil 0.17 – 0.45 (Sm−1) [201]
Gel 0.12 – 0.62 (Sm−1) [201]
Git 0.019 – 0.06 (Sm−1) [201]
Get 0.08 – 1.74 (Sm−1) [201]
β 2400 – 8900 (cm−1) [202]
β 1000 – 5000 (cm−1) [203]
Cm 1 – 10 (µF cm−2) [198]

Table 3.1: Parameter ranges for the bidomain tissue model obtained from experimental data pre-
sented in Clayton et al. [198]. For further reference details, the reader is referred to the original publi-cation [198]. Gil: intracellular longitudinal conductivity, Gel: extracellular longitudinal conductivity, Git:intracellular transversal conductivity, Get: extracellular transversal conductivity, β : surface-to-volumeratio, Cm: cellular membrane capacitance.

If we define the monodomain conductivity tensor G in terms of the intracellular conductivity,
we obtain:

G =
λ

1 +λ
Gi. (3.23)

Substituting equation 3.23 into equation 3.17 yields:

∇ · λ

1+λ
Gi∇Vm = βm Im, (3.24)

∇ · (G∇Vm) = βm Im, (3.25)
where equation 3.25 is the monodomain equation. If we define a no-flux boundary condition,
the monodomain equation can be written as:

Γ : n · (G∇Vm) = 0, (3.26)

∇ · (G∇Vm) = β

(
Cm

∂Vm

∂ t
+ Iion

)
, (3.27)

∂Vm

∂ t
= ∇ · D∇Vm−

Iion

Cm
, (3.28)

where D (m2 s−1) is the diffusion tensor. The monodomain equation, consisting of a single
partial differential equation (PDE), is computationally less expensive than the bidomain
solution. Numerous studies have compared bidomain and monodomain models of cardiac
electrophysiology, revealing similarities in action potential patterns and spiral wave trajecto-
ries [204, 205]. The monodomain assumption of equal anisotropy generally holds, except
in scenarios where extracellular fields are imposed, as in defibrillation studies, where the
bidomain model is recommended [206].
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3.3 Forward Problem of Electrocardiography

The forward problem of electrocardiography consists on the calculation of the electrical fields
on the body surface coming from sources in the heart. A cardiac source refers to the electrical
activation of cardiac cells. To compute the forward problem, the electrical activity of the
heart can be modeled as a distribution of current dipole with the body having properties of a
volume conductor. The equations governing the electrical potential in the torso are named
after the Scottish mathematician James Clerk Maxwell. The solutions to these equations
are approximated using the boundary element method (BEM) for an electrically isotropic
medium or using the finite element method (FEM) when anisotropic features are required.
Each electrocardiography recording consists of the projection of the current dipole into the
measuring axis, also referred to as lead. A volume conductor consists of a 3D conducting
medium. A current dipole is a pair of electrically opposed charges q with equal magnitude,
separated by a distance d. A dipole generates an electrical field, which allows currents to
flow through the conducting medium. Therefore, the electrical activity in the heart can be
measured on the body surface as the potential difference generated by the electrical field.

aVR aVL

aVF

Right arm Left arm

Left leg

I

II III

Figure 3.4: Einthoven Triangle. Bipolar leads are calculated as the potential difference measured be-tween two points on the body surface. Created with Biorender under academic license.
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Three bipolar leads (I, II, and III) and three augmented leads (aVR, aVL, and aVF) can
be calculated as follows, where LA stands for left arm, RA for right arm, and LL for left leg:

I = φLA−φRA

II = φLL−φRA

III = φLL−φLA

aVR = φRA−
φLA +φLL

2

aVL = φLA−
φRA +φLL

2

aVF = φLL−
φLA +φRA

2

Augustus D. Waller was a British physiologist and is considered to be the father of elec-
trocardiography. He was the first to demonstrate the possibility to non-invasively measuring
the electrical activity of the heart in intact animals and in humans, and he became the first
to coin the term electrocardiogram (ECG). He was renowned for his experiments with his
bulldog Jimmie standing in buckets of saline, serving as electrodes, and the use of a Lipmann
capillary electrometer, where the pulsation of a mercury column help record the ECG [207].
In 1887 he published the first human ECG. Years later in 1912, a Dutch physiologist who at-
tended Waller’s demonstrations, Willem Einthoven improved the recording method of Waller
with the invention of the string galvanometer. The name of the 5 deflections in the ECG,
namely P, Q, R, S and T, were identified by Einthoven (Figure 3.5). The P-wave corresponds
to the depolarization of the atria, while the PR interval accounts for the atrioventricular (AV)
delay from the AV node. The QRS complex depicts the electrical ventricular depolarization.
Finally, the T wave corresponds to the ventricular repolarisation.
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Figure 3.5: A representative electrocardiographic trace showing the five deflection waves observed
during sinus rhythm. P, Q, R, S, and T waves; three segments and three intervals: PR, QT and ST. Seg-ment corresponds to the isopotential line, while intervals include the beginning of the wave deflection.Created with Biorender under academic license.
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3.4 Conduction Velocity

Conduction velocity (CV) is an important electrophysiological property that corresponds
to the time needed by the electrical depolarization wave to spread throughout the cardiac
tissue [148]. Changes in CV are related to alterations in the cardiac muscle; therefore, when
creating patient-specific computer models, it is important to tune CV to more accurately
represent electrical propagation. Currently, it is not possible to directly measure CV, so its
value must be subrogated from other clinical measurements such as the P-wave duration from
the body surface electrocardiogram (ECG) or local activation times (LAT) maps obtained
from either non-invasive electrocardiographic imaging (ECGI) or from invasive electrograms
(EGM) from electro-anatomical mapping system (EAMS). In the following part, a brief
summary describes how CV can be tuned using P-wave duration and LAT data, as detailed
in [33, 37].

3.4.1 Personalization of Global Conduction Velocity
Using P-wave Duration

The relationship between conduction velocity V and the conductivity σ in the monodomain
equation is given by:

σ = aV2 +bV+ c. (3.29)
Assuming that the quadratic term dominates, equation 3.29 can be simplified as:

σ ≈ V2

√
σ ≈ V

(3.30)

Global conduction velocity in the atria can be defined as the ratio between atrial size S and
the total atrial depolarization time tD:

V =
S
tD

(3.31)
In addition, tD can be inferred from the duration of the P-wave (treal) in the body surface
ECG or from the latest activation time in the ECGI or EGM activation map. Considering the
above, the latest simulated atrial activation time (tsim) is defined as:

tsim ≈ treal (3.32)
The simulated monodomain conductivity σsim of the patient-specific model can be iteratively
tuned until the simulated atrial depolarization time tsim, reaches approximately the same
value as the real depolarization time. Meaning that equation 3.29 can be written as:

σreal

σsim
=

V2
real +bVreal + c

V2
sim +bVsim + c

(3.33)
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Simplifying equation 3.33:

σreal

σsim
≈

V2
real

V2
sim

(3.34)
Substituting conduction velocity as in equation 3.31 we get:

σreal

σsim
≈

(
S

treal

)2

(
S

tsim

)2 (3.35)

Solving for σreal, we obtain:

σreal ≈ σsim

(
tsim

tP

)2

(3.36)
As the real conductivity σreal is unknown, the conductivities σinit are initialized with an initial
value and then further tuned to achieve the desired total activation from the P-wave duration:

σsim ≈ σinit

(
tsim

tP

)2

(3.37)
Using the electrophysiology simulator openCARP, the initial conductivities σinit can be
obtained given an input CV. The conductivities are obtained by calculating the electrical
propagation using a linear core conductor model, as described in [37]. In the terminal, using
the tuneCV function and given the following simulation parameters, the intracellular and
extracellular monodomain conductivities can be obtained:

$ tuneCV --velocity 0.7 --resolution 400 --model Courtemanche

--dt 20 --tol 0.001 --lumping True --sourceModel monodomain

--surf True --converge True --log tuneCV.log --np 2

3.4.2 Personalization of Local Conduction Velocity Using
Local Activation Times

The method described earlier can be used to globally tune the CV based on a single mea-
surement of either the P-wave duration or the latest activation from local activation time
(LAT) maps. However, it may be desired to not only account for global activation but also to
tune the conductivities so that the pattern of propagation is also personalized. This can be
achieved by adapting the method described before and defining isochrones of activation in
the LAT map. The approach described in this section iteratively adjusts the conductivity of
each element to reduce the root mean squared error (RMSE) between the simulated LAT and
the clinical LAT as described in [49].

Firstly, to disregard artifacts, the activation LAT sequence is verified by leveraging a
priori knowledge about the expanding wavefront. The set P of points x in the LAT map are
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divided into N activation bands Γi starting at the earliest activation point (EAP) up to the
latest activation point (LAP), with a temporal resolution dt = 5 ms:

Γi = {x ∈ P | LAT(xEAP)+dt · i < LAT(x)≤ LAT(xEAP)+dt · (i+1)} (3.38)
Where xEAP is defined as the 2.5th percentile of the LAT distribution and the xLAP as the

97.5th percentile. All points x with an LAT value higher that the xLAP are given the time of
the LAP, and the points having an earliest activation will have the time of the xEAP. If points
are at >1 mm away from the current band, then they are set as wrong annotation and not used
in the iterative tuning process. These points will receive the mean conductivity value of the
band boundary.

Finally, the LAT map is divided into M activation bands γi from the EAP to the LAP
with steps of 30 ms. The conductivities of the elements in each active band γ are tuned to
minimize the RMSE between the simulated and the clinical LAT. Adapting equation 3.37
we can obtain:

σsim ≈ σinit

(
LATsim

LATclin

)2

(3.39)

3.5 Machine Learning

Machine learning (ML) is a branch of artificial intelligence focused on the creation of algo-
rithms and statistical models that allow computers to learn from data and make predictions
or judgments [105].

3.5.1 Random Forest

Random forests (RF) are supervised ML algorithms used for regression or classification
tasks. RF models perform a classification task when the target variable is categorical, while
regression is performed if the target variable has a continuous value. A tree with M leaves
divides the feature space into M numbers, where the leaves are restricted to 1≤ m≤M. The
prediction function of a tree is defined as:

f (x) =
M

∑
m=1

cmI(x,Rm). (3.40)

Where Rm is a region in the feature space corresponding to leaf m, cm is a constant for region
m which corresponds to the ratio of the response variables of samples in the region Rm, and I
is the indicator function (with I = 1 if x ∈ Rm). The prediction of a forest is the average of
the predictions of all trees:

F(x) =
1
J

J

∑
j=1

f j(x) (3.41)
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3.5.2 Model Explainability

In many ML applications, it is not only desired to have a model with good predictive
performance, accuracy, but also can be desired to understand why the model makes certain
predictions, interpretability. A correct interpretation of the output of a model can increase
user trust, and enhance the understanding of the phenomena or process being modelled [208].
The concept of interpreting the importance of input features on the output of the model is
known as explainability. In other words, consists of understanding the black box of the
model and having a white box, as shown in Figure 3.6:

Output = 0.4

Age = 34

Sex = F

BP = 100

H = 162

Base rate = 0.1

Age = 34

Sex = F

BP = 100

H = 162

Output = 0.4

Base rate = 0.1

Model Explanation

+0.4

-0.3

+.1

+.1

Figure 3.6: Example demonstrating the concept of explainability. The contribution of each input fea-tures on the model outcome is shown on the right. Inspired from [209].

RF algorithms are formed by many decision trees and each tree is trained using randomly
selected features during the decision process. This implies that a tree can have multiple
branches of thousands of nodes, therefore an analysis or the definition of an explanatory
model is not always possible [208]. Feature importance analysis can help determine which
of the input features had a higher contribution to the decision outcome. Two methods
for defining feature importance are permutation, by permuting each value of each feature
and checking model performance, or impurity computing, where the amount of variance
or entropy/Gini coefficient is used when each feature is removed. The Gini coefficient
represents the likelihood of misidentifying a randomly selected element within a dataset,
whereas entropy quantifies the level of uncertainty or randomness present in the dataset.
SHAP (SHapley Additive exPlanations) is an approach used to explain the output of ML
models. SHAP is derived from game theory which links the input model features to the
concept of players in a game and the model function to the rules of the game [208]. The
SHAP algorithm assigns an importance value to each feature for a specific prediction.
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Chapter 4
Personalization of Atrial Anatomy

Impact of the Incorporation of the Right Atrium
on Arrhythmia Vulnerability

For many years, atrial fibrillation (AF) has been regarded as an arrhythmia primarily affecting
the left atrium (LA). In the development of patient-specific computer models, it remains
unclear whether LA-only models are adequate for informing AF treatment. Specifically,
the impact of incorporating the right atrium (RA) on arrhythmia vulnerability needs further
investigation. This chapter addresses this concern by comparing monoatrial and biatrial
models on their impact on arrhythmia vulnerability, while also debating the adequacy of
monoatrial models for the assessment of inducibility. The main objective is to quantify the
impact of incorporating the RA in the development of AF in silico.

The content of this chapter is taken and adapted from a paper that has been published open
access under Creative Commons CC-BY license in Heart Rhythm [210]. Most passages have
been quoted verbatim from the publication.

4.1 Introduction

The role of the RA in AF has long been overlooked. Multiple studies have examined
clinical conditions associated with AF, such as atrial enlargement, fibrosis extent, electrical
remodeling, and wall thickening, but have been mainly concentrated on the LA [184, 211–
213]. AF research predominantly focuses on the LA due to two key paradigms: Firstly,
the well-established view that AF onset is primarily triggered by activity originating in the
pulmonary veins (PVs) of the LA [214]. Secondly, comorbidities linked to AF, such as
hypertension, valvular disease, and heart failure, primarily impact the left side of the heart,
contributing to increased mortality and reduced quality of life. Thus AF research continues
to focus mostly on the LA, and as a consequence, the role of RA in AF is barely understood.
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With the advent of personalized medicine, patient-specific computer models of the atria
are enhancing our understanding of intricate interactions during AF and have already been
used to identify ablation targets, tailor ablation strategies, and predict recurrence in AF
patients [215–218]. Nevertheless, those methodologies did not specifically focus on the
role of the RA, with some excluding RA tissue and others neglecting the assessment of AF
induction or maintenance from RA sources. Computer models of the atria can aid in assessing
how the RA influences arrhythmia vulnerability and also in studying the role of RA drivers in
the induction of AF, both aspects difficult to assess clinically and experimentally. This work
assesses the "Creative Concept" of incorporating the RA in computational arrhythmia studies
based on 1398 virtual pacing sequences in 8 biatrial and 8 monoatrial patient-specific models
under 3 different substrate conditions, resulting in a total of 48 distinct model configurations.

4.2 Methods

A general overview of the study methodology is provided in Figure 4.1.
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Figure 4.1: Study methodology. A) virtual cohort generation considering biatrial and monoatrial con-figurations (1) with 3 remodeling levels (2) to assess arrhythmia vulnerability (3). B) fibrotic substratemodeling approach considering changes in conduction velocity (CV) (4), electrical remodeling (5), andfibrosis extent(6) (H: healthy, M: mild, S: severe).
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4.2.1 Patient-specific Anatomical Modeling

Imaging data from 8 subjects (P1-P8) were obtained as described in [33] and used to generate
the biatrial personalized anatomical models. Subjects provided written informed consent
and the study protocol was reviewed and approved by the ethical committee of Guy’s
Hospital, London, UK, and University Hospital Heidelberg, Heidelberg, Germany. The
research reported in this article adhered to the Helsinki Declaration guidelines. The cohort
characteristics are described in Table 4.1. Patient-specific bilayer models were generated
following the methodology described by Azzolin et al. [49]. For each subject, we created
two models: a monoatrial with only the LA, and a biatrial with both the RA and LA.

Table 4.1: Clinical characteristics of subjects for the generation of biatrial models. F: Female, M: Male,HR: Heart rate, PWd: P-wave duration, RA: right atrium, LA: left atrium, Ctl: control; LQT: long-QTsyndrome, AF: atrial fibrillation.

P8P7S6P5P4P3P2P1

MMMMMMFFSex

CtlAFCtlCtlLQT1CtlLQT2CtlDiagnosis

8662537062697681HR (1/min)

9917697103911079595PWd (ms)

7215599132881175298RA blood volume (ml)

53136878179632755LA blood volume (ml)

3638215238271226RA myocardium (mm3)

2934192632251019LA myocardium (mm3)

4.2.2 Modeling of Inter-atrial Connections

Using rule-based definitions [74], 4 interatrial connections (IAC) were added automatically
to the biatrial models: 1) middle posterior bridge, 2) upper posterior bridge, 3) Bachmann
bundle (BB) bridge, and 4) coronary sinus (CS) bridge. IAC were defined by creating
geodesic paths on the epicardium surfaces of the RA and LA and constructing tubular
structures along these paths [49, 74]. Further details on IAC modeling can be found in
Figure 4.2. In the RA septum, the start point (A) of the geodesic path AB was determined as
the nearest point to the centroid of the superior vena cava (SVC) ring, while the termination
point (B) was the closest point to the centroid of the inferior vena cava (IVC) ring. The points
at 40 % and 60 % along the geodesic path were designated as the starting points for the upper
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posterior bridge (C) and the middle posterior bridge (D), respectively. We found the nearest
point in the LA septum for the upper posterior bridge (E) and the middle posterior bridge
(F). Tubular structures with a radius of 1.65 mm were created using the geodesic paths as an
axis to finally connect the septum. For the CS bridge, an auxiliary point corresponding to
the centroid of the CS ostium moved 10% towards the centroid of the tricuspid valve ring
was defined. Point G is the nearest point in the RA epicardium closer to this auxiliary point.
Point H is the closest point to point G on the LA surface. Finally, a tube of 1.65 mm was
created along the path from point G to point H.
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Figure 4.2: Modeling of inter-atrial connections (IAC). Four inter-atrial connections: 1) middle posteriorbridge, 2) upper posterior bridge, 3) Bachmann bundle (BB), and 4) coronary sinus (CS) bridge. IACwere defined by establishing geodesic paths in the right atrium and left atrium epicardium surfacesand generating tubular structures along these paths [49, 74]. IVC: inferior vena cava, LAA: left atrialappendage, LSPV: left superior pulmonary vein, MV: mitral valve, RAA: right atrial appendage, RSPV:right superior pulmonary vein, SVC: superior vena cava, TV: tricuspid valve.

The BB is composed of three different sections: the left bundle path, the intermediate
bundle bridge, and the right bundle path. For the left bundle path, 4 auxiliary points (I-L)
on the LA epicardium surface surrounding the LAA to the MV were placed and connected
with a geodesic line with a width of 2.3 mm around the path. For the right bundle path, two
points on the RA epicardium in the SVC and TV (O, P) were placed and connected with
a geodesic line with a width of 2.3 mm around the path. To generate the intermediate BB
bridge, two points (M, N) in the LA surface served as a reference to generate a path used to
find the midpoint R. Point S was the nearest point to point R in the RA epicardium and then
connected with a geodesic path. A tube of 2.13 mm is generated following the geodesic path.

4.2.3 Electrophysiological Modeling

Cellular electrophysiology of atrial myocytes was modeled using the mathematical model of
Courtemanche et al. (CRN) [219]. To compute electrical propagation in the human atria we
solved the monodomain equation using the electrophysiology simulator openCARP [220,



4.2. Methods 73

221]. A carputils bundle containing the openCARP experiment, along with all associated
parameters, is publicly available [222].

TGF-ß1SMH
1.002.001.501.00gK1

2.002.001.501.00gKs

1.001.601.301.00gKr

0.230.450.731.00gCaL

0.500.500.751.00gKur

0.350.350.681.00gto

1.501.501.251.00maxIpCa

1.601.601.301.00maxINaCa

0.601.001.001.00gNa

TGF-ß1SMH
153.05130.10185.29278.20APD90 (ms)

65.5678.8781.1477.86dV/dt max 
(mV/ms)

-79.97-83.90-82.40-79.17Vr (mV)

A) Multiplying factors to maximum ionic conductances

B) Action potential trace for each remodeling state

C) Action potential features for each remodeling state

Table 4.2: Atrial electrophysiology modeling. Multiplying factors applied to ionic conductances of theCourtemanche et al. model [219] to represent healthy (H), mild (M), and severe (S) states [223] (A).Respective action potentials (B) and features (C). APD90: action potential duration at 90% repolariza-tion, dV/dtmax: upstroke velocity, TGF-β1: transforming growth factor-β1 remodeling, Vr: restingmembrane potential.

We defined 3 different levels of AF-induced remodeling, namely: healthy (H), mild (M),
and severe (S) by reducing the conductance of a set of ionic channels in the CRN model
as described in [223] with 0 %, 50 % and 100 % changes for H, M and S, respectively. The
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maximum scaling of the ionic conductances affects the action potential in line with the
changes observed in human atrial myocytes in patients suffering from persistent AF [54].
The scaling factors applied to the ionic conductances and their corresponding action potential
features are detailed in Table 4.2. A mean conduction velocity (CV) of 1.0 m/s was reported
in patients with persistent AF [224]. To consider the 3 remodeling states, we introduced
a 20% variation in CV. The models were parameterized to yield a CV along the myocyte
preferential direction of 1.2, 1.0, and 0.8 m/s for each remodeling level, respectively. Intra-
and extracellular conductivities were scaled ×3 for the BB and ×2 for the CT and PM
with respect to normal myocardium. Regional ionic heterogeneity and anisotropy ratios are
detailed in Table 4.3 [33, 225].

Table 4.3: Relative values of ionic conductances of the Courtemanche et al. model [219] to represent
regional anatomical heterogeneity and anisotropy factors [33]. BB: Bachmann bundle, CT: crista ter-minalis, LA: left atrium, LAA: left atrial appendage, MVR: mitral valve ring, PM: pectinate muscles, PV:pulmonary veins, RA: right atrium, RAA: right atrial appendage, TVR: tricuspid valve ring.

AnisotropygNagtogKurgCaLgKrgKsgK1

3.751.001.001.001.001.001.001.00RA
10.521.001.001.001.001.001.001.00PM
6.561.001.001.001.671.001.001.00CT
9.001.001.001.001.671.001.001.00BB
3.751.001.001.000.671.531.001.00TVR
3.751.001.001.000.672.441.001.00MVR
3.751.000.681.001.061.001.001.00RAA
3.751.000.681.001.061.601.001.00LAA
3.751.001.001.001.001.601.001.00LA
3.751.000.751.000.752.401.870.67PV

4.2.4 Fibrotic Substrate Modeling

The fibrotic substrate was modeled based on Nagel et al. [226], as illustrated in Figure 4.3.
Fibrosis extent corresponded to Utah 2 (5− 20%) and Utah 4 (> 35%) stages for the
M and S states, while the H state was modeled without fibrosis. The proportion of RA
and LA fibrosis extent was based on the percentages reported by Akoum et al. [192].
To consider the multifactorial nature of fibrosis, we modeled fibrotic regions with 30%
of the elements as non-conductive, with σ = 10−7 S/m to account for electrical myocyte
decoupling, and the rest affected by TGF-β1-induced electrical remodeling in response to
cellular inflammation [227, 228].
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Figure 4.3: Fibrotic substrate modeling. A) A total of 6 seeds were placed in each biatrial geometry togenerate fibrosis distributions corresponding to the clinical Utah stages [192]. B) Fibrosis distributionsin 4 subjects in state M (top, Utah 2) and S (bottom, Utah 4).

4.2.5 Arrhythmia Vulnerability

Arrhythmia vulnerability was assessed by an S1-S2 pacing protocol [229] with 2 cm inter-
point distance on the atrial surface. Stimulation points and earliest activation sites on the LA
remained consistent between monoatrial and biatrial configurations. A point was classified
as inducing if reentry was maintained for at least 1 s. The vulnerability ratio was defined
as the number of inducing points divided by the number of stimulation points. The mean
tachycardia cycle length (TCL) of the induced reentries was assessed at the stimulation site
as depicted in Figure 4.4.

0 200 400 600 800 1000 1200

Time (ms)

-100

-80

-60

-40

-20

0

(m
V)

Transmembrane Voltage
BCLmean: 154ms  std: 12msNode: 48890

0 200 400 600 800 1000 1200

Time (ms)

-20

0

20

40

60

80

(m
V)

dV/dt Transmembrane Voltage

TCL: 154 ± 12 ms

(m
V/
m
s)

(m
V)

Figure 4.4: Quantification of mean tachycardia cycle length based on transmembrane voltage series.The derivative of the voltage with respect to time (dV/dt) is quantified.
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Subsequently, we calculated the derivative of the voltage with respect to time (dV/dt),
established a threshold of 5 mV/ms to identify activations, and calculated the mean time
between activations and its standard deviation.

4.2.6 Statistical Analysis

Data are reported as mean ± SD. To evaluate statistical significance between the sample
means, we conducted a two-sampled t-test. A p-value < 0.05 was considered statistically
significant.

4.3 Results

The 8 biatrial anatomical models and the number of stimulation points in each chamber
are shown in Figure 4.5. The amount of fibrosis for each subject in each stage is shown in
Table 4.4.

P5 P6

P1 P2

P7 P8

P3 P4 TotalRALASubject

311714P1
17107P2
422418P3
371918P4
532924P5
442123P6
613229P7
331815P8

A) B)

Figure 4.5: Personalized models (A) and the total number of stimulation points (B) used to assess
arrhythmia vulnerability.

Table 4.4: Fibrosis percentage for each remodeling level. Fibrosis corresponds to Utah 2 (5−20%) andUtah 4 (> 35%) stages for M and S states, respectively. RA: right atrium, LA: left atrium.
P8P7P6P5P4P3P2P1

4242424242424242Utah stage
41.711.441.913.140.311.734.813.038.312.735.412.742.312.136.410.9LA (%)
11.95.413.15.413.45.311.75.3614.15.913.45.313.35.312.85.4RA(%)
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4.3.1 Vulnerability of the Left Atrium in Monoatrial and
Biatrial Configurations

We ran 444 monoatrial simulations, from a total of 148 stimulation points × 3 remodeling
states in the 8 LA models, and 954 biatrial simulations, from a total of 318 stimulation points
× 3 remodeling states in the 8 biatrial models to assess arrhythmia vulnerability. The number
of inducing points and the vulnerability ratio VLA for each subject in each configuration
are shown in Figure 4.6. A total of 79 reentry episodes were induced in the monoatrial
configuration, of which 32 episodes were in the M state and 47 in the S state. No reentries
were induced in the H state. In the biatrial configuration, a total of 281 reentry episodes were
induced, of which 130 were induced by pacing from the LA. In the H state, only one reentry
was induced by pacing from the LA anterior wall in proximity to the mitral valve in P6. The
monoatrial vulnerability ratio VLA among all subjects in the M and S states was 0.19±0.13
and 0.31±0.14, respectively. The biatrial vulnerability ratio VLA between the M and S states
showed minimal changes (0.41±0.22 vs. 0.40±0.15). Incorporating the RA increased in
the mean VLA vulnerability by 115.8 % in the M state and 29.0 % in the S state, as illustrated
in Figure 4.7a. In the monoatrial configuration, there was a 20.0% increase in the mean
TCL between states M and S (186.94± 13.3 vs. 224.32± 27.6ms, p < 0.001). While in
the biatrial configuration, the mean TCL of LA-induced reentries showed a 5.6% increase
between the M and S states (197.24± 18.3 vs. 208.24± 34.8 ms, p = 0.026). Including
the RA led to changes in the mean TCL of the LA-induced reentries by 5.5% (p = 0.006)
in the M scenario and a decrease of 7.2% (p = 0.010) in the scenario S, as illustrated in
Figure 4.7b.

Increased remodeling from M to S in the monoatrial configuration revealed 4.3±2.9 new
inducing points in the LA per patient, as shown in Figure 4.8a. The points became inducing
when going from M to S due to rotational activity near the fibrotic regions. Deceleration of
the wavefront and a shortened action potential in S enabled propagation within the fibrotic
region. In contrast, in M, the faster wavefront encountered refractory tissue and failed to
activate the surrounding tissue. To assess the role of the RA on LA inducibility in more detail,
we evaluated changes in LA inducibility by comparing points within the LA initiating reentry
with and without the RA, as shown in Figure 4.8b. The inclusion of the RA resulted in an
elevated LA inducibility, uncovering 5.5±3.0 inducing points in the LA biatrial scenarios
that did not induce in the monoatrial configuration, as shown in Figure 4.9. IAC contributed
to the increased reentry inducibility, as shown in Figure 4.10.
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Figure 4.6: Vulnerability of the left atrium (LA) inmonoatrial (A) and biatrial (B) configurations. Dashedlines represent mean vulnerability ratios for each remodeling level (ILA: inducing points in the LA, SP:stimulation points, H: healthy, M: mild, S: severe, IH , IM , IS: inducing points in each remodeling level).
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Figure 4.7: Impact of the right atrium (RA) on arrhythmia vulnerability ratio (A) and tachycardia cycle
length (TCL) (B). Bars depict vulnerability ratios, calculated as the number of induced points to thetotal points in each chamber across all 8 subject models. Violin plots show the probability density ofTCL measurements, with scatter points representing each reentry measurement. * p-value <0.05, **p-value <0.001 (ns: not statistically significant).
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Figure 4.9: Increased left atrium (LA) inducibility due to right atrium (RA) incorporation. Meshes dis-play LA stimulation points inducing reentry in monoatrial (yellow), biatrial (red), both (green) configura-tions, or non-inducing (white). Columns represent the inducibility type at each stimulation point. TheVenn diagram (right) depicts monoatrial and biatrial reentry distribution among all subjects.

4.3.2 Vulnerability of the Right Atrium

A total of 151 out of 281 biatrial reentry episodes were induced by pacing from the RA. The
vulnerability ratio of the RA (VRA) showed 111.1% increase between states M and S in VRA

(0.27±0.18 vs. 0.57±0.19), as depicted in Figure 4.7a. The mean TCL of the RA-induced
reentries for the M and S state was 201.33±23.0 ms and 207.87±41.6 ms (p = 0.295), as
shown in Figure 4.7b.

4.4 Discussion

This study assessed 48 arrhythmia vulnerability scenarios in 8 patient-specific anatomical
models considering monoatrial and biatrial configurations and 3 remodeling states (H, M,
and S). The main focus was to assess the role of the RA in arrhythmia vulnerability.

4.4.1 Impact of the Right Atrium

The notion that the RA could play a role in AF is not a novel concept, as indicated by
Nitta et al. [230]. However, the existing literature often neglects this potential role and
provides limited evidence regarding the extent to which the RA contributes to the initiation
and maintenance of AF. The term right atrium is scarcely mentioned in the latest guidelines
for AF treatment [231, 232]. This highlights a lack of comprehensive studies investigating
the role of the RA in the context of AF prevention and treatment.

Among all investigated configurations, the RA was the chamber with the highest vulner-
ability in the S state. A possible explanation could be the larger RA size and the increased
electrophysiological heterogeneity due to the presence of the PM, CT, and TV. Despite
the lower fibrotic extent in the RA compared to the LA, the RA was more vulnerable to
developing reentry upon stimulation than the LA.
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Figure 4.10: Reentry induction in biatrial configuration aided by inter-atrial connections (IAC) involv-
ing the posterior wall of the left atrium (LA). The stimulation point at the right superior pulmonaryvein (RSPV) of the LA, initiates the reentrant pathway through the IAC, via the coronary sinus (CS) andmiddle posterior bridge, unsupported by the monoatrial setup.

We identified additional inducing points in the LA biatrial configuration which did not
induce reentry in the LA-only model, as shown in Figure 4.10. IAC can promote reentrant
circuits and facilitate arrhythmia maintenance as shown by Roney et al. [233]. Furthermore,
for reentry to occur, an excitable gap is crucial, requiring the wavelength to be shorter than
the reentrant circuit length. As a result, incorporating the RA increases the likelihood of new
reentrant circuits influenced not only by larger size but also by changes in the wavelength
affected by regional differences in CV and effective refractory period [33].

Previous computational model studies have established that the dynamics of reentrant
drivers are influenced by the extent and distribution of the fibrotic substrate, in the RA [234]
and LA [235]. Moreover, investigations by Boyle et al. [215] and Zahid et al. [234] have
identified reentrant drivers in the RA through the utilization of biatrial models. We also
observed simultaneous interactions of multiple reentries (functional and anatomical) in the
biatrial simulations, such as rotational activity around the atrioventricular valves, unidirec-
tional blocks in the BB region, reentrant pathways aided by IAC, and rotors associated with
the fibrotic substrate. We propose that the increased inducibility in the LA biatrial model, i.e.
additional reentrant drivers, resulted from the interplay between fibrosis characteristics and
novel circuit paths, as shown in Figure 4.11.

50 ms 100 ms 150 ms 200 ms

-90

20

(m
V)

Healthy
Fibrosis

Fibrotic tissue

Figure 4.11: Example of reentry induction from stimulation point in the right atrium (RA) in S state.The inducing point (star) is located in the RA near the inferior vena cava. The reentry is anchored atthe inferior wall of the left atrium and the wave propagation slows down at the border of the fibroticregion.
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Incorporating the RA had an impact on LA vulnerability and TCL distribution. Without
the RA, the vulnerability of the LA was markedly higher in the S than in the M state.
Incorporating the RA notably diminished this difference in LA vulnerability. Adding the
RA led to 5.5 % slower LA reentries in the M state but 7.2 % faster LA reentries in the
S state, indicating a state-dependent influence of the RA on reentry dynamics in the LA.
The similar TCL between the LA and RA in the biatrial configuration suggests changes are
influenced by additional reentrant activity promoted by the RA substrate. These findings
have important implications for computer-based tools informing ablation therapy as the
arrhythmia vulnerability ratio is expected to change with RA inclusion. This is especially
relevant as successful virtual ablation therapies for AF are based on non-inducibility criteria.
Therefore, performing biatrial simulations appears advisable.

4.4.2 Arrhythmia Vulnerability in Different Remodeling
States

The majority of subject models exhibited higher vulnerability in the S state. Yet for some,
the vulnerability ratio was higher in the M state. To understand this behavior, we analyzed
activation patterns of reentries induced only in the M state. In the M state, the fibrotic
substrate impeded wavefront propagation, causing unidirectional blocks and anchoring
reentries. Conversely, in the S state, increased fibrosis led to a slower wavefront progression,
facilitating tissue recovery and promoting regular activation. For the other cases where the S
state had a higher vulnerability, the faster wavefront in M encountered refractory tissue and
failed to activate the surrounding tissue. While in S, wavefront deceleration and a shortened
action potential enabled propagation within the fibrotic region. The overall outcome was a
combination of both effects.

4.4.3 Limitations

To our knowledge, this study represents the first dedicated examination of the role of the RA
in arrhythmia vulnerability in patient-specific computer models, however the limited sample
size may impact the generalization of our findings. Different IAC configurations including
varying number, locations, and widths, might affect reentrant pathways. All virtual patient
models had a similar fibrosis pattern. CV variation was constrained to 20 %. Sustained
reentry episodes were simulated for 1 s only. We did not assess changes in structural
remodeling concerning endo-epi dissociation, a phenomenon observed in AF patients also in
the RA [236]. The absence of electrogram recordings from the study participants prevents
the assessment of clinical AF maintenance mechanisms for the simulated reentries.
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4.5 Conclusions

LA reentry vulnerability in a biatrial model is higher than in a monoatrial model. Incorporat-
ing the RA in patient-specific computational models unmasked potential inducing points in
the LA. The RA had a substrate-dependent effect on reentry dynamics and affected the TCL
of the LA-induced reentries. As virtual ablation strategies for AF rely on non-inducibility
criteria, performing biatrial simulations is advisable. Our study highlights the importance of
the RA for the maintenance and induction of arrhythmia in patient-specific computational
models.



Chapter 5
Personalization of the Effective

Refractory Period

Impact of Effective Refractory Period
Personalization on Arrhythmia Vulnerability in
Patient-Specific Atrial Computer Models

Although the effective refractory period (ERP) is one of the main electrophysiological proper-
ties governing atrial tachycardia maintenance, ERP personalization is rarely performed when
creating patient-specific computer models of the atria to inform clinical decision-making.
State-of-the-art models usually do not consider physiological ERP gradients but assume a
homogeneous ERP distribution. This assumption might have an influence on the ability to
induce reentries in the model. In this chapter, the effect of the incorporation of personalized
measurements of the ERP under four different scenarios is presented. The main goal was to
assess the influence of the personalization of the ERP on arrhythmia vulnerability of atrial
computer models.

The content of this chapter is taken and adapted from a paper that has been published open
access under Creative Commons CC-BY license in Europace [237]. Most passages have
been quoted verbatim from the publication.
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5.1 Introduction

Refractoriness is an electrophysiological property that characterizes the response of cardiac
tissue to premature stimulation. Shortened cardiac refractoriness promotes sustained re-
entrant activity [238] and can be assessed during electrophysiological studies following the
extra stimulus S1S2 pacing technique, where a train of S1 stimuli is given at a certain cycle
length followed by a premature S2 stimulus [239]. The effective refractory period (ERP)
can then be defined as the longest S1S2 interval that fails to generate a capture in the tissue.
Refractory period can only be determined at one region at a time (between stimulus and
measurement locations); thus, multiple measurements are necessary for estimations of spatial
distribution [238].

Although ERP is often linked to the action potential duration (APD), this relationship is
inconsistent, particularly in the presence of structural abnormalities [240, 241]. ERP can be
influenced by the stimulus type and the local structural environment, such as electrotonic
loading. This makes ERP especially relevant in cases of fibrosis, as fibrosis can affect ERP
without significantly altering APD.

Clinical and pre-clinical investigations have demonstrated heterogeneous refractoriness
properties across different atrial regions, which also vary from patient to patient [242–244].
During atrial fibrillation (AF), high stimulation frequencies induce electrical remodeling,
resulting in shortened APD and ERP [245]. However, contrary to the belief that prolonged
exposure to AF always shortens ERP, patients with persistent AF may exhibit longer ERP
due to the presence of atrial dilatation [241]. So, the overall contribution of refractoriness to
increased reentrant inducibility remains unclear.

A common theory explaining the existence of AF postulates that both a trigger and
a vulnerable substrate are necessary for the initiation and maintenance of AF [246]. Ec-
topic activity from the sleeves of the pulmonary veins (PV) is the most frequent form of
AF triggers [136]. Non-PV triggers have been identified in the crista terminalis (CT), the
interatrial septum, the left atrium (LA) posterior wall, the left atrial appendage (LAA), the
ligament of Marshall, the superior vena cava (SVC), and the coronary sinus; yet their precise
role in initiating AF remains uncertain [247]. The vulnerable substrate refers to changes
in electrical and structural remodeling (e.g., shortening of the APD, presence of fibrosis,
atrial dilatation, adipose tissue infiltration, inflammation, etc.) [1]. The presence of electrical
heterogeneity, such as regional variations in conduction velocity (CV), APD, and ERP,
can favour unidirectional block in response to ectopy/stimulation, which can then initiate
reentry [118]. However, it is still challenging to characterize the vulnerable substrate in
a clinical or experimental setting. Understanding the interplay between electrophysiolog-
ical and structural factors, and how their regional distribution (heterogeneity) influences
arrhythmia maintenance remains a complex task in cardiac electrophysiology research.

In this sense, patient-specific atrial computational models provide a robust framework
for studying, under controlled conditions, the integrated effect of substrate features unique
to each patient and their impact on arrhythmia vulnerability [15, 17, 120]. The creation of
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patient-specific computer models of the atria typically involves anatomical personalization
using image data obtained from magnetic resonance imaging (MRI), computed tomography
scans or electroanatomic mapping systems (EAMS). Electrophysiological personalization
is rarely performed since patient electrophysiological data is usually not available before-
hand [248]. Some studies have conducted personalization of atrial electrophysiology, by
fitting model parameters to patient clinical data [17, 27, 248–250]. Their findings suggest
that personalized electrophysiological parameter values vary among patients and differ from
standardised literature parameter values. Nevertheless, the effect of incorporating patient-
specific clinical ERP measurements on arrhythmia vulnerability has not yet been assessed.
In this work, we investigate the role of incorporating personalized ERP values from various
clinical measurements on the in silico assessment of arrhythmia vulnerability.

5.2 Methods

5.2.1 Electrophysiological Study

Six patients with a history of AF and prior pulmonary vein isolation (PVI) and one patient
with atrial flutter (AFl) underwent an electrophysiological study at Städtisches Klinikum
Karlsruhe, Germany. Patients gave written informed consent, and the ethics committee
approved the study protocol. Electroanatomic maps during sinus rhythm were generated
using the Rhythmia 3D mapping system (Boston Scientific, USA). For patients with prior
PVI, LA mapping was conducted, whereas for the patient with AFl, the right atrium (RA)
was mapped. ERP measurements were obtained from multiple locations in the atria (5.7±1.4
measurements) following an S1S2 protocol with seven S1 stimuli at a basic cycle length of
500 ms and an S2 stimulus with intervals between 300 and 200 ms, decreasing by 10 ms until
loss of capture. Pacing stimuli for clinical ERP identification had an amplitude of 5 V with a
duration of 1 ms in a bipolar configuration, using either the Intellamap Orion™ 8.5 F catheter
or the Intellanav Stablepoint™ 7F catheter (Boston Scientific, USA). Stimulus capture was
verified for each location, and the amplitude was incrementally increased at locations where
no capture was achieved initially. ERP measurements were taken in different anatomical
regions such as the anterior wall, posterior or lateral wall, appendage and at least one PV in
the case of LA geometries. A representative endocardial trace of the stimulation protocol
is shown in Figure 5.1A. ERP was defined as the longest S1S2 interval without capture.
To characterize the patient-specific fibrotic substrate, low voltage areas (< 0.5 mV) were
identified from bipolar voltage maps.

5.2.2 Patient-Specific Anatomical Modeling

The atrial anatomy derived from the EAMS was utilized to generate personalized simulation-
ready bilayer meshes. The seven bilayer meshes were created using AugmentA [49]
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including rule-based anatomical annotations and fiber orientations. For the LA models,
the LAA, mitral valve (MV), PV, and left Bachmann’s bundle (BB), were automatically
annotated; for the RA model, the tricuspid valve (TV), right atrial appendage (RAA), SVC,
inferior vena cava (IVC), pectinate muscles (PM), right BB, and CT. An open-source
Python-based algorithm was used to subdivide the meshes into anatomical regions: anterior
wall, septal wall, posterior wall, lateral wall, inferior wall, appendage, for the RA and LA
accordingly [251].

5.2.3 Atrial Electrophysiology Modeling

Electrical propagation in the atria was modelled using the monodomain equation and sim-
ulated with openCARP [221]. Anisotropy in different parts of the atria were modelled as
described in Krueger M. et al [248]. CV was doubled in the CT and tripled in the PM and in
the BB [252]. As both ERP and CV influence reentry maintenance [249], our aim was to
identify the CV at which vulnerability was highest. We tuned the longitudinal monodomain
conductivity to achieve a mean CV of 0.3, 0.5, and 0.7 m/s in the bulk myocardium, for
each patient-specific model. A CV of 0.3 m/s, as shown in Figure 5.2, exhibited the highest
number of inducible points and was therefore selected for further vulnerability assessments.
To reach a limit cycle, single-cell models were paced 100 times with a basic cycle length
of 500 ms. Single-chamber models were paced four times from the earliest activation site
identified from local activation maps, also with a basic cycle length of 500 ms.
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5.2.4 Patient-Specific ERP Modeling

To reproduce patient-specific clinical ERP in silico, the maximum conductances of key ionic
channels affecting action potential morphology of the established Courtemanche M. et al.
cellular model [51] were modified from control conditions to a setup that reflects changes in
the action potential observed in patients with persistent AF [252]. We modified the maximum
conductances of the inward rectifier K+ current (gK1), the ultrarapid (gKur), the rapid (gKr),
the slow delayed-rectifier (gs), and the transient outward (gto) K+ currents; the L-type Ca2+

current (gCaL), the sarcoplasmic Ca2+ pump current (IpCa), and the Ca2+/Na+ exchanger
(maxINaCa). The ion channel conductances were linearly scaled to generate a set of 50
different cellular models with gradually increasing remodeling levels. We generated an in
silico tissue cable for each cellular model with a length of 40 mm and a resolution of 0.4 mm
and performed a virtual S1S2 pacing protocol to obtain the ERP (Figure 5.1C-D). The scaling
factors for each combination and the corresponding ERP can be found in Table 5.1. Pacing
stimuli for in silico ERP identification had a current density of 30 µA/cm2 with a duration of
3 ms and an S2 coupling interval ranging from 350 ms up to loss of capture in steps of 1 ms.

5.2.5 Generation of ERP Scenarios

To assess the role of ERP personalization, we generated four scenarios: homogeneous (A),
heterogeneous (B), regional (C), and continuous (D) ERP distribution. The first two con-
figurations were non-personalized based on literature data, the latter two were personalized
based on patient measurements. In scenario A, the same cellular model corresponding to
AF-induced remodeling [252] was applied to the whole atrium. In scenario B, anatomical
structures had individual cellular model variants with specific ERP assigned based on litera-
ture data [248]. For scenario C, all nodes in anatomical regions were assigned distinct cellular
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Table 5.1: Scaling factors applied to the maximum ionic conductances for each combination resulting
in the corresponding effective refractory period (ERP) (ms).

GK1 GKs GKr GCaL factorGKur Gto maxIpCa maxINaCa ERP

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 3201.0204 1.0204 1.0122 0.9888 0.9898 0.9867 1.0102 1.0122 3101.0408 1.0408 1.0245 0.9776 0.9796 0.9735 1.0204 1.0245 3101.0612 1.0612 1.0367 0.9663 0.9694 0.9602 1.0306 1.0367 3001.0816 1.0816 1.0490 0.9551 0.9592 0.9469 1.0408 1.0490 3001.1020 1.1020 1.0612 0.9439 0.9490 0.9337 1.0510 1.0612 2901.1224 1.1224 1.0735 0.9327 0.9388 0.9204 1.0612 1.0735 2901.1429 1.1429 1.0857 0.9214 0.9286 0.9071 1.0714 1.0857 2801.1633 1.1633 1.0980 0.9102 0.9184 0.8939 1.0816 1.0980 2801.1837 1.1837 1.1102 0.8990 0.9082 0.8806 1.0918 1.1102 2701.2041 1.2041 1.1224 0.8878 0.8980 0.8673 1.1020 1.1224 2701.2245 1.2245 1.1347 0.8765 0.8878 0.8541 1.1122 1.1347 2601.2449 1.2449 1.1469 0.8653 0.8776 0.8408 1.1224 1.1469 2601.2653 1.2653 1.1592 0.8541 0.8673 0.8276 1.1327 1.1592 2501.2857 1.2857 1.1714 0.8429 0.8571 0.8143 1.1429 1.1714 2501.3061 1.3061 1.1837 0.8316 0.8469 0.8010 1.1531 1.1837 2501.3265 1.3265 1.1959 0.8204 0.8367 0.7878 1.1633 1.1959 2401.3469 1.3469 1.2082 0.8092 0.8265 0.7745 1.1735 1.2082 2401.3673 1.3673 1.2204 0.7980 0.8163 0.7612 1.1837 1.2204 2401.3878 1.3878 1.2327 0.7867 0.8061 0.7480 1.1939 1.2327 2301.4082 1.4082 1.2449 0.7755 0.7959 0.7347 1.2041 1.2449 2301.4286 1.4286 1.2571 0.7643 0.7857 0.7214 1.2143 1.2571 2301.4490 1.4490 1.2694 0.7531 0.7755 0.7082 1.2245 1.2694 2201.4694 1.4694 1.2816 0.7418 0.7653 0.6949 1.2347 1.2816 2201.4898 1.4898 1.2939 0.7306 0.7551 0.6816 1.2449 1.2939 2201.5102 1.5102 1.3061 0.7194 0.7449 0.6684 1.2551 1.3061 2101.5306 1.5306 1.3184 0.7082 0.7347 0.6551 1.2653 1.3184 2101.5510 1.5510 1.3306 0.6969 0.7245 0.6418 1.2755 1.3306 2101.5714 1.5714 1.3429 0.6857 0.7143 0.6286 1.2857 1.3429 2101.5918 1.5918 1.3551 0.6745 0.7041 0.6153 1.2959 1.3551 2001.6122 1.6122 1.3673 0.6633 0.6939 0.6020 1.3061 1.3673 2001.6327 1.6327 1.3796 0.6520 0.6837 0.5888 1.3163 1.3796 2001.6531 1.6531 1.3918 0.6408 0.6735 0.5755 1.3265 1.3918 1901.6735 1.6735 1.4041 0.6296 0.6633 0.5622 1.3367 1.4041 1901.6939 1.6939 1.4163 0.6184 0.6531 0.5490 1.3469 1.4163 1901.7143 1.7143 1.4286 0.6071 0.6429 0.5357 1.3571 1.4286 1901.7347 1.7347 1.4408 0.5959 0.6327 0.5224 1.3673 1.4408 1801.7551 1.7551 1.4531 0.5847 0.6224 0.5092 1.3776 1.4531 1801.7755 1.7755 1.4653 0.5735 0.6122 0.4959 1.3878 1.4653 1801.7959 1.7959 1.4776 0.5622 0.6020 0.4827 1.3980 1.4776 1801.8163 1.8163 1.4898 0.5510 0.5918 0.4694 1.4082 1.4898 1801.8367 1.8367 1.5020 0.5398 0.5816 0.4561 1.4184 1.5020 1701.8571 1.8571 1.5143 0.5286 0.5714 0.4429 1.4286 1.5143 1701.8776 1.8776 1.5265 0.5173 0.5612 0.4296 1.4388 1.5265 1701.8980 1.8980 1.5388 0.5061 0.5510 0.4163 1.4490 1.5388 1701.9184 1.9184 1.5510 0.4949 0.5408 0.4031 1.4592 1.5510 1601.9388 1.9388 1.5633 0.4837 0.5306 0.3898 1.4694 1.5633 1601.9592 1.9592 1.5755 0.4724 0.5204 0.3765 1.4796 1.5755 1601.9796 1.9796 1.5878 0.4612 0.5102 0.3633 1.4898 1.5878 1602.0000 2.0000 1.6000 0.4500 0.5000 0.3500 1.5000 1.6000 160
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models with the ERP value matching the spatially closest available clinical measurement.
In case of multiple measurements present in the same region, the average ERP value was
considered for the whole region. In scenario D, the measured ERPs were assigned to the
corresponding catheter tip positions and then continuously mapped to the whole surface by
Laplacian interpolation [253]. The measuring points were defined as boundary conditions, so
that the ERP values never exceeded the measured ERP range. The ion channel conductances
for each individual mesh node were then adjusted accordingly to match the interpolated ERP.
For each modified ionic channel conductance in the Courtemanche M. et al. model [51], an
adjustment file was generated, consisting of a list with the corresponding scaling factor for
the ERP value at each node in the mesh. Adjustment files were generated in openCARP using
the adjustment function as described in Boyle P. [254]. The four personalization scenarios
are shown in Figure 5.3.
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Figure 5.3: Scenarios for the evaluation of ERP personalization. Homogeneous (A) with non-personalized ERP based on literature data [252], heterogeneous (B) with different non-personalizedERP based on anatomical structures [248], regional (C) with personalized ERP divided into anatomicalregions, and continuous (D) with personalized ERP from interpolated measurements. Circles denotecatheter tip locations where the pacing stimulus was delivered. ERP: effective refractory period.

5.2.6 Patient-Specific Substrate Modeling

Substrate was incorporated into the meshes based on the identification of low voltage areas
(LVA). To distinguish between ablation lesions from PVI and native fibrosis, we defined
ablation lesion regions as having voltage < 0.1mV and native fibrosis regions as having
a voltage between 0.1 and 0.5 mV [118]. To model native fibrosis, we accounted for two
different cellular mechanisms: replacement fibrosis and inflammation. For regions defined
as native fibrosis, 30% of the elements were randomly selected and set to non-conductive
with σ = 10−7 S/m to represent replacement fibrosis, while the remaining 70% were set
to be electrically remodelled in response to cellular inflammation [17, 39]. Several ionic
conductances were rescaled to represent the effects of electrical remodeling (gCaL×22.5%,
gNa×60%, factorgKur×50%, gto×35%, gKs×200%, maxIpCa×150%, maxINaCa×160%).
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To model ablation lesions, all elements were set to be non-conductive [255]. To assess the
influence of ablation lesions and native fibrosis on arrhythmia vulnerability, we created
four additional scenarios, namely A2, D2, A3 and D3. The first two scenarios, A2 and D2,
included ablation lesions and native fibrosis. Scenario A2 had the same ERP as scenario A
(homogeneous), and scenario D2 corresponding to same ERP personalization as scenario
D (continuous). Lastly, to model a stage before PVI, we generated scenarios A3 and D3
including only native fibrosis regions, and ablation lesions were modeled as healthy.

5.2.7 Vulnerability Assessment

Arrhythmia vulnerability was assessed by virtual S1S2 pacing at different locations in the
atria separated by an average distance of 2 cm [32]. The vulnerability ratio was defined as
the number of inducing points divided by the number of stimulation points. Stimulation
points locations remained consistent among scenarios. Transmembrane voltage traces were
recorded for 1 s for each reentry at the inducing stimulus location. We determined the
tachycardia cycle length (TCL) of the reentries by calculating the average between peaks of
dV /dt.

5.2.8 Sensitivity Analysis

To study the influence of uncertainty in ERP measurements, we conducted a sensitivity
analysis by including perturbation in ERP measurements in the ranges of ±2, ±5, ±10, ±20
and ±50 ms, randomly drawn from a uniform distribution. We generated 10 perturbation sets
for each perturbation range, resulting in a total of 40 new perturbed ERP sets; a separate
random value was drawn for each measured ERP. Finally, we generated new interpolated
maps using the perturbed ERP sets. Due to the high computational cost of the vulnerability
assessment (15±2.4 min per stimulation point, utilizing 4 nodes × 40 CPU cores with Intel
Xeon Gold 6230 2.1GHz), the sensitivity analysis was limited the assessment to patient P3
model, which showed the highest vulnerability in the LA model cohort.

5.2.9 Statistical Analysis

The data are presented as mean±SD. We used a two-sample t-test to determine statistical
significance between the sample means. P-values <0.05 were considered significant.

5.2.10 Data Availability

The data underlying this article including bilayer models, adjustment files and source code to
reproduce the simulated reentries are accessible under open licences at [256].
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5.3 Results

Patient characteristics are outlined in Table 5.2. The overall mean clinically measured ERP
was 254.0 ± 32.7 ms. The dispersion of the ERP measurements is shown in the boxplot in
Figure 5.2A. The ERP distribution maps for each patient is illustrated in Figure 5.2B. Bipolar
voltage maps for each patient are shown in Figure 5.5A. LVA accounted for 42.8 ± 16.4 % of
the atrial surface. The amount of fibrosis, ablation lesions, and healthy tissue for each patient
are shown in Figure 5.5B.

Table 5.2: Clinical characteristics of patient cohort

Patient Sex Chamber Age Volume Area LVA ERP ERP Dx
(years) (ml) (cm2) (%) (ms) (#)

P1 F LA 67 270.1 267.4 45.49 222.0±11.0 5 PAF
P2 M RA 63 221.4 200.7 25.78 222.5±14.9 8 AFl
P3 F LA 72 175.9 179.8 46.04 232.0±16.4 7 PAF
P4 M LA 76 175.6 187.4 74.02 236.3±21.3 5 PeAF
P5 M LA 61 86.9 120.0 47.36 284.0±20.7 5 PeAF
P6 F LA 63 95.2 121.2 28.85 286.0±13.4 4 PAF
P7 M LA 65 106.8 136.9 32.35 295.0±20.8 6 PAF

Dx: diagnosis, ERP: effective refractory period, LA: left atrium, LVA: low voltage area, PAF: paroxysmal atrial fibrilla-
tion, PeAF: persistent atrial fibrillation, RA: right atrium, #: number of measurements.

The ERP of in silico tissue cables varied from 320 ms in the healthy state to 157 ms
in the AF remodeling state. Non-personalized scenarios had a shorter ERP and reduced
dispersion with an ERP of 158.9± 5.3 ms, while personalized scenarios had an ERP of
254.0±32.7 ms. From a total of 214 stimulation points (30.6±8.9 stimulation points per
patient), 61 simulated reentries were induced across the four scenarios without fibrotic
substrate, with individual counts of 7, 18, 20, and 16 reentries for scenarios A, B, C, and D,
respectively. Vulnerability values are shown in Figure 5.6. The vulnerability for scenario
A was 3.4± 4.0%, 7.7± 3.4% for scenario B, 9.0± 5.1% for scenario C and 7.0± 3.6%
for scenario D. The mean TCL was 167.07±12.58 ms for scenario A, 158.42±27.52 ms
for scenario B, 265.17±39.87 ms for scenario C and 285.88±77.31 ms for scenario D, as
shown in Figure 5.7.

We assessed the impact of incorporating fibrotic substrate informed by LVA into the
models along with ERP personalization on arrhythmia vulnerability. Given that most patients
had undergone previous PVI, we compared vulnerability with and without ablation lesions
defined by regions where bipolar amplitude was < 0.1 mV. To avoid additional confounding
factors, we compared scenario A (homogeneous non-personalized) and scenario D (con-
tinuous with personalized ERP) without fibrosis with their respective counterparts with
fibrosis and ablation lesions A2 and D2 (Figure 5.8). Incorporating fibrosis and ablation
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Figure 5.4: Distribution of clinically measured effective refractory period. 1) Boxplots show the disper-sion of ERP measurements for each patient, where the points represent each individual measurement.2) ERP distribution map generated from interpolated clinical measurements from an anterior view. P1-P7 indicate individual patients. ERP: effective refractory period.
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Figure 5.6: Comparison of arrhythmia vulnerability and number of inducing points among four sce-
narios. 1) Vulnerability for each patient in four personalization scenarios without fibrotic substrate 2)Number of inducing points for each patient. 3) Mean vulnerability, bars indicate standard deviation.P1-P7 indicate individual patients. Scenarios are defined as A: homogeneous, B: heterogeneous, C:regional, and D: continuous ERP distribution. ERP: effective refractory period.

lesions resulted in a vulnerability of 11.3± 7.28% and 3.93± 3.33% for A2 and D2, re-
spectively. Incorporating only fibrosis without ablation lesions resulted in a vulnerability of
47.54±31.96% and 39.4±30.31% for A3 and D3, respectively. Area reduction due to PVI
decreased vulnerability by 36.2% when comparing A3 vs A2 (47.5±32.0% vs 11.3±7.3%),
and by 35.5% when comparing D3 vs D2 (39.4±30.3% vs 3.9±3.3%) (Figure 5.8). The
magnitude of the difference between A3 and D3 varied among patients, with some expe-
riencing small differences in vulnerability, e.g., P2 and P4, while others showing a bigger
difference, e.g., P1 and P7. On average, the homogeneously reduced ERP in A3 in the
presence of native fibrosis without ablation lesions resulted in higher vulnerability compared
to D3.

Incorporating perturbations to the measured ERP in the sensitivity analysis slightly
impacted the vulnerability of the model from 9.1% to 5.8±2.7%, 6.1±3.5%, 6.9±3.7%,
and 5.2± 3.5%, observed for perturbations in the range of ±2, ±5, ±10 and ±20 ms,
respectively (Figure 5.9). Only when the perturbations were in the range of ±50 ms, a higher
standard deviation was observed (9.7±10.0%).
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5.4 Discussion

In this study, we assessed arrhythmia vulnerability in a cohort of seven patient-specific
atrial models, each with information on the distribution of ERP and low voltage substrate.
We compared vulnerability across four ERP personalization scenarios: non-personalized
homogeneous (A), non-personalized heterogeneous (B), personalized regional (C), and
personalized continuous (D) distribution of ERP without substrate. Secondly, we investigated
the impact on vulnerability of the interaction between native fibrosis and ablation lesions
with ERP. Thirdly, we conducted a sensitivity analysis to evaluate the effects of uncertainty
in ERP measurements on arrhythmia vulnerability. The four main highlights of our study
are: 1) differences in arrhythmia vulnerability between personalized and non-personalized
scenarios should be acknowledged, particularly for patients with low ERP, 2) an increased
dispersion of the ERP in personalized scenarios had a greater effect on reentry dynamics than
on mean vulnerability values, 3) the incorporation of personalized ERP had a greater impact
on inducibility than had a homogeneously reduced ERP, however, this effect reversed when
native fibrosis was included, with a higher inducibility for the homogeneously reduced ERP
scenario, and 4) ERP measurement uncertainty up to 20ms slightly influences arrhythmia
vulnerability.
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5.4.1 Effect of ERP Personalization on Arrhythmia
Vulnerability and Dynamics

Personalized and non-personalized scenarios were different in the mean and dispersion
of the ERP. Among all scenarios, the homogeneous non-personalized scenario A had the
lowest vulnerability, while the regional personalized scenario C had the highest vulnerability.
Heterogeneities in the form of regions in scenario C promote unidirectional blocks, thereby
increasing vulnerability, while the homogeneous scenario A makes it less likely to induce
reentry even with a shorter ERP [257]. Differences in vulnerability between personalized
and non-personalized scenarios were greater in patients with lower ERP (< 240 ms), cor-
responding to P1-P4, with a total of 56 inducing points. In contrast, the remaining three
patients (P5-P7) were almost non-inducible, with only five inducing points in total. During
cursory follow-up, two out of seven patients (P1 and P3) recurred with AF after four and
eight months, respectively. Decreased inducibility in P5-P7 could be attributed to the re-
duced effective atrial size [258]. Thus, differences in vulnerability between personalized and
non-personalized scenarios cannot be neglected, particularly for patients with low ERP.

The effect of ERP personalization becomes more evident when analysing reentry dynam-
ics. There were no significant differences in the TCL of the non-personalized scenarios A
and B (167.1±12.6 ms vs. 158.4±27.5 ms, p = 0.43), nor were there significant differences
between the personalized scenarios C and D (265.2±39.9 ms vs. 285.9±77.3 ms, p = 0.31).
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However, personalized scenarios had significantly slower TCL compared to non-personalized
scenarios (p < 0.001). This finding suggests that the increased dispersion of the ERP in the
personalized scenarios has a greater effect on reentry dynamics than on the absolute value of
vulnerability.

5.4.2 Increased ERP Dispersion is Associated with Higher
Arrhythmia Vulnerability

Previous clinical and simulation studies have analyzed the effect of ERP and APD dispersion
on arrhythmia vulnerability in patients with persistent and paroxysmal AF [114, 122, 241,
259]. Dispersion can be defined both spatially and temporally. Spatial dispersion refers to
the difference between the maximum and minimum values of ERP measurements [122],
while temporal dispersion refers to variation exceeding 5% from the baseline value [114]. In
the study of Narayan et al., pacing-induced AF from either the PVs or high RA was always
preceded by an increased temporal APD dispersion [114]. In a cohort of 47 patients with
paroxysmal AF, ERP was measured in 5 sites in both atria and a higher ERP dispersion was
found to be the only clinical predictor of AF inducibility [122]. An interesting finding of
this study was that in patients with induced AF, ERP dispersion was similar in those with
self-sustained and self-terminated AF. In another cohort of 22 patient-specific biatrial models
without personalized ERP, where the substrate was modeled based on LGE-MRI by applying
changes in anisotropy, conduction, and remodeled electrophysiology, the 13 models in which
AF was induced had significantly larger APD gradients [21]. In our results, scenarios with
higher ERP dispersion in patients with a lower ERP mean had higher inducibility.

Previous studies have demonstrated that introducing a ±10% homogeneous variation
to the baseline APD increases uncertainty in both the quantity and preferred locations of
reentrant drivers [38, 260]. Consequently, it is expected that higher variations would also
impact reentry inducibility. In our results, the clinical ERP ranged from 222 ms to 295 ms,
indicating a variation of 32.9%. When compared to literature-based ERP values (157 ms),
the variation between the literature-based value and the maximum observed clinical ERP
reaches 87.9%. We conclude that increased inducibility depends on both reduced mean ERP
and increased dispersion.

In this study, electrophysiological and substrate information was obtained through single-
chamber electroanatomical mapping. A previous study from our group [210] showed that
arrhythmia vulnerability is higher in biatrial models than LA-only models. This increased
vulnerability is due to exacerbated electrophysiological and substrate heterogeneity in the RA
and the presence of interatrial connections [261]. ERP measurements can typically only be
obtained during the mapping procedure, which shortens the time frame available to build the
personalized model and run the simulation to a few minutes. This warrants faster simulation
approaches [262], reduced-order models or surrogate measurements of ERP distribution if
no data from previous procedures can be utilized.
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5.4.3 Interaction Between ERP and Substrate
Heterogeneities

In current clinical practice, it remains challenging to identify patients for whom PVI will
be sufficient to prevent AF recurrence without additional extra-PVI ablation. Six out of
seven patients in our cohort had undergone prior PVI, indicating that PVI was ineffective in
preventing AF recurrence. It is likely that substrate progression and gaps in PVI promoted AF
recurrence [81, 263]. Regional heterogeneities in ERP dispersion are believed to be capable
of sustaining AF on vulnerable substrates. Several atrial in silico studies have shown that
fibrosis regions can anchor or block reentrant drivers [46, 234, 264]. Our results showed that
the presence of fibrosis and ablation lesions had a higher impact on vulnerability than ERP.
However, the combination of fibrotic substrate and ERP had different effects on vulnerability.
Scenarios in which both native fibrosis and ablation lesions were considered had lower
vulnerability compared to those having native fibrosis only. A possible explanation is the
reduced effective atrial size due to PVI lesions [258]. We tried to simulate a state prior to PVI
in scenarios A3 and D3, although it is likely that native fibrosis based on the identification of
regions with voltage >0.1 and <0.5 mV might not accurately represent the pre-ablation state.
On average, the lower mean ERP in A3 in the presence of native fibrosis without ablation
lesions resulted in higher vulnerability compared to a dispersed ERP distribution as in D3.
As substrate areas have a significant impact on model inducibility, further studies should
focus on providing a more detailed description of their spatial distribution for informing
patient-specific models.

5.4.4 Incorporating Uncertainty to ERP measurements

Measured ERP values depend on the time resolution of the S2 coupling interval, with higher
resolution leading to more accurate values. To determine whether the addition of ERP
perturbations would affect vulnerability, we conducted a sensitivity analysis by running
50 additional vulnerability assessments. Our results suggest that variations in the range of
2-20 ms did not markedly change the number of inducing points, and vulnerability remained
similar, indicating that further reductions (<10 ms) in the S2 coupling interval would not
impact model inducibility. Only when the perturbations were in the range of 50 ms, a higher
standard deviation was observed. However, these differences in vulnerability might become
more pronounced when functional substrate is incorporated. As mentioned before, reentry
dynamics are affected when ERP is personalized, rather than inducibility; therefore, future
studies should assess the impact of ERP uncertainty together with substrate information on
reentry dynamics.
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5.5 Limitations

The small sample size can limit the generalization of our findings. No biatrial electrophysio-
logical mapping data were available; therefore, single-chamber patient-specific models were
generated, which did not allow for the assessment of ERP dispersion effects between the
LA and RA on arrhythmia vulnerability. In the optimisation process to adapt the cellular
electrophysiology model to measured ERP, we reduced the dimensionality of the parameter
set space by constraining the range of variation for each parameter in a linear fashion from
normal healthy to changes due to persistent AF. We did not personalize CV distribution. The
rate-dependent nature of ERP was not evaluated in our study as clinically measurements of
the ERP were only obtained at 500 ms S1 cycle length.

5.6 Conclusions

Incorporation of patient-specific ERP values affects the assessment of AF vulnerability.
Differences in arrhythmia vulnerability between personalized and non-personalized scenarios
should be acknowledged, particularly for patients with low ERP. An increased dispersion
of the ERP in personalized scenarios had a greater effect on reentry dynamics than on
mean vulnerability values. The incorporation of personalized ERP had a greater impact on
inducibility than had a homogeneously reduced ERP, with this effect reversing once fibrosis
was included. ERP measurement uncertainty up to 20 ms slightly influences arrhythmia
vulnerability. Functional personalization of atrial in silico models appears essential and
warrants confirmation in larger cohorts.
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Personalization of Activation

Times

Personalized Modeling of Atrial Activation and
P-waves: a Comparison Between Invasive and
Non-invasive Cardiac Mapping

This chapter compares the use of invasive and non-invasive patient-specific activation data
for the generation of P-waves and for the assessment of arrhythmia vulnerability in silico.
Firstly, local activation times from non-invasive electrocardiographic imaging (ECGI) and
from minimally invasive electro-anatomical mapping system (EAMS) were used to perform
a forward calculation to generate simulated P-waves and compared with measured P-waves
from two patients. Secondly, activation and substrate data obtained from 8 patients measured
invasively and non-invasively were used to generate patient-specific computer atrial models
and to evaluate the effect of the selected clinical data on arrhythmia vulnerability.

The content of this chapter is taken and adapted from a paper that has been published open
access under Creative Commons CC-BY license in Computing in Cardiology [265]. Most
passages have been quoted verbatim from the publication.

6.1 Introduction

Personalized atrial models including anatomical and functional features have been used
as mechanistic tools to understand the dynamics of atrial fibrillation (AF) and to predict
therapy success [17]. One of the principal features of interest in the process of functional
twinning is the incorporation of conduction velocity (CV) information into the personalized
model. CV is an electrophysiological (EP) property that describes the direction-dependent

103
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(anisotropic) and spatially heterogeneous speed with which the electrical depolarization
wave spreads in the cardiac tissue [31]. Changes in CV can be associated with the location
of the underlying arrhythmogenic substrate [266]. When creating a patient-specific digital
model for therapy planning, it is therefore important to match this parameter to represent
the electrical propagation accurately. Mean CV can be estimated from P-wave duration
from the body surface electrocardiogram (ECG) [33]. Regional CV can be calculated from
local activation time (LAT) maps obtained from non-invasive electrocardiographic imaging
(ECGI) [267] or from invasive intracardiac electrograms (IEGM) [31, 268] from electro-
anatomical mapping system (EAMS). LAT maps from EAMS have usually higher resolution
and provide a more accurate representation of the electrical propagation as the catheter is
placed closer to the cardiac source [269]. On the other hand, ECGI has the advantage of
reconstructing atrial activation from torso recordings, eliminating the risk of an invasive
procedure.

Figure 6.1: Study pipeline. Local activation times (LAT) data were mapped to the magnetic resonanceimaging (MRI) geometry and interpolated. A precomputed atrial action potential (AP) was placed inevery node of the bilayer model and shifted in time according to the LAT. Extracellular potentials wererecovered at selected electrode positions on the torso surface to obtain virtual P-waves.

Several research groups have described processes to create personalized atrial models,
these include the use of only pre-procedural information such as magnetic resonance imaging
(MRI) and computed tomography scans (CT) [15, 19], or the use of procedural data together
with non-invasive imaging techniques [16–18]. However, it remains unclear whether using
non-invasive pre-procedural data is sufficient when creating personalized atrial models for
therapy planning or if further activation data is required from invasive recordings [38]. Our
method generated synthetic P-waves using LAT maps from invasive and non-invasive data.
We studied the influence of the selected input data modality on the morphology of the
computed P-waves and we finally compared them with the P-waves measured on the surface
of the torso.
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6.2 Methods

Data from the invasive Carto® 3 EAMS (Biosense Webster), from the non-invasive ECGI sys-
tem Acorys® (Corify Care), and biatrial geometries from a 3-Tesla CMR scanner (Siemens
Healthcare) segmented using ADAS® software (Galgo Medical) were obtained from two
patients at Hospital Clínic, Barcelona undergoing catheter ablation of AF (Patient A: female,
61 years with persistent AF and patient B: male 58 years with paroxysmal AF). Both patients
are part of the NOISE-AF study (NCT04496336), provided written informed consent and
the protocol was approved by the hospital ethics committee. Invasive and non-invasive LAT
maps before ablation were obtained during sinus rhythm for patient A and during coronary
sinus pacing for patient B. A summary of the study pipeline is presented in Figure 6.1.

6.2.1 Electrocardiographic Imaging Data

The electrical activation of the atria was reconstructed by solving the inverse electrocardiog-
raphy problem from body surface potential recordings. The torso surface was reconstructed
from a 360° video of the patient’s chest while wearing the 64-electrode vest. The biatrial
geometries from ECGI consisted of a shell of the MRI segmentation having both atria fused.
The ECGI shell was already aligned to the original MRI geometry, so no additional co-
registration step was needed. To compare the measured P-waves to our computed P-waves,
6 electrodes from ECGI resembling standard ECG locations were used to obtain 9-lead
reference traces (I, II, III, aVR, aVL, aVF, V1, V2 and V6).

Figure 6.2: Comparison between computed and measured P-waves. Patient A data was obtainedduring sinus rhythm while Patient B data was obtained during coronary sinus pacing. Measured P-waves are shown in black, the P-waves computed based on EAMS LAT maps are colored in orange, andthe P-waves from ECGI LAT data are colored in blue. The signals were aligned and amplified to matchthe amplitude of the measured P-wave for each lead.
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6.2.2 Electroanatomical Mapping Data

Endocardial biatrial geometries and LAT maps were generated from the CARTO® 3 cases
using IEGM recordings. The activation sequence was verified to disregard LAT artifacts by
leveraging a priori knowledge about the expanding wavefront [49]. We divided the set P of
points x in the LAT map into N activation bands Γi starting at the earliest activation point
(EAP) up to the latest activation point (LAP), with a temporal resolution dt = 5 ms:

Γi = {x ∈ P | LAT(EAP)+dt · i < LAT(x)≤ LAT(EAP)+dt · (i+1)} (6.1)
To disregard outliers, EAP was defined as the center of mass of the region below the

2.5th percentile of the LAT distribution and LAP of those above the 97.5th percentile. The
biggest connected island within the 2.5th percentile of the LAT was used to initialize the
first reliable region X0. The domain of each band Γi contains Mi islands of points x to be
classified as reliable or artifact annotations. Islands are classified as reliable and added to the
region C if a maximum distance between the centroid of the current reliable region Xi and
the centroid of the island Xi, j is fulfilled:

‖C(Xi)−C(Xi, j)‖ ≤ 1+ i,mm (6.2)
Xi is then initialized with Xi−1 and a new centroid is calculated in the next iteration.

The final LAT map consisted only of reliable regions and was then mapped to the MRI
geometry. For image co-registration, the veins and valves were manually clipped using
Paraview v5.9.1 (Kitware). Then the centroids of the valve and vein rings were extracted
and used as landmarks to perform rigid alignment of the EAMS geometry to the biatrial
MRI. The iterative closest point algorithm was used to further co-register the clipped biatrial
endocardial geometry to the MRI geometry with Scalismo® [270].

6.2.3 P-wave Forward Computation

Each LAT map was transferred to the MRI geometry using nearest neighbor projection and
Laplacian interpolation was performed to fill the gaps in the data distribution. A bilayer
model was generated for each patient from the MRI data [49]. LAT maps from ECGI
and EAMS on the MRI surface were used to shift a pre-computed atrial action potential
template in time for each of the nodes in the bilayer model, respectively. For the forward
calculation of virtual P-waves, extracellular potentials on the body surface were recovered
using openCARP [221] from the same 6 previously selected electrode locations. The atria
were assumed to be immersed in an infinite volume conductor [271]. Simulated P-waves were
low-pass filtered with a cutoff frequency of 40 Hz and then individually amplified to match
the maximum amplitude of their corresponding measured P-wave per lead. The two sets of
virtual P-waves were aligned to the corresponding measured P-wave using cross-correlation
and the root-mean-square error (RMSE) was calculated for the whole set.
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6.2.4 Personalization Using Invasive and Non-Invasive
Data

Non-invasive local activation time (LAT) maps were obtained from electrocardiographic
imaging (electrocardiographic imaging) (Acorys v1, Corify, Valencia, Spain) from another
eighth patients undergoing AF catheter ablation together with invasive LAT maps from
electro-anatomical map (EAM) (Carto v3, Biosense Webster, California, USA). All patients
underwent LGE-MRI before the ablation procedure and the geometries were segmented using
ADAS 3D software v2.12.0 (Adas3D Medical SL, Barcelona, Spain). The left atrium (LA)
mesh from EAM and the extracted LA mesh from ECGI were rigidly aligned to the patient
LA-MRI to enable the mapping of the LAT data (Figure 6.3). Image intensity ratio (IIR>1.32)
from LGE-MRI and bipolar low voltage areas (LVA<0.5 mV) from EAM were used to define
fibrotic substrate in which 30% of the elements were modeled as non-conductive and the
rest as TGF-β1 induced electrically remodeled [46, 227]. Monodomain conductivities were
adjusted to match LAT from EAM or ECGI [49]. The Courtemanche et al. cellular model
was adjusted to represent AF-induced electrical remodeling [51]. Arrhythmia vulnerability
was assessed by identifying the number of inducing points with S1S2 pacing protocol from
various locations using openCARP [32].

6.3 Results

6.3.1 Simulated P-waves

Virtual P-waves obtained from ECGI and EAMS LAT maps were compared to the measured
P-waves as shown in Figure 6.2. For the computed P-waves based on the LAT maps derived
from both modalities - ECGI and EAMS, the morphology matches the simulated P-waves
qualitatively. However, quantitative differences exist. The RMSE was measured for each lead
for the whole atrial activation time defined by the P-wave duration on the surface ECG and
then averaged among all leads. Values are presented as mean and standard deviation across
all 9 leads. In general, the polarity of virtual signals in lead II coincides with the expected
direction of the P-wave, meaning that lead II is positive during sinus rhythm and negative
during pacing from the coronary sinus. P-waves computed based on ECGI LAT maps show
a reduced P-wave duration as seen in the non-invasive LAT map. P-waves computed based
on EAMS LAT maps have a similar duration to the measured P-wave on the body surface.
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Figure 6.3: Methodology for themapping and registration of invasive andnon-invasive local activation
times and substrate data. The left atrium mesh from EAM and the extracted LA mesh from ECGI wererigidly aligned to the patient LA-MRI to enable the mapping of the LAT data. A) Rigid registration, B)LAT mapping into MRI, and C) Substrate annotation. IIR: image intensity ratio, LAT: LAT.

Table 6.1: Root-mean-square error (RMSE) and correlation betweenmeasured P-wave and simulated
P-wave. Values are presented as mean and standard deviation across all 9 leads.

Patient LAT data RMSE (mV) CorrelationA ECGI 0.26 ±0.11 0.69 ±0.34EAMS 0.38 ±0.31 0.71 ±0.26B ECGI 0.21 ±0.09 0.71 ±0.18EAMS 0.14 ±0.05 0.72 ±0.18

6.3.2 Arrhythmia Vulnerability

The total activation times and patterns were markedly different between modalities with a
mean difference of 54.2 ms, ECGI being faster than EAM on average. There was a higher
extent of substrate identified by LVA compared to IIR (18.2±23.5% vs. 4.0±8.0%) (Table 7.1).
Overall, arrhythmia vulnerability was related to the extent of fibrosis.
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Figure 6.4: Results of vulnerability assessment using invasive and non-invasive local activation times
and substrate data. Arrhythmia vulnerability shown in dotted (invasive) and straight (non-invasive) lines.Arrhythmia vulnerability was lower when using only non-invasive data and was related to the extentof fibrosis. IIR: image intensity ratio, bi: bipolar voltage.

Table 6.2: Vulnerability results and substrate data informed by invasive and non-invasive modalities.

Patient Surface (cm^2) Substrate Vulnerability
IIR >1.32 bi <0.5mV Non-invasive Invasive

P1 14.3 0.1% 21.2% 0.0% 8.3%P2 11.7 2.6% 12.4% 0.0% 0.0%P3 15.3 3.9% 73.7% 7.7% 23.1%P4 8.1 0.2% 16.2% 0.0% 16.7%P5 10.6 0.0% 0.2% 0.0% 0.0%P6 8.6 24.3% 9.3% 25.0% 0.0%P7 10.0 0.3% 1.7% 0.0% 0.0%P8 9.8 0.2% 11.2% 11.1% 0.0%
IIR: image intensity ratio, bi: bipolar voltage

6.4 Discussion

This work comprises simulations performed to compare the differences in computing P-
waves derived from invasive EAMS and non-invasive ECGI LAT maps, and simulations to
assess differences in arrhythmia vulnerability when creating atrial in silico models using
non-invasive data vs. invasive data. For both patients (A and B), ECGI LAT maps had a total
activation time shorter than the total duration of the surface P-wave, therefore the P-wave
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duration of synthetic signals was also shortened. This can be explained because the slew
rate of P-waves is usually slower than the one of the IEGM. In addition, noisy recordings
and baseline fluctuations can also affect the ECGI LAT activation threshold. Another cause
that may explain the reduction of the ECGI P-wave duration is the loss of information in the
septum, which causes the right atrium and left atrium to be activated almost simultaneously.

We assigned the same activation in the endocardial and epicardial layers, this means
that the activation was modeled as transmurally homogeneous [272]. Future work could
examine the influence of incorporating transmural conduction delay or fibrosis information
to personalize our bilayer model. In addition, the impact of the chosen clinical data on
the arrhythmia vulnerability of the model can be further tested by using established pacing
protocols [32].

6.5 Conclusions

In this study, we computed P-waves from clinically measured invasive and non-invasive
LAT maps and showed that the selection of input data affects the activation pattern of the
patient-specific model and that the differences between ECGI and EAMS LAT maps are also
reflected in the computed P-wave on the body surface. In a cohort of 8 patients, arrhythmia
vulnerability was lower when using only non-invasive data and was related to the extent of
fibrosis.



Chapter 7
Prediction of Arrhythmia

Vulnerability in Larger Cohorts

Insights from Explainable Machine Learning on
Biatrial Arrhythmia Vulnerability Assessment

In this chapter, a study is presented that involves the use of modeling and simulation together
with a machine learning random forest model in a cohort of 22 patient-specific biatrial
models. In particular, three questions guided the research presented in this chapter: What
causes some patient-specific models to be more vulnerable to arrhythmia than others? Can
arrhythmia vulnerability be predicted using machine learning models, reducing the need
for expensive computations of virtual pacing protocols? Which features have the greatest
influence on the assessment of arrhythmia vulnerability? This study is among the first to use
explainable machine learning to define feature importance in the assessment of arrhythmia
vulnerability in a biatrial cohort.

The content of this chapter is taken and adapted from a paper that has been accepted for
publication in Computing in Cardiology under open access under Creative Commons CC-BY
license [273]. Most passages have been quoted verbatim from the publication.

7.1 Introduction

Atrial fibrillation (AF) is a highly prevalent and complex arrhythmia resulting from the inter-
play of structural and electrophysiological characteristics, which vary across patients [28].
Generally, a trigger and a vulnerable substrate are the main determinants responsible for
initiating and maintaining AF [156]. Ectopic trigger activity originating in the sleeves of
the pulmonary veins (PV) has long been recognized to initiate arrhythmia in the atria. Re-
garding vulnerable substrate, fibrosis, dilation, and remodeling have been associated with an
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increased AF propensity [212]. Due to the complex nature of AF, the specific arrhythmia
vulnerability for individual patients remains unclear. Personalized atrial computer models
can serve as a valuable research tool for unraveling the intricate mechanisms of AF in an indi-
vidualized manner. In silico assessment of arrhythmia vulnerability can assist in quantifying
the ease of inducibility of an atrial model based on patient-specific characteristics. Multiple
studies have assessed vulnerability in atrial patient-specific models [15, 17, 19, 21, 81, 210].
However, evaluation of arrhythmia vulnerability is computationally expensive and restricts
application to centers with access to high-performance computing. In this work, we used
patient-specific biatrial modeling and simulation to train a machine learning (ML) model
for predicting point-wise inducibility. SHAP explainability was utilized to understand the
interaction between patient-specific model features and their effect on the prediction of
arrhythmia vulnerability.

7.2 Methods

A general overview of the study methodology is provided in Figure 7.1.

AugmentA1 Simulation                                                            

MLFeatures

Explainable

Data

1. Patient-specific Modeling 2. Data Generation 3. ML Data Analysis

Figure 7.1: Study pipeline. Three main steps comprised the study methodology. ML: machine learning.

7.2.1 Patient-specific Modeling

We generated 22 patient-specific biatrial models (Figure 7.2) from late gadolinium enhance-
ment magnetic resonance imaging (LGE-MRI) data from Hospital Clinic (Barcelona, Spain),
and University Heart Center (Freiburg-Bad Krozingen, Germany). Patients provided writ-
ten informed consent and the ethical committee of both institutions approved the study.
Biatrial anatomies were segmented from the MRI blood pool using ADAS 3D software
v2.12.0 (Adas3D Medical SL, Barcelona, Spain). Substrate regions were identified using
image intensity ratio (IIR>1.2) [185]. Biatrial bilayer models with anatomical annotations,
interatrial connections (IAC), and myocyte preferential orientation were generated using
AugmentA [49].
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Figure 7.2: Cohort of patient-specific biatrial models. Regions of high intensity are shown in red.IIR:image intensity ratio.

7.2.2 Atrial Electrophysiology Modeling

Cellular electrophysiology of human atrial myocytes was modelled using the Courtemanche
M. et al. mathematical model [51]. Ionic channel conductances were modified to represent
persistent AF [225]. Electrical propagation heterogeneity in the atria was modelled based on
anisotropy ratios defined previously [33]. To model substrate in regions of high LGE intensity
(IIR>1.2), 70 % of the elements were set to have electrical remodeling, while the rest of
the elements had electrical decoupling with σ = 10−7 S/m [228]. Electrical propagation
in the atria was simulated by solving the monodomain equation using openCARP [221].
We ran simulations under three CV (conduction velocity) scenarios. Monodomain tissue
conductivities were tuned to achieve a CV in the longitudinal direction of 0.7, 0.5, and
0.3 m/s in the bulk atrial myocardium.

Arrhythmia vulnerability was evaluated with a virtual S1S2 inducing protocol from a set
of stimulation points evenly distributed on the biatrial surface with a 2 cm interpoint distance,
with 51±15 stimulation points per biatrial model. Vulnerability was defined as the ratio
between the number of inducing points to the total number of stimulation points. Binary
point inducibility was defined as reentrant activity maintained for at least 1 s [32].

7.2.3 Calculation of Features

We selected features associated with arrhythmia propensity: anatomical factors such as atrial
volume, surface, sphericity, and point location; fibrosis characteristics including burden,
density and entropy, and the electrophysiological factor CV. Features were quantified globally,
and fibrotic features were further assessed locally. Global features are shown in Table 7.1.
Sphericity ψ describes the similarity of an object to a sphere and is defined as the ratio of the
nominal surface area of a sphere Sn, having the same volume V as the object, to the actual
surface area of the object S:

Ψ =
Sn

S
=

3
√

36πV 2

S
. (7.1)
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Table 7.1: Clinical global features of patient cohort

Feature LA RA
Volume (cm3) 108.2±49.5 100.2±39.7Sphericity (%) 82.9±5.1 79.4±5.3Surface (cm2) 129.0±34.0 128.7±30.7Fibrosis burden (%) 10.7±8.0 8.4±7.5Fibrosis density (%) 6.7±5.7 6.1±6.0Fibrosis entropy (%) 5.2±3.8 3.3±2.3

LA: left atrium, RA: right atrium. Values are shown as mean ± SD.

PVs and appendages were excluded in ψ calculation. Fibrosis burden B was obtained
from the normalized IIR derived from LGE-MRI. According to Zahid et al. [21], border
zones with high fibrosis density D and entropy E promote reentrant activity. To calculate
fibrosis features in each node, we identified subsets within a radius of 1 mm, i.e. maximum
edge length. We quantified D as the ratio between the number of fibrotic nodes Nf, divided
by the total number of nodes N in the subset, and assigned that value to the centre node. In
addition, local E for each node i in the subset was calculated based on Shannon entropy:

E =
N

∑
i=1

−pi · ln(pi)

N
, (7.2)

where pi is the fraction of nodes in the subset with a node type (fibrotic or non-fibrotic)
different to the node in the centre. An example of the calculation of local fibrotic features is
shown in Figure 7.3.

1.0

0.0

1.0

0.0

0.4

0.0

Burden Density Entropy 

Figure 7.3: Biatrial fibrotic features for patient 1. Density and entropy were calculated for each nodewith a defined subset of radius equal to cell edge length (1mm).

We established five six reference regions (Figure 7.4) around each stimulation point:
three circles (conjunction) and three concentric rings (disjunction). The regions had radii of
5, 10, and 20 mm, representing near, mid, and far proximity. We calculated the mean E and
B for each reference region.
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Figure 7.4: Regions for the calculation of fibrotic features. Radii ranging from 20,10 and 5 mm, namelyfar, mid and near proximity.

Finally, we included four positional features: the atrial chamber and three Laplace-
Dirichlet rule-based coordinates (ϕab, ϕv, and ϕr) for each stimulation point. The Laplace
equation was solved in openCARP as contained in AugmentA [49] with Dirichlet boundary
conditions to find a solution ϕ . The value and domain of the boundary conditions for the
three Laplace equations are shown in the Figure 7.5.

𝝋_𝒂𝒃 𝝋_𝒓 𝝋_𝒗

1         

-1

Medial ↔ Lateral Cranial ↔ Caudal Veins

Figure 7.5: Calculation of positional features using Laplace–Dirichlet rule-based method coordinates.Position can help identify inducing points in the proximity of certain anatomical structures such as theappendages (ϕab), atrio-ventricular valve rings (ϕr), and pulmonary veins (ϕv).

7.2.4 Explainable Machine Learning

A random forest classifier (RF) was trained to identify stimulating points inducing reentry
based on feature characteristics. The performance of different RF instances was evaluated
using the area under the receiver operating characteristic curve (AUC ROC) metric and
ten-fold cross-validation. The optimal hyperparameter setting was used to train the final RF
classifier with an 80:20 training and test split. Data were split on a patient basis rather than
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individual points to avoid overfitting. To improve the performance of the RF algorithm, we
evaluated sample normalization, modification of RF parameters, class weights and extraction
of different feature subsets. For explainability, SHAP (SHapley Additive exPlanations) were
selected to assess the impact of each feature on the prediction of inducibility as proposed
before [274].

7.3 Results

A total of 1438 reentries were induced from 7131 stimulating points across the 22 biatrial
models. The pacing protocol duration was 765±256.2 min per biatrial model, with each
stimulation point lasting 15±2.4 min, utilizing 4 nodes×40 CPU cores (Intel Xeon Gold
6230 2.1GHz). The RF ML model was exposed to 5704 stimulating points with 27 features
and required 0.6 s for training and 0.01 s for validation with 1427 stimulating points (Intel
Core i5 3.1GHz). The RF classifier achieved an AUC of 0.75±0.03 (Figure 7.6). AUC with
feature selection (top 5 features of SHAP from Figure 7.7) was 0.69±0.05, with balanced
classes 0.72±0.05 and with sample normalization 0.66±0.05.

Figure 7.6: Receiver operating characteristic (ROC) of the random forest algorithmwith ten-fold cross
validation. AUC: area under the curve.
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SHAP identified the features showing the highest impact on the prediction of point
inducibility (Figure 7.7). Among global features, CV had the greatest impact on inducibility
prediction, whereas fibrosis density in the mid-proximity regions (10 mm) was the most
influential local feature.

7.4 Discussion

This study assessed arrhythmia vulnerability in 22 biatrial models with personalized anatomy
and substrate informed by LGE-MRI. We trained and evaluated an ML RF classifier to
predict point-wise inducibility with both global and local features. Modeling and simulation
combined with ML algorithms can enhance mechanistic understanding of AF and provide
digital solutions compatible with clinical timeframes. Previous studies demonstrated this
potential by exploring the role of LA native fibrosis and post-ablation lesions on arrhythmia
inducibility using explainable ML [274]. Our work is one of the first studies to assess feature
impact on inducibility prediction in a biatrial cohort.

SHAP value (impact of features on inducibility)

InducingNon-inducing
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Figure 7.7: Beeswarm explainability plot of SHAP values showing the impact of each feature on point
inducibility predictions. Points in the plot represent the features for every stimulation point and thecolor represents their associated SHAP values. Points at the right of the midline are indicative of apredictive impact towards induction, whereas those on the left suggest a predictive impact towardsnon-induction. CV: conduction velocity, conj: conjunction, disj: disjunction near, mid and far: 5, 10,and 20mm.
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Fibrosis density at near and mid proximities had the highest impact on model inducibility
prediction. Specifically, low fibrosis density in the surrounding 10 mm was associated with
an increased inducibility. The study by Zahid et al. proposed that regions with higher
fibrosis density aid reentrant activity [21]. Our results indicate that for inducibility, the areas
surrounding the stimulation point should have a low fibrosis burden to facilitate impulse
propagation. Among global features, CV had the highest impact on inducibility prediction.
Previous studies have shown the impact of global CV on model vulnerability, however CV
was not included as feature in their ML model [274]. A decrease in global CV increases
vulnerability of biatrial models [275]. High CV was associated with reduced inducibility.
In terms of positional features, ϕab had the greatest influence on the model prediction.
Stimulation points located closer to the interatrial septum (low ϕab) were associated with
increased inducibility, while those closer to the appendage and lateral walls were associated
with non-inducibility. Interatrial connections may facilitate the formation of reentrant circuits
between the LA and RA. Sphericity, LA volume, and RA volume showed minimal impact
on the prediction of inducibility.
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Figure 7.8: Analysis of model inducibility prediction Color represents inducibility, where red denotesnon-inducing and blue indicating inducing regions. Ground-truth inducibility from electrophysiologicalmodel. Mesh courtesy of Pascal Maierhofer.

Our results demonstrate moderate prediction accuracy, as evidenced by AUC-ROC. The
ML classifier had a good performance in detecting true non-inducible points, as depicted
in Figure 7.8. Our results showcase the complexity of point inducibility, suggesting that
induction depends on the interplay of global and local factors, some of which might extend
beyond the 20 mm proximity. We did not include other features associated with AF propensity,
such as wall thickness, fat infiltration, and endo-epi dissociation. We did not incorporate
personalized electrophysiology information. We utilized LGE-MRI data to get information
on the substrate; however the discrepancy in the spatial distribution between low voltage areas
and LGE-MRI is likely to influence vulnerability [17, 28]. To increase accuracy, expanding
the sample size an incorporating further features could help to develop a computationally
efficient and sufficiently accurate model.
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7.5 Conclusions

Our work is one of the first studies to assess feature impact on arrhythmia vulnerability in a
biatrial cohort. Fibrosis density measured at 10 mm from the stimulation points and global
CV were the features showing the highest impact on point inducibility prediction. Our study
suggests that ML models offer a promising tool for predicting arrhythmia vulnerability in
silico, potentially reducing the need for expensive computations in virtual pacing protocols
and bridging the gap for clinical application of patient-specific models with compatible
clinical timings.
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Chapter 8
Biatrial Regionalization:

15-Segment Model

For the study of atrial fibrillation (AF), it can be useful to quantify regional differences of
functional and substrate-related features in the atria and link these differences to therapy
response or disease prognosis. Multiple studies have already performed quantitative regional
analyses in the atria, each defining their own boundaries between regions for their respective
aims [186, 187, 276–288]. However, each unique regional definition was not intended to be
shared among institutions, making comparisons among studies unfeasible. Additionally, the
complex anatomy of the atria hinders the creation of a standardized definition of regions,
unlike the ventricles where a segment definition has already been proposed more than 20
years ago [289].

1 Left venoatrial junction

2 Right venoatrial junction

3 Left posterior wall

4 Left anterior wall

5 Left atrial appendage

6 Left lateral wall

7 Left inferior wall

8 Left septal wall

9 Right septal wall

10 Right posterior venous wall

11 Right atrial appendage

12 Right lateral vestibule

13 Right atrial anterior wall

14 Cavotricuspid isthmus

15 Koch's triangle
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Figure 8.1: The 15-segment biatrial model definition proposed by the PersonalizeAF consortium. Di-vision generated with [251], mesh courtesy of Christian Götz.
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In this section, a summary of the 15-segment biatrial model definition from the Personal-
izeAF consortium is presented (Table 8.1). The main goal of the proposed nomenclature is
to provide standardized segment definitions, allowing for consistent and reproducible biatrial
regionalizations. The manuscript containing a full description of the segments and reference
points has been submitted for publication and is currently under review. The KIT algorithm
to perform biatrial regionalization was developed by Christian Götz during his Master’s
thesis project and was further adapted based on feedback from the consortium; the algorithm
is publicly available under [251]. For further details regarding reference point definition and
description of segment boundaries, the reader is refer to the manuscript.



Table 8.1: Segment descriptions and boundary definitions for biatrial regionalization. (Left atrium)
Number Segment Description Boundaries definition Ref.

points

1a Left venoatrialjunction Myocardial sleevesextending from theatrial antra on the leftside

Shortest circumference patharound the left PV antra con-necting the uppermost pointof the antral region (A) and thelowermost (B) in the longitudinalaxis on the left side

A,B

1b Left lateral ridge Infolding betweenthe left pulmonaryveins and the leftatrial appendageincluded in the leftvenoatrial junctionsegment

Shortest geodesic path connect-ing uppermost point of the antralregion (A) and the intersectingpoint with the LAA (G)

A,G

2 Right venoatrialjunction Myocardial sleevesextending from theatrial antra on theright side

Shortest circumference patharound the right PV antra con-necting the uppermost pointof the antral region defined bypoint C and the lowermost bypoint D in the longitudinal axison the right side

C,D

3 Left posterior wall Venous component ofthe LA The superior border consists ofthe geodesic path connectingpoint A and C, also known as roofline, and the inferior border con-necting point B and D

A,B,C,D

4 Left anterior wall Region harbouringthe principal inter-atrial connectionof the BachmmannBundle

The superior border consists ofthe geodesic path connectingpoint A and C, also known as roofline, to the superior aspects ofthe MV ring defined by points Eand F

A,B,E,F

5 Left atrial ap-pendage Protrusion from theLA Junction of the LAA to the LAbody passing through point Gmarking this intersection
G

6 Left lateral wall Lateral aspect of theLA including the mi-tral isthmus
The inferior border consists ofthe geodesic path connectingpoint F and point H in the MVring, the lateral part connectspoint H and B

F,H,B

7 Left inferior wall MV vestibulum The superior border consists ofthe geodesic path connectingpoint B and D, and inferiorly tothe border connecting point Iand H

B,D,H,I

8 Left septal wall Interatrial septumadjacent to the rightvenoatrial junction
The superior border consists ofthe geodesic path connectingpoint C and D,and the inferiorborder connecting point E and I

C,D,E,I

LAA: left atrial appendage, LA: left atrium, MV: mitral valve
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Table 8.2: Segment descriptions and boundary definitions for biatrial regionalization. (Right atrium)

Number Segment Description Boundaries definition Ref.
points

9 Right septal wall Interatrial septum inthe RA The inferior border consists ofthe geodesic path connecting themost inferior aspect of the coro-nary sinus in point J and themostseptal part of the IVC point K,and the superior boundary de-fined by the most septal aspectof the SVC in point L and pointM in the tricuspid valve ring

J,K,L,M

10 Right posterior ve-nous wall Area between theSVC and IVC The superior border consists ofthe geodesic path connectingpoint L andO, at the SVC, and theinferior border connecting pointK and N at the IVC

L,O,K,N

11 Right atrial ap-pendage Triangular protrusionin the RA Staring with the point of maxi-mum curvature between the RAbody and the RAA denoted aspoint P, to themost lateral aspectin point Q, to the inferior aspectof the lateral vestibule in point R,and point S which is the most su-perior aspect of the SVC

P,Q,R,S

12 Right lateralvestibule Region encircling thetricuspid valve The inferior border consists ofthe geodesic path connecting theinfero-lateral aspect of the tricus-pid ring in point T and point N inthe IVC, the superior border con-sists of the geodesic connectingthe supero-lateral point U in thetricuspid valve ring and point Q

T,N,U,Q

13 Right atrial ante-rior wall Region harbouringthe principal inter-atrial connectionof the BachmmannBundle

The superior border consists ofthe geodesic path connectingpoint S and L, the inferior borderconnecting point U and M, andthe lateral border connecting S, Pand Q

L,S,P,Q,U

14 Cavotricuspidisthmus Region in the proxim-ity of the IVC and theTV
The inferior border consists ofthe geodesic path connectingpoint K and point N in the IVCand the point V and T in the TV

N,K,J,V,T

15 Koch’s triangle Region in the proxim-ity of the CS and theTV
The apical border consists of thegeodesic path connecting pointM and point V in the TV ring, theinferior border connects point Vand J at the CS ostium and thebasal border is defined by thegeodesic between point M in theTV ring and point J

J,M,V

AF: atrial fibrillation, RA: right atrium, RAA: right atrial appendage, TV: tricuspid valve



Chapter 9
Ablation Planning Tool

This chapter provides a detailed description of the virtual reality ablation planning tool,
Deliverable D2.4, within the scope of the PersonalizeAF project. The tool is an interactive
software designed for planning and guiding ablation procedures based on simulations per-
formed with the electrophysiology simulator openCARP [220, 221]. The chapter presents
the software features and lists all the necessary software and hardware requirements for
installing the ablation planning tool. The software design and prototype were developed
collaboratively with Pascal Maierhofer, who primarily contributed to the code development.
The tool is publicly available in [290].

9.1 Introduction

The architecture of the ablation planning tool is illustrated in Figure 9.1.

3D visualization 
of activation 
and fibrosis

Parsing of 
openCARP

data

Export of 
ablation lines

Marking of 
ablation lines

1 2 3 4

Figure 9.1: Architecture of the ablation planning tool. The four main steps covered by the softwareare shown.

1. Parsing of data: the software reads in files that describe the geometrical heart model,
simulated data, and additional clinical features such as fibrotic tissue or ablation lines.

2. Visualization of activation and fibrosis: converts simulated transmembrane voltages
and fibrotic tissue notation into a color spectrum that can be displayed dynamically
on the heart model and interpreted by the user. This heart model visualization can be
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rendered in a 3D virtual reality environment (3D headset required) or displayed in 2D
on a standard monitor.

3. Marking ablation lines: ablation lines can be loaded from a file or manually drawn
on the heart model by the user.

4. Exporting ablation lines: marked ablation lines can be exported to conduct further
assessments and simulations.

9.2 Software Scope

The ablation planning tool is an interactive virtual reality (VR) software designed to visualize
patient-specific heart models and clinical data from electro-anatomical mapping system
(EAMS) and/or magnetic resonance imaging (MRI), along with the results from electrical
activation simulations on the patient-specific models using the cardiac electrophysiology
simulator openCARP [220, 221]. The software can display atrial fibrosis patterns informed
by EAMS low voltage areas (LVA) or late gadolinium enhancement (LGE) MRI. If provided
by the user, ablation lesions can also be imported and rendered. Additionally, the tool offers
the possibility to manually draw potential ablation targets on the patient-specific anatomical
model. The main goal of the ablation planning tool is to help visualize electrical wave
propagation together with patterns of fibrotic substrate and to better understand the nature of
the simulated reentries. We developed a planning tool with the capability for an immersive
VR experience, allowing the user to better interact with the heart model. The interaction is
user-friendly and reduces the need for multiple software tools to visualize clinical data and
simulation data in parallel.

9.3 Motivation

Catheter ablation (CA) is a procedure that aims to make arrhythmogenic cardiac tissue
harmless by delivering radiofrequency energy, cryoablation, or electroporation. The rationale
behind CA is to eliminate tissue suspected to contribute to arrhythmia initiation and main-
tenance. Pulmonary vein isolation (PVI) is the standard minimally invasive CA treatment
for patients suffering from atrial fibrillation (AF) [1]. However, in terms of recurrence, PVI
alone has achieved less than a 50% success rate after 12 months, especially for patients with
persistent AF. Additional substrate modification strategies such as lines of block, ablation
of areas with complex fractionated atrial electrograms (CFAE), posterior wall ablation, and
vein of Marshall ablation have not yet proven significantly beneficial in reducing AF recur-
rence [291, 292]. Clinicians still face the question of how to treat patients, especially when
AF recurs after PVI. Therefore, the value of this planning tool is to provide a visualization
platform to facilitate the analysis of personalized simulations and clinical data, improving
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the understanding of the patient-specific arrhythmogenic substrate and aiding in the ablation
planning process.

9.4 Intended Users

The tool is meant to be used by researchers in the field of cardiac computational electrophys-
iology, including engineers, computer scientists, and medical doctors.

9.5 Intended Use

This tool is intended for research use and demonstration purposes only. It is not intended for
medical diagnosis or professional medical advice. This tool was designed and built with a
focus on the visualization of openCARP simulation data. openCARP is an electrophysiology
simulator freely available for academic use with public source code [220, 221]. Therefore,
the file formats of openCARP are used, which are interoperable with established standards
like the Visualization Toolkit (VTK). For details about the data format, please refer to the
openCARP manual [293]. In preparation for using this tool, the following data should be
available and stored inside a folder:
◦ Mesh of the heart model, consisting of a .pts file (points) and .elem file (connecting

elements) defining the patient-specific geometry. A description of the creation of
patient-specific geometries suited for electrophysiology simulations can be found here
[49]. The code for mesh generation is found here [294].
◦ Time series of the transmembrane voltage at all nodes to view the propagating wave in

the .igb format (output of openCARP simulation).
◦ Element IDs of fibrotic tissue in the .regele format consist of non-conductive and

slow-conductive files. The .regele format comprises a list of IDs with the number
of elements of the list at the top. The distribution of fibrotic tissue is extracted from
clinical imaging and/or mapping data.

9.6 Code Availability

The code and documentation of the D2.4 tool have been published in compliance with the
FAIR principles [295] for research software and is publicly available [290].
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9.7 Code Features

In Figure 9.2, we show a diagram of the main software features and the interaction between
them. All these features lead to a user-friendly tool for visualizing computer simulations,
allowing the study of the role of reentrant patterns.

Select model
and animation

file

Calculate colors 
of propagating 

wave

Read and store 
fibrotic data

Mark element

Unmark element

Reset markings

Rotate model

Marking

User choice

User choice

Marking

Figure 9.2: Sequence of the main software features starting at the top left in the arrow direction. Themarking sequence is detailed at the top.

The ablation planning tool has the following features:
◦ /F000/ File selection panel to choose the files for model rendering. Including .pts and

.elem for the mesh, .igb for transmembrane voltages (wave excitation dynamics), and

.regele for fibrotic tissue.
◦ /F001/ Read in of mesh data in the form of .pts and .elem files.
◦ /F010/ Support of .igb files to load time series of pointwise data (mainly transmem-

brane voltages).
◦ /F015/ Display of this time series of transmembrane voltages in the tool to visualize,

for example, reentry tachycardias.
◦ /F017/ Display of a custom coloring method for the different transmembrane voltages

including a color bar, which shows the minimal, middle, and maximal potential.
◦ /F020/ Support of .regele files to load severe and mildly fibrotic tissue and display it

on the patient-specific anatomical model.
◦ /F025/ Display of fibrotic patterns and transmembrane voltage animation on the model.
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◦ /F030/ Marking tool to point at regions with the help of a VR controller. This marking
tool can also be used to annotate possible ablation targets or draw ablation lines.
◦ /F040/ Correction of markings with the help of an erase and reset tool.
◦ /F051/ Head movement and rotation tracking to view the model from 360 degrees.
◦ /F052/ Intuitive rotation of the whole model around two axes with the VR controllers.
◦ /F055/ Movement in the scene with the VR controllers for confined spaces.
◦ /F056/ Movement in the scene through walking around the model with the VR headset

if enough space is available.

9.8 Graphical User Interface

The following Figure 9.3 shows the graphical user interface of the planning ablation tool:

Data 
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Drawing 
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Color bars
(F017)

Animation
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Figure 9.3: Graphical user interface. Main software features are shown in the boxes in blue. Numbersin parenthesis correspond to feature numbers.
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9.9 Hardware Requirements

The following requirements are essential to use the planning tool:

◦ HTC VIVE (Valve, HTC)
– Headset
– 2 Controllers
– 2 Tracking boxes
– Connector

◦ Suitable PC for the HTC Vive, according to SteamVR minimal requirements:
– Intel Core i5-4590/AMD FX 8350 equivalent or better
– 4 GB of RAM
– NVIDIA GeForce GTX 1060, AMD Radeon RX 480 equivalent or better
– 1x USB 2.0 or newer, HDMI 1.4, DisplayPort 1.2 or newer

9.10 Software Requirements

The minimum software requirements needed to run the ablation tool:

◦ Operating system version: Windows 7 (SP1+), Windows 10 or Windows 11, 64-bit
versions only
◦ CPU: X64 architecture with SSE2 instruction set support
◦ Graphics API: DX10, DX11, and DX12-capable GPUs
◦ Additional requirements: Head-mounted display of the HTC Vive family



PART IV

FINAL REMARKS





Chapter 10
Conclusions

In summary, this thesis aimed to evaluate the impact of selected input data on the arrhyth-
mia vulnerability of patient-specific atrial models, as stated in the main research question.
Three main projects guided the direction of this thesis: 1) anatomical personalization: a
comparison of monoatrial versus biatrial models (Chapter 4), 2) functional personalization:
a comparison of models with personalized refractory period versus non-personalized models
(Chapter 5), 3) functional and substrate personalization: a comparison of pre-procedural
versus procedural data (Chapter 6). In addition, vulnerability to arrhythmia in larger cohorts
was evaluated and predicted using a machine learning classifier with the use of clinical and
imaging features (Chapter 7). Finally, two clinical tools were developed: a division software
to perform regionalizations of the atria (Chapter 8), and a virtual reality tool to visualize
electrophysiology simulations (Chapter 9). In the following part, the key research questions
that addressed the main research question are presented.

1. Which role does the right atrium play in the development of arrhythmia in silico?

In the simulations, the right atrium (RA) was found to have two distinct roles: initiator
and facilitator of arrhythmias. Firstly, the RA acted as an initiator, due to increased elec-
trophysiological heterogeneity arising from structures such as the pectinate muscles, crista
terminalis, and tricuspid valve. Despite modeling a lower amount of fibrosis compared
to the left atrium (LA), the RA exhibited the highest vulnerability in the severe state (S).
Secondly, the RA facilitated the induction of arrhythmia from points within the LA. The
inclusion of the RA uncovered 5.5±3.0 inducing points in the LA biatrial scenarios that
did not induce in the monoatrial configuration. The results of this study indicate that the
RA increases the likelihood of new reentrant circuits influenced not only by the presence
of inter-atrial connections and larger size, but also by changes in the wavelength due to
regional differences in conduction velocity and effective refractory period. Thus, the RA
contributes to the development of arrhythmia in silico, not only through inducing points
present in the RA, but also by facilitating inducibility in the LA.
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2. What is the impact of the right atrium in the development of arrhythmia under
different substrate remodeling states?

The impact of the RA in different remodeling states was assessed first by comparing
arrhythmia vulnerability of the LA in monoatrial and biatrial configurations, and secondly
by evaluating the tachycardia cycle length (TCL) of induced reentries. Only one reentry
was induced in the healthy state (H) in the biatrial configuration, suggesting that in general,
no reentries can be induced in the H state. Without the RA, the vulnerability of the LA
was markedly higher in the S than in the mild state (M). Incorporating the RA notably
diminished this difference in LA vulnerability. Incorporating the right atrium increased
the mean vulnerability of the left atrium by 115.8% in the M state and by 29.0% in the S
state. There were no significant differences in the TCL of RA-induced reentries between
M and S states. However, for LA-induced reentries, adding the RA resulted in 5.5%
significantly slower reentries in the M state and 7.2% significantly faster in the S state.
Incorporating the RA had a state-dependent effect on arrhythmia dynamics.

3. To what extent does incorporating personalized effective refractory period measure-
ments influence arrhythmia vulnerability of the patient-specific model?

To assess the influence of incorporating measurements of the effective refractory pe-
riod (ERP) on arrhythmia vulnerability, four different scenarios were generated and
compared for each of the seven patient-specific atrial models in the cohort. In general,
non-personalized scenarios had a shorter ERP and reduced dispersion (158.9±5.3 ms)
compared to personalized scenarios (254.0±32.7 ms). Among all scenarios, the homo-
geneous non-personalized scenario A had the lowest vulnerability (3.4±3.9%), while
the regional personalized scenario C had the highest vulnerability (9.0±5.1%). Hetero-
geneities in the form of regions in scenario C promote unidirectional blocks, thereby
increasing vulnerability, while the homogeneous scenario A makes it less likely to induce
reentry even with a shorter ERP. Incorporating the ERP as a continuous distribution, as in
scenario D, slightly decreased the vulnerability of the models compared to the state-of-
the-art heterogeneous non-personalized scenario B (7.6±3.4% vs. 7.0±3.6%, p=0.81).
Additionally, modeling the ERP as a gradient in scenario D significantly increased vul-
nerability by 51.43% compared to homogeneous scenario A (3.4±3.9% vs. 7.0±3.6%,
p=0.04). This finding suggests that the incorporation of personalized ERP in the form
of gradients had a greater impact on vulnerability than had the mean value of the ERP.
There were no significant differences in the TCL of scenarios A and B (167.1±12.6 ms vs.
158.4±27.5 ms, p=0.43), both of which are not personalized, nor there were significant
differences between scenarios C and D, both of which are personalized (265.2±39.9 ms
vs. 285.9±77.3 ms, p=0.31). However, personalized scenarios had significantly slower
TCL compared to non-personalized scenarios (p<0.001). Increased ERP dispersion had a
greater effect on reentry dynamics than on the absolute value of vulnerability.
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4. How does arrhythmia vulnerability change when both the effective refractory pe-
riod and substrate are personalized?

To evaluate the interaction between ERP and substrate, scenarios A and D, representing
non-personalized homogeneous and personalized continuous configurations respectively,
were compared to their counterparts with fibrosis and ablation scar (A2 and D2), as
well as to scenarios with only fibrosis (A3 and D3). There was a higher increase in
vulnerability when only fibrosis was present, e.g. scar modeled as healthy, compared
to scenarios with both fibrosis and scar. The reduced atrial size in A2 and D2 due to
scar from pulmonary vein isolation contributed to the decreased vulnerability. When
comparing the differences between A2 vs A3 and to D2 vs D3, the difference was more
pronounced between scenarios D2 and D3, suggesting that the gradient in scenarios D
aided in increasing vulnerability. These observations indicate that changes in vulnerability
attributed to personalized ERP persist even in the presence of fibrosis, suggesting that the
effect of the ERP personalization cannot be neglected.

5. What is the effect of the interplay between the personalization of activation and
substrate on arrhythmia vulnerability?

In the presented patient cohort, total activation times and patterns were markedly different
between modalities with a mean difference of 54.2 ms, electrocardiographic imaging
being faster than electro-anatomical map on average. Therefore it was not possible to
fully address this question. Also differences in the extent of substrate identified by low
voltage area compared to image intensity ratio (18.2±23.5% vs. 4.0±8.0%) made the
comparison overall challenging. In general, arrhythmia vulnerability was related to the
extent of fibrosis which was lower in the non-invasive data.

6. Can machine learning models be used to predict arrhythmia vulnerability in silico?

Indeed, but only to a certain degree with current methodology. The results reveal a mod-
erate prediction accuracy of 0.75±0.03, as exemplified by the AUC-ROC. The machine
learning (ML) classifier had a good performance in detecting true non-inducible points.
Fibrosis density measured at 10 mm from the stimulation points and global conduction ve-
locity were the features showing the highest impact on point inducibility prediction. Due
to the complex nature of AF, it is likely that point inducibility depends on the interplay of
multiple factors, which may extend beyond the 20 mm proximity. The presented classifier
may be a fast alternative for assessing arrhythmia vulnerability in silico without expensive
computations of virtual pacing protocols, thus aiding the transition to clinical applications.





Chapter 11
Outlook

In this chapter, future directions for evaluating the effect of different personalization and
modeling strategies of atrial digital twins are described, based on the observations and expe-
rience gained during this doctoral thesis. A question guiding future research is identifying
which clinical data are necessary to create patient-specific digital twins to inform AF (AF)
treatment and quantifying the impact on model behavior.

Modeling of Interatrial Connections

One of the biggest challenges in developing biatrial models for guiding AF treatment is
modeling interatrial connections (IAC). Some studies have highlighted the importance of
IAC for the maintenance of reentrant circuits in patient-specific computer models [233, 275].
Therefore, assessing different modeling approaches for IAC and their impact on arrhythmia
maintenance is crucial for advancing biatrial modeling toward clinical implementation. As
mentioned in Chapter 1, the limited spatial resolution of current imaging modalities restricts
the accurate representation of cardiac structures, including IAC. This limitation has led
to the development of various strategies for representing IAC in patient-specific computer
models, such as modeling a single connection in the interatrial septum [15], defining multiple
connections through rule-based definitions [71, 74], developing tubular structures [49, 296],
defining flattened bundles in the endocardium and epicardium [297], or creating linear
elements joining both atrial chambers [46]. For instance, future studies could assess the
effect of modeling IAC on arrhythmia vulnerability by evaluating different configurations,
including variations in the number of bridges, their locations, and their forms.
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Personalization Considering Sex-specific
Differences

The creation of patient-specific digital twins will still require the use of population-based
data in the near future. As much research has predominantly conducted on male populations,
incorporating data from female populations can help mitigate current biases [298]. Sex has
been overlooked for many years, despite significant differences in cardiac electrophysiology
between men and women. For instance, patient-specific models could assess the impact of
sex differences in AF vulnerability due to variations in calcium handling [299]. Another
area where digital twins could prove valuable is in elucidating the impact of sex-related
differences in fibrosis. Studies have revealed differences in fibrosis characteristics between
females and males undergoing cardiac surgery, with females exhibiting a higher burden
of endomysial fibrosis than males [195]. In the future, the incorporation of sex-specific
data could enhance the creation of digital twins, leading to improved personalized therapy
delivery and a reduction in current biases in biomedical research.

Dynamic Personalization

Digital twins are evolving systems that capture changes between the physical and the virtual
twin [300]. A main limitation of current patient-specific models is their reliance on static
clinical data for model development. Future digital twins could dynamically adapt to mirror
the current state of the physical patient through continuous monitoring devices, such as
electrocardiogram (ECG) or blood biomarkers monitoring [13]. For example, the predictive
capability of disease trajectories or therapeutic response of digital twins could be assessed by
analyzing the impact of incorporating ECG data from implantable cardioverter defibrillators
or pacemakers [301].

Personalization of Atrial Substrate

Current imaging modalities do not accurately represent the spatial distribution of atrial
substrate. Recently, interest has been placed on the role of adipose tissue deposition in AF
development [302]. Future computational studies could assess the impact of incorporating
adipose tissue information from CT imaging. In addition, personalization could also explore
the role of incorporating the autonomic nervous system [303] into the model and its potential
role as a therapeutic target [304].
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Robust Twinning Algorithms, Faster Simulations
and Data Sharing

One of the main challenges of digital twin technologies is that current twinning processes,
which consider anatomical and functional features, are not compatible with clinical time
frames. Additionally, simulation times to evaluate arrhythmia vulnerability exceed procedural
times, even with the use of high-performance computing. This underscores the need for
the development of robust twinning algorithms and faster simulation approaches [262].
Mesh segmentation is usually time-consuming and requires experienced users, although
machine learning (ML) algorithms offer promise to overcome this limitation [89]. Tools for
preprocessing clinical data are already publicly available [90, 91], and also tools to perform
anatomical personalization to develop simulation-ready meshes [46, 49]. However, there is
currently no tool available to perform patient-specific model calibration based on clinical
parameters. Efforts should be placed on developing methodologies that enhance the rapid
creation of digital twins, from structural to functional personalization. Finally, in the near
future, the implementation of collaborative federated learning for ML applications will help
to overcome some of the main limitations regarding data sharing [305].
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