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Abstract: Assessing air quality in urban areas is vital for protecting public health, and low-cost
sensor networks help quantify the population’s exposure to harmful pollutants effectively. This
paper introduces an innovative method to calibrate air-quality sensor networks by combining CFD
modeling with dependable AQ measurements. The developed CFD model is used to simulate traffic-
related PM10 dispersion in a 1.6 × 2 km2 urban area. Hourly simulations are conducted, and the
resulting concentrations are cross-validated against high-quality measurements. By offering detailed
3D information at a micro-scale, the CFD model enables the creation of concentration maps at sensor
locations. Through regression analysis, relationships between low-cost sensor (LCS) readings and
modeled outcomes are established and used for network calibration. The study demonstrates the
methodology’s capability to provide aid to low-cost devices during a representative 24 h period. The
precision of a CFD model can also guide optimal sensor placement based on prevailing meteorological
and emission scenarios and refine existing networks for more accurate urban air quality representation.
The usage of cost-effective air quality networks, high-quality monitoring stations, and high-resolution
air quality modeling combines the strengths of both top-down and bottom-up approaches for air
quality assessment. Therefore, the work demonstrated plays a significant role in providing reliable
pollutant monitoring and supporting the assessment of environmental policies, aiming to address
health issues related to urban air pollution.
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1. Introduction

Accurate monitoring of air pollution in urban environments is crucial for protecting
citizens’ health. Measuring their exposure to harmful pollutants is a cornerstone of proac-
tive health measures. The rise of urban air pollution, fueled largely by traffic emissions,
is associated with a spectrum of health issues, ranging from respiratory illnesses to heart
disease and even cancer [1,2]. Various approaches are employed for this purpose, including
the establishment of monitoring stations equipped with high-quality instrumentation, the
deployment of cost-effective sensors, and the utilization of modeling techniques to quantify
pollutant concentrations. High-quality monitoring stations, while providing reliable infor-
mation, suffer from limitations such as high cost, which restricts their deployment to only
a few locations, even in major cities, and low temporal resolution [3]. On the other hand,
low-cost sensor networks provide real-time monitoring of air pollution within urban areas,
but their effectiveness is often compromised by significant inaccuracies in their indications.
These inaccuracies are due to various environmental factors, such as relative humidity
and temperature, which exert significant influence on the sensors’ performance [4]. Addi-
tionally, exposure to intense meteorological conditions can lead to damage to the devices,
further impacting their reliability and accuracy [5]. Therefore, although low-cost sensor
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networks provide decent spatial coverage for monitoring air pollution, their reliability and
accuracy issues limit their ability to offer accurate and dependable data for environmental
pollution monitoring.

To address the limitations of low-cost sensor networks and ensure their reliability and
accuracy, calibration methods are crucial for turning inaccurate data into reliable informa-
tion [4,6]. The calibration of low-cost sensors refers to the process of adjusting the sensor
according to known reference values. Neglecting investment in calibration procedures may
introduce significant uncertainties, compromising the accuracy and timeliness of air quality
data crucial for quantification of human exposure [7].

Several studies have proposed methods to calibrate low-cost air quality networks in
urban settings, but achieving standardization remains a significant challenge. Common
methods to calibrate a network of nodes involve using various reference air quality (AQ)
stations for analysis. A wide-spread method is to install low-cost devices alongside high-
cost stations, evaluate the discrepancies, and calibrate based on reference values. This
adjustment can then be applied to other nodes within the domain [8–10]. It is important
to emphasize the variability in statistical analysis methods, including linear and multiple
linear regression, as well as the potential of machine learning techniques for device calibra-
tion [6,11]. Some methods present limitations when nodes are distributed across different
positions within the domain, as the low spatial resolution of reference stations may not fully
represent the entire area. To address this, studies applied interpolation schemes to construct
pollutant gradients based on high-quality station indications to provide a reference for
calibration [12,13]. However, spatial interpolation for low-cost sensor calibration can be
severely limited by the lack of spatial representativeness, leading to inaccurate calibration
across different locations. Additionally, it may overlook complex environmental factors
influencing sensor readings, such as the intensity of the wind, building configurations,
and the influence of local emissions. These limitations underscore the critical need for
alternative approaches to reference data creation, ensuring that the reference for calibration
represents the conditions of the area in which low-cost sensors operate.

This paper aims to address the challenge of the quality of data used for calibration of
low-cost sensors by introducing a novel approach: constructing dense datasets for calibra-
tion through computational fluid dynamics (CFD) air quality modeling. No other study was
found to use a CFD model in combination with an existing urban air-quality sensor network.
Unlike traditional calibration methods relying only on limited, high-quality measurements,
this innovative approach uses CFD modeling, incorporating emission releases based on traf-
fic activity, meteorological data, and reliable observations. CFD models offer high spatial
accuracy of pollutant concentrations in 3D with respect to the geometrical configuration of
the examined areas, making them ideal for urban air quality representation [14–16] as well
as for environmental policy assessment [17,18]. By integrating validated 3D pollution maps
derived from CFD modeling with local, reliable observations, this methodology introduces
a novel way to provide aid for calibrating smartAQnet, a monitoring network situated
in Augsburg, Germany. Ultimately, this method has the potential to improve the accu-
racy and reliability of low-cost air pollution monitoring in urban environments, merging
the bottom-up and top-down approaches, leading to more reliable and cost-effective air
quality assessment.

2. Methodology
2.1. Test Case Area and Computational Grid

The case-study area covers a 2 × 1.6 km2 region containing a significant portion
of Augsburg city. Figure 1a depicts the wider area of the city, and Figure 1b shows the
boundaries of the study area and the location of the air-quality sensors. In the city of
Augsburg, the smart air quality network (smartAQnet), a hybrid air-quality network
containing low-cost sensors, is operating under the supervision of the Karlsruhe Institute
of Technology and Augsburg University [19]. In the examined area, five low-cost sensors
belong to smartAQnet: Karlstraße (KS), Königsplatz (KP), Rosenaustraße (RS), Rotes (RT),
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and container (CN), as shown in Figure 1b. Additionally, two high-quality monitoring
stations at KS and KP are operated by the Bavarian State of Environment and give out
indications of various pollutant concentrations such as CO, NOx, and PM10. On the
northern side of the domain, an urban background monitoring station at Bourges-Platz
(BP), 1.5 km from the city center, provides urban background concentration data.
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Figure 1. Wider area of interest (a). Test case area containing smartAQnet sensors and official AQ
stations (b). OpenStreetMap (OSM) representation of the city (c) and clean geometry of the urban
area used for CFD modeling (d).

Accurately representing the geometric characteristics of the urban environment under
study is crucial for effective air quality modeling using computational fluid dynamics
(CFD) to provide precise representations of pollution levels and support accurate urban
planning efforts [20]. To achieve this, the 3D geometry of the area of interest is obtained
from OpenStreetMap (OSM), and processing is performed to clean and refine the surfaces
of the buildings. This preparation is crucial when creating a digital grid on the designed
area, smoothly incorporating the 3D model. Figure 1c shows the representation of the city
from OSM (accessed December 2021) with a focus on specific buildings. Figure 1d shows
the geometry used in this study after the cleanup process. This process was carried out by
creating new 3D elements with the same geometrical characteristics as the OSM geometry.
This step is performed with the use of ANSYS Spaceclaim 2018, a CAD software from the
ANSYS package that is used for geometry creation and processing [17].

Figure 2a shows the digital domain of the urban area, confined within the density box.
The computational domain’s height is set to 6Hmax, with an upstream distance of 15Hmax,
where Hmax represents the tallest building’s height in the area, a chapel at 83.5 m [21],



Atmosphere 2024, 15, 1056 4 of 18

following established practices [22]. The labels N, E, S, and W correspond to the northern,
eastern, southern, and western boundaries of the domain.
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tional mesh developed on the buildings, ground, and emission sources (b).

A computational grid is developed that covers the digital model of the city using
the ANSA commercial pre-processor. Focusing on an area containing the KP station, in
Figure 2b, it can be seen that a surface mesh is developed on the buildings and ground’s
surfaces. The rectangular objects shown also in Figure 2b at ground level represent the
emission sources that are strategically positioned across main and smaller roads. Each
emission source represents sections of roads where traffic activity releases pollutants into
the surrounding environment. The purpose of the density box shown in Figure 2a is to
include the area of the city and set a minimum grid size, in this case 4 m, to achieve the
best refinement in the areas of interest included in the box, such as the emission sources
and the buildings.

For this study, two computational grids are developed to examine their suitability.
The volume mesh developed that covers all the domains for both grids uses tetrahedral
unstructured elements with a growth rate of 1.2. The resolution on the buildings and
the ground shown in Figure 2b is set at 1 m and on the emissions sources at 0.25 m for
the medium-sized grid, allowing for high spatial accuracy of the CFD outputs with high
refinement in areas near the emission sources and sensor locations. The parameter y+
indicating the quality of the grid at cells near to the wall is calculated for the ground and
buildings at a value of 255 and 151, respectively, both within the range of 30–300 stated
in the literature [23]. The medium computational grid consists of a total of 48 million
elements, achieving the demanding accuracy for the convergence of the simulations for
a 1.6 × 2 km2 urban area. The fine grid was developed with the same principle, with a
resolution of 0.20 m on the emission sources and 0.8 m on the buildings. The total elements
of the fine grid consisted of 72 million cells. The CFD simulations are performed on
computer nodes with Intel(R) Core ™ i9-10980XE@3.00 GHz CPUs. Comparisons of the
two grids indicated that the medium grid’s computational time was 19 h and the fine grid’s
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was 37 h, running on a total of 108 cores, both achieving scaled residuals of parameters of
governing equations under the limit of 10−6 as proposed [24]. For computational purposes,
the medium grid was selected for this study, given that it solves the cases two times faster
and has also been used in other published studies [17,21].

2.2. Description of smartAQnet

As mentioned, this work aims to calibrate smartAQnet air quality network by in-
tegrating reference monitoring stations and a CFD model. The monitoring network is
established in the city of Augsburg, Bavaria, and is composed of low-cost, mid-cost, and
high-cost measuring devices. It was funded by the German Federal Ministry of Transport
and Digital Infrastructure (BMVI), and it ran from 2017 until 2020 [16,19,25]. The backbone
of the network are low-cost sensors called “Scientific Scouts”, which were developed as
prototypes by the company GRIMM during the time of the project. The network monitors
meteorological properties and aerosol concentrations with multiple sensors recording tem-
perature, humidity, precipitation, and concentrations of PM10, PM2.5, and PM1 [25]. The
temporal resolution of recordings ranges from minutes to hours. In the current work, all
data were aggregated to hourly values. The KS, KP, and RT devices are placed in a traffic
hot-spot area directly affected by vehicular activity, and the RS and CN provide urban back-
ground data. The network covers a total area of 16 × 16 km2 with a considerable number
of sensors within a rectangular area of 6 × 4 km2, which covers urban and suburban areas
of Augsburg [17].

During the development of the smartAQnet project, the first measurement phase in
2018 included using the “Scientific Scouts” EDM80NEPH sensors, developed by GRIMM.
These nephelometric sensors were previously calibrated next to an EDM164 sensor that was
used as a reference, also developed by GRIMM [19]. Local calibration demonstrated that
one reference device can calibrate 5–10 scouts, with calibration frequency depending on site
characteristics and pollution levels, and new PM algorithms were developed to account for
environmental factors [26]. Another set of low-cost Nova Fitness SDS011 sensors was used
in the project to measure PM that is considered to be of lower accuracy compared to the
EDM80NEPHs. Budde et al. (2018) [27] examined the performance of the SDS011 sensors
and stated that the devices do not capture PM10 satisfactorily if the size distribution of the
particle measured changes, particularly if the distribution shifts towards larger particles.
The sensors were then deployed in various positions throughout the urban area to begin
the measurement campaign. More information about the architecture and development of
the network can be found on the project website (www.smartaq.net).

In the period that this study focuses on, in September 2019, when traffic activity
and more data to demonstrate this methodology was available, the readings of smar-
tAQnet at RS, RT, and CN positions were given by newly installed optical counter devices
(EDM80OPC). These new-generation devices, also manufactured by GRIMM, measure raw
data across 24 size channels that range from 0.35 µm to 37 µm. The count data are then
processed by an internal black-box algorithm to generate PM measurements. The sensors
use equipment for measuring ambient and airflow temperature and humidity that their
algorithm uses to adjust the PM predictions, which are translated into the smartAQnet
readings that we use in this study. The added benefit of the approach introduced in this
paper is that it provides adjustment at the point of their deployment to create new, more
reliable datasets, combining CFD modeling and high-cost monitoring stations.

To tackle the inaccuracy of the network, attempts for re-calibration have been made in
previous studies using gaussian processes to calibrate a set of Scientific Scouts and SDS011
sensors [13]. The re-calibration process involved using the monthly median of an official
urban background station (BP) as a baseline, acknowledging potential under-calibration in
traffic environments, and later comparing calibrated results with non-calibrated predictions
to assess validity. The authors emphasized that the crucial factor for accurate predictions
lies in individually calibrating the low-cost sensors according to their surrounding charac-
teristics. Variability in pollutant concentrations across urban domains means that devices

www.smartaq.net
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that are dispatched in various positions do not share the same reference, as meteorological
and emission conditions vary. Capturing the demanded variability in pollutant concentra-
tion can be established with the use of CFD modeling [16]. This approach is followed here
in this work by developing a spatially accurate air-quality model, incorporating dominant
meteorological conditions, street emissions, and reference measurements to combine with
low-cost sensors to create more reliable datasets.

2.3. Calibration Methodology

The calibration method employed in this study for smartAQnet is depicted in Figure 3.
Initially, a CFD model is constructed using detailed traffic emissions and meteorological
data, as elaborated in later Sections 2.4 and 2.5. As a second step, the wind gradients
produced by the CFD model are compared and validated against actual wind speed mea-
surements within the studied area. Furthermore, we integrate reference urban background
measurements with the simulated PM10 concentrations, and the modeled datasets are
compared with readings from two official AQ stations located in KS and KP to assess
the model’s performance in predicting pollutant concentrations. The validation process
is thoroughly explained in Section 3.2. Upon validating the model and establishing its
suitability, its modeled concentrations are used for calibrating the low-cost sensors.
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Figure 3. Methodology followed to enhance smartAQnet PM measurements and to create more
reliable PM concentration datasets.

This study takes a simple approach to calibrating the sensors. It compares their
readings (a variable we want to adjust) with the produced pollutant concentrations (the
variable we rely on) over a representative 24 h period. By performing linear fitting, we find
a line that best aligns with the modeled data points used for calibration. The results of this
approach are elaborated in Sections 3.3 and 3.4.

2.4. Numerical Model

OpenFOAM (v2106), an open-source computational fluid dynamics (CFD) software,
is used to simulate traffic-related pollutants in the surrounding urban environment. To
produce the velocity field in the examined area, the modeling approach was based on the
steady-state simpleFoam solver that uses the Reynolds-averaged Navier–Stokes (RANS) [28].
This solver is modified to encompass the passive-scalar transport equation to allow for pol-
lutant dispersion [29]. Equation (1) denotes the advection–diffusion equation implemented
in the solver. The term Deff represents the sum of the turbulent diffusion coefficient (Dt)
and the molecular diffusion coefficient (Dm). Bonifacio et al. (2014) [30] performed particle
dispersion simulation using CFD and concluded that the molecular term was 9 orders of
magnitude smaller than the turbulent one. For that reason and because the test cases exam-
ined in this work concern low-wind speed conditions, where turbulent diffusivity is more
dominant, Dm could be overall neglected in the simulations. Also, the mass conservation
principle in the modeling approach can adequately predict PM concentrations over short
distances, such as the distance between the road and the sensor [31]. This aligns with our
study, as the emissions are close to the sensors, minimizing the chance of major coagulation
phenomena during the simulation timeframe.
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The k-epsilon turbulent model is employed in this study [32], as it is the most common
used in urban applications of dispersion using CFD models, although it faces some limita-
tions in terms of near-wall treatment and anisotropic flows. A review on common practices
using CFD for pollutant dispersion applications examined the usage and suitability of tur-
bulent models [24]. The authors explained that 78% of the cases used the k-epsilon model
in all of their forms, including the realizable, RNG, and standard due to its robustness and
computational efficiency in the RANS approach.

The computation of Dt relies on the turbulent Schmidt number (Sct) denoted in
Equation (2), using the value Sct = 0.7 as proposed in the literature [33]. The turbulent
viscosity term (vt) in Equation (2) derives from the atmospheric condition’s kinematic
velocity and delineates the airflow characteristics at each timestep of the simulation. Each
CFD steady-state simulation has a time resolution of one hour because the meteorological
data as well as the high-cost measurements are given in hourly values. The inlets that are
used for the introduction of air flow in the domain are the four boundaries that are shown
in Figure 2a (N, E, S, W). The implementation of an ABL profile helps produce reliable wind
fields in the domain, depicting accurately the wind profile observed in urban areas. Every
simulation corresponding to the investigated hour used the measured wind characteristics
shown in Figure 4(ai) for the 24 h period examined. The atmospheric boundary layer (ABL)
profile is used in the inlets of the computational domain, as shown in Equation (3) [34].
In Equation (3), u* is the friction velocity, κ is the Von Karman constant, and z0 is the
aerodynamic roughness length [35].
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Figure 4. Rose graph indicating wind direction and wind speed of September (ai) and for the day
selected for simulations (aii) in Augsburg. Traffic originating PM10 emissions from all traffic sources
included in the model (b). Demonstration of measured PM10 concentrations observed by reference
monitoring stations between 9 and 15 of September (c).

In Table 1, the boundary conditions used in the CFD model are shown for three
important parameters: velocity U, k, and epsilon. Depending on the wind direction,
the condition atmBoundaryLayerInletVelocity is implemented in the inlet for U in the
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boundaries of the domain, and a fixedValue of k and epsilon is calculated based on the
turbulent intensity (I), the turbulent length scale (l), and the inlet velocity (U). The condition
for the outlet for velocity (U) is pressureInletOutletVelocity and inletOutlet for k and epsilon.
In Table 1, it is also shown that for every parameter examined, the boundary condition on
the top boundary was set at symmetry, as 44% of the cases found in the literature involving
CFD for pollutant dispersion in urban areas use this constraint [24].

Table 1. Boundary condition types used in the CFD model for inlets, outlets, buildings, emissions
sources, ground, and top boundary for velocity (U), k, and epsilon.

Elements
Boundary Condition Type in CFD Model

Velocity U k Epsilon

inlets
atmBoundary

fixedValue fixedValueLayerInletVelocity

outlets
pressureInlet

inletOutlet inletOutletOutletVelocity
buildings noSlip kqRWallFunction epsilonWallFunction

emission sources fixedValue kqRWallFunction epsilonWallFunction
ground noSlip kqRWallFunction epsilonWallFunction

top symmetry symmetry symmetry

2.5. Traffic Emissions and Meteorological Data

During September 2019, meteorological data indicated that the prevailing wind di-
rection predominantly originated from the southwest, with an average speed of 0.83 m/s
as shown in Figure 4(ai). The instrument responsible for observing these wind patterns is
positioned on the southeastern side of the domain, specifically within the container area,
and remains unaffected by the surrounding urban layout and buildings in the city center. To
generate enough simulated data to showcase this methodology for calibrating the low-cost
sensors, a comprehensive 24 h period is examined. Specifically, the selected day for this
examination is Wednesday, 11th September 2019. This chosen day shares common charac-
teristics with dominant wind conditions of September 2019, featuring southwest-directed
winds with an average speed of 0.61 m/s (Figure 4(aii)).

In Figure 4b, the emissions during the examined 24 h period from all the emission
sources included in the model show a typical weekday trend with morning and afternoon
peaks. Within the digital model developed for this purpose, a setup of 69 emission sources
has been integrated. The emission sources are strategically placed along major arterial
roads and other smaller yet highly active roads within the area, ensuring a comprehensive
traffic emission activity representation within the model.

Figure 4c shows the weekly trends of PM10 concentrations as indicated by the official
AQ stations in the area. During the week between 9 and 15 September 2019, the two traffic
sites at KS and KP had an average PM10 concentration of 20 µg/m3 and 16.6 µg/m3 and
the urban background station at BP reported an average PM10 concentration of 14 µg/m3.
On the selected 24 h period, the average PM10 concentration measured at KS, KP, and BP
was 22 µg/m3, 18.9 µg/m3, and 15.8 µg/m3, respectively. These values indicate that the
selected day is within the representative range of PM10 concentrations measured during
that period, making it suitable as a test case for demonstrating the methodology applied in
this work.

The setup of the emission sources shown in Figure 2b and explained in this section
relies on specific road segments within the broader Augsburg area to capture traffic activity.
These segments, identified as road IDs, constitute parts of the area’s roads. Detailed
analysis conducted for the month of September has produced hourly deviations from
the average daily traffic volumes (ADTV) for every individual ID. These deviations are
used to produce a detailed traffic activity profile for urban conditions in the examined
area, enabling a comprehensive temporal breakdown on an hourly basis [16]. PM10 is the
pollutant examined, and it is selected because it is the only particulate matter pollutant that
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is observed by the official AQ stations in the area, to combine with the CFD results and to
validate the model. Emission factors for PM10 from road traffic are calculated using the
COPERT software (https://copert.emisia.com/), which is a European emission inventory
model used to calculate air pollutants from road transport provided by EMISIA SA. The
driving mode was selected at 50% urban peak and 50% off peak and an average speed of
30 km/h that indicates typical urban driving for various vehicle technologies. The Federal
Motor Transport Authority provides information on the vehicle classification of the area of
Augsburg examined for 2019, with 73.69% passenger cars, 12.45% light commercial vehicles,
7.49% motorcycles, 5.74% heavy duty trucks, and 0.63% buses. Using this information, a
uniform emission factor for PM10 is used to calculate traffic emissions based on the number
of vehicles and the length of the road for every hour.

3. Results and Discussion
3.1. Model Results

This section presents the outcomes of the CFD model regarding the modeled con-
centrations within the examined area. Figure 4b illustrates that the most severe traffic
scenario, in terms of emitted mass, occurred between 16:00 and 17:00, with a prevailing
wind direction from the southwest measured at 247 degrees. Hence, this scenario is chosen
as representative for showcasing the CFD results in this section. All the simulations reached
a level of residuals within the range of 10−6, indicating acceptable convergence as found
in the literature [24]. Figure 5a depicts the location of the KS device on the northern side
of the road at a height of 2.5 m, while the KP device (Figure 5c) is positioned at a 4 m
height between two roads, capturing emissions from both east and west-bound traffic. Both
stations are marked with a red dot. Figure 5b,d shows the respective locations on the model,
along with the CFD-generated distribution of pollutant concentration. The corresponding
point where the sensor is located in the digital model is indicated with a black dot.
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This section highlights the CFD model’s high spatial resolution, which shows the
assessment of pollutant variability at a street-scale level within the study area. By using
the same modeling approach, within constrained areas at a street-canyon scale, differences
of up to 68% in pollutant concentrations can be established [16]. Taking advantage of
this, we are able to provide more representative pollution information on sensor locations.
This precision is attained through turbulent modeling and fine mesh development, accu-
rately portraying urban domain geometrical characteristics within the model [22], and can
provide important information on the distribution of pollutants. This level of detail is a
distinctive advantage of the CFD approach in air-quality modeling compared to Gaussian
and Lagrangian models, enhancing the reliability of modeled concentrations in urban
environments [36,37].

3.2. Model Validation

This section presents the model’s validation by comparing the model’s outputs with
high-quality observed PM10 concentrations and wind speed data. Assessing the model’s
performance against observations in the examined domain and period is crucial for the
reliability of the modeled outputs. Figure 6a presents a comparison between modeled
and observed wind speed values at the sensor point for wind field validation. There, it
can be seen that the wind speed generated by the CFD model at that point appears to
have lower values in the morning and night periods with distinguishable peaks during the
mid-day period, the same trend observed by the measuring device. Figure 6b shows the
regression analysis for both CFD and measured wind speeds, with a coefficient R = 0.87
and an average deviation of 7% during the day. Other studies also performed regression
analysis with measured and modeled wind speeds to assess the performance of their CFD
model, with deviations below 30% [38]. This analysis strongly supports the conclusion that
the wind field produced by the CFD model is reliable, emphasizing the credibility of the
model’s results.
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Two official air quality stations provide hourly concentrations of PM10 and are com-
pared to the modeled PM10 concentrations. To directly compare modeled PM10 with
measurements, urban background PM10 concentrations from Bourges-Platz (BP) high-cost
AQ station (Figure 4c) for the selected period are added to the CFD-generated PM10 con-
centrations, considering that the background PM10 is distributed uniformly in the urban
domain [39]. In Figure 7a,c, it is shown that the modeled PM10 concentrations follow
the trends of the measurements for KS and KP, respectively. Peaks are observed dur-
ing the morning period and late afternoon, and the average absolute daily deviation of
the modeled pollutant concentrations from observations is 18% for KS and 13% for KP.
Figure 7b,d shows the regression analysis performed for both stations. For KS, a correlation
coefficient R = 0.96 and R = 0.86 for KP are established. The correlation coefficients calcu-
lated are within the accepted criteria of R > 0.8 found in the literature [40,41]. Statistical
metrics for modeled results evaluation based on reference measurements are used for
performance assessment, such as FAC2, FB, and NMSE [42]. These metrics are described
in Equations (5)–(9) using normalized concentrations from observed (O) and predicted (P)
values. Equation (4) describes how the normalized concentrations were calculated: C is the
calculated concentration, Uref is the wind speed for every hour examined, Q is the emission
rate, and H is the average building height of the study area, estimated at 15 m.

C* =
CUrefH2

Q
(4)

Factor of two (FAC2) counts the fraction of data points where the predictions are within a
factor of two of the observations.

FAC2 =
N
n

=
1
n

n

∑
i=1

Ni (5)

Fractional bias (FB) is a linear measure of the mean bias.

FB =
⟨O⟩ − ⟨P⟩

0.5(⟨O⟩+ ⟨P⟩) (6)

Normalized mean square error (NMSE) measures the scatter of the data.

NMSE =
⟨(O − P)2⟩
⟨O⟩⟨P⟩ (7)

Geometric mean bias (MG) is a logarithmic measure of the mean bias.

MG = exp(⟨ln
∼
O⟩ − ⟨ln

∼
P⟩) (8)

Geometric variance (VG) shows the scatter in the data and contains systematic and
random errors.

VG = exp[⟨(ln
∼
O − ln

∼
P)2⟩] (9)

Hit rate (q) specifies the fraction of model results that differ within an allowed range from
comparison data.

q =
N
n

=
1
n

n

∑
i=1

Ni (10)
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For both reference stations, the modeled concentrations achieved a metric FAC2
between 0.91 and 0.96, FB between 0.08 and 0.23, and NMSE between 0.05 and 0.07. Any
value above 0.5 is accepted for FAC2, below 1.5 for NMSE, and metrics calculated between
−0.3 and 0.3 for FB also meet the criteria for acceptance as a validation of air-quality model
performance against measurements [43,44].

Using reliable observations in the domain examined is crucial for drawing safe conclu-
sions when applying air quality modeling. In this section, we showcased that during the
examined 24 h period, which is taken to be representative of the meteorological conditions
of September 2019, the wind field developed by the CFD model is accurate. The correlation
between modeled and measured wind speeds in the area of observation shows an R = 0.87
and an average 7% deviation. Comparisons with PM10 concentrations at two high-quality
AQ stations, showcased an average 15.5% deviation from modeled concentrations and
indicated a shared correlation coefficient of R = 0.91. This outcome confirms that both the
dispersion and the emission modeling approach used are accurate.

The model dataset produced is a combination of reference high-quality measurements
given by the background station (BP) and high-resolution CFD modeling. The CFD model
accounts for the street increment in the locations of deployed sensors. The accepted
performance of the model’s results based on meteorological observations and high-quality
PM10 concentrations supports the argument that it could be used in integration with
low-cost air quality networks to produce more accurate pollution representation. The
information that will be produced by using a combination of reference measurements,
CFD modeling and indications of smartAQnet will provide more reliable concentrations
of pollutants, that will benefit of the strength of measurements as top-down and high-
resolution AQ modeling as bottom-up approaches. The application proposed in this work
could be used to fill in missing values on low-cost sensors in case of malfunctions and to
periodically calibrate their indications.
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3.3. Comparison with smartAQnet Indications

The modeled concentrations are distributed in the examined digital domain and then
compared to the indications of the smartAQnet sensors. These comparisons occur at the
exact location and height, a benefit provided by the high spatial resolution of the CFD
model. Figure 8a–c illustrates the contrast between the observed PM10 levels from the
sensor network and the predicted modeled concentrations. The aim is to analyze and
refine the smartAQnet readings using the model outputs. The best practice to assess the
performance of the calibration would be to compare the calibrated datasets in KS and KP
with the reference monitoring stations. During the period examined, when traffic activity
data were available, the smartAQnet indications for KS and KP were the same as the official
AQ concentrations measured at the corresponding areas. Any correction applied would
just deviate from the reliable measurements given by the reference instruments, so the
correction is only performed at RS, RT, and CN.

Atmosphere 2024, 15, 1056 14 of 19 
 

 

 
Figure 8. Modeled concentrations vs. smartAQnet indications. Hour-to-hour comparison (a–c) and 
regression analysis with linear fitting to produce calibration equations (d–f). 

Linear fitting was employed to establish equations depicted in Figure 8d–f for the 
device’s calibration, using the modeled PM10 concentrations as targets. A linear fitting of 
y = ax was employed to correct for zero calibration, ensuring alignment of the sensor’s 
readings with reference values when it reads zero. In regression analysis, the slope (a) 
signifies the rate of change in the dependent variable y (model reference) per unit change 
in the independent variable (x) (low-cost sensor). An α > 1 indicates an underestimation 
of values by the low-cost sensors compared to the model’s dataset used for calibration. 
This discrepancy is also evident when comparing the indications of the three sensors (RS, 
RT, and CN) to those of the official AQ stations KS and KP. Figure 9a–c shows that the 
PM10 concentrations of the official stations KS and KP are higher than those of the 
smartAQnet sensors (RS, RT, and CN). The slope of the three sensors relative to the official 
stations during that time ranged from 1.118 to 1.694. Figure 8d–f reveals slopes of 1.289 
for RS, 1.215 for RT, and 1.097 for CN compared to the modeled values, indicating the 
provided adjustment agrees with the official observations of PM10. This calibration 
method uses the advantages provided by the CFD model, as the values are given in the 
exact location of each sensor, so every calibration is unique, achieving more accurate ref-
erence. This consideration accounts for environmental characteristics such as wind inten-
sity and turbulence influenced by surrounding buildings and local emissions of traffic 
PM10 emitted from nearby roads that differ from area to area. 

Figure 8. Modeled concentrations vs. smartAQnet indications. Hour-to-hour comparison (a–c) and
regression analysis with linear fitting to produce calibration equations (d–f).

Figure 8a–c depicts an underestimation in PM10 levels on RS, RT, and CN sensors by
smartAQnet throughout the day, compared to the model. During the examined timeframe,
the disparities between the RS, RT, and CN sensors’ readings and the modeled PM10
concentrations were evaluated. The CN sensor exhibited an overall average difference
of 1 µg/m3, while the RS and RT sensors showed differences of 4 µg/m3 and 3 µg/m3,
respectively on PM10 concentrations. On average, the absolute deviations from the reference
modeled PM10 concentrations amounted to 23%, 15%, and 9% for the RS, RT, and CN
sensors. Figure 8d–f presents regression analyses conducted for each sensor. The correlation
factors (R) established for RS, RT, and CN were 0.83, 0.81, and 0.85, respectively. These
correlation factors indicate that the trends observed by the sensors in terms of PM10
concentrations align with the values produced by the model, but there are differences in
the levels of concentrations produced.

Linear fitting was employed to establish equations depicted in Figure 8d–f for the
device’s calibration, using the modeled PM10 concentrations as targets. A linear fitting of
y = ax was employed to correct for zero calibration, ensuring alignment of the sensor’s



Atmosphere 2024, 15, 1056 14 of 18

readings with reference values when it reads zero. In regression analysis, the slope (a)
signifies the rate of change in the dependent variable y (model reference) per unit change
in the independent variable (x) (low-cost sensor). An α > 1 indicates an underestimation of
values by the low-cost sensors compared to the model’s dataset used for calibration. This
discrepancy is also evident when comparing the indications of the three sensors (RS, RT,
and CN) to those of the official AQ stations KS and KP. Figure 9a–c shows that the PM10
concentrations of the official stations KS and KP are higher than those of the smartAQnet
sensors (RS, RT, and CN). The slope of the three sensors relative to the official stations
during that time ranged from 1.118 to 1.694. Figure 8d–f reveals slopes of 1.289 for RS,
1.215 for RT, and 1.097 for CN compared to the modeled values, indicating the provided
adjustment agrees with the official observations of PM10. This calibration method uses the
advantages provided by the CFD model, as the values are given in the exact location of each
sensor, so every calibration is unique, achieving more accurate reference. This consideration
accounts for environmental characteristics such as wind intensity and turbulence influenced
by surrounding buildings and local emissions of traffic PM10 emitted from nearby roads
that differ from area to area.
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3.4. Calibration of SmartAQnet Indications

The regression analysis in Figure 8 produced equations representing the relationship
between sensor readings and PM10 concentrations. The calibration equations were then
applied to correct the PM10 concentration dataset obtained from smartAQnet measurements,
as depicted in Figure 9. In Figure 9a, the calibrated values from the RS sensor are shown
with the original smartAQnet readings and the modeled values. Notably, the calibrated
values exhibit a deviation of 1% from the modeled PM10 concentrations, an improvement
compared to the previous 23%. Figure 9b,c illustrates the indications from the RT and
CN sensors, respectively, showcasing daily deviations of 3% and 2% from the modeled
dataset. The initial deviation of smartAQnet from the modeled dataset was 15% and 9%,
respectively, for RT and CN.

To further demonstrate the impact of the calibration, the KS and KP PM10 concentra-
tions from the high-cost monitoring stations are shown in Figure 9a–c. For the RS sensor,
the calibrated dataset exhibited a deviation of 21% and 9% from the reference station in KS
and KP, respectively, during the examined period, showcasing an improvement compared
to the previous 39% and 30% daily deviation. In the case of RT, the new calibrated dataset
deviated 19% and 6% from KS and KP, compared to the 33% and 23% deviation that the
initial smartAQnet had. Finally, the CN calibration also exhibited improvement; as shown
in Figure 9c, the calibrated dataset is closer to the KS and KP values compared to the
initial one, demonstrating deviations of 27% and 16% from KS and KP, compared to the
previous 34% and 24% daily average deviation. Overall, the calibration process has notably
improved the alignment of sensor measurements with high-cost reference monitoring
stations in the city and modeled values produced at the same points.

To assess the suitability of the calibration, statistical metrics that show the strength
of the correlation between the corrected smartAQnet and the model are calculated after
calibration. Table 2 shows the statistical metrics calculated for the linear fittings of smar-
tAQnet for RS, RT, and CN when compared to the modeled results using dimensionless
concentrations. These metrics are shown in Section 3.2. For RS, FB was reduced from the
out-of-range 0.36 to 0.11. The HIT RATE calculated for every sensor was not acceptable
before the calibration as it was lower than 0.66 [43], but after the correction brought it to
an acceptable value. For all the cases, the calibration approach provided better statistical
metrics that were closer to the ideal value. So, subsequently, the calibration applied to the
sensors is determined to be suitable for calibrating the low-cost PM sensors, given that
by applying the correction, a lower deviation from the model-target dataset and a better
correlation with it are achieved. These metrics can be used to assess the performance of
urban air quality networks and to indicate if there is an under- or over-prediction compared
to target values. The new calibrated datasets created in the three locations of the low-cost
sensors also exhibited a better correlation with the two high-cost reference monitoring
stations, as explained in Section 3.4.

Table 2. Statistical metrics between smartAQnet and calibrated datasets from modeled PM10 concen-
trations for RS, RT, and CN nodes.

RS
smartAQnet

RS
Calibrated

RT
smartAQnet

RT
Calibrated

CN
smartAQnet

CN
Calibrated Ideal Accepted

HIT RATE 0.38 0.68 0.38 0.66 0.63 0.67 1 ≥0.66
FB 0.36 0.11 0.25 0.11 0.1 0.02 0 −0.3 ≤ FB ≤ 0.3

MG 1.2 0.93 1.09 0.95 1.01 0.97 1 0.7 ≤ MG ≤ 1.3
NMSE 0.47 0.13 0.42 0.26 0.09 0.05 0 ≤1.5

VG 1.17 1.14 1.13 1.1 1.08 1.07 1 ≤1.6

4. Conclusions

This study proposed a method for calibrating low-cost sensor networks by combin-
ing reliable observations with modeled concentrations generated by computational fluid
dynamics (CFD) modeling. The CFD model considers the examined area’s geometry and
incorporates traffic emissions based on Augsburg’s traffic activity and fleet characteristics
during the chosen period. The simulated 24 h period represents typical wind direction and
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speed for that month, ensuring representative results. The modeled PM10 concentrations
exhibited high correlation (R = 0.97 and 0.86) with two official air quality stations, with
deviations of only 18% and 13%, respectively. Similarly, the wind field showed strong
agreement with observed data (R = 0.87, average daily deviation of 7%).

Regression analysis established correlation equations between modeled PM10 concen-
trations and sensor readings, enabling linear fitting calibration for each device. Applying
this calibration to sensors requiring correction resulted in an average deviation of only
2% from target values. Statistical metrics like NMSE, FB, HIT RATE, and MG confirmed
significant improvements in sensor-to-model value correlation, bringing them closer to
ideal values. The new calibrated datasets exhibited a better correlation with two reference
monitoring stations in the area, with reductions in deviation ranging from −7% to −21%.
A limitation of this method is the exclusion of temperature and relative humidity, which
can influence sensor performance [45]. Future research could incorporate all parameters
affecting particle dispersion and all pollution sources for a more comprehensive air quality
assessment and sensor calibration.

This method offers several advantages. It allows generating a database of modeled
pollutant concentrations at various time scales under various meteorological and emission
scenarios. The model’s results can calibrate sensors exhibiting systematic errors and fill in
missing data caused by sensor malfunctions. The integration of cost-effective air quality
networks, high-quality monitoring stations, and high-resolution air quality modeling
leverages the advantages of both top-down and bottom-up approaches for comprehensive
air quality assessment. Urban air quality networks can be used to assess the performance
of air-quality models, and the modeling approaches can provide guidance on sensor
installation and periodical calibration. By improving the accuracy and reliability of air
quality data, this approach can enhance public health by enabling more effective pollution
control measures. It can raise public awareness by providing communities with accessible,
real-time information on air quality, empowering them to take proactive steps to reduce
exposure to harmful pollutants in the frameworks of smart cities.
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