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Abstract: It is a challenging but key task to reduce the tritium inventory in EU-DEMO to levels that
are acceptable for a nuclear regulator. As solution to this issue, a smart fuel cycle architecture is
proposed based on the concept of Direct Internal Recycling (DIR), in which the Metal Foil Pump (MFP)
will play an important role to separate the unburnt hydrogen isotopes coming from the divertor
by exploiting the superpermeation phenomenon. In this study, we will present the assessment of
the performance of the lower port of EU-DEMO after the integration of the MFP. For the first time,
a thorough comparison of three different MFP (parallel long tubes, sandwich and halo) designs is
performed regarding conductance for helium molecules, the pumping speed and the separation
factor for deuterium molecules under different physical and geometric parameters. All simulations
were carried out in supercomputer Marconi-Fusion with our in-house Test Particle Monte Carlo
(TPMC) simulation code ProVac3D because the code had been parallelized with high efficiency. These
results are essential for the development of a suitable MFP design in the vacuum-pumping train
of EU-DEMO.

Keywords: Direct Internal Recycling (DIR); Test Particle Monte Carlo (TPMC) simulation; Metal Foil
Pump (MFP); pumping speed; separation factor

1. Introduction

Nuclear fusion is a promising long-term option for a sustainable, non-carbon-emitting
global energy supply, and Tokamak is a fusion reactor where the deuterium–tritium nuclear
fusion takes place in a well-controlled plasma confinement.

EU-DEMO is a next-generation Tokamak in plan within the framework of the EURO-
fusion Consortium. It is foreseen to operate in pulsed mode: the plasma will be heated
to achieve nuclear fusion in the burn phase. In the dwell phase, the magnetic field coils
of the Tokamak are recharged and the vessel is evacuated down to a base pressure in the
mPa regime for pulse preparation [1]. One challenging but key task in EU-DEMO is to
reduce the tritium inventory to levels that are acceptable for a nuclear regulator [2]. As a
solution to this issue, a smart fuel cycle architecture is proposed based on the concept of
Direct Internal Recycling (DIR), as shown in Figure 1 [3]. Here, a Metal Foil Pump (MFP)
separates a large fraction of the unburnt hydrogen isotopes coming from the divertor [4–6]
by exploiting a phenomenon called superpermeation. This introduces a short-cut in the
fuel cycle for the unburnt fuel and greatly reduces the size of the separation stages in the
tritium plant, thus reducing the tritium inventory.

The MFP is foreseen to be installed inside the DEMO lower port as shown in Figure 2
and the downstream primary pumping is planned as linear diffusion pumps with a baffle
system at the inlet [7–10]. The lower port is of complex geometry, contains various pipe
routings, and will be used as the port for remote maintenance activities. In the burn phase
of the Tokamak, the lower port must provide not only the necessary pumping speed for
helium and Plasma Enhancement Gases (PEGs), but also the necessary pumping speed and
sufficient separation efficiency for hydrogen isotopes in the torus exhaust gas mixture. The
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MFP does not have to be operated in the dwell phase since there is no significant throughput
of fuel to be separated. Therefore, it will only impose an additional vacuum conductance
resistance during dwell, which has to be considered during system design. Obviously, it is
a hard task in the MFP design to meet all these requirements in both operational phases of
EU-DEMO, and three different MFP design configurations are proposed.
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In this paper, a thorough assessment of the system performance by means of the
Test Particle Monte Carlo (TPMC) simulations will be presented. Generally, the TPMC
method is only suitable for free-molecular flow. In this case, molecules can be simulated
individually because the interactions between the gas molecules are negligible. Considering
a free-molecular flow in steady state, the residence time of individual molecules on the
wall of the system and in the system is not relevant, and the conductance and the pumping
speed of the system can be derived from the simulation results of the trajectories of a huge
number of test particles [11].

In the dwell phase, the flow in the divertor-pumping path of EU-DEMO is in a free-
molecular flow regime and in transition regime during burn, as the pressure close to the
divertor is in the order of 1 Pa then. Thus, the free-molecular flow assumption leads to
conservative estimates for the pumping speeds and overestimates the amount of surface
interactions of a particle before removal through the outlet of the MFP, leading to optimistic
separation efficiencies. Nonetheless, since the flow regime is not far from free molecular,
we assume that the results obtained from the simulation can already give valuable insights
into the achievable performance range of the divertor-pumping path of EU-DEMO with
different MFP designs. This approach with reasonable computational efforts is appropriate



Energies 2024, 17, 3889 3 of 12

in the current design stage. Once the plasma scenario for EU-DEMO is decided and
the operational pressure range in the pump duct is known to cause transition flow, the
most promising designs can be further quantified using a Direct Simulation Monte Carlo
(DSMC) approach.

2. MFP Working Principle and Simulation Model

By definition, superpermeation implies that the permeation flow through a metal foil
is at least 10% of incoming particles [12]. To characterize and quantify this effect, the exper-
imental facility HERMESplus was set up at the Institute for Technical Physics of Karlsruhe
Institute of Technology in Karlsruhe, Germany, and plasma-driven superpermeation was
demonstrated through a thin niobium foil (0.1 mm thick) at about hundred times higher
fluxes than regular gas-driven permeation [4,5].

This process is illustrated in Figure 3. In the upstream (left) side, hydrogen is disso-
ciated in the gas phase to produce hydrogen atoms, which possess the energy to absorb
into the metal at high probabilities despite the presence of a non-metallic impurity surface
layer [13]. This layer suppresses molecular dissociation on the surface of the metal, thus
greatly reducing the absorption caused by impingement of hydrogen molecules. Hydrogen
with the ability to absorb at high probabilities despite the surface energy barrier is also
referred to as suprathermal hydrogen. Once absorbed, hydrogen can diffuse to the down-
stream side of the foil, giving rise to large permeation fluxes. The key to superpermeation
is the suppression of the upstream recombination of absorbed hydrogen caused by the
surface impurity layer. On the downstream side of the foil, hydrogen is routed through the
DIR loop by primary pumps. As the driving force of superpermeation is the concentration
gradient of suprathermal hydrogen, which should not be present on the downstream side
of the foil, this process (i) can pump against a pressure gradient and (ii) is selective for
energetic hydrogen.
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Figure 3. Scheme of the hydrogen superpermeation process.

Our in-house Test Particle Monte Carlo code ProVac3D, which has been validated and
widely used in different nuclear fusion applications [14,15], is upgraded to distinguish
the hydrogen molecules in normal and suprathermal states, which are denoted as mQ
and eQ (number of the molecule without unit in this study), respectively. In order to
simulate their evolution processes and permeation inside an MFP, as illustrated by the
schematic in Figure 4, several phenomenological parameters are introduced based on our
experimental data.

On the boundary of the plasma source:

• When hydrogen molecules enter the MFP inlet as mQ, they can be excited to eQ at the
temperature of the plasma source and the excitation probability is c2e; the residual of
mQ (1 − c2e) will reflect as mQ without temperature change.
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• eQ will reflect on the plasma boundary at the temperature of the plasma source.
However, eQ can recombine into mQ at a recombination probability of c2er = 0.02 [16].

On the metal foil:

• The permeation probability of eQ is c1e, and the residual of eQ (1 − c1e) will reflect at
the temperature of the metal foil, in which eQ is possible to recombine into mQ and
the recombination probability is taken as c1r = c1e.

• All ground-state particles mQ are reflected as such and take on the temperature of the
metal foil upon collision with it.
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Under the assumption of the molecular flow in this study, a hydrogen molecule will
be defined as mQ after it has left the MFP either from the inlet or from the outlet because
it will hit the wall of the divertor-pumping path in the simulation domain. Of course,
these parameters have no effect on the helium gas molecules and the MFP functions only
as a conductive duct for the helium gas flow in the whole divertor-pumping path. Since
the purpose of this study is to help the selection of the right configuration of MFPs by
systematic simulations of the system performance of different configurations of MFPs, all
evolution probabilities are assumed as constants independent of the temperature under the
first-order approximation.

Three different designs of the MFP, as shown in Figure 5, are studied in this paper.
The dimensions of the MFP in all three designs are L = 2.27 m, width W = 2.4 m and
height H = 2.1 m. In the sandwich design (Figure 5a), there are two channels of the width
b = 0.75 m and height h = 2.1 m, with two arrays of four plasma sources of d = 0.05 m
diameter each, and with vertical foil segments as the sides of the channels. In the tube
design (Figure 5b), there are eight cylindrical tubes with an outer diameter D = 0.5 m, at
which cylindrical metal foils are installed. The plasma source is installed in the center of
the cylinder. In the halo design (Figure 5c), there are two concentric tubes made of metal
foils, and the diameters of the inner tube and the outer tube are D1 = 0.6 m and D2 = 1.8 m,
respectively; eight plasma sources of d = 0.05 m are circularly distributed between the
inner and outer tubes. In addition, a horizontal tube of a diameter of 0.2 m close to the
MFP outlet in the sandwich design is foreseen and the mechanical structures to support
the plasma sources in three designs, such as the bars or rings close to the MFP inlet and
outlet, are also simplified and included in the simulation model. Thus, the most important
cross-sections in the MFP are the torus exhaust flow cross-section as well as the permeate
flow cross-section as part of the DIR loop.

It is noted that we did not study the stand-alone MFP, but assessed the system per-
formance of the lower port of EU-DEMO after the MFP is installed (Figure 2). The two
interfaces of the whole simulation model are as follows: (1) The system inlet is chosen as
the interface to the divertor. After considering that a small part is blocked by the breeding
blanket, it is simulated by 42 triangles with a total area A = 5.62 m2. (2) The system outlet
is chosen as the flange to connect with the baffle system of the downstream linear diffusion
pumps [9,10], and a small volume between the MFP and the flange is also included in the
simulation model. The width and height of the system outlet is 1.6 m and 1.9 m, respectively.
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So, the area of it is A’ = 3.04 m2. The sticking coefficient of this system outlet is denoted
as stk.
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The temperature of the metal foil is 873 K; the temperature of the plasma source
is 1000 K; the temperature of the supporting structure for the plasma sources is 570 K;
the other components of the system are at a temperature of 20 ◦C. The reflection from
a normal component except the metal foil and the plasma source is considered as the
diffuse reflection with total thermal accommodation. To accelerate the simulation, the
MFP inlet and outlet (different to the system inlet and outlet) are considered as the virtual
control surfaces, and, in this way, we can also check the correctness of the simulation from
the flow conservations of the test molecules. All simulations were carried out using the
EUROfusion high-performance computer Marconi-Fusion at the Cineca, Italy. Because our
code ProVac3D is successfully parallelized with very good speed-up efficiency [17], this
very complicated system was systematically simulated by 1011 to 1012 test molecules with
200 to 2000 CPUs.

3. Helium Transmission Probability

To simulate the helium transmission probability of the whole system, test helium
molecules at 570 K come from the system inlet (the interface to the divertor) and the
sticking coefficient of the system outlet (the flange) is taken as a black hole of stk = 1. If
n test helium gas molecules can exit the system outlet, the transmission probability is
w = n/n_mc, and n_mc is the total number of the test molecules in simulation (1011 or 1012).
The corresponding system conductance for the helium molecules is estimated by

C =
1
4
⟨v⟩Aw, (1)

where A = 5.62 m2 is the area of the system inlet, and <v> = 1245 m/s is the thermal speed
of helium @ 20 ◦C (ambient temperature).

It is easy to see from Table 1 that the helium transmission probability of the whole
system is small and dominated by the MFP (bottleneck of the helium gas flow). Moreover,
this value is almost proportional to the total opening area of the MFP, and for the helium,
the order of the conductance of the whole system with the MPF is sandwich > halo > 8-tube.
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Table 1. System performance of three different designs for helium.

Design Total MF Area (m2) Total MFP Inlet Area (m2) w Conductance (m3/s)

Sandwich 19.07 3.15 0.104 182.25
8-tube 28.53 1.56 0.040 70.26
Halo 17.12 2.26 0.081 140.89

4. Deuterium Pumping Speed and Separation Factor

The simulations are performed with D2 coming from the divertor at 570 K, and they
may permeate the pump walls made of metal foils according to the designs shown in
Figure 5. The sticking coefficient of the system outlet is estimated as stk = 0.04 to mimic the
effective pumping speed of the downstream linear diffusion pumps with a special baffle
system [9,10]. From the simulated pumping probability by the permeation on the metal
foils wper and the pumping probability by the system outlet (the flange) wflange, we know the
system total pumping probability is wtotal = wper + wflange, and the system pumping speed S
and the separation factor P are derived from

S =
1
4
⟨v⟩Awtotal , (2)

and
P =

wper

wtotal
, (3)

where A = 5.62 m2 is the system inlet area (the interface to the divertor), and <v> = 1731.1 m/s as
the thermal speed of input deuterium molecules at 570 K. P is the ratio of the D2 gas amount
bypassed by the MFP because wper denotes the pumping probability by the plasma-aided
superpermeation on the metal foil walls of the MFP and wtotal denotes the total pumping
probability of the system.

In order to evaluate the effect of the permeation probability c1e and the excitation
probability c2e, their values are chosen as c1e = 0.05, 0.1, 0.15, and 0.2, and c2e = 0.03, 0.045,
0.055, 0.125, 0.15, 0.175, 0.25, 0.35, and 0.45. In addition, the effective permeation probability
of eQ (as well as the effective recombination probability) depending on the axial position
of the test molecule inside the MFP is introduced as follows:

c1ez =
(
−0.0236z3 + 0.0085z2 − 0.0755z + 1.0226

)
c1e. (4)

This function is experimentally determined according to the relative change in perme-
ation with noble gas enrichment along the MFP axis, and z (from 0 to 2.27 m) denotes the
distance from the MFP inlet. Because the factor on c1e in Equation (4) is smaller than unity,
c1ez is smaller than c1e, which is confirmed in all simulations.

Tables 2 and 3 list the simulation results of the system pumping speed S and the
separation factor P. It is easy to know that S and P will increase with the permeation
probability c1e and the excitation probability c2e, and all three designs will deliver the
highest system pumping speed and highest separation factor under the best combination
of permeation and excitation (c1e = 0.2 and c2e = 0.45).

In order to compare the performance of these different designs, Figures 6 and 7 show
individual dependencies of S and P on c1e and c2e, respectively. In general, the order of
the system pumping speed is sandwich > halo > 8-tube; the order of the system separation
efficiency is 8-tube > halo > sandwich. Since these two orders are opposing, the design
with the lowest pumping speed achieves the highest separation factor for deuterium gas
molecules, which means a trade-off should be made in the selection of the MFP design.
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Table 2. System pumping speed S of three different designs for D2.

8-Tube Design Sandwich Design Halo Design
S(m3/s) c1e = 0.05 c1e = 0.1 c1e = 0.15 c1e = 0.2 c1e = 0.05 c1e = 0.1 c1e = 0.15 c1e = 0.2 c1e = 0.05 c1e = 0.1 c1e = 0.15 c1e = 0.2

c2e = 0.03 41.04 42.87 43.79 44.34 48.73 50.96 52.46 53.54 47.05 49.29 50.68 51.63
c2e = 0.045 43.80 46.46 47.79 48.59 50.51 53.81 56.02 57.61 49.09 52.38 54.42 55.80
c2e = 0.055 45.56 48.75 50.34 51.30 51.68 55.67 58.35 60.27 50.41 54.38 56.84 58.51
c2e = 0.125 56.56 62.92 66.06 67.96 59.43 67.96 73.62 77.65 58.96 67.27 72.35 75.79
c2e = 0.15 59.99 67.31 70.90 73.08 62.03 72.05 78.67 83.38 61.75 71.45 77.35 81.34

c2e = 0.175 63.20 71.39 75.41 77.84 64.54 75.99 83.53 88.88 64.42 75.42 82.10 86.61
c2e = 0.25 71.70 82.16 87.25 90.32 71.64 87.03 97.08 104.16 71.75 86.28 95.03 100.90
c2e = 0.35 80.96 93.79 100.01 103.75 80.16 100.13 113.03 122.06 80.22 98.68 109.71 117.07
c2e = 0.45 88.50 103.19 110.29 114.56 87.76 111.68 126.99 137.64 87.48 109.20 122.10 130.66

Table 3. System separation factor of three different designs for D2.

8-Tube Design Sandwich Design Halo Design
P c1e = 0.05 c1e = 0.1 c1e = 0.15 c1e = 0.2 c1e = 0.05 c1e = 0.1 c1e = 0.15 c1e = 0.2 c1e = 0.05 c1e = 0.1 c1e = 0.15 c1e = 0.2

c2e = 0.03 0.178 0.223 0.244 0.257 0.084 0.129 0.158 0.177 0.104 0.151 0.179 0.196
c2e = 0.045 0.245 0.301 0.327 0.342 0.121 0.182 0.219 0.244 0.147 0.210 0.245 0.268
c2e = 0.055 0.283 0.345 0.373 0.389 0.143 0.213 0.255 0.282 0.173 0.245 0.284 0.308
c2e = 0.125 0.467 0.544 0.576 0.595 0.270 0.376 0.433 0.469 0.315 0.418 0.469 0.500
c2e = 0.15 0.511 0.589 0.621 0.639 0.306 0.419 0.477 0.513 0.352 0.461 0.513 0.544

c2e = 0.175 0.547 0.625 0.657 0.675 0.337 0.455 0.515 0.551 0.385 0.497 0.550 0.581
c2e = 0.25 0.628 0.704 0.734 0.750 0.414 0.539 0.598 0.634 0.463 0.579 0.631 0.661
c2e = 0.35 0.696 0.768 0.796 0.810 0.489 0.614 0.672 0.704 0.536 0.650 0.700 0.728
c2e = 0.45 0.741 0.809 0.834 0.848 0.543 0.666 0.720 0.751 0.586 0.698 0.746 0.772
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Please note that the required plasma power is the same for the three designs to allow
for a better comparison, since all designs are equipped with eight plasma sources in total
here. Considering also the manufacture and installation feasibility, together with the
conductance for helium given in Section 3, the sandwich design is recommended as the
most favorable design to meet the pumping requirements of EU-DEMO in the burn and
dwell of a Tokamak.

5. Sensitivity Study of Geometrical and Physical Parameters in the Sandwich Design
5.1. Channel Width

In a study of the impact of channel width modification, moderate values of c1e = 0.1 and
c2e = 0.35 are used, and the sticking coefficient on the system outlet (the flange) remains as
stk = 0.04, supposing the same downstream pumping ability. Figure 8 shows that the He
conductance increases with the width of the MFP channel but the separation ratio for D2
decreases. However, the pumping speed for D2 approximately remains the same for the
investigated parameter space.

5.2. Sticking Coefficient (stk) of the System Outlet

To evaluate the impact of the outlet sticking coefficient, a channel width of 0.85 m is
chosen for the sandwich design with two channels. Simulations were carried out with D2;
the permeation probability is c1e = 0.1 and the plasma excitation probability is c2e = 0.1,
0.35, and 0.45. The sticking coefficient on the system outlet is adjustable by closing the
valve connecting to the primary pumps downstream. Figure 9b shows that as stk decreases,
the separation ratio P increases since more deuterium gas molecules are reflected from the
system outlet and have more chances to permeate through the metal foils. Obviously, when
the valve on top of the linear diffusion pump is totally closed (stk = 0), wflange = 0 and the
separation factor will be in unity (Equation (3)). However, as shown in Figure 9a, the total
pumping speed will decrease as stk decreases because D2 molecules are also more likely to
be forced to flow back to the divertor. And, as expected, the overall performance (both S
and P) will increase as c2e increases.
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Figure 8. System performance versus the channel width in sandwich design.

Energies 2024, 17, x FOR PEER REVIEW 9 of 11 
 

 

 
Figure 9. System performance versus the sticking coefficient of the system outlet. (a) Pumping 
speed; (b) D2 separation factor. 

5.3. Number of Plasma Sources in One Channel 
In another study, the effect of introducing more plasma sources is analyzed. For this, 

the channel width is chosen as 0.85 m for the sandwich design with two channels. Mod-
erate values of c1e = 0.1 and c2e = 0.35 for D2 are used, and the sticking coefficient on the 
system outlet remains as stk = 0.04, supposing the same downstream pumping ability. As 
shown in Table 4, both S and P for D2 gas will increase as the number of plasma sources 
in one MFP channel (M) increases. Of course, the total number of plasma sources is 2 × M, 
and more M means more required power to supply the plasma sources. 

Table 4. D2 pumping speed and separation factor versus the number of plasma sources (M) in one 
channel. 

M Pumping Speed S (m3/s) Separation Ratio P 
4 98.09 0.5900 
5 107.37 0.6353 
6 116.91 0.6746 
7 124.62 0.7019 
8 132.43 0.7264 

5.4. Configuration with Three Channels 
It would be possible to have three channels for the sandwich design in the same 

space, with a channel width of 0.52 m and wall thickness of 0.21 m. The total metal foil 
area in this design is 28.602 m2 and the system conductance for helium is simulated as 
165.56 m3/s, which is slightly lower than the value in the two-channel design when the 
channel width is 0.75 m. 

In D2 simulation, moderate values of c1e = 0.1 and c2e = 0.35 are used, and the sticking 
coefficient on the system outlet remains as stk = 0.04, supposing the same downstream 
pumping ability. Figure 10 shows that the system performance (both S and P for D2) im-
proves (better than the corresponding values in the two-channel design when the channel 
width is 0.85 m.) at the cost of 1.5 times more total plasma sources in the three-channel 
design than in the two-channel design. 

(a) (b)

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
D

2 s
ep

ar
at

io
n 

fa
ct

or
 ( 

- )

Excitation probability c2e

stk = 0.005
stk = 0.01
stk = 0.02
stk = 0.04
stk = 0.06

0.0 0.1 0.2 0.3 0.4 0.5
20

40

60

80

100

120

140

160
stk = 0.005
stk = 0.01
stk = 0.02
stk = 0.04
stk = 0.06

Pu
m

pi
ng

 s
pe

ed
 (m

³ /
 s

)

Excitation probability c2e

Figure 9. System performance versus the sticking coefficient of the system outlet. (a) Pumping speed;
(b) D2 separation factor.

5.3. Number of Plasma Sources in One Channel

In another study, the effect of introducing more plasma sources is analyzed. For this,
the channel width is chosen as 0.85 m for the sandwich design with two channels. Moderate
values of c1e = 0.1 and c2e = 0.35 for D2 are used, and the sticking coefficient on the system
outlet remains as stk = 0.04, supposing the same downstream pumping ability. As shown
in Table 4, both S and P for D2 gas will increase as the number of plasma sources in one
MFP channel (M) increases. Of course, the total number of plasma sources is 2 × M, and
more M means more required power to supply the plasma sources.

Table 4. D2 pumping speed and separation factor versus the number of plasma sources (M) in one channel.

M Pumping Speed S (m3/s) Separation Ratio P

4 98.09 0.5900
5 107.37 0.6353
6 116.91 0.6746
7 124.62 0.7019
8 132.43 0.7264
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5.4. Configuration with Three Channels

It would be possible to have three channels for the sandwich design in the same space,
with a channel width of 0.52 m and wall thickness of 0.21 m. The total metal foil area in this
design is 28.602 m2 and the system conductance for helium is simulated as 165.56 m3/s,
which is slightly lower than the value in the two-channel design when the channel width
is 0.75 m.

In D2 simulation, moderate values of c1e = 0.1 and c2e = 0.35 are used, and the sticking
coefficient on the system outlet remains as stk = 0.04, supposing the same downstream
pumping ability. Figure 10 shows that the system performance (both S and P for D2)
improves (better than the corresponding values in the two-channel design when the channel
width is 0.85 m) at the cost of 1.5 times more total plasma sources in the three-channel
design than in the two-channel design.
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Figure 10. S and P of D2 of the sandwich design with 3 channels.

6. Conclusions

The DEMO divertor-pumping path of very complex geometry and the system per-
formance with the MFPs were successfully simulated with the Test Particle Monte Carlo
simulation code ProVac3D. Because the code was parallelized with high efficiency, we can
systematically simulate the whole integral pumping path from the divertor interface to
the flange connecting the baffle system of the downstream primary pumping system in
supercomputer Marconi-Fusion. The assessments of three different MFP configurations
(parallel long tubes, sandwich and halo) are presented and the values of the transmission
probability of helium and PEGs, and the pumping speed and the separation factor of the
hydrogen isotopes when both the permeation probability and the excitation probability
vary in a big range, are obtained. It is found that the divertor-pumping path integrated
with the MFP of the sandwich configuration would have the highest helium conductance
of 182 m3/s and the highest deuterium pumping speed of 137 m3/s. As for the hydrogen
isotope separation, the divertor-pumping path with the MFP in sandwich configuration
would deliver a moderate separation efficiency of 75%, and it can be improved by changing
its geometrical and physical parameters. These results are important for us to choose a
suitable and feasible MFP design and physical and geometrical parameters to meet pump-
ing requirements in both burn and dwell phases of a Tokamak. In addition, the results are
useful for identification of the necessary number of pumping ports and for further system
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development and optimization to define simulation boundary conditions for the upstream
system and the downstream system, i.e., the divertor and the diffusion pump, respectively.
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