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A B S T R A C T

District heating systems offer means to transport heat to end-energy users through underground pipelines. When
leakages occur, a lack of reliable monitoring makes pinpointing their locations a difficult and costly task for
network operators. In recent years, aerial thermography has emerged as a means to find leakages as hot-spots,
with several papers proposing image analysis algorithms for their detection. While all publications boast high
performance metrics, the methods are constructed around very different datasets, making a true comparison
impossible.
Using a new set of aerial thermal images from two German cities, this paper implements, improves, and

evaluates three anomaly detection methods for leakage detection: triangle-histogram-thresholding, saliency
mapping, and local thresholding with filter kernels. The approaches are integrated into a software pipeline with
globally applicable pre- and postprocessing, including vignetting correction. While all methods reliably detect
thermal anomalies and are suitable for automated leakage detection, triangle-histogram-thresholding is the most
robust.

1. Introduction

1.1. Context

In the face of anthropogenic global warming, political and societal
efforts are increasingly directed towards the buildings sector as one of
the major contributors to climate change [1]. Accounting for approxi-
mately 30% of the world’s energy demand, building operation – spe-
cifically heating – is primarily responsible for these sizeable
requirements [1]. For this reason, the German government has recently
enacted new legislation which mandates the development of a nation-
wide heat supply strategy and requires all municipalities to devise
comprehensive plans for climate-neutral heating [2]. The approach
mirrors long-standing laws in Scandinavia, where centralised technol-
ogies – most notably district heating systems (DHSs) – are paving the
way towards more sustainable cities [3].

DHSs are networks of mostly subterranean pipelines which connect
energy-generating facilities with end-energy users to supply heat. When
it comes to providing buildings with energy, they can offer a viable
solution for densely populated areas and an alternative to individual,
building-wise fossil-fuel based approaches [4]. In Denmark, for instance,

such networks currently already supply two-thirds of the population
with 89% climate-neutral heat [3]. Various designs have been imple-
mented in numerous countries throughout the past millennia. However,
constant usage inevitably causes material fatigue and thus leakages to
occur. In Germany, network losses have remained a constant drain on
system efficiency, annually amounting to between 10% and 14% since
2000 [3]. This can be attributed to the fact that DHSs often lack a form of
integrated monitoring and even newer networks only provide rough
location estimates for leakages [5,6]. However, performing timely re-
pairs is not only vital for reasons of efficiency: Pipeline leakages may
precipitate serious and costly damage to the system, surrounding
infrastructure, and environment if left unrepaired [5]. Therefore,
finding alternative economical and reliable inspection techniques is
crucial to ensuring minimal losses in a technology that has the potential
of meeting our cities’ future heating demands by sustainable means.

To this end, a thermography-based approach has emerged for DHS
monitoring [5]. It is centred around Ljungberg and Rosengren [7]’s and
Axelsson [8]’s finding that a heated medium leaking into pipeline sur-
roundings will cause a localised spike in temperature at the surface and
can thus be identified as a hot-spot in thermal infrared (TIR) images. As a
remote sensing technique, this method warrants no direct contact to the
networks themselves and does not rely on built-in or pre-existing
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technology, making it generally applicable to a broad range of DHS
types. It chiefly requires the collection of TIRs above pipeline areas, a
procedure which is simplified greatly by use of unmanned aircraft sys-
tems (UASs). These permit the acquisition of images with a high ground
resolution in a time-efficient, flexible manner – potentially even in
combination with smart city approaches [9]. However, the resulting tens
of thousands of TIRs require some form of automatic analysis for the
method to become financially viable to network operators as a means of
DHS monitoring [5,6]. Moreover, the selection of a robust leakage
detection method is essential for success [5]: On the one hand, it must
work conservatively so as not to miss important anomalies, on the other
be selective enough to provide a manageable list of candidates to op-
erators [10]. Several research groups have designed effective method-
ological approaches to perform the automatic detection task using
custom case studies. However, on account of considerable differences in
utilised data and study conditions, these have – thus far – been incom-
parable. Therefore, this study aims to identify a true state-of-the-art
method and comparison in robust automatic anomaly detection for
DHS leakage detection among existing in literature.

1.2. Related work

Published approaches generally follow similar procedures to output
a list of leakage candidates with as few false alarms as possible. After
acquiring the data at night so as to reduce thermal reflectance and
irrelevant hot-spots, the images commonly undergo photogrammetric
processing. By combining the georeferenced data with geographical
DHS information, the images can be cropped to pipeline surroundings,
thus removing anomalies outside the analysis scope. Publications
diverge in their choice of anomaly detection method for image binar-
isation and subsequent false-alarm removal steps.

Friman et al. [6] implement a histogram-based method, identifying
pixels of interest as a defined percentile of the warmest within a set of
images. A watershed transform helps remove buildings and associated
hot-spots. To reduce the potential for misclassification, Berg et al. [11]
instead use building data from OpenStreetMap and additionally

integrate a feature-based machine learning (ML) classifier to improve
false alarm reduction.

Sledz et al. [12] apply a Laplacian of Gaussian blob detector and
cluster merging by temperature categories to find elliptical hot-spots.
They generate digital surface models to help sort out false alarms
above surface level.

Xu et al. [13] and Zhong et al. [14] implement Itti et al. [15]’s sa-
liency mapping (SM) based approach derived from the human visual
system. The output, a combination of various feature maps, is binarised
via maximum entropy segmentation. Some shortcomings of this
approach include its non-discriminatory saliency definition (cold and
warm regions are equally conspicuous) and its normalisation (neigh-
bouring anomalies may be eliminated).

Therefore, Sledz and Heipke [16] instead modify Itti et al. [15]’s SM
method by including a Max-operator to specify only warm regions as
being of interest and a normalisation limited to a percentile-defined
interval. For binarisation, the results are combined with simulta-
neously acquired red green blue (RGB) images using Dempster [17]’s
and Shafer [18]’s evidence theory. This method requires detailled RGBs,
meaning all data must be acquired with a dual camera during the day
and not be cropped to the DHS.

Hossain et al. [19] and Hossain et al. [20] similarly do not mask their
TIR images. They perform anomaly detection by local thresholding (LT)
of various combined filter outputs. The results of edge and local maxima
detectors are binarised via threshold and joined using a logical AND
operator. For false alarm reduction, the authors adopt a convolutional
neural network based classification approach and demonstrate its su-
periority to various conventional ML methods, including Berg et al.
[11]’s.

Most recently, Vollmer et al. [10] showcase an automation of all
steps in one image analysis pipeline, including previous manual geore-
ferencing. They implement an adapted triangle-histogram-thresholding
(THT) based on Zack et al. [21] for image binarisation. False alarms are
removed by size, shape, and temperature difference ΔT to surroundings
and classified by ΔT severity.

1.3. Objectives and contribution

The variety of existing approaches – all of which are said to excel at
the detection task – inherently give rise to our research question: Which
method is best suited for TIR analysis to help network operators identify
leakages in DHSs? This, however, is difficult to answer for several
reasons.

Table 1 shows how various aspects of data acquisition deviate be-
tween assorted research groups. Differences in aircraft, flight height,
sensor type, and TIR image resolution make a direct comparison
impossible. Additionally, the amount of data vary greatly, with some
researchers basing their method development on several cities, some
only on a single one. A further obstacle is the lack of shared data and
code, without which neither method nor images can be easily reviewed
or transferred to new studies. Only Vollmer et al. [10] have made both
their code and a dataset available online [22].

In this paper, we aim to answer the posed question for the first time
and find the most suitable and robust anomaly detection method for
DHS leakage detection in existence. To do so, we select three approaches
from Section 1.2, which we refine with essential adaptations, novel
enhancements, and parameter grid search to identify the best possible
variation of each algorithm. By utilising a newly developed case study,
we are able to directly compare the different approaches and assess their
potentials in an unprecedented manner. To enable a true comparison,
the methods are embedded in an analysis pipeline similar to Vollmer
et al. [10] for identical data pre- and post-processing. This, too, is

Acronyms

DHS district heating system
DR detection rate
FN false negative
FP false positive
GUI graphical user interface
IoU intersection over union
LT local thresholding
ML machine learning
P precision
R recall
RGB red green blue
SM saliency mapping
THT triangle-histogram-thresholding
TIR thermal infrared
TN true negative
TP true positive
UA unmanned aircraft
UAS unmanned aircraft system
VC vignetting correction
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enhanced with a novel, universally applicable vignetting correction
(VC) which significantly improves performance of, for instance, Vollmer
et al. [10]’s THT. An exceedingly detailed evaluation – including
quantitative, qualitative, and holistic assessment – supports the selec-
tion of an overall best method. Following open science principles, both
code and datasets will be published alongside this study [23].

The paper is divided into five parts. Section 2 covers the general pre-
and postprocessing steps and all implemented approaches. This en-
compasses necessary adaptations to enable the algorithms to work with
the provided data, as well as novel enhancements to optimise perfor-
mance and create the best possible variant for each approach. Section 3
presents the case study providing the foundation for all methodological
development and evaluation. The data is an extension of the images used
by Vollmer et al. [10], including new imagery from Munich as well as
Karlsruhe to create a more substantial basis for analyses. Section 4 lays
the foundation for a sound evaluation, while all methods are assessed
quantitatively, qualitatively, and in the overall context of the leakage
detection pipeline in 5. Section 6 draws conclusions from the study,
details limitations, and presents an outlook for future work.

2. Implemented methodologies

The following anomaly detection methods are implemented in this
study: 1. Vollmer et al. [10]’s triangle-histogram-thresholding (THT)
approach, inspired by Friman et al. [6], 2. Hossain et al. [20]’s local
thresholding (LT) method based on filter kernels, 3. Sledz and Heipke
[16]’s adaptation of Itti et al. [15]’s saliency mapping (SM). These three
approaches reflect key directions that presented studies have branched
out into, the most promising of which are chosen. Only methods that
process images individually are considered1 to offset potentially occur-
ring UAS-based acquisition effects like thermal drift. Heuristic-based
approaches are selected owing to their lower requirement for labelled
datasets and fewer parameters to be optimised, which makes them more
efficient and practical when annotated data is scarce as is the case in this
instance. While the aforementioned studies act as implementation
guidelines, all approaches require adaptation to the data2 and/or to
optimise performance.

The anomaly detection methods are embedded into an image anal-
ysis pipeline, fashioned after Vollmer et al. [10]. The pipeline evaluates
a set of images – hereafter referred to as a dataset – acquired in a single

flight under similar conditions with the same camera (see Table 1) in
three steps:

1. Preprocessing (Section 2.1): General image enhancement, georefer-
encing, and masking the images with DHS pipeline information

2. Anomaly detection (Section 2.2): Binarising images into foreground
(pixels of interest) and background

3. Leakage identification (Section 2.3): Grouping of pixels into regions
of interest and sorting out false alarms

2.1. Image preprocessing

Preprocessing helps enhance and prepare data for algorithm appli-
cation. In the context of leakage detection, this includes reducing the
search space to areas of interest. All datasets are processed according to
Vollmer et al. [10] by clipping to a mean- and standard deviation-based
interval (to reduce measurement errors), translating recorded intensity
values to temperature arrays, georeferencing the images by estimating
image-wise affine transformation matrices, and masking them with
geographical DHS pipeline information. After applying these steps,
every TIR UAS image T has an associated full temperature array Tu
(unmasked), an affine transformation matrix Ageo, and a masked array
Tm. This procedure is improved by including a novel, globally applicable
VC (Section 2.1.1), preceding all other steps.

2.1.1. Vignetting correction (VC)
In thermography, the “vignetting” effect refers to a radial distortion

where image corners and edges exhibit colder values than the centre.
Despite thermal cameras including automatic non-uniformity correc-
tion, the case study’s TIRs significantly suffer from vignetting – an
observation that aligns with field tests conducted by Yuan and Hua [24].
Various factors, particularly temperature and wind speeds, impact the
effect’s severity. As a thermal camera is found to require around 30 min
to stabilise, the authors suggest capturing homogeneous images after
each flight for correction [24].

However, using calibration images has its disadvantages. It requires
finding suitable scenes in the field, thus increasing acquisition effort,
and precludes the correction of existing data. Therefore, a novel, uni-
versally applicable VC is developed in this study which requires no
additional imagery.

CMVC = PWM − min(PWM) (1)

TuVC = Tu +CMVC (2)

Table 1
Overview of data used in the anomaly detection studies presented in chapter 1.2.

Publication Geographical information Aerial vehicle Flight height [m] Infrared camera / sensor Image count Image resolution [pixels]

Friman et al. [6] 15 Swedish and Norwegian cities airplane 800 FLIR SC7000 >50,000 640 × 512
Berg et al. [11]

Xu et al. [13] Gävle, Sweden airplane – FLIR X8000sc – 1280 × 1024
Zhong et al. [14] Gävle, Sweden UAV DJI S1000 120 FLIR Tau 2640 – 640 × 512

Datong, China UAV DJI S1000 150 FLIR Tau 2640 – 640 × 512

Hossain et al. [19] 7 Danish cities UAV – – 27,050 –
Hossain et al. [20] 12 Danish cities UAV – FLIR Tau 2640 243,082 640 × 512

Sledz et al. [12] Hannover, Germany UAV DJI M200 40 DJI Zenmuse XT2 290 640 × 512
Sledz and Heipke [16]

Vollmer et al. [10] Munich, Germany UAV DJI M600 60 DJI Zenmuse XT2 3365 640 × 512

1 For this reason, Friman et al. [6]’s dataset-based thresholding is not used.
2 The urban setting and detail of this case study’s imagery effectuates a high

number of false alarms, potentially posing a greater challenge than the original
paper’s data.
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The simplified approach is based on Yuan and Hua [24]’s observa-
tion that a pixel-by-pixel temperature average over all corrected images
of a 30 min acquisition window produces a near homogeneous image.
This suggests that temperatures equalise across a flight and that differ-
ences between averages stem from systematic measurement errors.
PWM is defined as an array of pixel-wise average temperatures of all
uncorrected TIRs within a dataset. The approximated correction mask
CMVC is calculated as the relative difference between those pixels and
PWM’s minimum (Eq. (1)). A raw thermal image Tu can be corrected to
TuVC via Eq. (2)

3, as visualised in Fig. 1. Vignetting masks such as Fig. 1b
vary greatly depending on the acquisition conditions, so it is paramount
to calculate one for each dataset.

2.2. Anomaly detection

This section details the anomaly detection methods used for binar-
isation – in other words to divide the image into background and pixels
of interest. Each approach is first outlined according to its imple-
mentation in literature, after which the novel adaptations and en-
hancements developed over the course of this study are described. The
reasons for any required adaptations and the value of the contrived
improvements are illustrated. Parameters are defined in Section 4.3,
where optimal method variants are found.

2.2.1. Triangle-histogram-thresholding (THT)

2.2.1.1. Original Methodology by Vollmer et al. [10]. First implemented
by Vollmer et al. [10] in the context of leakage detection, the adapted
THT approach functions as this study’s baseline. As suggested by Friman
et al. [6], a binarising threshold with which to segment an image can be
found by using a histogram, a graphical representation of data distri-
bution and frequency. The value range of the data in question is divided
into intervals, with each of the ensuing so-called bins forming a class to
which data points are assigned according to value. In the case of image
data, this means pixels are distributed according to their intensities,
culminating in columns of varying height depending on value preva-
lence. Naturally, pixels at the upper end of the intensity or temperature
histogram are of particular interest for the identification of thermal
anomalies.

Friman et al. [6] choose a threshold simply by defining the value as a
specific upper percentile of a histogram generated from an entire data-
set. To prevent effects like thermal drift from impacting binarisation,
Vollmer et al. [10] instead calculate a histogram and image-wise
threshold per masked image Tm using an approach based on Zack
et al. [21].

Fig. 2 shows how a histogram is created based on the temperature

distribution of a masked image, with each class covering an interval of
0.5◦C. Point P1, determined by the centre of the tallest column, and P2,
the upper end of the dataset range, define a right-angled triangle. The
threshold is determined as the centre P3 of whichever bin has the
greatest distance dmax to the hypotenuse, measured for each class by the
orthogonal line connecting it’s apex to the triangle at P4.

The method is adapted to the given context of leakage detection. In
histograms with multiple peaks, the warmest local maximum (furthest
to the right) determines P1. To avoid segmenting overlarge anomaly
areas, the selected threshold is adjusted until the associated relative
frequency is less than 1%.

2.2.1.2. Adaptations for this study. As the method was developed on
similar data, no further enhancements are made aside from those
described in Section 2.1.

2.2.2. Local thresholding (LT)

2.2.2.1. Original methodology by Hossain et al. [19,20]. While Hossain
et al. [19,20]’s anomaly detection can also be described as thresholding-
based, the authors apply a series of filter kernels to find local instead of
image-wise ones with a region extraction algorithm.

In a first step, the warmest image regions are found by comparing
pixels to their surroundings. Eq. (3) is applied to the unmasked array Tu
to get a binary segmentation Iwarm based on local maxima. A pixel (i, j) is
selected if its temperature exceeds a combination of arithmetic mean
μ(i, j) and standard deviation σ(i, j) of the pixel’s neighbourhood – with
α = 1 in Hossain et al. [20]. These surroundings are defined as a (2⋅r +
1) × (2⋅r + 1) square with radius r = 100 pixels in Hossain et al. [20].

Iwarm(i, j) =
{
1, if μ(i, j) + α⋅σ(i, j) < Tu(i, j)
0, else (3)

Fig. 1. Visualisation of the implemented VC. Combining a raw, unmasked TIR (1a) with the dataset’s correction mask (1b) returns the corrected image (1c).

Fig. 2. Visualisation of the THT method [10].

3 While this may potentially falsify Tu’s absolute temperature values, only
relative temperature differences are used in the context of leakage detection.
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A second filter combining vertical and horizontal Sobel edge de-
tectors calculates a gradient image G. Hossain et al. [20] apply it under
the assumption that the spread of hot water underground is charac-
terised by diffuse temperature distributions. Consequently, gradients
should not exceed a certain magnitude, as defined by the gradient-based
binarisation Igrad.

Igrad(i, j) =
{
1, if μ(i, j) + 0.5⋅σ(i, j) > G(i, j)
0, else (4)

Both segmentation masks are combined by logical AND operator.
Smaller regions and image noise are then removed via 5× 5 majority
voting kernel.

2.2.2.2. Adaptations for this study. An analysis in the context of this case
study reveals several method problems. Hossain et al. [20]’s hypothesis
regarding gradients does not hold true, as gradient-based filtering
eliminates true leakages. Additionally, temperature-based binarisation
has the unfortunate tendency to identify any larger, warm areas
(including i.e. sidewalks) as regions of interest, contradicting the com-
mon, locally confined appearance of leakages. Thus, crucial changes are
made to adapt the approach (Fig. 3).

Instead of a single temperature-based mask generated with r = 100,
masks are created for every radius r ∈ R,R = {r1,…, rn}. This means one
is also computed at image level with a global threshold defined by the pth
percentile of all pixel temperatures. Resulting binarisations are again
combined by logical AND operator. For an anomaly to be included in the
final mask, it must be present in all filter radii, ensuring relevant pixels
of interest in both local and global context. Analogous to the original
approach, noise is minimised by applying a majority vote filter kernel.

2.2.3. Saliency mapping (SM)

2.2.3.1. Original methodology by Itti et al. [15], Xu et al. [13], and Zhong
et al. [14]. Saliency analyses model the human brains’ attention
directing mechanisms for visual stimuli to find conspicuous image re-
gions [25]. As thermal anomalies stand out in TIRs, Xu et al. [13] are the
first to propose this method for leakage detection in DHSs. Based on Itti

et al. [15], their algorithm returns a saliency map per image, where each
pixel’s value represents how strongly it stands out in the overall image
context. This comprises three steps [15]: 1. Compute a set of feature
maps for intensity I(c, s), color RG(c, s) & BY(c, s), and orientation
O(c, s, θ) via Gaussian image pyramids and centre-surround across-scale
subtractions ⊖ , 2. Combine feature maps into a conspicuity map for
intensity I, color C, and orientationO through across-scale addition⊕, 3.
Create the saliency map via normalisation and summation.

Multiscale feature extraction relies on Gaussian image pyramids to
subsample an input image into σ ∈ {0,…,8} spatial scales. Feature maps
are derived from performing point-by-point subtractions ⊖ between
finer and coarser scales. Specifically, this means pixels at centre scale c ∈

{2,3,4} are compared with their positional equivalents at surround
scale s = s+ δ, δ ∈ {3,4}. While the original RGB-based method uses 6
intensity, 12 color, and 24 orientation feature maps, Zhong et al. [14]
recognise that color can be omitted as TIRs are in greyscale. Intensity
maps are directly calculated as the delta between c and s, while orien-
tation maps adapt the scaled images by applying Gabor filters with
various orientations θ ∈ {0◦

, 45◦

, 90◦

,135◦

}.
Every feature map F is normalised via Eq. (5) to an interval [0,M]

dependent on F’s maximumM, thereby eliminating amplitude variations
and ensuring comparability. By including a term that subtracts the
average of all local maxima m from the global one M, maps with
prominent peaks are favoured over uniform ones. These outputs are
combined into two conspicuity maps, which - via normalisation and
summation - form the saliency map.

N(F) = 〈F〉M0 ⋅(M − m)
2 (5)

Xu et al. [13] and Zhong et al. [14] propose various adaptations for
the given leakage detection task, like the combination of local and global
maps. However, tests on this study’s data reveal significant issues and a
substantially lower accuracy than their reported 90%. Reasons for this
are unclear, though Hossain et al. [19] report similarly unsatisfactory
results and attribute the deviations to the simplistic nature of Zhong
et al. [14]’s imagery.

To binarise the saliency map, Zhong et al. [14] implement an
adaptive thresholding technique called maximum entropy segmentation

Fig. 3. Visualisation of the adapted LT process.
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[26]. A saliency map constitutes a range of intensity values, each of
which has an associated probability. The map is divided into a fore-
ground F and background B at a threshold t, defined by probability-
dependent distributions. Combining the entropies for F and B results
in a function ψ(t), which, when maximised, returns a segmentation with
maximum information content.

2.2.3.2. Adapted Methodology by Sledz and Heipke [16]. Building on Itti
et al. [15]’s approach, Sledz and Heipke [16] make two key adaptations:

1. Feature map calculation: Saliency maps identify all conspicuous re-
gions, which contradicts the specific search for hot-spots. To sup-
press unwanted negative (cold) values, the maximum operator is
used:

I(c, s) = max(I(c) ⊖ I(s) , 0) (6)

2. Normalisation: While standard saliency analyses promote global
maxima and suppress local ones, all thermal anomalies can be of
interest for leakage detection. Feature map normalisation is there-
fore enhanced by limiting the interval range to
[percentile(F, pmin) , percentile(F, pmax)], with pmin and pmax the percen-
tiles of F to be used. Defining pmax < 100 promotes local peaks, while
values of pmin > 0 help suppress noise.

Sledz and Heipke [16] binarise the saliency maps by implementing
Dempster [17]’s and Shafer [18]’s evidence theory, which combines
simultaneously daytime-acquired TIRs and RGBs. As this case study
consists solely of thermal data (captured at night), this approach is not
directly applicable here.

2.2.3.3. Adaptations for this Study. An in-depth analysis highlights a
shortcoming of Sledz and Heipke [16]’s normalisation. Saliency maps
vary greatly depending on pmax, with each image having its own optimal
parameter definition. A low pmax emphasises local hot-spots (even in the
presence of global ones), but overvalues irrelevant regions in images
without anomalies. A high pmax risks undervaluing local hot-spots and
may still highlight irrelevant regions where no anomalies exist. The
method is therefore enhanced in several ways:

1. The approach is applied to the masked Tm to reduce false alarms.
Defining masked pixels as the mean of unmasked ones prevents
salient seams.

2. Saliency maps favour high temperature gradients. To prevent salient
seams around cold objects, images are clipped to
[
percentile

(
I, pclip

)
,∞

]
, limiting the lower bounds. Fig. 4 shows the

impact this has.
3. Where images lack hot-spots, irrelevant regions are systematically
overestimated. Placing a w× h-sized reference square into the
masked area of every image (with a ΔT higher temperature) gua-
rantees at least one artificial anomaly to counteract the effect. Fig. 5
illustrates this.

A qualitative assessment of Zhong et al. [14]’s maximum entropy
segmentation shows it provides largely robust results. However, in im-
ages lacking significant anomalies, the suggested threshold may be too
low, meaning irrelevant pixels are included. In images with salient re-
gions, the determined threshold is often too high, rejecting pixels of
interest. The threshold sth is therefore instead defined by equations
centred around the maximum entropy threshold sME, the saliency of the
previously introduced reference square sref , and a minimum threshold
value smin (to ensure no irrelevant anomalies are detected):

sth = min
(
max

(
sME, śmin, sref − Δsneg

)
, sref +Δspos

)
(7)

śmin = min
(
smin, sref − Δsmin

)
(8)

Using the artificial reference anomaly, the equations implement two
mechanisms to counteract unwanted effects: 1. Δsneg and Δspos define a
corridor around sref , in which sth has to reside, 2. The minimal saliency
threshold smin can be decreased if the value is at least Δsmin smaller than
sref .

2.3. Leakage identification

Section 2.2’s algorithms return binary segmentationmasks with fore-
and background pixels, from which anomalous regions have to be
extracted.

Fig. 4. Comparison of generated saliency maps with and without active clipping.

Fig. 5. Influence of a reference point on the generted saliency maps.
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2.3.1. Clustering pixels to regions
Foreground pixels are clustered into regions of interest via a multi-

step procedure. First, all connected foreground pixels are grouped
together and assigned an individual label. Two pixels are considered
neighbours if they border one another vertically, horizontally, or diag-
onally. Owing to the nature of the binary segmentation cut-off, anom-
alies occasionally manifest as multiple clusters in close proximity to one
another. Analogous to Vollmer et al. [10], all labelled regions are
therefore classified based on their size as small (≤ 10 pixels) or large
(> 10 pixels). An extended bounding box is drawn around all larger
regions. If a small cluster lies entirely within the bounds of such a box, it
is assigned that one’s label, thus combining regions enclosed by another.

2.3.2. Classifying regions
A key indicator of anomaly relevance is the temperature difference

ΔT between it and its immediate surroundings. Following Vollmer et al.
[10], ΔT is determined by subtracting the surroundings S from the
anomaly A’s temperature, where TA is defined as the average of all
anomaly pixel values. If sufficiently large, TA corresponds to the average
of the anomaly’s 50 or 100 warmest pixels, which prevents ΔT from
being underestimated. The ambient temperature TS is calculated by
expanding the hot-spot’s convex hull outward to create a surrounding
ring and averaging the ring’s values. To avoid falsifying TS, all pixels
belonging to other anomalies or outside of the area left by pipeline
masking are excluded from the calculation.

The relevant order of magnitude of ΔT varies between studies. Sledz
et al. [12] assume a required delta of at least 5 ◦C based on literature
research, while Berg et al. [11] report a confirmed leak with only 3 ◦C
under specific ambient conditions. Vollmer et al. [10] use a multi-step
categorisation including, among others, a 10 ◦C or more limit based
on information from local municipal companies. This study finds in-
stances of a ΔT lower than 5 ◦C not to represent leaks and also imple-
ments a categorisation into four discrete classes: uncritical (ΔT < 5◦C),
moderate (5◦C ≤ ΔT < 10◦C), pronounced (10◦C ≤ ΔT < 15◦C), or
critical (15◦C ≤ ΔT). We refrain from further categorisation (by classi-
fier or geographical positions) as the purpose of study lies in comparing
the anomaly detection methods themselves.

3. Case study

3.1. Data

The case study comprises 3750 UAS images of two DHSs from the
German cities of Munich and Karlsruhe, as illustrated in Table 2. The
water temperature in these DHSs lies between 80 ◦C and 130 ◦C
depending on the season. Both studied areas have a predominantly
suburban character, although the level of urbanisation and the devel-
opment types differ, including single and multi-family home residential
areas, commercial areas, and green spaces such as parks and forests. The
inspected regions around Munich include the municipalities of Tauf-
kirchen, Ottobrunn, and Neubiberg and constitute the larger part of the
case study. Of 49 acquired datasets, 5 were selected for their high quality
and depiction of diverse urban landscapes and leakage candidates. The
images were acquired between 8 p.m. and 1 a.m. in December 2019,

with outside temperatures of − 5 ◦C to 2 ◦C. Including data from a second
city such as Karlsruhe helps diversify the study, highlights the existence
of city-specific features, and allows a comprehensive evaluation of the
developed algorithms. The images were recorded in January and March
2022, at 0 ◦C to 3 ◦C outdoor temperatures.

All flight routes were based on known DHS pipelines’ positions. Both
utilised Matrice unmanned aircrafts (UAs) supports automated flight
along previously defined routes, with only take-off requiring manual
handling. While nimble, the Matrice 300 RTK UA [27] is more suscep-
tible to wind than the 600 Pro [28], making exact georeferencing more
difficult. Acquisition of nadir images took place at 60 m altitude. A flight
speed of 3 m/s ensured an 88% image overlap, reducing the risk that
leaks are overlooked. The utilised camera system – a Zenmuse XT2 by
DJI and Teledyne FLIR LLC [29] – combines an optical 4 K camera sensor
for capturing 4000× 3000-sized RGBs with a FLIR infrared sensor. The
latter is an uncooled VOx microbolometer with a 7.5 − 13.5μm wave-
length range, 13mm focal length, and 640× 512 resolution [29]. Images
are stabilised via DJI’s integrated gimbal [29]. While this setup provides
both TIR and RGB images, only the thermal data and associated meta-
data, such as GPS positioning, are used in this case study.

3.2. Hard- and software

The processing pipeline is implemented in Python v3.10 and
designed to run on all common desktop operating systems. Unless stated
otherwise, an Apple M1 Pro processor (8× Performance-cores, 2×
Efficient-cores) and 16 GB of RAM under MacOS 13.4 was used. The grid
search was performed on a “Thin” computing node of the bwU-
niCluster2.0, a high-performance computing cluster operated by the
state of Baden-Wuerttemberg, Germany.

4. Preparing the evaluation

Comparing the anomaly detection methods from Section 2.2 proves
difficult owing to the lack of an objectively correct ground truth binar-
isation. Whether or not a region should be classified as an anomaly
depends on a variety of factors, such as absolute temperature, local
environment temperature, and its size. Additionally, it is impossible to
define a definitively correct anomaly contour. As Fig. 6 demonstrates,
one could assign only the warmest pixels to an anomaly (as in 6b) or
include less hot, neighbouring areas (as in 6c) – both fundamentally
valid options. Even with strict annotation guidelines, manual labels will
remain subject to some uncertainty. While the exact border between hot-

Fig. 6. Examples of possible segmentation masks for the same image.

Table 2
Overview of case study dataset acquisition details.

Munich (MU) Karlsruhe (KA)

UA DJI Matrice 600 Pro (hexacopter) DJI Matrice 300 RTK (quadrocopter)
# images 2638 1112

MU1 MU2 MU6 MU15 MU16 KA1 KA2

Date 02.12.2019 03.12.2019 02.12.2019 04.12.2019 10.12.2019 16.01.2022 01.03.2022
Time 11.15–11.50 PM 00.05–00.40 AM 10.00–10.45 PM 00.17–00.24 AM 08.47–09.05 PM 03.13–03.45 AM 01.33–02.03 AM
# images 681 651 795 205 306 496 616
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spot and background has no serious impact on an algorithm’s suitability
to detect leakages, the choice of method parameters can greatly vary the
resulting segmentation. This, in turn, impacts metric calculations, which
strictly compare such masks to the defined ground truth.

The evaluation is therefore designed to minimise the influence of
these factors and allow for a well-founded assessment of various method
properties. A custom evaluation dataset is created to find the best
parameter combinations for each algorithm via grid search. For the
aforementioned reasons and to ensure consistent labelling throughout,
this dataset is generated according to the following guidelines: 1. A
single expert performs all annotating to maintain uniformity, 2. A novel,
custom-built labelling tool is employed to facilitate the procedure. This
graphical user interface (GUI) utilises a temperature-based slider to
generate a basic mask and a paintbrush tool for manual corrections to
ensure the final segmentation mask remains between the two extremes
from Fig. 6. Both the created masks as well as the developed GUI

labelling tool are published to Zenodo [23].

4.1. Evaluation dataset

A total of 290 images are selected from the datasets presented in
Section 3.1 and manually annotated with a custom labelling tool. The
data is divided into training, validation, and test sets – or “splits”. A high
spatial overlap prevents images from being allocated entirely at random,
as duplicates across splits would distort the results. All images therefore
start out as part of the training set. Random ones are selected and moved
to either validation or test split, together with all that share an overlap.
This procedure is repeated until the target split size values are reached.
Any remaining overlap at split boundaries is resolved by gradually
removing images from the respective sets via a heuristic greedy algo-
rithm, resolving as many conflicts simultaneously as possible. Special
case handling ensures the desired size ratio of each split is maintained.
Fig. 7 visualises the procedure for an exemplary area, while Table 3
details the generated splits. MU2 is solely included in the test split, as
evaluating on “unseen” data is imperative. Images of the same dataset
cannot be considered entirely unrelated due to congruent acquisition
conditions.

4.2. Metrics

The common and custom binary semantic segmentation metrics
shown in Table 4 are used to evaluate algorithm suitability. A predicted
segmentation mask P is compared to the ground truth G on pixel level
using true positive (TP), true negative (TN), false positive (FP), and false
negative (FN) values.

On their own, precision (P) and recall (R) cannot judge semantic
segmentationmask quality. Ameaningless model will achieve maximum
R by assigning all pixels to the foreground or a high P by defining only a
small number of unambiguous areas as the foreground. Therefore,
intersection over union (IoU) and Fβ have become key metrics for a
holistic model evaluation. Next to mask quality, the amount of recog-
nised ground truth anomalies must be assessed, which is why custom
detection rate (DR) metrics are included.

4.3. Parameter grid search

A grid search is performed for each method to specify the various
parameters influencing segmentation outputs and thus find an optimal
variant for later comparisons. Grid searches originate from ML, where
they are used for hyperparameter tuning [31]. A set of options is defined
for each variable. The model is trained for all parameter combinations,
evaluated on the validation split, and the optimal combination chosen
based on a metric. This procedure can be adapted to identify suitable
parameters for conventional anomaly detection methods by omitting
model training.

In this study, grid search is applied to the parameter-rich SM and LT

Fig. 7. Visualisation of the splitting procedure. Images in train are blue, vali-
dation red, and test yellow. Others are removed due to overlap. (For interpre-
tation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Table 3
Overview of the evaluation dataset.

Train Validation Test

# images 172 52 45

MU1 38 23
MU2 41
MU6 34 7 2
MU15 13
MU16 4 10 2
KA1 41 12
KA2 42

Table 4
Overview of the selected evaluation metrics.

Metric Description Definition

Recall (R) Proportion of foreground pixels correctly assigned to the foreground TP
TP + FN

Precision (P) Proportion of actual foreground pixels among all pixels assigned to the foreground TP
TP + FP

Intersection over union (IoU) / Jaccard
coefficient

A measure of the similarity between P and G TP
TP + FP + FN

Fβ score, specifically F2 score A combination of P and R, which for β = 1 is the harmonic mean of the two. R takes precedence over P in leakage
detection,a so F2 is more suitable. [30]

(
1+ β2

)
⋅

P⋅R
(
β2⋅P

)
+ R

Detection rate (DR) Proportion of anomalies in G that are also in P, where an anomaly is detected if its bounding box in P has a >30% overlap with one in G.b

Detection rate 30 (DR30) Corresponds to the DR of anomalies larger than 30 pixels.

a Because anomaly existence takes precedence and FPs are removed in subsequent steps.
b 30% coverage ensures enough of the anomaly is included, also for candidate inspection.
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algorithms using 50 randomly chosen images from the training split, as
this permits a feasible runtime. Table 5 shows the investigated param-
eters and their values, resulting in 20,000 combinations for SM and 448
for LT. THT does not require a grid search as it can be used as per
Vollmer et al. [10]. Appendix A highlights the range the mentioned
performance metrics assume on account of the parameter grid search via
statistical analysis.

Four suitable parameter combinations are found for both methods by
optimising Section 4.2’s evaluation metrics. The MaxIoU configuration
maximises IoU. Since this can favour high P over R, the configurations
MaxIoU@85 and MaxIoU@90 ensure an R of at least 85% or 90%. The
final configuration,MaxF2, maximises F2, which is comparable to setting
a minimum R limit. Table 6 lists the identified, optimal parameter
values.

5. Method evaluation and comparisons

5.1. Quantitative evaluation

The optimal method variants from Section 4.3 are quantitatively
evaluated using the metrics described in 4.2. THT is included both in its
original form [10] and this study’s version, which incorporates VC
(Section 2.1.1). The evaluation results (Table 7) are subject to variance
due to the small split sizes and potentially ambiguous categorisation of
image regions. The differences between the validation and test set re-
sults highlight this fact, a possible explanation for which is the test set’s
more suburban nature and large-scale, confirmed leakage. The valida-
tion split was randomly sampled from all available data and contains a
greater proportion of typical urban anomalies such as warm cars.
Generally, all analysed methods can reliably detect anomalies if suitable

Table 5
Overview of the parameters used in the grid search.

Method Parameter Description Values

SM

ΔT temperature delta between back- ground and reference
square

3, 4, 5, 6, 7

pclip clipping percentile 30, 40

(pmin, pmax) normalisation interval (9999, 5), (9999, 20), (20, 5), (40, 5), (60, 5)
(
Δsneg ,Δspos

)
permissible interval for the selected threshold (0,100), (1, 99.99), (1, 99.98), (1, 99.97), (1, 99.96)

smin minimum permissible threshold 70, 80, 90, 98, 110, 120, 130, 145, 160, 175

(w, h) width and height of the reference square (15, 15), (25, 15), (25, 25), (35, 35)

∣⊖ ∣
whether to use the absolute of the centre-surround
difference true, false

LT

R set of radii to be used for local filters
(10, 150), (20, 150), (30, 150), (30,200), (40, 150), (40, 160), (50, 150), (30, 40, 60, 100,
150)

pth percentile for the percentile filter 10, 90, 95, 96, 97, 98, 99

α multiplier for determining the threshold value 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7

Table 6
Grid search results for selected parameters and four metric optimisations.

Method Parameter MaxIoU MaxIoU@85 MaxIoU@90 MaxF2

SM

ΔT 7 7 7 7
pclip 40 40 40 40
(pmin , pmax) (0, 100) (0, 100) (1, 99.98) (0, 100)
(
Δsneg,Δspos

)
(9999, 5) (9999, 5) (9999, 20) (9999, 5)

smin 90 70 80 70
(w, h) (15, 15) (25, 15) (15, 15) (25, 15)
∣⊖ ∣ False False False False

LT
R (30, 40, 60, 100, 150) (30, 40, 60, 100, 150) (50, 150) (50, 150)
pth 99 98 98 99
α 1.3 1.2 1.3 1.3

Table 7
Results of the leakage detection method variants evaluated on validation and test sets. Best results are in bold.

Method Configuration Validation Test

IoU F2 R P DR DR30 IoU F2 R P DR DR30

THT with VC 59.8 77.5 79.5 70.7 88.6 88.2 47.8 72.8 79.5 54.5 79.8 85.3
without VC 54.0 65.3 62.4 80.1 78.1 79.6 37.0 50.3 48.1 61.6 37.8 42.2

SM

MaxIoU 60.3 80.0 83.4 68.5 88.6 92.5 55.0 67.4 65.2 77.7 72.3 80.4
MaxIoU@85 57.1 81.2 88.1 61.8 94.3 94.6 53.3 67.6 66.4 73.0 75.6 82.4
MaxIoU@90 52.5 80.3 90.2 55.6 93.3 95.7 46.0 71.8 79.2 52.3 85.7 92.2
MaxF2 57.1 81.2 88.1 61.8 94.3 94.6 53.3 67.6 66.4 73.0 75.6 82.4

LT

MaxIoU 51.6 62.7 59.6 79.4 71.4 79.6 35.2 43.4 39.0 78.1 63.0 67.6
MaxIoU@85 52.8 71.9 74.0 64.8 84.8 93.5 37.7 49.4 46.4 66.7 76.5 80.4
MaxIoU@90 49.7 76.0 84.1 54.9 89.5 94.6 43.3 57.4 55.5 66.4 79.0 83.3
MaxF2 51.8 63.7 73.5 63.7 78.1 84.9 43.3 53.7 49.9 76.4 66.4 71.6
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parameters are selected. As expected, configurations that achieve a
higher R or DR often score lower in P and IoU.

THT achieves high DRs of 88.6% and 79.8% on both validation and
test splits, with a simultaneously high IoU score of 59.8% and 47.8%
respectively. Comparing results to THT without VC highlights the
importance of pre-processing for a reliable leakage detection, especially
for a high DR. The SM method achieves an IoU of 60.3% on the vali-
dation and 55.0% on the test set for theMaxIoU configuration. However,
the DR on the test set is comparatively low at 72.3%. The MaxIOU@90
configuration boasts the overall highest DR of 85.7%, though it is
accompanied by a significant IoU decrease, indicating a higher amount
of FP detections. Out of all methods, LT performs worst in terms of IoU,
with additionally low DRs across all configurations. A 55.5% R for
MaxIoU@90 on the test set is particularly striking. As the same config-
uration achieves over 90% on the training data, this method’s robust-
ness for different acquisition areas and framework conditions must be
called into question.

5.2. Qualitative evaluation

While the quantitative analysis greatly depends on the specific var-
iants and their segmentation outputs, a qualitative analysis can highlight
characteristic method properties and differences. The generated seg-
mentation masks will therefore be compared in an exemplary fashion
using select images. Fig. 8 shows examples of common scenarios in their
original form, preprocessed according to Section 2.1, and with the
various anomaly detection algorithms applied. For SM and LT, the
MaxIoU andMaxIoU@90 configurations are taken into account. Insights
from this analysis can only be generalised to a certain extent, as they are
influenced by various factors.

Fig. 8.1 shows the segmentation results for an image containing a
confirmed leak with an exceptionally high surface temperature as well
as smaller hot-spots. THT is able to identify the significantly colder, yet
still anomalous manhole covers in the lower part of the image. In
contrast, both SM configurations do not identify the manholes at all.
This suppression of less significant anomalies when warmer ones occur
is concerning. The LT configurations only classify the warmest leakage
pixels as being anomalous. This may explain the low R on the test set, as
a larger area was annotated.

A closer look at the segmentation masks highlights a tendency of SM
configurations to predict large-scale detections. This is particularly true

for images containing sections of buildings or their facades, as demon-
strated by Fig. 8.2. Similar behaviour cannot be observed in any other
method. Fig. 8.2 also shows how selecting a uniform, image-wise
threshold – as done by THT – can be problematic for complex imag-
ery. Only the warmest anomaly is detected here, while some of the
smaller hot-spots on the cold building roof are not classified in spite of
their comparatively high temperature difference. Fig. 8.3 shows an
example where THT defines such a high threshold that the warm
manhole cover detected by all other methods is missed.

Overall, all implemented methods are generally capable of detecting
ano-malies with a significant ΔT to their surroundings. Inconsistencies
can be observed primarily in SM and LT methods, which cause an
increased number of false-positives or the non-detection of relevant
anomalies in individual images. Among the examined methods, THT is
most consistent overall, with especially larger anomalies being reliably
detected. Only complex images – where the selection of a uniform
threshold for the entire image does not enable a sufficiently precise
differentiation – can be considered problematic.

5.3. Evaluation of the analysis pipeline

So far, the algorithms were evaluated as standalone components of
the analysis pipeline. However, the entire processing pipeline must be
considered to assess their suitability for leakage detection in DHSs. A
challenge in doing so is the small amount of confirmed leakages in this
study’s datasets and literature, meaning conclusions drawn about
method reliability are somewhat restricted. The pipeline from Section 2
is run on one dataset per city: MU2 and KA1. The former includes a
confirmed, very critical leakage, while the latter has a very urban
character and therefore offers a great variety of heat sources (meaning
FPs) for method assessment.

Table 8 summarises the results after anomaly clustering (see Section
2.3.1) and classification by temperature difference ΔT into four cate-
gories (see Section 2.3.2). All relevant anomalies –meaning moderate or
higher (ΔT > 5◦C) – are manually classified to identify the top two
occurring types of urban features. For MU2, these are found to be
leakages and manholes; for KA1, manholes and cars.

Conspicuously, the different method results differ significantly for
MU2. The number of identified anomalies, for instance, is much lower in
THT than LT. However, as becomes apparent through temperature-
based classification, the vast majority of these additional anomalies lie

Fig. 8. Visualisation of segmentation mask results of the different configurations for three example scenarios.
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below the 5 ◦C limit and can thus be considered irrelevant. Manual
categorisation focuses on leakages and manholes and shows that all al-
gorithms are equally reliable at detecting the confirmed leakage. The
amount of detected and relevant manhole covers differs, although this
can be attributed to the fact that they do not fall under the 5 ◦C limit
when the cold inner area of the cover is included in the anomaly. While
the amount of anomalies categorised as “other” vary strongly, a more in-
depth analysis shows that most of these have low absolute temperatures
and clearly are not critical. Results from KA1 evaluation paint a similar
picture. While LT starts off with more than twice the others’ anomaly
count, no significant differences exist where relevant anomalies are
concerned. In fact, the number of warm vehicles is identical across all
methods, while manhole count differs only slightly.

6. Conclusion, limitations, and outlook

To find the most suitable algorithm for leakage detection in TIR
imagery of DHSs, this paper augmented and compared three anomaly
detection methods from literature using an enhanced case study from
Germany. In principle, all analysed methods are capable of reliably
identifying significant thermal hot-spots. This applies in particular to
those caused by critical leakages with a considerable ΔT to their im-
mediate surroundings. Differences between methods are especially
evident regarding their reliability in detecting weaker anomalies and
robustness in complex images containing pronounced temperature
gradients not associated with leakages. SM delivers considerably more
robust detection results than described in literature, though there is still
a tendency towards large-scale false-positive detections. Despite en-
hancements and adaptations, LT continues to exhibit shortcomings in
reliably detecting less conspicuous anomalies. THT was greatly
improved through the proposed vignetting correction and now delivers
robust detection results, highlighting the importance of appropriate
preprocessing of image data. In several cases, including VC has a more
significant impact than utilising another method.

Naturally, this study is subject to some limitations. Despite the
diversified data, confirmed leakages are scarce which complicates gen-
eralising conclusions. A lack of published datasets, such as Friman et al.
[6]’s who mention 400 confirmed leakages, means only independently
acquired images could be included. This study therefore focused on the
algorithms themselves, limiting the use of mechanisms to distinguish
between actual leakages and false alarms. Comparisons between the
discussed methods are still meaningful owing to their global application
to the same data. The difficulty of human error in manual labelling is
addressed as best as possible, though it remains subject to some uncer-
tainty. A lacking willingness to share code by all except Vollmer et al.
[22] prevents the exact replication, verification, and testing of some

implemented methodologies described in literature. Several parameters
are not specified by the original authors, leaving their definition open to
interpretation and hampering reproducibility of their results. All
methods were implemented to the best of our ability, as found in Ruck
et al. [23].

The described findings present several opportunities for future
research. Further method development and evaluation would benefit
from a similar analysis on datasets containing a diverse range of
confirmed leakages. Implementing deep learning to perform anomaly
detection may present a viable alternative to the compared conventional
methods. Such a model could be honed to the more specific task of
leakage identification instead of general anomaly detection. The
research can be expanded to include the classification of anomalies.
Some studies mentioned in Section 1.2 use ML to this end, though the
models are not state of the art. Modern deep learning approaches could
improve the reliable classification of leakages and false alarms.
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Table 8
Leakage detection pipeline evaluation results for the datasets MU1 and KA1.

MU2 KA1

THT with VC LT MaxIoU90 SM MaxIoU85 THT with VC LT MaxIoU90 SM MaxIoU85

# of anomalies 709 2209 1128 647 1586 668

average anomaly area 195.4 92.8 257.4 202.7 223.1 158.0

Classified by ΔT

uncritical 561 2066 951 567 1506 593
moderate 105 105 148 62 66 63
pronounced 18 15 10 18 14 12
critical 25 23 19 0 0 0

# of relevant anomalies 148 143 177 80 80 75

Classified by type (manually)

leakage 20 19 19 0 0 0
manhole 82 64 57 51 50 51
car 46 60 101 10 10 10
other 19 20 14
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Appendix A. Grid search performance statistics

Table A.1 gives statistical insight into the performance range achieved by the algorithm variants found through the parameter grid search. Mean
and standard deviations are calculated across all parameter combinations described in Section 4.3–20,000 and 448 for SM and LT respectively. As the
grid search was limited to those two methods, no variants for THT exist with which statistical values could be calculated. The high standard deviations
demonstrates a broad performance range and highlights the importance of the grid search and finding optimal parameter constellations.

Table A.1
Statistical results across all the grid search parameter combinations. The data is formatted as “mean ± standard deviation” and given in %.

Method IoU F2 R P DR DR30

SM 28.6 ± 7.1 48.8 ± 15.9 58.0 ± 27.6 51.9 ± 21.8 60.6 ± 29.8 63.9 ± 29.0

LT 39.4 ± 13.1 62.7 ± 13.8 74.5 ± 20.0 53.4 ± 22.0 83.5 ± 14.3 88.1 ± 13.5

Table A.2 depicts mean and standard deviations of the leakage detection algorithm variants applied to validation and test datasets, as described in
Section 5.1. These statistics are calculated over 55 variants for SM and 64 for LT, which constitute a heuristic choice of the most promising parameter
constellations and a compromise between the grid search runtime and complete coverage of the parameter space. The number of tested variants differs
between the two methods because each has its own, respective amount of parameters – a factor which considerably impacts runtime. Table A.3 gives
an overview of the parameter values used specifically in these variants. Mean values are significantly higher and standard deviations considerably
reduced compared to Table A.1 owing to the more focused parameter choice.

Table A.2
Statistical results across leakage detection algorithm variants applied to validation and test datasets. The data is formatted as “mean± standard deviation” and given in
%.

Method Dataset IoU F2 R P DR DR30

SM validation 56.2 ± 2.9 80.5 ± 0.6 87.5 ± 2.7 61.4 ± 4.7 92.5 ± 3.4 94.7 ± 2.3

test 52.0 ± 2.7 69.4 ± 3.0 70.5 ± 6.6 68.0 ± 9.2 79.3 ± 5.6 85.7 ± 4.5

LT validation 51.4 ± 2.7 69.9 ± 4.9 71.9 ± 9.0 66.6 ± 10.1 80.6 ± 7.6 87.5 ± 6.7

test 38.9 ± 2.6 50.6 ± 4.5 47.7 ± 5.6 69.7 ± 8.3 73.1 ± 7.4 77.1 ± 6.8

Table A.3
Overview of most promising parameters from in the grid search. Combinations were generated only from the “used values” to be applied to the validation and test
datasets.

Method Parameter Used Values Unused Values

SM

ΔT 4, 5, 6, 7 3

pclip 30, 40 –

(pmin , pmax) (9999, 5), (9999, 20) (20, 5), (40, 5), (60, 5)
(
Δsneg,Δspos

)
(0, 100), (1, 99.99), (1, 99.98) (1, 99.97), (1, 99.96)

smin 70, 80, 90, 98, 110 120, 130, 145, 160, 175

(w, h) (15, 15), (25, 15), (25, 25) (35, 35)

∣⊖ ∣ true, false –

LT

R (30, 150), (30, 200), (40, 150), (40, 160), (50, 150), (30, 40, 60, 100, 150) (10, 150), (20, 150)

pth 96, 97, 98, 99 10, 90, 95

α 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7 –
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