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Abstract
Detecting the dimensionality of graphs is a central topic in machine learning. While the prob-

lem has been tackled empirically as well as theoretically, existing methods have several drawbacks.
On the one hand, empirical tools are computationally heavy and lack theoretical foundation. On the
other hand, theoretical approaches do not apply to graphs with heterogeneous degree distributions,
which is often the case for complex real-world networks.

To address these drawbacks, we consider geometric inhomogeneous random graphs (GIRGs) as
a random graph model, which captures a variety of properties observed in practice. These include a
heterogeneous degree distribution and non-vanishing clustering coefficient, which is the probability
that two random neighbours of a vertex are adjacent. In GIRGs, n vertices are distributed on a d-
dimensional torus and weights are assigned to the vertices according to a power-law distribution.
Two vertices are then connected with a probability that depends on their distance and their weights.

Our first result shows that the clustering coefficient of GIRGs scales inverse exponentially with
respect to the number of dimensions, when the latter is at most logarithmic in n. This gives a first
theoretical explanation for the low dimensionality of real-world networks observed by Almagro
et al. (2022). A key element of our proof is to show that when d = o(log n) the clustering coefficient
concentrates around its expectation and that it is dominated by the clustering coefficient of the low-
degree vertices.

We further use these insights to derive a linear-time algorithm for determining the dimension-
ality of a given GIRG. We prove that our algorithm returns the correct number of dimensions with
high probability when the input is a GIRG. As a result, our algorithm bridges the gap between
theory and practice, as it not only comes with a rigorous proof of correctness but also yields results
comparable to that of prior empirical approaches, as indicated by our experiments on real-world
instances.
Keywords: dimensionality testing, geometric inhomogeneous random graphs, clustering coeffi-
cient

1. Introduction

A key technique for understanding and analysing large complex data sets is to embed them into
a low-dimensional geometric space. Hence, the search for embedding and dimensionality re-
duction algorithms has become an important direction in data analysis and machine learning re-
search (Belkin and Niyogi, 2001; Sarveniazi, 2014; Camastra and Staiano, 2016; Nickel and Kiela,
2017). Embedding algorithms commonly require a metric that captures the similarities between
data points, which is often abstracted using a graph whose vertices represent the data points and
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two vertices are connected if they are close with respect to this metric. The algorithm then deter-
mines geometric positions for these vertices such that connected vertices are close together. Such
approaches often require an a priori knowledge of the dimensionality, which is unknown in most ap-
plications. Heuristic approaches try to determine the dimensionality of a dataset by embedding it in
spaces of different dimensionality and choosing the value that yields the optimal embedding (Levina
and Bickel, 2004; Yin and Shen, 2018; Gu et al., 2021).

The recent work of Almagro et al. (2022) gives a new algorithm for learning the dimensionality
that does not require embeddings. Instead, given a graph as input, their method counts the number
of short – i.e. length 3, 4 and 5 – cycles of a graph. It then generates a search space consisting
of random graphs that are generated from a geometric model of varying parameters, including the
dimensionality of the space. Finally, a data-driven classifier finds the random graph of the search
space that resembles the input graph the most and returns its dimensionality. A remarkable obser-
vation, that comes from using their algorithm to learn the dimensionality of real-world networks, is
that the vast majority of networks has very low dimensionality, which is independent the size of the
network.

A downside of the aforementioned approaches is that they rely on machine learning techniques
that are computationally heavy and lack theoretical explanation. In order to argue with mathemat-
ical rigour, one requires to work with well-defined mathematical objects. A common approach
to incorporate such an object is that of average-case analysis, that is, assume that the input graph
comes from a well-defined random graph model. The random graph model that has been mostly
considered so far in the literature is that of spherical random graphs, where vertices are generated
independently and uniformly at random as points on the surface of a d-dimensional sphere and two
vertices are connected if their angle is bellow a certain threshold. It can be easily shown that, as
the number of dimensions increases, spherical random graphs converge to Erdős–Rényi graphs, the
classical random graph model where edges are drawn independently. A series of works considers
the statistical testing problem of detecting weather a given graph is a spherical random graph or an
Erdős–Rényi graph and determines the parameter regime under which this can be done (Devroye
et al., 2011; Bubeck et al., 2016; Brennan et al., 2020; Liu and Racz, 2021; Liu et al., 2022). Follow
up works consider noisy settings (Liu and Rácz, 2021) or anisotropic geometric random graphs (El-
dan and Mikulincer, 2020; Brennan et al., 2022), where each dimension has a different influence on
the drawing of edges. The techniques of the aforementioned results can also be used for determining
the dimensionality of the given graph (Bubeck et al., 2016, Theorem 5).

A characteristic of the random graph models considered in the aforementioned works, i.e. spher-
ical random graphs and Erdős–Rényi graphs, is that the degree distributions of the generated graphs
is concentrated around its expected value; this contrasts the power-law degree distributions ob-
served in real-world networks (Faloutsos et al., 1999). While a latent geometric space appears to
be a fundamental requirement for a random graph model that captures the high clustering coeffi-
cient (Krioukov, 2016; Boguna et al., 2021) and small diameter (Friedrich et al., 2013) observed in
real-world networks, one needs to also consider the heterogeneity observed in the vertex degrees. A
popular model in network theory capturing all previous properties is based on generating points on
the hyperbolic plane instead of Euclidean (Boguna et al., 2010). However, it is not clear what the
non-geometric counterpart to test against is in this case.

In this article we bring theory and practice closer together and provide a rigorous explanation
for the very low dimensionality of real-world networks that has been observed in practice. Our
proofs give new insights with which we are able to design linear-time algorithms for learning the
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dimensionality of a network and show that they give the correct answer with high probability. To
achieve our goal we consider the following random graph models.

Geometric inhomogeneous random graphs & Chung–Lu graphs. Geometric inhomogeneous
random graphs (GIRGs), introduced by Bringmann et al. (2017) and are defined as follows.

Let G(n, d, β, w0) = (V,E) denote the n-vertex graph obtained in the following way. For each
v ∈ V , we sample a weight wv from the Pareto distribution P with parameters w0, 1− β such that
the CDF and density is

Pr [wv ≤ x] = 1− (x/w0)
1−β and ρwv(x) =

β − 1

w1−β
0

x−β,

respectively. We denote the sequence of the drawn weights by {w}n1 and assume that β > 2 such
that a single weight has finite expectation (and thus the average degree in the graph is constant), but
possibly infinite variance. Moreover, each vertex v is assigned a position xv in the d-dimensional
torus Td uniformly at random according to the standard Lebesgue measure. We denote the i-th
component of xv by xv(i). Two vertices u, v are adjacent if and only if their distance d(xu,xv) is
at most the connection threshold tuv, which is defined such that the marginal connection probability
of u, v is

Pr [u ∼ v] := min

{
1,
λwuwv

n

}
=
κuv
n

, where κuv := min {n, λwuwv} (1)

and where λ ∈ R is a parameter that controls the average degree. We measure of the distance
between two points using the Lp-norm with 1 ≤ p ≤ ∞. That is, we define

∥xu − xv∥p :=


(∑d

i=1 |xu(i)− xv(i)|pC
)1/p

if p <∞
maxi{|xu(i)− xv(i)|C} otherwise.

where |x− y|C denotes the distance on the circle, i.e., |x− y|C = min{|x− y|, 1− |x− y|}.
Note that L∞ is a natural metric on the torus as B∞(r), the ball of radius r under this norm is a

(hyper-)cube and “fits” entirely into Td for all 0 ≤ r ≤ 1. For this reason, the connection threshold
under L∞-norm is always

tuv =
1

2

(
λwuwv

n

)1/d

=

(
wuwv

µn

)1/d

where µ = 2d/λ.
The GIRG model has a natural non-geometric counterpart where the weight distribution of the

vertices is the same as in GIRGs but the edges are now sampled independently, with probability

Pr [u ∼ v] = min

{
1,
λwuwv

n

}
.

This inhomogeneous random graph model is known as the Chung–Lu random graph model and has
been extensively studied in literature (see, e.g., Aiello et al., 2001; Chung and Lu, 2002a,b). It is
important to note that – despite the fact that the connection probability of any two vertices in GIRGs
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and Chung–Lu graphs is the same – these two models have important differences because edges in
GIRGs do not appear independently since they further depend on the positions of the involved
vertices.

Hence, for our analysis, we are now equipped with an appropriate geometric random graph
model and its non-geometric counterpart. Note that, as it was shown by Friedrich et al. (2023,
Theorem 1), the two models converge as the number of dimensions in the GIRG model goes to
infinity, i.e. the total variation distance of the two models goes to zero. Furthermore, we observe that
the GIRG model captures many quantifiable properties of real-world networks as shown by Bläsius
and Fischbeck (2022). Finally, let us note that the model is very versatile as one can consider other
variants with different degree distributions or metric spaces. However, our choice of the Pareto
distribution for the vertex weights and of the torus for the geometric space is the one considered
most frequently in literature – also in the results of Bläsius and Fischbeck (2022).

Triangles and Clustering Coefficient. The number of triangles and related properties of a graph
are common statistics used in the analysis of networks (Gupta et al., 2014), especially for detecting
underlying geometry. In fact a related statistic1 was used by Bubeck et al. (2016) to efficiently test
for the presence of geometry for a spherical random geometric graph.

When dealing with heterogeneous degree distributions, however, triangles that are attributed to
large degree vertices potentially have a significant influence on the total number of triangles. In
fact as shown by Friedrich et al. (2023), the number of triangles in GIRGs and in Chung–Lu graphs
are asymptotically equivalent if β ≤ 7/3, which is not an unrealistic choice for many real-world
networks. Michielan et al. (2022), therefore suggest weighting each triangle by the inverse degrees
of the involved vertices, a statistic they call weighted triangles. A normalized version of the number
of triangles as well as cordless squares and pentagons was also used by Almagro et al. (2022) to
determine the dimensionality of a given network.

A natural statistic, observed in many real-world networks that is however strikingly absent in
non-geometric random graphs where edges are drawn independently, is the existence of a non-
vanishing clustering coefficient, i.e. the probability that two randomly chosen neighbours of a
vertex are adjacent. The clustering coefficient is the central focus of our analysis and we use the
following common definition, also used by Keusch (2018, Definition 5.1).

Given a graph G = (V,E), its local clustering coefficient of a vertex v is

CCG(v) :=

{
| {{s, t} ⊆ Γ(v) | s ∼ t} |/

(deg(v)
2

)
if deg(v) ≥ 2

0 otherwise.

The (global) clustering coefficient ofG is the average of the local coefficient of each ofG’s vertices,
that is,

CC(G) :=
1

|V |
∑
v∈V

CCG(v).

For GIRGs it was shown by Keusch (2018) that, when the vertices of the generated graph are
drawn on a torus of constant dimensionality, the generated graph has a constant clustering coeffi-
cient. On the other hand, on Chung–Lu graphs it was shown that the clustering coefficient goes to
0 as n, the number of vertices of the graph, grows (van der Hofstad et al., 2017). Our first result,

1. The statistic used, number of signed triangles, essentially measures by how much the number of triangles are in the
graph exceeds the expected value in the Erdős–Rényi graph model.
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which we discuss in the next section, extends the results on the clustering coefficient of GIRGs
by giving an upper bound that explicitly depends on the dimension of the underlying space. This
shows that constant dimensionality is in fact needed to obtain a constant clustering coefficient. We
refine our result for the case of L∞-norm in Section 1.1 and afterwards introduce a statistical test
for learning the dimension of a network based on these results (Section 1.2).

1.1. Upper bounds on the clustering coefficient of GIRGs

Our first result connects the clustering coefficient of a GIRG with the number of dimensions used
to generate the positions of its vertices.

Theorem 1 Asymptotically almost surely, if d = o(log(n)), the clustering coefficient ofG sampled
from the GIRG model under some Lp-norm with p ∈ [1,∞] is

CC(G) = exp(−Ωd(d)) + o(1).

We remark that, for the case of L∞-norm, we later derive a sharper bound (see Theorem 3).
Theorem 1 implies that if d = ω(1) and d = o(log(n)) the clustering coefficient vanishes. As
most real-world networks have a non-vanishing clustering coefficient, our theorem suggests that
their dimensionality must be at most constant in the number of vertices. This can be seen as a theo-
retical explanation for the empirical observations of the low dimensionality of real-world networks
by Almagro et al. (2022).

Besides the results of Keusch (2018) for a constant number of dimensions, the clustering co-
efficient of random geometric graphs (i.e., our model in the case of homogeneous weights) under
the L2-norm as a function of d was previously analysed by Dall and Christensen (2002). However,
our Theorem 1 also applies to inhomogeneous degree distributions and arbitrary Lp-norms, which
complicates the analysis. The main difficulty in proving Theorem 1 is that the probability that two
random neighbours of a given vertex are connected is significantly influenced by their weights. To
circumvent this issue we show that high-weight vertices only have a small influence on the global
clustering coefficient of a power-law graph G in Section 3.1. Via an application of the method of
typical bounded differences (Theorem 8 see also the article by Warnke (2016)) – a generalisation
of McDiarmid’s inequality McDiarmid et al. (1989) and a powerful tool to showing concentration
in high dimensional spaces – we then show that the clustering coefficient of a GIRG concentrates
around the expected clustering coefficient of a subgraph induced by vertices of small weight.

The bound on the clustering coefficient of the low-weight vertex subgraph follows from a bound
on the probability that two random vectors yu,yv uniformly distributed within the ball of radius 1
have a distance larger than a certain threshold. Intuitively, the fact that this probability decays
exponentially in d is a consequence of the law of large numbers: as d grows, with large probability,
about half of the components of yu and yv have opposite sign, which already leads to a distance
between u and v that is arbitrarily close to 1 with probability converging to 1 as d grows. Taking
into account that the other components of yu and yv also contribute at least a constant increase in
distance between u and v with large probability, we get that there is an exponentially increasing
probability that the distance between u and v is strictly greater than one, which suffices to show
an exponential upper bound on the clustering coefficient in G. To prove this exponential decay in
terms of d, we use a coupling argument based on the observation that the “direction” x/∥x∥p and
the norm ∥x∥p of a random vector distributed in the unit ball under Lp-norm are independent. To
analyze the normalized vector x/∥x∥p, we define the following distribution and show that if z is
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a vector sampled from this distribution, then z/∥z∥p is distributed just as x/∥x∥p. This has the
advantage that the components of z are now independent, allowing us to apply sharp tail bounds
from which our statements follow.

The χp-Distribution. Let p ∈ R, p ≥ 1. We call a random vector x ∈ Rd, χp(d) distributed if
each of its components x(i) is independently distributed according to the density function

ρ(xi) := γe−
1
2
|x(i)|p

with the normalising constant

γ =
p

21/p+1Γ(1/p)
,

where Γ(s) =
∫∞
0 xs−1e−xdx is the gamma function. If x ∼ χp(d), then we denote the distribution

of the random variable
(
∥x∥p

)p
=
∑d

i=1 |x(i)|p by χp(d).

This distribution is a generalisation of the χ2 distribution and a simplification of the one pro-
posed by Livadiotis (2014). In our analysis, we determine its moment generating function. This not
only gives us its expectation, which is 2d/p, but also allows us to obtain the following concentration
bound, which we use in the arguments used for the proof of Theorem 1.

Corollary 2 Let Xi, . . . Xd be i.i.d. random variables from χp(1) and define Z =
∑d

i=1 |Xi|p ∼
χp(d). Then, for every ε > 0,

Pr [|Z − E [Z] | ≥ ε · E [Z]] ≤ 2 exp

(
−2δ

p
d

)
.

Where δ > 0 is defined by ε = 2(
√
2δ + δ).

We believe our analysis of the χp(d) and χp(d) distributions to be of independent interest, as
many random spaces can be related to vectors drawn uniformly at random within the d-dimensional
unit ball of some Lp-norm.

Improved bounds for the L∞-norm. When using L∞-norm as a distance measure for GIRGs
we obtain more precise results and are able to further determine the base of the exponential function
governing the decay of CC(G). Recall that the L∞ norm is not only a natural distance measure on
the torus from a mathematical point of view, but also one that yields graphs that closely resemble
real-world networks (Bläsius and Fischbeck, 2022).

Theorem 3 Assume that d = o(log(n)) and β ̸= 3. Then asymptotically almost surely, the clus-
tering coefficient of G sampled from the GIRG model with L∞-norm fulfils

CC(G) = Od

((
3

4

)min{1,β−2}d
)

+ o(1)

and

CC(G) = Ωd

(
max

{(
1

4

)(β−2)d

,

(
3

4

)d
})

.

6
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In particular, if β > 3, we have

CC(G) = Θd

((
3

4

)d
)

+ o(1).

This theorem shows that CC(G) essentially decays as (3/4)d asymptotically in d if β > 3.
Otherwise, if β ∈ (2, 3), we obtain slightly weaker bounds but we are in particular able to show
that CC(G) decays asymptotically slower than (3/4)d if β is sufficiently close to 2, which follows
from the lower bound CC(G) = Ωd

(
(1/4)(β−2)d

)
. The reason for this is that the expected weight

of a random neighbor of a given vertex is infinite if β ∈ (2, 3) which leads to an increased overall
clustering coefficient.

The proof of Theorem 3 is based on an application of the following theorem by Friedrich et al.
(2023, Theorem 3) that bounds the probability that a set of k vertices forms a clique conditioned on
the event that said vertices form a star centered at the vertex of minimal weight under the assumption
that the ratio between the minimal and maximal weight is bounded. We slightly reformulate the
original statement for the sake of exposition.

Theorem 4 Let G be a GIRG generated under L∞-norm. Let U = {v, s, t} be a set of 3 vertices
with weights wv, ws, wt such that wv ≤ ws ≤ wt and wv ≤ cwt for some constant c > 0. If(
w2
t /(µn)

)1/d ≤ 1/4, we have(
3

4

)d

≤ Pr [U is a triangle | v ∼ s, t] ≤ c

(
3

4

)d

.

We remark that the condition
(
w2
t /(µn)

)1/d ≤ 1/4 is needed to ensure that the connection
threshold for s, t is sufficiently small such that we can ignore the topology of the underlying torus
and measure distances as in Rd.

1.2. Testing for the dimensionality

A natural further question that arises is whether one can recover the underlying dimension of a given
GIRG by means of statistical testing. The previous secons suggest that the clustering coefficient is
an indicator of this property, however, we have also seen that this metric is further influenced by
other model parameters (i.e. w0, λ and especially β) making it rather unsiutable for designing
a rigorous test. A similar problem arises when using the total number of triangles, which is is
dominated by those forming among large degree vertices independently of d if β is close to 2 as
observed by Friedrich et al. (2023); Michielan et al. (2022). In Michielan et al. (2022), the authors
therefore suggest to count the number of weighted triangles instead, where each triangle contributes
a weight that is inversely proportional to the product of the degrees of its vertices. Weighted triangles
thus counteract the effect of large degree vertices as the influence of triangles forming among such
vertices is diminished. However, this approach only allows to decide whether the network has an
underlying metric structure, but not its dimensionality.

We take a similar (yet more direct) approach for excluding the effect of large degree vertices and
introduce a test that is further able to infer the dimension of the underlying metric space. Namely, we
can show that the clustering coefficient among vertices of approximately the same weight that have
at least two neighbors is highly concentrated and a direct indicator of the underlying dimension,
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without being influenced by other model parameters. More precisely, using Theorem 4 together
with the method of typical bounded differences (Theorem 8), we can show that the average local
clustering coefficient in the induced subgraph of all vertives with weight in some interval [wc, cwc]
(where wc ≥ w0, 0 < c < 2/

√
3) concentrates tightly around a value that is only dependent on d

and not on β or w0. This is formalised in the following theorem.

Theorem 5 Let G = G(n, d, β, w0) be a GIRG generated under L∞-norm. Let further 1 < c <
2/

√
3 ≈ 1.1547, wc ≥ w0 be constants, and let G̃ be the subgraph of G consisting of all vertices

with weight in [wc, cwc]. Assume that d is an integer with d = o(log(n)). Define the set S as the set
of vertices in G̃ that have at least two neighbors in G̃ and the random variable CC(+)(G̃) as

CC(+)(G̃) :=
1

|S|
∑
v∈S

| {{s, t} ∈ Γ(v) | s ∼ t} |(
deg(v)

2

) =
1

|S|
∑
v∈S

CCG̃(v).

Then,

CC(+)(G̃) ∈

(
1

c

(
3

4

)d

, c

(
3

4

)d
)

± n−1/5 (2)

with probability at least 1− 1/n.

Theorem 5 can be viewed as a linear-time algorithm for the following statistical testing problem
(assuming that wc is constant). We are given a graph G on n vertices, its weight sequence, and
an integer d = o(log(n)). Under the null hypothesis, G is a GIRG generated with dimension d,
whereas under the alternative hypothesis, G was generated in dimension d1 ̸= d or it is a Chung–Lu
graph. Here, we allow d1 to be any integer (potentially larger than log(n)). Consider the following
testing procedure for this problem. Fix a constant 1 < c < 2/

√
3 and a weight wc ≥ w0. Now,

consider the induced subgraph G̃ of G consisting of all nodes with weight in [wc, cwc]. For every
node v ∈ G̃ that has at least two neighbours in G̃, compute its local clustering coefficient CCG̃(v)

and denote by CC(+)(G̃) the mean over all these values. We accept the null hypothesis if and only
if condition (2) is met. Due to Theorem 5 the probability that this test is incorrect under both the
null and alternative hypothesis goes to zero as n → ∞. Furthermore, the running time of this test
is linear, as we have to compute the local clustering coefficient of vertices of constant weight and
as the degree of a vertex with weight cwc is constant in expectation. Iterating this statistical test
over the range of d we can recover the dimensionality of the input graph with high probability. Let
us note that our result is not restricted to a constant number of dimensions but applies to the whole
regime d = o(log(n)), which – as Theorem 3 implies – is the only relevant one for this problem.

1.3. Application to real-world networks.

In addition to our theoretical results, we tested our algorithm in practice, both in real world net-
works and in GIRGs. For estimating the vertex weights, we used the maximum likelihood estimator
derived in (Boguna et al., 2010, Appendix B.2). The outcome of our experiments is summarised
in Figure 1. Table 1 further contains a list of the real-world networks we used for the first row of
plots in Figure 1. In Figure 1, the size of the circles is proportional to the number of vertices in
the induced subgraph of vertices with weight in the interval [wc, cwc]. We use c = 1.155 which is

8
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roughly the maximum permitted value predicted by Theorem 5. The dashed lines represent roughly
the expected value of our test statistic for a GIRG genenerate in dimension d, i.e. (3/4)d. The
GIRGs were generated with the sampling algorithm of Bläsius et al. (2022) using β = 2.5, α = 10
and an average degree of 10. The histogram on the lower right of Figure 1 shows the frequency
of each inferred dimension using the dataset of Bläsius and Fischbeck (2022) consisting of 2976
real-world networks. The dimension here is inferred by taking the weighted median of the inferred
dimension from our test statistic over different values of wc ranging from 2 to 300. The weighting
is by the number of vertices in the respective subgraph induced by vertices with weight in [wc, cwc].

The inferred dimensions we obtain are indeed similar to the results of Almagro et al. (2022,
Fig. 5) with typical inferred dimensions being in the range of 1 to 10 and with social networks
being generally assigned to higher dimensions than collaboration or citation networks. Some of the
networks we use (all the ones we were able to find) are also contained in the dataset of Almagro
et al. (2022) and here, the inferred dimensions of both approaches are very similar. For examples,
consider email-Enron, ca-AstroPh, ca-CondMat, ca-GrQc, cit-HepTh.

We remark that the big advantage of our algorithm is that it has stronger theoretically founda-
tions and is much more efficient. In fact, we are able to handle datasets of orders of magnitude
larger than Almagro et al. (2022). In fact, our experiments conducted on the set of 2976 real-world
networks by Bläsius and Fischbeck (2022) which are summarized in the histogram in Figure 1 show
that a vast majority of them is assigned a dimension of at most 10. This can be seen as a further
indication of the ultra-low-dimensional nature of most realistic networks, now tested on a much
larger dataset as before.

Besides that, we note that the algorithm works exceptionally well for synthetic networks and
this holds even if we use a soft version of GIRGs which includes an additional temperature param-
eter α ≥ 1 that (if close to 1) diminishes the influence of the underlying geometry (we refer to
Bläsius et al. (2022) for more information). Experiments indicate that the test continues to achieve
a performance similar to that predicted by theory for all α ≥ 2. However, even for smaller values of
α, the inferred dimension of our test can still be seen as an upper bound on the ground truth since it
is known that smaller values of α only lead to a decrease in clustering.

We further observe that some of the considered real-world networks show an overall similar be-
haviour as that of the GIRGs (e.g. soc-academia, fb-pages-artist, ca-AstroPh,
ca-CondMat). It is however not a surprise that real-world data can be noisy and, therefore, exhibit
a behaviour that differs from GIRGs. Similar difficulties were also encountered by Almagro et al.
(2022) (see their supplementary material) and a similar noisy behaviour can also be observed in
small generated GIRGs, where number of vertices is not hight enough for the concentration results
to be strong. Nevertheless, some of the considered networks (especially the biological networks)
show a rather different behavior as predicted by the GIRG model which indicates that GIRGs do
not capture all properties of realistic networks and thus motivates further research.
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Figure 1: The clustering coefficient of the low-weight vertices for different choices of wc in real-world and synthetic networks. The size
of the circles is proportional to the number of vertices in the induced subgraph of vertices with weight in the interval [wc, cwc]
whereby we use c = 1.155. The dashed lines represent roughly the expected value of our test statistic for a GIRG. The histogram
shows the frequency of each inferred dimension using the dataset of Bläsius and Fischbeck (2022) consisting of 2976 real-world
networks.

10



DETERMINING THE DIMENSIONALITY OF NETWORKS

1.4. Future work

As we previously discussed, a large body of work has been devoted to understanding in which cases
(i.e. for which asymptotic behaviors of d), geometry is detectable in spherical random geometric
graphs (SRGGs) for homogeneous weights. While the parameter regime where these graphs lose
their geometry in the dense case, i.e. the case where the marginal connection probability of two
vertices is constant and does not depend on n, is well understood (Devroye et al., 2011; Bubeck
et al., 2016; Liu and Racz, 2021), it remains unclear what happens in the sparse case (where the
marginal connection probability is proportional to 1/n) and progress has been made only recently
(Brennan et al., 2020; Liu et al., 2022).

On the other hand, there has not been much research devoted to studying the influence of the
dimension on random geometric graphs in the case of inhomogeneous weights. We gave first results
in this regard by studying how the clustering coefficient depends on d and showed that the dimen-
sion can be detected by means of statistical testing assuming that d = o(log(n)). It remains to study
under which conditions the geometry remains detectable if d = Ω(log(n)) and under which cir-
cumstances the model converges to its non-geometric counterpart with respect to the total variation
distance of the distributions over the produced graphs as previously studied for spherical random
graphs. Furthermore, it remains to study what differences arise when using the torus instead of the
sphere as the underlying metric space. We expect that our model loses its geometry earlier than
spherical random graphs, as the number of triangles in our model for the sparse case with con-
stant weights is, in expectation, the same as in an Erdős-Rényi graph already if d = ω(log3/2(n))
(Friedrich et al., 2023). On the sphere this only happens if d = ω(log3(n)) (Bubeck et al., 2016).

For detecting the geometry in SRGGs Bubeck et al. (2016) have introduced the signed trian-
gle statistic which proves more powerful than ordinary triangles in the dense case. It remains to
study if signed triangles, or a combination of signed triangles and weighted triangles considered by
Michielan et al. (2022), gives rise to a more powerful test for the case of inhomogeneous weights.

A further interesting extension is to consider an anisotropic version of our model, along the lines
of the work of Eldan and Mikulincer (2020); Brennan et al. (2022). In the GIRG model, this can be
naturally encoded in the distance measure used to determine the edge threshold.

Noisy settings have also been considered in the context of testing for geometry in random graphs
(Liu and Rácz, 2021). Our model comes with a natural way of modelling noise in the form of and
inverse temperature parameter α > 1 (Keusch, 2018). Here, two vertices are connected with a
probability that depends on both their distance and the temperature. More precisely, the connection
probability of two vertices u, v fulfills

puv = Θ

(
1

∥xu − xv∥αd∞

(wuwv

n

)α)
.

Intuitively, lower values of α diminish the influence of the underlying geometry. We expect results
similar to ours to hold in the noisy setting if α is a constant. It remains to study how different
(constant or superconstant) values of α influence the detectability of the underlying geometry and
dimension.

2. Preliminaries

We let G = (V,E) be a (random) graph on n vertices. For any value δ, let V≤δ denote the set of
vertices of degree at most δ and let G≤δ denote the subgraph of G induced by V≤δ. We use standard

11
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Landau notation to describe the asymptotic behavior of functions for sufficiently large n. That is,
for functions f, g, we write f(n) = O(g(n)) if there is a constant c > 0 such that for all sufficiently
large n, f(n) ≤ cg(n). Similarly, we write f(n) = Ω(g(n)) if f(n) ≥ cg(n) for sufficiently large
n. If both statements are true, we write f(n) = Θ(g(n)). Regarding our study of the clustering
coefficient, some results make a statement about the asymptotic behavior of a function with respect
to a sufficiently large d. These are marked by Od(·),Ωd(·),Θd(·), respectively.

2.1. Probabilistic tools

We say that an event E holds asymptotically almost surely if limn→∞ Pr [E] = 1 and with high
probability if Pr [E] ≥ 1 − O(1/n). The following theorem shows that the sum of independent
Bernoulli random variables converges to a Poisson distributed random variable if the individual
success probabilities are small.

Theorem 6 (Proposition 1 in Cam (1960)) For 1 ≤ i ≤ n, let Xi be independent Bernoulli dis-
tributed random variables such that Pr [Xi = 1] = pi. Let λn =

∑n
i=1 pi, and S =

∑n
i=1Xi.

Then,

∞∑
k=0

∣∣∣∣Pr [S = k]− λkne
−λn

k!

∣∣∣∣ ≤ 2
k∑

i=1

p2i .

We will also use the following concentration bounds.

Theorem 7 (Theorem 2.2 in Keusch (2018), Chernoff-Hoeffding Bound) For 1 ≤ i ≤ k, letXi

be independent random variables taking values in [0, 1], and let X :=
∑k

i=1Xi. Then, for all
0 < ε < 1,

(i) Pr [X > (1 + ε)E [X]] ≤ exp
(
− ε2

3 E [X]
)

.

(ii) Pr [X < (1− ε)E [X]] ≤ exp
(
− ε2

2 E [X]
)

.

(iii) Pr [X ≥ t] ≤ 2−t for all t ≥ 2eE [X].

While this theorem is extremely useful when dealing with sums of independent random variables,
we shall further need the method of typical bounded differences to obtain bounds when the Chernoff-
Hoeffding bound is not applicable.

Theorem 8 (Theorem 2.5 in Keusch (2018)) Let X1, . . . , Xm be independent random variables
over Ω1, . . . ,Ωm. Let X = (X1, . . . , Xm) ∈ Ω =

∏m
i=1Ωi and let f : Ω → R be a measurable

function such that there is some M > 0 such that for all ω ∈ Ω, we have 0 ≤ f(ω) ≤ M . Let
B ⊆ Ω such that for some c > 0 and for all ω, ω′ ∈ B that differ in at most two components Xi, Xj ,
we have ∣∣f(ω)− f(ω′)

∣∣ ≤ c.

Then, for all t ≥ 2MPr [B], we have

Pr [|f(X)− E [f(X)]| ≥ t] ≤ 2 exp

(
− t2

32mc2

)
+

(
2Mm

c
+ 1

)
Pr [B] .
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2.2. Basic properties of the GIRG model

We will need the following statements about the distribution of the degrees and weights in the GIRG
model.

Lemma 9 (Lemma 3.3 and Lemma 3.4 in Keusch (2018), slightly reformulated) The following
properties hold for G(n, d, β, w0) = (V,E).

(i) For all v ∈ V , we have E [deg(v)] = Θ(wv).

(ii) With probability 1− n−ω(1), we have for all v ∈ V that deg(v) = O(wv + log2(n)).

In fact, we need a slightly stronger version of statement (ii) above.

Lemma 10 Let V≤log(n) be the set of all vertices with weight at most log(n). With probability at
least 1− n−Ω(log2(n)), we have for all v ∈ V≤log(n) that deg(v) ≤ log3(n).

Proof We get from Lemma 9 that E [deg(v)] = wv. Hence, for sufficiently large n, we get that
log3(n) ≥ 2eE [deg(v)] for all v ∈ V≤log(n). Since the degree of a fixed vertex v conditioned on its
position is a sum of independent Bernoulli distributed random variables, we may apply statement
(iii) from Theorem 7 to obtain Pr

[
deg(v) ≥ log3(n)

]
≤ n−Ω(log2(n)). From a union bound, we get

that the probability that at least one vertex from V≤log(n) has a degree of log3(n) or more is at most
n · n−Ω(log2(n)) = n−Ω(log2(n)), which concludes the proof.

3. Upper bound on the clustering coefficient of GIRGs

We proceed by pointing out our general bounding technique and then handle the case of L∞-norm
and Lp-norms with p ∈ [1,∞) separately.

3.1. Our bounding technique

We go on with developing a technique for upper bounding CC(G). The main difficulty here is
that the probability that two random neighbors of a given vertex are connected grows significantly
with their weight. We circumvent this issue by showing that high-weight vertices only have a small
influence on the global clustering coefficient of a power-law graphG, which essentially concentrates
around its expectation in an induced subgraph of small weight. We formalize this in the following
lemma that is proved in a similar way as (Keusch, 2018, Theorem 4.4).

Lemma 11 Asymptotically almost surely, we have

CC(G) = E
[
CC(G≤n1/8)

]
+ o(1).

To prove this statement, we require the following auxiliary lemmas.

Lemma 12 (Lemma 3.5 in Keusch (2018)) If the weight w of each vertex is sampled from the
Pareto-distribution with parameters w0, 1 − β, then for all η > 0, there is a constant c > 0 such
that with probability 1− n−ω(log log(n)/ log(n)) = 1− o(1), and all w ≥ w0, we have

|V≥w| ≤ cnw1+η−β.

13
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Lemma 13 (Lemma 3.4 in Keusch (2018)) With probability 1 − n−ω(1), for all v ∈ V , we have
deg(v) = O(wv + log(n)2).

Lemma 14 (Lemma 3.1 in Keusch (2018)) If for all η > 0, there is a constant c > 0 such that
for all w ≥ w0, we have |V≥w| ≤ cnw1+η−β , then∑

v∈V≥w

wv = O(nw2+η−β).

Proof [Proof of Lemma 11] We start by showing that

CC(G≤n1/8) = E
[
CC(G≤n1/8)

]
+ o(1)

asymptotically almost surely and then how this statement transfers to the whole graph G.
To show concentration, we use Theorem 8 and note that the positions and weights of all vertices

define a product probability space as in Theorem 8. We denote this space by Ω, whereby every
ω ∈ Ω defines a graph G(ω) on the vertex set V≤n1/8 . Note that the number of independent random
variables is m = 2n. Thus, we may define a function f : Ω → R that maps every ω ∈ Ω to
CC(G(ω)). We consider the ”bad” event

B = {ω ∈ Ω | the maximum degree in G(ω) is at least n1/4}.

By Lemma 13, we get that Pr [B] = n−ω(1). Now, let ω, ω′ ∈ B such that they differ in at most two
coordinates. We observe that changing the weight or coordinates of one vertex v only influences the
clustering coefficient of v itself or vertices that are neighbors of v before or after the change. Since
v has at most n1/4 neighbors in both G(ω) and G(ω′), the change affects at most 2n1/4 vertices.
Two such changes can hence only increase or decrease the clustering coefficient of G(ω) by at most
4n1/4/n, and so we have |f(ω)− f(ω′)| ≤ 4n−3/4. We note that the choice t = n−1/8 fulfills the
condition t ≥ 2MPr [B] since M = 1 and Pr [B] = n−ω(1). Thus, we may apply Theorem 8 to
obtain

Pr
[
|CC(G≤n1/8)− E

[
CC(G≤n1/8)

]
| ≥ n−1/8

]
≤ 2 exp

(
− n−1/4

32 · 2n · 16n−3/2

)
+

(
4n

n−3/4
+ 1

)
n−ω(1) = n−ω(1).

This shows that with high probability, |CC(G≤n1/8)− E
[
CC(G≤n1/8)

]
| = o(1).

In order to transfer this finding to the entire graph G, we note that each additional vertex we add
to G≤n1/8 has (local) clustering of at most one and each edge, we add to a vertex v ∈ V≤n1/8 can
only increase its clustering by at most one as well. Hence,

CC(G) ≤ 1

n

|V≤n1/8 |CC(G≤n1/8) + |V>n1/8 |+
∑

v∈V
>n1/8

deg(v)


≤ CC(G≤n1/8) +

|V>n1/8 |
n

+
1

n

∑
v∈V

>n1/8

deg(v).

14
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To bound this term, we note that the probability that a random vertex v has weight greater than n1/8

is proportional to n(1−β)/8 = o(n−1/8). Hence, the expected size of V>n1/8 is o(n7/8) and by a
Chernoff bound, we get that |V>n1/8 | ≤ 2E

[
V>n1/8

]
with high probability, implying |V>n1/8 |/n =

o(1) with high probability By Lemma 13, we further get that deg(v) = O(wv) for all v ∈ V>n1/8

and hence, by Lemma 14 and Lemma 12, we get

∑
v∈V

>n1/8

deg(v) = O

 ∑
v∈V

>n1/8

wv

 = O(n1+(2+η−β)/8) = o(n)

asymptotically almost surely and for some sufficiently small η > 0 from which our statement
follows.

We further require the following lemma, which formalizes that the clustering coefficient of a
vertex v can equally be seen as the probability that two randomly chosen neighbors of v are adjacent.

Lemma 15 Let v, s, t be three vertices from G, chosen uniformly at random. Denote by ∆ the
event that v, s, t form a triangle. We have

E [CC(G)] = Pr [∆ | v ∼ s, t] Pr [deg(v) ≥ 2] .

Furthermore, let v̂, ŝ, t̂ be the vertices v, s, t ordered increasingly by their weights. Then,

E [CC(G)] ≤ Pr
[
∆ | v̂ ∼ ŝ, t̂

]
.

Proof We start by showing the first statement. Assume that V = {u1, . . . , un} and observe that, by
linearity of expectation,

E [CC(G)] =
1

n

∑
u∈V

E [CCG(u)] = E [CCG(u1)]

as every vertex has the same expected local clustering assuming that its weight is an independent
sample from the Pareto distribution. It thus suffices to show that E [CCG(v)] ≤ Pr [∆ | v ∼ s, t].
For this, recall that Γ(v) = {u1, . . . , uk} is the (random) set of neighbors of v numbered from 1 to
k in some random order. Observe that deg(v) = |Γ(v)| and recall that the random variable CCG(v)
is defined as

CCG(v) =
1(|Γ(v)|
2

)∑
i<j

1(ui ∼ uj),

where 1(s ∼ t) is an indicator random variable that is 1 if and only if s and t are connected. By
linearity of expectation, we get that, for any k ≥ 2,

E [CCG(v) | |Γ(v)| = k] =
1(
k
2

)∑
i<j

Pr [ui ∼ uj | deg(v) = k] .
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We proceed by showing that for any 1 ≤ i < j ≤ k, we have E [1(ui ∼ uj) | deg(v) = k] =
Pr [s ∼ t | s, t ∈ Γ(v)]. To this end, let Ω be the global sample space consisting of all possible n-
vertex graphs and two of its vertices s, t chosen u.a.r. Let further B ⊂ Ω be the set of all outcomes
where deg(v) = k and where s = ui and t = uj . We have,

E [1(ui ∼ uj) | deg(v) = k] = Pr [ui ∼ uj | deg(v) = k]

= PrB [s ∼ t]

= PrΩ [s ∼ t | B]
= Pr [s ∼ t | (s = ui) ∩ (t = uj) ∩ (deg(v) = k)]

=
Pr [(s ∼ t) ∩ (s = ui) ∩ (t = uj) ∩ (deg(v) = k) | s, t ∈ Γ(v)]

Pr [(s = ui) ∩ (t = uj) ∩ (deg(v) = k) | s, t ∈ Γ(v)]

= Pr [s ∼ t | s, t ∈ Γ(v)] ,

where the second to last equality holds because the events s ∼ t and s = ui ∩ t = uj ∩ deg(v) = k
are independent if we condition on s, t ∈ Γ(v). This implies

E [CCG(v) | deg(v) = k] =
1(
k
2

)∑
i<j

Pr [ui ∼ uj | |Γ(v)| = k] .

= Pr [s ∼ t | s, t ∈ Γ(v)]

= Pr [∆ | v ∼ s, t] .

If k = |Γ(v)| < 2, we have that CCG(v) = 0, implying that in total,

E [CC(G)] = Pr [∆ | v ∼ s, t] Pr [deg(v) ≥ 2]

as desired.
For the second part, recall that we defined for all i, j ∈ V the quantity κij = min{λwiwj , n}

and note that

Pr [v ∼ s, t] =
min{λwvws, n}

n

min{λwvwt, n}
n

≥ min{λwv̂wŝ, n}
n

min{λwv̂wt̂, n}
n

= Pr
[
v̂ ∼ ŝ, t̂

]
because v̂ is the vertex of minimal weight and because the events v̂ ∼ ŝ and v̂ ∼ t̂ are independent.
Thus,

E [CCG(v)] ≤ Pr [∆ | v ∼ s, t] =
Pr [∆]

Pr [v ∼ s, t]
≤ Pr [∆]

Pr
[
v̂ ∼ ŝ, t̂

] = Pr
[
∆ | v̂ ∼ ŝ, t̂

]
.

3.2. L∞-norm

In this section, we analyse the clustering coefficient under L∞-norm, which results in Theorem 3.
To prove this theorem, we use Theorem 4.
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Theorem 3 Assume that d = o(log(n)) and β ̸= 3. Then asymptotically almost surely, the clus-
tering coefficient of G sampled from the GIRG model with L∞-norm fulfils

CC(G) = Od

((
3

4

)min{1,β−2}d
)

+ o(1)

and

CC(G) = Ωd

(
max

{(
1

4

)(β−2)d

,

(
3

4

)d
})

.

In particular, if β > 3, we have

CC(G) = Θd

((
3

4

)d
)

+ o(1).

Proof (1) Upper Bounds. We use Lemma 11 and thus only need an upper bound on E
[
CC(G≤n1/8)

]
.

For this, we use Lemma 15, and we let v, s, t be three random vertices in G≤n1/8 conditioned on
the event that v is of minimal weight among v, s, t. If we denote by ∆ be the event that v, s, t
form a triangle, we get from Lemma 15 that E

[
CC(G≤n1/8)

]
≤ Pr [∆ | v ∼ s, t]. Accordingly, by

Theorem 4, we may bound

E
[
CC(G≤n1/8)

]
≤ E

[
min

{
1,

max{ws, wt}
wv

(
3

4

)d
}∣∣∣∣∣ v ∼ s, t

]
.

To bound the expectation above, we analyze the distribution of max{ws, wt}. Taking into account,
that we consider v, s, t ∈ G≤n1/8 conditioned on the event that wv ≤ ws, wt, a standard calculation
shows that

Pr [max{ws, wt} ≥ x | v ∼ s, t]

= (1 + o(1))

1−

(
1−

(
x

wv

)2−β
)2
 ≤ (2 + o(1))

(
x

wv

)2−β

where the factor of 1+o(1) comes from conditioning on v, s, t ∈ G≤n1/8 and the exponent of 2−β
is due to the weight bias arising from conditioning on v ∼ s, t. Therefore, if β > 3, the above
random variable has finite expectation and we can bound

E

[
min

{
1,

max{ws, wt}
wv

(
3

4

)d
}∣∣∣∣∣ v ∼ s, t

]
≤
(
3

4

)d

E
[
max{ws, wt}

wv

∣∣∣∣ v ∼ s, t

]

≤ (2 + o(1))

(
3

4

)d ∫ ∞

1
(β − 2)xβ−2dx

≤ (2 + o(1))
β − 2

β − 3

(
3

4

)d

= Od

((
3

4

)d
)
,
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which finishes the case β > 3. For the case β < 3, we instead bound

E

[
min

{
1,

max{ws, wt}
wv

(
3

4

)d
}∣∣∣∣∣ v ∼ s, t

]

≤ (2 + o(1))

(
3

4

)d ∫ ( 4
3)

d

1
(β − 2)x2−βdx+ Pr

[
max{ws, wt}

wv
≥
(
4

3

)d

| v ∼ s, t

]

≤ (2 + o(1))
β − 2

3− β

(
3

4

)d(4

3

)d(3−β)

+ (2 + o(1))

(
3

4

)d(β−2)

= Od

((
3

4

)(β−2)d
)

as desired.
(2) Lower Bounds. First of all, we show that E

[
CC(G≤n1/8)

]
= Ωd((3/4)

d). To this end, we
let v, s, t be three random vertices in G≤n1/8 and we let v̂, ŝ, t̂ be the vertices v, s, t reordered by
their weights such that the weight of v̂ is minimal. Then,

Pr [∆ | v ∼ s, t] =
Pr [∆]

Pr [v ∼ s, t]
=

Pr
[
v̂ ∼ ŝ, t̂

]
Pr [v ∼ s, t]

Pr
[
∆ | v̂ ∼ ŝ, t̂

]
=
wv̂

wv
Pr
[
∆ | v̂ ∼ ŝ, t̂

]
. (3)

Furthermore, by Lemma 15, we have

E
[
CC(G≤n1/8)

]
= Pr [∆ | v ∼ s, t] Pr [deg(v) ≥ 2]

≥ Pr [∆ ∩ (wŝ, wt̂ ≤ cwv̂) | v ∼ s, t] Pr [deg(v) ≥ 2]

= Pr [∆ | (v ∼ s, t) ∩ (wŝ, wt̂ ≤ cwv̂)]

· Pr [wŝ, wt̂ ≤ cwv̂ | v ∼ s, t] Pr [deg(v) ≥ 2]

where c is an arbitry constant greater than 1 (that does not depend on d). Now it is easy to see that
Pr [wŝ, wt̂ ≤ cwv̂ | v ∼ s, t] and Pr [deg(v) ≥ 2] are both constant. To bound the remaining factor,
we note that wv̂/wv ≥ 1/c conditioned on wŝ, wt̂ ≤ cwv̂, so we can use (3) to obtain

Pr [∆ | (v ∼ s, t) ∩ (wŝ, wt̂ ≤ cwv̂)] ≥
1

c
Pr
[
∆ | (v̂ ∼ ŝ, t̂) ∩ (wŝ, wt̂ ≤ cwv̂)

]
≥ 1

c

(
3

4

)d

where in the last step, we used Theorem 4 which is now applicable because v̂ is of minimal weight
among v, s, t. Together, this shows that E

[
CC(G≤n1/8)

]
= Ωd((3/4)

d) as desired.
However, if β is very close to 2, we derive a better lower bound. To this end, we note that

Pr [∆ | v ∼ s, t] = 1 if ws, wt ≥ 2dwv, which is easy to show using the respective connection
thresholds. Hence, E

[
CC(G≤n1/8)

]
≥ Pr[ws, wt ≥ 2dwv | v ∼ s, t]Pr [deg(v) ≥ 2]. Now,

using that wv is at most a constant with constant probability and then applying similar calculations
regarding the weight distribution of s, t as in part (1) of this proof yields that

E
[
CC(G≤n1/8)

]
≥ Pr[ws, wt ≥ 2dwv | v ∼ s, t]Pr [deg(v) ≥ 2]

≥ C(2d(2−β))2

= Ωd((1/4)
(β−2)d)

for some constant C > 0, as desired.
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3.3. General Lp-norms

In this section, we generalize the previous result to other Lp-norms for 1 ≤ p < ∞. We show that,
in the threshold model, one also obtains an upper bound on the clustering coefficient that decreases
exponentially with d and holds with high probability. Although we do not have an explicit bound
for the base of this exponential function, this result illustrates that using a different norm does not
drastically change the behavior of the clustering coefficient.

Theorem 1 Asymptotically almost surely, if d = o(log(n)), the clustering coefficient ofG sampled
from the GIRG model under some Lp-norm with p ∈ [1,∞] is

CC(G) = exp(−Ωd(d)) + o(1).

We start with deriving probability theoretic methods for analyzing random vectors uniformly
distributed in the unit ball under Lp-norm and afterwards use them to bound the clustering coeffi-
cient (Section 3.3.2).

3.3.1. PROBABILITY-THEORETIC METHODS

We start by introducing the following useful property of the distribution of a random vector x ∈ Rd,
which will afterwards allow us view x = ∥x∥p x

∥x∥p where ∥x∥p and x
∥x∥p are independent. In the

following we show this formally and analyze the distribution of these random variables. We start
with x

∥x∥p and define the following useful property of a random vector.

Definition 16 (Lp-Symmetry) Let x ∈ Rd be a random vector with density function ρ : Rd →
R≥0. We refer to ρ and x as Lp-symmetric if for all y, z ∈ Rd with ∥y∥p = ∥z∥p, we have
ρ(y) = ρ(z). As this implies that ρ only depends on the norm r ∈ R of its argument, we also denote
with ρ(r) the value of ρ for any z ∈ Rd with ∥z∥p = r.

It is easy to see that x ∼ Bp(1) has the above property. We shall further see that any two
Lp-symmetric random vectors y,y′ are equivalent in the sense that their ”directions” y/∥y∥p and
y′/∥y′∥p are identically distributed. This allows us to sample the random vector x/∥x∥p from an
arbitrary Lp-symmetric distribution.

Lemma 17 (Equivalence of Lp-Symmetric Density Functions) Let x, x̃ ∈ Rd be two random
vectors with density functions ρ and ρ̃ respectively, both Lp-symmetric. Then, the random vectors
z := x

∥x∥p
and z̃ := x̃

∥x̃∥p
are identically distributed.

Before we prove this lemma, we introduce some further notation and some auxiliary statements.
Let S ⊆ Sp(1) be some subset of the (surface of the) unit sphere under Lp-norm. We define the
set S(r) = {x ∈ Rd | x/∥x∥p ∈ S, ∥x∥p ≤ r}, which contains all vectors from Rd with norm
at most r that are in S when projected to Sp(1). We further denote by ν(r) the volume of the unit
ball of radius r and by νS(r) the volume of the set S(r). We start by showing the following useful
property.

Lemma 18 Let S ⊆ Sp(1), and let S(r), νS(r), and ν(r) be defined as above. We have

νS(r) = rd · νS(1) = ν(r)
νS(1)

ν(1)
.
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FRIEDRICH GÖBEL SCHILLER KATZMANN

Proof We note that for any r ≥ 0,

νS(r) =

∫ ∞

−∞
. . .

∫ ∞

−∞
1((x1, . . . , xd) ∈ S(r))dx1 . . . dxd.

Substituting xi = r · yi yields

νS(r) =

∫ ∞

−∞
. . .

∫ ∞

−∞
1(r · (y1, . . . , yd) ∈ S(r))rddy1 . . . dyd

= rd
∫ ∞

−∞
. . .

∫ ∞

−∞
1((y1, . . . , yd) ∈ S(1))dy1 . . . dyd

= rdνS(1).

which shows the first part of our statement. For the second part, we observe that ν(r) = νSp(1)(r),
and thus immediately obtain ν(r) = rdν(1). Hence, rd = ν(r)/ν(1), implying that νS(r) =

ν(r)νS(1)ν(1) .

We continue by showing that we can express the probability of the event x/∥x∥p ∈ S for any
Lp-symmetric random vector x in the following way.

Lemma 19 Let x ∈ Rd be a random vector with Lp-symmetric density function ρ and let S ⊆
Sp(1). We have

Pr

[
x

∥x∥p
∈ S

]
=

∫ ∞

0
ρ(r)

dνS(r)

dr
dr.

Proof We define for any x ∈ Rd the indicator function

1S(x) =

{
1 if x/∥x∥p ∈ S

0 otherwise.

Furthermore, we define z := x/∥x∥p. For simplicity, we assume that S is located in only one of
the 2d orthants of the standard d-dimensional cartesian coordinate system, the argumentation for the
case where S spans multiple orthants are analogously obtained by splitting S into parts that each
span one orthant, and afterwards summing over them. Therefore, in the following, we assume that
S ⊆ Rd

>0. We note that we may express

Pr [z ∈ S] =

∫
Rd
>0

1S(x)ρ(x)dx. (4)

where x = (x1, . . . , xd)
T . We get from (Spivak, 1998, Theorem 3-13, page 67) that if A ⊂ Rd

is an open set and if φ : A → Rd is an injective, continuously differentiable function such that
det(Jφ(x)) ̸= 0 for all x ∈ A, then if f : φ(A) → Rd is integrable,∫

φ(A)
f(x)dx =

∫
A
f(φ(y))|det(Jφ(y))|dy,
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where Jφ(x) denotes the Jacobian matrix of φ at the point x. We define Ar as the open set Ar =
{(r, x2, . . . , xd) ∈ Rd

>0 |
∑d

i=2 x
p
i < rp} and A =

⋃
r>0Ar. Furthermore, we let

φ : A→ Rd, (r, x2, . . . , xd) 7→

(rp − d∑
i=2

xpi

)1/p

, x2, . . . , xd

 .

We note that this function is injective and that it has the remarkable property that for any x =
(r, x2, . . . , xd) ∈ A, ∥φ(x)∥p = r. Furthermore, we have Jφij = 0 for i, j ≥ 2, i ̸= j, Jφij = 1
for i = j ≥ 2 and

Jφ11 =
∂

∂r

(
rp −

d∑
i=2

xpi

)1/p

= rp−1

(
rp −

d∑
i=2

xpi

)1/p−1

.

Furthermore, for all i ≥ 2, we have

Jφ1i =
∂

∂xi

(
rp −

d∑
i=2

xpi

)1/p

= −xp−1
i

(
rp −

d∑
i=2

xpi

)1/p−1

.

Hence, φ is continuously differentiable. Moreover, since A ⊆ Rd
>0, we get that for all 1 ≤ i ≤ d

and x ∈ A, we have Jφ1i ̸= 0 and Jφii ̸= 0, but for all i, j ≥ 2, i ̸= j, we have Jφij = 0. For this
reason the columns of Jφ(x) are not linearly dependent and so det(dφ(x)) ̸= 0. In the following,
we denote |det(Jφ(x))| with g(x). We can hence transform Equation (4) as

Pr [z ∈ S] =

∫
Rd
>0

1S(x)ρ(x)dx

=

∫
A
1S(φ(y))ρ(φ(y))g(y)dy

=

∫ ∞

0
. . .

∫ ∞

0
1S(φ(y))1(y ∈ A)ρ(φ(y))g(y)dxd . . . dx2dr,

where y = (r, x2, . . . , xd) and 1(y ∈ A) is an indicator function, which is equal to 1 if y ∈ A
and 0 otherwise. We note that for any y = (r, x2, . . . , xd) ∈ A, we have ∥φ(y)∥p = r. Since
ρ(x) is Lp-symmetric it only depends on the norm of x, hence ρ(φ(y)) only depends on the first
component r of y. We may therefore rewrite ρ(φ(y)) = ρ(r) and rearrange

Pr [z ∈ S] =

∫ ∞

0
ρ(r)

∫ ∞

0
. . .

∫ ∞

0
1S(φ(y))1(y ∈ A)g(y)dxd . . . dx2dr.

We define for any r > 0,

vS(r) :=

∫ ∞

0
. . .

∫ ∞

0
1S(φ(y))1(y ∈ A)g(y)dxd . . . dx2

and thus obtain
Pr [z ∈ S] =

∫ ∞

0
ρ(r)vS(r)dr. (5)
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Now, recall that νS(R) is the volume of the set S(R) = {x ∈ Rd | x/ ∥x∥p ∈ S, ∥x∥p ≤ R}. We

show that in fact vS(R) =
dνS(R)

dR for all R > 0. This gives Equation (5) an intuitive interpretation
as integrating ρ over r along the sphere radius r under Lp-norm. Note that

νS(R) =

∫
Rd

1(x ∈ S(R))dx.

Now, with the same argumentation as above (and by omitting ρ), we obtain

νS(R) =

∫ ∞

0
. . .

∫ ∞

0
1(φ(y) ∈ S(R))1(y ∈ A)g(y)dxd . . . dx2dr

=

∫ ∞

0
1(r ≤ R)

∫ ∞

0
. . .

∫ ∞

0
1S(φ(y))1(y ∈ A)g(y)dxd . . . dx2dr

=

∫ ∞

0
1(r ≤ R)vS(r)dr =

∫ R

0
vS(r)dr

where we used that for all y ∈ A, we have 1(φ(y) ∈ S(R)) = 1(r ≤ R)1S(φ(y)). Applying the
Leibnitz integral rule, we get dνS(R)

dR = vS(R), which finishes the proof.

The above two statements imply the following corollary, which in turn implies Lemma 17.

Corollary 20 Let x be an Lp-symmetric random vector and let S ⊆ Sp(1). We have

Pr

[
x

∥x∥p
∈ S

]
=
νS(1)

ν(1)
.

Proof define z := x/∥x∥p. By Lemma 19, we may express

Pr [z ∈ S] =

∫ ∞

0
ρ(r)

dνS(r)

dr
dr.

Furthermore, we have by Lemma 18 that νS(R) = ν(R)νS(1)ν(1) and hence,

dνS(R)

dR
=
νS(1)

ν(1)

dν(R)

dR
.

Accordingly,

Pr [z ∈ S] =

∫ ∞

0
ρ(r) · dνS(R)

dr
dr

=
νS(1)

ν(1)

∫ ∞

0
ρ(r) · dν(R)

dr
dr.

We note that Pr [z ∈ Sp(1)] = 1, and so, by Lemma 19, we get∫ ∞

0
ρ(r) · dν(R)

dr
dr = Pr [z ∈ Sp(1)] = 1.
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This shows

Pr [z ∈ S] =
νS(1)

ν(1)
.

With this statement, we may now prove Lemma 17.
Proof [Proof of Lemma 17.] We show that for any S ⊆ Sp(1), we have that Pr [z ∈ S] =
Pr [z̃ ∈ S]. Because x and x̃ are both Lp-symmetric, we get by Theorem 20 that both Pr [z ∈ S]

and Pr [z̃ ∈ S] are equal to νS(1)
ν(1) , which directly implies the desired statement.

The χp-Distribution In addition to the distribution of x ∼ Bp(1), we need another Lp-symmetric
distribution. For this purpose recall the definitions of the χp(d) and the χp(d) distributions from the
introduction. It is easy to see that a random vector x ∼ χp(d) is Lp-symmetric by observing that its
density function is

ρx(x) =

d∏
i=1

γe−
1
2
|x(i)|p = γde−

1
2

∑d
i=1 |x(i)|p = γde−

1
2
(∥x∥p)p

and thus only depends on the norm of x. We further note that for the case p = 2, χ2(d) is the
standard d-variate normal distribution N (0, Id) (where Id is the d × d identity matrix), and that
χ2(d) is the chi-squared distribution with d degrees of freedom. The distribution χp(d) can hence
be seen as a generalization of the chi-squared distribution to other Lp-norms.

We further verify that γ is indeed the correct normalization constant. For this, let X ∼ χp(1)
and observe that

1 =

∫ ∞

−∞
ρX(x)dx = γ · 2

∫ ∞

0
e−

1
2
xp
dx.

With the substitution x = (2y)
1
p , we obtain

γ · 2
∫ ∞

0
e−

1
2
xp
dx = γ · 2

∫ ∞

0

21/p

p
y1/p−1e−ydy = γ

21/p+1Γ
(
1
p

)
p

.

We hence get
γ =

p

2
1
p
+1

Γ
(
1
p

) ,
Note that for p = 2, one does indeed obtain the correct normalization constant of the standard
normal distribution N (0, 1), which is equal to 1/

√
2π.

We continue with deriving a tail bound on the χp(d) distribution and start with deriving its
moment-generating function.

Lemma 21 Let Z ∼ χp(1). Let ψZ be the moment generating function of Z, defined as

ψZ : R+
0 → R, ψZ(λ) = E

[
eλZ
]
.

Then, for every λ < 1
2 , we have

ψZ(λ) = (1− 2λ)
− 1

p .
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Proof Let X ∼ χp(1) and note that we may write Z = |X|p. Recall that the probability density of
X is ρX(x) = γe−

1
2
|x|p . Denote by ρZ the density function of Z and observe that

ρZ(x) =
dPr [Z ≥ x]

dx
=

dPr [|X|p ≥ x]

dx
=

dPr
[
|X| ≥ x

1
p

]
dx

= ρ|X|

(
x

1
p

) dx
1
p

dx

= 2ρX

(
x

1
p

) dx
1
p

dx
= 2γe−

1
2
x 1

p
x

1
p
−1

=
x

1
p
−1
e−

1
2
x

2
1
pΓ
(
1
p

) .
Note that, in the fifth equality, we used that ρ|X|(x) = 2ρX(x). We continue by deriving the
moment-generating function of the random variable Z. We obtain

ψZ(λ) = E
[
eλZ
]
=

∫ ∞

0
ρZ(x)e

λxdx

=
1

2
1
pΓ (1/p)

∫ ∞

0
x

1
p
−1
e−x(1/2−λ)dx.

We note that this integral exists for λ < 1
2 . With the substitution x = y(1/2 − λ)−1, it transforms

to

ψZ(λ) =
1

2
1
pΓ (1/p)

∫ ∞

0
x

1
p
−1
e−x(1/2−λ)dx

=
1

2
1
pΓ (1/p)

∫ ∞

0
y

1
p
−1
e−y (1/2− λ)

1− 1
p

1/2− λ
dy

=
(1/2− λ)

− 1
p

2
1
pΓ (1/p)

Γ (1/p)

= (1− 2λ)
− 1

p .

Corollary 22 Let Z ∼ χp(d). Then,

E [Z] =
2d

p
.

Proof Let X ∼ χp(1). We get E [Z] = d ·E [X] as Z is the sum of d independent random variables
distributed identically as X . We further note that the expectation of X is equal to the derivative of
its moment-generating function at λ = 0. We get from Lemma 21 that

dψX(λ)

dλ
=

2

p
(1− 2λ)

− 1
p
−1

and hence, E [X] = 2
p .
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DETERMINING THE DIMENSIONALITY OF NETWORKS

We continue by showing that a random variable Z ∼ χp(d) is concentrated around its expected
value. Under the hood, our bounds are obtained in the same way as the Chernoff-Hoeffding bounds,
namely by applying Markov’s inequality to the moment generating function of Z. However, instead
of doing this directly, we take a shortcut by applying the following variant of Bernstein’s inequality
that is proven by Massart in Morel et al. (2007).

Theorem 23 (Proposition 2.9 in Morel et al. (2007)) LetX1, . . . , Xd be independent, real-valued
random variables. Assume that there exist constants v, c > 0 such that

d∑
i=1

E
[
X2

i

]
≤ v

and that for all integers k ≥ 3,
d∑

i=1

E
[
|Xi|k

]
≤ k!

2
vck−2.

Let S =
∑d

i=1(Xi − E [Xi]). Then, for every x > 0,

Pr
[
S ≥

√
2vx+ cx

]
≤ exp(−x).

With this, we are able to show the following.

Theorem 24 LetX1, . . . , Xd be i.i.d. random variables from χp(1) and define the random variable
Z :=

∑d
i=1 |Xi|p. Note that Z ∼ χp(d). Then, for all x > 0,

(i) Pr
[
Z ≥ E [Z] + 2

√
2E [Z]x+ 2x

]
≤ exp(−x)

(ii) Pr
[
Z ≤ E [Z]− 2

√
2E [Z]x− 2x

]
≤ exp(−x).

Proof We use Theorem 23. To show that the random variables |X1|p, . . . , |Xd|p fulfill the conditions
of Theorem 23, we derive bounds on its moments. For any X ∼ χp(1), define Y = |X|p. We use
the moment generating function from Lemma 21 to derive bounds on the moments of Y . For all
integers k ≥ 0, we note that we have E

[
Y k
]
= ψ

(k)
Y (0), where ψ(k)

Y denotes the k-th derivative of
ψY . We note that

ψ′
Y (λ) =

2

p
(1− 2λ)

− 1
p
−1

and

ψ′′
Y (λ) =

4

p

(
1

p
+ 1

)
(1− 2λ)

− 1
p
−2
,

from which we derive E [Y ] = 2
p and E

[
Y 2
]
= 4

p

(
1
p + 1

)
. For k ≥ 3 one can easily verify that

ψ
(k)
Y (λ) = (1− 2λ)

− 1
p
−k E

[
Y 2
]
2k−2

k−1∏
i=2

(
1

p
+ i

)

25
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and hence,

E
[
Y k
]
= ψ

(k)
Y (0) = E

[
Y 2
]
2k−2

k−1∏
i=2

(
1

p
+ i

)

= E
[
Y 2
]
2k−2

k−2∏
i=1

(
1

p
+ i+ 1

)

≤ E
[
Y 2
]
2k−2

k−2∏
i=1

(i+ 2) = E
[
Y 2
]
2k−2k!

3!
≤ E

[
Y 2
]
2k−1k!

2
. (6)

Recall that we have E
[
Y 2
]
= 4

p

(
1
p + 1

)
and hence, E

[
Y 2
]
≤ 8

p due to p ≥ 1. If we define
Yi = |Xi|p and set v = 8d/p, c = 2, we have that

d∑
i=1

E
[
Y 2
i

]
≤ 8d

p
= v

and thus, for all k ≥ 3,

d∑
i=1

E
[
Y k
i

]
≤ dE

[
Y 2
]
2k−1k!

2
≤ k!

2
vck−2,

which shows that the conditions of Theorem 23 are fulfilled. Since Z =
∑d

i=1 Yi and E [Z] = 2d
p ,

we get that for all x > 0,

Pr
[
Z − E [Z] ≥

√
16d/p · x+ 2x

]
= Pr

[
Z ≥ E [Z] + 2

√
2E [Z] · x+ 2x

]
≤ exp(−x),

which shows the first statement.
For the second statement, we define Y ′

i := −Yi and note that −Z =
∑d

i=1 Y
′
i . Furthermore, we

have that E
[
Y ′2
i

]
= E

[
Y 2
i

]
and E

[
|Y ′

i |
k
]
= E

[
Y k
i

]
for all integers k ≥ 0. We have that

d∑
i=1

E
[
Y ′2
i

]
=

d∑
i=1

E
[
Y 2
i

]
≤ 8d

p
= v

and for all k ≥ 3, we get from Equation (6) that

d∑
i=1

E
[∣∣Y ′

i

∣∣k] = d∑
i=1

E
[
Y k
i

]
≤ k!

2
vck−2.

Hence, it follows from Theorem 23 that

Pr
[
−Z + E [Z] ≥

√
16d/p · x+ 2x

]
= Pr

[
Z ≤ E [Z]− 2

√
2E [Z]x− 2x

]
≤ exp(−x),
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which implies the second statement.

We can slightly reformulate this bound such that it is more convenient to work with them.
Observe the similarity of the following bounds with the Chernoff-Hoeffding bound from Theorem 7.

Corollary 2 Let Xi, . . . Xd be i.i.d. random variables from χp(1) and define Z =
∑d

i=1 |Xi|p ∼
χp(d). Then, for every ε > 0,

Pr [|Z − E [Z] | ≥ ε · E [Z]] ≤ 2 exp

(
−2δ

p
d

)
.

Where δ > 0 is defined by ε = 2(
√
2δ + δ).

Proof We use Theorem 24 and set x = δE [Z]. We then obtain

Pr
[
Z ≥ E [Z] + E [Z] · 2

√
2δ + E [Z] · 2δ

]
= Pr

[
Z ≥ E [Z] (1 + 2

√
2δ + 2δ)

]
≤ exp(−δE [Z]).

Recalling from Theorem 22 that E [Z] = 2d
p then implies that Pr [Z ≥ (1 + ε)E [Z]] ≤ exp(−2dδ/p)

for ε = 2(
√
2δ + δ). The argumentation for the second statement is analogous.

3.3.2. BOUNDING THE CLUSTERING COEFFICIENT

We use the insights gained so far to prove a bound on the probability that two random neighbors of
a vertex s that have bounded weight are adjacent.

Lemma 25 Let G = G(n, d, β, w0) be a GIRG sampled under Lp-norm. After sampling the
weights, let s, u, v be three vertices in G≤n1/8 with ws ≤ wu, wv and wu, wv ≤ cdws for some
c > 1. Let ∆ be the event that {s, u, v} form a triangle. Then, there exists a choice for c such that
there are constants a, b > 0, c > 1 such that for sufficiently large n and all d ≥ 1, d = o(log(n)),

Pr [∆ | s ∼ u, v] ≤ a · exp(−bd).

Here, the randomness originates from the assignment of coordiates in Td to s, u, v.

Proof Recall that Bp(r) is the ball of radius r under Lp norm. We assume that n is large enough
such that the ball of volume λw2

sc
2d/n has a radius of r ≤ 1/4. Note that this is possible since

d = o(log(n)). With this we may simply measure the distance of two points x,y ∈ Bp(r) as
∥x− y∥p and assume that tuv is precisely the radius of the ball of volume λwuwv/n.

Now, assuming s ∼ u, v and wu, wv ≤ cdws, the vertices u, v are uniformly distributed within
the balls Bp(tsv) and Bp(tsu) (centered at the position of s), respectively. Assuming the position of
s is the origin of our coordinate system, we denote by xu,xv the (random) positions of u, v. Hence,
the probability that u and v are connected is simply Pr[∥xu − xv∥p ≤ tuv]. If we denote by ν(r) the
volume of the ball Bp(r), we further note that ν(r) = rdν(1) (cf. Lemma 18), and since we choose
tuv such that ν(tuv) = λwuwv/n, we get

tuv =

(
λwuwv

ν(1)n

)1/d

. (7)
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In the following, we derive an upper bound for Pr
[
∥xu − xv∥p ≤ tuv

]
. We note that we can

equivalently describe the random variables xu,xv as xu = tusyu and xv = tvsyv, where yu and
yv are i.i.d. random vectors uniformly distributed according to the standard Lebesgue measure in
Bp(1). With this, we reformulate the probability Pr

[
∥xu − xv∥p ≤ tuv

]
as

Pr
[
∥xu − xv∥p ≤ tuv

]
= Pr

[
∥tusyu − tvsyv∥p ≤ tuv

]
= Pr

[
∥yu − (tvs/tus)yv∥p ≤ tuv/tus

]
= Pr

[
∥yu − (wv/wu)

1/d yv∥p ≤ (wv/ws)
1/d
]
.

To find an upper bound for this probability, we instead lower bound the probability of the event that∥∥∥yu − (wv/wu)
1/d yv

∥∥∥
p
> (wv/ws)

1/d .

Since wv, ws ∈ [ws, c
dws], we have (wv/ws)

1/d ≤ c and hence, it suffices to lower bound

Pr

[∥∥∥yu − (wv/wu)
1/d yv

∥∥∥
p
> c

]
or equivalently

Pr

[(∥∥∥yu − (wv/wu)
1/d yv

∥∥∥
p

)p

> cp
]
.

For this, we start by investigating the properties of the random vectors yu,yv ∼ Bp(1). Recall from
Lemma 17 that we may equivalently express the random vector y ∼ Bp(1) as y = ∥y∥p · y/∥y∥p
where ∥y∥p and y/∥y∥p are independent. Accordingly, y is identically distributed as the product
of a random variable r identically distributed as ∥y∥p, and a random vector z identically distributed
as y/∥y∥p.

We note that r and ∥y∥p are distributed such that for any 0 ≤ ζ ≤ 1, we have

Pr
[
∥y∥p ≤ ζ

]
=
νp(ζ)

νp(1)
= ζd

and thus,

Pr
[
∥y∥p ≥ ζ

]
= 1− ζd.

Furthermore, due to the Lp-symmetry of yu,yv and Lemma 17, we assume that z = z̃/∥z̃∥p where
z̃ is a random vector from the χp(d)-distibution.

In the following, we hence assume that yu = ru · z̃u/||z̃u||p, and yv = rv · z̃v/||z̃v||p, for
suitable, independent random variables ru, rv and independent random vectors z̃u, z̃v ∼ χp(d).

With this observation, we find a lower bound for

Pr

[(∥∥∥yu − (wv/wu)
1/d yv

∥∥∥
p

)p

> cp
]
.
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We first rewrite the term
(∥∥∥yu − (wv/wu)

1/d yv

∥∥∥
p

)p

as∥∥∥∥∥yu −
(
wv

wu

)1/d

yv

∥∥∥∥∥
p

p

=

d∑
i=1

∣∣∣∣∣yu(i)−
(
wv

wu

)1/d

yv(i)

∣∣∣∣∣
p

= S1 + S2,

where S1 is the sum of all components in which yui and yvi have opposite sign, and S2 is the sum
of all remaining components. We show that there are constants a, b > 0, c > 1 such that S1 + S2
is greater than cp with probability at least 1 − a · exp(−bd). In this section, we refer to an event
as happening with overwhelming probability2 if there are constants a, b > 0 such that the event
happens with probability at least 1− a · exp(−bd). Note that, if two events E1 and E2 happen with
overwhelming probability, then also E1∩E2 happens with overwhelming probability as, by a union
bound, we have Pr

[
E1 ∩E2

]
≤ a · exp(−bd) + a′ · exp(−b′d) for some a, a′, b, b′ > 0 and thus

Pr [E1 ∩E2] ≥ 1− 2max{a, a′} exp(−max{b, b′}d).
We start with giving a lower bound for S1. Let I1 be the set of all component indices i in which

yu(i) and yv(i) have opposite sign. Note that this implies that∣∣∣yu(i)− (wv/wu)
1/dyv(i)

∣∣∣ = |yu(i)|+ (wv/wu)
1/d |yv(i)| .

Furthermore, note that we may express yu(i) = ru · z̃u(i)/ ∥z̃u∥p. Since wu ≤ ws ·cd and wv ≥ ws,
we further have (wv/wu)

1/d ≥ 1/c and can thus rewrite S1 as

S1 =
∑
i∈I1

(
ru

∣∣∣∣ z̃u(i)∥z̃u∥p

∣∣∣∣+ (wv

wu

)1/d

rv

∣∣∣∣ z̃v(i)∥z̃v∥p

∣∣∣∣
)p

≥
∑
i∈I1

((
ru

|z̃u(i)|
∥z̃u∥p

)p

+

(
rv
c

|z̃v(i)|
∥z̃v∥p

)p)

=
rpu

∥z̃u∥pp

∑
i∈I1

|z̃u(i)|p +
rpv

cp∥z̃v∥pp

∑
i∈I1

|z̃v(i)|p,

where, in the second step, we used the inequality (a+b)p ≥ ap+bp for all a, b > 0 and p ≥ 1. Now,
we can apply tail bounds on the random variables in the above expression. We start with observing
that the probability that z̃ui, z̃vi have a opposite sign is exactly 1/2. Hence, the set I1 is a subset
of component indices where each component is independently chosen with probability 1/2. A
Chernoff-Hoeffding bound (Theorem 7) therefore implies that for every ε > 0, with overwhelming
probability,

1

2
d(1− ε) ≤ |I1| ≤

1

2
d(1 + ε).

We further note that the random variables ||z̃u||pp, ||z̃v||pp, and
∑

i∈I1 |z̃u(i)|
p,
∑

i∈I1 |z̃v(i)|
p are i.i.d

random variables from χp(d) and χp(|I1|), respectively. Hence, Corollary 2 and Theorem 22, imply
that for every ε > 0, with overwhelming probability,

(1− ε)
2d

p
≤ ||z̃u||pp, ||z̃v||pp ≤ (1 + ε)

2d

p

2. Note that this is a stricter notion of what is commonly referred to as “with overwhelming probability” in literature.
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and

(1− ε)
2|I1|
p

≤
∑
i∈I1

|z̃u(i)|p,
∑
i∈I1

|z̃v(i)|p ≤ (1 + ε)
2|I1|
p

.

Moreover, we note that the probability Pr [ru ≥ ζ] = 1 − ζd for every 0 < ζ < 1, so we have
ru, rv ≥ ζ with overwhelming probability. In total, this implies that with overwhelming probability,

S1 ≥
ζp

(1 + ε)2d/p

1

2
(1− ε)

2d

p
(1− ε) +

ζp

cp(1 + ε)2d/p

1

2
(1− ε)

2d

p
(1− ε)

=
ζp(1− ε)2

2(1 + ε)

(
1 +

1

cp

)
.

We note that by choosing ζ sufficiently large, and c and ε sufficiently small, we can push this lower
bound to every number smaller than 1. That is, we have shown that that for every ε′ > 0, there are
constants ζ < 1, c > 1 such that with overwhelming probability, S1 ≥ 1− ε′.

We go on with lower bounding S2. Analogously to I1, let I2 be the set of all component indices
i in which yui and yvi have the same sign. This implies that∣∣∣yu(u)− (wv/wu)

1/dyv(i)
∣∣∣ = ∣∣∣|yu(i)| − (wv/wu)

1/d |yv(i)|
∣∣∣ .

We can hence reformulate S2 as

S2 =
∑
i∈I2

∣∣∣∣∣ru
∣∣∣∣ z̃u(i)∥z̃u∥

∣∣∣∣− (wv

wu

)1/d

rv

∣∣∣∣ z̃v(i)∥z̃v∥

∣∣∣∣
∣∣∣∣∣
p

=
rpu

∥z̃u∥pp

∑
i∈I2

∣∣∣∣∣|z̃u(i)| −
(
wv

wu

)1/d rv
ru

∥z̃u∥p
∥z̃v∥p

|z̃v(i)|

∣∣∣∣∣
p

.

We first note that, since |I2| = d − |I1| and with overwhelming probability |I1| = Θd(d),
we have |I2| = Θd(d) with overwhelming probability. Furthermore, we have with overwhelming
probability that ru, rv ≥ ζ and that both ∥z̃u∥pp and ∥z̃v∥pp are between (1 − ε)2d/p and (1 +

ε)2d/p just like in the above paragraph. Together with (wv/wu)
1/d ≤ c, this implies that with

overwhelming probability, (
wv

wu

)1/d rv
ru

∥z̃u∥p
∥z̃v∥p

≤ c

ζ

(
1 + ε

1− ε

) 1
p

. (8)

This bound can be made smaller than 2 by choosing c, ε small enough and ζ large enough. Further-
more, we get that for every 1 ≤ i ≤ d and any constant λ > 0, there is a constant probability of the
event Eλ that |z̃u(i)| is large enough and |z̃v(i)| is small enough such that

||z̃u(i)| − 2 |z̃v(i)||p ≥ λ

because |z̃u(i)| and |z̃v(i)| are two independent samples from χp(1)
3. Hence, the sum∑

i∈I2

||z̃u(i)| − 2 |z̃v(i)||p (9)

3. This is the crucial step of this proof in which our coupling between y and z̃ turns out to be useful. This is because
the components of z̃ are indeed independent whereas the components of y are not.
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is with overwhelming probability lower bounded by the sum of |I2| = Θd(d) independent Bernoulli
random variables with constant success probability. Therefore, a Chernoff-Hoeffding bound (The-
orem 7) implies that with overwhelming probability,∑

i∈I2

||z̃u(i)| − 2 |z̃v(i)||p = Ωd(d). (10)

As the bound from Equation (8) is with overwhelming probability smaller than 2 for appropriate
choices of c, ε, ζ, we get that with overwhelming probability that

∑
i∈I2

∣∣∣∣∣|z̃u(i)| −
(
wv

wu

)1/d rv
ru

∥z̃u∥p
∥z̃v∥p

|z̃v(i)|

∣∣∣∣∣
p

= Ω(d).

As we further get that rpu/∥z̃u∥pp = Od(1/d), with overwhelming probability, we have in total that
S2 = Ωd(1) with overwhelming probability where the leading constant does not depend on c, ζ, ε.

In total, we get that for every ε′ > 0, with overwhelming probability, S1+S2 ≥ 1− ε′+Ωd(1)
if we choose c and ε sufficiently small and ζ sufficiently large (i.e. sufficiently close to 1). Hence, if
we choose ε′ small enough, there is a c > 1 such that with overwhelming probability, S1+S2 ≥ cp.
This implies our statement.

This lemma directly implies our main result.

Theorem 1 Asymptotically almost surely, if d = o(log(n)), the clustering coefficient ofG sampled
from the GIRG model under some Lp-norm with p ∈ [1,∞] is

CC(G) = exp(−Ωd(d)) + o(1).

Proof Similarly as in the proof of Theorem 3, we use Lemma 11 and Lemma 15 to conclude that
a.a.s.,

CC(G) = E
[
CC(G≤n1/8)

]
+ o(1) ≤ Pr

[
∆ | v̂ ∼ ŝ, t̂

]
+ o(1)

where v̂, ŝ, t̂ are three random vertices from G≤n1/8 conditioned on wv̂ ≤ wŝ, wt̂. To bound, the
above probability, fix any constant c > 1 and note that

Pr
[
∆ | v̂ ∼ ŝ, t̂

]
≤ Pr

[
∆ | (v̂ ∼ ŝ, t̂) ∩ (max{wŝ, wt̂} ≤ cdwv̂)

]
+ Pr

[
max{wŝ, wt̂} ≥ cdwv̂ | v̂ ∼ ŝ, t̂

]
.

Now we let c be as in Lemma 25 and replace the first term by the bound derived in said lemma
(Lemma 25). The second term can be bounded by (2 + o(1))cd(2−β) which follows from the dis-
tribution of max{wŝ, wt̂} as derived in the proof of Theorem 3. In total, this means that there are
constants a, b > 0, c > 1 (from Lemma 25) such that

Pr
[
∆ | v̂ ∼ ŝ, t̂

]
≤ a exp(−bd) + (2 + o(1))cd(2−β) = exp(−Ωd(d))

as desired. Note that the last step above holds since for sufficiently large d there is a constant δ such
that the above term is upper bounded by exp(−δd), which concludes the proof.
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4. Testing for the dimensionality

We turn to the question of how one can recover the dimension d of G(n, d, β, w0) generated under
L∞-norm. We show that this is accomplished by a simple test statistic that computes a modified
version of the clustering coefficient in a subgraph of G consisting of all vertices with weight in
[wc, cwc] for some constants wc ≥ w0, 1 < c < 2/

√
3. We show that the value of this test statistic

is well concentrated around its expectation such that it allows us to test whether G came from
dimension d as long as d = o(log(n)). As a side result, this shows that all graphs in the low-
dimensional regime form a clear dichotomy.

Formally, we consider the following statistical testing problem. We are given a graph G on
n vertices, its weight sequence, and an integer d = o(log(n)). Under the null hypothesis, G is
a GIRG generated in the weight sampling model with dimension d, whereas under the alternative
hypothesis, G was generated in dimension d1 ̸= d or it is a Chung–Lu graph. Here, we allow d1
to be any integer (potentially larger than log(n)). As a proof of concept, we propose the following
testing procedure for this problem. Fix a constant 1 < c < 2/

√
3 and a weight wc ≥ w0. Now,

consider the induced subgraph G̃ of G consisting of all vertices with weight in [wc, cwc]. For every
vertex v ∈ G̃ that has at least two neighbors in G̃, we compute its local clustering coefficient
CCG̃(v) and denote by CC(+)(G̃) the mean over all these values. We accept the null hypothesis if
and only if condition (2) is met. We show that the probability that this test makes a mistake under
both the null and alternative hypothesis goes to zero as n→ ∞ and we capture this in the following
statment.

Theorem 5 Let G = G(n, d, β, w0) be a GIRG generated under L∞-norm. Let further 1 < c <
2/

√
3 ≈ 1.1547, wc ≥ w0 be constants, and let G̃ be the subgraph of G consisting of all vertices

with weight in [wc, cwc]. Assume that d is an integer with d = o(log(n)). Define the set S as the set
of vertices in G̃ that have at least two neighbors in G̃ and the random variable CC(+)(G̃) as

CC(+)(G̃) :=
1

|S|
∑
v∈S

| {{s, t} ∈ Γ(v) | s ∼ t} |(
deg(v)

2

) =
1

|S|
∑
v∈S

CCG̃(v).

Then,

CC(+)(G̃) ∈

(
1

c

(
3

4

)d

, c

(
3

4

)d
)

± n−1/5 (2)

with probability at least 1− 1/n.

Proof We start by estimating the expectation of CC(+)(G̃). It is not hard to see that by linearity of
expectation

E
[
|S| CC(+)(G̃)

]
=
∑
v∈G

E
[
1(v ∈ S) CCG̃(v)

]
=
∑
v∈G

Pr [v ∈ S]E
[
CCG̃(v) | v ∈ S

]
= E [|S|] Pr [∆ | v ∼ s, t]
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where v, s, t are three random vertices in G̃, and ∆ is the event that v, s, t are a triangle. Notice
that we used that E

[
CCG̃(v) | v ∈ S

]
= Pr [∆ | v ∼ s, t] here as established (in the proof of)

Lemma 15; equality holds here because conditioning on v ∈ S is the same as conditioning on
|Γ(v)| ≥ 2.

Our proof now proceeds in two steps: (1) we show that Pr [∆ | v ∼ s, t] is in the interval
(c−1(3/4)d, c(3/4)d), and (2) we show that CC(+)(G̃) concentrates around its expectation using
the method of typical bounded differences.

For part (1), we apply Theorem 4 and note that – since v, s, t are in G̃ – the weights of v, s, t
differ by at most a factor of c. However, Theorem 4 only yields a bound on the probability of ∆ if v
is the vertex of minimal weight among v, s, t. However, if we define v̂, ŝ, t̂ to be the vertices v, s, t
reordered such that v̂ is of minimal weight, we can express Pr [∆ | v ∼ s, t] as

Pr [∆]

Pr [v ∼ s, t]
=

Pr
[
v̂ ∼ ŝ, t̂

]
Pr [v ∼ s, t]

Pr
[
∆ | v̂ ∼ ŝ, t̂

]
=
wv̂

wv
· Pr

[
∆ | v̂ ∼ ŝ, t̂

]
where the last equality holds because Pr [v ∼ s, t] = λ2w2

vwswt/n
2 (we can ignore the minimum

in eq. (1) here because the weights are constant). Since the fraction in the above equation is at least
1/c and at most 1, and since we can bound Pr

[
∆ | v̂ ∼ ŝ, t̂

]
using Theorem 4, we conclude that

Pr [∆ | v ∼ s, t] ∈

(
1

c

(
3

4

)d

, c

(
3

4

)d
)

For the second part of the proof, we first show that |S| is linear in n with high probability.
Afterwards, we apply the same procedure to |S| CC(+)(G̃). We start by showing that there is a
constant α > 0 such that |S| is at least αn with probability 1 − n−ω(1). Consider a fixed vertex v
from G and denote the number of its neighbors in G̃ by Xv. We note that every vertex in G has a
constant probability of being in G̃ and a probability of at least λw2

0/n to connect to v. Xv is therefore
lower bounded by the sum of n independent Bernoulli random variables with success probability in
Θ(1/n). Denote this sum by X̃v and note that E[X̃v] = Θ(1). By (Cam, 1960, Proposition 1), the
X̃v thus converges to a Poisson distributed random variable with constant expectation. Accordingly,
Pr[X̃v ≥ 2] is constant as well. This shows that every vertex in G has at least a constant probability
of having two neighbors in G̃. As the probability that v is in G̃ is constant as well, this implies that
E [|S|] = Ω(n). We continue with showing concentration of this random variable using Theorem 8.
We note that the random variables x1, x2, . . . , xn (the positions of all vertices), and w1, w2, . . . , wn

(the weights of all vertices) are independent and define a product probability space Ω such that each
ω ∈ Ω defines a graph G(ω) and a corresponding test graph G̃(ω). We further define f(ω) as the
value of |S| in G(ω) and consider the “bad” event

B = {ω ∈ Ω | the max degree in G̃(ω) is greater than log3(n)}.

By Lemma 10, B happens with probability n−ω(1) since all vertices in G̃ have at most constant
weight. Now, let ω, ω′ ∈ B be such that they differ in at most two coordinates. Changing the weight
or coordinate of one vertex can only decrease the number of vertices in G̃with at least two neighbors
by at most 2 log3(n) as the weight or coordinate change only influences vertices that are neighbours
of the changed vertex before or after the change. Accordingly, two coordinate or weight changes
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can only change |S| by at most c′ := 4 log3(n). Using t = n3/4 further satisfies the condition
t ≥ 2MPr [B] as M ≤ n and Pr [B] = n−ω(1). As m = 2n, we get,

Pr
[
|S| − E [|S|] | ≥ n3/4

]
≤ 2 exp

(
− n1/2

32 · 2 · 16 log6(n)

)
+

(
n2

log3(n)
+ 1

)
n−ω(1)

= n−ω(1).

Similarly, we can show concentration of f(S) = |S| · CC(+)(G̃) =
∑

v∈S CCG̃(v). Again, chang-
ing the coordinate or weight of any two vertices can only increase or decrease the local clustering
coefficient of at most 4 log3(n) vertices by a value of at most one. Hence, we can again choose
c′ := 4 log3(n) and t = n3/4 to obtain that

Pr
[
|f(S)− E [f(S)]| ≥ n3/4

]
≤ n−ω(1).

Combining these two concentration results, we get that

f(S) = E [|S|] Pr [∆ | v ∼ s, t]± n3/4 and

|S| = E [|S|]± n3/4

both hold with probability 1− o(1/n). Dividing by |S| and using E [|S|] = Θ(n) then yield that

f(S)

|S|
= CC(+)(G̃) =

E [|S|]
E [|S|]∓ n3/4

Pr [∆ | v ∼ s, t]± n3/4

E [|S|]∓ n3/4

= Pr [∆ | v ∼ s, t]± n−1/5.

Using our estimate for Pr [∆ | v ∼ s, t] from part (1) of this proof concludes the argument.

Using this, we immediately get that the probability that our test makes a mistake assuming that
the null hypothesis is true is only n−ω(1). Under the alternative hypothesis, assume that d1 is the
ground truth dimensionG came from, and assume further without loss of generality that d1 ≥ d+1.
We have to show that asymptotically,

1

c

(
3

4

)d

− n−1/5 > c

(
3

4

)d+1

+ n−1/5

⇔ 1 >
3

4
c2 + 2

(
4

3

)d

n−1/5.

As c < 2/
√
3 and d = o(log(n)), this inequality is true for sufficiently large n. To see this, observe

that (
4

3

)d

n−1/5 = exp

(
ln

(
4

3

)
d− 1

5
ln(n)

)
= o(1).

Acknowledgments
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Table 1: The networks used in the plots in the first row of Figure 1 and their basic attributes. All
found in the network repository Rossi and Ahmed (2015) and the SNAP dataset Leskovec
and Krevl (2014).

Name |V | |E| Category

ca-AstroPh 18.7 k 198.1 k collaboration
ca-CondMat 23.1 k 93.4 k collaboration
ca-GrQc 5.2 k 14.5 k collaboration
ca-HepPh 12 k 118.5 k collaboration
ca-MathSciNet 332.7 k 820.6 k collaboration
cit-patent 3.7M 16.5M citation
cit-HepTh 27.7 k 352.8 k citation
cit-DBLP 12.6 k 49.7 k citation
cit-HepPh 34.5 k 421.6 k citation
fb-pages-artists 50.5 k 819.1 k social
soc-academia 200.2 k 1.4M social
soc-youtube-snap 1.1M 3M social
socfb-A-anon 3.1M 23.7M social
email-Enron 36.7 k 183.8 k social
bio-CE-CX 15.2 k 246 k biological
bio-human-gene1 21.9 k 12.3M biological
bio-mouse-gene 43.1 k 14.5M biological
bio-WormNet-v3 16.3 k 762.8 k biological
bio-grid-human 9.4 k 62.4 k biological
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